

Python Tools for the Investigation of Optimal

Explicit Runge-Kutta Methods

By

Shivam Singla

September 09, 2021, Halifax, Nova Scotia

A Thesis Submitted to Saint Mary’s University, Halifax, Nova Scotia in

Partial Fulfilment of the Requirements for the Degree of Bachelor of

Science, Honours in Computing Science and Major in Mathematics

Copyright © Shivam Singla, 2021

Approved: Dr. Paul Muir

Supervisor

Approved: Dr. Wendy Finbow-Singh

Reader

Date: September 09, 2021

Abstract

Python Tools for the Investigation of Optimal Explicit Runge-Kutta

Methods

By

Shivam Singla

The investigation of many real-world applications involves mathematical models that consist

of systems of ordinary differential equations (ODEs). This thesis mainly focuses on the ODEs

with the initial values known as initial value ordinary differential equations. These equations

are typically solved using numerical methods to obtain approximate solutions. A popular class

of numerical methods to solve an initial value ODE are the Explicit Runge-Kutta (ERK) methods.

This thesis considers Python software for the investigation of ERK methods. ERK methods can

be used to obtain approximate solutions at a discrete set of points across the domain of

interest, with Ὤ being the distance between the points. An ERK method is said to be of order

ὴ if the error of the numerical solution is proportional to Ὤ. In this thesis, we consider Python

software for the determination of optimal ERK methods of orders ρ to τ. The Python software

also has the capability to solve a set of test problems using various ERK methods in order to

allow for a comparison of the accuracy of the numerical solutions obtained from the ERK

methods. The Python software can also be used to extend the discrete approximate solutions

from the ERK methods to obtain continuous approximate solutions over the entire domain

using Hermite interpolation. To assess the accuracy of the continuous solution approximation,

the software can also be used to compute the defect of the continuous approximate solution,

where defect is the amount by which the continuous approximate solution fails to satisfy the

ODE.

Date: September 09, 2021

Contents

1. Introduction ..1

2. Background ...5

2.1 Initial Value Ordinary Differential Equations ..5

2.2 Numerical Methods for Solving IVODEs: Explicit Runge-Kutta Methods8

2.3 Optimal ERK methods .. 28

2.4 Continuous extensions of discrete solutions from ERK methods 37

2.5 The Defect of the Continuous Approximate Solution .. 38

3. Software Implementation .. 40

3.1 Optimization Software ... 40

3.2 Software for Testing Explicit Runge-Kutta Methods .. 42

3.3 How to add a new IVODE ... 48

4. Results and Discussion ... 50

4.1 Optimal ERK methods and Comparison with Standard Methods 50

4.2 Experimental Verification of Order of Convergence .. 70

4.3 Comparison of standard and optimal ERK methods: Accuracy and Efficiency 74

4.4 Continuous Approximate Solutions and Corresponding Defects 82

5. Summary, Conclusions, and Future Work .. 90

Bibliography ... 92

Appendix .. 93

1

Chapter 1

Introduction

Initial Value Ordinary Differential Equations (ODEs) arise within mathematical models in a wide

variety of applications such as the Predator-Prey problem, COVID-19 models, population

growth and decay problems, survivability with AIDS problems, economics and finance

problems, etc. Typically, these initial value ODEs are too complicated to be solved by hand.

Approximate numerical solutions must be computed. There are a wide variety of numerical

methods for solving initial value ODEs, but in this thesis, we are going to focus on one of the

most popular classes of methods called ‘Explicit Runge-Kutta methodsΩ.

In this thesis, we survey specific examples of Explicit Runge-Kutta methods that have been

developed over the years. We also show the general forms of Explicit Runge-Kutta methods of

orders ςȟσ and τ. These general forms have free coefficients. One important part of this thesis

involves determining optimal values for these free coefficients so that the methods are as

accurate as possible. We have developed Python software for determining optimal values for

the free coefficients based on minimization of the Principal Error Coefficient (to be defined in

Chapter 2) of the Runge-Kutta method.

We also compare some standard Explicit Runge-Kutta methods with the Runge-Kutta methods

that have optimal values for the free coefficients. The comparison involves applying these

methods to solve various initial value ODEs. We use a Python tool we have developed for

applying Explicit Runge-Kutta methods to selected test initial value ODEs. The tool computes

the error at the end of the time domain for the problems that have a known exact solution

along with the stepsize used and the order of convergence (to be defined in Chapter 2). For

2

the problems with an unknown exact solution, the Python tool provides the numerical solution

approximation at the end of the time domain along with the stepsize used.

The Explicit Runge-Kutta methods give discrete solution approximations at certain points

across the domain. Based on the use of Hermite interpolants, we can extend the discrete

solution to produce a continuous solution approximation across the whole domain.

However, the quality of this continuous numerical solution must be assessed. Once we have

computed the continuous solution approximation, we plug it into the initial value ODE to check

how large the defect is. The defect is the amount by which the continuous approximate

solution fails to satisfy the differential equation. The Python tool also computes the defect for

the continuous approximate solution. Then, it provides a plot of the continuous approximate

solution and a plot of the defect, which gives a measure of the accuracy of the continuous

approximate solution.

In this thesis, we investigate an important question regarding choosing the free coefficients of

a general ERK method to minimize the Principal Error Coefficient of the method. The actual

error of a computed numerical solution depends on the linear combination of products of the

components of the Principal Error Coefficient and higher derivatives of the right hand side of

the ODE. On the other hand, the Principal Error Coefficient has components that depend only

on the ERK method. This means that there is a difference between choosing the free

coefficients of an ERK method to minimize the Principal Error Coefficient and minimizing the

actual error of a numerical solution computed by the ERK method. Therefore, we expect that

the optimal ERK methods obtained by minimizing only the Principal Error Coefficient may not

deliver the smallest error, depending on the problem, especially for cases where the standard

methods are nearly optimal. Based on numerical testing on a set of test initial value ODEs, we

investigate how often the optimal ERK methods are actually able to deliver the smallest error.

3

As mentioned above, a standard use of an ERK method provides a set of discrete solution

approximations at points across the problem domain. A standard ERK solver would employ an

algorithm for estimating the error of the discrete solution approximations and adjusting the

ERK methods so that the error for each discrete solution approximation is less than a user-

provided tolerance. Another important aspect of this thesis is to introduce a simple method

for extending the discrete solution to contain a continuous approximate solution for which the

accuracy can be assessed by examining its corresponding defect. As the continuous numerical

solution is the solution that is returned to the user by current ODE solvers, it is important to

assess the accuracy of the continuous approximate solution rather than only the discrete

approximate solution.

The thesis is organized as follows:

1. Chapter 2 Background: This chapter includes an explanation of the Initial Value ODEs,

general and standard forms of ERK methods, optimal ERK methods along with order

conditions and Principal Error Coefficients, continuous approximate solutions,

Hermite interpolants and the computation of the defect.

2. Chapter 3 Software Implementation: This chapter includes the documentation and

description of the Python software created for optimization of the ERK methods. It

also includes the Python software for testing ERK methods and obtaining a continuous

approximate solution and its defects.

3. Chapter 4 Results and Discussion: This chapter includes the results of the optimization

software and the discussion on the optimal ERK methods and their comparison with

standard methods. It also includes the experimental confirmation of the order of

convergence of the methods along with the comparison between the standard ERK

methods and optimal ERK methods when used on the test initial value ODEs. Finally,

4

this chapter includes the results and discussions on the continuous approximate

solutions and their corresponding defects.

4. Chapter 5 Summary, Conclusions, and Future Work: This chapter includes the

summary and conclusions of this thesis along with some suggestions for future work.

5. Appendix: The appendix includes the python scripts which build the optimization

software as well as the software for testing the ERK methods and computing

continuous approximate solution and their defects.

5

Chapter 2

Background

In this chapter, we first introduce Initial Value Ordinary Differential Equations (IVODEs) with

examples as well as numerical methods for solving those IVODEs. We focus on Explicit Runge-

Kutta (ERK) methods [Butc87]. We present the general form for ERK methods and provide

some examples. Then, we discuss order conditions [Butc87] and Principal Error Coefficients

[Butc87] for ERK methods and explain how these can be used to obtain optimal ERK methods

of a given order. This chapter also includes an overview of continuous extensions [Butc87] of

discrete solutions from ERK methods. Finally, we discuss assessment of the quality of the

continuous solution approximation based on the computation of the defect [Enri89] of the

continuous numerical solution.

2.1 Initial Value Ordinary Differential Equations

An IVODE, also known as Initial Value Problem (IVP), is an ordinary differential equation (ODE)

together with an initial condition. The initial condition specifies the initial value of the solution

to the ODE at a specific point in the domain. In this section, we show the general form for an

IVODE and give some examples that we use later in the thesis as test problems.

2.1.1 General Form

The general form of an IVODE is

ώȡᴙᴼᴙ ÁÎÄ ώ ὸ Ὢὸȟώὸȟ

in which Ὢȡᴙ ᴙ ᴼᴙ . It also has an initial condition which specifies

ώὸ ώ

6

where ὸ is a given point and ώᶰᴙ is a given constant vector.

For ά ρ, ώὸ is the vector ώ ὸȟώ ὸȟȣȟώ ὸ and the differential equation is

replaced by a system of equations,

ώ ὸ Ὢὸȟώ ὸȟώ ὸȟȣȟώ ὸȟ Ὥ ρȟςȟȣȟάȢ

2.1.2 Example 1

First, we start with an example of an IVODE [SAP97],

ώ ςὼώȟ

with initial value, ώπ ρ and exact solution,

ώὼ
ρ

ρ ὼ
 Ȣ

The final ὸ value for this IVODE that is used in this thesis is ρ.

2.1.3 Example 2

This is another example of an IVODE [SAP97],

ώ
ρ

ς
ώȟ

with initial value, ώπ ρ and exact solution,

ώὼ
ρ

Ѝρ ὼ
 Ȣ

The final ὸ value for this IVODE that is used in this thesis is ρ.

2.1.4 Example 3

The next example of an IVODE is [SAP97],

ώ
ρ

τ
ρ
ώ

ςπ
ώȟ

7

with initial value, ώπ ρ and exact solution,

ώὼ
ςπ

ρ ρωὩ
 Ȣ

The final ὸ value for this IVODE that is used in this thesis is ρ.

2.1.5 Example 4

Another example of an IVODE is [SAP97],

ώ ώ Ὡ ÓÉÎὼȟ

where is a constant between 0 and 1. We choose πȢρ for our computations in this thesis.

The initial value for this IVODE is ώπ ρ and the exact solution is,

ώὼ Ὡ ÃÏÓὼȢ

The final ὸ value for this IVODE that is used in this thesis is ρ.

2.1.6 COVID-19 Model Example

This example for an IVODE is a standard COVID-19 model, an example of a SEIR epidemiological

model, involving the following system of equations [Chri20],

ώ
ώώ

ὔ
‘ὔ ‘ώȟ

ώ
ώώ

ὔ
 ‘ώȟ

ώ ώ ‘ώȟ

ώ ώ ‘ώȟ

where

ώ Ὓȡ 3ÕÓÃÅÐÔÉÂÌÅȟ

ώ Ὁȡ %ØÐÏÓÅÄȟ

8

ώ Ὅȡ)ÎÆÅÃÔÅÄȟ

ώ Ὑȡ 2ÅÃÏÖÅÒÅÄȟ

and the constants are,

ρ

ψ
ȟ πȢωȟ πȢπφȟ ‘

πȢπρ

σφυ
ȟ ὔ σχȢχτρρπȢ

The initial conditions for this IVODE are ώπ ὔ ώ ώȠ ώȠ ώȠ π, where ώ ρπσ

and ώ ρ.

The final time that is used in this thesis is ὸ ρυπ.

2.2 Numerical Methods for Solving IVODEs: Explicit Runge-Kutta

Methods

To find the approximate solution of IVODEs, we use a popular family of methods known as the

Ψ9ȄǇƭƛŎƛǘ wǳƴƎŜ-Kutta (ERK) methods’. These methods are a generalization of the Ψ9ǳƭŜǊ

ƳŜǘƘƻŘΩ, also known as the ΨForward Euler method’. A member of the Runge-Kutta family

which is the most widely known method of this type, is the ‘wYп ƳŜǘƘƻŘΩ, which is also known

as the ‘classical Runge-Yǳǘǘŀ ƳŜǘƘƻŘΩ or just ‘the Runge-Yǳǘǘŀ ƳŜǘƘƻŘΩ. The order of

convergence for the ‘wYп ƳŜǘƘƻŘΩ is 4. The global error of an ERK method is the difference

between the numerical solution it computes and the exact solution to an IVODE. The global

error is proportional to some power of Ὤ, where Ὤ is the stepsize used by the ERK method.

When the global error is proportional to Ὤ, we say that the global error is ὕὬ , and the ERK

method is said to be of order ὴ.

2.2.1 General Form

An ERK method can be used to obtain discrete numerical solution approximations, ώ ώὸ ,

at a set of points, ὸ ὸ ὲὬ, where Ὤ is the stepsize used by the ERK method. (Ὤ is the

distance between the ὸ values.)

9

The general form for an ί stage ERK method [Butc87] is,

ώ ώ ὬὦὯ ὦὯ Ễ ὦὯ ȟ

for ὲ πȟρȟςȟȣ, where

Ὧ Ὢὸȟώ ȟ

Ὧ Ὢὸ ὧὬȟώ Ὤὥ Ὧ ȟ

Ὧ Ὢὸ ὧὬȟώ Ὤὥ Ὧ ὥ Ὧ ȟ

ȣ

Ὧ Ὢὸ ὧὬȟώ Ὤὥ Ὧ ὥ Ὧ Ễ ὥȟ Ὧ Ȣ

The vectors ὯȟὯȟȣȟὯ, are called the stages of the ERK method. To obtain a specific ERK

method, one must specify the integer ί (the number of stages), and the coefficients ὥ

ÆÏÒ ρ Ὦ Ὥ ί, ὦ ÆÏÒ Ὥ ρȟςȟȣȟί and ὧ ÆÏÒ Ὥ ςȟσȟȣȟί. These coefficients are

determined by requiring them to satisfy a set of equations known as Runge-Kutta order

conditions. We discuss these conditions later in this chapter.

The matrix ὃ with the elements ὥ is called the Runge-Kutta matrix, with ὦ and ὧ known as

the weights and the nodes respectively.

The coefficients that define an ERK method are usually stored in a table, known as a Butcher

tableau (named after John Butcher):

π

ὧ ὥ

ὧ ὥ ὥ

ể ể Ệ

ὧ ὥ ὥ ȣ ὥȟ

 ὦ ὦ ȣ ὦ ὦ

10

where (usually)

ὥ ὧ ÆÏÒ Ὥ ςȟσȟȣȟίȢ

2.2.2 The First Order ERK Method: The Forward Euler Method

The most basic explicit method for numerical integration of ordinary differential equations is

the ΨCƻǊǿŀǊŘ 9ǳƭŜǊ (FE) aŜǘƘƻŘΩ. It is the simplest example of a Runge-Kutta method.

For the general IVODE defined above, i.e.,

ώ ὸ Ὢὸȟώὸȟ ώὸ ώȟ

and for a given solution approximation, ώ, at ὸ, with a stepsize Ὤ, the FE method has the

form

ώ ώ Ὤ Ὢὸȟώ ÆÏÒ ὲ πȟρȟςȟȣ Ȣ

This method is simple to use and works reasonably well. It is a first order method which means

that if the stepsize Ὤ is reduced by a factor of ς, then the error will also be reduced by a factor

of ς. The FE method has a global error that is ὕὬ, which means that the order for FE method

is ρ. The global error for ώ is Ὡ ȿώ ώὸ ȿ.

2.2.3 Second Order ERK Methods

A second order ERK method is a method which has order ς and provides twice the accuracy of

the FE method. This means that if the stepsize Ὤ is reduced by a factor of ς, then the error will

be reduced by a factor of τ. The global error for these methods is ὕὬ .

2.2.3.1 General Form

The general form for a two-stage, second order ERK method is

ώ ώ Ὤ ὦὯ ὦὯ ȟ

11

for ὲ πȟρȟςȟȣ, where

Ὧ Ὢὸȟώ ȟ ÁÎÄ

Ὧ Ὢὸ ὧ Ὤȟ ώ Ὤὥ Ὧ Ȣ

This method is called a two-stage method because it involves two stage evaluations. The first

stage is

Ὧ Ὢὸȟώ

and the second is

Ὧ Ὢὸ ὧ Ὤȟ ώ Ὤὥ Ὧ Ȣ

The Butcher tableau for a two-stage, second order ERK method is:

π π π

ὧ ὥ π

 ὦ ὦ

Here, the matrix ὃ is

ὃ
π π
ὧ π

ȟ

the weights are

ὦ ρ
ρ

ςὧ

ρ

ςὧ

and the nodes are

ὧ π ὧȢ

In order for this general two-stage ERK method to be second order, the coefficients must be

chosen to satisfy order conditions. These conditions are discussed later in this chapter. When

the conditions for second order are imposed on the coefficients of the general, two-stage,

12

second order ERK method, it turns out that all the coefficients can be expressed in terms of

one free coefficient.

The Butcher tableau storing the coefficients for a two-stage, second order ERK method

[Butc87] is:

π π π

ὧ ὧ π

ρ

ρ

ςὧ

ρ

ςὧ

Substituting the coefficient values into the general form, we get

ώ ώ Ὤ ρ
ρ

ςὧ
Ὢὸȟώ

ρ

ςὧ
Ὢὸ ὧὬȟ ώ ὧὬ Ὢὸȟὸ Ȣ

There are several well-known two-stage, second order ERK methods, but we discuss only two

of them. Those two methods are the Explicit Midpoint method [Butc87] and IŜǳƴΩǎ ƳŜǘƘƻŘ

[Butc87].

2.2.3.2 Explicit Midpoint Method

The Explicit Midpoint method is a two-stage, second order ERK method with the coefficient

value ὧ .

After substituting the value ὧ into the general form of two-stage, second order ERK

method, we get

ώ ώ Ὤ Ὢ ὸ
Ὤ

ς
ȟ ώ

Ὤ

ς
 Ὢὸȟώ

for ὲ πȟρȟςȟȣ . The Butcher tableau for the Explicit Midpoint method is:

13

π π π

ρ

ς

ρ

ς
 π

 π ρ

The name of the method itself suggests what’s happening in the formula above. We can see

that the first argument of the function Ὢ is evaluated at ὸ , which is the midpoint between

ὸ and ὸ . Note, the second argument of the function Ὢ looks like the FE method but with

half the stepsize. In order to utilize this method, we first use the FE method with half the

stepsize to compute a solution approximation and then use that approximation as the second

argument for the function Ὢ to obtain the solution approximation at the end of the step. The

two-stages involved in the computation of the Explicit Midpoint method are:

Ὧ Ὢὸȟώ ÁÎÄ

Ὧ Ὢ ὸ
Ὤ

ς
ȟ ώ

Ὤ

ς
 Ὢὸȟώ Ὢὸ

Ὤ

ς
ȟ ώ

Ὤ

ς
Ὧ Ȣ

The Explicit Midpoint method provides more accurate results for a given choice of Ὤ, but it

requires a bit more computation than the FE method.

2.2.3.3 IŜǳƴΩǎ Second Order Method

HŜǳƴΩǎ second order method is a two-stage, second order ERK method with the coefficient

value ὧ ρ. After substituting the value ὧ ρ into the general form of two-stage, second

order ERK method, we get

ώ ώ Ὤ
ρ

ς
Ὢὸȟώ

ρ

ς
Ὢὸ Ὤȟ ώ Ὤ Ὢὸȟώ ȟ

ώ ώ
Ὤ

ς
Ὢὸȟώ Ὢὸ ȟ ώ Ὤ Ὢὸȟώ

for ὲ πȟρȟςȟȣ . The Butcher tableau for the IŜǳƴΩǎ second order method is:

14

π π π

ρ ρ π

 ρ

ς

ρ

ς

Note, in this method, the second argument of the second function Ὢ is from the FE method.

We first obtain the solution approximation by using FE method and then use that

approximation as the second argument in the second function Ὢ to find the solution

approximation at the end of the step.

2.2.4 Third Order ERK Method

In this subsection, we discuss three-stage, third order ERK methods. This means that if the

stepsize Ὤ is reduced by a factor of ς, then the error will be reduced by a factor of ψ. The global

error for these methods is ὕὬ .

2.2.4.1 General Form

The general form for a three-stage, third order ERK method is

ώ ώ Ὤ ὦὯ ὦὯ ὦὯ ȟ

for ὲ πȟρȟςȟȣ, where

Ὧ Ὢὸȟώ ȟ

Ὧ Ὢὸ ὧ Ὤȟ ώ Ὤὥ Ὧ ÁÎÄ

Ὧ Ὢὸ ὧὬȟ ώ Ὤὥ Ὧ ὥ Ὧ Ȣ

The general Butcher tableau for three-stage, third order ERK method is:

15

π π π π

ὧ ὥ π π

ὧ ὥ ὥ π

 ὦ ὦ ὦ

where

ὧ ὥ ὥὲὨ ὧ ὥ ὥ Ȣ

The coefficients must satisfy the order conditions for third order. When the order conditions

are imposed, the coefficients of the method can all be expressed in terms of one or two free

coefficients. It turns out that three-stage, third order methods have three different cases

[Butc87].

Case 1. A 2-parameter family of three-stage, third order ERK methods with the conditions,

ὧ πȟ ȟὧȠὧ πȟὧ.

In this case, there are two free variables ὧ and ὧ. The Butcher tableau storing

the coefficients for a three-stage, third order method for this case is:

π π π π

ὧ ὧ π π

ὧ
ὧ ὧ σὧ σὧ

ὧ σὧ ς

ὧ ὧ ὧ

ὧ σὧ ς
 π

ς σὧ ὧ φὧὧ

φὧὧ

ὧ
ς
σ

ςὧ ὧ ὧ

ς
σ ὧ

ςὧ ὧ ὧ

Here, the matrix ὃ is

ὃ

ụ
Ụ
Ụ
ợ

π π π
ὧ π π

ὧ ὧ σὧ σὧ

ὧ σὧ ς

ὧ ὧ ὧ

ὧ σὧ ς
π
Ứ
ủ
ủ
Ủ

ȟ

16

the weights are

ὦ ς σὧ ὧ φὧὧ

φὧὧ

ὧ
ς
σ

ςὧ ὧ ὧ

ς
σ
ὧ

ςὧ ὧ ὧ

and the nodes are

ὧ π ὧ ὧȢ

Substituting the coefficient values in the general form, we get

ώ ώ Ὤ
ς σὧ ὧ φὧὧ

φὧὧ
Ὧ

ὧ
ς
σ

ςὧ ὧ ὧ
Ὧ

ς
σ
ὧ

ςὧ ὧ ὧ
Ὧ

for ὲ πȟρȟςȟȣ, where

Ὧ Ὢὸȟώ ȟ

Ὧ Ὢὸ ὧ Ὤȟ ώ ὬὧὯ ȟ

Ὧ Ὢ ὸ ὧὬȟ ώ Ὤ
ὧ ὧ σὧ σὧ

ὧ σὧ ς
Ὧ

ὧ ὧ ὧ

ὧ σὧ ς
Ὧ

Case 2. A 1-parameter family of three-stage, third order ERK methods with the condition,

ὦ π.

In this case, there is only one free variable, ὦ. The Butcher Tableau storing the

coefficients for a three-stage, third order method for this case is:

π π π π

ς

σ

ς

σ
 π π

π
ρ

τὦ

ρ

τὦ
 π

ρ

τ
ὦ

σ

τ
 ὦ

17

Here, the matrix ὃ is

ὃ

ụ
Ụ
Ụ
Ụ
ợ
π π π
ς

σ
π π

ρ

τὦ

ρ

τὦ
π
Ứ
ủ
ủ
ủ
Ủ

ȟ

the weights are

ὦ
ρ

τ
ὦ
σ

τ
ὦ

and the nodes are

ὧ π
ς

σ
πȢ

Substituting the coefficient values in the general form, we get

ώ ώ Ὤ
ρ

τ
ὦ Ὧ

σ

τ
Ὧ ὦὯ

for ὲ πȟρȟςȟȣ, where

Ὧ Ὢὸȟώ ȟ

Ὧ Ὢ ὸ
ςὬ

σ
ȟ ώ Ὤ

ςὯ

σ
ȟ

Ὧ Ὢ ὸȟώ
Ὤ

τὦ
Ὧ Ὧ Ȣ

Case 3. A 1-parameter family of three-stage, third order ERK methods with the condition,

ὦ π.

