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Abstract: Alkaline igneous complexes host deposits of rare earth elements (REE), which represent
one of the most economically important resources of heavy REE and Yttrium (Y). The hosts
are differentiated rocks ranging from nepheline syenites and trachytes to peralkaline granites.
These complexes usually occur in continental within-plate tectonic settings associated with rifts, faults,
or hotspot magmatism. The REE mineralization is found in layered alkaline complexes, granitic
stocks, and late-stages dikes and rarely trachytic volcanic and volcaniclastic deposits. The bulk
of REE is present in accessory minerals, which can reach percentage levels in mineralized zones.
The mineralization contains various REE-bearing minerals that can display complex replacement
textures. Main REE minerals present in these deposits are bastnäsite, eudialyte, loparite, gittinsite,
xenotime, monazite, zircon, and fergusonite. The parent magmas of alkaline igneous complexes
are derived from partial melts of mantle sources. Protracted fractional crystallization of the magma
led to an enrichment in REE, particularly in the late stages of magma evolution. The primary
magmatic mineralization is commonly overprinted (remobilized and enriched) by late magmatic
to hydrothermal fluids. Elevated abundances of U and Th in the deposits make a gamma-ray
(radiometric) survey an important exploration tool, but also represent a significant environmental
challenge for exploitation.

Keywords: rare earth elements; alkaline igneous rocks; deposits; REE-bearing minerals; ore genesis;
petrogenesis; exploration

1. Introduction

Alkaline igneous rocks host deposits of a variety of rare metals and industrial rocks and minerals.
The commodities of special economic importance in these rocks are rare earth elements (REE). In the
past 25 years, REE have become essential components of modern technologies. Their demand has
increased significantly because of their use in high-technology applications. Among others, they play
a vital role in high-strength magnets, mobile phones, flat-screen TVs, lasers, energy-efficient lighting,
and superconductors. REE are important in “green technology” where they are used in wind turbines
and hybrid gas-electric vehicles (particularly light-weight magnets). In addition, due to the critical
role and wide and diverse use of the REE in electronic, military, and environmental applications, there
is concern over the security of the supply of these critical elements [1].

The rare earth elements are a group of 16 chemically similar elements including 15 lanthanides
and yttrium. The lanthanides are elements with atomic numbers ranging from 57 (Lanthanum) to
71 (Lutetium). They are frequently subdivided into light rare earth elements (LREE) with lower atomic
weight i.e., spanning from lanthanum through to europium and the heavy rare earth elements (HREE)
ranging from gadolinium (or europium) through to lutetium. Yttrium (atomic number 39) is considered
a REE as it has similar chemical and physical properties. Its ionic radius is nearly identical to that of
holmium (Ho) and thus is commonly included with HREE. REE exhibit “lanthanide-contraction”, the
steady decrease in the size of the atoms and ions with increase of atomic number from lanthanum to
lutetium. Thus, the LREE have larger ionic radii than the HREE and, hence, they behave differently
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during petrogenetic processes. For example, the HREE generally behave more mantle-compatible than
the LREE during partial melting.

The rare earth elements are not as rare in nature as their name implies, in fact, they are relatively
abundant in the earth’s crust. The crustal abundance of their most abundant element—cerium (Ce) is
~43 ppm compared to copper ~27 ppm and lead ~11 ppm [2]. However, the abundances of individual
REE can vary widely, e.g., the crustal abundance of thulium (Tm) is only ~0.28 ppm. Compared to
LREE, heavy REE are relatively rare in nature but are economically more valuable. The prices of
individual REE vary by one or two orders of magnitude.

As the demand for REE has dramatically increased in recent years so have the prices of individual
REE, leading to an exploration boom and an increased visibility of REE. They have even become the
basis for a bestselling video game. However, economic deposits of REE are rare. Presently, the global
production of REE comes from only from a few deposits such as Bayan Obo (China). The REE deposits
exist primarily in four geologic environments: carbonatites, alkaline igneous systems, ion-absorption
clay deposits, and monazite-bearing placer deposits. This paper focuses on REE deposits associated
with alkaline igneous rocks. It reviews and discusses their characteristics and classification, describes
examples of the major types of the deposits and comments on their origin and exploration methods.
These REE deposits have attracted a great deal of interest in the exploration industry as well as in the
geological literature (e.g., [3–6]). They represent one of the most economically important resources of
HREE and Y. However, their genesis is still under debate (e.g., [3,6,7]).

