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Abstract

Python Tools for the Investigation of Optimal Explicit Runge-Kutta
Methods

By

Shivam Singla

The investigation of many realorld applicationgnvolvesmathematical models that consist

of systems of ordinary differential egtions (ODESs)This thesismainly focugson the ODEs
with the initial values known asitial value ordinary differential equation¥hese equations
are typically solved using numerical methods to ob&gproximate solutionsA popular class

of numerical methods to solve an initial value Gid&theExplicit Rung&utta (ERK) methods.
This thesis considePython software for the inaigationof ERK method€€RK methods can
be used to obtain approximate solutions at a discrete set of points across the domain of
interest, with"Qbeing the distancéetween the pointsAn ERK method is said to be of order

) if the error of the numericasolution is proportional t&Q . In this thesiswe considelPython
softwarefor the determination of optimal ERK methods of ordete 1. ThePythonsoftware

also has the capabilityy solve a set of test problems using various ERK metimodsder to
allow for a comparison othe accuracy of the numerical solutions obtainfedm the ERK
methods. ThéPythonsoftwarecan also beisedto extend the discrete approximate solutions
from the ERK methods to obtain continuous approximate solutions oveetitiee domain
using Hermite interpolationlo assess the accuracy of the continuous solution approximation,
the softwarecan also beised to compute the defect of the continuoapproximatesolution,
where defect is the amount by which the continuous apginsate solution fails to satisfy the
ODE.

Date: September 09, 2021
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Chapter 1

Introduction

Initial Value Ordinary Differential Equatiof@DEsarise withinmathematicamodels in a wide
variety of applications such abke PredatorPrey problem,COVIBL9 modes, population
growth and decay problems, survivablity with AIDSproblems, economics andfinance
problems, etc. Typically, these initial value ODEs are too complicated to be solved by hand.
Approximate numerical solutions must be computed. There are a wide variety of numerical
methods for solving initial value ODEs, buthis thesis, we are going to focus on one of the

most popular classes of methodsa | Explidit Rung&utta methodQ

In this thesis, we survey speciigamples of Explicit Rundiutta method that have been
developed over the year§Ve also showhe general forms of Explicit Runf@itta methods of
orders¢hoandt. These general forms have free coefficients. One important part of this thesis
involves determiningoptimal values for these free coefficients so that the methods are as
accurate as poflsle. We have developed Python software for determining optimal values for
the free coefficients based on minimization of the Principal Error Coefficient (to be defined in

Chapter 2) of the Rung€utta methal.

We also comparesomestandard Explicit Rung€utta methods with th&RungeKutta methods
that haveoptimal values for the free coefficient$he comparison involgeapplyingthese
methodsto solvevarious initial value ODE®e usea Python toolwe have developedor
applying Eplicit RungeKutta methods to selected test initial value ODEse tool computs
the error at the end of thdime domainfor the problems that have a known exact solution

along with thestepsize used and tharder of convergence (to be defined in Chap2drFor



the problems withanunknown exact solutiorthe Python tool provides the numerical solution

approximation at the end of theme domainalong with the stepsize used.

The Explicit Rungutta methods give discrete solution approximations at certain points
across the domain. Based on the use of Hermite interpolaméscan extend the discrete

solution toproduce a continuous solution approximation across the whole domain

However,the quality ofthis continuousnumerical solutiormust be assesse®nce we have
computedthe continuous solution approximatiome plug it into the initial value ODE to check
how large the defect isThe defect is the amount by which the contous approximate
solutionfails to satisfy the differential equatiofthe Python tool also compua¢he defectfor
the continuous approximate solution. Then, it prowsdeplot of the continuous approximate
solution and a plot of the defectvhich gives aneasure ofthe accuracy ofhe continuous

approximate solutio.

In this thesis, we investigate an important questiegarding choosinthe free coefficients of

a general ERK method to minimize the Princirabr Coefficient of the method. The actual
error of a computed numerical solution dependsttie linear combination of products of the
components of the Principal Error Coefficient and higher derivatives of the right hand side of
the ODEON the other hand,he Principal Error Coefficient has comporeetitat depend only

on the ERKmethod. This means that there is a difference betweshoosing the free
coefficients of an ERK method to minimize the Principal Error Coefficient and minimizing the
actual error of a numerical solution computed by the ERK oubthiherefore, we expect that

the optimal ERK methodsbtained by minimizing only the Principal Error Coefficiaal not
deliver the smallest errgdepending on the problem, especially for cases where the standard
methods are nearly optimal. Based on nemcal testing on a set of test initial value ODEs, we

investigate how often the optimal ERK methods are actually able to deliver the smallest error.



As mentioned above, atandard use of an ERK method provides a set of discrete solution
approximations at points across the problem domaistandard ERK solver would employ an
algorithmfor estimating the error of the discrete solution approximations and adjusting the
ERK mihods so that the error for each discrete solution approximation is less than a user
provided tolerance. Another important aspect of this thesis is to introduce a simple method
for extending the discrete solution to contain a continuous approximate saiditiowhich the
accuracy can be assesseddxnaminingts corresponding defecfs the continuous numerical
solution isthe solution thatis returned to the user by current ODE solvers, it is important to
assess the accuracy of the continuous approximatet®n rather than only the discrete

approximate solution.

The thesis is organized as follows:

1. Chapter 2BackgroundThis chapter includean explanation of the Initial ValuBDEs

general andstandard forns of ERK methodsoptimal ERK methodalong withorder
conditions and Principal Bror Coefficients continuous approximate solutions
Hermite interpolantsandthe computation of thedefect.

2. Chapter 3 Software Implementatio his chapter includes thdocumentation and

description of the Pythomsoftware created for optimization of thERK methoddt
also includeshe Python software fotestingERK methodand obtaining a continuous
approximate solution and its defects.

3. Chapter 4 Results and Discussibhis chapter includethe results of theoptimization

software and the discussion dghe optimal ERK methodand their comparisonvith
standard methodslt also includes theexperimental confirmation of therder of
convergenceof the methodsalong withthe comparison betweerthe standardERK

methodsand optimal ERK method&hen usedon the test initialvalue ODEg=inally,



this chapter icludesthe results and discussions dhe continuous approximate
solutions and their corregmding defects

4. Chapter 5Summary, Conclusions, and Future Woflis chapter includes the

summary and conclusions of this thealeng withsomesuggestions fofuture work.
5. Appendix The appendixincludes thepython scripts which build the optimization
software as well as the software for testing tHeRK methods and computing

continuous approximate solution and their defects



Chapter 2

Background

In this chapter, wdirst introduce Initial Value Ordinary Differential Equations (IVOD/th
examplesas well asiumerical methods for solvinpose VODEsWe focus orexplicit Runge
Kutta (ERK) method8utc87] We present thegeneral formfor ERK methods and provide
someexamples. The we discussorder conditiong[Butc87]and Principal Eror Coefficients
[Butc87]for ERK methodand explain how these can be used to obtain optimal ERK methods
of a given orderThis chapter alsocludes aroverview of continuous extensiofButc87]of
discrete solutions from ERK methods. Finally, we disassessment of the quality of the
continuous solution approximation based time computation of thedefect [Enri89]of the

continuous numerical solution

2.1 Initial Value Ordinary Differential Equatins

AnlVODEalso known as Initial VallReoblem (IVP)is an ordinary differential equatiof©DE)
togetherwith an initial condition. The initial conditionspecifieghe initial value othe solution
to the ODEat a specific point in the domairin this section, we show the general fofor an

IVODEandgivesome examples that we usater in the thesis as test problems
2.1.1 General Form
The general form of an IVODE is

wda © A AT A w06 "Qowo h

inwhich@a a © g .lItalso has an initial condition whigpecifies



whereo is a given pointand N a s a given constant vector.

Ford p, 06 is the vector ® ofwo 0RO 6 and the differential equation is

replaced by a system efjuations,
O Qi ohd OO 0 h Q phgiB s
2.1.2 Example 1
First, we start with a exampleof an IVODESAP97)
Q) caw h
with initial value,m  p and exact solution,

hh ——8
P w

The finalovalue for this IVOD#hat isused in this thesis p.

2.13 Example 2

This is another example an IVODESAP97]

o 2on
C
with initial value,w T p and exact solution,
ho 8
Mp @

The finalbvalue for this IVODfBat isused in this thesis p.

2.14 Example 3

The next examplef an IVODE SAP97)

|
h|8~
=]

&



with initial value@ m  p and exact solution,

" ¢
ww —_8
P PV

The finalovalue for this IVOD#hat isused in this thesis p.

2.15 Example 4

Anotherexampleof an IVODES[SAP97)]

® I ©Q Om®kh

whereg| is a constant between 0 and 1. We chopse 1@ for our computations in this thesis.

The initial value for this IVODEidST  p andthe exact solutions,

W Q Ald®

The finalovalue for this IVOD#Bat isused in this thesis p.

2.16 COVIBR19 Model Example

Thisexample for an IVOO&a standardCOVIEL9 mode] an example of a SEIR epidemiological

model,involvingthe following system of equatiorf€hri20]

() ~ “0 ‘wh
0
. Tow L~
() - | wh
0
®w |® T ‘ wh

where



w @ T £AHAOCAA
w YRAAT GGAOAA

and the constants are,

E

Fﬁ 0 oOXTppTS

5«
—
7

™

€10

o

S

The initialconditiors for this IVODEre w 1t 0 w wlhononm, wherew pmo

and @ p.

The final time thatsused in this thesisi& p v.TT

2.2 Numerical Methods forSolving IVODESs: Explicit Rung¢itta
Methods

To find the approximate solution 6WODE, we usea popularfamily of methodsknown as the

W9 E LI A CKutta (ERKpyedt Sh o thasé methods are generalization of theW 9 dzf S NJ
Y S (i K al$dknhown asthe Worward Euler methddA member of theRungeKutta family

which is the most widely known methad thistype i svY 1 h & SwihKI2ifEo known

as tclhssical ‘Rung¥ dzii G I YOS ( Kjth&ksRungeY dzi G I YThei &R @
conver genw¥n f ¥ 8d4kThdgbal error of an ERK method is the difference
between the numerical solution it computes and the exact solutionrtd\(ODE. The global

error is proportional to some power &f) where™Qis the stepsize used by the ERK method.
When the global error is proportional @ , we say that the global erroris 'Q , and the ERK

method is said to be of ordef.
2.2.1 General Form

An ERK method can be used to obtain discrete numerical solution approximaiiongy 0
at a set of pointsp 0 €"Q where™Qis the stepsize used by the ERK meth@dis the

distancebetween thed values)



The general form for ahstage ERK methd8utc87]is,
o © Q0 o E &Qh
for¢ TiphcB, where
N Qohd h

QN Q0 Oy QO Q h

N Q0 OBy QO Q O Q h

D QO OB QO Q ©®©0Q E o Q 8

The vectorsQRQB AQ, are called the stages of the ERK methibdobtain a specificERK
method, onemust specifythe integeri (the number of stages)and the coefficientsd
Aip0Q Qi ,bo AI'®phBH andd AI"® chof8 A . These coefficients are
determined by requiring them to satisfy a set of equations known as RKnogea order

conditions. We discuss these conditions later in this chapter.