In this case, there is only one free variable, ὦ. The Butcher Tableau storing the

coefficients for a three-stage, third order method for this case is:

18

π π π π

ς

σ

ς

σ
 π π

ς

σ

ψὦ σ

ρςὦ

ρ

τὦ
 π

ρ

τ

σ

τ
ὦ ὦ

Here, the matrix ὃ is

ὃ

ụ
Ụ
Ụ
Ụ
ợ
π π π
ς

σ
π π

ψὦ σ

ρςὦ

ρ

τὦ
π
Ứ
ủ
ủ
ủ
Ủ

ȟ

the weights are

ὦ
ρ

τ

σ

τ
ὦ ὦ

and the nodes are

ὧ π
ς

σ

ς

σ
Ȣ

Substituting the coefficient values in the general form, we get

ώ ώ Ὤ
Ὧ

τ

σ

τ
ὦ Ὧ ὦὯ

for ὲ πȟρȟςȟȣ, where

Ὧ Ὢὸȟώ ȟ

Ὧ Ὢ ὸ
ςὬ

σ
ȟ ώ Ὤ

ςὯ

σ
ȟ

Ὧ Ὢ ὸ
ςὬ

σ
ȟ ώ

Ὤ

τὦ

ψὦ σ

σ
Ὧ Ὧ Ȣ

19

There are several well-known three-stage, third order ERK methods, but we discuss only two

of them. The two methods are IŜǳƴΩǎ third order method [Butc87] and wŀƭǎǘƻƴΩǎ third order

method [Butc87].

2.2.4.2 IŜǳƴΩǎ ¢ƘƛǊŘ hǊŘŜǊ aŜǘƘƻŘ

IŜǳƴΩǎ Third Order method is a three-stage, third order ERK method, Case 1, with the

coefficient values ὧ and ὧ . After substituting the values ὧ and ὧ into the

general form of three-stage, third order ERK method, Case 1, we get

ώ ώ
Ὤ

τ
Ὧ σὯ

where

Ὧ Ὢὸȟώ ȟ

Ὧ Ὢὸ
Ὤ

σ
ȟ ώ Ὤ

Ὧ

σ
ȟ

Ὧ Ὢὸ
ςὬ

σ
ȟ ώ Ὤ

ςὯ

σ
Ȣ

for ὲ πȟρȟςȟȣ . The Butcher Tableau for the IŜǳƴΩǎ third order method is:

π π π π

ρ

σ

ρ

σ
 π π

ς

σ
 π

ς

σ
 π

ρ

τ
 π

σ

τ

20

2.2.4.3 wŀƭǎǘƻƴΩǎ ¢ƘƛǊŘ hǊŘŜǊ aŜǘƘƻŘ

RalstonΩǎ Third Order method is a three-stage, third order ERK method, Case 1, with the

coefficient values ὧ and ὧ . After substituting the values ὧ and ὧ into the

general form of three-stage, third order ERK method, Case 1, we get

ώ ώ
Ὤ

ω
ςὯ σὯ τὯ

where

Ὧ Ὢὸȟώ ȟ

Ὧ Ὢὸ
Ὤ

ς
ȟ ώ Ὤ

Ὧ

ς
ȟ

Ὧ Ὢὸ
σὬ

τ
ȟ ώ Ὤ

σὯ

τ

for ὲ πȟρȟςȟȣ . The Butcher Tableau for the wŀƭǎǘƻƴΩǎ ǘƘƛǊŘ ƻǊŘŜǊ method is:

π π π π

ρ

ς

ρ

ς
 π π

σ

τ
 π

σ

τ
 π

ς

ω

ρ

σ

τ

ω

2.2.5 Fourth Order ERK Method

For a fourth order ERK method, if the stepsize Ὤ is reduced by a factor of ς, then the error will

be reduced by a factor of 16. The global error for these methods is ὕὬ .

2.2.5.1 General Form

The general form for a four-stage, fourth order ERK method is

21

ώ ώ Ὤ ὦὯ ὦὯ ὦὯ ὦὯ ȟ

for ὲ πȟρȟςȟȣ, where

Ὧ Ὢὸȟώ ȟ

Ὧ Ὢὸ ὧ Ὤȟ ώ Ὤὥ Ὧ ȟ

Ὧ Ὢὸ ὧ Ὤȟ ώ Ὤὥ Ὧ ὥ Ὧ ÁÎÄ

Ὧ Ὢὸ ὧ Ὤȟ ώ Ὤὥ Ὧ ὥ Ὧ ὥ Ὧ Ȣ

This method is called a four-stage method because it involves the four stage evaluations given

above. The general Butcher tableau for a four-stage, fourth order ERK method is:

π π π π π

ὧ ὥ π π π

ὧ ὥ ὥ π π

ὧ ὥ ὥ ὥ π

 ὦ ὦ ὦ ὦ

The coefficients must satisfy the order conditions for fourth order. When these order

conditions are imposed, the coefficients of the method can all be expressed in terms of one or

two free coefficients. It turns out that, the four-stage, fourth order methods have five different

cases [Butc87].

Case 1. A 2-parameter family of four-stage, fourth order ERK methods with the conditions

πȟὧȟὧȟρ all distinct; ὧ and σ τὧ ὧ φὧὧ π.

In this case, there are two free variables, ὧ and ὧ. The Butcher Tableau storing

the coefficients for a four-stage, fourth order ERK method for this case is:

22

π π π π π

ὧ ὧ π π π

ὧ
ὧ σὧ ὧ τὧ

ςὧ ρ ςὧ

ὧ ὧ ὧ

ςὧ ρ ςὧ
 π π

ρ ὥ ὥ ὥ π

ρ ςὧ ὧ φὧὧ

ρςὧὧ

ςὧ ρ

ρςὧ ὧ ὧ ρ ὧ

ρ ςὧ

ρςὧ ὧ ὧ ρ ὧ

σ τὧ ὧ φὧὧ

ρςρ ὧ ρ ὧ

where

ὥ
ὧ ρςὧ ρςὧ τ ὧ ρςὧ ρυὧ υ τὧ φὧ ς

ςὧὧ σ τὧ ὧ φὧὧ
ȟ

ὥ
τὧ υὧ ὧ ς ρ ὧ

ςὧ ὧ ὧ σ τὧ ὧ φὧὧ
 ȟ

ὥ
ρ ςὧ ρ ὧ ρ ὧ

ὧ ὧ ὧ σ τὧ ὧ φὧὧ
 Ȣ

Here, the matrix ὃ is

ὃ

ụ
Ụ
Ụ
Ụ
ợ

π π π π
ὧ π π π

ὧ σὧ ὧ τὧ

ςὧ ρ ςὧ

ὧ ὧ ὧ

ςὧ ρ ςὧ
π π

ὥ ὥ ὥ πỨ
ủ
ủ
ủ
Ủ

ȟ

where ὥ , ὥ and ὥ are as given above. The weights are

ὦ
ρ ςὧ ὧ φὧὧ

ρςὧὧ

ςὧ ρ

ρςὧὧ ὧ ρ ὧ

ρ ςὧ

ρςὧὧ ὧ ρ ὧ

σ τὧ ὧ φὧὧ

ρςρ ὧ ρ ὧ

and the nodes are

ὧ π ὧ ὧ ρȢ

23

Case 2. A 1-parameter family of four-stage, fourth order ERK methods with the conditions

ὧ ὧ ȟὦ π.

In this case, there is only one free variable, ὦ. The Butcher Tableau storing the

coefficients for a four-stage, fourth order ERK method for this case is:

π π π π π

ρ

ς

ρ

ς
 π π π

ρ

ς

σὦ ρ

φὦ

ρ

φὦ
 π π

ρ π ρ σὦ σὦ π

ρ

φ

ς

σ
ὦ ὦ

ρ

φ

Here, the matrix ὃ is

ὃ

ụ
Ụ
Ụ
Ụ
Ụ
ợ
π π π π
ρ

ς
π π π

σὦ ρ

φὦ

ρ

φὦ
π π

π ρ σὦ σὦ πỨ
ủ
ủ
ủ
ủ
Ủ

ȟ

the weights are

ὦ
ρ

φ

ς

σ
ὦ ὦ

ρ

φ

and the nodes are

ὧ π
ρ

ς

ρ

ς
ρȢ

24

Case 3. A 1-parameter family of four-stage, fourth order ERK methods with the conditions

ὧ ȟὧ πȟὦ π.

In this case, there is only one free variable, ὦ. The Butcher Tableau storing the

coefficients for a four-stage, fourth order ERK method for this case is:

π π π π π

ρ

ς

ρ

ς
 π π π

π
ρ

ρςὦ

ρ

ρςὦ
 π π

ρ
ρ

ς
φὦ

σ

ς
 φὦ π

ρ

φ
ὦ

ς

σ
 ὦ

ρ

φ

Here, the matrix ὃ is

ὃ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ

π π π π
ρ

ς
π π π

ρ

ρςὦ

ρ

ρςὦ
π π

ρ

ς
φὦ

σ

ς
φὦ πỨ

ủ
ủ
ủ
ủ
ủ
Ủ

ȟ

the weights are

ὦ
ρ

φ
ὦ
ς

σ
ὦ
ρ

φ

and the nodes are

ὧ π
ρ

ς
π ρȢ

25

Case 4. A 1-parameter family of four-stage, fourth order ERK methods with the conditions

ὧ ρȟὧ ȟὦ π.

In this case, there is only one free variable, ὦ. The Butcher Tableau storing the

coefficients for a four-stage, fourth order ERK method for this case is:

π π π π π

ρ ρ π π π

ρ

ς

σ

ψ

ρ

ψ
 π π

ρ ρ
ρ

τὦ

ρ

ρςὦ

ρ

σὦ
 π

ρ

φ

ρ

φ
ὦ

ς

σ
 ὦ

Here, the matrix ὃ is

ὃ

ụ
Ụ
Ụ
Ụ
Ụ
ợ
π π π π
ρ π π π
σ

ψ

ρ

ψ
π π

ρ
ρ

τὦ

ρ

ρςὦ

ρ

σὦ
π
Ứ
ủ
ủ
ủ
ủ
Ủ

ȟ

the weights are

ὦ
ρ

φ

ρ

φ
ὦ
ς

σ
ὦ

and the nodes are

ὧ π ρ
ρ

ς
ρȢ

26

Case 5. A 1-parameter family of four-stage, fourth order ERK methods with the conditions

ὧ πȟὧ ȟὦ π.

In this case, there is only one free variable, ὦ. The Butcher Tableau storing the

coefficients for a four-stage, fourth order ERK method for this case is:

π π π π π

ὧ ὧ π π π

ρ

ς

τὧ ρ

ψὧ

ρ

ψὧ
 π π

ρ
ρ ςὧ

ςὧ

ρ

ςὧ
 ς π

ρ

φ
 π

ς

σ

ρ

φ

Here, the matrix ὃ is

ὃ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ
π π π π
ὧ π π π

τὧ ρ

ψὧ

ρ

ψὧ
π π

ρ ςὧ

ςὧ

ρ

ςὧ
ς π

Ứ
ủ
ủ
ủ
ủ
ủ
Ủ

ȟ

the weights are

ὦ
ρ

φ
π
ς

σ

ρ

φ

and the nodes are

ὧ π ὧ
ρ

ς
ρȢ

There are several well-known four-stage, fourth order ERK methods, but we discuss only two

of them. Those two methods are the Classical Runge-Kutta method and the 3/8 Rule method.

27

2.2.5.2 The Classical Runge-Kutta Method

The most widely known and used type of Runge-Kutta method is known as the ΨŎƭŀǎǎƛŎŀƭ

Runge-Yǳǘǘŀ ƳŜǘƘƻŘΩ, ΨwYп ƳŜǘƘƻŘΩ or ΨǘƘŜ wǳƴƎŜ-Yǳǘǘŀ ƳŜǘƘƻŘΩ [Butc87]. It is a four-stage,

fourth order ERK method, Case 2, with the coefficient value, ὦ . After substituting the

value ὦ into the general form of four-stage, fourth order ERK method, Case 2, we get

ώ ώ
Ὤ

φ
Ὧ ςὯ ςὯ Ὧ ȟ

where

Ὧ Ὢὸȟώ ȟ

Ὧ Ὢὸ
Ὤ

ς
ȟ ώ Ὤ

Ὧ

ς
ȟ

Ὧ Ὢὸ
Ὤ

ς
ȟ ώ Ὤ

Ὧ

ς
ȟ

Ὧ Ὢὸ Ὤȟ ώ ὬὯ

for ὲ πȟρȟςȟȣ . The Butcher Tableau for the classical Runge-Kutta method is:

π π π π π

ρ

ς

ρ

ς
 π π π

ρ

ς
 π

ρ

ς
 π π

ρ π π ρ π

ρ

φ

ρ

σ

ρ

σ

ρ

φ

28

2.2.5.3 The 3/8 Rule Method

The 3/8 Rule method [Butc87] is a four-stage fourth order ERK method from Case 1 with

coefficient values, ὧ and ὧ . After substituting the values ὧ and ὧ into the

general form of four-stage, fourth order ERK method, Case 1, we get

ώ ώ Ὤ
ρ

ψ
Ὧ

σ

ψ
Ὧ

σ

ψ
Ὧ

ρ

ψ
Ὧ ȟ

where

Ὧ Ὢὸȟώ ȟ

Ὧ Ὢὸ
Ὤ

σ
ȟ ώ Ὤ

Ὧ

σ
ȟ

Ὧ Ὢ ὸ
ςὬ

σ
ȟ ώ Ὤ

Ὧ

σ
Ὧ ȟ

Ὧ Ὢὸ Ὤȟ ώ ὬὯ Ὧ Ὧ Ȣ

for ὲ πȟρȟςȟȣ . The Butcher Tableau for the 3/8 Rule method is:

π π π π π

ρ

σ

ρ

σ
 π π π

ς

σ

ρ

σ
 ρ π π

ρ ρ ρ ρ π

ρ

ψ

σ

ψ

σ

ψ

ρ

ψ

2.3 Optimal ERK methods

From the discussion on ERK methods in the previous section, we now have general forms for

ERK methods for second, third and fourth order. In this section, we are going to discuss the

29

order conditions and Principal Error Coefficients for ERK methods. Then we discuss how to

determine optimal values for the free coefficients that appear in the general forms.

2.3.1 Order Conditions

We can obtain Runge-Kutta order conditions by comparing the Taylor series expansion of the

exact solution with the Taylor series expansion of the solution given by the Runge-Kutta

method [HNW87]. In order to give an example of how the order conditions can be obtained,

we consider the case of the general three-stage, third order ERK method. Let’s consider the

IVODE,

ώ Ὢ ώ

and assume Ὢ is sufficiently smooth. Let

ώ ώὸȟ ώ ώ ὸȟ ώ ώ ὸȟ ώ ώ ὸȟ

ὪḳὪὼȟώȟ Ὢḳ
Ὢὼȟώ

ὼ
ȟ Ὢ ḳ

Ὢὼȟώ

ὼ
ȟ

Ὢ ḳὪ ḳ
Ὢὼȟώ

ὼώ
ȟ Ὢ ḳ

Ὢὼȟώ

ώ
 Ȣ

Using a Taylor series expansion of the exact solution, we have

ώὼ ώὼ Ὤ ώ ὼ
Ὤ

ς
ώ ὼ

Ὤ

φ
ώ ὼ ὕὬ Ȣ

Now, the derivative of ώὼ is

ώ ὼ Ὢὼȟώὼ ḳὪȢ

The second derivative of ώὼ is

ώ ὼ

ὼ
Ὢὼȟώὼ

Ὢ

ὼ

Ὢ

ώ

ώ

ὼ
Ὢ Ὢ ὪȢ

Finally, the third derivative of ώὼ is

30

ώ ὼ
Ὢ

ὼ
ὼȟώὼ

ὼ
Ὢ ὼȟώὼ Ὢ ὼȟώὼ Ὢὼȟώὼ

ὼ
Ὢὼȟώὼ

ὼ
Ὢ ὼȟώὼ Ὢὼȟώὼ

ὼ
Ὢ

ώ
Ὢ
ώ

ὼ
Ὢὼȟώὼ

ὼ
Ὢ ὼȟώὼ Ὢ ὼȟώὼ

ὼ
Ὢὼȟώὼ

Ὢ Ὢ Ὢ Ὢ
Ὢ

ὼ

Ὢ

ώ
Ȣ
ώ

ὼ
Ὢ
Ὢ

ὼ

Ὢ

ώ

ώ

ὼ

Ὢ Ὢ Ὢ ὪὪ Ὢ ȢὪ Ὢ Ὢ Ὢ Ὢ

Ὢ ςὪὪ ὪὪ Ὢ Ὢ ὪὪ Ȣ

Let

ὊḳὪ ὪὪ ÁÎÄ ὋḳὪ ςὪὪ ὪὪ Ƞ

then

ώὼ ώὼ ὬὪ
Ὤ

ς
Ὂ
Ὤ

φ
ὊὪ Ὃ ὕὬ ȣ ρȢ

Next, let’s consider the three-stage, ERK method that we discussed in Section 2.2.4.1. This

method has the form

ώὼ ώὼ ὬὦὯ ὦὯ ὦὯ

where

Ὧ Ὢὼȟώὼ ȟ

Ὧ Ὢὼ ὧὬȟώὼ ὬὧὯ ȟ

Ὧ Ὢὼ ὧὬȟώὼ Ὤ ὧ ὥ Ὧ ὥ Ὧ Ȣ

The Butcher tableau for this method is given in Section 2.2.4.1. We need to express each of

the stages in terms of Ὢὼȟώ and higher derivatives.

31

Ὧ Ὢὼȟώὼ Ὢȟ

Ὧ Ὢὼ ὧὬȟώὼ ὧὬ ὪȢ

First, we expand Ὧ using a Taylor series in the first variable:

Ὧ Ὢὼȟώὼ ὧὬ Ὢ ὧὬ Ὢὼȟώὼ ὧὬ Ὢ

ὧὬ

ς
Ὢ ὼȟώὼ ὧὬ Ὢ ὕὬ Ȣ

Next, we perform expansions using a Taylor series, for each of the terms in the brackets

above, in the second variable:

Ὧ Ὢὼȟώὼ ὧὬ ὪὪ ὼȟώὼ
ὧὬ Ὢ

ς
Ὢ ὼȟώὼ ὕὬ

ὧὬ Ὢὼȟώὼ ὧὬ ὪὪ ὼȟώὼ ὕὬ

ὧὬ

ς
Ὢ ὼȟώὼ ὕὬ ȟ

Ὧ Ὢ ὧὬὪὪ
ὧὬ

ς
ὪὪ ὧὬὪ ὧὬ ὪὪ

ὧὬ

ς
Ὢ ὕὬ ȟ

Ὧ Ὢ ὧὬ Ὢ ὪὪ
ὧὬ

ς
Ὢ ςὪὪ ὪὪ ὕὬ ȟ

Ὧ Ὢ ὧὬ Ὂ
ὧὬ

ς
Ὃ ὕὬ Ȣ

The expansion for Ὧ is far more tedious (see [HNW87]) but eventually gives,

Ὧ Ὢ ὬὧὪ ὧ ὥ Ὢ ὥ Ὧ Ὢ

Ὤ

ς
ὧὪ ςὧ ὧ ὥ Ὢ ὥ Ὧ Ὢ ὧ ὥ Ὢ ὥ Ὧ Ὢ ὕὬ Ȣ

Substituting for Ὧ as obtained earlier and solving for Ὧ using F and G gives

32

Ὧ Ὢ Ὤὧ Ὂ Ὤ ὥ ὧ Ὂ Ὢ
ὧ

ς
Ὃ ὕὬ Ȣ

Substituting the expressions for the stages into

ώὼ ώὼ ὬὦὯ ὦὯ ὦὯ

gives,

ώὼ ώὼ Ὤὦ ὦ ὦ Ὢ Ὤ ὦὧ ὦὧ Ὂ

Ὤ ὦὥ ὧ ὊὪ
ρ

ς
ὦὧ ὦὧ Ὃ ὕὬ ȣ ςȢ

Next, we need to compare the above with the expansion of the exact solution ρ, which was

ώὼ ώὼ ὬὪ
Ὤ

ς
Ὂ
Ὤ

φ
ὊὪ Ὃ ὕὬ Ȣ

If we compare like terms to match the numerical and exact solutions, we must have

ὦ ὦ ὦ ρ &ÉÒÓÔ /ÒÄÅÒȟ

ὦὧ ὦὧ
ρ

ς
 3ÅÃÏÎÄ /ÒÄÅÒȟ

ὦὥ ὧ
ρ

φ
 4ÈÉÒÄ /ÒÄÅÒȟ

ρ

ς
ὦὧ ὦὧ

ρ

φ
 4ÈÉÒÄ /ÒÄÅÒȢ

These are called Runge-Kutta order conditions for third order. These order conditions can also

be written in the following form:

ὦὩ ρȟ ὦὧ
ρ

ς
ȟ ὦὧ

ρ

σ
 ÁÎÄ ὦὃὧ

ρ

φ
 Ȣ

where Ὡ is a vector of ones and ὧ ὧ ὧ ὧ . The computations required to find the

order conditions for fourth and fifth order methods are far more tedious. But after all the

33

computations have been done, we have the following order conditions for fourth order ERK

methods [Butc87]:

ὦὧ
ρ

τ
 ȟ

ὦὧὃὧ
ρ

ψ
 ȟ

ὦὃὧ
ρ

ρς
 ȟ

ὦὃὧ
ρ

ςτ
 ȟ

and the following order conditions for fifth order ERK methods [Butc87]:

ὦὧ
ρ

υ
 ȟ

ὦὧ ὃὧ
ρ

ρπ
 ȟ

ὦὧὃὧ
ρ

ρυ
 ȟ

ὦὧὃὧ
ρ

σπ
 ȟ

ὦ ὃὧ
ρ

ςπ
 ȟ

ὦὃὧ
ρ

ςπ
 ȟ

ὦὃὧὃὧ
ρ

τπ
 ȟ

ὦὃὧ
ρ

φπ
 ȟ

ὦὃὧ
ρ

ρςπ
 Ȣ

34

Some of the order conditions above need to be interpreted in a certain manner. For example,

take vector ὧ for instance. The square of vector ὧ, that is, ὧ, is interpreted as component-wise

product instead of the dot product. In component-wise product, the respective components

of the two vectors are multiplied together resulting into a vector of the same size. For 2 vectors

of size ὲ,

ὥ

ὥ
ὥ
ể
ὥ

ȟ ὦ

ὦ
ὦ
ể
ὦ

ȟ

the component-wise product of the vectors ὥ and ὦ is

ὥὦ

ὥὦ
ὥὦ
ể
ὥὦ

Ȣ

Similarly, if the vector is multiplied by itself ὲ times using the component-wise product, then

the resulting vector would be

ὥ

ὥ

ὥ
ể
ὥ

Ȣ

Later in this thesis, we show how these order conditions are used within the process to

optimize general ERK methods.

2.3.2 Principal Error Coefficients

The collection of order conditions that are one order higher than the order of an ERK method

gives the Principal Error Coefficient of that method; it is denoted by Ὁ where ὴ is the order

of that ERK method. An essential point is that the Principal Error Coefficient gives a method-

dependent but problem independent measure of the leading order term in the error of the

solution that is obtained from the ERK method. Over a sufficiently large class of problems, a

35

method with a smaller Principal Error Coefficient is expected to be generally more accurate,

i.e., have a smaller error, than a method with a larger Principal Error Coefficient. However, the

Principal Error Coefficient is not exactly the same as the error of the solution obtained from

the ERK method because, in the actual error, the unsatisfied order conditions that make up

the components of the Principal Error Coefficient are multiplied by problem dependent

derivatives of Ὢὸȟώὸ . See equation ς above. We use the results from the previous section

to obtain the Principal Error Coefficients of the ERK methods. Let’s start with the second order

ERK methods. The Principal Error Coefficient for a second order ERK method is the vector

[Butc87]

Ὁ

ρ

ς
ὦὧ

ρ

σ

ὦὃὧ
ρ

φ

Ȣ

These are the weighted, unsatisfied order conditions for third order. Note that ὦὧ is

weighted by because that is how it appears in the Taylor series given in the previous section.