2. Mineralogy

In nature, REE do not exist individually, as gold often does, but instead they are present together
in numerous ore/accessory minerals as either minor or major constituents. REE occur in a wide range
of mineral species. There are over 250 minerals which contain REE as important constituents in their
chemical formula and crystal structure (Table 1). They are mainly silicates, fluorocarbonates, oxides,
and phosphates. These minerals typically comprise the bulk of the REE in a rock. REE are also hosted
in minor amounts in the mafic rock-forming minerals such as amphiboles and biotite, where they
substitute for major cations of comparable radius and charge.

Table 1. Names and formulae of important rare earth elements (REE)-bearing minerals associated with
REE mineralization.

Mineral Formula Approx. TREO (wt %)

Allanite (Y,Ln,Ca)2(Al,Fe3+)3(SiO4)3(OH) 39
Apatite (Ca,Ln)5(PO4)3(F,Cl,OH) 19

Bastnäsite (Ln,Y)(CO3)F 75
Eudialyte Na4(Ca,Ln)2(Fe2+,Mn2+,Y)ZrSi8O22(OH,Cl)2 9

Fergusonite (Ln,Y)NbO4 53
Gittinsite CaZrSi2O7
Iimoriite Y2(SiO4)(CO3) 68
Kainosite Ca2(Y,Ln)2Si4O12(CO3)·H2O 38
Loparite (Ln,Na,Ca)(Ti,Nb)O3 30
Monazite (Ln,Th)PO4 65

Mosandrite (Na,Ca)3Ca3Ln (Ti,Nb,Zr)(Si2O7)2(O,OH,F)4 33
Parisite Ca(Ln)2(CO3)3F2 61

Pyrochlore (Ca,Na,Ln)2Nb2O6(OH,F)
Rinkite (rinkolite) (Ca,Ln)4Na(Na,Ca)2Ti(Si2O7)2(O,F)2 20

Steenstrupine Na14Ln6Mn2Fe2(Zr,Th)(Si6O18)2(PO4)7·3H2O 31
Synchysite Ca(Ln)(CO3)2F 51
Xenotime YPO4 61

Zircon (Zr,Ln)SiO4 4

Ln-lanthanides; TREO—oxides of lanthanides and Yttrium (Y); Estimates of TREO content are based on Webmineral
composition (www.webmineral.com).
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REE-bearing minerals tend to be dominated by either LREE or HREE, although each REE can
be present. In some mineralized zones, the abundances of REE-bearing accessory (ore) minerals can
reach >10 vol %. In alkaline igneous complexes, mineralization is commonly composed of a variety of
REE-bearing minerals, which can exhibit complex replacement textures in part due to late magmatic
to hydrothermal overprinting of the primary mineralogy, commonly producing pseudomorphs of
pre-existing phases. However, there are only a relatively small number of REE minerals, which
can be economically exploited. They include bastnäsite, monazite, xenotime, synchysite, loparite,
eudialyte and parasite (Table 1). Overall, the bulk of resources is mostly associated with three REE-rich
minerals: bastnäsite, monazite and xenotime (e.g., [3,4]). Bastnäsite and monazite are dominated by
LREE whereas xenotime is the main source of HREE and Y (Figure 1). Many other accessory/ore
minerals are either sparse or it is difficult to extract REE from them on a commercial scale. In alkaline
igneous rocks, the grain size of the ore minerals in REE mineralization varies from coarse grained
(commonly cumulate phases in the nepheline syenitic complexes) to fine grained in volcanic rocks and
replacement textures.
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3. Alkaline Igneous Rocks 

The generally accepted definition of the “alkaline rocks” means a primary enrichment of Na2O 
and K2O in a rock of a given SiO2 content. Alkaline igneous rocks are so enriched in alkalis that they 
contain abundant Na- and K-bearing minerals (such as feldspathoids, alkali pyroxenes and alkali 
amphiboles) which are not commonly present in other rock types. Na-rich amphiboles (e.g., 
arfvedsonite and riebeckite) and Na-rich pyroxenes (e.g., aegirine) are dominant mafic minerals in 
these rocks rather than common Fe-Mg silicates. Likewise, feldspars may be replaced or accompanied 
by feldspathoids such as nepheline, sodalite, leucite, or cancrinite. However, there are some 

Figure 1. Chondrite-normalized REE (lanthanides and Y) patterns of minerals that are the major
components of REE ores: monazite, xenotime [8] and bastnäsite [9]. Note that Yttrium is plotted as
a pseudo-lanthanide between Dy and Ho. Normalizing values are after Sun and McDonough [10].

