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Abstract

On the North American Great Plains, several snake species reach their northern range limit

where they rely on sparsely distributed hibernacula located in major river valleys. Indepen-

dent colonization histories for the river valleys and barriers to gene flow caused by the lack

of suitable habitat between them may have produced genetically differentiated snake popu-

lations. To test this hypothesis, we used 10 microsatellite loci to examine the population

structure of two species of conservation concern in Canada: the eastern yellow-bellied racer

(Coluber constrictor flaviventris) and bullsnake (Pituophis catenifer sayi) in 3 major river val-

leys in southern Saskatchewan. Fixation indices (FST) showed that populations in river val-

leys were significantly differentiated for both species (racers, FST = 0.096, P = 0.001;

bullsnakes FST = 0.045–0.157, P = 0.001). Bayesian assignment (STRUCTURE) and ordi-

nation (DAPC) strongly supported genetically differentiated groups in the geographically dis-

tinct river valleys. Finer-scale subdivision of populations within river valleys was not

apparent based on our data, but is a topic that should be investigated further. Our findings

highlight the importance of major river valleys for snakes at the northern extent of their

ranges, and raise the possibility that populations in each river valley may warrant separate

management strategies.

Introduction

The genetic population structure of snakes can vary markedly based on a number of intrinsic

and extrinsic factors [1–3]. Some snake species show only very modest levels of subdivision or

none at all (e.g. Rhinoplocephalus nigrescens; [4], Crotalus horridus, [5]), while others show a
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high degree of differentiation over small spatial scales (e.g. Sistrurus catenatus catenatus; [6],

Nerodia erythrogaster neglecta; [7], Vipera berus, [8]; Coronella austriaca, [9]; Crotalus triseria-
tus, [10]). The variation among species is likely due to a wide variety of biological traits (e.g.

natal philopatry, home range size, specific habitat requirements), as well as the ability of indi-

viduals to disperse. Dispersal and associated gene flow among breeding groups may also be

influenced by extrinsic factors such as natural or man-made barriers [11]. For example, Mar-

shall et al. [7] showed that anthropogenic habitat loss caused enhanced genetic isolation in the

copperbelly water snake (Nerodia erythrogaster neglecta, a habitat specialist) by hindering dis-

persal. It is clear that intrinsic and extrinsic factors may interact to produce constraints to dis-

persal and gene flow in snakes; however, most studies have addressed populations at the core

of known geographic ranges (e.g. [12]). It is only recently that snake populations at range

peripheries (e.g., [13–15]) or in extreme environments (e.g., [16]) have become the focus of

conservation genetics studies. Conservation challenges may be exacerbated for populations at

range peripheries, where extreme environments and naturally sparse distributions interact

with anthropogenic activities to generate additional risk factors.

Snake populations at northern range limits face ecological challenges that may affect dis-

persal, gene flow, and ultimately genetic population structure. For example, snakes at higher

latitudes in North America and Eurasia rely heavily on a limited number of suitable hibernac-

ula to survive harsh winters [17], and they often exhibit high fidelity to these sites (e.g. Elaphe
obsoleta obsoleta; [18], Gloydius halys; [19]). In addition, landscapes containing both suitable

hibernacula and summer habitat for northern snakes (e.g., [20]) may be patchily distributed at

range margins, a situation that is exacerbated by human activities that cause habitat loss and

fragmentation [21]. Thus, gene flow may only occur among northern snake populations when

individuals travel long distances away from dens to breed; however, successful dispersal may

be uncommon, resulting in highly subdivided populations. Interestingly, several recent studies

have shown that some snake species have much larger home ranges and travel long distances

from hibernacula at northern range limits (e.g. [20, 22–24]). In principal, these behavioural

traits may partially counteract the barriers to gene flow discussed above. Understanding this

situation is of key interest in Canada, where a variety of North American snakes, some of

which are of conservation concern, reach their northern range limits [25].