We consider the square of the 2-norm of the Principal Error Coefficient Ὁ; this is

ȿὉȿ
ρ

ς
ὦὧ

ρ

σ
ὦὃὧ

ρ

φ
Ȣ

Similarly, the Principal Error Coefficient for a third order ERK method is the vector of weighted,

unsatisfied order conditions for fourth order [Butc87]; it has the form

Ὁ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ
ρ

φ
ὦὧ

ρ

τ

ὦὧὃὧ
ρ

ψ
ρ

ς
ὦὃὧ

ρ

ρς

ὦὃὧ
ρ

ςτ Ứ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

Ȣ

The square of the 2-norm of the Principal Error Coefficient Ὁ is

36

ȿὉȿ
ρ

φ
ὦὧ

ρ

τ
ὦὝὧὃὧ

ρ

ψ

ρ

ς
ὦὃὧ

ρ

ρς
ὦὃὧ

ρ

ςτ
Ȣ

Lastly, the Principal Error Coefficient for a fourth order ERK method is the vector of weighted,

unsatisfied order conditions for fifth order [Butc87]; this has the form

Ὁ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ

ρ

ςτ
ὦὧ

ρ

υ
ρ

ς
ὦὧ ὃὧ

ρ

ρπ
ρ

ς
ὦὧὃὧ

ρ

ρυ

ὦὧὃὧ
ρ

σπ
ρ

ς
ὦ ὃὧ

ρ

ςπ
ρ

φ
ὦὃὧ

ρ

ςπ

ὦὃὧὃὧ
ρ

τπ
ρ

ς
ὦὃὧ

ρ

φπ

ὦὃὧ
ρ

ρςπ Ứ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

Ȣ

The square of the 2-norm of the Principal Error Coefficient Ὁ is

ȿὉȿ
ρ

ςτ
ὦὧ

ρ

υ

ρ

ς
ὦὧ ὃὧ

ρ

ρπ

ρ

ς
ὦὧὃὧ

ρ

ρυ

ὦὧὃὧ
ρ

σπ

ρ

ς
ὦ ὃὧ

ρ

ςπ

ρ

φ
ὦὃὧ

ρ

ςπ

ὦὃὧὃὧ
ρ

τπ

ρ

ς
ὦὃὧ

ρ

φπ
ὦὃὧ

ρ

ρςπ
Ȣ

An optimal ERK method is obtained by choosing the free coefficients to minimize the 2-norm

of the Principal Error Coefficient of the method. We consider the determination of optimal

ERK methods in Chapter 4.

37

2.4 Continuous extensions of discrete solutions from ERK methods

An ERK method provides discrete numerical solutions, ώ, at a set of points, ὸ, on the domain

ὸȟὸ . However, high quality software for solving initial value ODEs requires that a

continuous numerical solution approximation be available to the user of the software. If we

have a discrete numerical solution at certain points of the domain, we can extend that solution

in order to obtain a continuous numerical solution approximation over the entire domain. This

provides continuity in the numerical solution which then allows the user to plot that solution

on a graph or find a solution value at any point on the domain. It is essential that the order of

accuracy of the continuous solution approximation be at least as high as that of the discrete

solution.

2.4.1 Hermite Interpolation

For orders ρ to τ, a continuous approximate solution of the appropriate order can be obtained

using Hermite interpolation, which involves finding polynomial functions with specified

function and derivative values. Since we want interpolants of fourth order, we need to use

Hermite cubics [SAP97]. Choosing an interpolant that is of fourth order means that the

interpolation error will be at least as small as the error of the discrete solution obtained from

the ERK method.

Let’s assume that ὸ is in the subinterval ὸȟὸ . Let — ὸ ὸȾὬ where Ὤ ὸ ὸ.

Here, — is the relative distance of ὸ from the point ὸ in the subinterval. For example, — will be

 if ὸ is at the midpoint of the subinterval. The Hermite form of the continuous solution

approximation, ό ὸ, on ὸȟὸ is

ό ὸ ώ Ὤ — Ὤ Ὢ Ὤ — ώ Ὤ — Ὤ Ὢ Ὤ —ȟ

where the Hermite basis polynomials, Ὤ —ȟὬ —ȟὬ —ȟ and Ὤ —, are

38

Ὤ — ρ ς— ρ — ȟ Ὤ — —ρ — ȟ

Ὤ — — σ ς—ȟ Ὤ — — — ρȟ

where

Ὢ Ὢὸȟώȟ Ὢ Ὢὸ ȟώ ȟ

ώ ώὸ ÁÎÄ ώ ώὸ Ȣ

Using Hermite interpolation allows us to get a continuous numerical solution approximation

at any point on the domain. Hermite interpolants can be used for the ERK methods of order

from ρ to τ. This is because, as mentioned above, the interpolation error for the Hermite

interpolant is ὕὬ , which is the same as or smaller than the error of the solution from the

ERK method.

2.5 The Defect of the Continuous Approximate Solution

Numerical methods are used to find the approximate solution to equations which don’t have

exact solutions or for which finding an exact solution is too complicated or time consuming

because of the complexity of the problem. The approximate numerical solution will have an

error. Thus, it is essential for the numerical method to also deliver an estimate of the error in

the numerical solution that is returned.

One way of assessing the accuracy of a continuous approximate solution is to consider the

defect of the approximate solution. In the previous section, we discussed Hermite

interpolation and how it extends the discrete numerical solution approximation to give a

continuous numerical solution approximation. But how well does that continuous numerical

solution approximation satisfy the ODE? We answer that question by computing the defect of

the continuous numerical solution approximation. As mentioned earlier, the defect is the

amount by which the continuous approximate solution fails to satisfy the ODE. The defect,

39

ὸ ό ὸ Ὢὸȟόὸȟ

of a continuous numerical solution, όὸ, is a continuous function of ὸ, and the question is how

to estimate the maximum value of ȿὸȿ on each step ὸȟὸ . We can clearly see above that

the value of the defect is problem dependent and therefore, the location of the maximum

defect can vary from step to step and problem to problem.

Since, we already have the continuous numerical solution approximation, it is straightforward

to evaluate ὸ at a given point ὸ. But generally, it is not straightforward to determine the

location within ὸȟὸ where ὸ is maximum. However, we would like to have an estimate

of the maximum value of ὸ on each step to assess the quality of όὸȢ The standard

approach to obtain this estimate is to sample the defect at several points within each step and

use the maximum of these samples as an estimate of the maximum defect.

In Chapter 4, we compute the defect for a continuous approximate solution for several IVODEs

and show the form that it has on a given step. We do not consider the task of sampling the

defect to obtain an estimate of the maximum defect on each step. As explained above, this

process is straightforward.

40

Chapter 3

Software Implementation

In this chapter, we describe the software implementation for the determination of optimal

ERK methods, the representation of ERK methods and the testing of ERK methods on an ODE

test set. This software also implements Hermite interpolants to provide a continuous solution

approximation, allowing this solution to be plotted, and it implements a defect sampling

algorithm so that plots of the defect can be obtained. We provide a detailed description of the

structure of the software and its capabilities. The software is created in the Python language

and can be found in the Appendix.

3.1 Optimization Software

The purpose of this software is to find the optimal values for the free coefficients by

minimizing the Principal Error coefficient of the ERK method. This software uses the python

library ‘SciPy’, and in particular the ‘minimize()’ function from within that library, in order to

find the optimal values for the free coefficients of a given ERK method. In this software, we

use the Principal Error Coefficients Ὁ for ὲ ςȟσȟτ, which we discussed in Section 2.3. The

script for this software is ΨhǇǘƛƳƛȊŀǘƛƻƴΦǇȅΩ, given in the Appendix. We first discuss the

functions that initiate this software.

¶ displayMenu(): This function prints the available choices to initiate the optimization

software for a specific Principal Error Coefficient. Then, it asks for input from the user

and saves that input in the integer variable ΨŎƘƻƛŎŜΩ which is then returned by the

function. The available choices are:

41

1: Optimize Ὁς

2: Optimize Ὁσ

3: Optimize Ὁτ

This function is initiated to provide a choice to the initializeOptimizer() function.

¶ initializeOptimizer(choice): This function takes the integer variable ΨŎƘƻƛŎŜΩ as the

parameter and uses it to initiate the optimizer for a specific Principal Error Coefficient.

Depending upon the value given for the parameter ΨŎƘƻƛŎŜΩ, the function ΨƻǇǘƛƳƛȊŜόύΩ

is called with one of the following parameters:

1: Ὁς

2: Ὁσ

3: Ὁτ

For Ὁ, there are five cases. So, before initiating the function optimizeὉ , the

chooseE4Case() function is called to get the ΨŎŀǎŜΩ value for the optimization of Ὁ.

(For third order, we saw earlier that there are three cases, but we show in Chapter 4,

that for two of these cases, we cannot choose the free coefficient to minimize the

Principal Error Coefficient.) When this function has completed, the user will be

provided with the following results:

1: Minimized Ὁ value, where ὲ ςȟσȟτ

2: Optimal values for the free coefficients

3: An indicator of whether the optimization software

terminated successfully.

¶ chooseE4Case(): This function prints all the cases for Ὁ and returns the integer value

for the case provided by the user. The cases for Ὁ that are available in this function

are the cases for four-stage, fourth order ERK methods; (Section 2.2.5).

42

3.1.1 Use of the Optimization Software

In order to use this software, the user is first required to install the python library ‘SciPy’ using

pip. After that, the user should run the ΩhǇǘƛƳƛȊŀǘƛƻƴΦǇȅΩ python script. Then, the user should

enter their choice for the order of the method to be optimized and for Ὁ, choose the case as

well. The script will provide the results of the optimization. An example is given below:

==== START: Research - Thesis \ Optimization.py ====

1. Optimi ze E2

2. Optimize E3

3. Optimize E4

Enter your choice: 1

Message: 'Optimization terminated successfully. '

E2: 0.02777777777777779

Free Coefficients: [0.66666665]

3.2 Software for Testing Explicit Runge-Kutta Methods

The purpose of this software is to investigate the performance of the ERK methods identified

in this thesis. In this software, the ERK methods of order ρ to τ are implemented for all cases

defined in Section 2.2 of this thesis. This software employs several python scripts which can

be found in the Appendix. The scripts are:

¶ main.py

¶ config.py

¶ EulersMethod.py

¶ Function.py

¶ HermiteInterpolation.py

¶ Methods.py

¶ ivode.py

¶ FileIO.py

43

The script that is used to initiate this software is ΨmainΦǇȅΩ. Let’s first discuss the functions in

this script which initiate the software.

¶ displayMenu(): This function prints the available choices to initiate this software,

which are

1: Specific IVODE on a specific method:

This option will initiate the function which allows the user to

choose an ERK method to solve a specified IVODE and provide the

results as output.

2: Specific IVODE on All Methods and Export results to a file:

This option will initiate the function which allows the user to use

all the ERK methods to solve a specified IVODE and provide the

results in a text file.

Then, it asks for input from the user and saves that input in the integer variable ΨŎƘƻƛŎŜΩ

which is then returned by the function. This function is initiated to provide a choice to

the chooseMenuOption() function.

¶ chooseMenuOption(choice): This function takes the integer variable ΨŎƘƻƛŎŜΩ as a

parameter and uses it to initiate the testing of one or more ERK methods. Depending

upon the value given for the parameter ΨŎƘƻƛŎŜΩ, one of the following functions is

called:

1: specificIVODESpecificMethod()

2: specificIVODEAllMethods()

¶ specificIVODESpecificMethod(): This function initiates the specified ERK method to

solve a specific IVODE chosen by the user. First, it asks the user to select the IVODE

with its initial and final values. Then, it asks the user to select the specific ERK method

which it uses to solve that IVODE. To find the numerical solution approximations,

44

stepsizes from ς to ς are used by the function. If the chosen IVODE has an exact

solution, the function will provide the following information:

1: Error at ὸ

The absolute difference between the approximate and exact

solution of an IVODE at the final time ὸ .

2: Stepsize

The stepsize used to obtain the error for that IVODE.

3: Ratio of the errors

The ratio of the error from the previous stepsize and the error

from the current stepsize.

4: Order of Convergence

The order of convergence for the ERK method used (See Section

2.2). (The order of convergence is easily determined from the

ratios of the errors.)

5: Graph for Hermite interpolant

A graph plotting the continuous numerical solution

approximation obtained by using Hermite interpolation. The file

containing the graph will be ‘Hermite Interpolation.html’ found

in the ‘Plots’ folder.

6: Graph for Defect

A graph plotting the defect in the continuous numerical solution

approximation obtained by Hermite interpolation. The file

containing the graph will be ‘Defect.html’ found in the ‘Plots’

folder.

45

If the IVODE does not have an exact solution, then the information provided will be:

1: Numerical solution approximation at ὸ

The approximate numerical solution of an IVODE at the final time

ὸ .

2: Stepsize

The stepsize used to obtain the approximate numerical solution

for that IVODE.

3: Graph for Hermite interpolant

A graph plotting the continuous numerical solution

approximation obtained by using Hermite interpolation. The file

containing the graph will be ‘Hermite Interpolation.html’ found in

the ‘Plots’ folder.

4: Graph for Defect

A graph plotting the defect in the continuous numerical solution

approximation obtained by Hermite interpolation. The file

containing the graph will be ‘Defect.html’ found in the ‘Plots’

folder.

¶ specificIVODEAllMethods(): This function initiates all the ERK methods to solve a

specific IVODE chosen by the user. First, it asks the user to select the IVODE with its

initial and final values. Next, it uses all the ERK methods to solve that IVODE. Since this

test produces a large amount of output, the results are saved in a text file. It also uses

stepsizes from ς to ς to find the numerical solution approximations. If the chosen

IVODE has an exact solution, it will provide the following information:

1: Error at ὸ

The absolute difference between the approximate and exact

solution of an IVODE at the final time ὸ .

46

2: Stepsize

The stepsize used to obtain the error for that IVODE.

3: Ratio of the errors

The ratio of the error from the previous stepsize and the error

from the current stepsize.

4: Order of Convergence

The order of convergence for the ERK method used (See Section

2.2).

5: Relative to Minimum Error

The ratio of each error and the smallest error.

If the IVODE does not have an exact solution, then the information provided will be:

1: Numerical solution approximation at ὸ

The approximate numerical solution of an IVODE at the final time

ὸ .

2: Stepsize

The stepsize used to obtain the approximate numerical solution

for that IVODE.

3.2.1 Use of the ERK Testing Software

This software uses the python library named ‘bokeh’ to plot the graph for Hermite interpolants

and defects. In order to use this software, the user is first required to install the python library

‘bokeh’ using pip. After that, run the ΩmainΦǇȅΩ python script. The user should enter their

choice to initiate the software for a single ERK method or for all ERK methods. Then, the user

should choose the IVODE to be solved. For the choice of single ERK method, the user should

choose the specific ERK method to be used to solve the IVODE. The above-mentioned results

will be provided along with a graph for the Hermite interpolant and a graph for defects. On

47

the other hand, if the initial choice was to use all the ERK methods, then the results of the

computations will be provided in a text file. An example is given below:

======== START: Research - Thesis \ main.py ========

1. Specific IVODE on Specific Method

2. Specific IVODE on All Methods and Export results to a

file

Enter your choice: 1

Simple: f1 t tfinal y0

Predator Prey: f2 t tfinal x y alpha beta gamma delta

Simple System: f3 t tfinal x y

Test F4: f4 t tfinal y0

Test F5: f5 t tfinal y0

Test F6: f6 t tfinal y0

Test F7: f7 t tfinal y0 alpha

Sample COVID - 19 Model: f 8 t tfinal

Enter the formula with values respectively (Use spaces

between the values like shown above):

f1 0 1 1

1. Forward Euler Method

2. Explicit Midpoint Method

3. Heun ôs Second Order Method

4. Second Order RK Method

5. Heun ôs Third Order Met hod

6. Ralston's Third Order Method

7. Third Order RK Method

8. RK4 Method

9. FourthOrderRKMethod

Enter the method with values respectively (Use spaces

between the values like shown above):

1

48

3.3 How to add a new IVODE

There are several python scripts that are used to create the software as mentioned in Section

3.2. The script related to the IVODEs is ‘ivode.pyΩ. There are a few IVODEs that are already

implemented in this script which can be used as test examples. To add a new IVODE, the user

should create a new function with an appropriate name in the same script. The user should

create three sections in this function using if-else statements with comparison operators on Ὥ.

In this software, the IVODEs are implemented in the form of lists, so each section returns the

results in the form of a list. The results returned from each section, with respective to the

value of Ὥ, are the following:

1: For Ὥ π, the approximate numerical solution of the IVODE is

returned.

2: For Ὥ ρ, the exact value for the IVODE is returned (if exists).

3: For Ὥ ς, the error associated with the IVODE is returned (if exists).

After the user creates the IVODE function, the user should then edit the ΨCǳƴŎǘƛƻƴΦǇȅΩ python

script. The user should add the function call for that IVODE with a new formulaNumber in the

formula() function. The user should use this formulaNumber to display it in the

displayFormulas() function and set the initial values in setFormulaValues() function. An

example is provided below.

Consider the example IVODE,

ώ ὸ ώὸ ×ÉÔÈ ώπ ρȢ

The exact solution for this IVODE is

ώὸ Ὡ Ȣ

The script for the IVODE above looks like the following:

49

def simple(i, t, y):

 # IVODE
 if (i == 0):

 return [- y[0]]

 # Exact solution for the IVODE

 elif (i == 1):

 return [math.exp(- t)]

 # Error associated with the solution for the IVODE

 else:

 return [y[0] - math.exp(- t)]

50

Chapter 4

Results and Discussion

In this chapter, we present results we have obtained using the software discussed in the

previous chapter. We determine optimal ERK methods and compare them with standard ERK

methods. Then, we present experimental confirmation of the order of convergence of the

optimal methods using a test set of ODEs. After that, we apply the standard and optimal ERK

methods to test sets to examine the accuracy of the solution approximations computed by the

methods. The last section of this chapter considers augmenting the discrete numerical

solutions computed using the ERK methods with continuous approximate solutions obtained

by using Hermite interpolation. This section also considers the computation of the defect of a

continuous solution approximation.

4.1 Optimal ERK methods and Comparison with Standard Methods

As we have discussed in Chapter 3, we have employed optimization software which allows us

to minimize the Principal Error Coefficients for ERK methods to obtain optimal values for the

free coefficients of the methods.

4.1.1 Second Order ERK Method Optimization

To optimize the general, two-stage, second order ERK method, we need to minimize the

Principal Error Coefficient, Ὁ. We recall from Chapter 2 that for the general two-stage, second

order ERK method, we have the coefficients in the form of Butcher tableau as follows:

π π π

ὧ ὧ π

ρ

ρ

ςὧ

ρ

ςὧ

51

We can see that ὧ is the only independent variable and ὥ ȟὦ and ὦ are all dependent upon

ὧ. From Chapter 2, the Principal Error Coefficient is

Ὁ

ρ

ς
ὦὧ

ρ

σ

ὦὃὧ
ρ

φ

Ȣ

Using the expressions for the coefficients of the general two-stage, second order ERK method,

we have ὦ ρ , ὧ π ὧ and the matrix ὃ
π π
ὧ π

. To find the optimal ὧ

value, we need to choose ὧ to minimize the square of the 2-norm of Ὁ:

ȿὉȿ
ρ

ς
ὦὧ

ρ

σ
ὦὃὧ

ρ

φ
Ȣ

 After substituting the values for ὦȟὃ and ὧ, we get an expression which depends upon ὧ:

ȿὉȿ
ρ

ς

ρ

ςὧ
ὧ

ρ

σ

ρ

φ
ȟÏÒ

ȿὉȿ
ρ

ς

ρ

ς
ὧ

ρ

σ

ρ

σφ
 Ȣ

The above expression can be minimized by choosing ὧ . This is the same value provided

by the optimization software. For ὧ , we get

ȿὉȿ
ρ

σφ
πȢπςχχχχχχφȟ

and the value for ȿὉȿ is

ȿὉȿ
ρ

φ
πȢρφφφφφȢ

52

As mentioned earlier in this thesis, there are several well-known second order ERK methods,

such as the Explicit-Midpoint method and IŜǳƴΩǎ second order method. We compare the

optimal method with these methods by finding their ȿὉȿ values.

The Explicit-Midpoint method has ὧ . Putting this value of ὧ into the general expression

for ȿὉȿ , we get

ȿὉȿ
ρ

ς

ρ

τ

ρ

σ

ρ

σφ
 ȟ

ȿὉȿ
ρ

υχφ

ρ

σφ

ρχ

υχφ
 ȟ

ȿὉȿ πȢπςωυρσψψψȢ

So, the value of ȿὉȿ for the Explicit-Midpoint method is

ȿὉȿ πȢρχρχωφπφȢ

Here, we can clearly see that the value of ȿὉȿ for the Explicit-Midpoint method is slightly

larger than the value of ȿὉȿ for the optimal method.

Now, let’s have a look at IŜǳƴΩǎ second order method, for which ὧ ρ. Putting this value of

ὧ into the general expression for ȿὉȿ , we get

ȿὉȿ
ρ

ς

ρ

ς

ρ

σ

ρ

σφ
 ȟ

ȿὉȿ
ρ

ρττ

ρ

σφ

υ

ρττ
 ȟ

ȿὉȿ πȢπστχςςςςςȢ

So, the value of ȿὉȿ for IŜǳƴΩǎ second order method is

ȿὉȿ πȢρψφσσψωωȢ

53

Here, we can clearly see that the value of ȿὉȿ for IŜǳƴΩǎ second order method is larger than

the value of ȿὉȿ for the optimal method.

Here are the results from all the methods:

Methods Variables Principal Error Coefficient ȿὉȿ

Optimal Method ὧ
ς

σ
 πȢρφφφφφ

The Explicit Midpoint Method ὧ
ρ

ς
 πȢρχρχωφπφ

HŜǳƴΩǎ ǎŜŎƻƴŘ ƻǊŘŜǊ aŜǘƘƻŘ ὧ ρ πȢρψφσσψωω

From the above table, we can see that the smallest value for Principal Error Coefficient, ȿὉȿ,

is ȿὉȿ πȢρφφφφφ for ὧ . So, we conclude that ὧ gives the optimal value for two-

stage, second order ERK method. However, we can see that all three methods have ȿὉȿ

values that are approximately the same which means that the two standard methods are close

to being optimal.

4.1.2 Third Order ERK Method Optimization

Unlike the two-stage, second order ERK method case, we know that the general three-stage,

third order ERK method has three special cases.

From Chapter 2, the Principal Error Coefficient is

Ὁ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ
ρ

φ
ὦὧ

ρ

τ

ὦὧὃὧ
ρ

ψ
ρ

ς
ὦὃὧ

ρ

ρς

ὦὃὧ
ρ

ςτ Ứ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

Ȣ

Then, the square of the 2-norm of Ὁ is

54

ȿὉȿ
ρ

φ
ὦὧ

ρ

τ
ὦὧὃὧ

ρ

ψ

ρ

ς
ὦὃὧ

ρ

ρς

ὦὃὧ
ρ

ςτ
Ȣ

We now consider the three cases for a three stage, third order ERK method that we presented

in Chapter 2.

Case 1. A 2-parameter family of three-stage third order ERK methods has the following

tableau with the conditions ὧ πȟ ȟὧȠὧ πȟὧ.

π π π π

ὧ ὧ π π

ὧ
ὧ ὧ σὧ σὧ

ὧ σὧ ς

ὧ ὧ ὧ

ὧ σὧ ς
 π

ς σὧ ὧ φὧὧ

φὧὧ

ὧ
ς
σ

ςὧ ὧ ὧ

ς
σ
ὧ

ςὧ ὧ ὧ

As we can see, ὧ and ὧ are the two independent variables and the rest of the

coefficients are dependent upon them.

For this case,

ὦ ς σὧ ὧ φὧὧ

φὧὧ

ὧ
ς
σ

ςὧ ὧ ὧ

ς
σ ὧ

ςὧ ὧ ὧ
ȟ

ὧ π ὧ ὧ

and the matrix

ὃ

ụ
Ụ
Ụ
ợ

π π π
ὧ π π

ὧ ὧ σὧ σὧ

ὧ σὧ ς

ὧ ὧ ὧ

ὧ σὧ ς
π
Ứ
ủ
ủ
Ủ

Ȣ

To find the optimal ὧ and ὧ values, we need to choose ὧ and ὧ to minimize the

Principal Error Coefficient by minimizing the square of the 2-norm of Ὁ. After

55

substituting in Ὁ with the above values for ὦȟὃ and ὧ, we get an expression which

depends upon ὧ and ὧ.