3. Alkaline Igneous Rocks

The generally accepted definition of the “alkaline rocks” means a primary enrichment of Na2O and
K2O in a rock of a given SiO2 content. Alkaline igneous rocks are so enriched in alkalis that they contain
abundant Na- and K-bearing minerals (such as feldspathoids, alkali pyroxenes and alkali amphiboles)
which are not commonly present in other rock types. Na-rich amphiboles (e.g., arfvedsonite and
riebeckite) and Na-rich pyroxenes (e.g., aegirine) are dominant mafic minerals in these rocks rather
than common Fe-Mg silicates. Likewise, feldspars may be replaced or accompanied by feldspathoids
such as nepheline, sodalite, leucite, or cancrinite. However, there are some ambiguities when using the
term alkaline for the felsic rocks. To resolve this problem, petrologists revived the name “peralkaline” to
specify important chemical characteristics of the alkaline rocks even for the felsic types. The peralkaline
rocks have a higher molecular proportion of combined sodium and potassium than aluminum (Figure 2)
and their CIPW norms typically contain acmite and Na-metasilicate.
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Figure 2. Classification of felsic rocks based upon molecular proportions of Al2O3, CaO, Na2O and
K2O. Common non-quartz-feldspathic minerals for each type are shown. Vertical axis is schematic.
CNK = CaO + Na2O + K2O; NK= Na2O + K2O; A = Al2O3.

The peralkalinity reflects not only the mineralogy and major element composition of the rocks
but it has an effect on the distribution of several rare metals. The peralkaline rocks are very high in
REE, uranium, thorium and high-field strength elements (HFSE) such as zirconium, niobium and
tantalum as well as halogens (Cl and F). In fact, these rocks, particularly of nepheline syenitic and
granitic composition, can host REE deposits, which are commonly enriched in yttrium and HREE
(Figure 3). The Nb-Y-F type of pegmatites [11], which may host Be, REE, Th, U and Zr mineralization,
has also been correlated with the peralkaline granites. Alkaline rocks including peralkaline ones, are
commonly found in anorogenic and within-plate tectonic settings, mostly in continental rift and/or
crustal extension zones [3].
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Figure 3. Chondrite-normalized REE patterns of an average ore of Mountain Pass (California, USA),
a major carbonatite-hosted REE deposit [1,9] and the range of the average ores of the REE deposits
associated with alkaline igneous rocks (Thor Lake, Strange Lake, Kipawa, Norra Kärr, and Bokan).
The data are from Hatch [12,13]. Normalizing values are after Sun and McDonough [10].
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4. Rare Earth Element Deposits

Economically, the REE mineralization and deposits include two separate types: LREE and HREE
deposits. Most LREE are produced from carbonatite deposits (Figure 4) including Bayan Obo in China
and Mountain Pass in California (currently shut down). It is likely that these large deposits will
satisfy, for the medium-term future, the needs for LREE, including neodymium. Monazite-bearing
placer deposits were important REE sources in the past. In fact, several decades ago, placer deposits
met most of the world’s REE needs. From beach/placer deposits, LREE-rich monazite can still be
recovered as a by-product during the exploitation of the Ti-rich minerals. However, monazite contains
significant amounts of uranium and thorium and thus these deposits are presently out of favour due
to environmental concerns (high radioactivity). Additionally, carbonatite and monazite-rich placer
deposits contain only trace amounts of the HREE. Thus, these deposits do not provide a sufficient
supply of HREE. Ion-adsorption clay deposits in southern China (referred to as “south China clays”)
are currently the world’s main source of HREE. These deposits have low contents in REE but they are
economic because the REE can be easily extracted from them. The second significant HREE sources
are alkaline rock-hosted deposits containing HREE and Y as their primary product or coproduct
(Figures 3 and 4). The deposits containing HREE generally tend to be lower grade than the LREE
deposits. However, the HREE, based on unit value, can be more valuable and their low grade deposits
may still be economically exploitable.
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There is no shortage of prospective REE deposits, many of which have been discovered and
explored before the recent collapse of REE prices. The factors to determine whether prospects and
discoveries are viable include not only the grade (REE concentrations) and tonnage (size) of REE ore in
a deposit but also other essential technical and economic criteria including amendable mining and
refining. The REE are chemically very similar to each other, occur together, and thus it is difficult
to separate individual elements from each other. The separation and purification of individual REE
require complex processing, which can be rather expensive. There are also numerous social and
environmental issues (e.g., energy, water, land use, potential pollution and socioeconomic issues) to be
solved as well as a market issue (i.e., to find an off-taker that will buy the product).