The Great Plains in central Canada represents the northern range limit for the eastern yel-

low-bellied racer (Coluber constrictor flaviventris, hereafter racer) and the bullsnake (Pituophis
catenifer sayi). In addition to being the range periphery for these species, the northern Great

Plains is also one of the most human-altered landscapes in North America; over 70% of native

grassland has been lost due to agriculture, and the region contains a high density of species at

risk of extinction or extirpation [26]. Racers and bullsnakes have distributions in Canada that

are linked to major river valleys in southern Saskatchewan and Alberta. Almost nothing is

known about population size, structure, or the degree of isolation of either species in this

region. Both racers and bullsnakes have specific habitat requirements, including hibernacula

with particular characteristics (thermal properties), and they often exhibit a high degree of

fidelity to these sites [20,23]. Large geographic distances separate river valleys and hibernacula,

which may be further isolated due to extensive land conversion for agriculture, creating an

inhospitable landscape for snake dispersal. Both species are considered vulnerable to extirpa-

tion in Canada due to limited habitat availability and conflict with humans. The racer is cur-

rently listed as a Threatened species [27], and the bullsnake is considered of special concern

due to a nearly complete lack of basic knowledge about their populations, and documented

conservation threats [28]. The connectivity among occupied sites in Canada, and the potential

for genetic differentiation among locations has not been previously investigated for these spe-

cies, but is critical knowledge to facilitate on-going conservation planning.
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Here we use microsatellite loci to examine the genetic population structure of racers and

bullsnakes in Saskatchewan, Canada. Specifically, we test the hypothesis that snake populations

in the major river valleys are genetically distinct groups. Snakes likely colonized the northern

Great Plains via northward dispersal along river valleys from more contiguous parts of their

range in the U.S.A. The population in each valley may thereby have originated from indepen-

dent founder events. In addition, these founder groups have likely been isolated from one

another for extended periods of time due to a lack of suitable habitat between river valleys and

the restricted movement and dispersal ability of the snake species [23]. Thus, we predicted that

populations in each river valley would be well differentiated from other such groups. Ulti-

mately, our goal was to identify the appropriate scale for defining management units for racers

and bullsnakes. Our work represents the first genetic study of these snake species on the north-

ern Great Plains.

Methods

Study area and sample collection

Racers and bullsnakes have broad distributions in North America, but are only found in a very

small portion of southern Canada where they reach their northern range limits (Fig 1a). Our

study sites were located in southwestern Saskatchewan, where these species appear to be con-

centrated in three large river valleys: (1) the Frenchman River Valley (FRV; both species), (2)

the Big Muddy River Valley (BMRV; both species), and (3) the South Saskatchewan River Val-

ley (SSRV; bullsnakes only; Fig 1b). These river valleys represent almost the complete known

Canadian range of racers [29], and a large portion of the Canadian range for bullsnakes [25].

Our study species are sympatric in the grasslands of Saskatchewan, hibernating communally

in dens located in bluffs of river valleys. Hibernacula appear to persist for long periods of time

(decades), but are vulnerable to erosion and other factors that cause them to become suddenly

unavailable to snakes [30]. Connectivity between river valleys has not been previously investi-

gated, but is critical to understand for conservation planning. Agricultural habitats are avoided

by both species [20,23], which may exacerbate long-standing isolating factors. Individuals

occupying each river valley may therefore represent genetically differentiated populations that

require individual management strategies. Destruction of even one den and its associated

snakes (as in [30]), or extirpation of snakes from the few occupied dens in a single river valley,

may represent major losses to the Canadian population with little chance of recovery due to

rescue dispersal.

For genetic analyses, we collected blood samples from live snakes caught by hand during

foot surveys or in drift fences with traps during spring emergence from hibernacula in 2007–

2013 (described in [20,23]). We captured most live snakes after emergence from 18 known

hibernacula in the 3 river valleys: 9 sites in the FMRV, 5 sites in the BMRV, and 4 sites in the

SSRV (see S1 Table for site locations). However, some blood samples were collected opportu-

nistically from snakes encountered away from den sites during other activities. For this study

we were interested primarily in population structure at the river valley level. From captured

snakes, we drew blood (25–100 μl) from the caudal vein using a 27-gauge needle, or clipped a

small portion of tissue from the distal end of the tail (< 5mm) using a sterile razor blade. We

also collected tissue from road-killed snakes in the study areas; from these snakes we excised a

small portion of dorsal muscle tissue. Blood and other tissue samples were stored in lysis buffer

