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Abstract 

The behavior of neutron and proton rich nuclei that lie far from the 
region of stability is a matter of great scientific interest. This is because not 
only do these nuclei play important roles in stellar nucleosynthesis events such 
as the r-process, but they also allow us to observe changes in the nuclear shell 
structure, which helps shape our understanding of the nuclear interaction. This 
behavior is often attributable to the existence of shell closures, that occur at a 
few specific numbers of protons and neutrons. Forming a complete 
understanding of such shell closures requires knowledge regarding the orbital 
occupancies of these nuclei. Through an experiment conducted at TRIUMF, 
Canada’s particle accelerator center, the orbital occupancies of neutron rich 
Calcium isotopes have been probed. These nuclei, with a conventional closed 
proton shell of Z = 20, draw interest with new neutron shells signaled at N=32 
and 34.  An overview of the experimental process and subsequent analysis 
will be detailed throughout the following discussion. The overview of the 
experiment will detail the conditions and methods used, while the discussion 
of the analysis will review the steps undertaken towards the construction of 
50Ca(d,d)50Ca Q-Value spectra. 
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Chapter 1 

Introduction 

 
1.1 Nuclei both Familiar and Exotic 
 

From the basic building blocks that are protons, neutrons and electrons, 

the universe assembles the myriad elements we observe on earth and in far off 

stars and dust. These elements span the incredible range from the most 

abundant hydrogen, that fuels stars such as our sun, to rare and exotic species 

such as the heavy actinides, and everything in between. From the oxygen we 

breathe to the calcium in our bones, everything is composed of nuclei, which 

consist of protons and neutrons, and the electrons orbiting around them.  

Primarily, the elements lighter than iron are formed during nuclear 

fusion processes that are continuously working away within stars. Elements 

heavier than iron, however, are thought to be by and large synthesized during 

catastrophic events such as supernovae and neutron star mergers. Both of 

these events proceed through a series of proton or neutron captures, and 

subsequent beta decays, illuminating the vast number of possible 

combinations of protons and neutrons. Of this vast number we normally 
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encounter only the groups of stable and long-lived species, but through the 

production of rare nuclei here on earth, we continually push further towards 

observing ever more extraordinary systems with their increasingly extreme 

proton – neutron combinations. 

This incredible number of nuclei may be categorized according to their 

number of protons (Z), their number of neutrons (N), or their sum of protons 

and neutrons, known as the mass number (A). Nuclei which share the same 

number of protons but have differing numbers of neutrons are known as 

isotopes, while nuclei that share the same number of neutrons but differ in 

number of protons are known as isotones, and finally nuclei which share a 

mass number are known as isobars.  

While the synthesis of elements up to iron in stars through nuclear 

fusion is currently well understood, the mechanism at play in the violent 

events previously discussed that account for many of the heavier elements is 

still not quite in clear focus. This mechanism is known as the rapid neutron 

capture process, in which nuclei rapidly capture neutrons and successively 

beta decay, trending towards heavy, stable elements. This process is 

understood to proceed through rare, short-lived neutron rich nuclei, in which 

the current theoretical understanding of the nuclear interaction falter. Therein 

lies the goal of this thesis, to contribute experimental information to aid in the 
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theoretical modeling of the properties of exotic nuclei, which will in turn help 

elucidate the rapid neutron capture process. 

 

1.2 The Nuclear Shell Model 
 

Just as electrons arrange themselves into shells as they orbit around the 

nucleus, so to do the protons and neutrons within it. These nucleons reside in 

a mean potential resulting mainly from the strong nuclear interaction between 

them and their immediate neighbors, meaning that a nucleon well inside the 

nucleus experiences the same interaction regardless of its location. This 

results in a potential well with a flat bottom and gradually sloping walls. While 

this potential may not be expressed in exact form, it may be approximated 

with a simple harmonic oscillator potential. Protons and neutrons 

independently fill orbitals that are the eigenstates of this potential well 

according to the Pauli exclusion principle, with energies specified by the 

principle quantum number (N) and the orbital angular momentum (l). [1]   

In order to reconcile experimental results with this model, M.G. Mayer 

and J.H.D. Jensen added a term to this model describing the coupling between 

the angular momentum and spin (s) of the nucleons [2][3]. This term results 
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in a splitting of the harmonic oscillator levels, with the orbital having total 

angular momentum (j)  

𝑗ழ  =  𝑙 + 
ଵ

ଶ
     (1.1) 

Becoming lower in energy than the orbital with total angular momentum  

𝑗வ  =  𝑙 − 
ଵ

ଶ
     (1.2) 

From these arguments of an approximate nuclear potential and spin – 

orbit splitting, we come to the formation of nuclear shells, as is depicted in 

(Fig 1.1.). Energy gaps between shells identify shell closures, with the number 

of protons or neutrons below a particular gap being referred to as a magic 

number. 