One of the principal environmental challenges of these deposits is the presence of radioactive
elements (Th and U) that are usually associated with them. On the other hand, the acid-drainage
hazards of these deposits are low due to the very small contents of potentially acid-generating sulfides
as well as the presence of feldspars and even subordinate amounts of carbonates (buffer).

5. Rare Earth Element Deposits of Alkaline Igneous Rocks

The locations of several prominent REE deposits and advanced exploration targets which are
hosted in alkaline (peralkaline) igneous rocks are shown in Figure 5. In addition to REE, some of
these deposits contain economically important amounts of other rare metals, including HFSE such
as Zr, Nb, Ta and Hf as well as U and Th. The calculated ore reserves as well as the average grades
of the deposits are given in Table 2 and a brief description of the most important deposits is given
below. The age of the mineralized alkaline complexes ranges from Neoarchean/Paleoproterozoic to
Mesozoic (e.g., [3]) with a significant peak during the Mesoproterozoic (1000–1460 Ma). Similarly, large
carbonatite-hosted REE deposits are also of Proterozoic age including the Mountain Pass (~1400 Ma),
Bayan Obo (~1300 Ma) and Palabora (South Africa; ~2050 Ma).

Resources 2017, 6, 34  6 of 12 

 

There is no shortage of prospective REE deposits, many of which have been discovered and 
explored before the recent collapse of REE prices. The factors to determine whether prospects and 
discoveries are viable include not only the grade (REE concentrations) and tonnage (size) of REE ore 
in a deposit but also other essential technical and economic criteria including amendable mining and 
refining. The REE are chemically very similar to each other, occur together, and thus it is difficult to 
separate individual elements from each other. The separation and purification of individual REE 
require complex processing, which can be rather expensive. There are also numerous social and 
environmental issues (e.g., energy, water, land use, potential pollution and socioeconomic issues) to 
be solved as well as a market issue (i.e., to find an off-taker that will buy the product).  

One of the principal environmental challenges of these deposits is the presence of radioactive 
elements (Th and U) that are usually associated with them. On the other hand, the acid-drainage 
hazards of these deposits are low due to the very small contents of potentially acid-generating 
sulfides as well as the presence of feldspars and even subordinate amounts of carbonates (buffer). 

5. Rare Earth Element Deposits of Alkaline Igneous Rocks 

The locations of several prominent REE deposits and advanced exploration targets which are 
hosted in alkaline (peralkaline) igneous rocks are shown in Figure 5. In addition to REE, some of these 
deposits contain economically important amounts of other rare metals, including HFSE such as Zr, 
Nb, Ta and Hf as well as U and Th. The calculated ore reserves as well as the average grades of the 
deposits are given in Table 2 and a brief description of the most important deposits is given below. 
The age of the mineralized alkaline complexes ranges from Neoarchean/Paleoproterozoic to 
Mesozoic (e.g., [3]) with a significant peak during the Mesoproterozoic (1000–1460 Ma). Similarly, 
large carbonatite-hosted REE deposits are also of Proterozoic age including the Mountain Pass (~1400 
Ma), Bayan Obo (~1300 Ma) and Palabora (South Africa; ~2050 Ma).  

 
Figure 5. World map showing the locations of major REE deposits hosted in alkaline/peralkaline 
igneous rocks.  