(4.0 M urea / 0.2 M NaCl / 0.1 M Tris–HCl, pH 8.0 / 0.5% n-laurylsarcosine / 0.1 M 1,2-cyclo-

hexanediamine) at 4˚C until DNA extraction. All animal procedures were approved by the

President’s Committee on Animal Care at the University of Regina, according to guidelines

determined by the Canadian Council on Animal Care. Permits were provided by the
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Saskatchewan Ministry of the Environment (Scientific Sampling Permit), and Environment

Canada (Species at Risk Permit).

Genetic analyses

We extracted DNA using DNeasy spin-column kits according to the manufacturer’s guidelines

(Qiagen Inc., Ontario, Canada); however, proteinase K digestions were extended to 8–12

hours at 56˚C and we performed the optional RNase A treatment (Qiagen Inc., Ontario, Can-

ada). DNA was quantified using a spectrophotometer (NanoDrop 1000, Thermo Scientific,

Wilmington, DE, USA). We genotyped all individuals (n = 177 racers, n = 103 bullsnakes) at

10 microsatellite loci that had been previously developed for each species (racers, [31]; bulls-

nakes, [32]). PCR was performed in 25 μl reactions containing 1X PCR Master Mix (Norgen

Biotek, Mississauga, ON, Canada), 2 μM forward and reverse primer (forward primer labelled

with fluorescent marker) and 10 ng of template DNA. For racers, the thermal cycling was con-

ducted as follows: 94˚C for 5 min; 30 cycles of 94˚C for 30 s, annealing temperature for 45 s,

72˚C for 45 s; 8 cycles of 94˚C for 30 s, 53˚C for 45 s, 72˚C for 45 s; and a final extension step

of 30 min at 72˚C. For bullsnakes, either standard thermal cycling parameters or a touchdown

protocol was used depending on the locus (see [32]). Standard thermal cycling parameters

were conducted as follows: 94˚C for 5 min, followed by 40 cycles of 96˚C for 30 s, annealing

temperature for 30 s, and 72˚C for 30 s. Touchdown cycling parameters consisted of 95˚C for

5 min, 20 cycles of 96˚C for 30 s, annealing temperature of 65˚C (decreasing 0.5˚C per cycle to

55˚C) for 30 s, 72˚C for 30 s, and 20 cycles of 96˚C for 30 s, 55˚C for 30 s, and 72˚C for 30 s.

Both positive and negative controls were run for all loci; template DNA from a well-character-

ized individual was used as a positive control.

PCR products were size-fractionated using capillary electrophoresis on a DNA sequencer

(Beckman-Coulter GeXP). A 600-bp in-lane size standard was used to determine the size of

fragments with single base pair resolution (Beckman-Coulter, Fullerton, CA, USA). We scored

microsatellite alleles with the aid of GENEMARKER v2.2.0 software (SoftGenetics, State Col-

lege, PA, USA) using default settings, with the exception that our bin width was expanded to

±1 base pair to reflect the resolution limits of the sequencer. All microsatellite profiles were

Fig 1. (a) The range of eastern yellow-bellied racers (Coluber constrictor flaviventris) and bullsnakes (Pituophis catenifer

sayi) in North America. Light grey represents the range of bullsnakes, dark grey represents the range of racers, and diagonal

lines indicate range overlap. The square outlines our study area in Saskatchewan, Canada. (b) Expanded view of the study

area highlighting the 3 major river valleys (Frenchman River Valley [FRV], South Saskatchewan River Valley [SSRV], and Big

Muddy River Valley [BMRV]). The specific study areas encompassing sample locations within the valleys are highlighted as

boxes; the locations of isolated snakes used in analysis are presented as dots.

https://doi.org/10.1371/journal.pone.0187322.g001
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visually inspected to confirm the accuracy of calls; a second observer independently verified

the scoring, and both observers were blind to the geographic origin of samples. We quality

checked microsatellite data sets and estimated the potential frequency of null alleles using

MICRO-CHECKER [33]. We used GenAlEx [34] to estimate the observed and expected het-

erozygosities (HO and HE), number of alleles per locus, and total number of private alleles. We

examined deviations from Hardy-Weinberg Equilibrium (HWE) using GENEPOP v4.1.4 [35].