The matrixd with the elements?d is called theRungeKutta marix, with & and ¢ known as

the weightsand thenodesrespectively

The coefficients that define an ERK method are usually stored in a table, knovBugshar

tableau(namedafter John Butchex

i

O |

[ N B M

e | & E

w | ® O 8 o
o ® 8 w0 0w




where (usually)

O O AI'D oS

2.2.2 TheFirst OrderERKMethod: The Forwardeuler Method

The most basic explicit method faumerical integration of ordinary differential equations is

theWC 2 N¥ | KER)a S dK HiREe simplestexample of &RungeKuttamethod.

Forthe generallVODElefined above, i.e.

»o QUwo h w6 wh

and fr a given solution approximationy , ato , with a stepsizéQ the FE method has the

form

) ©w Qo AlEO miphhs 8
This method is simple to use and works reasonably Wedla first order methodvhich means
that if the stepsizéQis reduced by a factor af, then the error will also be reduced by a factor

of ¢. The FE method has a global error thai i¥2, which means that the order for FE method

isp. The global erroforw isQ S WO S
2.2.3 Second OrdeERKMethods

A ®condorder ERK method is a method which has orgland provides twice the accuraof
the FE method. This means that if the step&ikereduce by a factor of;, then the error will
bereduced by a factor of. The global error for these medds ish Q .

2.2.3.1 General Form

The general form for a twetage, second order ERK method is

® ® MO0 ®oQh

10



for¢ TiphcfB, where

Q Q0 oo QH Q 8
This method is called a twstage method because it involves tstageevaluations. The first
stageis
T Qo
and the second is

QN Q0 O QO Q 8

TheButchertableaufor a two-stage, second order ERK method is:

T Tt T
&) &) Tt
@ @
Here, the matrio is
o m T,
(0] (:) n h
the weights are
® p —p~— —p~—
Cw CW
and the nodes are
O T 08

In order for this general twstage ERK method to be second order, tbefficients must be
chosen to satisfprder conditions. These conditioase discussed later in this chapter. When

the conditions for second order are imposed on the coefficients of the generalstage,

11



second order ERK method, it turns out that ak toefficients can be expressed in terms of

one free coefficient.

The Butcher tableaustoring the coefficients for a twstage, second order ERK method

[Butc87]is:
I T 1
) @ T
p p
P& @

Substituting the coefficient valuestonthe general form, we get

G b Qp R 06 oo OTmD 8
6 38

There are several welinown two-stage, second order ERK methods, but we discuss only two
of them. Those two methods are thexplicit Midpoint methodButc87]andl Sdzy Q&4 Y S G K2 F

[Butc87]
2.2.3.2 Explicit MidpointMethod

The Explicit Midpoint methods a two-stage, second order ERK method with the coefficient

value @ -.

After substituting the valugy - into the general form of twestage, second order ERK

method, we get
w w QQo Ehoo E Q0 hw

for¢ TiphcB . TheButchertableaufor the ExplicitMidpoint methodis:

12



P P m
S C
m P

The name of the method itself suggesith at ' s happening in the
that the first argument of the functiofQls evaluated ab  —, which is the midpoint between

0 and0 . Note, the second argument of the functi@@ooks like the FE method but with
half the ¢epsize In order to utilize this method, we first use the FE method with half the
stepsize to computa solution approximation and thense that approximation as the second
argument for the functiorito obtain the solution approximatioat the end of tke step.The

two-stages involved in the computation of ti&plicit Midpoint methodre:

The Explicit Midpoint methogbrovides more accurate results for a given choic&pbut it

requires a bit more computation thathe FE method.
2.2.33 | S dzp&eaénd OrdeMethod

HS dzys€rand ordemethodis a twestage, second order ERK method with the coefficient
value @ p.After substituting the valuéy  pinto the general form of twestage, second

order ERK method, we get

® & Q=00

N O
¢
<
<

Q . . .
() () c "Qoho QO hw "QQO
for¢ TiphcfB . TheButchertableaufor thel S dzgetoad ordemethodis:

13

forn



al el =]

P
G

Note, in this method, the second argument of the second funci@sfrom the FE method.
We first obtain the solution approximation by using FE method and then use that
approximation as the second argument in the second funct@mo find the solution

approximation at the end of the step.
2.2.4 Third Order ERKMethod

In this subsectionye discussthree-stage, hird order ERK methal This means that if the
stepsiz€éQs reduced by a factor @f, then the error will be reduced by a factorafThe global

error for these methods i8 Q .
2.2.4.1 General Form
The general form for a threstage, third order ERK method is

) ® MO0 ©Q o0h

fort riphcfB, where

The generaButcher tableador three-stage, third order ERK method is:

14



) 1) Tt Tt
® IR IR Tt
® @ @

where

The coefficients must satisfy the order conditions for third order. When the order conditions
are imposed, the coefficients of the method can all be expressed in terms of one or two free
coefficients.It turns out that threestage, third order methods havifiree different cases

[Butc87]

Case 1. A 2parameter family of threestage third order ERK methods with the conditigns

In this case, there are twiree variables® and ®. TheButchertableaustoring

the coefficients for a threetage, third order methodor this cases:

E4 e

2o
~|ER

© n
ow ¢
o0 8N 5o S S ¢
S 0w ~m~ o Kl w ]
Pw O W O O W O
Here, the matrixo is
s 1 .
ho, @ LI
0w ow 0w Www o 0
—= — T
Uu o ow ¢ W ow ¢ U

15



the weights are

and the nodes are

O MmO ®8

Substituting the coefficient values in the general form, we get

¥ ol v . C C i
ow o W . W = o = W -
(b (b "(2 c I (pu) !Q GG 0-7 Q 707 7 Q
oW W CO W CWO W W
fort riphcB, where
N Qoho h

Q

(i)o'oou)od)TQ o0 O .
W q

Case 2. A l-parameter family of threestage third order ERK methods with the condition

® T

In this case, there is only orieee variable & . The Butcher Tableastoring the

coefficients for a threestage, third order methodor this cases:

Tt Tt Tt Tt
S E U Tt
(0) o

p p

Tt - -5 Tt
TW TW

5 o 5

E w — w
T T

16



Here, the matrix0 is

e T[l,l
oy c .
o = 114
0 11 0 Iy
1 P p T[l’l
Uutw Tw U
the weights are
¥ - o
w P w - W
T T
and the nodes are
® T 5 8

Substituting the coefficient values in the general form, we get

’. p T 0-7 7R
() W Q — 0o Q -Q wQ
T T
fort riphcB, where
QN Qoho h
. Q Ko
Q Qo c—hm Q &= h
o o
T Qo — 10 0 8

Case 3. A l-parameter family of threestage third order ERK methods with the condition

® T

In this case, there is only orieee variable & . The Butcher Tableastoring the

coefficients for a threestage, third order methodor this cases:

17



Tl T T T
S S n T
o o
< o o L -
o P Q W
p S 5 &
T T
Here, the matrido is
o n n 1l
« ' S T T
o 110 iy
[ §o _ o LN T[l’l
upQ Tw U
the weights are
5 (0} ~ ~
w P g 0 W
T T
and the nodes are
O T S S 8
o O

Substituting the coefficient values in the general form, we get

() () Q — - 0w Q wQ
T T
fort riphciB, where
N Qoho h
. "0 .
Q Qo c—hoo QC— h
o o
N KO) 0 H o . o
Q Qo c—ho[) — b Q Q 8
o W o

18



There are several welinown threestage, third order ERK methods, but we discuss only two
of them. The two methods are S dzghi®l@rder method[Butc87]andw | f & thigl yroek

method[Butc87]
22421 Sdzy Qad ¢ KANR hNRSNJ) aSGiK2R

| S dzyTiikd Ordermethod is a tree-stage, third order ERK methqdCase 1with the
coefficient valus® -andc  -. After substituting the value®y -and@ - into the

general form of threestage, third order ERK method, Case 1, we get

~ ~
g

W w - Q oQ
where
QN Qoo h
. o . 0.
Q Q0 -hw "0O—~h
o o

fort TiphcB . TheButcher Tableator thel S dzhidl®rdermethodis:

Tt Tt Tt Tt
P P mn mn
(o) o
> T S m
(o) o
o
P 1 o
T T

19



2243wl f 332y Q38 ¢KANR hNRSN) aSiK2R

Ralstorf2 &hird Ordermethod is a threestage, third order ERK method, Case 1, with the
coefficient valuesb -andc  -. After substituting the value®y -andd - into the

general form of threestage, third order ERK method, Case 1, we get
v v 'Q X, ~, X
w w —-¢Q o0Q 1Q
w

where

Q "Qoho h
. Q. Q.
Q Q0 —-hw "0O—nh
G G
e ... 07Q, oQ
Q Q0 —hw
T T

foré¢ mifphcfB . TheButcher Tableator thew | f & (i 2 y Q amethddis NR 2 NR S NJ

Tt Tt Tt Tt
E - Tt Tt
q C
o) o)
— Tt — Tt
T T
S P I
w o) w

2.2.5 FourthOrderERKMethod

For afourth order ERKnethod, if the stepsizéQis reduced by a factor af, then the error will

be reduced by a factor of 16. The global error for these methods® .

2.2.5.1 General Form

The general form for a fotstage, fourth order ERK method is

20



® ® O 00 60 oQh

fort riphckB, where

Q Q0 OO VO T O o 8

This method is called a fogtage method because it involvie four stageevaluations given

above.The generaButcher tableador afour-stage, fourth order ERK method is:

€
()
3
=3
3

€
()
s
|
ps |

e
()
s
)
pu |

A

€
e

@

The coefficients must satisfy the order conditions for fourth order. When these order

conditions are imposed, the coefficients of the method can all be expressed in terms of one or

two free coefficientslt turns out that thefour-stage, fourth order methds havdive different

caseqButc87]

Case 1.

A2-parameter family of fowstage, fourth order ERK methods with the conditions

nhofofp all distinct;d -ando T © @O T

In this case, there are twivee variables ® and®. TheButcherTableaustoring

the coefficients for dour-stage, fourth order ERK method for this case is:

21



Tt Tt Tt Tt Tt
) &) T i3 s
+ | ®DoR O T OO O
) : : - a Tt Tt
P W O P CO
p (%) @ W i
P CO O PO® cw p P C® o Th ® IG
P QG PODO O p ® POLO O p O pep ®p O
where

DPpe PO T VPO pd® U TO P ¢
BHho TH » ek

3 T LW ® ¢ p © :
w v X 7 7. 7. ¥ X
COW W 0o TW W OB
P CO P GpPp @ .
WW W0 TW 0 MWW
Here, the matri0 is
Tt 11 nom
o o m o,
o LL v v v v ¥ .
o) ow T® W W -
P : : : T T[',h
Il Cwp CW Cw P QW 1
u () () O T
where® ,® andd areas giverabove.The weights are
&)pc(fafocpdf cw p p O ocTO © PO
P Q& POW® ®pPp O PO ® P @ PGP O p @

and the nodes are

€
=
S
S
©
o

22



Case 2. Al-parameter family of foustage fourth order ERK methods with the conditions

O O - n

In this case, therés only onefree variable ® . TheButcher Tableastoring the

coefficients for dour-stage, fourth order ERK method for this case is:

i i T T m

P P m T T

C C

P o p P

P — m T

R o) o)

p T p Ow o0 m
p < s o P
® o o

Here, the matri)0 is

T T m T
o 1]
P >
11 E Tt T
0 15 |’ﬁ
kL R
L Qw ¢w ~ I
u T P ow ow T
the weights are
A
¢ O Q
and the nodes are
” P P
W T - - 8
¢ Q P