The REE deposits of alkaline complexes are typically hosted by nepheline syenites, peralkaline 
granites (including pegmatites) and, less commonly, peralkaline felsic volcanic rocks. In all these 
deposits, the mineralization is closely related to the crystallization of magma, particularly to its late 
fractions.  
  

Figure 5. World map showing the locations of major REE deposits hosted in alkaline/peralkaline
igneous rocks.

The REE deposits of alkaline complexes are typically hosted by nepheline syenites, peralkaline
granites (including pegmatites) and, less commonly, peralkaline felsic volcanic rocks. In all these
deposits, the mineralization is closely related to the crystallization of magma, particularly to its
late fractions.
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Table 2. Tonnage and ore grade of selected rare earth elements (REE) deposits hosted by alkaline
igneous rocks.

Deposit Ore Reserves (Mt) TREO Ore Grade (wt %) TREO Reserves (Mt) HREO/TREO (%)

Thor Lake (Nechalacho), Canada
Basal zone 125.7 1.43 1.799 20.9

Upper zone 177.7 1.32 2.353 10.0
Ilimaussaq, Greenland

Kvanefjeld deposit 619.0 1.06 6.547 11.8
Sørensen deposit 242.0 1.10 2.667 11.7
Zone 3 deposit 95.3 1.16 1.106 12.1

Kipawa, Canada 27.1 0.40 0.107 36.2
Norra Kärr, Sweden 58.1 0.59 0.343 50.3

Strange Lake, Canada
Enriched zone 20.0 1.44 0.288 49.7
Granite zone 472.5 0.87 4.118 36.5

Bokan, Alaska, USA 4.9 0.61 0.030 40.1
Toongi, Australia 73.2 0.89 0.651 23.3

Brockman, Australia 36.2 0.21 0.076 85.8

Data from Hatch (2014). Abbreviations: Mt—million metric tons. TREO—oxides of lanthanides and Y;
HREO—oxides of heavy REE and Y. Recent data are not available for some deposits discussed in the text including
Lovozero, Khibiny, Khaldzan-Buregtey, and Ghurayyah.

The REE deposits comprise three distinct groups, based on their host rocks. The first deposit type is
hosted by nepheline syenitic rocks of the large layered alkaline intrusions. The host rocks show textures
suggestive of crystal accumulation where the REE mineralization occurs in layers containing mineral
cumulates that are rich in REE-bearing minerals. Cumulate textures indicate that the initial REE enrichment
was due to magmatic processes and the ore-bearing layers represent cumulate layers within a magma
chamber. The thickness of the ore horizons is variable ranging from ~0.5 m to more than 100 m. The REE
minerals accumulated at the highly fractionated parts of the intrusions. These deposits (Figure 5) include
Ilimaussaq (Greenland), Lovozero and Khibiny (Kola Peninsula, Russia), Thor Lake/Nechalacho
(NWT, Canada), Kipawa (Canada), and Norra Kärr (Sweden).

The second group encompasses the deposits associated with peralkaline granites such as
mineralization in pegmatites (e.g., Strange Lake, Quebec-Labrador, Canada), felsic dikes
(e.g., Bokan Mountain, southeastern Alaska, USA) and minor highly fractionated intrusions where the
REE-bearing minerals occur mostly disseminated and do not show any features of crystal accumulation
(e.g., Khaldzan-Buregtey, western Mongolia; Ghurayyah, Saudi Arabia). The third type is associated
with peralkaline felsic volcanic rocks, mainly trachytes containing disseminations of very fine-grained
REE-bearing minerals. An example of these relatively rare deposits is Toongi (Dubbo Zirconia) and
Brockman/Hastings, both in Australia (Figure 5). Although a number of alkaline rock-hosted REE
deposits are in advanced stages of exploration, the only REE deposits that are actively mined at present
are those on the Kola Peninsula in Russia.