We estimated the inbreeding coefficient (FIS; [36,37]) using FSTAT [38]. The complete micro-

satellite dataset has been deposited on Dryad (http://dx.doi.org/10.5061/dryad.cc6r3).

We used several approaches to assess population structure in our data sets. In the first, we

designated populations based on river valleys and compared fixation indices (FST) using Anal-

ysis of Molecular Variance (AMOVA; [36,37]) in the program GENODIVE [39]. Second, we

used Bayesian clustering in the program STRUCTURE [40,41] with an admixture model and

correlated allele frequencies to perform unsupervised clustering of the whole data set for each

species. We repeated analyses 10 times for each value of K ranging from 1 to 10, and employed

a burn-in time of 100,000 with 1,000,000 MCMC steps. We calculated ΔK using the methods

of Evanno et al. [42] implemented in STRUCTURE HARVESTER [43] to determine the most

likely number of clusters. When subdivision was identified, we analyzed the groups hierar-

chically using STRUCTURE to examine finer-scale subdivision. Similar to global analyses, the

optimal number of groups was inferred using ΔK. We used the program CLUMPP to deter-

mine the optimal assignments of individuals to clusters [44]. Graphical displays of STRUC-

TURE findings were generated using the DISTRUCT program [45]. Lastly, we analyzed the

data sets using Discriminant Analysis of Principal Components (DAPC), a multivariate ordi-

nation approach from the R package adegenet [46,47]. DAPC does not require the assumption

of HWE and uses ordination to maximize the between group variation while minimizing the

variation found within groups. DAPC requires imputation to eliminate missing data. Both

datasets had missing data with bullsnakes missing 4.8% of genotypes and 3.0% missing in rac-

ers. We imputed missing genotypes for DAPC using a random forest approach with 100 trees

and 100 iterations using the stackr program in R [47,48]. Ellipses were generated using the

optimal number of principal components as determined by the function dapc_a_score, which

was 13 and 17 for bullsnakes and racers, respectively.

Results

Assessment in MICROCHECKER did not indicate issues with large allele drop-out or stutter,

but identified a high probability of null alleles in both species. Two loci likely had a high fre-

quency of null alleles for racers (CCPKZ06 and CCPKX22), and one locus in bullsnakes

(Piru15); these loci were removed from further analyses. Tests for HWE on the overall data set

revealed that there was a significant excess of homozygotes at 7 of 9 loci for bullsnakes and 4 of

8 for racers after sequential Bonferroni correction. However, given the consistent and perva-

sive nature of the homozygote excess across loci and species, and the small number of individ-

uals that failed to PCR amplify (potential homozygous nulls), we concluded that the deviation

from HWE was most likely due to population structure in the data set (Wahlund effect). Thus,

9 and 8 loci were retained for subsequent analyses of population subdivision for bullsnakes

and racers, respectively.

Racers

Fixation index analysis based on user-defined populations showed significant differentiation

between the FRV and BMRV (Fst = 0.08, P = 0.001). Both areas also had high numbers of pri-

vate alleles (Table 1). Results from STRUCTURE confirmed the finding of multiple
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populations, identifying K = 3 as having the highest probability (using the ΔK approach). Visu-

alization of groupings in DISTRUCT clearly separates the FRV and the BMRV from one

another with Q>0.94 for samples in the BMRV (Fig 2a). The K = 3 value is generated by an

apparent second cluster within the FRV, with Q values of 0.56 and 0.42 for each of the clusters;

however, this potential substructure within the FRV is not explained by den site or geography

(data not shown). To further disentangle this substructure, we ran the FRV separately in

STRUCTURE, which yielded a most likely number of clusters of K = 1. Thus, any substructure

within the FRV may be very weak, and not resolvable with our current data. The DAPC analy-

sis further confirmed clear differentiation by river valley across the first discriminant function

(Fig 2b). FIS values were similar (0.037 and 0.055) for both the BMRV and FRV overall.