ȿὉȿ
ρ

ρς

ς

σ
ὧ ὧ ὧὧ

ρ

ς

ὧ

φ

ρ

ψ

ρ

ρς
ὧ

ρ

ς

ρ

υχφ

Using the optimization software discussed in Chapter 3 to find the optimal values

of ὧ and ὧ by minimizing the above expression, we get

ὧ πȢτωφυπτχφȟ

ὧ πȢχυρχτχτωȟ

yielding

ȿὉȿ πȢππρχτχωωψψȢ

So, the value for ȿὉȿ is

ȿὉȿ πȢπτρψπωπχφȢ

As mentioned earlier in this thesis, there are several well-known third order ERK

methods. We consider two classic third order Runge-Kutta methods, which are

examples of this case, IŜǳƴΩǎ ǘƘƛǊŘ ƻǊŘŜǊ ƳŜǘƘƻŘ and wŀƭǎǘƻƴΩǎ ǘƘƛǊŘ ƻǊŘŜǊ

method. We compare our results with these methods by observing what ȿὉȿ

values they have.

We start with IŜǳƴΩǎ ǘƘƛǊŘ ƻǊŘŜǊ ƳŜǘhod which has ὧ and ὧ . Now, by

putting these values of ὧ and ὧ in ȿὉȿ , we get

ȿὉȿ πȢππςρτσστχπȢ

So, the value of ȿὉȿ for IŜǳƴΩǎ ǘƘƛǊŘ ƻǊŘŜǊ ƳŜǘƘƻŘ is

ȿὉȿ πȢπτφςωφςωφȢ

56

Here, we can clearly see that the value of ȿὉȿ by using IŜǳƴΩǎ ǘƘƛǊŘ ƻǊŘŜǊ ƳŜǘƘƻŘ

is slightly larger than the value of ȿὉȿ for the optimal method.

Next, we can consider wŀƭǎǘƻƴΩǎ ǘƘƛǊŘ ƻǊŘŜǊ ƳŜǘƘƻŘ which has ὧ and ὧ .

These values are reported in [Butc87] and agree quite closely with the values of

the optimal method mentioned above. Now, by putting these values of ὧ and ὧ

in ȿὉȿ , we get

ȿὉȿ πȢππρχτψρφχτȢ

So, the value of ȿὉȿ for wŀƭǎǘƻƴΩǎ ǘƘƛǊŘ ƻǊŘŜǊ ƳŜǘƘƻŘ is

ȿὉȿ πȢπτρψρρπωςȢ

The value of ȿὉȿ by using wŀƭǎǘƻƴΩǎ ǘƘƛǊŘ ƻǊŘŜǊ ƳŜǘƘƻŘ is slightly larger than the

value of ȿὉȿ for the optimal method, but wŀƭǎǘƻƴΩǎ ǘƘƛǊŘ ƻǊŘŜǊ ƳŜǘƘƻŘ is almost

optimal.

Case 2. A 1-parameter family of three-stage third order ERK methods has the following

tableau with the condition ὦ π.

π π π π

ς

σ

ς

σ
 π π

π
ρ

τὦ

ρ

τὦ
 π

ρ

τ
ὦ

σ

τ
 ὦ

As we can see, ὦ is the independent variable and the rest of the coefficients are

dependent upon it.

For this case,

57

ὦ
ρ

τ
ὦ
σ

τ
ὦ ȟ

ὧ π
ς

σ
π

and the matrix,

ὃ

ụ
Ụ
Ụ
Ụ
ợ
π π π
ς

σ
π π

ρ

τὦ

ρ

τὦ
π
Ứ
ủ
ủ
ủ
Ủ

Ȣ

After substituting in Ὁ with the above values for ὦȟὃ and ὧ, instead of getting an

expression which depends upon ὦ, we get a constant which is independent of the

ὦ value.

ȿὉȿ
ρ

ςρφ

ρ

ψ

ρ

χς

ρ

ςτ

ȿὉȿ πȢπρχυχυττυ

So, the value for ȿὉȿ is

ȿὉȿ πȢρσςυχςτςȢ

As ȿὉȿ does not depend upon ὦ, the choice of ὦ is arbitrary. So, the value used

in the software is ὦ .

Case 3. A 1-parameter family of three-stage third order ERK methods has the following

tableau with the condition ὦ π.

π π π π

ς

σ

ς

σ
 π π

ς

σ

ψὦ σ

ρςὦ

ρ

τὦ
 π

ρ

τ

σ

τ
ὦ ὦ

58

As we can see, ὦ is the independent variable and the rest of the coefficients are

dependent upon it.

For this case,

ὦ
ρ

τ

σ

τ
ὦ ὦ ȟ

ὧ π
ς

σ

ς

σ

and the matrix,

ὃ

ụ
Ụ
Ụ
Ụ
ợ
π π π
ς

σ
π π

ψὦ σ

ρςὦ

ρ

τὦ
π
Ứ
ủ
ủ
ủ
Ủ

Ȣ

After substituting in Ὁ with the above values for ὦȟὃ and ὧ, instead of getting an

expression which depends upon ὦ, we get a constant which is independent of the

ὦ value.

ȿὉȿ
ρ

ςρφ

ρ

χς

ρ

χς

ρ

ςτ

ȿὉȿ πȢππςρτσστχπ

So, the value for ȿὉȿ is

ȿὉȿ πȢπτφςωφςωφȢ

As ȿὉȿ does not depend upon ὦ, the choice of ὦ is arbitrary. So, the value used

in the software is ὦ .

59

Here are the results from all the methods:

Methods Variables
Principal Error Coefficient

ȿὉȿ

Case 1 Optimal ὧ πȢτωφυπτχφ ὧ πȢχυρχτχτω πȢπτρψπωπχφ

IŜǳƴΩǎ ǘƘƛǊŘ ƻǊŘŜǊ
Method

ὧ
ρ

σ
 ὧ

ς

σ
 πȢπτφςωφςωφ

wŀƭǎǘƻƴΩǎ ǘƘƛǊŘ
order Method ὧ

ρ

ς
 ὧ

σ

τ
 πȢπτρψρρπως

Case 2 N/A πȢρσςυχςτς

Case 3 N/A πȢπτφςωφςωφ

From the above table, we can see that the smallest value for Principal Error Coefficient, ȿὉȿ,

is ȿὉȿ πȢπτρψπωπχφ for the values ὧ πȢτωφυπτχφ and ὧ πȢχυρχτχτω. So, we

conclude that Case 1 with values ὧ πȢτωφυπτχφ and ὧ πȢχυρχτχτω is the optimal case

for three-stage, third order ERK methods. However, we can see that four of the five methods

have ȿὉȿ values that are almost the same. This means that the standard methods are close

to optimal. It is only the Case 2 method which has a substantially larger ȿὉȿ value.

4.1.3 Fourth Order ERK Method Optimization

From Section 2.2, we know that the general four-stage, fourth order ERK method has five

special cases.

From Chapter 2, the Principal Error Coefficient is

60

Ὁ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ

ρ

ςτ
ὦὧ

ρ

υ
ρ

ς
ὦὧ ὃὧ

ρ

ρπ
ρ

ς
ὦὧὃὧ

ρ

ρυ

ὦὧὃὧ
ρ

σπ
ρ

ς
ὦ ὃὧ

ρ

ςπ
ρ

φ
ὦὃὧ

ρ

ςπ

ὦὃὧὃὧ
ρ

τπ
ρ

ς
ὦὃὧ

ρ

φπ

ὦὃὧ
ρ

ρςπ Ứ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

Ȣ

The square of the 2-norm of Ὁ is

ȿὉȿ
ρ

ςτ
ὦὧ

ρ

υ

ρ

ς
ὦὧ ὃὧ

ρ

ρπ

ρ

ς
ὦὧὃὧ

ρ

ρυ

ὦὧὃὧ
ρ

σπ

ρ

ς
ὦ ὃὧ

ρ

ςπ

ρ

φ
ὦὃὧ

ρ

ςπ

ὦὃὧὃὧ
ρ

τπ

ρ

ς
ὦὃὧ

ρ

φπ
ὦὃὧ

ρ

ρςπ
Ȣ

Case 1. A 2-parameter family of four-stage, fourth order ERK methods has the following

tableau with the conditions πȟὧȟὧȟρ all distinct; ὧ and σ τὧ ὧ

φὧὧ π.

π π π π π

ὧ ὧ π π π

ὧ
ὧ σὧ ὧ τὧ

ςὧ ρ ςὧ

ὧ ὧ ὧ

ςὧ ρ ςὧ
 π π

ρ ὥ ὥ ὥ π

ρ ςὧ ὧ φὧὧ

ρςὧὧ

ςὧ ρ

ρςὧ ὧ ὧ ρ ὧ

ρ ςὧ

ρςὧ ὧ ὧ ρ ὧ

σ τὧ ὧ φὧὧ

ρςρ ὧ ρ ὧ

61

where

ὥ
ὧ ρςὧ ρςὧ τ ὧ ρςὧ ρυὧ υ τὧ φὧ ς

ςὧὧ σ τὧ ὧ φὧὧ
ȟ

ὥ
τὧ υὧ ὧ ς ρ ὧ

ςὧ ὧ ὧ σ τὧ ὧ φὧὧ
 ȟ

ὥ
ρ ςὧ ρ ὧ ρ ὧ

ὧ ὧ ὧ σ τὧ ὧ φὧὧ
 Ȣ

As we can see, ὧ and ὧ are the two independent variables and the rest of the

coefficients are dependent upon them.

For the expressions in Ὁ for this case,

ὦ
ρ ςὧ ὧ φὧὧ

ρςὧὧ

ςὧ ρ

ρςὧὧ ὧ ρ ὧ

ρ ςὧ

ρςὧὧ ὧ ρ ὧ

σ τὧ ὧ φὧὧ

ρςρ ὧ ρ ὧ
ȟ

ὧ π ὧ ὧ ρȟ

and the matrix

ὃ

ụ
Ụ
Ụ
Ụ
ợ

π π π π
ὧ π π π

ὧ σὧ ὧ τὧ

ςὧ ρ ςὧ

ὧ ὧ ὧ

ςὧ ρ ςὧ
π π

ὥ ὥ ὥ πỨ
ủ
ủ
ủ
Ủ

ȟ

where ὥ , ὥ and ὥ are mentioned above.

After substituting for ὦȟὃ and ὧ, we get an expression which depends upon ὧ and

ὧ, but it is too complicated to show here. Using the optimization software to find

the optimal values of ὧ and ὧ by minimizing the square of the 2-norm of Ὁ, we

get

ὧ πȢσυχχτρυωȟ

ὧ πȢυωρτψψςρȟ

62

yielding

ȿὉȿ πȢπππρτστυωσςȢ

So, the value for ȿὉȿ is

ȿὉȿ πȢπρρωχχτυπȢ

The above ὧ and ὧ values agree reasonably well with the optimal coefficient

values reported in [Butc87] where

ὧ πȢσχρφρυȟ

ὧ
σ

υ
πȢφȟ

yielding

ȿὉȿ πȢπππρττυςςρυȢ

So, the value for ȿὉȿ is

ȿὉȿ πȢπρςπςρχσφȢ

In [Rals62], the optimal values are reported as

ὧ πȢτȟ

ὧ πȢτυυχσχȟ

yielding

ȿὉȿ πȢπππρψχχωψψψȢ

So, the value for ȿὉȿ is

ȿὉȿ πȢπρσχπσωχσȢ

63

As mentioned in Chapter 2, there is a well-known fourth-order ERK method known

as the 3/8-Rule method; we compare our optimal method with this method by

finding its ȿὉȿ value.

The 3/8-Rule method is derived from Case 1 with ὧ and ὧ . By putting

these values foe ὧ and ὧ in ȿὉȿ , we get

ȿὉȿ πȢπππρφπυρςψχȢ

So, the value of ȿὉȿ for 3/8-Rule method is

ȿὉȿ πȢπρςφφωσφχȢ

Here, we can clearly see that the value of ȿὉȿ by using the 3/8-Rule method is

slightly larger than the value of ȿὉȿ for the optimal method.

Case 2. A 1-parameter family of four-stage fourth order ERK methods has the following

tableau with the conditions ὧ ὧ ȟὦ π.

π π π π π

ρ

ς

ρ

ς
 π π π

ρ

ς

σὦ ρ

φὦ

ρ

φὦ
 π π

ρ π ρ σὦ σὦ π

ρ

φ

ς

σ
ὦ ὦ

ρ

φ

As we can see, ὦ is the only independent variable and the rest of the coefficients

are dependent upon it.

For this case,

ὦ
ρ

φ

ς

σ
ὦ ὦ

ρ

φ
ȟ

64

ὧ π
ρ

ς

ρ

ς
ρȟ

and the matrix

ὃ

ụ
Ụ
Ụ
Ụ
Ụ
ợ
π π π π
ρ

ς
π π π

σὦ ρ

φὦ

ρ

φὦ
π π

π ρ σὦ σὦ πỨ
ủ
ủ
ủ
ủ
Ủ

Ȣ

After substituting for ὦȟὃ and ὧ, we get an expression which depends upon ὦ,

but it is too complicated to show here. Using the optimization software to find the

optimal value of ὦ to minimize the square of the 2-norm of Ὁ, we get

ὦ πȢψσσρφττρȟ

yielding

ȿὉȿ πȢπππρχρσςπτπȢ

So, the value for ȿὉȿ is

ȿὉȿ πȢπρσπψψωτςȢ

The corresponding value reported in [Rals62] for this case is

ὦ
υ

σ
ρȢφφφφφφȟ

yielding

ȿὉȿ πȢπππρχυφφπφψȢ

So, the value for ȿὉȿ is

ȿὉȿ πȢπρσςυσχπτȢ

65

As mentioned in Chapter 2, there is a well-known fourth-order ERK method known

as the classical Runge-Kutta method which is widely used and is the most well-

known of all Runge-Kutta methods. We find its ȿὉȿ value.

The classical Runge-Kutta method is obtained from Case 2 when ὦ . By putting

this value of ὦ into ȿὉȿ , we get

ȿὉȿ πȢπππςρπσψςωȢ

So, the value of ȿὉȿ for the classical Runge-Kutta method is

ȿὉȿ πȢπρτυπτυψςȢ

Here, we can clearly see that the value of ȿὉȿ by using the classical Runge-Kutta

method is slightly larger than the value of ȿὉȿ for the optimal method.

Case 3. A 1-parameter family of four-stage fourth order ERK methods has the following

tableau with the conditions ὧ ȟὧ πȟὦ π.

π π π π π

ρ

ς

ρ

ς
 π π π

π
ρ

ρςὦ

ρ

ρςὦ
 π π

ρ
ρ

ς
φὦ

σ

ς
 φὦ π

ρ

φ
ὦ

ς

σ
 ὦ

ρ

φ

As we can see, ὦ is the only independent variable and the rest of the coefficients

are dependent upon it.

For this case,

ὦ
ρ

φ
ὦ
ς

σ
ὦ
ρ

φ
ȟ

66

ὧ π
ρ

ς
π ρȟ

and the matrix

ὃ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ

π π π π
ρ

ς
π π π

ρ

ρςὦ

ρ

ρςὦ
π π

ρ

ς
φὦ

σ

ς
φὦ πỨ

ủ
ủ
ủ
ủ
ủ
Ủ

Ȣ

After substituting for ὦȟὃ and ὧ, we get an expression which depends upon ὦ,

but it is too complicated to show here. Using the optimization software to find the

optimal value of ὦ by minimizing the square of the 2-norm of Ὁ, we get

ὦ πȢπσωφψςυυȟ

yielding

ȿὉȿ πȢπππωσπψφωπςȢ

So, the value for ȿὉȿ is

ȿὉȿ πȢπσπυρπρτφȢ

The corresponding value from [Rals62] for this case is

ὦ
υ

χψ
πȢπφτρπσȟ

yielding

ȿὉȿ πȢππρπππσρτωȢ

So, the value for ȿὉȿ is

ȿὉȿ πȢπσρφςχχυφȢ

67

Case 4. A 1-parameter family of four-stage fourth order ERK methods has the following

tableau with the conditions ὧ ρȟὧ ȟὦ π.

π π π π π

ρ ρ π π π

ρ

ς

σ

ψ

ρ

ψ
 π π

ρ ρ
ρ

τὦ

ρ

ρςὦ

ρ

σὦ
 π

ρ

φ

ρ

φ
ὦ

ς

σ
 ὦ

As we can see, ὦ is the only independent variable and the rest of the coefficients

are dependent upon it.

For this case,

ὦ
ρ

φ

ρ

φ
ὦ
ς

σ
ὦ ȟ

ὧ π ρ
ρ

ς
ρȟ

and the matrix

ὃ

ụ
Ụ
Ụ
Ụ
Ụ
ợ
π π π π
ρ π π π
σ

ψ

ρ

ψ
π π

ρ
ρ

τὦ

ρ

ρςὦ

ρ

σὦ
π
Ứ
ủ
ủ
ủ
ủ
Ủ

Ȣ

After substituting for ὦȟὃ and ὧ, we get an expression which depends upon ὦ,

but it is too complicated to show here. Using the optimization software to find the

optimal value of ὦ by minimizing the square of the 2-norm of Ὁ, we get

ὦ πȢρχυτσψυφȟ

yielding

68

ȿὉȿ πȢπππτχυρσωψυȢ

So, the value for ȿὉȿ is

ȿὉȿ πȢπςρχωχχπςȢ

The corresponding value reported in [Rals62] for this case is

ὦ
ρπ

υρ
πȢρωφπχψȟ

yielding

ȿὉȿ πȢπππτχωτχωωφȢ

So, the value for ȿὉȿ is

ȿὉȿ πȢπςρψωχπσρȢ

Case 5. A 1-parameter family of four-stage fourth order ERK methods has the following

tableau with the conditions ὧ πȟὧ ȟὦ π.

π π π π π

ὧ ὧ π π π

ρ

ς

τὧ ρ

ψὧ

ρ

ψὧ
 π π

ρ
ρ ςὧ

ςὧ

ρ

ςὧ
 ς π

ρ

φ
 π

ς

σ

ρ

φ

As we can see, ὧ is the only independent variable and the rest of the coefficients

are dependent upon it.

For this case,

69

ὦ
ρ

φ
π
ς

σ

ρ

φ
ȟ

ὧ π ὧ
ρ

ς
ρȟ

and the matrix

ὃ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ
π π π π
ὧ π π π

τὧ ρ

ψὧ

ρ

ψὧ
π π

ρ ςὧ

ςὧ

ρ

ςὧ
ς π

Ứ
ủ
ủ
ủ
ủ
ủ
Ủ

Ȣ

After substituting for ὦȟὃ and ὧ, we get an expression which depends upon ὧ, but

it is too complicated to show here. Using the optimization software to find the

optimal value of ὧ by minimizing the square of the 2-norm of Ὁ, we get

ὧ πȢσωωωωωωωȟ

yielding

ȿὉȿ πȢπππρφσχςτωςȢ

So, the value for ȿὉȿ is

ȿὉȿ πȢπρςχωυυπτȢ

Here are the results from all the cases:

Methods Variables
Principal Error Coefficient

ȿὉȿ

Case 1 Optimal ὧ πȢσυχχτρυω ὧ πȢυωρτψψςρ πȢπρρωχχτυπ

3/8-Rule ὧ
ρ

σ
 ὧ

ς

σ
 πȢπρςφφωσφχ

Case 2 Optimal ὦ πȢψσσρφττρ πȢπρσπψψωτς

The classical Runge-
Kutta Method

ὦ
ρ

σ
 πȢπρτυπτυψς

Case 3 Optimal ὦ πȢπσωφψςυυ πȢπσπυρπρτφ

Case 4 Optimal ὦ πȢρχυτσψυφ πȢπςρχωχχπς

Case 5 Optimal ὧ πȢσωωωωωωω πȢπρςχωυυπτ

70

From the above table, we can clearly see that the smallest value for Principal Error Coefficient,

ȿὉȿ, is ȿὉȿ πȢπρρωχχτυπ. So, we conclude that Case 1 with values ὧ πȢσυχχτρυω

and ὧ πȢυωρτψψςρ is the optimal case for four-stage, fourth order ERK methods. However,

we can see that Case 1, Case 2, Case 5, and the two standard methods have similar ȿὉȿ

values so all of these methods are close to optimal. It is only the Case 3 and Case 4 methods

that have substantially larger ȿὉȿ values.

4.2 Experimental Verification of Order of Convergence

In this section, we experimentally verify the order of convergence of some of the methods

based on some numerical experiments performed on a test set of ODEs. For each method, we

provide a table that has error ratios generated by the software for the test set, for several

stepsizes.

Let us first define the term error ratio. For each method and test problem, we use the software

to step from ὸ to ὸ and we compute the exact error at ὸ. The ratio between the error from

the previous stepsize and the error from the current stepsize is known as the error ratio. Here,

we are decreasing the stepsize by a factor of 2 to determine its effect on the error ratios. For

a two-stage, second order ERK method, if the stepsize is decreased by a factor of 2, then the

error should reduce by a factor of 4, approximately. This is because a second order method

has an error that is ὕὬ . So, the error ratio for second order methods should be 4. For a

three-stage, third order ERK method, if the stepsize is decreased by a factor of 2, then the

error should reduce by a factor of 8, approximately, which would make the error ratio equal

to 8 since the error for a third order method is ὕὬ . Similarly, for a four-stage, fourth order

ERK method, if the stepsize is decreased by a factor of 2, then the error should reduce by a

factor of 16, approximately, which would make the error ratio equal to 16 since the error for

the fourth order method is ὕὬ .

71

We use the following IVODEs as the test sets.

Name IVODE Initial Condition Exact Solution

IVODE 1 ώ ςὼώ ώπ ρ ώὼ
ρ

ρ ὼ

IVODE 2 ώ
ρ

ς
ώ ώπ ρ ώὼ

ρ

Ѝρ Ø

IVODE 3 ώ
ρ

τ
ρ
ώ

ςπ
ώ ώπ ρ ώὼ

ςπ

ρ ρωὩ

IVODE 4 ώ ώ Ὡ ÓÉÎὼ ώπ ρ
ώὼ Ὡ ÃÏÓὼ,

where πȢρ

The tables for all the cases of the optimal, two-stage, second order, three-stage, third order,

and four-stage, fourth order ERK methods for the above IVODEs for stepsizes ȟȟ ȟ and

 are as follows:

Error Ratios for optimal, two-stage, second order ERK Method

IVODE /
Stepsize

IVODE 1 31.28 7.06 2.12 3.37 3.74

IVODE 2 4.76 4.42 4.21 4.10 4.05

IVODE 3 3.83 3.92 3.96 3.98 3.99

IVODE 4 4.50 4.26 4.13 4.07 4.03

Error Ratios for optimal, three-stage, third order ERK Method, Case 1

IVODE /
Stepsize

IVODE 1 υτȢςρ ρσȢωω τȢπω φȢφχ χȢττ

IVODE 2 ωȢψρ ψȢωσ ψȢτχ ψȢςσ ψȢρς

IVODE 3 χȢφφ χȢψσ χȢωρ χȢωφ χȢωψ

IVODE 4 ψȢπφ ψȢπς ψȢπρ ψȢππ ψȢππ

72

Error Ratios for optimal, three-stage, third order ERK Method, Case 2

IVODE /
Stepsize

IVODE 1 ρπȢσψ ωȢπψ ψȢφυ ψȢσς ψȢρφ

IVODE 2 ρσȢστ ρπȢτυ ωȢρυ ψȢυυ ψȢςχ

IVODE 3 χȢωυ χȢωω ψȢππ ψȢππ ψȢππ

IVODE 4 ψȢπυ ψȢπρ ψȢππ ψȢππ ψȢππ

Error Ratios for optimal, three-stage, third order ERK Method, Case 3

IVODE /
Stepsize

IVODE 1 φȢυτ ψȢπς ψȢρττ ψȢρπ ψȢπυ

IVODE 2 ρπȢσπ ωȢρυ ψȢυφ ψȢςψ ψȢρτ

IVODE 3 χȢφφ χȢψσ χȢωρ χȢωφ χȢωψ

IVODE 4 ψȢπυ ψȢπρ ψȢππ ψȢππ ψȢππ

Error Ratios for optimal, four-stage, fourth order ERK Method, Case 1

IVODE /
Stepsize

IVODE 1 33.36 24.76 20.15 18.01 16.98

IVODE 2 12.78 11.17 14.70 15.55 15.82

IVODE 3 15.27 15.63 15.81 15.90 15.93

IVODE 4 16.08 16.02 16.01 16.00 16.00

73

Error Ratios for optimal, four-stage, fourth order ERK Method, Case 2

IVODE /
Stepsize

IVODE 1 4.64 12.17 14.95 15.63 15.85

IVODE 2 17.11 17.13 16.68 16.36 16.18

IVODE 3 15.28 15.63 15.81 15.91 15.94

IVODE 4 16.13 16.04 16.01 16.01 16.00

Error Ratios for optimal, four-stage, fourth order ERK Method, Case 3

IVODE /
Stepsize

IVODE 1 14.15 19.75 18.35 17.26 16.64

IVODE 2 9.07 17.81 18.08 17.31 16.72

IVODE 3 15.40 15.70 15.85 15.92 15.92

IVODE 4 16.13 16.04 16.01 16.01 16.00

Error Ratios for optimal, four-stage, fourth order ERK Method, Case 4

IVODE /
Stepsize

IVODE 1 10.04 15.23 15.91 16.01 16.02

IVODE 2 8.71 14.15 15.40 15.77 15.90

IVODE 3 15.19 15.59 15.79 15.90 15.94

IVODE 4 16.05 15.99 15.99 15.99 16.00

74

Error Ratios for optimal, four-stage, fourth order ERK Method, Case 5

IVODE /
Stepsize

IVODE 1 1.044 15.23 15.91 16.01 16.02

IVODE 2 8.71 14.15 15.40 15.77 15.90

IVODE 3 15.19 15.59 15.79 15.90 15.94

IVODE 4 16.05 15.99 15.99 15.99 16.00

Looking at the tables above, we can see that when the stepsize is decreased by a factor of 2 at

each step, the error ratios for each method are approximately as follows:

Two-stage second order ERK methods: 4

Three-stage third order ERK methods: 8

Four-stage fourth order ERK methods: 16

For bigger stepsizes, the error ratios might not be close to the expected values. But the smaller

the stepsize gets, the more the error ratios approach the expected results. So, for the smallest

stepsize results in the table, you can see that the ratios are approximately the same as we

expect from the theory. This confirms that the ERK methods are correct since each method

provides the order that is expected.