 

 

 

Figure 1.1: Single particle energies for the harmonic oscillator potential and 
added spin orbit interaction, with levels labeled N l j, and magic numbers 

denoted in red. 

 

 This shell structure model and the magic numbers arising from it have 

proven very successful in the description of both magic and non-magic nuclei, 
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with the robust properties of magic nuclei such as their high first excited state 

energies and spherical shapes serving as experimentally observable 

verification of the model. This well understood description begins to fail 

however, in exotic nuclei with asymmetric ratios of protons and neutrons such 

as the neutron rich isotopes the r-process is understood to proceed through. 

To better understand the changes in shell structure that arise, experimental 

data regarding these exotic nuclei are needed to guide the improving 

theoretical descriptions. 

 

1.3 The Evolution of Shell Structure 
 

With the image of a closed shell nucleus such as 40Ca, with its twenty 

protons and twenty neutrons acting as an inert core, the central mechanism 

and effect of shell evolution may be illustrated. Any additional nucleons 

added to the valence orbitals above the inert core serve to influence the 

energies of the other orbitals above the inert core. This shift is mediated by a 

component of the nuclear force, and its strength is dependent upon the number 

of nucleons in the valence orbitals. If the effect proves sufficiently extreme, it 
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may give rise to new shell closures or efface traditional ones [1]. The effect is 

illustrated in (Fig 1.2). 

Figure 1.2: Schematic depiction of a closed shell nucleus, and a 
nucleus with additional valence neutrons, respectively. The additional 

valence neutrons serve to shift the single particle energies of other orbitals.  

 

The effect of shell evolution on magic numbers has been known for 

some time, with experimental evidence for the appearance of a new shell gap 

N = 32 arising in 52Ca being found by A. Huck et. al. in 1985 [4]. In order to 

better understand the effects of shell evolution and its driving mechanism, 

ever more experimental information is needed on exotic nuclei, to guide 

theoretical models in areas such as those where new shell gaps arise, such as 

the neutron rich Calcium isotopes. 
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1.4 New Shell Closures in  
Neutron-Rich Isotopes 

 

Neutron rich Ca isotopes and nearby species such as Ti [5] have proved 

themselves to be an excellent testing ground for the effects of nuclear shell 

evolution and the calculations working to model them, with Ca isotopes being 

of particular interest due to their traditional closed proton shell of Z = 20. A 

number of studies have focused their attention on the emerging shell gaps 

understood to be present within the region. 

The work discussed in the previous section offered evidence of a new 

shell gap at N = 32 in 52Ca, in the form of the first 2+ excited state energy, 

which is often the first excited state in nuclei with even numbers of protons 

and neutrons. However, it is important to note that while the value reported is 

strong evidence, and is cited as being well in line with theoretical models, this 

first 2+ excited state energy is not a decisive indicator of a shell closure, as it 

may be affected by a variety of other factors. There may also be uncertainty 

involved in the spin and parity (π) assignment of the observed state, as was the 

case in the discussed work.  
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More evidence for an N = 32 shell closure came from measurements of 

the first 2+ excited energies of a number of Cr isotopes. A number of studies 

such as Ref. [6] by R. Chapman, S. Hinds and A.E. Macgregor have reported 

the first excited state energies of a number of Cr isotopes including 52Cr, 54Cr 

and 56Cr, with a traditional closed neutron shell of N = 28, N = 30 and N = 32, 

respectively. While an increase in the first excitation energy of 56Cr was noted 

as in 52Ca, the question remained whether this excitation energy peaked in the 

N = 32 isotones or continued to increase as ever more neutrons are added. J.I 

Prisciandaro et. al. reported the energy of the excited state for 58Cr, which 

contains thirty four neutrons, finding that it does decrease compared to its N 

– 2 neighbour [7].  

Furthermore, a shell closure at N = 34 had been proposed quite some 

time ago [8], and became a topic of interest as more exotic nuclei around N = 

34 could be more readily produced in facilities worldwide. Ref. [9] by M. 

Rejmund et. al., proposed to study this possible shell gap through observations 

of excited states of 50,51,52Ca. In these excited states, a single neutron populates 

the orbitals 2p1/2, which is filled in the case of 54Ca, and 1f5/2. The difference 

in energy of these orbitals was then inferred, and no evidence for this shell 

closure was found. A number of other studies focused on observing the first 

2+ excited state in Ti and Cr isotopes, also found no evidence of the shell 
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closures existence, such as Ref. [5]. Conversely, a later study by D. 

Steppenbeck et. al., found evidence for its existence in the form of the first 2+ 

excited state of 54Ca, reported to be similar to that of 52Ca found more than 

twenty five years prior [10].  