23



Case 3. Al-parameter familyof four-stage fourth order ERK methods with the conditions

® - mo m

In this case, there is only orfeee variable ® . TheButcher Tableastoring the

coefficients for dour-stage, fourth order ERK method for this case is:

Tt Tt Tt Tt Tt
= = Tt Tt Tt
C C

P P

1Lt — — Tt U
P @ P @

P P 2 R m
C o G

P < 5 P

() o ()

Here, the matri0 is

T T m T
oy p 1]
[ T 0
1] G .
6 u P P 5 b
I P P @ I
lp - o . |’!
u g Pw C ¢w Ty
the weights are
6 P o S P
¢ o ()
and the nodes are
= p
W T - T 8
C p

24



Case 4. Al-parameter familyof four-stage fourth order ERK methods with the conditions

o ph - =«

In this case, there is only orfeee variable ® . TheButcher Tableastoring the

coefficients for dour-stage, fourth order ERK method for this case is:

s s I I 11
) ) m m i
P ° P n m
C U U
o P P L
P 0 0o o0
P P& s &
0] 0] o
Here, the matrixo is
I I s T[l,l
ﬁ P n n nl’l
L ° P T Th
11 llJ llJ 1
1 p p P )
l_J5 M pe on U

the weights are

o PP g S
(ORI o
and the nodes are
= p
W T - 8
p C p

25



Case 5. Al-parameter familyof four-stage fourth order ERK methods with the conditions

® m - m

In this case, there is only orfeee variable ® . TheButcher Tableastoring the

coefficients for dour-stage, fourth order ERK method for this case is:

i i i i T
) &) 03 03 n
P r('bN P P . -
4 T4 1A
p_co P o
p ) o q
P - S P
¢ o ¢

Here, the matrix0 is

T T T™oT
o T,
o 1T p p T[:’-F]
0 : — ’
T I
P QW p Xl
i w ¢
the weights are
o PSP
() c 9
and the nodes are
= ~ P
W T - 8
C p

There are several welinownfour-stage,fourth order ERK methods, but we discuss only two

of them. Those two methods atbe Classical Rungéuttamethodandthe 3/8 Rulemethod
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2.2.5.2 TheClassical RungKutta Method

The mostwidely known and usedype of RungeKutta method is known athe WOf | 4 & A O f
RungeY dzii ( | YSvivk2 Rras @ K R R Qwvdizy/ (8IS  1BStéBK & iR &fourstage,

fourth order ERK method, Case 2, with the coeffitivalug c0  -. After substituting the

value® - into the general form ofour-stage fourth order ERK method ase 2we get
. . Q. . e
w w 5 Q ¢cQ ¢Q 1Qh

where

fort riphgfB . TheButcher Tableator the classical RungKutta methods:

Tt Tt Tt U Tt

P P n T T

C C

E Tt E Tt Tt

C C

p T T p T
P P P P
¢ Y o ¢
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2.2.53 The3/8 Rule Method

The 3/8 Rule methodButc87]is a fourstage fourth order ERK methdcom Case 1 with
coefficient values® -and@  -. After substituting the value®d -and® - into the

general form of fowstage, fourth order ERK method, Caseve get

) w 0 p*Q 0*9 0*9 p*Q h
U] U] U] U]
where
Q "Qohn h
R * M o I
Q Qo —-h® " h
o (0}
N cQ Q. .
Q Q0 —hw Q — Q h
(0) (0}

QN QO heo QO 0 0 8

for¢ miphcB . TheButcher Tableator the 3/8 Rulemethodis:

T T T T T

P P Tt T T

o o

C p

- p P T T

p p Y Y m
p o o p
W W P W

2.3 Optimal ERK methods

From the discussion dBRK methods in the previous section, we now have general foms

ERK methods fasecond, third and fourth ordetn this sectionwe are going to discuss the
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order conditions andincipal Eror Qoefficients for ERK methods. Then we dischew to

determineoptimal values for thdree coefficientsthat appear in the general forms

2.3.1 Order Conditions

We can obtain RungkKutta order conditions by comparirige Taylor series expansion of the

exact solutionwith the Taylor series expansion of tlselution given by theRungeKutta

method [HNW87] In order to give an example of how the order conditions can be obtained,

we consider the case of the general thrstage, third order ERK methode t ' s consi der

IVODE,

and assumé&Qis sufficiently smooth. Let

N T "Gl . . T "Qadw .
Ok "Qadwo h Qk h Q k ———h
Tw
. . T Quahw . T "Qadw
Q k"'Q k———h Q k——38
T ol w T w

0w WO W ow %m O —W 0Q8
Now, the derivative ofo @ is
W W Moo k'S
The second derivative 0§ @ is

. T rTaoarMw .
W 0 T—d)Qoom)oo 'I'_OO 'I'_(:b_(b Q QM

Finally, the third derivative ab @ is

29



9 ) ) §
Tw T ®
T oo L ooke Qoke
T W T ®
T, . J o . o~ e s o~ s o~ A
—0Q —0Q— Quhow —Qowhow Qouhow —Qowhow
T w T ol w ) W

Let
Ok AT BkQ ¢ Qan

then

3

0
@ GO 0 -0 S0 0 b0 8 p8

Next,| et ' s ¢ o n s-stajee ERKtmethathat Wwerdisorissedn Section 2.2.4.1This

method has the form

where
QN MQohow h

N QO OMe  ®™Qh

N MO O QO O Q HO T 8

TheBucher tableaufor this methodis given inSection 2.2.4.1We need to express each of

the stages in terms 60w h  and higher derivatives.
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Q Qo hoo "th

Q Qo e ©QQ8
First, we expan using a Taylor series in the first variable:
N Qohow ©'QQ 0Q"Q o e @'QQ

0 ... S -
TQ w ho w wadQ 0 'Q8

Next, we perform expansions using a Taylor sefeseach of the terms ithe  brackets

above in the second viaable:

O'QQ

N Qoo OTQQ o o " oo 0Q

OQ Qoo QO'AQAQ »® 0 Q

wQ Lo .
— Q0 ohww 0 "Q h
. 00 . 00 y
Q Q 0w —QQ WRQ Q™M —™"Q 0V10Qh
T Q0 00N ™M —|— O M QQ 0Qh

. . Q
Q Q wdo < O U Qs8
The expansion fof2 is far moretedious(see [HNW87]put eventuallygives,

N MM O O QO

0 ) ) '
< W w w O 0w Q"Q w O Qw QN 0Q8

Substituting forQ as obtained earlieand solvingor Q using F and G gives
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N QBHO QO OOQ O Q8

N Enr

Qubstituting theexpressions for the stagéso
@Y O UOQ 00 @

gives,

Next, we need to comparéhe abovewith the expansion of the exact solutiop , which was

Www ww m?OEOQ O 0108

If we compare like terms tonatch the numerical and exact solutions, we must have

O ® © p &EOOGABAO

Oh 6o g 3AATIORRA O
oo O % 4 E BORAR O

P v+ ) C s e s
Eu) RN o 4 EEIOQRAA S O

These are calleRungeKutta order conditionfor third order. These order conditions can also

be written in the following form:

8

©Q ph oo

ik

oo g AT A $OB O

N IO

where'Qis a vector of oneand® & & & .The computations required to find the

order conditions for fourthand fifth order methods are far more tedious. But after all the
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computationshave been dongwe havethe following order conditions fofourth order ERK

methods[Butc87}

|o

T oon

0w

N
—

and the following order conditions fdifth order ERK method8utc87]

oo Ph
0]
& 56 h
p T
oohod 2k
PU
6o o LF
OTt
o o6dH h
¢
ood 2h
¢ T
5o O LR
TTT
o066 2
(pT[
L
pGgT



Some of the order conditions above need to be interpreted in a certain manner. For example,
take vectorwfor instance. The square of vectiyrthat is @, is interpreted as componentise
product instead of the dot product. In componewise product, therespectivecomponents
of the two vectorsare multiplied togetheresulting into a vector of the same siEar2 vectors

of sizeg,

)
EmEE
¢
€
gxmgzgz
¢

the componeniwise product of the vectoréand ®is

&
W W

8

1P cuga

&

Similarly, if the vector is multiplied by itséltimes usingthe componeniwise product, then

the resulting vector would be

e
€ g 1 €
[0}

Laterin this thesis, weshow how these order conditions are usegdithin the processto

optimizegeneralERK methods.
2.3.2 Princpal Error Coefficients

The collection obrder conditionghat are one order higher than the ordef an ERK method
givesthe Principal Error Coefficient tfiat method it is denoted byO wherer is the order

of that ERK methadAn essential point is that the Principal Error Coefficient gives a method
dependent but problemindependent measure of the leading order term in the error of the

solution that is obtained from the ERK method. Over a sufficiently large class of problems, a
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method with a smaller Principal Error Coefficient is expected to be generally more accurate,
i.e.,have a smaller error, than a method with a larger Principal Error Coefficient. However, the
Principal Error Coefficient is not exactly the same as the error of the solution obtained from

the EKmethod because, in the actual error, the unsatisfied ordemditions that make up

the components of the Principal Error Coefficient are multiplied by problem dependent
derivatives ofQoh 0 . See equation¢  above We use thaesults from theprevious section

to obtain thePrincipalEror Coefficients ofthe RK met hods. Let’' s start w

ERK methods. THherincipal BEror Goefficient fora second order ERK methodtlse vector

[Butc87]
P~~~ P
E w w 6_
(@) 8
v ow o+ P
Wo w —
¢
These are the weighted, unsatisfied order conditionstfind order. Note that Do - is

weighted by- because that is how it appears in the Taylor series given in the previous section.

We considethe square of the2-norm of thePrincipal Error Coefficiei@ ; this is

P
o

S
oO:
e

RYA)

SO

Yol o)
Sl°

Similarly, he PrincipalBtror Coefficient forathird order ERK method tke vector of weighted,

unsatisfied ordeconditions for fourth ordefButc87} it hasthe form

o P ® 0 Py

1 @ L

] v wP 1
WwWwo w-

o U 1] g
IIE (I)O~ ﬂll
lig p qn
v .. +~ P 1l
u WO w C_T 3

Thesquare of the2-norm of thePrincipal Error Coefficiei@® is
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Lastly, thePrincipalEror Coefficient forafourth order ERK method ke vector of weighted,

unsatisfied order conditions for fifth ord¢Butc87] this haghe form

P~ P p > ~ P p oo p
Os — 0w - - uw 0w — - wow —
CT v G pm G pu
v v o P P~ . = p P~ .= P
WWo W — - WwWo0w — - Wow —
om C cm () ¢m
> v v P P . =~ p s o v P
WO Ww wWw — - W0 wWw — WO w — 8
T C omn pceTm

An optimal ERK method is obtained by choosing the free coefficients to minimizentren?
of the PrincipalError Goefficient of the method. We considehe determination ofoptimal

ERK methods in Chapter 4.
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2.4 Continuous extensions of discretolutions from ERK methods

AnERK method providaliscretenumericalsolutions w, at a set of pointso, on the domain

0 b . However, high quality software for solving initial value ODEs reqgsithat a
continuous numerical solution approximation be available to the user of the softifane
haveadiscrete numerical solutioat certain points of thelomain, we can extend #t solution

in order to obtain a continuousumerical solution approximation over the entire domain. This
provides continuity in the numerical solution whittien allowsthe userto plot that solution

on a graph or find a solutiovalueat any point on the domaint is essential that the order of
accuracy of the continuous solution approximatios at least a high a that of the discrete

solution.
24.1 Hermite Interpolation

For orderg to 1, a continuous approximate solution of the appropriate order can be obtained
using Hermite interpolation, which involves finding polynomial functions with specified
function andderivativevalues Since we want interpolants of fourth order, we need to use
Hermite cubicgSAP97] Choosing an interpolant that is of fourth order means that the
interpolationerror will be at least as small as the error of the discrete solution obtained from

the ERK method.