4.3 Comparison of standard and optimal ERK methods: Accuracy

and Efficiency

4.3.1 Accuracy

Here we consider some standard methods along with the optimal 2nd, 3rd and 4th order ERK

methods and compare them on several test problems. For each IVODE, we provide a table

which has all the methods grouped according to their order. We check the accuracy of all the

methods for the stepsize . For the error results for each order, we take the smallest error

75

and then divide all the other errors from all the methods by the smallest error. The results are

presented in the ‘Rel. to Min.’ column of the tables. The method with ‘1.0’ as the value of ‘Rel.

to Min.’ is the most accurate method of that order for that IVODE.

We first consider the IVODE,

ώ ςὼώ

with initial value, ώπ ρ and exact solution,

ώὼ
ρ

ρ ὼ
 Ȣ

Using the software discussed in Chapter 3, we apply all the methods to this IVODE to find the

approximate solutions and corresponding errors. The results are shown in the table below:

Methods Errors Rel. to Min.

 Explicit Midpoint Method (Second Order) χȢρωρπ ςȢτ

 Heun’s Second Order Method ςȢστρπ χȢχ

 Optimal Second Order ERK Method σȢπυρπ ρȢπ

 Heun’s Third Order Method τȢπφρπ ςȢρ

 Ralston’s Third Order Method ςȢρρρπ ρȢρ

 Optimal Third Order ERK Method Case 1 ρȢωπρπ ρȢπ

 Optimal Third Order ERK Method Case 2 σȢχψρπ ρωȢψ

 Optimal Third Order ERK Method Case 3 ρȢςωρπ φȢψ

 The Classical Runge-Kutta Method τȢπχρπ ρȢτ

 3/8 Rule Method (Fourth Order) τȢσψρπ ρȢφ

 Optimal Fourth Order ERK Method Case 1 ςȢψρρπ ρȢπ

 Optimal Fourth Order ERK Method Case 2 υȢστρπ ρȢω

 Optimal Fourth Order ERK Method Case 3 τȢσρρπ ρȢυ

 Optimal Fourth Order ERK Method Case 4 σȢςρρπ ρρȢτ

 Optimal Fourth Order ERK Method Case 5 σȢςρρπ ρρȢτ

Table 4.3.1: Errors and Rel. to Min. values for all the ERK methods applied to IVODE ώ ςὼώ, ώπ ρ.

76

We next consider the IVODE,

ώ
ρ

ς
ώ

with initial value, ώπ ρ and exact solution,

ώὼ
ρ

Ѝρ ὼ
 Ȣ

We apply all the methods to this IVODE to find the approximate solutions and corresponding

errors. The results are shown in the table below:

Methods Errors Rel. to Min.

 Explicit Midpoint Method (Second Order) ωȢυψρπ ρȢψ

 Heun’s Second Order Method υȢτσρπ ρȢπ

 Optimal Second Order ERK Method ψȢςπρπ ρȢυ

 Heun’s Third Order Method υȢσρρπ ρȢτ

 Ralston’s Third Order Method σȢφχρπ ρȢπ

 Optimal Third Order ERK Method Case 1 σȢφχρπ ρȢπ

 Optimal Third Order ERK Method Case 2 ρȢπσρπ ςȢψ

 Optimal Third Order ERK Method Case 3 σȢχρρπ ρȢπ

 The Classical Runge-Kutta Method ρȢρσρπ ςȢσ

 3/8 Rule Method τȢωτρπ ρȢπ

 Optimal Fourth Order ERK Method Case 1 σȢψψρπ χȢψ

 Optimal Fourth Order ERK Method Case 2 χȢχχρπ ρυȢχ

 Optimal Fourth Order ERK Method Case 3 ςȢυςρπ υȢρ

 Optimal Fourth Order ERK Method Case 4 ςȢωψρπ φȢπ

 Optimal Fourth Order ERK Method Case 5 ςȢωψρπ φȢπ

Table 4.3.2: Errors and Rel. to Min. values for all the ERK methods applied to IVODE ώ ώ, ώπ ρ.

77

We next consider the IVODE,

ώ
ρ

τ
ρ
ώ

ςπ
ώ

with initial value, ώπ ρ and exact solution,

ώὼ
ςπ

ρ ρωὩ
 Ȣ

We apply all the methods to this IVODE to find the approximate solutions and corresponding

errors. The results are shown in the table below:

Methods Errors Rel. to Min.

 Explicit Midpoint Method (Second Order) υȢχςρπ ρȢπ

 Heun’s Second Order Method φȢσςρπ ρȢρ

 Optimal Second Order ERK Method υȢωςρπ ρȢπ

 Heun’s Third Order Method τȢφχρπ ρȢτ

 Ralston’s Third Order Method υȢρσρπ ρȢφ

 Optimal Third Order ERK Method Case 1 υȢρσρπ ρȢφ

 Optimal Third Order ERK Method Case 2 σȢςωρπ ρȢπ

 Optimal Third Order ERK Method Case 3 υȢρσρπ ρȢφ

 The Classical Runge-Kutta Method τȢσπρπ ρȢρ

 3/8 Rule Method τȢςχρπ ρȢρ

 Optimal Fourth Order ERK Method Case 1 τȢπτρπ ρȢπ

 Optimal Fourth Order ERK Method Case 2 σȢωσρπ ρȢπ

 Optimal Fourth Order ERK Method Case 3 τȢσπρπ ρȢρ

 Optimal Fourth Order ERK Method Case 4 τȢφχρπ ρȢς

 Optimal Fourth Order ERK Method Case 5 τȢφχρπ ρȢς

Table 4.3.3: Errors and Rel. to Min. values for all the ERK methods applied on IVODE ώ ρ ώ,

ώπ ρ.

78

The next IVODE we consider is

ώ ώ Ὡ ÓÉÎὼ

where is a constant between 0 and 1. We choose πȢρ for our computations. The initial

value for this IVODE is ώπ ρ and exact solution is,

ώὼ Ὡ ÃÏÓὼȢ

We apply all the methods to this IVODE to find the approximate solutions and corresponding

errors. The results are shown in the table below:

Methods Errors Rel. to Min.

 Explicit Midpoint Method (Second Order) ψȢτψρπ σȢρ

 Heun’s Second Order Method ψȢχτρπ σȢς

 Optimal Second Order ERK Method ςȢχυρπ ρȢπ

 Heun’s Third Order Method φȢψπρπ ρȢπ

 Ralston’s Third Order Method χȢπχρπ ρȢπ

 Optimal Third Order ERK Method Case 1 φȢψωρπ ρȢπ

 Optimal Third Order ERK Method Case 2 ρȢςχρπ ρȢω

 Optimal Third Order ERK Method Case 3 ρȢςχρπ ρȢω

 The Classical Runge-Kutta Method ψȢψψρπ ρȢψ

 3/8 Rule Method τȢωρρπ ρȢπ

 Optimal Fourth Order ERK Method Case 1 χȢτχρπ ρȢυ

 Optimal Fourth Order ERK Method Case 2 ψȢψψρπ ρȢψ

 Optimal Fourth Order ERK Method Case 3 ψȢψψρπ ρȢψ

 Optimal Fourth Order ERK Method Case 4 υȢσχρπ ρȢρ

 Optimal Fourth Order ERK Method Case 5 υȢσχρπ ρȢρ

Table 4.3.4: Errors and Rel. to Min. values for all the ERK methods applied on IVODE ώ ώ Ὡ ÓÉÎὼ where

 πȢρ, ώπ ρ.

79

For second order methods, referring to Tables 4.3.1 and 4.3.4, we see that the optimal second

order ERK method has ‘Rel. to Min.’ value to be ‘1.0’, which means it gives the most accuracy

in those tables. However, in the case of Tables 4.3.2 and 4.3.3, IŜǳƴΩǎ Second Order method

and the Explicit Midpoint method provide the most accurate results, respectively. For third

order methods, Tables 4.3.1 and 4.3.2 show that the optimal third order ERK method, case 1,

provides the most accurate results. However, in case of Tables 4.3.3 and 4.3.4, the optimal

third order ERK method, case 2, and IŜǳƴΩǎ ¢ƘƛǊŘ hǊŘŜǊ ƳŜǘƘƻŘ provide the most accuracy,

respectively. For fourth order methods, Table 4.3.1 shows that the optimal fourth order ERK

method, case 1, provides the most accuracy, whereas Table 4.3.3 shows that the optimal

fourth order ERK method, case 2, provides the most accuracy. However, Tables 4.3.2 and 4.3.4

show that the 3/8 Rule provides the most accurate results.

Recall from Chapter 2 that the components of the Principal Error Coefficient are multiplied by

problem dependent factors in the actual error. This is the reason why we get different results

for each IVODEs. For second order, the optimal second order ERK method has an Average Rel.

to Min. (ARM) of ρȢρςυ, while the other two second order methods have ARMs of ςȢπχυ and

σȢςυ. For third order, the optimal third order ERK method, Case 1, has an ARM of ρȢρυ,

wŀƭǎǘƻƴΩǎ ǘƘƛǊŘ ƻǊŘŜǊ ƳŜǘƘƻŘ has an ARM of ρȢρχυ, and IŜǳƴΩǎ ǘƘƛǊŘ ƻǊŘŜǊ ƳŜǘƘƻŘ and cases

2 and 3 have ARMs of ρȢτχυ, φȢσχυ, and ςȢψςυ, respectively. For fourth order, the 3/8 Rule

method has an ARM of ρȢρχυ, the classical Runge-Kutta method has an ARM of ρȢφυ, and cases

1 through 5 have ARMs of ςȢψςυ, υȢρ, ςȢσχυ, τȢωςυ, and τȢωςυ, respectively. So, for second

and third orders, the optimal method has the best ARM, while for fourth order, the 3/8 Rule

method has the best ARM. We must note that substantially more testing on a much larger test

set should be performed before any specific conclusions can be made.

80

4.3.2 Efficiency

In this subsection, we demonstrate that better accuracy implies better efficiency. We begin

with second order ERK methods, which include the optimal second order ERK method, the

Explicit Midpoint method and IŜǳƴΩǎ ƳŜǘƘƻŘ, but instead of determining which one gives the

smallest error, we set a specific error as the goal, and determine which method is able to

compute a solution with that error most quickly i.e., in the fewest number of steps. We

determine this by changing the stepsizes and running the software so that all methods achieve

approximately the same error.

For this analysis, we start with the IVODE,

ώ ώ Ὡ ÓÉÎὼȟ

where πȢρ. The initial value for this IVODE is ώπ ρ. As one can see from Section 4.3.1,

the smallest stepsize that we have used is πȢπρυφςυ and for this stepsize, IŜǳƴΩǎ ƳŜǘƘƻŘ

has an error of ψȢχτρπ for this IVODE. We now find out how large a stepsize the other

methods use while still obtaining approximately the same accuracy.

We find that for the stepsize of πȢπςχφυ, the optimal second order ERK method achieves the

same accuracy as IŜǳƴΩǎ ƳŜǘƘƻŘ using the stepsize of πȢπρυφςυ, whereas the Explicit

Midpoint method achieves that accuracy using the stepsize of πȢπρυχψ. Since ὸ ρ, this

means that the optimal second order ERK method computes a solution of the desired accuracy

using σφ steps, while the other two methods require about 63 steps indicating that the

optimal method is about τπϷ more efficient.

Next, we consider the three-stage, third order ERK methods applied to the IVODE,

ώ ςὼώȟ

81

with initial value, ώπ ρ. We use all the third order ERK methods identified in Section 4.3.1.

In that section, we saw that for this IVODE, the optimal third order ERK methods, Case 2, has

the largest error of σȢχψρπ for the stepsize of πȢπρυφςυ.

We find that at the stepsize of πȢπτςπω, the optimal third order ERK method, Case 1, gives the

same accuracy as the optimal third order ERK method, Case 2 using the stepsize of πȢπρυφςυ.

wŀƭǎǘƻƴΩǎ ¢ƘƛǊŘ hǊŘŜǊ ƳŜǘƘƻŘ obtains the desired accuracy with a stepsize of πȢπσχπσυ, IŜǳƴΩǎ

Third Order method obtains the desired accuracy with a stepsize of πȢπσττυ and the optimal

third order ERK method, Case 3, obtains the desired accuracy with a stepsize of πȢπςςσ.

Since ὸ ρ, this means that the optimal third order ERK method, Case 1, computes a solution

of the desired accuracy using ςτ steps, while wŀƭǎǘƻƴΩǎ ¢ƘƛǊŘ hǊŘŜǊ ƳŜǘƘƻŘ requires ςχ

steps, IŜǳƴΩǎ Third Order method requires ςω steps, the optimal third order ERK method,

Case 3, requires τυ steps and the optimal third order ERK method, Case 2, requires φτ

steps to obtain the desired accuracy. This indicates that the optimal third order ERK method,

Case 1, is about φςϷ more efficient, wŀƭǎǘƻƴΩs Third Order method is about υψϷ more

efficient, IŜǳƴΩǎ ƳŜǘƘƻŘ is about υυϷ more efficient and the optimal third order ERK method,

Case 3, is about σπϷ more efficient than the optimal third order ERK method, Case 2.

Finally, we use the four-stage, fourth order ERK methods to compute a numerical solution for

the IVODE,

ώ ςὼώȟ

with initial value, ώπ ρ. We use all the fourth order ERK methods identified in Section

4.3.1. In that section, we saw that for this IVODE, the optimal fourth order ERK methods, Case

4 and Case 5, have the largest error of σȢςρρπ for a stepsize of πȢπρυφςυ.

We find that for the stepsize of πȢπςψψυ, the optimal fourth order ERK method, Case 1, gives

the same accuracy as the optimal fourth order ERK methods, Case 4 and Case 5. The classical

82

Runge-Kutta method obtains that accuracy with a stepsize of πȢπςφπρ, the optimal fourth

order ERK method, Case 3, obtains the desired accuracy with a stepsize of πȢπςρπυ, the 3/8

Rule method obtains the desired accuracy with a stepsize of πȢπςυωςυ, and the optimal fourth

order ERK method, Case 2, obtains the desired accuracy with a stepsize of πȢπςτςυ.

Since ὸ ρ, this means that the optimal fourth order ERK method, Case 1, computes a

solution of the desired accuracy using συ steps, while the classical Runge-Kutta method

requires σψ steps, the optimal fourth order ERK method, Case 3, requires τψ steps, 3/8

Rule method requires σω steps, the optimal fourth order ERK method, Case 2, requires

τρ steps and the optimal fourth order ERK method, Case 4 and Case 5, both require φτ steps

to obtain the desired accuracy. This indicates that the optimal fourth order ERK method, Case

1, is about 55Ϸ more efficient, the classical Runge-Kutta method and the 3/8 Rule method are

about τπϷ more efficient, the optimal fourth order ERK method, Case 3, is about ςυϷ more

efficient and the optimal fourth order ERK method, Case 2, is about σφϷ more efficient than

the optimal fourth order ERK method, Case 4 and Case 5.

4.4 Continuous Approximate Solutions and Corresponding Defects

As we have discussed in Chapter 2, the approximate solutions provided by the ERK methods

are not continuous. In order to make the approximate solutions continuous, we use Hermite

interpolation. In this section, we investigate continuous approximate solutions as well as

defects for these continuous approximate solutions.

4.4.1 Continuous Approximate Solutions

In this subsection, we provide some plots of the continuous approximate solutions for some

of the test IVODEs computed using the optimal ERK methods. For IVODEs with the exact

solutions, we compare the continuous approximate solutions with the exact solutions.

83

We begin with second order ERK methods. We use the optimal second order ERK method to

compute a discrete approximate solution to the IVODE,

ώ ώ Ὡ ÓÉÎὼȟ

where πȢρ, with initial value, ώπ ρ, and then compute a continuous approximate

solution using Hermite interpolation. The graph, plotting the continuous approximate solution

and exact solution, is shown in Figure 4.4.1.

Figure 4.4.1: Exact solution and continuous approximate solution using the optimal second order ERK method and

Hermite interpolation for the IVODE ώ ώ Ὡ ÓÉÎὼȟώπ ρ.

In the graph above, one can clearly see that the continuous approximate solution and exact

solution agree quite well.

We next consider third order ERK methods. We use the optimal third order ERK method, Case

1, to compute a discrete approximate solution to the IVODE,

ώ
ρ

ς
ώȟ

with initial value, ώπ ρ, and then compute a continuous approximate solution using

Hermite interpolation. The graph, plotting the continuous approximate solution and exact

solution, is shown in Figure 4.4.2.

84

Figure 4.4.2: Exact solution and continuous approximate solution using the optimal third order ERK method, case

1, and Hermite interpolation for the IVODE ώ ώȟώπ ρ.

In the graph above, one can clearly see that the continuous approximate solution and exact

solution agree quite well.

We next consider fourth order ERK methods. We use the optimal fourth order ERK method,

case 1, to compute a discrete approximate solution to the IVODE,

ώ ςὼώȟ

with initial value, ώπ ρ, and then a compute continuous approximate solution using

Hermite interpolation. The graph, plotting the continuous approximate solution and exact

solution, is shown in Figure 4.4.3.

85

Figure 4.4.3: Exact solution and continuous approximate solution using the optimal fourth order ERK method, case

1, and Hermite interpolation for the IVODE ώ ςὼώȟώπ ρ.

In the graph above, one can clearly see that the continuous approximate solution and exact

solution agree quite well.

Finally, we consider the COVID-19 model introduced in Section 2.1, and we use the optimal

fourth order ERK method, Case 1, to obtain an approximate solution for ὸ from π to ρυπ. We

use Hermite interpolation to obtain a corresponding continuous approximate solution. This

IVODE does not have an exact solution. We therefore only show the continuous approximate

solution in Figure 4.4.4.

86

Figure 4.4.4: Continuous approximate solution using the optimal fourth order ERK method, Case 1, and Hermite

interpolation to solve the COVID-19 model.

4.4.2 Defect of Continuous Approximate Solutions

In this subsection, we plot defects for the continuous approximate solutions of the IVODEs

computed using optimal ERK methods of each order, together with Hermite interpolants. We

consider the same IVODEs that we considered in Section 4.4.1. We plot the defect on one step.

Recall that for a continuous approximate solution, όὸ, the defect is,

ὸ ό ὸ ὪὸȟόὸȢ

We begin with second order ERK methods. We use the optimal second order ERK method to

obtain a discrete approximate solution to the IVODE,

ώ ώ Ὡ ÓÉÎὼȟ

where πȢρ, with initial value, ώπ ρ at a stepsize of πȢπρυφςυ, and then we use

Hermite interpolation to find a continuous approximate solution as we did in Section 4.4.1.

We plot the defect based on this continuous approximate solution. For this test, we choose,

arbitrarily, step number 23. The graph plotting the defect in steps 23 is shown in Figure 4.4.5.

We see that the maximum defect is quite small υ ρπ in magnitude.

87

Figure 4.4.5: Defect, Step 23, of the continuous approximate solution of the IVODE ώ ώ Ὡ ÓÉÎὼȟ

ώπ ρ computed by using the optimal second order ERK method, and Hermite interpolation.

Next, we consider third order ERK methods. We use the optimal third order ERK method, Case

1, to obtain a discrete approximate solution to the IVODE,

ώ
ρ

ς
ώȟ

with initial value, ώπ ρ at a stepsize of πȢπρ, and then we use Hermite interpolation to

find a continuous approximate solution as we did in Section 4.4.1. We plot the defect based

on this continuous approximate solution. For this test, we choose, arbitrarily, step number 11.

The graph plotting the defect in step 11 is shown in Figure 4.4.6. We see that the maximum

defect is quite small; it has a magnitude of ςȢυ ρπ .

88

Figure 4.4.6: Defect, Step 11, of the continuous approximate solution of the IVODE ώ ώȟώπ ρ

computed by using the optimal third order ERK method, case 1, and Hermite interpolation.

Finally, we consider fourth order ERK methods. We use the optimal fourth order ERK method,

Case 1, to obtain a discrete approximate solution to the IVODE,

ώ ςὼώȟ

with initial value, ώπ ρ, and then we again use Hermite interpolation to find a continuous

approximate solution as we did in Section 4.4.1. We plot the defect based on this continuous

approximate solution. For this test, we choose, arbitrarily, step number 8. The graph plotting

the defect in step 8 is shown in Figure 4.4.7. We can see that the maximum defect is quite

small; it has a magnitude of φ ρπ .

89

Figure 4.4.7: Defect, Step 8, of the continuous approximate solution of the IVODE ώ ςὼώȟώπ ρ

computed by using the optimal fourth order ERK method, case 1, and Hermite interpolation.

We observe that the defects in all cases are quite small which indicates that the approximate

continuous solution almost satisfies the given ODE.

90

Chapter 5

Summary, Conclusions, and Future Work

In this thesis, we have presented the general form for Initial Value ODEs along with some

examples. We have presented general forms for Explicit Runge-Kutta methods of orders ς to

τ and found the optimal values for the free coefficients based on minimizing the Principal Error

Coefficient of the method using optimization software. We observed that the Principal Error

Coefficients of several of the standard ERK methods are very close to those of the optimal ERK

methods. We have also provided a comparison between the standard and optimal ERK

methods by testing them on various IVODEs. We note that the problem itself has an effect on

the error of the approximate numerical solution as the unsatisfied order conditions that make

up the components of the Principal Error Coefficient are multiplied by problem dependent

factors. We confirmed the order of convergence of the optimal methods that we obtained

based on discrete approximate solutions computed by the ERK methods. We used Hermite

interpolants to augment the discrete approximate solutions to obtain continuous approximate

numerical solutions across the whole domain. This allowed us to plot the continuous

approximate solution and to find the defect associated with it. We observed that the

continuous approximate numerical solutions were quite accurate as their corresponding

defects were quite small.

Regarding future work, further testing of the ERK methods using a larger test set would be

helpful in order to determine how frequently the optimal methods actually lead to more

accurate results. The next step would be to develop a new software that is able to perform

adaptive step control based on some estimate of the maximum defect on each step. This

would allow the python tool to provide more efficient results by adjusting the stepsizes. The

91

idea here is to adjust the stepsize in order to keep the maximum defect below the user-

provided tolerance. Another idea would be to extend the research to higher order methods.