More evidence of both of these shell gaps come in the form of mass 

measurements of a number of Ca isotopes of mass 51, 52 [11], 53, 54 [12], 

and 55, 56 and 57 [13]. From these mass measurements, the binding energy 

of the nuclei, which is the result of all the reactions between the constituent 

nucleons, may be derived. Further, the two neutrons separation energy, which 

is defined as the binding energy of a nucleus, subtract the binding energy of a 

nucleus with two fewer neutrons, may be defined. Through the three 

mentioned studies, trends in the two neutron separation energy of these nuclei 

as a function of neutron number are seen to mimic the trends seen in the 

traditionally magic calcium nuclei, and the nuclei that surround them. For 

instance, the two neutron separation energy is seen to sharply decrease in 

nuclei after the traditional magic nucleus 48Ca, as well as 52Ca and 54Ca, as 

observed in the aforementioned studies. 

Evidently, ever more experimental input on the properties of exotic 

isotopes around these discussed shell gaps is needed to further clarify our 

understanding of nuclear shell evolution and its effects on exotic isotopes. 
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Perhaps there is no better case study for this than the Ca isotopic chain, which 

would benefit from more well defined spin and parity assignments. 

 

1.5 Nuclear Reactions  
 

The majority of the experiments discussed in the previous section went 

about studying their topic of interest by way of nuclear reactions between a 

beam of projectile nuclei and stationary target-like nuclei. With exotic nuclei, 

such as the neutron rich isotopes of interest to this experiment having very 

short lifetimes, using them to construct a stationary target would be 

impracticable, as the target would continuously decay. Instead, these exotic 

nuclei come in the form of a beam, produced in fragmentation reactions 

between high energy protons and heavy targets.  

The result of the reaction between the heavy beam (A) and the light 

target (b) may come in a number of forms, depending on the reaction that 

occurs. Regardless of the type of reaction, it is often written in the notation 

A(b, d)C, with the reaction heavy product being denoted (C), and the light 

product being denoted (d). Generally, 

𝐴 +  𝑏 →  𝐶 +  𝑑      (1.3) 
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The first type of reaction that is of interest is scattering, which comes 

in both elastic and inelastic flavours. In both cases, the participating nuclei 

remain the same species they were before the reaction.  

𝐴 +  𝑏 →  𝐴 +  𝑏      (1.4) 

However, whereas kinetic energy is also conserved in an elastic 

reaction, in an inelastic scattering reaction, one or both participants are jolted 

into an excited state. 

𝐴 +  𝑏 →  𝐴 ∗ + 𝑏 ∗     (1.5) 

The second type of reaction that is of interest is transfer reactions, 

wherein one or more nucleons are transferred between the participating nuclei 

during the reaction, which may be represented by the general form (1.3).  

The participant species in the experiment detailed by this work were a 

beam of the isotope 50Ca, and a solid target composed of deuterons. As 

described above, the result of a reaction between 50Ca and deuterons may 

come in a variety of forms, such as 50Ca(d,p)51Ca if a neutron is transferred to 

50Ca from the deuteron, or 50Ca(d,d)50Ca if the participants scatter, which will 

be further explored throughout the analysis section. 
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Chapter 2 

Experimental Overview 
 

2.1 Exotic Nuclei Generation 
 

The properties of increasingly short lived and neutron-proton 

asymmetric nuclei are being probed at particle accelerator facilities across the 

globe. The topic of discussion for this thesis is the analysis of an experiment 

that was undertaken at TRIUMF, Canada’s particle accelerator center located 

in Vancouver, British Columbia.  

The rare isotope of interest in the experiment, 50Ca, was produced via 

fragmentation of a Tantalum target by a beam of protons accelerated to 500 

MeV by the TRIUMF cyclotron, the worlds largest. These fragmentation and 

fission reactions in the target produce a wide number of nuclei, not only the 

species of interest. It is then necessary to separate the isotopes in the beam, 

and remove unwanted contaminants. This is done by discriminating based on 

the mass-to-charge ratio of the nuclei of interest. However, this cannot 

account for all contaminants, resulting in species with similar mass-to-charge 

ratios of the species of interest, or neighbouring mass 50 isobars that may not 



13 |  
 

be resolvable from 50Ca remaining in the beam. After the beam is separated, 

it is next re-accelerated to approximately 7.5 AMeV and delivered to the ISAC 

charged particle reaction spectroscopy station (IRIS), to undergo the 

experimental procedure.  

2.2 The IRIS Facility 
 

Located in the TRIUMF Isotope Separator and Accelerator (ISAC-II) 

facility, the IRIS facility is designed to study the elastic and inelastic 

scattering reactions, as well as the particle transfer reactions that take place 

between rare isotopes and a stable nucleus as a reaction target. IRIS has a 

unique target compared to those commonly used, being composed of solid 

deuterium. Before a beam encounters the target however, it first passes 

through the Ionization Chamber (IC), a form of proportional counter. After 

reacting in the target, the product particles make their way into one of a 

number of charged particle detectors, which are composed of silicon, except 

for a single cesium iodide scintillator. These components are depicted in 

Figure 2.1. 