Bullsnakes

Fst analysis based on user-defined populations showed significant differentiation between all

three river valleys (Table 2). The highest levels of differentiation were between the population

in the SSRV and those in the other two areas (Fst values as much as 3x higher). All three bulls-

nake populations also had a large number of private alleles, which further reinforces the dis-

tinction among river valleys (Table 1). Population subdivision by river valley was confirmed

by Bayesian clustering using STRUCTURE, which identified the optimal value of K = 2 in the

global analysis (based on ΔK), with the SSRV forming a distinct cluster from the BMRV and

FRV (Q>0.98; Fig 3a). STRUCTURE was run with the data from the SSRV removed, and the

optimal value was K = 2, differentiating the FRV and BMRV groups (Q>0.87; Fig 3a). When

both the SSRV and BMRV were run individually the optimal value was K = 1 for both areas.

Differentiation among the three river valleys was further confirmed using DAPC (Fig 3b). The

first discriminant function resolved the population in the SSRV from those in the FRV and

BMRV; the second discriminant function resolved populations in the BMRV and FRV from

each other. The observed FIS values were 0.074, 0.241, and 0.073 for the FRV, SSRV and

BMRV, respectively, indicating substantially higher levels of inbreeding in the SSRV.

Discussion

We examined the population structure of racers and bullsnakes at their northern range limits

and found that river valleys contained genetically differentiated populations of each species.

The differentiation we observed could be the result of independent colonization of the valleys

via northward movements from the range core, or the result of population discontinuity gen-

erated by historical habitat loss between valleys. Our data cannot discriminate between these

two scenarios, but in either case the restricted ability of snakes to disperse out of the river val-

leys would limit gene flow, resulting in isolation and population differentiation. There are

large geographic distances separating occupied sites within each of the three river valleys, and

it is unlikely that there is currently appropriate habitat (e.g., hibernacula) between sites to

Table 1. Number of individuals sampled (N), average number of alleles per locus observed (AN), number of private alleles (AP), and observed and

expected heterozygosity (HO and HE) for eastern yellow-bellied racers and bullsnakes in Saskatchewan, Canada. Data presented are for each popu-

lation at 8 microsatellite loci for racers and 9 loci for bullsnakes.

Species Population N AN AP HO HE

Racer FRV 153 12.9 60 0.73 0.77

BMRV 24 7.5 17 0.76 0.77

Bullsnake FRV 48 13.2 36 0.81 0.87

BMRV 21 9.2 15 0.78 0.81

SSRV 34 7.8 19 0.53 0.69

https://doi.org/10.1371/journal.pone.0187322.t001
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allow for population continuity. In addition, dispersal may be further restricted by human

activities; both racers and bullsnakes avoid agricultural land [20,23], which is prominent in the

areas between river valleys. Some snake species can maintain gene flow even across large geo-

graphic distances (e.g. Natrix natrix; [21]), but in these situations, corridors of suitable habitat

are present to facilitate the movement of individuals between isolated patches. The isolation of

racer and bullsnake populations in separate river valleys on the northern Great Plains suggests

that there is little possibility of natural rescue dispersal from existing populations within Can-

ada in the event of local extirpations. However, the level of connectivity to larger contiguous

Fig 2. (a) The distruct plot of K = 3 from STRUCTURE analysis of eastern yellow-bellied racers in

Saskatchewan, Canada. Each river valley was also run separately in STRUCTURE and did not show any

distinct clusters. (b) DAPC analysis showing the first two discriminant functions. The DAPC analysis included

the 5 den sites from the Frenchman River Valley with large enough sample sizes (min. of 5 snakes) to be

considered individually.

https://doi.org/10.1371/journal.pone.0187322.g002

Table 2. FST values for pair-wise comparisons of bullsnake populations in the Big Muddy River Valley

(BMRV), the Frenchman River Valley (FRV), and the South Saskatchewan River Valley (SSRV) in Sas-

katchewan, Canada. The FST values are found below the diagonal and the corresponding p-values are

found above the diagonal.