L e tagsigme thabis n the sukinterval 6l . Let— 0O O FQwhere™Q 0 0.

Here,—is the relative distancef 6from the pointo in the subinterval. For example—will be
- if 0is at the midpoint of the subintervalThe Hermite formof the continuous solution

approximationd 0 ,on 0 s
60 6©Q — QYR — & Q — QQ Q —h

wherethe Hermite basis polynomial§) —HQ —HQ —handQ —, are
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where

UsingHermite interpolation allow us to get a continuous numerical solution approximation
at any point on the domainHermite interpolants can be used for the ERK methods of order
from p to 1. This is becausas mentioned abovehe interpolation error for the Hermite
interpolant isO "Q , which is the same a& smaller tharthe error of the solution fromthe

ERKnethod.

2.5 TheDefect of the Continuous Approximate Solution

Numerical methods areusedfoi nd t he approxi mate solution t
exact solutios or for which finding an exact solution is too complicated or time consuming
because of the complexity of the probleffiheapproximate numerical solutiowill have an

error. Thus, it is essential for the numerical method éfsodeliver an estima# ofthe error in

the numerical solution that is returned.

One way of assessing tlaecuracyof a continuous approximate solution is to consider the
defect of the approximate solutionln the previous section, we discussed Hermite
interpolation and how it extends the discrete numerical solution approximatiomgive a
continuous numerical solutioapproximation.But how welldoesthat continuousnumerical
solution approximation satisfy theDE Weanswer that questiotry computingthe defectof
the continuous numerical solutioapproximation As mentioned earlierthe defect isthe

amount by which theontinuousapproximate solution fails to satisfy the OQOBe defect
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170 0600 QIBO h

of a continuous numerical solutiog, 0 , is a continuous function @f and the question isow
to estimatethe maximum value of 0 son each stepofd . We can clearly see above that
the value of the defect is problem dependent and therefore, the location of the maximum

defect can vary from step to step and problem to problem.

Since, we already have the continuous numerical salugipproximation, it is straightforward

to evaluatd 0O at a given point. But generally, it is not straightforward to determine the
location within 0 where] 6 is maximumHowever, we would like thavean estimate

of the maximum value 6f 0 on each step to assess the quality @fo 8The standard
approach toobtain this estimatas to sample the defect at several points within each step and

use the maximum of these samples as an estimate of the maximum defect.

In Chapter 4, we computbe defect for a continuous approximate solution for several IVODEs
and show the form that it has on a given step. @éenot consider the task of sampling the
defect to obtain an estimate of the maximum defect on each step. As explained above, this

processs straightforward.
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Chapter 3

Software Implementation

In this chapter, wedescribethe software implementatiorfor the determination of optimal
ERK methodsthe representation of ERK methodad thetestingof ERKmethods on an ODE
test set.This softvare also implements Hermite interpolants to provide a continuous solution
approximation, allowing this solution to be plotted, and it implements a defect sampling
algorithm so that plots of the defect can be obtain®¥de providea detailed description otie
structure of the software and its capabilitieBhe software is created e Python language

and can be found ithe Appendix.

3.1 Optimization Software

The purpose of this software is tiind the optimal values for the free coefficientsy
minimizing thePrincipal Eor coefficient of the ERK methodhis software uses the python
| i br ar,gndin BacticuRmhé ‘minimize() function from within that library in orderto
find the opimal values for the free coefficientd a given ERK methoth this software, we
use the Principal Error QoefficientsO for ¢  ¢foft, which we discussd in Section 2.3The
script for this software $ Wh LJG A Y A | divénin2tlye d\pigeiflix.We first discuss the

functionsthat initiate this software.

1 displayMenu() This function prints the available choices to initiate the optimization
softwarefor aspecificPrincipalBror Coefficient Then, it asks for input from the user
and saves that input in the integer variabieO K 2whiéh & @henreturned by the

function. The available choices are:
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1. Optimize(Qx,
2: OptimizeQo
3: OptimizeOx
This function is initiated to provide a choice to théialize Optimizef) function.
 initializeOptimizer(choice) This function takes the integer variab#ieO K 2a& (&S Q
parameter and useit to initiate the optimizer for a specifierincipalEror Coefficient.
Depending upon the value givéor the parameter® O K 2tie@BconW2 LIG A YA T S6 0

is called with one of the following parameters

1. g
2: Qo
33O

For O, there are five cases. Sbefore initiating the functionoptimize O , the
chooseE4Casefnction is called to get th& O I val&Gor the optimization oD .
(For third order, we saw earlier that there are three cases, but we show in Chapter 4,
that for two of these cases, we cannot choose the free coefficient to minimize the
Principal Error Coefficient.) Whethis function has completed the user will be
provided with the following results:

1: MinimizedO value, wherg c¢loft

2: Optimal values for the free coefficients

3: An indicator of vinether theoptimization software

terminated successfully.
1 chooseE4Case(J his function prints all the cases for andreturns the integer value

for the case provided by the usérhe cases foD that are available in this function

arethe cases for foustage fourth order ERK methai(Section 22.5).
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3.1.1 Useof the Optimization Software

In order to use this softwareghe user is first required to install the python librarySc i Py’
pip. After that, the user shouldunthe Q h LJG A Y A Ipythdriserigh THedk the user should
enter theirchoice forthe order of the method to be optimizednd forO , choose the case as

well. The script will provide the results of the optimizatign example is given below:

==== START: Research - Thesis \ Optimization.py ====

1. Optimi ze E2

2. Optimize E3

3. Optimize E4

Enter your choice: 1

Message: 'Optimization terminated successfully. ‘
E2: 0.02777777777777779

Free Coefficients: [0.66666665]

3.2 Software for Testindexplicit RungeKutta Methods

The purpose of this software is to investigate ffeformance of the ER#ethodsidentified
in this thesislIn this software, the ERK methods of orgeio T are implementedor all cases
defined in Section 2.2 of this thesi®is software employssevera python scripts which can

be found in theAppendix.The scripts are:

1 main.py

1 config.py

1 EulersMethod.py

1 Function.py

1 Hermitelnterpolation.py
1 Methods.py

1 ivode.py

1 FilelO.py
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The scriptthat is used to initiatehis softwareis %hain® LJé (1L e tdisauss the furstionm

this scriptwhich initiate the software.

91 displayMenu() This function prints the available choices to initiate this software,
which are
1: Specific IVODE on a specific method
This optionwill initiate the function whichallows the user to
choose an ERK method to solve a specified IVODE and provide the
results as output.
2: Yoecific IVODE on All Methodsd Exportesults toa file:
This option wilinitiate the function whichallowsthe userto use
all the ERK methods to solve a specified IVODE and provide the
results in a text file.
Then, it asks for input from the user and saves that input in the integer vakdBIi&€ 2 A O S Q
which is then returnedby the function.This function is initiated tprovide a choice to
the chooseMenuOptiaf) function.

f chooseMenuOptionthoice: This functiontakes the integer variabléd OK 2a8 8 S Q
parameter and useit to initiate the testingof one or moreERK methods. Depending
upon the value giverfor the parameter® O K 2 dn®©&tfde following functionsis
called

1: specifitVODESpecificMethod()
2: specificVAEAIIMethods()

1 specificlVODESpecificMethod{fjhis function initiates the specified ERK method to
solve a specific IVODE chosen by the USest, itasks the user to selethe IVODE
with its initial and final values. Thenaisks the user to selettie specific ERK method

which it usesto solve that IVODE. To find the numerical solution approximations,
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stepsizes frony to ¢ are used byhe function. If the chosen IVODE has an exact
solution,the functionwill providethe following information:

1: Errorato
The absolute difference between the approximate and exact
solutionof an IVODHt the final time o .

2. Stepsize
The stepsize usea tobtain the error for that IVODE.

3: Ratio of the errors
The ratio of the errofrom the previous stepsize and the error
from the current stepsize.

4: Order of Convergence
The order of convergence for the ERK method used (See Section
2.2). (The order of convernce is easily determineidom the
ratios of the errors.)

5: Graph for Hermite interpolat
A graphplotting the continuousnumericalsolution
approximation obtained by using Hermite interpolatiorhe file
containing the dmdpgeh pwilloind®me . ‘hH el
in the "Plots’” folder

6: Graph for Defect
A graph plotting the defect in the continuous numerical solution
approximation obtained by Hermite interpolatiomhe file
containing the gré&phndi i h béae' D&f

folder.
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If the IVODE does not have an exact solution, then the information provided will be:
1: Numerical solution approximatioat 0
The approximate numerical solution of an IVODE at the final time
o .
2. Stepsize
The stepsize used to obtain tlproximate numerical solution
for that IVODE.
3: Graph for Hermite interpolat
A graph plotting the continuous numerical solution
approximation obtained by using Hermite interpolatidrhe file
containing the graph will ibe * Her
the ‘Plots’ folder.
4: Graph for Defect
A graph plotting the defect in the continuous numerical solution
approximation obtained by Hermite interpolationThe file
containing the graph wil!/ be ' De
folder.
specific VODEAIlIMethds(} This function initiates all the ERK methods to solve a
specific IVODE chosen by the udérst,it asks the user to selethe IVODE with its
initial and final valuesd\ext, it uses all the ERK methods to solve that |VGDEe this
test produces darge amount of outputthe resultsare saved in a text fildt also uses
stepsizes frong to¢ to find the numerical solution approximations. If the chosen
IVODE has an exact solution, it will provide the following information:
1: Errorato
The absolute difference between the approximate and exact

solution of an IVODE at the final timé .
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2. Stepsize
The stepsize used to obtain the error for that IVODE.

3: Ratio of the errors
The ratio of the errofrom the previous stepsize and the error
from the current stepsize.

4: Order of Convergence
The order of convergence for the ERK method used (See Section
2.2).

5. Relative toMinimum Error
The ratio ofeacherror and thesmallesterror.

If the IVODE does not have aract solution, then the information provided will be:

1: Numerical solution approximatioat 0

The approximate numerical solution of an IVODE at the final time
0 .

2. Stepsize

The stepsize used to obtain the approximate numerical solution

for that IVODE.