 

 

P 



14 |  
 

Figure 2.1: Schematic view of IRIS 

2.3 The Ionization Chamber 
 

The first apparatus that an incoming rare isotope interacts with in the 

IRIS set up is the ionization chamber. The IC is a form of gas detector filled 

with isobutane and kept at a constant pressure of 19.5 Torr. After the incoming 

beam passes through the chamber’s first 30 nm silicon nitride window, it 

travels through the gas volume of 229 mm, wherein each particle deposits an 

amount of its energy proportional to the square of its atomic number, and 

inversely proportional to the particle’s kinetic energy, per unit distance. This 

is expressed in equation 2.1. 

−
ௗா

ௗ௫
 ∝  

௓మ

ாೖ
     (2.1) 

 This deposited energy serves to ionize the gas molecules, which drift, 

under the influence of an electric field produced by the chambers field cage, 

towards the anode pads. The collected charge is then sent as a voltage signal 

to the IRIS data acquisition system after being processed through electronic 

units. The beam of rare isotopes then proceeds through the chambers second 
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50nm silicon nitride window and into the main chamber scattering chamber, 

where it encounters the IRIS solid deuterium target. 

 

2.4 The Solid Deuterium Target 
 

After passing through the ionization chamber, the rare isotope beam 

encounters the IRIS target, with which it participates in a number of different 

interactions. The target apparatus consists of a thin silver foil, the width of 

which is on the order of ~ 4 µm. This foil is mounted upon a copper cold cell, 

cooling the foil to approximately 4 K. A diffuser flows deuterium gas onto 

this foil, freezing it, and creating typical target thicknesses on the order of ~ 

50 µm or ~ 100 µm. This diffuser sits upon an actuator, allowing it to be 

moved into position to flow deuterium, and back safely out of the beam path, 

as is shown in Figure 2.3. 

The orientation of the target apparatus for this experiment was such that 

the silver foil faced up stream, meaning incoming beam first encountered the 

deuterium target, then any resultant particles that scattered forward would first 

need to pass through the thin silver foil, before passing through a hole at the 

center of the copper cold cell and finally reaching one of the detectors in the 
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array. This introduces energy loss in forward scattered particles as they travel 

through the silver foil. 

The greatest benefit of the solid deuterium target come from its density, 

which aids in maximizing the rate of interactions between it and the rare 

isotopes of interest, which have characteristically low rates, due to the 

immense difficulty of their production.  

 

 

 

 

 

 

 

 

 

   Figure 2.3: Photo of IRIS target apparatus 
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2.5 The Detector Array 
 

After interacting with the solid deuterium target, the last action of an 

incoming nuclei at IRIS is coming to rest in one of the several detectors in the 

array. Upstream of the target apparatus are situated two silicon detectors, an 

S3 detector and a segmented YY1 detector. Downstream, another YY1 

detector is positioned in front of a cesium iodide scintillator, and downstream 

of these are positioned two more S3 detectors, as is pictured in Fig. 2.1. 

The S3 detectors are double sided, silicon detectors segmented into 24 

rings on one face, and 32 sections on the opposite face, as is pictured in Figure 

2.4. These segmented silicon modules are each kept at a constant operating 

voltage, which record the energy of any incident particle and allow for the 

angle of the deposited particle to be distinguished. The upstream S3 detector 

covers an approximate angular window in the laboratory frame, of 22o, Θlab = 

146o - 168o. The downstream pair of S3 detectors cover a smaller angular 

window of approximately Θlab = 2o - 7o. 

The YY1 are segmented silicon detectors consisting of eight seperate 

sectors, each with 16 angular segments (Fig. 2.4), which operates in much the 

same way as the S3 detectors. Once again, this allows for the angle of a 
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deposited particle to be resolved. Larger than the S3 detectors, the upstream 

YY1 covers an angular window of approximately Θlab = 122o - 149o, whereas 

the downstream YY1 array covers an approximate angular window of Θlab = 

29o - 55o 

The cesium Iodide scintillator positioned behind the downstream YY1 

is comprised of 16 sections, which have no angular segmentation. However, 

therein lies the reasoning for its positioning, as while the downstream YY1 

detector is angularly segmented, it is not capable of stopping the higher energy 

light particles such as protons and deuterons that are scattered forward. 

Together however, any higher energy light particle incident upon both the 

YY1 and the CsI(TI) detectors may have their incoming angle and a 

proportion of their energy recorded by the YY1 as it passes through, and may 

then have their remaining energy recorded by the CsI(TI) as they implant 

themselves. This configuration allows for scattered light particles to be 

identified, as protons, deuterons, tritons and alpha particles will all deposit 

different, distinguishable proportions of their energy between the YY1 and 

CsI(TI).  