6. Exploration

The REE deposits are spatially and genetically associated with alkaline igneous suites and thus
exploration is targeting these rock types, which occur in continental anorogenic and within-plate
tectonic settings and typically are along zones of rifting and/or faulting. In layered intrusions, the
mineralization mostly appears in the more evolved parts of the complex. The elevated concentrations
of the elements: REE, HFSE, U, Th, and F compared to regional background abundances are
useful reconnaissance indicators for geochemical exploration (e.g., [3,7]). Other geologic exploration
indicators are alteration halos and heavy minerals. The presence of abundant resistate REE-rich
minerals in heavy mineral concentrates of stream sediments or soils is a useful exploration tool
(e.g., [3,7]). These indicator minerals include zircon, monazite, and xenotime. Some alkaline igneous
intrusions are surrounded by alteration halos due to the escape alkali-rich magmatic fluids into
surrounding country rocks producing alkali metasomatism. This process converts the host rock
minerals to an assemblage dominated by alkali-rich minerals, particularly albite.
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Ground and airborne geophysical exploration methods are “standard” exploration tools for the
REE deposits hosted in alkaline rocks. An enrichment of the deposits in U and Th, and hence their
radioactivity, makes radiometric surveys very effective exploration methods. Many known REE
deposits such as Bokan, Thor Lake, Kipawa, and Greenland were discovered during exploration for
uranium deposits. In addition, magnetic and gravity surveys are also used to locate alkaline igneous
complexes and their deposits.

7. Origin of Alkaline Rocks and REE Mineralization

Host nepheline syenites, syenites, and peralkaline granites are commonly considered to be
generated by extensive fractional crystallization of alkaline basaltic magmas. In turn, these melts
are usually assumed to be derived by a small degree of partial melting of lithospheric mantle
metasomatically enriched in HFSE, REE, Th, U, and halogens rather than a primitive mantle source [14].
The high abundances of halogens indicate the presence of amphibole or phlogopite in the mantle
source. Chakhmouradin and Zaitsev [4] infer that the bulk of the REE in the source was either in
amphibole or in accessory minerals.

High concentrations of REE and associated metals in alkaline felsic rocks are partially due to
prolonged fractional crystallization. These elements are strongly mantle-incompatible and thus are
distinctly enriched in the residual melts during crystallization. Furthermore, the presence of volatiles,
particularly fluorine, extends the range of crystallization to low temperatures [15] and suppresses
crystallization of HFSE- and REE-bearing minerals until the last stages of crystallization when the
magma becomes fluid-saturated and enriched in rare metals [16]. The rare metal mineralization in
both nepheline syenites and peralkaline granites typically occurs in the highly evolved parts of the
respective intrusions.

The origin of the REE mineralization in the alkaline rocks is still debated, in particular whether
the mineralization is magmatic, hydrothermal, or a combination of both (e.g., [3,7]. However, more
recent studies (e.g., [6,17,18]) imply that both magmatic and hydrothermal processes contributed
to the origin of the REE deposits. The primary magmatic mineralization was overprinted by late
magmatic to hydrothermal fluids rich in REE, HFSE, Th, and U that remobilized and enriched the
original mineralization during multiple metasomatic events and re-deposited them as secondary
phases (e.g., [6,7,19]). Large layered intrusions, such as Lovozero, which do not show any sign of
crustal input, are also hydrothermally altered. This suggests that fluids are of an orthomagmatic
origin and released during the last stages of magma evolution i.e., derived from the magma itself.
Crustal-derived fluids could have played a role in some of the smaller layered intrusions. However,
the relative contributions of both processes are variable. In some cases, where REE minerals-rich
layers form part of cumulate sequences, magmatic processes might have been predominant, while in
other examples, hydrothermal processes have played a more dominant role in the upgrading of initial
magmatic concentrations.

8. Examples of REE Deposits in Alkaline Rocks

Several prominent deposits associated with alkaline rocks (Table 2; Figure 5) are briefly described
below. They include deposits hosted by (a) nepheline syenites: Ilimaussaq (Greenland), Lovozero and
Khibiny (Russia) and Thor Lake (Nechalacho; Northwest Territories, Canada), (b) peralkaline granites:
Strange Lake (Quebec-Labrador, Canada) and Bokan Mountain (Alaska, USA), and (c) trachytic
volcanic rocks: Toongi (Dubbo Zirconia) and Brockman (Hastings) both from Australia.