3.2.1 Useof the ERK Testing Software

This software uses the python | ibrary named
and defects. In order to use this software, the user is first required to install the python library

‘bokeh using pp. After that, runthe @haind® LJ&ytlon script.The user should reer their

choiceto initiate the software for a singlERK methoar for all ERK method3hen the user
shouldchoosethe IVODE tde solved. For the choice o$ingle ERK methothe user should

choose the specific ERK methodlie used tosolve the IVODHheabovementionedresults

will be provided along with a graph ftlie Hermite interpoaint and a graph for defects. On
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the other hand, if the initial choice was to use all tHeKkEmethodsthen the results of the

computations will be provided in a text fildn example is given below:

======== START: Research - Thesis \ main.py ========

1. Specific IVODE on Specific Method

2. Specific IVODE on All Methods and Export results to a
file

Enter your choice: 1

Simple: f1 t tfinal yO

Predator Prey: f2 t tfinal x y alpha beta gamma delta
Simple System: f3 t tfinal x y

Test F4: f4 t tfinal yO

Test F5: 5 t tfinal yO

Test F6: 16 t tfinal yO

Test F7: f7 t tfinal yO alpha

Sample COVID - 19 Model: f 8 ttfinal

Enter the formula with values respectively (Use spaces
between the values like shown above):
fio11

. Forward Euler Method

. Explicit Midpoint Method

. Heun 6s Second Order Method

. Second Order RK Method

. Heun 6s Third Order Met hod
. Ralston's Third Order Method

. Third Order RK Method

. RK4 Method

. FourthOrderRKMethod

O©CoOo~NOOUTE, WNPE

Enter the method with values respectively (Use spaces
between the values like shown above):

1

ee[0]: 0.11787944117144233 Steps: 0.5

ee[0]: 0.051473191171442334 Steps: 0.25 eeOld/ee: 2.2901133286805546 Order:
ee[0]: 0.024270525365625684 Steps: 0.125 eeOld/ee: 2.120810752796631 Order:
ee[0]: 0.01180531071964952 Steps: 0.0625 eeOld/ee: 2.0558989036373485 Order:
ee[0]: 0.005824151915125697 Steps: 0.03125 eeOld/ee: 2.0269578973361546 Order:
ee[0]: 0.002892916927534961 Steps: 0.015625 eeOld/ee: 2.0132454754200033 Order:
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3.3 Howto add a new IVODE

There areseveral pythorscriptsthat are used to create the softwaas mentioned in Section
32The script r el aivodedpy2 There aréneefewl IWODEsEat alie slreddy
implemented inthis script which can be used &sst examples. To add a new IVOEHg, user
should create a new function with an appropriate name in the same scriime user should
create three sections in this function usinglife statements with comparison operatorsén

In this software, the IVODEs amplementedin the form of lists, so&ch section returathe
results in the fom of a list. The results returnedfom each sectionwith respective to the

value of Qarethe following

1: For 'Q m the approximate numerical solution of théVODEis
returned.
2. For'Q p, the exact value for the IVOD&Ereturned(if exists).

3: For'Q ¢, the error associated with the IVOBEeturned(if exists).

After the user createshe IVODE functiorthe user should then edit th& C dzy” O (pjitoy @ LI Q
script. The user shoulddd the function call for that IVODE with a ndarmulaNumbetin the
formula() function. The user shoulduse this formulaNumber to display it in the
displayFormulas(Junction and set the initial values isetFormulaValues(junction. An

exampleis providedbelow.

CGonsider theexample IVODE,

The exact solution for this IVODE is
wo Q 8

The script for the IVODE abole®ks like the following
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def simple(i, t, y):
# IVODE
if (i==0):
return [ - y[0]]
# Exact solution for the IVODE

elif (i ==1):

return [math.exp(  -1)]
# Error associated with the solution for the
else:

return [y[O] - math.exp( -t)]

IVODE
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Chapter 4

Results and Discussion

In this chapter, wepresentresultswe have obtained usinghe software discussed in the
previous chapter Wedetermineoptimal ERK methodsnd compare thenwith standard ERK
methods Then, wepresentexperimental confirmation of the order of convergenotthe
optimal methodsusingatest set of ODE®fter that, weapplythe standard and optimal ERK
methodsto test sets toexaminethe accuracy of theolutionapproximatiors computed by the
methods The last section of this chaptetonsides augmenting the discrete numerical
solutionscomputed using the ERK methodgh continuous approximate solutiorsbtained
by using Hermite interpolatiarThis section also considgihe computation of thedefectof a

continuoussolutionapproximation

4.1 Optimal ERK methods antbmparisonwith Standard Methods

As we have discussed in Chaptew8,haveemployedoptimization software which allows us
to minimize thePrincipalEror Coefficients forERKmethodsto obtain optimal valuedor the

free coefficients of the methods
4.1.1 Second OrdeERK Method Optimization

To optimize thegeneral, twestage,second orde ERK method, we need to minimize the
PrincipalBror Qoefficient, O . We recall from Chapter 2 that féne generatwo-stage second

order ERK methodve have thecoefficientsin the form ofButcher tableawas follows

Tt Tt TT
) 8 n
p P

‘ Pl W@
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We can se¢hat & is the only independent variabnd¢ Fb and® are all dependent upon

& . From Chapter 2he Principal Error Coefficieris

RYA)

T oo

0w

'el-OQI'O

Using the expressions for the coefficients of the genevalstage, second order ERK method

g . To find the optimato

5 v 7 e Tt
wehavew P — —,®w T ® andthe matrixo &

value, we need to choos® to minimize the square dhe 2-norm of O :

S
oO:
(O]

RYA)

SO

Falhe)

P
o

S0

After substitutingthe values 6r ¢f and ) we get an expression which depends upon

p
Os c

€
Qlo
S 10

L
I

qQlo
|o

Os

N IO

alel
Q
S

The above expression can be minimized by chooging -. Thisis the same value provided

by the optimizationsoftware For® -, we get

L3

50 TBICXXXRXX®

Os

andthe value for0 s is

VS - ™MOOBPY
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As mentioned earlier in this thesihere areseveralwell-knownsecond order ERK methods,
such asthe ExplicitMidpoint methodand | S dzge@and ordemethod We comparethe

optimal methodwith these methods by finding theigO s values

TheExplicitMidpoint methodhasc  -. Putting this value of( into the generalexpression

for SOs , we get

pp P p ~
s 75 o4
p P P X~
— = =%y
0 LXPO O VX O

Os mWqwupBYYY
So, the value ofS0 s for the ExplicitMidpoint methodis

VS ™™ XP XSO

Here, we can clearly see that the valok SO s for the ExplicitMidpoint methodis slightly

larger than the value o0 s for the optimalmethod.

Now, | et ' s | ISazgeeoad ordemethéd foa whichd  p. Putting thisvalue of

o into the general expression fo0 s , we get

P

pp P .
-Z I h
Vs ¢ G O (o0
p p v .
V2 Tioeprh

PO mMWoTXC8CGQ

So, the value o0 s for | S dzgetoad ordemethodis

s MYPeoBPww

52



Here, we can clearly see that the values® s for | S dzgebad ordemethodis larger than

the value of SO s for the optimalmethod.

Here are the results from all theethods:

Methods Variables Principal Error CoefficiengO s
OptimalMethod &) % O RONORORON
The Explicit Midpoint Methoo @ g T XPXWOTQ
HSdzy Qa aSO2yR W P ®PQooPww

From the above tablave can see thathe smallest value for Principgtror Coefficient, g0 s,
is0s T ¢ @ gfgr @ -. Sqwe mncludethat® - givesthe optimal value fotwo-

stage, second order ERK methdtbwever, we can see that all three methods hag@é s
values that are approximately the same which means that the two standard methods are close

to being optimal.
4.1.2 Third Order ERK Method Optimization

Unlike the twoestage second order ERK methadse we know that the general threstage,

third order ERK methollasthree special cases.

From Chapter Zhe Principal Error Coefficiemnt

o P ® 0 Py

1 @ L

] v wP 1
W o w-

o U )
IIE 5 O(:) ﬂ |,|
lig p qn
|l - ~ P 1
u WO w C_T 3

Then the square othe 2-norm of O is
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We now consider the three cases for a three stage, third order ERK mibidtoge presented

in Chapter 2

Case 1. A 2-parameter family of threestage third order ERK methotiss the following

tableau with the condions® 1 Ao .

T T m m
® 1) Tt Tt
. W o o DO O
(A) (3 (3 ~ ~ n
® o0 ¢ Q00O ¢
C 00 ® @O &S S 5
— o o
Pww CO W CO W

As we can seap and® are the two independent variables and the rest of the

coefficients are dependent upon them.

For this casge

]
]
]
]
S
qln
qlN
e
¢

CWWw W Ww

W W

O T O O

and the matrix

T nl,l
o w T,
Ilr ol 7 o ¥R o '8
1 W O ow Www w i
W 0w G My

U o ow ¢
To find the optimaf and® values, we need to choosé® and to minimize the

Principal Error Coefficierty minimizing the square dhe 2-norm of O . After
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substituting inO with the abovevalues ér ¢ity andd) we get an expression which

depends upor and®.

P =~ P p
J— Q) u— —_—
02 pPC C LxX @

&)
¢

[N Fal
(o
[o%
[o%
(o
|

L P
P 0

Usingthe optimization softwarediscussed in Chaptert8 find the optimal value
of ® and® by minimizing theabove expressigrnwe get
© T@ weULThT X @
O TUPXThYT w
yielding
OSs mMWHPpXT XY Y
So, the value forsO s is
OSs MWrTpyYyndny e

As mentioned earlier in this thesifere areseveralwell-knownthird order ERK

methods. We considertwo classic third order Rung€utta methods, which are

examples of this casd, Sdzy Qa i KA NRand2WKR SiND 2 Y D& K 20RK A NR
method We compare our results witthese methods by observinghat SO s

values they have.
We start withl Sdzy Q& ({ K hotRhicB haRoS Ndand& i - . Now, by
putting thesevalues ot and® in $0's , we get

Os T PT O80T X TU
So,thevalueoOsforl Sdzy Qa GKANR 2NRSNJ YSGK2R

0 TTPCWHL WO
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Case 2.

Here, we can clearly see that the valueg@ s by using Sdzy Q& G KANR 2 NRS
isslightlylarger than the value o8O s for the optimalmethod.
Next, we canconsidew | f & 12 y Q& § KwhitiRhagbNR&ND YS G K2 R

These values are reported jButc87] and agree quite closely with the values of

the optimal method mentioned abovéow, by putting theevalues ofto and &

in Os , we get

NOs mMWNpXTUYB QX T

So,thevalueofOsforwl f a2y Qa UGKiBENR 2NRSN) YSUiK2R

Vs MWTpYPppmWG
The value of O s byusingv £ 4G 2 y Qa § KisshgRtlylargeRI@aNthey S (i K 2 R
value of SO s for the optimalmethod, butw I f 2 G 2y Q& { Ki& &iddst2 NR S NJ
optimal.

A l-parameter family of threestage third order ERK methods has the following

tableauwith the condition® Tt

T T T U
S E Tt Tt
(e) o

p p

T - - U
TW TW

- o 5

B w - w
T T

As we can se&) isthe independent variable and the rest of the coefficients are

dependent uporit.

For this case,
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Case 3.

5 4 o) 5 =
) E w — wh
T T
= q
W T - T
o
and the matrix,
LT T
q .
I — Tt T
(0] 11 O B
T p )
U tTw Tw

After substituting ifO with the abovevalues forfd and ) instead of gettingan

expression which depends upan, we get a constant which is independent of the

® value

©° The ¢ xe
Os mMWpPpYXLXULTTU
So, the value forsO s is
OS ™M oqULXETC
As S0 s does not depend upot , the choice o) is arbitrary So, the value used

in the software iso -

A lparameter family of threestage third order ERK methods has the following

tableau with the conditiomd Tt

L L n n
S S m T
o o
< o o LA :
o P Q@ Tw
2 - &
T T
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As we can sea) isthe independent variable and the rest of tieeefficients are

dependent uporit.