Together, the detector array allows for the resultant light and heavy 

particles of interactions such as 50Ca(d,d)50Ca and 50Ca(d,p)51Ca to all be 

detected, whether they are scattered forward (Θlab < 90o) b) a) 
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or backward (Θlab > 90o) and have their total energy and incident angle 

recorded, which are vital in the experimental analysis from the beginning of 

detector calibration to the resulting Q-Value spectrum. 

 

 

Figure 2.4: a) Image of S3 detector, with both ringed and segmented faces 

visible. b) One of eight YY1 sectors. 
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Chapter 3 

Experiment Analysis 

 
 Turning now to the analysis of the experimental data, a number of steps 

must be undertaken before any meaningful result may be derived. First, the 

experimental parameters must be understood, such as the contents of the 

incoming beam and its energy, as well as the thicknesses of the deuterium 

target and silver foil. To determine these, the array of detectors must also be 

calibrated. Only once all of this is complete, may specific interactions between 

the beam and target be studied. 

 

3.1 Identifying Beam Species 
 

As previously described, when a beam is produced at TRIUMF, it 

contains a myriad of species, which are then separated based on their mass-

to-charge ratio. Meaning, that when the beam arrives at IRIS, it is still not a 

pure beam of the species of interest, 50Ca, but may contain a number of 

different nuclei with similar mass-to-charge ratios. These incoming isotopes 

must then be identified using the ionization chamber. As discussed in section 
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2.5, the energy deposited by an isotope as it travels through the ionization 

chamber is proportional to the isotopes Z2 and inversely proportional to its 

kinetic energy, meaning that each incoming species of different Z is 

distinguishable. As an incoming particle passes through the IC and ultimately 

makes its way into a detector, gates may be made on IC output to select only 

those events in other detectors that correspond to the gated species, as 

illustrated in Fig. 3.1. 

 

 

 

Figure 3.1: Ionization chamber spectra showing beam contents from left to 
right 25Mg, 50Ca, 50Ti, 50Cr and 75As respectively. Silicon detector spectra 

with corresponding species identified with IC conditions. 

 

3.2 Detector Calibration 
 

The raw analog voltage signal output by an IRIS detector is digitized 

and recorded according to its amplitude. This is recorded as an ADC (Analog 

ADC Channel 
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to Digital Converter) channel number, which is related to the physical value 

of the energy deposited in the detector by an incident particle in the following 

manner. 

𝐸 =  𝑔 × (𝑐 –  𝑝)     (3.1) 

 Where E is the energy deposited by the incident particle, g is the gain 

value, a ratio between deposited energy and output channel number that may 

not be completely linear across the entire energy regime, and also is in general 

not the same for different segments of the same detector. It is because of this 

potential non-linearity that the source chosen to calibrate the detector must be 

of similar in energy to the particle that will be detected in the experiment, this 

will be further discussed in a later section. The quantity c is the output channel 

number, and p is the pedestal value of the detector segment, or the channel 

number corresponding to zero deposited energy, which is universally not 

channel zero. In general, the task of calibrating a detector then lies in 

determining the necessary parameters, the gain and pedestal values, of each 

detector segment. 
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3.3 YY1 and Upstream S3 Detectors 
 

The particles detected by the upstream YY1 and S3 detectors covering 

laboratory angular windows greater than 90o consist of light particles such as 

the resultant protons in the 50Ca(d,p)51Ca, with the heavier, more energetic 

beam like particles being restricted to very low angles. With this in mind, the 

process of calibrating the upstream detectors begins with determining the 

pedestal, p, of each detector segment. This is done by letting the detectors run 

idle, with no source of radiation to be detected. The ADC channel at which 

ambient detector noise is visible is taken to be the pedestal. To determine the 

gain, a triple alpha source of known energies is observed, and the resultant 

spectra in each detector segment is fit with three gaussians. The mean of these 

gaussians, which is in ADC channel number, may then be plotted against the 

known energies of the triple alpha source, with the slopes of linear fits 

determining the gain value for each segment. The results of this process may 

be visualized in Fig. 3.2, with the effect of different sectors having different 

pedestals visible as the waving nature of the uncalibrated spectrum, and the 

effect of scaling being visible as the difference in the y-axes. 
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Figure 3.2: Triple alpha source spectra showing all segments of the upstream 

YY1. 
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3.4 Silver Foil Thickness Determination 
 

A short time prior to the experiment, the silver foil component of the 

IRIS target apparatus was replaced. To be able to accurately calibrate further 

detectors, it is imperative to measure the thickness of this foil, as it is 

necessary to be able to calculate the energy lost by a particle passing through 

it. To this end, the triple alpha source previously discussed was again 

employed. This source consisted of 239Pu, 241Am and 244Cm which emit alpha 

particles at 5.80 MeV, 5.15 MeV and 5.48 MeV respectively. Spectra were 

recorded with the previously calibrated detectors, first with the source in front 

of the foil relative to the detectors, and then behind.  