8.1. Ilimaussaq, Southern Greenland

The 1.13 Ga-old Ilimaussaq complex, which contains several economically exploitable deposits
(Table 2) of REE, zirconium, niobium, and uranium, is one of the best-known alkaline intrusions
in the world. It is the famous mineralogical locality of several minerals, which are unique to this
intrusion. In addition, the complex is the type locality for 33 minerals including eudialyte, sodalite,
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and arfvedsonite [20,21]. The ellipsoid-shaped layered complex is ~17 km in length and 8 km in
width with an exposed vertical thickness of about 1700 m [20,21]. It is composed of nepheline syenites,
syenites, and peralkaline granites that contain eudialyte-rich cumulate layers. The magmatic evolution
of the complex ended with the emplacement of hydrothermal veins rich in Zr, U, and REE minerals.
The main REE-bearing minerals of the complex are eudialyte, rinkite, and steenstrupine (Table 1).
The complex was already explored for uranium in the 1950’s to 1970’s.

8.2. Lovozero and Khibiny, Russia

The ~370 Ma old Lovozero complex of the Kola Peninsula of Russia (Figure 5), which intruded into
Precambrian rocks, is one of the largest alkaline layered intrusions in the world. It is an oval-shaped
layered sheet-like lopolith, which extends over an area of about 650 km2 and continues to a depth of
several kilometers [22,23]. This complex, composed of various nepheline syenitic cumulates, is rich
in REE, yttrium, zirconium, niobium, tantalum, and phosphorus, which occur in eudialyte, loparite,
and apatite. Loparite has been mined for about 50 years with an annual production of ~30,000 tons of
loparite concentrate containing about 34% REE [17].

The Khibina complex (Figure 5) is another nepheline syenitic cumulate intrusion that may be
genetically related to the nearby Lovozero massif. It has a similar age and forms an elliptical-shaped
ring complex, which is about 40 km long and covers an area of >1300 km2. The complex hosts several
nepheline-apatite deposits containing ~15 wt % P2O5 and 0.4 wt % oxides of rare earth elements [19].
The ore is typically made up of ~60–90% apatite and has been mined for phosphate over 80 years.
The apatite was formed by accumulation during fractional crystallization of the magma.

8.3. Thor Lake (Nechalacho), Northwest Territories, Canada

This Early Proterozoic deposit, located ~100 km south of Yellowknife, along the southern margin
of the Slave Province of the Canadian Shield, is hosted in a layered alkaline complex dated at ~ 2100 Ma,
and it contains a variety of nepheline syenites. Many rocks have cumulate textures. The intrusion,
which is only locally exposed on surface, was drilled over an area of ~5 km2. The mineralization
occurs primarily within two tabular cumulate zones about 15–60 m thick (Table 2). The primary
ore minerals are zircon and eudialyte, which were subsequently pseudomorphed by orthomagmatic
hydrothermal fluids. At present, the major ore minerals are zircon, fergusonite, allanite, synchysite,
and bastnäsite [24].

8.4. Strange Lake, Eastern Canada

The Strange Lake deposit is hosted by a circular ring complex composed of peralkaline granites
dated at 1240 Ma [25], and straddles the boundary between the Canadian Provinces of Quebec and
Newfoundland and Labrador (Figure 5). The complex intrudes the Rae Province of the Canadian
Shield. It is about 8 km in diameter and consists of three intrusive phases. There are two types
(Table 2) of mineralization: (1) low-grade disseminated in granites of the intermediate intrusive
phase and (2) high-grade mineralization hosted by pegmatites (the youngest phase). The dominant
REE-bearing mineral is gittinsite, but other important minerals include bastnäsite, monazite, kainosite,
thorite, pyrochlore, and gadolinite. Some of these minerals are of secondary origin as hydrothermal
overprinting played a significant role during the formation of the ore [17].