For this case,

& 22 6 oh
T 1
& 1 o s
o0
and the matrix,

Tt o
ny q .
" I — Tt T
O 11,0 B
o p oy
up@ Tw U

After substituting ifO with the abovevalues forfd anda) instead of getting an

expression which depends upan, we get a costant which is independent of the

® value

P p p p
O Cpo X GQ X Q CT
Os TINCPTOOT XTT

So, the value forsO s is
Vs ™WTEC W WY

As S0 s does not depend upod , the choice o is arbitrary. So, the value used

in the software iso -
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Here are the results from all the methods:

Principal Error Coefficien

Methods Variables
SRS
Case Dptimal O T WQUT]O TEUPXT TIT pYTMWT X
| Sdzy Qa il « P NS
Method w3 W TBIT ¢ C WP W
wlkfadgzy( ~ P ~ O
order Method w C w T BT pYpp TR
Case 2 N/A T OoOCUXCT(
Case 3 N/A TBIT @C WP ¢ W

From the above table, we can see that the smallest value for Principal Error Coeffiesy,
is Os mdT p Yrdarphevalues® T w@UL TANR & T L p X T. BA, We
concludethat Case 1 withvaluegd T8 w @ L TTaNgEXp T8 L p X TixKthewptimal cas

for three-stage, third order ERK method$owever, we can see that four of the five methods
have SO s values that are almost the same. This means that the standard methods are close

to optimal. It is only the Case 2 method which has a substantially la@er value.
4.1.3 Fourth Order ERK Method Optimization

From Section 2, we know that the general foustage, fourth order ERK method shfive

special cases.

From Chapter 2, thBrincipal Error Coefficiemnt
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The square othe 2-norm of O is

P+ =
SN C_Tw

]
clo
N|O

]

]
|o
N|O

|
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oO:
(O]
|o
©

Q
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=
S
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Case 1. A 2parameter family of fowsstage fourth order ERK methods has the following

tableau with the conditios Tfto i fp all distinct;cd -ando T ®

W T
T T T T T
© © T T n
« | GO ® TO o O
© - - . ; Tt m
@ p ¢ @p <&
p W @ @ 1
P CO B PR cw p P Cw O TR O e
P QG POO @ p ® PORO O p @ pcep @ p ©




where

&

DPpQ pO T @p
CO® 0 T

4 -

® U T @O ¢ .

oW

€40
=

W VO ® ¢ p ®
COW W o TW W EE

As we can seap and® are the two independent variables and the rest of the

coefficients are dependent upon them.

For theexpressiongn O for this case

P CO O b ¢ p

& p ¢ T © (pJJ(I)ﬁ
PO PO ® P O POO ® P @ PP O p @
O T o ® ph
and the matrix
T i T
o ) m o
o LL v v v v ¥ .
o) ow W T W ® -
P : : : T T[',h
Il Cwp CW Cw P QW 1
u () () O TV

where® ,® and® are mentioned above.

After substitutingfor af® and¢) we get an expression which depends uppand
@, but itis too complicated to show herélsingthe optimization software to find

the optimal valusof & and@® by minimizing the square dfie 2-norm of O , we

get
w TWULUYXXTthpuvw

® T wpTUYhPCp
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yielding

Os TBITTTMPT OBUL WO G

So, the value fordO s is

Vs MrppwxRTUm

Theabove and & values agre reasonably well with theptimal coefficient

values reported in [Butc87] where

yielding

0Os TINIPTTBCCPUL

So, the value forsO s is

s MWIpEMCPXOP
In [Rals62], the optimal values are reported as
® m@h
® T8 vuox
yielding
Vs mMWnupPx oYy
So, the value forsO s is

Vs MWipoxnMBwXOo
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Asmentionedin Chapter 2there is avell-knownfourth-order ERK method known
asthe 3/8-Rulemethod we compae ouroptimal methodwith this methodby
findingits 90 s value

The 3/8-Rulemethodis derived from Caséwith @ -and® -. By putting

thesevaluesfoe and® in 0's , we get

Os TP enapcyPx
So, the value ofs0 s for 3/8-Rulemethodis

Os MWIPCPOBO QX

Here, we can clearly see that the value &) S by usingthe 3/8-Rulemethodis

slightlylarger than the value o0 s for the optimalmethod.

Case 2. A l-parameter family of fowstage fourth order ERK methods has the following

tableau with theconditions® & -ho T

i i T T T

P P n m m

C C

P o p P

P — m T

c o) o)

p T p OW o0 m
P S 5 o P
o o o

As we can see isthe onlyindependent variable and the rest of the coefficients

are dependent uporit.

For this case

€
S1°
aln
€
€
S 10
¢
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= p P >
W T - - h
¢ G P
and the matrix
T T Ttl,J
“ op .
11 E TT T
o (- |°8
e b
ll pw ¢w - I
u T p ow ow T

After substitutingfor ¢f® and ¢) we get an expression which depends ugon
but it is too complicated to show heré&lsingthe optimization software to find the

optimal value ofd to minimizethe square othe 2-norm of O , we get

©w TWoopdtTp

yielding
Os mWnnpxpa8¢mTT T
So, the value fordO s is

PO MWponyYyPwrt ¢
The corresponding value reported in [RalsB&2]this caséas

® % PO oo
yielding

Vs MWANPpXLBETMPY
So, the value fordO s is

Os ™WpPpoquUBYTT
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Asmentioned in Chapter 2here is avell-knownfourth-order ERK method known
asthe classical RungKutta methodwhich is widely used and is the most well

known of all Rung&utta methodsWe findits SO s value

The classic&ungeKutta methodsobtainedfrom Case 2vhenc  -. By putting

thisvalue ofo into O's , we get
Vs minmngpmo P w
So, the value ofS0 s for the classicaRungeKutta methods

Os mWiptuvm8u Y

Here, we can clearly see that the value$dd s by usinghe classicaRungeKutta

methodis slightlylarger than the value o8O s for the optimalmethod.

Case 3. A l-parameter family of fowstage fourth order ERK methods has the following

tableau with the conditionsy -hb 1o T

Tt Tt Tt Tt Tt
= = Tt Tt Tt
C C

P P

Tt — — Tt Tt
P @ p @

P P ° R m
C o C

R < 5 P

¢ o ¢

As we carsee,® isthe onlyindependent variable and the rest of the coefficients

are dependent uporit.

For this case

€
S 10
€
aln
€
S 10
¢
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. p -

W T - T h

C p
and the matrix

o Tt Tt T[l,I
11 E T
. 11 C 1l
6 n _P _ 1 P
1 pQ P @ i
lp - o - ]
u g ¢ U

After substitutingfor cf® and ¢) we get an expression which depends ugon
but it is too complicated to show her&lsingthe optimization software to find the

optimal value ot by minimizing the square dfie 2-norm of O , we get
&) mto we Yhq v L
yielding
0Os TINMMWoOTPQ WT C
So, the value forsO s is
Os ™Womnmuvp&8PT O
The corresponding value from [Rals&&] this case is

v V)

™tet o
vt T M

yielding

Os TIMPTNMNTBOP T W

So, the value forsO s is

O ™WoPECRXL P
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Case 4. A l-parameter family of fowstage fourth order ERK methods has the following

<
R

tableau with the conditionsd  pftd - e
i i T T T
p p L T 1S
P o P n n
G P P
P _P_ P -
P ) P Q 0w
P I S
¢ @ Y

As we can see isthe onlyindependent variable and the rest of the coefficients

are dependent upoiit.

For this casge

€
€
=

€
alnN

S 10
S 10

€
A
e
|
kel
5%

and the matrix

oy
11
11
11

Tt

Tt

Tt
p p P
P oW o

After substitutingfor ¢cf and ¢y we get an expression which depends ugon

€lao 4+
€133

but it is too complicated to show her&lsingthe optimization software to find the

optimal value ofd by minimizing the square dfie 2-norm of O , we get

O TYXULT APV @

yielding
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DOs TITMTMT XLVBOWYUL
So, the value fordO s is

O MWICPpXWRXTC
The corresponding value reported in [Rals62] for this case is

> P -
© 0 T W ThY
yielding

OS MWNNTXOWBYX W
So, the value forsO s is

s MWpPYwRmMop

Case 5. A l-parameter family of fowstage fourth order ERKethods has the following

tableau with the conditionsy 1 - T

T T Tt Tt U
&) &) T T n
W p p
P . — T T
q Yoo Yoo
p_co P o
p ) o q
P I S P
o Y o

As we can se@ isthe onlyindependent variable and the rest of the coefficients

are dependent uporit.

For this casge
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& P g S PR
¢ c 0
7 ~ P
W T W - h
c p
and the matrix
T moomoT.
e T,
. 1T p P - Tf:’l8
0 . — ’
Lo U
1 (qV) _pn_ C T[I,I
U cw cw U

After substitutingfor ¢ft andd) we get an expression which depeng®un &, but
it is too complicated to show herd&Jsingthe optimization software to find the

optimal value ofd by minimizing the square dfie 2-norm of O , we get
QO T W00 ww
yielding
Vs TWANPEOoRCT WG
So, the value fordO s is

Os ™WPpCYXWBUTT

Here are the results from all the cases:

Principal Error Coefficien

Methods Variables

SRS
CaselOptimal | TWOUXXT|® T® wpT Y MIPpPWYXXTU
3/8-Rule o o o 2 TBIP C 9 QWO Q
Case 2 Optimal W TWOoOoPPT TP MpoNMPYPwt
TheclassicaRunge ~ P

Kutta Method @ o mpTunT LY
Case 3 Optimal ® TIow@Pguu TMICTUPTPT
Case 4 Optimal O TXULVIOoYL TICPX WX XT
Case 5 Optimal O T WWW0Www TIp g X WLULT
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From the above table, we can clearly see that the smallest valiRrifocipal Error Coefficient
0Os,is Os T p p wX xSo,uweconcludethat Case 1 withvalue® T U X X T P U W
and T® wp T Yisptlgemptimal case for fowstage fourth order ERK methodslowever,

we can see that Case 1, Case 2, Case 5, and the twoastamithods have similagO s

values so all of these methods are close to optimal. It is only the Case 3 and Case 4 methods

that have substantially largegO s values.
4.2 ExperimentalVerificationof Orderof Convergence

In this section, weexperimentally erify the order of convergence fome ofthe methods
based on some numerical experiments perfornwethtest set ofODEsFor each method, we
provide a table that ha error ratiosgenerated by thesoftware for the test set for several

stepsizea.