 These two spectra are then compared, and an energy difference, as 

shown in Fig. 3.4, may be observed, after once more fitting each peak with a 

gaussian and observing the mean. This difference corresponds to the energy 

lost in the foil by the alpha particle passing through, which as we have 

previously discussed is proportional to the Z2 of the particle, and inversely 

proportional to the particle’s kinetic energy, per unit distance traveled through 

the material. If a particle were to travel through both the silver foil and 

deuterium target as shown in figure 3.3, the resulting energy may be expressed 

as  
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𝐸ଶ =  𝐸ଵ −  ∫
ௗா

ௗ௫భ

௫భ

଴
𝑑𝑥ଵ  −  ∫

ௗா

ௗ௫మ
𝑑𝑥ଶ

௫మ

଴
   (3.2) 

With x1, x2 representing the thickness of the target and the foil 

respectively, and the value of the integrand, the energy lost per unit material, 

being adopted from well understood stopping power tabulations, an example 

of which is shown in Fig. 3.5. With only the foil being present in this step, the 

first integral is zero, and the above steps and tools outlined may be applied, 

and the foil thickness, which was found to be 4.3 ± 0.3 µm, may be measured. 

The quoted uncertainty accounts for uncertainties in the recorded means of 

the fitted gaussians and discrepancies between the values measured for each 

alpha source species. 

 

 

 

 

 

Figure 3.3: Diagram showing schematically the variables involved in the 
calculation of energy loss. 

 

 

E1 E2 
Deuterium 

Target 

Ag 

Foil 

X
1
 X

2
 



27 |  
 

Figure 3.4: Comparison of tabulated values of 75As energy loss in deuterium. 

 

 

Figure 3.5: Plot showing energy spectra of triple alpha source between foil 
and detector (blue) and behind foil (red), displaying the observable shift in 

energy. 
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3.5 Downstream S3 Calibration and Deuterium 
Target Thickness Measurement 
 

With the thickness of the silver foil now a known parameter, the 

downstream S3 detector may be calibrated, and applying this calibration, the 

thickness of the deuterium target may then be measured. The process for 

calibrating the S3 detector is similar to that employed to calibrate the YY1. 

As discussed, the downstream S3 detector is responsible for observing heavy, 

beam like nuclei, which are orders of magnitude more energetic than the alpha 

source, necessitating the use of the beam itself in calibration of the 

downstream S3, in order to avoid any non-linearity in the detector gain, as 

previously mentioned.  

Evidently, it is necessary to understand the thickness of the silver foil, 

as while the energy of the emitted alpha particles used in the calibration of the 

upstream detectors was known, to understand the energy deposited by a beam 

constituent on the S3 detector, the energy of the beam as it enters the IRIS 

apparatus must be known, the energy lost by the particle as it passes through 

the IC, the energy lost as it scatters through the silver foil, as well as the energy 

lost by the particle as it travels through the detector dead layer, a thin inactive 

material layer on either side of the active silicon layer, must all be calculated. 
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This process is applied to data taken before the deuterium target is formed, so 

it need not be considered. Calculating these energy losses for the various 50Ca 

beam constituents, 25Mg, 50Ti, 50Cr and 75As, fitting the observed spectra with 

gaussians and using their means to determine ADC channel number, the gain 

may be calculated as the mean of that calculated by each species individually. 

Finally, pedestals may be determined by the process outlined in Section 3.3. 

In measuring the thickness of the deuterium target, a method similar to 

that applied in measuring the silver foil thickness is used. The primary 

difference being, the beam and now calibrated S3 detector are employed in 

place of the alpha source. The other difference being that the deuterium target 

has two thicknesses to be measured, the first is approximately 50 µm, formed 

near the beginning of the experiment, after collecting foil-only data, and the 

second is approximately 100 µm, as additional deuterium was added to the 

target mid-way through the course of the experiment. Using spectra taken 

before and after target formation, and once again observing the shift in 

incident particle energy for the beam species, the width of the target may be 

measured by applying tables of energy loss through deuterium by the particles 

of interest, such as the one shown in Fig. 3.5. The result of this process is 

shown in Fig. 3.6.  
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Figure 3.6: By-Run target thickness calculations for ~50 µm and ~100 µm 
experiment runs using 50Cr and 50Ti. 

 

 

 

Run Date-Time [Month-Day Hour] 

Run Date-Time [Month-Day Hour] 

a) 

b) 

Deuterium Target Thickness Distribution [50 um Runs] 

Deuterium Target Thickness Distribution [100 um Runs] 



31 |  
 

In Fig 3.6, apparent increases in the measured target thickness for both 

thin and thick target runs are clearly visible. This is a puzzling result, as if any 

change at all would be to occur, it would be expected that the target thickness 

would shrink over time due to potential radiative heating. The explanation for 

this comes by investigating the IC spectrum. As has been discussed, the 

method of target thickness measurement relies only on the energy lost by the 

beam through the IC, deuterium target, silver foil and detector dead layer. If 

the energy lost in any of these materials were to be greater in reality than what 

was calculated, the additional energy loss would be attributed to the thickness 

of the target in the calculation.  