BMRV FRV SSRV

BMRV - 0.001 0.001

FRV 0.045 - 0.001

SSRV 0.156 0.136 -

https://doi.org/10.1371/journal.pone.0187322.t002
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populations in the USA is unknown and requires further research. Similar to the situation

with other northern snake populations (e.g., [14,15]), our findings suggest that population sub-

division on a regional scale is an important consideration for conservation planning.

Our analyses suggest that both racers and bullsnakes exhibit no, or only very weak, fine-

scale structure within the FRV based on overwintering hibernacula (dens). Fine-scale popula-

tion structure over short geographic distances is common in snakes, particularly species that

are habitat specialists or exhibit philopatry to communal dens (e.g. [5,8,18]; reviewed by [1]).

Bayesian clustering identified two potential clusters for racers in the FRV, but these groupings

were not based on den site, and the clusters were not supported by DAPC analysis. We per-

formed one comparison of bullsnakes from two dens in the BMRV, and they were not differ-

entiated (data not shown). Thus, at this point we conclude that it is likely river valleys, rather

Fig 3. (a) The distruct plots generated from STRUCTURE analysis and (b) DAPC analysis of bullsnakes in

Saskatchewan, Canada. STRUCTURE was run hierarchically and additional structure was found when the

SSRV data were removed (K = 2 between FRV and BMRV). No further structure was detected within each of

the river valleys. The DAPC analysis shows the first two discriminant functions between the river valleys.

https://doi.org/10.1371/journal.pone.0187322.g003
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than individual hibernacula, that are the important unit of population subdivision for our

study species. However, we suggest that future studies attempt to collect additional samples

from more dens to provide more data on fine-scale patterns. This may be particularly impor-

tant for bullsnakes in the SSRV, which have much higher FIS values than those from the FRV

and BMRV, suggesting that inbreeding may lead to more fine-scale structure. In addition,

other genetic markers (e.g., single nucleotide polymorphisms) might also enhance ability to

identify fine-scale structure.

Racers and bullsnakes in Canadian river valleys are different from those that are part of

more contiguous populations in the USA, and may therefore have additional conservation

value. Racers in Saskatchewan are less genetically diverse than those at the core of their range.

For example, Klug et al. [12] observed high allelic diversity and high heterozygosity (mean

number of alleles/locus = 20.9, mean HE = 0.83) at the same microsatellite loci in Kansas rac-

ers, while Canadian racers in our study had much lower allelic diversity and heterozygosity

(mean number of alleles/locus = 7.5–12.9, mean HE = 0.77). Thus, populations at the northern

range periphery are less genetically diverse than at the range core. Local biotic and abiotic con-

ditions can drive adaptation in snakes (e.g. [16,49,50]), and although the microsatellites we

used are neutral makers, we propose that genetic drift and selection have created unique popu-

lations of snakes capable of occupying the extreme environments they face in southern Canada

(local adaptation). The notion of local adaption is also supported by ecological and behavioural

differences; racers at the core of their range are habitat generalists and do not exhibit high lev-

els of fidelity to dens [12]. In contrast, racers at northern range limits in Canada are habitat

specialists and exhibit high levels of fidelity to hibernacula, at least over the short term. In addi-

tion, racers in Canada also have very large home ranges and move farther from dens to reach

summer habitats than other more southerly populations [20,23]. Bullsnakes have been poorly

studied so there are few data available for comparison; however, due to their similarity to rac-

ers in our study, it is likely that Canadian bullsnake populations are also different from those

at the core of their range. Little is known about the general conservation significance of periph-

eral populations of snakes, but due to their potential uniqueness and susceptibility to extirpa-

tions, more studies are clearly necessary.