That will also include using an interpolant of higher order than Hermite interpolation. Along

with that, it would be helpful to add a graphical user interface aspect to the Python software.

It would allow the user to use the software and enter new IVODEs more easily.

92

Bibliography

[Butc87] J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations:

Runge-Kutta and General Linear Methods, Wiley-Interscience, 1987.

[Chri20] C. Christara, The importance of being computationally accurate: the case of

COVID-19, unpublished note, Department of Computer Science, University of

Toronto, 2020.

[Enri89] W.H. Enright, A new error control strategy for initial value solvers, SIAM J.

Numer. Anal., 26, 1989, 588-599.

[HNW87] E. Hairer, S. P. Norsett, G. Wanner, Solving Ordinary Differential Equations I:

Nonstiff Problems, Springer Series in Computational mathematics, Springer,

1987.

[Rals62] A. Ralston, Runge-Kutta methods with minimum error bounds, Math. Comp.,

16, 1962, 431-437.

[SAP97] L.F. Shampine, R. C. Allen, S. Pruess, Fundamentals of Numerical Computing,

Wiley, 1997.

93

Appendix

This software is available at https://github.com/CYBRPHRK/Research-Thesis.

Optimization.py

import scipy.optimize as scope

case = 0

'''

Name: optimize

Description: This function finds the optimal values to minimize the given

 Principal Error Coefficient and provides the results in

 the console.

Parameters:

 f : f is the name of the function used as Principal Error

Coefficient.

Returns: None

'''

def optimize(f):

 if (f == E2):

 alpha = [0.1]

 elif(f == E3):

 alpha = [0.01, 0.01]

 elif(f == E4):

 if (case == 1):

 alpha = [0.1, 0.2]

 elif (case == 3):

 alpha = [- 0.1]

 elif ((case == 2) or (case == 4) or (case == 5)):

 alpha = [0.1]

 res = scope.minimize(f, alpha, tol=1e - 8)

 print ("Message: ", res.message)

 print ("E2: ", res.fun)

 print ("Free Coefficients: ", res.x)

'''

Name: E2

Description: This function represents as the Principal Error Coefficient

 for second order ERK methods. Provided the value of the

 free coefficient (alpha), this function provides the

 Principal Error Coefficient value.

Parameters:

 alpha : alpha i s the list of values for the free coefficients.

Returns:

 result : result is the Principal Error Coefficient value for the

 given free coefficient.

'''

def E2(alpha):

 b = [1 - (1 / (2 * alpha[0])), 1 / (2 * alpha[0])]

 c = [0, alpha[0]]

 A = [[0, 0], [alpha[0], 0]]

94

 csq = [c[0] ** 2, c[1] ** 2]

 bcsq = (b[0] * csq[0]) + (b[1] * csq[1])

 Ac = [(A[0][0] * c[0]) + (A[0][1] * c[1]),(A[1][0] * c[0]) + (A[1][1] *

c[1])]

 bAc = (b[0] * Ac[0]) + (b[1] * Ac[1])

 re sult = (((1/2) * (bcsq - (1/3))) ** 2) + ((bAc - (1/6)) ** 2)

 return result

'''

Name: setValuesForThirdOrderCase1

Description: This function sets and returns the values for all the

 coefficients for Case 1 of the third order ERK methods.

Parameters:

 alpha : alpha is the list of values for the free coefficients.

Returns:

 c2, c3, b1, b2, b3, a31, a32: coefficients for Case 1 of the

 third order ERK methods.

'''

def setValuesForThirdOrderCase1(alpha):

 c2 = alpha[0]

 c3 = alpha[1]

 b1 = (2 - (3 * (c2 + c3)) + (6 * c2 * c3)) / (6 * c2 * c3)

 b2 = (c3 - (2/3)) / (2 * c2 * (c3 - c2))

 b3 = ((2/3) - c2) / (2 * c3 * (c3 - c2))

 a31 = (c3 * (c3 - (3 * c2) + (3 * c2 * c2))) / (c2 * ((3 * c2) - 2))

 a32 = (c3 * (c2 - c3)) / (c2 * ((3 * c2) - 2))

 return c2, c3, b1, b2, b3, a31, a32

'''

Names: E3Eq1, E3Eq2, E3Eq3, E3Eq4

Description: These functions com pute and return the weighted values of

 the order conditions of Principal Error Coefficient

 of third order ERK methods.

Parameters:

 c : c are the nodes.

 b : b are the weights.

 A : A is the matrix.

Returns:

 weighted values of the order conditions of Principal Error

 Coefficient of third order ERK methods.

'''

def E3Eq1(c, b, A):

 #For Equation 1, find b*c^3

 ccube = [c[0] ** 3, c[1] ** 3, c[2] ** 3]

 bccube = (b[0] * ccube[0]) + (b[1] * ccube[1]) + (b[2] * ccube[2])

 return ((1/6) * (bccube - (1/4)))

def E3Eq2(c, b, A):

 #For Equation 2, find b*c*A*c

 bc = [(b[0] * c[0]), (b[1] * c[1]), (b[2] * c[2])]

 Ac = [((A[0][0] * c[0]) + (A [0][1] * c[1]) + (A[0][2] * c[2])),

 ((A[1][0] * c[0]) + (A[1][1] * c[1]) + (A[1][2] * c[2])),

 ((A[2][0] * c[0]) + (A[2][1] * c[1]) + (A[2][2] * c[2]))]

 bcAc = (bc[0] * Ac[0]) + (bc[1] * Ac[1]) + (bc[2] * Ac[2])

 return (bcAc - (1/8))

def E3Eq3(c, b, A):

 #For Equation 3, find b*A*c^2

95

 csq = [c[0] ** 2, c[1] ** 2, c[2] ** 2]

 Acsq = [((A[0][0] * csq[0]) + (A[0][1] * csq[1]) + (A[0][2] * csq[2])),

 ((A[1][0] * csq[0]) + (A[1][1] * csq [1]) + (A[1][2] * csq[2])),

 ((A[2][0] * csq[0]) + (A[2][1] * csq[1]) + (A[2][2] * csq[2]))]

 bAcsq = (b[0] * Acsq[0]) + (b[1] * Acsq[1]) + (b[2] * Acsq[2])

 return ((1/2) * (bAcsq - (1/12)))

def E3Eq4(c, b, A):

 #For Equation 4, find b *A^2*c

 Asq = []

 for i in range (0, len(A)):

 Asq.append([])

 for j in range (0, len(A)):

 Asq[i].append((A[i][0] * A[0][j]) + (A[i][1] * A[1][j]) +

(A[i][2] * A[2][j]))

 Asqc = [((Asq[0][0] * c[0]) + (Asq[0] [1] * c[1]) + (Asq[0][2] * c[2])),

 ((Asq[1][0] * c[0]) + (Asq[1][1] * c[1]) + (Asq[1][2] * c[2])),

 ((Asq[2][0] * c[0]) + (Asq[2][1] * c[1]) + (Asq[2][2] * c[2]))]

 bAsqc = (b[0] * Asqc[0]) + (b[1] * Asqc[1]) + (b[2] * Asqc[2])

 r eturn (bAsqc - (1/24))

'''

Name: E3

Description: This function represents as the Principal Error Coefficient

 for third order ERK methods. Provided the values of the

 free coefficients (alpha), this function provides the

 Principal Error Coefficient value.

Parameters:

 alpha : alpha is the list of values for the free coefficients.

Returns:

 result : result is the Principal Error Coefficient value for the

 given free coefficients.

'''

def E3(alpha):

 if ((alpha[0] == 0) or (alpha[0] == 2/3) or (alpha[1] == 0) or (alpha[0]

== alpha[1])):

 return 1

 c2, c3, b1, b2, b3, a31, a32 = setValuesForThirdOrderCase1(alpha)

 c = [0, c2, c3]

 b = [b1, b2, b3]

 A = [[0, 0, 0],[c2, 0, 0],[a31, a32, 0]]

 #For Equation 1

 eq1 = E3Eq1(c, b, A)

 #For Equation 2

 eq2 = E3Eq2(c, b, A)

 #For Eq uation 3

 eq3 = E3Eq3(c, b, A)

 #For Equation 4

 eq4 = E3Eq4(c, b, A)

 #E3^2

 result = (eq1 ** 2) + (eq2 ** 2) + (eq3 ** 2) + (eq4 ** 2)

 return result

96

'''

Name: setValuesForFourthOrder

Description: This function sets and returns the values for all the

 coefficients for the fourth order ERK methods.

Parameters:

 alpha : alpha is the list of values for the free coefficients.

Returns:

 c2, c3, c4, b1, b2, b3, b4, a31, a32, a41, a42, a43:

 coefficients for the fourth order ERK methods.

'''

def setValuesForFourthOrder(alpha):

 if (case == 1):

 c2 = alpha[0]

 c3 = alpha[1]

 c4 = 1

 a31 = (c3 * ((3 * c2) - c3 - (4 * c2 * c2))) / (2 * c2 * (1 - (2 *

c2)))

 a32 = (c3 * (c3 - c2)) / (2 * c2 * (1 - (2 * c2)))

 a41 = (((c3 ** 2) * ((12 * c2 * c2) - (12 * c2) + 4)) - (c3 * ((12 *

c2 * c2) - (15 * c2) + 5)) + ((4 * c2 * c2) - (6 * c2) + 2)) /

((2 * c2 * c3) * (3 - (4 * (c2 + c3)) + (6 * c2 * c3)))

 a42 = (((- 4 * c3 * c3) + (5 * c3) + c2 - 2) * (1 - c2)) / ((2 * c2) *

(c3 - c2) * (3 - (4 * (c2 + c3)) + (6 * c2 * c3)))

 a43 = ((1 - (2 * c2)) * (1 - c3) * (1 - c2)) / (c3 * (c3 - c2) * (3 -

(4 * (c2 + c3)) + (6 * c2 * c3)))

 b1 = (1 - (2 * (c2 + c3)) + (6 * c2 * c3)) / (12 * c2 * c3)

 b2 = ((2 * c3) - 1) / ((12 * c2) * (c3 - c2) * (1 - c2))

 b3 = (1 - (2 * c2)) / ((12 * c3) * (c3 - c2) * (1 - c3))

 b4 = (3 - (4 * (c2 + c3)) + (6 * c2 * c3)) / (12 * (1 - c2) * (1 -

c3))

 elif (case == 2):

 b3 = alpha[0]

 c2 = c3 = 1/2

 c4 = 1

 a31 = ((3 * b3) - 1) / (6 * b3)

 a32 = 1 / (6 * b3)

 a41 = 0

 a42 = 1 - (3 * b3)

 a43 = 3 * b3

 b1 = 1/6

 b2 = (2 / 3) - b3

 b4 = 1/6

 elif (case == 3):

 b3 = alpha[0]

 c2 = 1/2

 c3 = 0

 c4 = 1

 a31 = - 1 / (12 * b3)

 a32 = 1 / (12 * b3)

 a41 = (- 1/2) - (6 * b3)

 a42 = 3/2

 a43 = 6 * b3

 b1 = (1/6) - b3

 b2 = 2/3

 b4 = 1/6

 elif (case == 4):

 b4 = alpha[0]

 c2 = 1

 c3 = 1/2

 c4 = 1

 a31 = 3/8

 a32 = 1/8

97

 a41 = 1 - (1 / (4 * b4))

 a42 = - 1 / (12 * b4)

 a43 = 1 / (3 * b4)

 b1 = 1/6

 b2 = 1/6 - b4

 b3 = 2/3

 elif (case == 5):

 c2 = alpha[0]

 c3 = 1/2

 c4 = 1

 a31 = ((4 * c2) - 1) / (8 * c2)

 a32 = 1 / (8 * c2)

 a41 = (1 - (2 * c2)) / (2 * c2)

 a42 = - 1 / (2 * c2)

 a43 = 2

 b1 = 1/6

 b2 = 0

 b3 = 2/3

 b4 = 1/6

 return c2, c3, c4, b1, b2, b3, b4, a31, a32, a41, a42, a43

'''

Names: E4Eq1, E4Eq2, E4Eq3, E4Eq4, E4Eq5, E4Eq6, E4Eq7, E4Eq8, E4Eq9

Description: These functions compute and return the weighted values of

 the order conditions of Principa l Error Coefficient

 of fourth order ERK methods.

Parameters:

 c : c are the nodes.

 b : b are the weights.

 A : A is the matrix.

Returns:

 weighted values of the order conditions of Principal Error

 Coefficient of fourth order ERK methods.

'''

def E4Eq1(c, b, A):

 #For Equation 1, find b*c^4

 cquad = [c[0] ** 4, c[1] ** 4, c[2] ** 4, c[3] ** 4]

 bcquad = (b[0] * cquad[0]) + (b[1] * cquad[1]) + (b[2] * cquad[2]) +

(b[3] * cquad[3])

 retur n ((1/24) * (bcquad - (1/5)))

def E4Eq2(c, b, A):

 #For Equation 2, find b*c^2*A*c

 csq = [c[0] ** 2, c[1] ** 2, c[2] ** 2, c[3] ** 2]

 bcsq = [b[0] * csq[0], b[1] * csq[1], b[2] * csq[2], b[3] * csq[3]]

 Ac = [((A[0][0] * c[0]) + (A[0][1] * c[1]) + (A[0][2] * c[2]) + (A[0][3]

* c[3])),

 ((A[1][0] * c[0]) + (A[1][1] * c[1]) + (A[1][2] * c[2]) + (A[1][3]

* c[3])),

 ((A[2][0] * c[0]) + (A[2][1] * c[1]) + (A[2][2] * c[2]) + (A[2][3]

* c[3])),

 ((A[3][0] * c[0]) + (A[3][1] * c[1]) + (A[3][2] * c[2]) + (A[3][3]

* c[3]))]

 bcsqAc = (bcsq[0] * Ac[0]) + (bcsq[1] * Ac[1]) + (bcsq[2] * Ac[2]) +

(bcsq[3] * Ac[3])

 return ((1/2) * (bcsqAc - (1/10)))

def E4Eq3(c, b, A):

98

 #For E quation 3, find b*c*A*c^2

 csq = [c[0] ** 2, c[1] ** 2, c[2] ** 2, c[3] ** 2]

 bc = [b[0] * c[0], b[1] * c[1], b[2] * c[2], b[3] * c[3]]

 Acsq = [((A[0][0] * csq[0]) + (A[0][1] * csq[1]) + (A[0][2] * csq[2]) +

(A[0][3] * csq[3])),

 ((A[1][0] * csq[0]) + (A[1][1] * csq[1]) + (A[1][2] * csq[2]) +

(A[1][3] * csq[3])),

 ((A[2][0] * csq[0]) + (A[2][1] * csq[1]) + (A[2][2] * csq[2]) +

(A[2][3] * csq[3])),

 ((A[3][0] * csq[0]) + (A[3][1] * csq[1]) + (A[3][2] * csq[2]) +

(A [3][3] * csq[3]))]

 bcAcsq = (bc[0] * Acsq[0]) + (bc[1] * Acsq[1]) + (bc[2] * Acsq[2]) +

(bc[3] * Acsq[3])

 return ((1/2) * (bcAcsq - (1/15)))

def E4Eq4(c, b, A):

 #For Equation 4, find b*c*A^2*c

 bc = [b[0] * c[0], b[1] * c[1], b[2] * c[2], b[3] * c[3]]

 Ac = [((A[0][0] * c[0]) + (A[0][1] * c[1]) + (A[0][2] * c[2]) + (A[0][3]

* c[3])),

 ((A[1][0] * c[0]) + (A[1][1] * c[1]) + (A[1][2] * c[2]) + (A[1][3]

* c[3])),

 ((A[2][0] * c[0]) + (A[2][1] * c[1]) + (A[2][2] * c[2]) + (A[2][3]

* c[3])),

 ((A[3][0] * c[0]) + (A[3][1] * c[1]) + (A[3][2] * c[2]) + (A[3][3]

* c[3]))]

 AAc = [((A[0][0] * Ac[0]) + (A[0][1] * Ac[1]) + (A[0][2] * Ac[2]) +

(A[0][3] * Ac[3])),

 ((A[1][0] * Ac[0]) + (A[1][1] * Ac[1]) + (A[1][2] * Ac[2]) +

(A[1][3] * Ac[3])),

 ((A[2][0] * Ac[0]) + (A[2][1] * Ac[1]) + (A[2][2] * Ac[2]) +

(A[2][3] * Ac[3])),

 ((A[3][0] * Ac[0]) + (A[3][1] * Ac[1]) + (A[3][2] * Ac[2]) +

(A[3][3] * Ac[3]))]

 bcAAc = (bc[0] * AAc[0]) + (bc[1] * AAc[1]) + (bc[2] * AAc[2]) + (bc[3] *

AAc[3])

 return (bcAAc - (1/30))

def E4Eq5(c, b, A):

 #For Equation 5, find b*(A*c)^2

 Ac = [((A[0][0] * c[0]) + (A[0][1] * c[1]) + (A[0] [2] * c[2]) + (A[0][3]

* c[3])),

 ((A[1][0] * c[0]) + (A[1][1] * c[1]) + (A[1][2] * c[2]) + (A[1][3]

* c[3])),

 ((A[2][0] * c[0]) + (A[2][1] * c[1]) + (A[2][2] * c[2]) + (A[2][3]

* c[3])),

 ((A[3][0] * c[0]) + (A[3][1] * c[1]) + (A[3][2] * c[2]) + (A[3][3]

* c[3]))]

 AcAc = [Ac[0] ** 2, Ac[1] ** 2, Ac[2] ** 2, Ac[3] ** 2]

 bAcAc = (b[0] * AcAc[0]) + (b[1] * AcAc[1]) + (b[2] * AcAc[2]) + (b[3] *

AcAc[3])

 return ((1/2) * (bAcAc - (1/20)))

def E4Eq6(c, b, A):

 #For Eq uation 6, find b*A*c^3

 ccube = [c[0] ** 3, c[1] ** 3, c[2] ** 3, c[3] ** 3]

 Accube = [((A[0][0] * ccube[0]) + (A[0][1] * ccube[1]) + (A[0][2] *

ccube[2]) + (A[0][3] * ccube[3])),

99

 ((A[1][0] * ccube[0]) + (A[1][1] * ccube[1]) + (A[1][2] *

ccube[2]) + (A[1][3] * ccube[3])),

 ((A[2][0] * ccube[0]) + (A[2][1] * ccube[1]) + (A[2][2] *

ccube[2]) + (A[2][3] * ccube[3])),

 ((A[3][0] * ccube[0]) + (A[3][1] * ccube[1]) + (A[3][2] *

ccube [2]) + (A[3][3] * ccube[3]))]

 bAccube = (b[0] * Accube[0]) + (b[1] * Accube[1]) + (b[2] * Accube[2]) +

(b[3] * Accube[3])

 return ((1/6) * (bAccube - (1/20)))

def E4Eq7(c, b, A):

 #For Equation 7, find b*A*c*(A*c)

 Ac = [((A[0][0] * c[0]) + (A[0][1] * c[1]) + (A[0][2] * c[2]) + (A[0][3]

* c[3])),

 ((A[1][0] * c[0]) + (A[1][1] * c[1]) + (A[1][2] * c[2]) + (A[1][3]

* c[3])),

 ((A[2][0] * c[0]) + (A[2][1] * c[1]) + (A[2][2] * c[2]) + (A[2][3]

* c[3])),

 ((A[3][0] * c[0]) + (A[3][1] * c[1]) + (A[3][2] * c[2]) + (A[3][3]

* c[3]))]

 cAc = [c[0] * Ac[0], c[1] * Ac[1], c[2] * Ac[2], c[3] * Ac[3]]

 AcAc = [((A[0][0] * cAc[0]) + (A[0][1] * cAc[1]) + (A[0][2] * cAc[2]) +

(A[0][3] * cAc[3])),

 ((A[1][0] * cAc[0]) + (A[1][1] * cAc[1]) + (A[1][2] * cAc[2]) +

(A[1][3] * cAc[3])),

 ((A[2][0] * cAc[0]) + (A[2][1] * cAc[1]) + (A[2][2] * cAc[2]) +

(A[2][3] * cAc[3])),

 ((A[3][0] * cAc[0]) + (A[3][1] * cAc[1]) + (A[3][2] * cAc[2]) +

(A[3][3] * cAc[3]))]

 bAcAc = (b[0] * AcAc[0]) + (b[1] * AcAc[1]) + (b[2] * AcAc[2]) + (b[3] *

AcAc[3])

 return (bAcAc - (1/40))

def E4Eq8(c, b, A):

 #For Equation 8, find b*A^2*c^2

 csq = [c[0] ** 2, c[1] ** 2, c[2] ** 2, c[3] ** 2]

 Acsq = [((A[0][0] * csq[0]) + (A[0][1] * csq[1]) + (A[0][2] * csq[2]) +

(A[0][3] * csq[3])),

 ((A[1][0] * csq[0]) + (A[1][1] * csq[1]) + (A[1][2] * csq[2]) +

(A[1][3] * csq[3])),

 ((A[2][0] * csq[0]) + (A[2][1] * csq[1]) + (A[2][2] * csq[2]) +

(A[2][3] * csq[3])),

 ((A[3][0] * csq[0]) + (A[3][1] * csq[1]) + (A[3][2] * csq[2]) +

(A[3][3] * csq[3]))]

 AAcsq = [((A[0][0] * Acsq[0]) + (A[0][1] * Acsq[1]) + (A[0][2] * Acsq[2])

+ (A[0][3] * Acsq[3])),

 ((A[1][0] * Acsq[0]) + (A[1][1] * Acsq[1]) + (A[1][2] * Acsq[2])

+ (A[1][3] * Acsq[3])),

 ((A[2][0] * Acsq[0]) + (A[2][1] * Acsq[1]) + (A[2][2] * Acsq[2])

+ (A[2][3] * Acsq[3])),

 ((A[3][0] * Acsq[0]) + (A[3][1] * Acsq[1]) + (A[3][2] * Acsq[2])

+ (A[3][3] * Acsq[3]))]

 bAAcsq = (b[0] * AAcsq[0]) + (b[1] * AAcsq[1]) + (b[2] * AAcsq[2]) +

(b[3] * AAcsq[3])

 return ((1/2) * (bAAcsq - (1/60)))

def E4Eq9(c, b, A):

 #For Equation 9, find b*A^3*c

 Ac = [((A[0][0] * c[0]) + (A[0][1] * c[1]) + (A[0][2] * c[2]) + (A[0][3]

* c[3])),

100

 ((A[1][0] * c[0]) + (A[1][1] * c[1]) + (A[1][2] * c[2]) + (A[1][3]

* c[3])),

 ((A[2][0] * c[0]) + (A[2][1] * c[1]) + (A[2][2] * c[2]) + (A[2][3]

* c[3])),

 ((A[3][0] * c[0]) + (A[3][1] * c[1]) + (A[3][2] * c[2]) + (A[3][3]

* c[3]))]

 AAc = [((A[0][0] * Ac[0]) + (A[0][1] * Ac[1]) + (A[0][2] * Ac[2]) +

(A[0][3] * Ac[3])),

 ((A[1][0] * Ac[0]) + (A[1][1] * Ac[1]) + (A[1][2] * Ac[2]) +

(A[1][3] * Ac[3])),

 ((A[2][0] * Ac[0]) + (A[2][1] * Ac[1]) + (A[2][2] * Ac[2]) +

(A[2][3] * Ac[3])),

 ((A[3][0] * Ac[0]) + (A[3][1] * Ac[1]) + (A[3][2] * Ac[2]) +

(A[3][3] * Ac[3]))]

 AAAc = [((A[0][0] * AAc[0]) + (A[0][1] * AAc[1]) + (A[0][2] * AAc[2]) +

(A[0][3] * Ac[3])),

 ((A[1][0] * AAc[0]) + (A[1][1] * AAc[1]) + (A[1][2] * AAc[2]) +

(A[1][3] * Ac[3])),

 ((A[2][0] * AAc[0]) + (A[2][1] * AAc[1]) + (A[2][2] * AAc[2]) +

(A[2][3] * Ac[3])),

 ((A[3][0] * AAc[0]) + (A[3][1] * AAc[1]) + (A[3][2] * AAc[2]) +

(A[3][3] * Ac[3]))]

 bAAAc = (b[0] * AAAc[0]) + (b[1] * AAAc[1]) + (b[2] * AAAc[2]) + (b[3] *

AAAc[3])

 return (bAAAc - (1/120))

'''

Name: E4

Description: This function represents as the Principal Error Coefficient

 for fourth order ERK methods. Provided the values of the

 free coefficients (alpha), this function provides the

 Principal Error Coefficient value.