8.5. Bokan Mountain, Alaska, USA

The Jurassic (177 Ma) Bokan Mountain complex, located at the southern part of the Prince of Wales
Island (southeastern Alaska), is a circular intrusion of about 3 km in diameter. This concentrically zoned
body consists of a core made up of arfvedsonite granite and an outer zone composed predominantly
of aegirine granite. The major REE mineralization occur in clusters of subparallel mineralized
dikes and metasomatically enriched alteration halos (albite rich) associated with shear zones [18,26].
The mineralized dikes occur both within the complex as well as in the surrounding Paleozoic granites.
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The largest cluster is in a zone which is about 50 m wide and >2 km long. The REE-bearing minerals are
xenotime, fergusonite, monazoite, bastnäsite, synchysite, zircon, immoriite, and kainosite and many of
them are secondary occurring as replacements of pre-existing REE-bearing minerals by late-magmatic
to post-magmatic fluids. The complex also hosts a U-Th deposit, which was intermittently mined
between 1957 and 1971. The mine produced about 85,000 t of ore with a grade of ~1 wt % U3O8 and
3 wt % ThO2. The main ore minerals are thorite and uraninite. The Th-U deposit is a mineralized
pipe-shaped alteration zone which measures about 24 m in width. Both thorium-uranium and REE
deposits are of magmato-hydrothermal origin where the primary magmatic mineralization was
overprinted and upgraded by late-stage orthomagmatic hydrothermal fluids.

8.6. Toongi (Dubbo Zirconia), Australia

This deposit is located about 400 km NW of Sydney in New South Wales and is hosted by a nearly
vertical trachyte plug ~900 m long and 600 m wide. The plug is a part of the Mesozoic alkaline
intraplate volcanic complex ~15–20 km in diameter. It is composed of Jurassic (184 Ma) peralkaline
trachyte with microphenocrysts of K-feldspar, plagioclase, and aegirine enclosed in a fine-grained
matrix containing accessory ore minerals. The ore minerals are very fine grained (typically < 20 µm)
and include eudialyte (Zr, Y, HREE), niobite (Nb and Ta), and bastnäsite (REE), which are relatively
uniformly dispersed throughout the plug [27,28]. Ore minerals are considered to represent primary
interstitial phases which were subsequently enriched by late magmatic to hydrothermal fluids.

8.7. Brockman (Hastings), Australia

The Brockman (or Hastings) deposit is located ~18 km southeast of Hall Creek, Western Australia.
The mineralization is hosted by fluorite-bearing felsic volcaniclastic rocks known as the “Niobium
tuff” [29,30]. It is the lowermost unit of the early Proterozoic Brockman volcanic suite, a sequence
composed of trachytic and rhyolitic lavas, volcaniclastic units, and subvolcanic intrusions.
The “Niobium tuff” is 5 to 35 m thick and over 3.5 km long with volcanic detritus dated at
~1870 Ma [29,30]. The rock unit, which is distinctly enriched in HFSE and HREE, contains very fine
grained (<20 µm) and disseminated ore minerals including zircon, bastnäsite, parasite, and synchysite.
Like in other REE deposits, the mineralization is considered to be the result of extensive fractional
crystallization, where late-stage fluorine-rich fluids that enriched the rare metal concentrations have
overprinted the primary ore minerals.

9. Conclusions

Alkaline igneous rocks are distinctly enriched in sodium and potassium and contain Na- and/or
K-rich minerals such as feldspathoids, alkali pyroxenes, and alkali amphiboles. Some of these rocks
are peralkaline, which have a higher molecular proportion of combined K and Na than Al, and can
contain economically important mineralization of REE. These rocks occur in continental anorogenic or
within-plate tectonic settings where they are related to rifting and/or extensional tectonics.

The mineralization is commonly related to the late stages of the magma evolution. The bulk
of the REE occurs in ore minerals which locally show complex replacement textures. REE-bearing
ore minerals include fluorocarbonates, phosphates, silicates, and oxides. The REE mineralization is
typically accompanied by elevated concentrations of U and Th, which make gamma-ray (radiometric)
surveys important exploration tools, but also represent a significant environmental challenge during
exploitation of the deposits.

The host nepheline syenitic and peralkaline granitic rocks are typically formed by fractional
crystallization from parent magmas that were in turn derived from a lithospheric mantle source
metasomatically enriched in REE. The deposits typically represent two periods of mineralization.
The first, primary magmatic period is associated with crystallization of highly fractionated magma
rich in REE. The minerals of this period are commonly overprinted during the second period by late
magmatic to hydrothermal fluids that remobilized and enriched the primary ore during multiple
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metasomatic events. These deposits represent one of the most economically important resources of
HREE and Y.
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