Implications for conservation

The eastern yellow-bellied racer has a federal status of Threatened in Canada and is therefore

the subject of active conservation planning [27,51]. It is important to know whether this spe-

cies needs to be managed as a single entity or multiple designatable units (DUs). Other recent

studies have revealed critical mismatches between the number and extent of snake populations

based on genetic markers, and the scale of conservation plans or management units (e.g.,

[15,52]). According to guidelines from the Committee on the Status of Endangered Wildlife in

Canada (COSEWIC), the advisory body to the federal Minister of the Environment, popula-

tions warrant separate DU status if they are both ‘discrete’ and ‘significant’ [53,54]. Based on

our microsatellite data and the limited opportunity for dispersal, racer populations in major

river valleys in Saskatchewan are certainly differentiated, but their significance is less clear. We

suggest that racers have local adaptations to their extreme northern environments, potentially

satisfying COSEWIC DU criterion #2: ecological setting likely or known to have given rise to

local adaptations. However, it is important to recognize that the comparison we have drawn

here is to core populations much farther south in the USA; it is less likely that populations

have unique local adaptations among individual river valleys within Canada. Given that racers

have confirmed populations in only a few river valleys in all of Canada, the loss of any one of

these groups would satisfy COSEWIC DU criterion #4: loss of discrete population results in an
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extensive gap in the range of the species in Canada. However, recent confirmation of racers in

the east block of Grasslands National Park between the FRV and BMRV (R.G. Poulin, unpub-

lished data), and a confirmed hibernaculum in extreme south-eastern Alberta hint at the possi-

bility of a broader Canadian distribution (see [29]). Thus, at this time we cannot make a firm

recommendation about racer DUs.

Bullsnakes have a status of Special Concern in Canada because of documented conservation

threats and a nearly complete lack of information regarding the population size of this species.

Bullsnakes may be vulnerable to many of the same factors that affect racers, which are sympat-

ric for a large portion of their Canadian range [23]. Our genetic data show similar patterns of

population structure among groups of bullsnakes in major river valleys, again indicating that

they are differentiated, and that movement and gene flow between river valleys is limited. The

status of Special Concern does not currently carry legal protection for the bullsnake, so there is

little point in considering the potential validity of Canadian DUs for this species. However, as

more information becomes available the status assessment for bullsnakes should consider fea-

tures of their genetic population structure. The SSRV may be particularly important given that

it spans the provinces of both Saskatchewan and Alberta, and hosts a population of bullsnakes

that is highly differentiated from others in Canada.

Despite uncertainty about the significance of differentiated racer and bullsnake populations,

it is important to consider that populations of both species are vulnerable to stochastic events

at hibernacula (see [30]), and also to human changes to grassland habitats. The potential influ-

ence of humans on these two snake species varies markedly by location, and may change fur-

ther over time. For example, at the time of this study, the majority of land in the FRV occupied

by racers and bullsnakes was protected inside of Grasslands National Park (49,000 Ha) and a

federal community pasture belonging to Agriculture and Agri-Food Canada (41,000 Ha).

However, the community pasture program was recently discontinued, potentially jeopardizing

the protected status of 46% of the range of the racer in the FRV. The fate of the community

pasture land, despite its importance to Canadian species at risk of extinction, is uncertain. In

contrast to the FRV, all land in the BMRV is privately owned or leased, offering no formal pro-

tection of important habitat for snakes or other wildlife species. Fortunately, most land in the

BMRV is currently used for livestock ranching, which has much less impact on grasslands than

conversion to cereal crops. The SSRV is a much larger geographic feature, and is currently a

mosaic of land uses with only very small areas of formally protected habitat (e.g., Saskatchewan

Landing Provincial Park). Major differences in the amount of protected land suggest that long-

term conservation planning may have to be tailored to each of the river valleys. This need may

tip the balance in favour of formal DUs for racers despite some ambiguity as indicated above.

Supporting information

S1 Table. Locations and snake species present for sites sampled in the Frenchman, Big

Muddy, and South Saskatchewan River valleys for this study. To protect sensitive habitat

and over-wintering hibernations sites for these species of conservation concern in Canada,

exact locations have been offset by several hundred meters. Eastern yellow bellied racer = C.c.

flaviventris; bullsnake = P.c. sayi.
(DOCX)
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