Let udfirst definethe term error ratio.Foreach method and test problem, we use thaftware

to step fromo to 0 andwe compute the exact error at . The ratio between the error from

the previous stepizeand the error from the current stegizeis known as the error ratio. Here,

we are decreasing the stepsize by a factor & Betermine its effect on the error ratiogor

a two-stage, second order ERK method, if the stepsize is decreased by a factor of 2, then the
error shouldreduce by a factor of Zapproximately.This is because a second oraeethod

has an error that i® "Q . So, the error ratio fosecond ordemethods should be 4.For a
three-stage, third order ERK method, if the stepsize is decreased by a factor of 2, then the
error shouldreduce by a factor of &pproximately, whiclwould makethe error ratioequal

to 8 since the error for a third ordenethodis0 "Q . Similarly, for a foustage, fourth order

ERK method, if the stepsize is decreased by a factor of 2, then the error should reduce by a
factor of 16 approximately, which wouldhakethe error ratioequal to16 since the error for

the fourth order nethodis?® Q .
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We use the following WDEss the test sets

Name IVODE Initial Condition Exact Solution
IVODE 1 O com O p ho —
p
, p , " p
IVODE 2 w - W WTT wWw —
q P n 1]
W . " ¢m
IVODE 3 W - p —W® W p ww
! «n P PO
, , L , W Q Ald®
IVODE 4 w | w Q ORd Wt P ®

The tables for all the cases of theptimal, two-stage,second orderthree-stage, third order

and fourstage, fourth ordeERK methasffor the abovelVODE$or stepsize-h-h—h—and

— areas follows:

Error Ratiodor optimal, two-stage, second order ERK Method

IVODH B B L L L
Stepsize

IVODE 1 31.28 7.06 2.12 3.37 3.74
IVODE 2 4.76 4.42 4.21 4.10 4.05
IVODE 3 3.83 3.92 3.96 3.98 3.99
IVODE 4 4.50 4.26 4.13 4.07 4.03

Error Ratios for optimathree-stage, third order ERK Method, Case 1

IVODH B B L L L
Stepsize

IVODE 1 VE® p p Bw 8T w oD X X& T
IVODE 2 W P Yo o ug x Ug o U ¢
IVODE 3 X® ¢ X& o X80 p X80 @ X% g
IVODE 4 yst @ U3t ¢ U3t p U3t st it
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Error Ratios for optimathree-stage, third order ERK Method, Cése

IVODH B _ o o L
Stepsize

IVODE 1 pB Y o8t Ugp v U C D @
IVODE 2 p&T pB U o v yd v Ug X
IVODE 3 X&o L X80 W U3t 1t U3t U3t
IVODE 4 gt v st p U3t 1t U3t 1t U3t

Error Ratios for optimathree-stage, third order ERK Method, Cé&se

IVODH B B L L L
Stepsize

IVODE 1 0D T U3t ¢ Pp Tt P 1 U3t v
IVODE 2 RORI o v U @ g g B T
IVODE 3 X® ¢ X& o X8 p X% @ X80P
IVODE 4 3t v Y3t p st 1t Y3t 1t U3t

Error Ratios for optimafour-stage, fourth order ERK Method, Case 1

IVODH 3 B o o L
Stepsize

IVODE 1 33.36 24.76 20.15 18.01 16.98
IVODE 2 12.78 11.17 14.70 15.55 15.82
IVODE 3 15.27 15.63 15.81 15.90 15.93
IVODE 4 16.08 16.02 16.01 16.00 16.00
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Error Ratios for optimafour-stage, fourth order ERK Method, Case 2

IVODH B B L L o
Stepsize

IVODE 1 4.64 12.17 14.95 15.63 15.85
IVODE 2 17.11 17.13 16.68 16.36 16.18
IVODE 3 15.28 15.63 15.81 1591 15.94
IVODE 4 16.13 16.04 16.01 16.01 16.00

Error Ratios for optimafour-stage, fourth order ERK Method, Case 3

IVODH B _ o L L
Stepsize

IVODE 1 14.15 19.75 18.35 17.26 16.64
IVODE 2 9.07 17.81 18.08 17.31 16.72
IVODE 3 15.40 15.70 15.85 15.92 15.92
IVODE 4 16.13 16.04 16.01 16.01 16.00

Error Ratios for optimafour-stage, fourth order ERK Method, Case 4

IVODH 3 B o o L
Stepsize

IVODE 1 10.04 15.23 15.91 16.01 16.02
IVODE 2 8.71 14.15 15.40 15.77 15.90
IVODE 3 15.19 15.59 15.79 15.90 15.94
IVODE 4 16.05 15.99 15.99 15.99 16.00
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Error Ratios for optimafour-stage, fourth order ERK Method, Case 5

IVODH B B L L o
Stepsize

IVODE 1 1.044 15.23 15.91 16.01 16.02
IVODE 2 8.71 14.15 15.40 15.77 15.90
IVODE 3 15.19 15.59 15.79 15.90 15.94
IVODE 4 16.05 15.99 15.99 15.99 16.00

Looking at the tables above, we can see that when the stepsize is decreased by a faator of 2

each step, the error ratefor each methodare approximatelyas follows:
Two-stage second order ERK methods: 4

Three-stage third order ERK methods: 8

Four-stage fourth order ERK methods: 16

For bigger stepsizgthe error ratios might not be close the expected valug But the smaller
the stepsize gets, the more thegror ratiosapproach the expected resgltSo for the smallest
stepsizeresultsin the table, you can see thahe ratios are approximatelythe same asve

expect from the theoryThis confirms that the ERK methods are corsgteeach method

provides theorder that isexpected.

4.3 Comparison of standard and optimal ERK methodscuracy

and Efficiency
4.3.1 Accuracy

Here we considesomestandardmethods along with theoptimal 29, 39 and 4" order BRK
methodsand compare them orseveraltest problems For each IVODE, wwovide a table

which haall the methods grouped according to their ordé&/e check the accuracy of all the

methodsfor the stepsize—. For the error results foeach order we tale the smallest error
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and then divide all the other errors from all the methdusthe smallest errarThe resultsre
presentedi n t he ‘®elumbhooMinhé tables. The method
to Min.’ is the most farthativOBE e met hod of that
We first considethe IVODE

() COW

with initial value,w ™  p and exact solution,

Usingthe softwarediscussed in Chapter @eapplyall the methodgo this IVODE to find the

approximate solutions and corresponding errors. Témultsare shownin the table below:

Methods Errors Rel. to Min.
Explicit Midpoint Method (Second Ordg x® w p T c8
Heun’s Second Ord¢ c&tT pm X&
Optimal Second Order ERK Method a3tu p T P8t
Heun’s Third Order 8t pm P
Ral ston’s Third Or CpppTt pP
Optimal Third Order ERK Method Case PR p TI p8t
Optimal Third Order ERK Method Case ox Y pT p &
Optimal Third Order ERK Method Case P W p T (07]]
TheClassicaRungeKutta Method & pmt p8
3/8 Rule MethodFourth Order) Y pm (o1
Optimal Fourth Order ERK Method Cas{ c&p p Tt P8t
Optimal Fourth Order ERK Method Cas VB T pTI P&
Optimal Fourth Order ERK Method Cas &p pTm pPB
Optimal Fourth Order ERK Method Cas og ppTm p @
Optimal Fourth Order ERK Method Cas o p pTl p @

Table4.3.1:Errors and Rel. to Miwvalues for all the ERK methods appliedVODEb O ,WT  p.
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We next consider th&/ODE

o Lo
C
with initial value,w ™  p and exact solution,
b ——3
NMp w

We applyall the methoddo this IVODE to find the approximate solutions and corresponding

errors. Thaesultsare shownin the table below:

Methods Errors Rel. to Min.
Explicit Midpoint Method (Second Ordell, o® @ p Tt pgy
Heun's Second Ordeg v8oprm p8r
Optimal Second Order ERK Method yg T p T pd
Heun’'s Third Order LV p P T p8
Ral ston’s Third Or o X p T P8t
Optimal Third Order ERK Method Case o X p T P8t
Optimal Third Order ERK Method Case p8to p T c®y
Optimal Third Order ERK Method Case oX p pTI P8t
TheClassicaRungeKutta Method PP o p T ®
3/8 Rule Method TRT pTI pat
Optimal Fourth Order ERK Method Cas{ o® Q p Tt x&
Optimal Fourth Order ERK Method Cas{ x& x p Tt P &
Optimal Fourth Order ERK Method Cas C®C pTt up
Optimal Fourth Order ERK Method Cas B Y p @3t
Optimal Fourth Order ERK Method Cas Yy pr @8t
Table 4.3.2: Errors and Rel. to Min. values for all the ERK methods @pph&dDEo - W,0T  p.
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We next consider the IVODE,

with initial value,w ™  p and exact solution,

. (]
wWw ——— 8
P pQ

We applyall the methodgo this IVODE to find the approximate solutions and corresponding

errors. Thaesultsare shownin the table below:

Methods Errors Rel. to Min.
Explicit Midpoint Method (Second Ordell, uv& ¢ p T P8t
Heun’s Second Orde o@&¢g pT PP
Optimal Second Order ERK Method V&G P TI P8t
Heun’s Third Order X pT p8
Ral ston’s Third Or VP o pTI P
Optimal Third Order ERK Method Case Vp o pTI pB
Optimal Third Order ERK Method Case o0& wp Tl paI
Optimal Third Order ERK Method Case Vp o pTI pB
TheClassicaRungeKutta Method &P PP
3/8 Rule Method & X pTI pP
Optimal Fourth Order ERK Method Cas 8t pm p8t
Optimal Fourth Order ERK Method Cas o800 pTI p8t
Optimal Fourth Order ERK Method Cas TP PP
Optimal Fourth Order ERK Method Cas X pT PE
Optimal Fourth Order ERK Method Cas X pT PE
Table 4.3.3: Errors and Rel. to Min. values for all the ERK methods applied on &WODE p — «

QT p.
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The next IVODW®&e consideiis

® | ' Q O®mi

where| is a constant between 0 and \Wechoosg 1@ for our computations. Thenitial

valuefor this IVODE i@ 1 p and exact solutiotis,

wo Q Ald®

We applyall the methoddo this IVODE to find the approximate solutions and corresponding

errors. Thaesultsare shownin the table below:

Methods Errors Rel. to Min.
Explicit Midpoint Method (Second Orderl, Y& ¢ p 1 od
Heun’'s Second Ordeg gt pTm 0%
Optimal Second Order ERK Method Cqu pTr P8t
Heun’s Third Order eI PpT P8t
Ral ston’s Third Or X8tx pm P8t
OptimalThird Order ERK Method Case o wp T pat
Optimal Third Order ERK Method Case pg X p T p&o
Optimal Third Order ERK Method Case pg X p T p&o
TheClassicaRungeKutta Method dy pr pEy
3/8 Rule Method T®Rp pTI paI
OptimalFourth Order ERK Method Casg x& x p Tt (1)
Optimal Fourth Order ERK Method Cas gy pm P&y
Optimal Fourth Order ERK Method Cas gy pr P&
Optimal Fourth Order ERK Method Cas LV X pTI PP
Optimal Fourth Order ERK Method Cas VB X pTI PP

Table 4.34: Errors and Rel. to Min. values for all the ERK methods applied on tyODE & Q O Eiwhere
| ™o p.
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For second order methodseferring to Tabled.3.1and4.3.4 we see that the optimal second
order ERK method haRel. to Min' value to be'l.0, which means it gives the most accuracy
in those tablesHowever,in the case ofTables4.3.2 and 4.3.31 S dzge@a@nd Ordemethod

and the Explicit Midpoint methogbrovide the most accurate resujtsespectively For third
order methods,Tables4.3.1 and 4.3.2how that the optimal third order ERK methadhse 1
provides the most accurate resultdowever,in case ofTables 4.3.3 and 4.3.4the optimal
third order ERK methodcase 2andl Sdzy Qa ¢ KA NFprovids RSkt ¥cBuiaky? R
respectively Forfourth order methods Table4.3.1shows that the optimal fourth order ERK
method, case ] provides the most accuracy, wheredable 4.3.3 shows that the optimal
fourth order ERK methgdase 2provides the most accuracilowever, @bles4.3.2 and 4.3.4

show thatthe 3/8 Ruleprovides the most accurate results.