The IC was the source of this discrepancy. Fig. 3.7 a) plots the average 

temperature of the Ionization Chamber over the course of the experiment on 

a bi-hourly basis, in which clear oscillations may be seen. As the pressure and 

volume of the gas filled chamber are controlled and fixed, an increase in the 

temperature leads to a decrease in the number of isobutane molecules present 

in the chamber, and vice versa, as is related by the ideal gas equation of state. 

𝑃 × 𝑉 =  𝑛 × 𝑅 × 𝑇     (3.3) 

With P being pressure, V being volume, n corresponding to the number 

of moles of the gas, R being the ideal gas constant and T, the temperature of 
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the gas. An increase in the number of isobutane molecules would then lead to 

an increase in “thickness” as seen by any incident particle, and an increase in 

its energy lost through the gas volume. 

 

Figure 3.7: a) Plot of bi-hourly IC temperature averages over the 
course of the experiment. b) Plot of 75As IC ADC Channel for each 

experimental run. 
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As can be seen in Fig. 3.7, the temperature oscillations of the Ionization 

Chamber and the oscillations in the energy deposited by 75As in it have a 

similar period. The apparent increases in target thicknesses seen in Fig. 3.7 

can be seen to happen on similar timescales as well, such as the time period 

from 06-23 12 to 06-24 06, suggesting a correlation between the two 

phenomena.  

This was taken into account as an additional source of uncertainty in 

the target thickness measurement, proportional to the measured target 

thickness if the IC temperature had been at it’s extremum. This was added to 

the inherent uncertainty consisting of the error in the means of the fitted 

gaussians in the detector spectra, and an added 2% error accounting for 

variations in energy loss tables. The measured target thicknesses were then fit 

using a least-squares method to find the single best value for both the ~ 50 µm 

group of runs and the ~ 100 µm group of runs. This resulted in measured target 

thicknesses of 43 ± 2 µm and 89 ± 3 µm. 
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3.6 Downstream YY1 and CsI (TI) Calibration 
 

The combination of the downstream YY1 and CsI (TI) detectors 

observe the angle and energy of deposited light particles, such as protons, 

deuterons tritons and alpha particles. Here the fundamental process of detector 

calibration is once again repeated. While the downstream YY1 was calibrated 

using a triple alpha source as discussed in section 3.3, the incident particles 

used in calibration for the CsI (TI) detector were deuterons produced in the 

40Ar(d,d)40Ar scattering reaction, 40Ar being a stable beam sent to IRIS prior 

to the delivery of the radioactive 50Ca beam, applied for its higher count rate. 

These deuterons may be distinguished from the protons, tritons and alpha 

particles also present in these detector spectra by applying the understanding 

that each of these light particles has a maximum amount of kinetic energy it 

may deposit in the YY1, due to the energy deposited in a material being 

inversely proportional to kinetic energy. Thus, a particle with more energy 

than the maximum will depart less on its way through the YY1, and the 

remainder in the CsI (TI) as it comes to rest. This is illustrated in Fig. 3.8, with 

a particle identification spectrum.  

With the deuterons identified, the energy they would deposit in the 

detector must then be calculated. Once again, this involves calculating the 
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energy lost by the 40Ar as it travels through the IC windows and active gas 

volume, and then the resultant energies of the scattered deuteron and 40Ar after 

their interaction. As this interaction happens at a random point in the 

deuterium target, for the purposes of calculation it is approximated to be the 

middle. The energy lost by 40Ar through the first half of the target must 

therefore also be calculated. The energies of the resultant particles after the 

scattering reaction are dependent upon the angle at which they are ejected, 

and this must be taken into account as the energies lost by the deuteron in the 

second half of the deuterium target, silver foil, YY1 dead and active layers as 

well as the CsI (TI) dead layer are all calculated.  

With the final deposited energy in the CsI (TI) evidently being 

dependent upon the incident angle of the particle, it is necessary to resolve 

this angle in the CsI (TI) spectra. This is done by gating on events in the 

spectra that correlate to events in particular chosen angular segments of the 

YY1, creating a virtual angular segmentation in the CsI (TI). Due to low count 

rates, instead of gating on each of the 16 individual YY1 angular segments in 

the CsI (TI) spectra, the calibration was carried out in groups of four angular 

segments. 
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Fig. 3.8: Plot of 2D particle identification spectrum, with visible 

proton, deuteron, triton and α particle bands. 
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Fig. 3.9: 40Ar CsI (TI) 1D energy Spectrum illustrating angular dependance 

of deposited energy. 
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50Ca(d,d)50Ca, there is the possibility of inelastic scattering, wherein the 

outgoing 50Ca would enter an excited state, and the corresponding mC would 

be unknown. The expression may then be re-written in the following manner. 