Parameters:

 alpha : alpha is the list of values for the free coefficients.

Returns:

 result : result is the Principal Error Coefficient value for the

 given free coefficients.

'''

def E4(alpha):

 if (case == 1):

 if ((alpha[0] <= 0) or (alpha[1] <= 0) or (alpha [0] == 1) or

(alpha[1] == 1)

 or (alpha[0] == alpha[1]) or (alpha[0] == 1/2) or ((3 - (4 *

(alpha[0] + alpha[1])) + (6 * alpha[0] * alpha[1])) == 0)):

 return 1

 elif ((case == 2) or (case == 3) or (case == 4) or (case == 5)):

 if (alpha[0] == 0):

 return 1

 c2, c3, c4, b1, b2, b3, b4, a31, a32, a41, a42, a43 =

setValuesForFourthOrder(alpha)

 c = [0, c2, c3, c4]

 b = [b1, b2, b3, b4]

 A = [[0, 0, 0, 0],[c2, 0, 0, 0],[a31, a32, 0, 0], [a41, a42, a4 3, 0]]

 #For Equation 1

 eq1 = E4Eq1(c, b, A)

 #For Equation 2

 eq2 = E4Eq2(c, b, A)

101

 #For Equation 3

 eq3 = E4Eq3(c, b, A)

 #For Equation 4

 eq4 = E4Eq4(c, b, A)

 #For Equation 5

 eq5 = E4Eq5(c, b, A)

 #For Equation 6

 eq6 = E4Eq6(c, b, A)

 #For Equation 7

 eq7 = E4Eq7(c, b, A)

 #For Equation 8

 eq8 = E4Eq8(c, b, A)

 #For Equation 9

 eq9 = E4Eq9(c, b, A)

 result = (eq1 ** 2) + (eq2 ** 2) + (eq3 ** 2) + (eq4 ** 2) + (eq5 ** 2) +

(eq6 ** 2) + (eq7 ** 2) + (eq8 ** 2) + (eq9 ** 2)

 return result

'''

Name: displayMenu

Description: This function displays the menu and asks the user to input

 a choice.

Parameters: None

Returns:

 choice : the interger value given by the user.

'''

def displayMenu():

 print ("1. Optimize E2")

 print ("2. Optimize E3")

 print ("3. Optimize E4")

 choice = input("Enter your choice: ")

 return int(choice);

'''

Name: chooseE4Case

Description: This function displays a menu for the cases of the fourth

 order ERK methods and asks the user to input a choice.

Parameters: None

Returns:

 choice : the interger value given by the user.

'''

def chooseE4Case():

 print ("1. Case 1: 0, c2, c3, 1 all distinct,",

 " \ nc2Í1/2 and 3 - 4(c2 + c3) + 6*c2*c3 Í 0")

 print ("2. Case 2: c2 = c3 = 1/2, b3Í0")

 print ("3. Case 3: c2 = 1/2, c3 = 0, b3Í0")

 print ("4. Case 4: c2 = 1, c3 = 1/2, b4Í0")

 print ("5. Case 5: c2Í0, c3 = 1/2, b2 = 0")

 choice = input(" \ nEnter your case choice: ")

 return int(choice)

'''

102

Name: initializeOptimizer

Description: This function initializes the optimization p rocess for the

 Principal Error Coefficient of user's choice.

Parameters:

 choice : the interger value given by the user.

Returns: None

'''

def initializeOptimizer(choice):

 global case

 if (choice == 1):

 optimize(E2)

 elif (choice == 2):

 optimize(E3)

 elif (choice == 3):

 case = chooseE4Case()

 if ((case < 1) or (case > 5)):

 initializeOptimizer(choice)

 else:

 optimize(E4)

 else:

 print ("Invalid choice. Please try again.")

 initializeOptimizer(displayMenu())

initializeOptimizer(displayMenu())

103

main.py

import EulersMethod as em

import Function as f

import Methods as m

import FileIO.FileIO as FileIO

import config

imp ort HermiteInterpolation as hi

'''

Name: displayMenu

Description: This function displays a menu and asks the user to input

 a choice.

Parameters: None

Returns:

 choice : the integer value given by the user.

'''

def displayMenu():

 print ("1. Specific IVODE on Specific Method")

 print ("2. Specific IVODE on All Methods and Export results to a file")

 choice = input("Enter your choice: ")

 print ("")

 return int(choice)

'''

Name: chooseMenuOption

Description: This function runs the specific function to initiate

 the testing of one or more ERK methods.

Parameters:

 choice : the integer value given by the user.

Returns: Non e

'''

def chooseMenuOption(choice):

 if (choice == 1):

 specificIVODESpecificMethod()

 elif (choice == 2):

 specificIVODEAllMethods()

 else:

 print ("Invalid Choice. \ n")

 chooseMenuOption(displayMenu())

'''

Name: specificIVODESpecificMethod

Description: This function initiates the specific ERK method

 to solve a specific IVODE chosen by the user.

Parameters : None

Returns : None

'''

def specificIVODESpecificMethod():

 t0, tf, y0 = f.setFormulaV alues(f.displayFormulas())

 em.setInitialValues(t0, tf, y0)

 m.displayMethods()

 j = 1

 while(j <= 6):

 if (f.exactExists):

 ee, tt, yy = em.eulersMethod(j)

 order = em.findOrder(ee, j)

 for x in order:

 print (em.dictToString(x))

 print ()

 else:

104

 k = 0

 tt, yy = em.eulersMethod(j)

 for y in yy[len(yy) - 1]:

 print ("Steps:", (2 ** (j * (- 1))), " \ ty[" + str(k) + "]:",

y)

 k += 1

 print ()

 j = j + 1

 hi.plotHermite()

'''

Name: specificIVODEAllMethods

Description: This function initiates all the ERK methods

 to solve a specific IVODE chosen by the user.

Parameters : None

Returns : None

'''

def specificIVODEAllMethods():

 t0, tf, y0 = f.setFormulaValues(f.displayFormulas())

 em.setInitialValues(t0, tf, y0)

 config.file = FileIO.File IO("Test Results/F" + str(f.formulaNumber) +

".txt", "w")

 fname = "F" + str(f.formulaNumber) + " " + str(t0) + " " + str(tf)

 for y in y0:

 fname = fname + " " + str(y)

 config.file.write(fname, end=' \ n\ n')

 orders = []

 methodNumber = 1

 i = 1

 while(methodNumber < 10):

 case = i

 methodInfo = "methodNumber: " + str(methodNumber)

 if (methodNumber == 7) or (methodNumber == 9):

 methodInfo = methodInfo + " Case: " + str(case)

 config.file.write(methodInfo, end='')

 m.setMethodValues(methodNumber, True, case)

 j = 1

 while(j <= 6):

 if (f.exactExists):

 ee, tt, yy = em.eulersMethod(j)

 order = em.findOrder(ee, j)

 for x in order:

 config.file.write(em.dictToString(x))

 config.file.write("")

 else:

 k = 0

 tt, yy = em.eulersMethod(j)

 for y in yy[len(yy) - 1]:

 config.file.write("Steps: " + str(2 ** (j * (- 1))) +

" \ ty[" + str(k) + "]: " + str(y))

 k += 1

 config.file.write("")

 j = j + 1

 if (f.exactExists):

 orders.append(order)

 if ((methodNumber != 7) and (methodNumber != 9)):

 methodNumber += 1

 else:

 if (((methodNumber == 7) and (i == 3)) or ((methodNumber == 9)

and (i == 5))):

105

 methodNumber += 1

 i = 1

 else:

 i += 1

 if (f.exactExists):

 em.relToMinError(orders)

chooseMenuOption(displayMenu())

del config.file

106

config.py

Object created to be used for fileIO

file = None

Ob ject to store the list of lists of time intervals for Hermite

interpolation

t = []

Object to store the list of lists of y values for Hermite interpolation

y = []

Object to store the list of lists of function values for Hermite

interpolation

f = []

Object to store the list of function values per Eulers Method call

ffy = []

107

EulersMethod.py

import math

import bokeh.plotting as bp

import Methods as m

import Function as f

import config

t0 = tf = 0

eeOld = y0 = []

'''

Name: setInitialValues

Descri ption: This function sets the initial values for a method.

Parameters:

 t : t is the initial time.

 tfinal : tfinal is the final time.

 y : y is the initial value for the given IVODE.

Returns: None

'''

def setInitialValues(t, tfinal, y):

 global t0, tf, y0

 t0, tf, y0 = t, tfinal, y[:]

'''

Name: eulerMethod

Description: This function computes the approximate solution for an IVODE

using a

 given ERK method.

Parameters:

 steps : steps is the parameter provided to compute the stepsize.

Returns:

 if (f.exactExists = True):

 ee : ee is the list of lists of errors in approximate numerical

 solutions for the IVODE.

 tt : tt is the list of points on the domain where the

approximate

 numerical solution for the IVODE is computed.

 yy : yy is the list of approximate numerical solutions for the

IVODE

 computed at points (tt) on the domain.

 if (f.exactExists = False):

 tt : tt is the list of points on the domain where the

approximate

 numerical solution for the IVODE is computed.

 yy : yy is the list of approximate numerical solutions for the

IV ODE

 computed at points (tt) on the domain.

'''

def eulersMethod(steps):

 # Setting up all the initial values

 t = t0

 tfinal = tf

 y = y0[:]

 h = math.pow(2, (steps * (- 1)))

 tt = [t]

 yy = [y[:]]

 ee = []

 config.ffy = []

 # Computing the approximate numerical solution

 while (t < tfinal):

108

 fy = m.method(t, y[:], h)

 for i in range(0, len(y)):

 y[i] = y[i] + (h * fy[i])

 t = t + h

 tt.append(t)

 yy.app end(y[:])

 m.method(t, y[:], h)

 config.t.append(tt[:])

 config.y.append(yy[:])

 config.f.append(config.ffy[:])

 if (f.exactExists):

 # Computing the error

 for j in range(0, len(yy)):

 e = f.formula(2, tt[j], yy[j])

 for i in range (0, len(e)):

 e[i] = abs(e[i])

 ee.append(e[:])

 return ee, tt, yy

 else:

 return tt, yy

'''

Name: findOrder

Description: This function computes the ratio of the errors and

 order of convergence of a given ERK method.

Parameters:

 ee : ee is the list of lists of errors in approximate numerical

 solutions for the IVODE.

 steps : steps is the parameter provided to compute t he stepsize.

Returns:

 orders : orders is the list of dictionaries which has error(s),

stepsize,

 ratio of the errors and order of convergence of the

method.

'''

def findOrder(ee, steps):

 global eeOld

 i = 0

 orders = []

 for e in ee[len(ee) - 1]:

 order = {}

 order["ee[" + str(i) + "]"] = e

 order["Steps"] = math.pow(2, (steps * (- 1)))

 if (steps > 1):

 ratio = eeOld[i]/e

 order['eeOld/ee'] = ratio

 if (ratio == 0):

 order['Order'] = 'n/a'

 else:

 order['Order'] = round(math.log(ratio, 2))

 i += 1

 orders.append(order)

 eeOld = ee[len(ee) - 1]

 return orders

'''

Name: relToMinEr ror

Description: This function computes the relative to minimum error for each

order of

 ERK method and print them in the results text file.

Parameters:

109

 orders : orders is the list of dictionaries which has error(s),

stepsize,

 ratio of the errors and order of convergence of the

method.

Returns: None

'''

def relToMinError(orders):

 config.file.write("Rel. To Min. Errors:")

 for j in range (0, len(orders[0])):

 minError = min(orders[1][j].get("ee[" + str(j) + "]"),

orders[2][j].get("ee[" + str(j) + "]"),

 orders[3][j].get("ee[" + str(j) + "]"))

 orders[1][j]['RelError'] = (orders[1][j].get("ee[" + str(j) + "]")) /

minError

 orders[2][j]['RelError'] = (orders[2][j].g et("ee[" + str(j) + "]")) /

minError

 orders[3][j]['RelError'] = (orders[3][j].get("ee[" + str(j) + "]")) /

minError

 minError = min(orders[4][j].get("ee[" + str(j) + "]"),

orders[5][j].get("ee[" + str(j) + "]"),

 orders[6][j].get("ee[" + str(j) + "]"),

orders[7][j].get("ee[" + str(j) + "]"),

 orders[8][j].get("ee[" + str(j) + "]"))

 orders[4][j]['RelError'] = (orders[4][j].get("ee[" + str(j) + "]")) /

minError

 orders[5][j]['RelError'] = (orders[5][j].get("ee[" + str(j) + "]")) /

minError

 orders[6][j]['RelError'] = (orders[6][j].get("ee[" + str(j) + "]")) /

minError

 orders[7][j]['RelError'] = (orders[7][j].get("ee[" + str(j) + "]")) /

minErro r

 orders[8][j]['RelError'] = (orders[8][j].get("ee[" + str(j) + "]")) /

minError

 minError = min(orders[9][j].get("ee[" + str(j) + "]"),

orders[10][j].get("ee[" + str(j) + "]"),

 orders[11][j].get("ee[" + str(j) + "]") ,

orders[12][j].get("ee[" + str(j) + "]"),

 orders[13][j].get("ee[" + str(j) + "]"),

orders[14][j].get("ee[" + str(j) + "]"))

 orders[9][j]['RelError'] = (orders[9][j].get("ee[" + str(j) + "]")) /

minError

 orders[10][j] ['RelError'] = (orders[10][j].get("ee[" + str(j) + "]"))

/ minError

 orders[11][j]['RelError'] = (orders[11][j].get("ee[" + str(j) + "]"))

/ minError

 orders[12][j]['RelError'] = (orders[12][j].get("ee[" + str(j) + "]"))

/ minError

 or ders[13][j]['RelError'] = (orders[13][j].get("ee[" + str(j) + "]"))

/ minError

 orders[14][j]['RelError'] = (orders[14][j].get("ee[" + str(j) + "]"))

/ minError

 for x in orders:

 for y in x:

 config.file.write(dictToString(y))

 config.file.write("")

'''

Name: dictToString

Description: This function converts the data stored in a dictionary into

string.

110

Parameters:

 dict : dict is the dictionary in which the data is stored.

Returns:

 dictString : dictString is the string converted from the dictonary.

'''

def dictToString(dict):

 dictString = ""

 # Fetching data from the dictonary and saving it in the string

 for x in dict:

 dictString = dictString + x + ": " + str(dict.get(x)) + " \ t"

 # Returning the string after removing the extra whitespace

 return dictString.strip()

111

Function.py

import ivode as iv

import config

formulaNumber = 0

exactExists = True

'''

Name: displayFormulas

Description: A function to get the formula number along

 with the respective values.

Parameters:

 None

Returns:

 fname : returns a string with the formula number

 and values provided by the user

'''

def displayFormulas():

 print ("Simple: f1 t tfinal y0")

 print ("Predator Prey: f2 t tfinal x y alpha beta gamma delta")

 print ("Simple System: f3 t tfinal x y")

 print ("Test F4: f4 t tfinal y0")

 print ("Test F5: f5 t tfinal y0")

 print ("Test F6: f6 t tfinal y0")

 print ("Test F7: f7 t tfinal y0 alpha")

 print ("Sample COVID - 19 Model: f8 t tfinal")

 fname = input(" \ nEnter the formula with values respectively" +

 " (Use spaces between the values like shown above): \ n")

 return fname

'''

Name: setFormulaValues

Description: A function to set formula number and the

 respective values for the form ulas accordingly.

Parameters:

 fname : fname has the formula number as well as the

 respective values for the formulas to be used

Returns:

 data[1] : The value of t0 for the initial time of the

 formula

 data[2] : The value of tf for the final time of the

 formula (tfinal)

 y[0] : A list of initial values of y at time t0

'''

def se tFormulaValues(fname):

 global formulaNumber, exactExists

 y0 = []

 data = fname.split()

 for i in range(1, len(data)):

 data[i] = float(data[i])

 formulaNumber = int (data[0][1:])

 if(formulaNumber == 2):

 exactEx ists = False

 y0.append(data[3])

 y0.append(data[4])

 iv.setConstants(data[5], data[6], data[7], data[8])

 elif (formulaNumber == 3):

 y0.append(data[3])

 y0.append(data[4])

 elif (formulaNumber == 7):

112

 y0.ap pend(data[3])

 iv.setConstants(data[4])

 elif (formulaNumber == 8):

 exactExists = False

 y0 = iv.sampleCOVID19ModelInitializer()

 elif ((formulaNumber == 1) or ((formulaNumber >= 4) and (formulaNumber <=

6))):

 y0.append(data[3])

 else:

 print ("No formula with that name.")

 exit(0)

 return data[1], data[2], y0

'''

Name: formula

Description: A functio n to get the:

 i = 0: approximate values of y

 i = 1: exact values of y

 i = 2: error values at t with a given y

 by calling the respective formula function

 according to the formula num ber.

Parameters:

 t : The value of t after a certain steps

 y : The list of values of y at step t

Returns:

 for i = 0:

 y[t+h] : The list of approximate values of y from

 the respective formula func tion for the

 next step t + h

 for i = 1:

 y[t] : The list of exact values of y from the

 respective formula function for the

 step t

 for i = 2:

 e : The list of error values with a given y

 from the respective formula function

 for the step t

'''

def formula(i, t, y):

 if (formulaNumber == 1):

 return iv.simple(i, t, y)

 elif (formulaNumber == 2):

 return iv.predatorPrey(i, t, y)

 elif (formulaNumber == 3):

 return iv.simple_sys(i, t, y)

 elif (formulaNumber == 4):

 return iv.TestF4(i, t, y)

 elif (formulaNumber == 5):

 return iv.TestF5(i, t , y)

 elif (formulaNumber == 6):

 return iv.TestF6(i, t, y)

 elif (formulaNumber == 7):

 return iv.TestF7(i, t, y)

 elif (formulaNumber == 8):

 return iv.sampleCOVID19Model(i, t, y)

113

HermiteInterpolation.py

import bokeh.plotting as bp

import Function as f

import config

'''

Names: h00(t), h10(t), h01(t) and h11(t)

Description: The functions given below work as Hermite Basis Polynomials,

 h00(t), h10(t), h01(t) and h11(t).

Parameters:

 t : Th e quantity t measures the relative distance across the

subinterval

Returns:

 result for the Hermite Basis Polynomial at t.

'''

def h00(t):

 return ((1 + (2 * t)) * (1 - t)**2)

def h10(t):

 return (t * (1 - t)**2)

def h01(t):

 return ((t** 2) * (3 - (2 * t)))

def h11(t):

 return ((t**2) * (t - 1))

'''

Names: h00_d(t), h10_d(t), h01_d(t) and h11_d(t)

Description: The functions given below work as derivatives of Hermite Basis

Polynomials,

 h00(t), h10(t), h01(t) and h11(t).

Parameters:

 t : The quantity t measures the relative distance across the

subinterval

Returns:

 result for the derivative of Hermite Basis Polynomial at t.

'''

def h00_d(t):

 return (6 * t * (t - 1))

def h10_d(t):

 return (1 + (3 * (t**2)) - (4 * t))

def h01_d(t):

 return (6 * t * (1 - t))

def h11_d(t):

 return ((3 * (t**2)) - (2 * t))

'''

Name: hermite

Description: This function evaluates Hermite form for u_i(t_i + (theta *

h_i))

 and the associated defect.

Parameters:

 tt : tt is the list of times after each step.

 yy : yy is the list of lists of y values at the given times at

each step.

 ffy : ffy is the function value for f(t, y) using the above values.

Returns:

 t : t is the list of points on the whole domain.

114

 uu : uu is the list of lists of lists of Hermite forms at uniform

points

 for system of equations in each interval. These are known as

 the continuous approximate numerical solutions.

 ffe : ffe is the list of exact solutions at all the t values.

 delta : delta is the defect assoc iated with the continuous

approximate

 numerical solution.

'''

def hermite(tt, yy, ffy):

 h = tt[1] - tt[0]

 # To store all the t values from start to end

 t = []

 # To store the u value computed at (t_i + (theta * h_i)).

 u = []

 # To store the derivative of u computed at (t_i + (theta * h_i)).

 u_d = []

 # To store the defect at (t_i + (theta * h_i)).

 d = []

 # To store all the u values computed

 uu = []

 # To store all the exact solutions at all the t values

 ffe = []

 # To store all the defect values in variable 'delta'

 delta = []

 for k in range (0, len(yy[0])):

 # For the first value, u_0(t_0)

 u.append((yy[0][k] * h00(0)) + (h * ffy[0][k] * h10(0)) + (yy[1][k] *

h01(0)) + (h * ffy[1][k] * h11(0)))

 # For the first derivative value, u_0'(t_0)

 u_d.append(((yy[0][k] / h) * h00_d(0)) + (ffy[0][k] * h10_d(0)) +

((yy[1][k] / h) * h01_d(0)) + (ffy[1][k] * h11_d(0)))

 # Here fu = f(t_0, u_0(t_0))

 fu = f.formula(0, tt[0], u[:])

 if (f.exactExists):

 # Exact value at t_0

 fe = f.formula(1, tt[0], u[:])

 # Storing the value in the list named 'ffe'

 ffe.append(fe)

 # d_0(t_0) = u_0 '(t_0) - f(t_0, u_0(t_0))

 for k in range (0, len(u)):

 d.append(u_d[k] - fu[k])

 # Storing the values in their corresponding lists

 t.append(tt[0])

 uu.append(u)

 delta.append(d)

 # Performing hermite interpolation on all the in tervals

 for i in range (0, len(tt) - 1):

 for j in range (1, 11):

 theta = j/10

 u = []

 u_d = []

 d = []

 for k in range (0, len(yy[i])):

 # u_i(t_i + (theta * h_i))

 u.append((yy[i][k] * h00(theta)) + (h * ffy[i][k] *

h10(theta)) + (yy[i + 1][k] * h01(theta)) + (h * ffy[i + 1][k] * h11(theta)))

115

 # u_i'(t_i + (theta * h_i))

 # Here u_d denotes the derivative of u

 u_d.append(((yy[i][k] / h) * h00_d(theta)) + (ffy[i][k] *

h10_d(theta)) + ((yy[i + 1][k] / h) * h01_d(theta)) + (ffy[i + 1][k] *

h11_d(theta)))

 # Here fu = f(t_i + (theta * h_i), u_i(t_i + (theta * h_i)))

 fu = f.formula(0, (t t[i] + (theta * h)), u[:])

 if (f.exactExists):

 # Exact value at (t_i + (theta * h_i))

 fe = f.formula(1, (tt[i] + (theta * h)), u[:])

 # Storing the value in the list named 'ffe'

 ff e.append(fe)

 # d_i(t_i + (theta * h_i)) = u_i'(t_i + (theta * h_i)) - f(t_i +

(theta * h_i), u_i(t_i + (theta * h_i)))

 for k in range (0, len(u)):

 d.append(u_d[k] - fu[k])

 # Storing the values in their corresponding lists

 t.append(tt[i] + (theta * h))

 uu.append(u)

 delta.append(d)

 return t, uu, ffe, delta

'''

Name: displayResults

Description: This function performs Hermite interpolation and displays the

 results in the console.

Parameters:

 reset : reset is used to check if the lists containing the data

require

 a reset or not. The default value for reset is False.

Returns: None

'''

def displayResults(reset=Fal se):

 # For a full display of hermite interpolant

 for i in range (0, len(config.t)):

 t, u, fe, d = hermite(config.t[i], config.y[i], config.f[i])

 if (f.exactExists):

 print ("i \ t \ t \ tt \ t \ t \ tu \ t \ t \ tf \ t \ t \ td")

 fo r i in range (0, len(t)):

 print (i+1, " \ t", t[i], " \ t", u[i], " \ t", fe[i], " \ t", d[i])

 else:

 print ("i \ t \ t \ tt \ t \ t \ tu \ t \ t \ td")

 for i in range (0, len(t)):

 print (i+1, " \ t", t[i], " \ t", u[i], " \ t", d[i])

 input("Press Enter to continue")

 if(reset):

 config.t = []

 config.y = []

 config.f = []

'''

Name: plotHermite

Description: This function performs Hermite interpolation and plots those

results

 on the graph. It provides two graphs:

 Hermite Interpolant.html

 Defect.html

Parameters : None

Returns : None

116

'''

def plotHermite():

 # Calling the hermite() function on the data at the smallest stepsize

 t, u, fe, d = hermite(config.t[len(config.t) - 1], config.y[len(config.y) -

1], config.f[len(config.f) - 1])

 # Creating lists to prepare them for plotting

 t_list = []

 u_list = []

 if (f.exactExists):

 f_list = []

 d_list = []

 fo r j in range (0, len(u[0])):

 t_list.append(t)

 u_list.append([])

 if (f.exactExists):

 f_list.append([])

 d_list.append([])

 # Preparing the lists for plotting

 for i in range (0, len(t)):

 for j in ran ge (0, len(u[i])):

 u_list[j].append(u[i][j])

 if (f.exactExists):

 f_list[j].append(fe[i][j])

 d_list[j].append(d[i][j])

 # Creating an object to create an HTML file for plotting

 bp.output_file("Plots/Hermite Interpolant.html")

 # Creating a figure to plot in the HTML file

 p = bp.figure(plot_width = 1366, plot_height = 768)

 # Plotting the data

 if (f.e xactExists):

 p.multi_line(t_list + t_list, u_list + f_list)

 else:

 p.multi_line(t_list, u_list)

 # Showing the data in the browser

 bp.show(p)

 # Creating an object to create an HTML file for plotting

 bp.output_file("Plots /Defect.html")

 # Creating a figure to plot in the HTML file

 p = bp.figure(plot_width = 1366, plot_height = 768)

 # Plotting the data

 p.multi_line(t_list, d_list)

 # Showing the data in the browser

 bp.show(p)

117

Methods.py

import Function as f

import config

methodNumber = alpha = beta = case = 0

def displayMethods():

 print ("1. Forward Euler Method")

 print ("2. Explicit Midpoint Method")

 print ("3. Heun's Second Order Method")

 print ("4. Second Order RK Met hod")

 print ("5. Heun's Third Order Method")

 print ("6. Ralston's Third Order Method")

 print ("7. Third Order RK Method")

 print ("8. RK4 Method")

 print ("9. FourthOrderRKMethod")

 mname = input(" \ nEnter the method with values respect ively (Use spaces

between the values like shown above): \ n")

 setMethodValues(mname, False)

def setMethodValues(mname, auto, caseNumber=None):

 global methodNumber, case

 methodNumber = int(mname)

 if ((methodNumber < 1) or (methodNumber > 9)):

 print ("No Method with that number. \ n")

 displayMethods()

 else:

 if (auto):

 case = caseNumber

 autoChooseCase()

 else:

 userChooseCase()

def autoChooseCase():

 # To fully automate this, the coefficients are assigned with the optimal

values

 global alpha, beta

 caseInfo = ""

 if (methodNumber == 4):

 alpha = 2/3

 caseInfo = " alpha=" + str(alpha)

 elif (methodNumber == 7):

 if (case == 1):

 alpha = 0.49650476

 beta = 0.75174749

 caseInfo = " c2=" + str(alpha) + " c3=" + str(beta)

 elif (case == 2):

 alpha = 1/8

 caseInfo = " b3=" + str(alpha)

 else:

 alpha = 3/8

 caseInfo = " b3=" + str(alpha)

 elif (methodNumber == 9):

 if (case == 1):

 alpha = 0.35774159

 beta = 0.59148821

 caseInfo = " c2=" + str(alpha) + " c3=" + str(beta)

 elif (case == 2):

 alpha = 0.83316441

 caseInfo = " b3=" + str(alpha)

 elif ((case == 3) or (case == 4)):

118

 alpha = 1/6

 caseInfo = " b" + str(case) + "=" + str(alpha)

 else:

 alpha = 1

 caseInfo = " c2=" + str(alpha)

 config.file.write(caseInfo)

def userChooseCase():

 global alpha, beta, case

 if (methodNumber == 4):

 alpha = input("Enter the alpha: ")

 i f ("/" in str(alpha)):

 res = alpha.split('/')

 alpha = int(res[0]) / int(res[1])

 else:

 alpha = float(alpha)

 elif (methodNumber == 7):

 print ("Case 1: if c2Í0, 2/3, c3; c3Í0, c2, then enter: 1 c2 c3")

 print ("Case 2: if b3Í0, where c3=0, then enter: 2 b3")

 print ("Case 3: if b3Í0, where c3Í0, then enter: 3 b3")

 choice = input(" \ nEnter your case choice: ")

 data = choice.split()

 for i in range(1, len(data)):

 if ("/" in str(data[i])):

 res = data[i].split('/')

 data[i] = int(res[0]) / int(res[1])

 else:

 data[i] = float(data[i])

 case = int(data[0])

 if (case == 1):

 alpha, beta = data[1], data[2]

 elif ((case == 2) or (case == 3)):

 alpha = data[1]

 else:

 print ("No case of that choice.")

 exit(0)

 elif (methodNumber == 9):

 print ("Case 1: 0, c2, c3, 1 all di stinct,",

 " \ nc2Í1/2 and 3 - 4(c2 + c3) + 6*c2*c3 Í 0, then enter: 1 c2

c3")

 print ("Case 2: c2 = c3 = 1/2, b3Í0, then enter: 2 b3")

 print ("Case 3: c2 = 1/2, c3 = 0, b3Í0, then enter: 3 b3")

 print ("Case 4: c2 = 1, c3 = 1/2, b4Í0, then enter: 4 b4")

 print ("Case 5: c2Í0, c3 = 1/2, b2 = 0, then enter: 5 c2")

 choice = input(" \ nEnter your case choice: ")

 data = choice.split()

 for i in range(1, len(data)):

 if ("/" in str(data[i])):

 res = data[i].split('/')

 data[i] = int(res[0]) / int(res[1])

 else:

 data[i] = float(data[i])

 case = int(data[0])

 if (case == 1):

 alpha, beta = data[1], data[2]

 elif ((case == 2) or (case == 3) or (case == 4) or (case == 5)):

 alpha = data[1]

 else:

 print ("No case of that choice.")

 exit(0)

119

def method(t, y, h):

 if (method Number == 1):

 return forwardEulersMethod(t, y)

 elif (methodNumber == 2):

 return explicitMidpointMethod(t, y, h)

 elif (methodNumber == 3):

 return HeunsSecondOrderMethod(t, y, h)

 elif (methodNumber == 4):

 return se condOrderRKMethod(t, y, h)

 elif (methodNumber == 5):

 return HeunsThirdOrderMethod(t, y, h)

 elif (methodNumber == 6):

 return RalstonsThirdOrderMethod(t, y, h)

 elif (methodNumber == 7):

 return thirdOrderRKMethod(t, y, h)

 elif (methodNumber == 8):

 return RK4Method(t, y, h)

 elif (methodNumber == 9):

 return FourthOrderRKMethod(t, y, h)

def forwardEulersMethod(t, y):

 fy = f.formula(0, t, y[:])

 config.ffy.append(fy)

 return fy

def explicitMidpointMethod(t, y, h):

 k1 = f.formula(0, t, y[:])

 config.ffy.append(k1)

 yn = []

 for i in range (0, len(k1)):

 yn.append(y[i] + ((h/2) * k1[i]))

 fy = f.formula(0, (t + (h/2)), yn[:])

 return fy

def HeunsSecondOrderMethod(t, y, h):

 k1 = f.formula(0, t, y[:])

 config.ffy.append(k1)

 yn = []

 for i in range (0, len(k1)):

 yn.append(y[i] + (h * k1[i]))

 k2 = f.formula(0, (t + h), yn[:])

 fy = []

 for i in range (0, len(k2)):

 fy.append((1/2) * (k1[i] + k2[i]))

 return fy

def secondOrderRKMethod(t, y, h):

 global alpha

 k1 = f.formula(0, t, y[:])

 config.ffy.append(k1)

 yn = []

 for i in range (0, len(k1)):

 yn.a ppend(y[i] + (h * (alpha * k1[i])))

 k2 = f.formula(0, (t + (alpha * h)), yn[:])

 fy = []

 for i in range (0, len(k1)):

 fy.append(((1 - (1/(2 * alpha))) * k1[i]) + ((1/(2 * alpha)) *

k2[i]))

 return fy

120

def HeunsThirdOrderMethod(t, y, h):

 c2 = 1/3

 c3 = 2/3

 b1 = 1/4

 b2 = 0

 b3 = 3/4

 a31 = 0

 a32 = 2/3

 k1 = f.formula(0, t, y[:])

 config.ffy.append(k1)

 yn = []

 for i in range (0, len(k1)):

 yn.append(y[i] + (h * (c2 * k1[i])))

 k2 = f.formula(0, (t + (c2 * h)), yn[:])

 yn.clear()

 for i in range (0, len(k2)):

 yn.append(y[i] + (h * ((a31 * k1[i]) + (a32 * k2[i]))))

 k3 = f.formula(0, (t + (c3 * h)), yn[:])

 fy = []

 for i in range (0, len(y)):

 fy.append((b1 * k1[i]) + (b2 * k2[i]) + (b3 * k3[i]))

 return fy

def RalstonsThirdOrderMethod(t, y, h):

 c2 = 1/2

 c3 = 3/4

 b1 = 2/9

 b2 = 1/3

 b3 = 4/9

 a31 = 0

 a32 = 3/4

 k1 = f.formula(0, t, y[:])

 config.ffy.append(k1)

 yn = []

 for i in range (0, len(k1)):

 yn.append(y[i] + (h * (c2 * k1[i])))

 k2 = f.formula(0, (t + (c2 * h)), yn[:])

 yn.clear()

 for i in range (0, len(k2)):

 yn.append(y[i] + (h * ((a31 * k1[i]) + (a 32 * k2[i]))))

 k3 = f.formula(0, (t + (c3 * h)), yn[:])

 fy = []

 for i in range (0, len(y)):

 fy.append((b1 * k1[i]) + (b2 * k2[i]) + (b3 * k3[i]))

 return fy

def setValuesForThirdOrder(alpha):

 if (case == 1):

 c2 = alpha[0]

 c3 = alpha[1]

 b1 = (2 - (3 * (c2 + c3)) + (6 * c2 * c3)) / (6 * c2 * c3)

 b2 = (c3 - (2/3)) / (2 * c2 * (c3 - c2))

 b3 = ((2/3) - c2) / (2 * c3 * (c3 - c2))

 a31 = (c3 * (c3 - (3 * c2) + (3 * c2 * c2))) / (c2 * ((3 * c2) - 2))

121

 a32 = (c3 * (c2 - c3)) / (c2 * ((3 * c2) - 2))

 elif (case == 2):

 c2 = 2/3

 c3 = 0

 b3 = alpha[0]

 b1 = (1/4) - b3

 b2 = 3/4

 a31 = - 1 / (4 * b3)

 a32 = 1 / (4 * b3)

 else:

 c2 = c3 = 2/3

 b3 = alpha[0]

 b1 = 1/4

 b2 = (3/4) - b3

 a31 = ((8 * b3) - 3) / (12 * b3)

 a32 = 1 / (4 * b3)

 return c2, c3, b1, b2, b3, a31, a32

def thirdOrderRKMethod(t, y, h):

 #Here, alpha is used for c2 or b3 and beta for c3

 global alpha, beta

 c2, c3, b1, b2, b3, a31, a32 = setValuesForThirdOrder([alpha, beta])

 '''print (" \ nc2 =", c2)

 print ("c3 =", c3)

 print ("b1 =", b1)

 print ("b2 =", b2)

 pri nt ("b3 =", b3)

 print ("a31 =", a31)

 print ("a32 =", a32)'''

 k1 = f.formula(0, t, y[:])

 config.ffy.append(k1)

 yn = []

 for i in range (0, len(k1)):

 yn.append(y[i] + (h * (c2 * k1[i])))

 k2 = f.formula(0, (t + (c2 * h)), yn[:])

 yn.clear()

 for i in range (0, len(k2)):

 yn.append(y[i] + (h * ((a31 * k1[i]) + (a32 * k2[i]))))

 k3 = f.formula(0, (t + (c3 * h)), yn[:])

 fy = []

 for i in range (0, len(y)):

 fy.append((b1 * k1[i]) + (b2 * k2[i]) + (b3 * k3[i]))

 return fy

def RK4Method(t, y, h):

 k1 = f.formula(0, t, y[:])

 config.ffy.append(k1)

 yn = []

 for i in range (0, len(k1)):

 yn.append(y[i] + ((h / 2) * k1[i]))

 k2 = f.formula(0, (t + (h / 2)), yn[:])

 yn.clear()

 for i in range (0, len(k2)):

 yn.append(y[i] + ((h / 2) * k2[i]))

 k3 = f.formula(0, (t + (h / 2)), yn[:])

122

 yn.clear()

 for i in range (0, len(k3)):

 yn.append(y[i] + (h * k3[i]))

 k4 = f.formula(0, (t + h), yn[:])

 fy = []

 for i in range (0, len(y)):

 fy.append((1/6) * (k1[i] + (2 * k2[i]) + (2 * k3[i]) + k4[i]))

 return fy

def FourthOrderRKMethod(t, y, h):

 #Here, alpha is used for c2, b3 or b4 and beta for c3

 global alpha, beta

 if (case == 1):

 c2 = alpha

 c3 = beta

 c4 = 1

 a31 = (c3 * ((3 * c2) - c3 - (4 * c2 * c2))) / (2 * c2 * (1 - (2 *

c2)))

 a32 = (c3 * (c3 - c2)) / (2 * c2 * (1 - (2 * c2)))

 a41 = (((c3 ** 2) * ((12 * c2 * c2) - (12 * c2) + 4)) - (c3 * ((12 *

c2 * c2) - (15 * c2) + 5)) + ((4 * c2 * c2) - (6 * c2) + 2)) /

((2 * c2 * c3) * (3 - (4 * (c2 + c3)) + (6 * c2 * c3)))

 a42 = (((- 4 * c3 * c3) + (5 * c3) + c2 - 2) * (1 - c2)) / ((2 * c2) *

(c3 - c2) * (3 - (4 * (c2 + c3)) + (6 * c2 * c3)))

 a43 = ((1 - (2 * c2)) * (1 - c3) * (1 - c2)) / (c3 * (c3 - c2) * (3 -

(4 * (c2 + c3)) + (6 * c2 * c3)))

 b1 = (1 - (2 * (c2 + c3)) + (6 * c2 * c3)) / (12 * c2 * c3)

 b2 = ((2 * c3) - 1) / ((12 * c2) * (c3 - c2) * (1 - c2))

 b3 = (1 - (2 * c2)) / ((12 * c3) * (c3 - c2) * (1 - c3))

 b4 = (3 - (4 * (c2 + c3)) + (6 * c2 * c3)) / (12 * (1 - c2) * (1 -

c3))

 elif (case == 2):

 b3 = alpha

 c2 = c3 = 1/2

 c4 = 1

 a31 = ((3 * b3) - 1) / (6 * b3)

 a32 = 1 / (6 * b3)

 a41 = 0

 a42 = 1 - (3 * b3)

 a43 = 3 * b3

 b1 = 1/6

 b2 = (2 / 3) - b3

 b4 = 1/6

 elif (case == 3):

 b3 = alpha

 c2 = 1/2

 c3 = 0

 c4 = 1

 a31 = - 1 / (12 * b3)

 a32 = 1 / (12 * b3)

 a41 = (- 1/2) - (6 * b3)

 a42 = 3/2

 a43 = 6 * b3

 b1 = (1/6) - b3

 b2 = 2/3

 b4 = 1/6

 elif (case == 4):

 b4 = alpha

 c2 = 1

 c3 = 1/2

 c4 = 1

123

 a31 = 3/8

 a32 = 1/8

 a41 = 1 - (1 / (4 * b4))

 a42 = - 1 / (12 * b4)

 a43 = 1 / (3 * b4)

 b1 = 1/6

 b2 = 1/6 - b4

 b3 = 2/3

 elif (case == 5):

 c2 = alpha

 c3 = 1/2

 c4 = 1

 a31 = ((4 * c2) - 1) / (8 * c2)

 a32 = 1 / (8 * c2)

 a41 = (1 - (2 * c2)) / (2 * c2)

 a42 = - 1 / (2 * c2)

 a43 = 2

 b1 = 1/6

 b2 = 0

 b3 = 2/3

 b4 = 1/6

 k1 = f.formula(0, t, y[:])

 config.ffy.append(k1)

 yn = []

 for i in range (0, len(k1)) :

 yn.append(y[i] + (h * (c2 * k1[i])))

 k2 = f.formula(0, (t + (c2 * h)), yn[:])

 yn.clear()

 for i in range (0, len(k2)):

 yn.append(y[i] + (h * ((a31 * k1[i]) + (a32 * k2[i]))))

 k3 = f.formula(0, (t + (c3 * h)), yn[:])

 yn.clear()

 for i in range (0, len(k3)):

 yn.append(y[i] + (h * ((a41 * k1[i]) + (a42 * k2[i]) + (a43 *

k3[i]))))

 k4 = f.formula(0, (t + (c4 * h)), yn[:])

 fy = []

 for i in range (0, len(y)):

 fy.append((b1 * k1[i]) + (b2 * k2[i]) + (b3 * k3[i]) + (b4 * k4[i]))

 return fy

124

ivode.py

import math

global constants for the IVODEs

alpha = beta = gamma = delta = theta = 0

'''

Name: setConstants

Description: This function sets the constants for the chosen IVODE.

Parameters:

 a : contant for the IVODE.

 b, c, d, e : contant for the IVODE (optional).

Returns: None

'''

def setConstants(a, b=None, c=None, d=None, e=None):

 global alpha, beta, gamma, delta, theta

 alpha, beta, gamma, delta, theta = a, b, c, d, e

'''

Names: simple, predatorPrey, simple_sys, TestF4, TestF5, TestF6, TestF7

Description: These functions return the derivative values, exact

 values or associated error for the IVODEs with

 respect to user's choice.

Parameters:

 i : i is an integer value to return the respective value.

 t : t is the point on the domain.

 y : y is the approximate numerical so lution for the IVODE.

Returns:

 if (i == 0):

 the IVODE value.

 if (i == 1):

 exact value for the IVODE. (if exists)

 else:

 Error associated with the IVODE. (if exists)

'''

def simple(i, t, y):

 # I VODE

 if (i == 0):

 return [y[0] * (- 1)]

 # Exact value for the IVODE

 elif (i == 1):

 return [math.exp((- 1) * t)]

 # Error associated with the IVODE

 else:

 return [y[0] - math.exp((- 1) * t)]

def predatorPrey(i, t, y):

 # IVODE

 if (i == 0):

 return [((alpha * y[0]) - (beta * y[0] * y[1])), ((delta * y[0] *

y[1]) - (gamma * y[1]))]

def simple_sys(i, t, y):

 # IVODE

 if (i == 0):

 return [y[1], (y[0] * (- 1))]

 # Exact v alue for the IVODE

 elif (i == 1):

 return [math.sin(t), math.cos(t)]

 # Error associated with the IVODE

 else:

 return [y[0] - math.sin(t), y[1] - math.cos(t)]

125

def TestF4(i, t, y):

 # IVODE

 if (i == 0):

 return [(- 1/2) * (y[0] ** 3)]

 # Exact value for the IVODE

 elif (i == 1):

 return [(1 / math.sqrt(1 + t))]

 # Error associated with the IVODE

 else:

 return [y[0] - (1 / math.sqrt(1 + t))]

def TestF5(i, t, y):

 # IVODE

 if (i == 0):

 return [- 2 * t * (y[0] ** 2)]

 # Exact value for the IVODE

 elif (i == 1):

 return [(1 / (1 + (t ** 2)))]

 # Error associated with the IVODE

 else:

 return [y[0] - (1 / (1 + (t ** 2)))]

def TestF6(i, t, y):

 # IVODE

 if (i == 0):

 return [(1/4) * y[0] * (1 - (y[0] / 20))]

 # Exact value for the IVODE

 elif (i == 1):

 return [(20 / (1 + (19 * math.exp(((- 1) * t) / 4))))]

 # Error associated with the IVODE

 else:

 return [y[0] - (20 / (1 + (19 * math.exp(((- 1) * t) / 4))))]

def TestF7(i, t, y):

 # IVODE

 if (i == 0):

 return [(- 1 * alpha * y[0]) - (math.exp(- 1 * alpha * t) *

math.sin(t))]

 # Exact value for the IVODE

 elif (i == 1):

 return [(math.exp(- 1 * alpha * t) * math.cos(t))]

 # Error associated with the IVODE

 else:

 return [y[0] - (math.exp(- 1 * alpha * t) * math.cos(t))]

'''

Name: sampleCOVID19ModelInitializer

Description: This function sets the constants for the COVID - 19 model

 and returns its initial values.

Parameters: None

Returns:

 initial values of the COVID - 19 model.

'''

def sampleCOVID19ModelInitializer():

 setConstants(0.125, 0.9, 0.06, (0.01/365), 37.741e06)

 y03 = 1

 y02 = 103

 return [theta - y03 - y02, y02, y03, 0]

'''

Names: sampleCOVID19Model

126

Description: This function returns the derivative values for the IVODEs.

Parameters:

 i : i is an integer value to return the respective value.

 t : t is the point on the domain.

 y : y is the approximate numerical solution for the IVODE.

Returns:

 if (i == 0):

 the IVODE value.

'''

def sampleCOVID19Model(i, t, y):

 # IVODE

 if (i == 0):

 y1 = ((- beta * y[0] * y[2]) / theta) + (delta * theta) - (delta *

y[0])

 y2 = ((beta * y[0] * y[2]) / theta) - ((alpha + delta) * y[1])

 y3 = (alpha * y[1]) - ((gamma + delta) * y[2])

 y4 = (gam ma * y[2]) - (delta * y[3])

 return [y1, y2, y3, y4]

127

FileIO/FileIO.py

import os

class FileIO:

 def __init__(self, filename, accessMode):

 if accessMode in ['r', 'rb', 'r+', 'rb+', 'w', 'w+', 'wb', 'wb+',

'a', 'a+', 'ab', 'ab+']:

 if ((accessMode in ['r', 'rb', 'r+', 'rb+']) and not

(os.path.exists(filename))):

 print ("The given path is not a file, directory or a valid

symlink.")

 else:

 self.file = open(filename, accessMode)

 else:

 print ("Invalid access mode.")

 def changeAccessMode(self, accessMode):

 if (self.isCreated()):

 self.file.close()

 self.file = open(self.file.name, accessMode)

 else:

 print ("The o bject is not initialized. Check the file path or the

accessMode.")

 def read(self):

 if (self.isCreated()):

 if not (self.file.readable()):

 self.changeAccessMode("r")

 return self.file.read()

 else:

 print ("The object is not initialized. Check the file path or the

accessMode.")

 return "Nothing to read"

 def readLine(self):

 if (self.isCreated()):

 if not (self.file.readable()):

 self.changeAccessMode("r")

 data = self.file.readline()

 return data

 else:

 print ("The object is not initialized. Check the file path or the

accessMode.")

 return "Nothing to read"

 def write(self, data, end=' \ n'):

 if (self.isCreated()):

 if not (self.file.writable()):

 self.changeAccessMode("a")

 data = data + end

 self.file.write(data)

 else:

 print ("The objec t is not initialized. Check the file path or the

accessMode.")

 def name(self):

 return self.file.name

 def mode(self):

 return self.file.mode

 def isCreated(self):

128

 return hasattr(self, 'file')

 def __del__(self):

 if (self.isCreated()):

 self.file.close()

	Abstract
	Introduction
	Background
	2.1 Initial Value Ordinary Differential Equations
	2.2 Numerical Methods for Solving IVODEs: Explicit Runge-Kutta Methods
	2.3 Optimal ERK methods
	2.4 Continuous extensions of discrete solutions from ERK methods
	2.5 The Defect of the Continuous Approximate Solution

	Software Implementation
	3.1 Optimization Software
	3.2 Software for Testing Explicit Runge-Kutta Methods
	3.3 How to add a new IVODE

	Results and Discussion
	4.1 Optimal ERK methods and Comparison with Standard Methods
	4.2 Experimental Verification of Order of Convergence
	4.3 Comparison of standard and optimal ERK methods: Accuracy and Efficiency
	4.4 Continuous Approximate Solutions and Corresponding Defects

	Summary, Conclusions, and Future Work
	Bibliography
	Appendix