𝑄 =  𝑚஺ +  𝑚௕ − 𝑚ௗ − ඥ𝐸஼
ଶ − 𝑃஼

ଶ  (3.5) 

In which EC and PC, the energy and momentum of the resultant beam like 

particle, are defined in terms of the following experimentally observed and 

known quantities. 

      𝐸஼  =  𝐸஻௘௔௠ + 𝑚஺ + 𝑚௕ −  𝐸ௗ −  𝑚ௗ   (3.6) 

𝑃஼   =  ඥ𝑃஺
ଶ + 𝑃ௗ

ଶ − 2𝑃஺𝑃ௗ𝑐𝑜𝑠𝜃ௗ  (3.7) 

With EBeam, mA, mb, md, PA being known quantities, and the remaining 

quantities being measured by IRIS. In the case of inelastic scattering, a non-

zero Q-Value would then correspond to the excited states of the reaction in 

the following manner. 

𝐸௘௫௖௜௧௘ௗ  =  𝑄 − 𝑄௚௦    (3.8) 

With the experimental information collected, the Q-Value may then be 

constructed for each interaction, giving insight into the excited states of the 

nucleus, and acting as a step towards information regarding nuclear structure. 
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 The Q-Value spectra resulting from this experiment are shown in Fig. 

3.10, with the spectrum corresponding to the thicker deuterium target being 

subdivided into angular regions. In both sets of data, a peak is visible at 0, or 

the ground state of 50Ca. In both cases, it is also difficult to attempt to resolve 

any further excited states. It is also of note that the ground state peak of each 

spectrum was fit with a gaussian and compared to the fit of a simulated ground 

state gaussian, of which the gaussian fit to simulation had a standard deviation 

smaller by an approximate factor of two. More precisely, the standard 

deviations of the thick target spectra are σdata = 0.87 ± 0.1 and σsimulated = 0.534 

± 0.005. The thin target spectra have standard deviations of σdata = 0.78 ± 0.3 

and σsimulated = 0.368 ± 0.005. This is possibly due to error arising in the 

calibration of the CsI (TI) as a result of low count rates in a number of angular 

regions, a result of the low number of statistics in the Q-Value spectra, or a 

result of a possible nearby unresolved excited state. However, a sum of two 

gaussians was also fit to the peak and compared appropriately to simulation, 

the result being a still wider ground state gaussian. 
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Fig. 3.10: Measured Q-Value spectra for the 50Ca(d,d)50Ca reaction 
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Chapter 4 

Discussion 

 The current experimental understanding of the excited states of 50Ca 

and their properties is limited, with the majority of the spin and parity (Jπ) 

assignments of states above the first 2+ excited state at 1.026 MeV remaining 

tentative, if they are known at all. There are two points of particular interest 

in the observed data. The first is the lack of visibly populated excited states 

between 1 and 4 MeV. While the previously mentioned first excited state may 

be unresolvable due to its proximity to the ground state peak, the absence of 

the other four other states quoted in this region may be an artifact of the low 

number of counts. The second point of interest is the structure visible near         

-5.5 MeV in the thick target spectra. There are a large number of closely 

spaced states cited in literature within this region (i.e., 10 reported states exist 

between -5.5 MeV and -5 MeV). This may possibly be the source of the 

structure, if only a number of these states are populated with only a low 

number of counts, the density of states alone may give rise to the observed 

structure. Figure 3.12 shows a single gaussian with a fixed peak fit of -5.576 

MeV fitted within the bounds -4.08 MeV to -7.08 MeV for both the thick 

target data and a simulated peak of the same energy, which takes into account 
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only experimental resolution. The width of the gaussian fitted to the data is 

approximately a factor of three wider than that of the simulation (σdata = 0.89, 

σsimulation = 0.28), this may be due to the contribution of the numerous nearby 

states. Beyond the state at 1.026 MeV, no excited states have spin 

assignments, which this project may help to elucidate. However, the low 

number of counts would be a significant obstacle in this endeavor. The first 

24 known excited states for 50Ca are collated in table 5.1. The calibrations 

obtained for this project may also aid in the analysis of the 50Ca(d,p)51Ca 

reaction. 
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Fig 3.12: Gaussian fit with fixed peak of -5.576 MeV for both thick target 

spectra and simulated Q-Value gaussian peak of the same energy. 
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Excited State Energies [MeV]  

1.026 4.830 5.147 

3.002 4.870 4.168 

3.531 4.886 5.281 

3.997 4.970 5.362 

4.035 5.043 5.424 

4.475 5.084 5.516 

4.515 5.109 5.576 

 

Table 5.1: Energies of the first 21 known excited states of 50Ca 
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