Recalfrom Chapter Zhat the components of thérincipal Error Coefficieraire multiplied by
problem dependent factors the actual errorThis is the reason why wetgdifferent results

for each I\DDEsFor second order, the optimal second order ERK method hasemage Rel.

to Min. (ARM)of p® ¢ ,wvhile the other two secondrder methods haveARMs of¢8t x and

o& v For third order, the optimal third order ERK method, Case 1,ana&RMof p@® v
wkfadz2yQa (KRBRARMMBS NBISSido2®a KA NB1d @aBER SNJ Y S i
2 and 3 havéARMs of p& X,w® X,wandc¢d ¢,uespectivelyFor fourth order, the3/8 Rule
methodhasan ARMbf p@® X ,theclassical RungKutta methochasan ARMbf p& yand cases

1 through 5 haveARMs of &) ¢,w®, ¢& X,udo ¢,andt & ¢, vespectively. So, for second
and third orders the optimal method has the be&RM while for fourth order, the3/8 Rule
methodhas the besARM We must note that substantially more testing on a much larger test

set should be performed before any specific conclusions can be made.
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4.3.2 Efficiency

In this subsection, weemonstrate that better accuracy implies better efficiengye begin
with second order ERK methadshich includethe optimal second order ERK methatie
Explicit Midpoint metho@nd! S dzy Q & , britSnétéad étletermining which one gives the
smallest error we set a specifierror asthe goal, and determine whicimethod is able to
compute a solution with thaerror most quicklyi.e., in the fewest number of step§ve
determine thisby changinghe stepsizeandrunningthe softwareso that all methodsichieve

approximatelythe same error
For this analysis, we start with the IVODE,
® | ©Q Okh
where| T#. The initial value for this IVODEwst  p. Asonecan sedrom Section 4.3.1,

the smallest stepsize that we have usee-is T8t p L gaqdfor this stepsizel Sdzy Q& YSG K2 F

hasanerrorof & 1 p 1 for this IVODBENe nowfind out howlarge astepsizethe other

methodsusewhile still obtainingapproximatelythe same acuracy

We find thatfor the stepsize of8t ¢ x ,¢he optimal secondorder ERK methodchieveghe
same accuracy ab Sdzy Q& u¥iRylihk Bt€psize ofrdt p v ¢ whereas theExplicit
Midpoint methodachievesthat accuracyusingthe stepsize offi8t p v .xSipced  p, this
means that the optimal second ordBERKnethod computea solution of the desired accuracy
using o gsteps,while the other twomethods require about 63 steps indicating that the

optimal method is about Tt Inore efficient.
Next, weconsiderthe three-stage, third order ERK methodppliedto the IVODE,

) caxo h
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with initial value@ m  p. Weuseall the third order ERK methods identified in Section 4.3.1.

In that section, we saw that for this VO optimal third order ERK methods, Césédas

the largest error ob& @ p 1t forthe stepsize o~ m™Btpuv @ ¢ L

We find that at the stepsize o8t ¢ 11, dhe optimal third order ERK method, Case 1, gives the
same accuracy as the optimal third order ERK method, Cas@dhe stepsize oftp v @ ¢ U
wkfald2yQa ¢ KabMiRs the NaRi®dNacodracy With &stepsizadifo X mlo® dzy Q &
Third Ordemethodobtains the desired accuracy with a stepsize®f o 1 and the optimal

third order ERK method, Case 3, obtains the desired accuracy with a steps@te;of o

Sinced  p, this means that the optimal third order ERK meth@dse 1computesa solution

of the desired accuracy using¢ tsteps, whilew I £ 3G 2 Yy Q& ¢ K keNiRes h NR S NJ
steps,| S dzyMdOrder methodequires ¢ csteps the optimal third order ERK method,
Case 3, requires 1 uwstepsand the optimal third order BRmethod, Case 2, requires@ t
stepsto obtain the desired accuracy. Tliglicatesthat the optimal third order ERK methpd
Case 1js about @ ¢ hmore efficient wl f & (T&rgl Qrder methoé aboutu ¢ bBmore
efficient,l S dzy Q& is¥Yl®UKL2 BRore effcient and the optimal third order ERK method,

Case 3, is about 11 IMore efficient than the optimal third order ERK method, Case 2.

Finally, weusethe four-stage, fourth order ERK methods to compataumerical solution for

the IVODE,
&) caxo h
with initial value, 1t  p. We useall the fourth order ERK methoddentified in Section

4.3.1. In that section, weawthat for this IVODEhe optimal fourth order ERK methaiCase

4 and Case,have the largest error d® p p 1 for astepsize o~ TBtp UL @ ¢ L

We find thatfor the stepsize ofgt ¢ y,¢he optimal fourth order ERK methgdCase lgives

the same accuracy ke optimal fourth order ERK metha] Case 4 and CaseHheclassical
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RungeKutta methodobtains that accuracy with a stepsize mdt ¢ @ ,rthge optimal fourth
order ERK method, Case 3, obtains the desired accuracy with a stepsiecop ,mthe 3/8
Rule methoabbtains the desired accuracy with a stepsize@f ¢ v wand he gptimal fourth

order ERK methqdCase 2obtainsthe desiredaccuracywith astepsize of@t ¢ 1. U

Sinced  p, this means that the optimal fourth order ERK method, Case 1, compute
solution of the desired accuracy usingo usteps, whilethe classicalRungeKutta method
requires o ysteps,the optimal fourth order ERK method, Case&juires 1 (steps,3/8
Rule methodequires o wsteps the optimalfourth order ERK method, Case 2, requires
T ptepsand the optimal fourth order ERK method, Case 4@ask 5, both require ¢ tsteps
to obtain the desired accuracy. This indicates that the optiimaith order ERK method, Case
1, is aboub5b more efficient,the classical RungKutta methodandthe 3/8 Rule methodre
aboutt 11 IMore efficient,the optimal fourth order ERK method, Casés3bout¢ v fnore
efficient and the optimafourth order ERK method, Ca&egis abouto ¢ Imore efficient than

the optimalfourth order ERK method, Cadeand Case.5

4.4  ContinuousApproximate Solutions andCorrespondingdefects

As we have discussed in Chapterta approximate solutions provided by the ERK methods
are not continuouslin order to make the approximate solutions continuous, wee Hermite
interpolation. In this section, wanvestgate continuous approximate solutions as well as

defectsfor these continuous approximatolutions.
4.4.1 Continuous Approximate Solutions

In this subsection, werovide some plots athe continuous approximate solutions feome
of the test IVODEsomputed using the optimal ERK methoé®r IMODEswith the exact

solutions we compare thecontinuous approximate solutionsith the exact solutions.
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We beginwith second order ERK method&e usethe optimal second order ERK methtml

computea discrete approximate solutiaio the IVODE,
w | ®wQ Omh
where| ™, with initial value @1  p, and thencompute acontinuous approximate

solutionusing Hermiténterpolation. Thegraph, plotting the continuous approximate solution

and exact solutionisshown in Figure 4.4.1.

Figure 4.4.1Exact solution andantinuousapproximate solutiorusing the optimal second order ERI¢thodand
Hermite interpolation for thdVODEyY | @ Q Omhon p.

In the graph abovepne can clearly see that the continuous approximate solution and exact

solutionagree quite well

We next considethird order ERK methods. We ude optimal third order ERK metho@ase

1, to computea discrete approximate solution the IVODE,

N IO

with initial value wm  p, and thencompute acontinuous approximate solutionsing
Hermite interpolation. The graph, plotting the continuous approximate solution and exact

solution, isshown in Figure 4.4.2.
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Figure 4.2: Exact solution andontinuous approximate solution using the optimal third order ERK metbaske
1, and Hermite interpolation for thévODED - whom p.

In the graph abovepne can clearly see that the continuous approximate solution and exact

solutionagree quite well.

We next considefourth order ERK method¥Ve usethe optimal fourth order ERkKiethod,

case 1to computea discrete approximate solution the IVODE,
W ca h
with initial value wm  p, and thena compute continuous approximate solutionsing

Hermite interpolation. The graph, plotting the continuous approximate solution and exact

solution, isshown in Figure 4.4.3.
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Figure 4.43: Exact solution andantinuous approximate solution using the optimal fourth order ERK mettask
1, and Hermite interpolation for thévODED caw hom  p.

In the graph abovepne can clearly see that the continuous approximate solution and exact

solutionagree quite well

Finally we considerthe COVIEL9 modelintroduced in Section 2,J5and we usehe optimal
fourth order ERKnethod, Case 1to obtain an approximateolution forofrom mto p v.#Ve
use Hermiteinterpolationto obtain a correspondingontinuous approximate solutiohis
IVODE does not have an exact solutife therefore only showthe continuous approximate

sdution in Figure 4.4.4
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Figure 4.44: Continuous approximate solution using the optimal fourth order ERK metBask 1 and Hermite
interpolationto solvethe COVIEL9 model

4.4.2 Defectof Continuous Approximate Solutions

In this subsection, welot defects for the continuous approximate solutions of tH¥ODEs
computed using optimal ERK methods of each qragyether with Hermite interpolantswWe
considerthe same IDDEghat we consideredn Section 4.4.MVeplot the defect ononestep.

Recall thafor a continuous approximate solutiog, 0 , the defectis,

170 00 "QUvoO 8
We beginwith second order ERK method¥e usethe optimal second order ERK method to
obtain a discrete approwiate solutionto the IVODE,

® | ©Q Owh

where | TP, with initial value w1t p at a stepsize off@t p v @ gnd thenwe use
Hermite interpolation to finda continuous approximate solutioas we did in Section 4.4.1
We plot the defect based othis cortinuous approximate solutiarFor this test, we choose

arbitrarily, step number 23. The graph platythe defectin steps23isshown in Figurd.4.5

We see that thenaximumdefect is quite small v p 1T in magnitude.
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Figure 4.4: Defect Step 23 of the continuous approximate solution of thB/ODE®W | 'Q Omh
WT  pcomputed by usinghe optimal second ordeERK methodand Hermite interpolation

Next, weconsiderthird order ERK method®Ve use theoptimal thirdorder ERK methqdCase

1, to obtain a discrete apprdmate solution tothe IVODE,

ol o)

with initial value @t  p at a stepsize ofidt p and thenwe use Hermiteinterpolation to

find a continuous approximate solutioas we did in Section 4.4.We pbt the defect based
on this continuous approximate solutioRor this test, we chooserbitrarily,step number 11.
The graph ploinhg the defect instep11isshown in Figure 4.8. We see that the maximum

defect is quite small; it has a magnitude ok® p 1T .

87



Figure 4.46: Defect Step 11 of the continuous approximate solution of the IVOBRE - ohom p
computed by usinghe optimal third order ERK methgdase 1 and Hermig interpolation

Finally we considerfourth order ERK method®#Ve use theoptimal fourth order ERK method

Case 1to obtain a discrete approximate solution tee IVODE,

&) cow h
with initial value@ m  p, and thenwe againuse Hermitdanterpolationto find a continuous
approximate solution as we did in Section 4.4Me plot the defect based on this continuous
approximate solutionFor this test, we choosearbitrarily, step humber8. The graph ploihg

the defect in ste® is shown inFigure 4.4[. We can see that the maximum defestquite

small; it has a magnitude of @ p 1.
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Figure 4.47: Defect Step 8, of the continuous approximate solution of the IVOGE
computed by usinghe optimal fourth order ERKnethod, case 1 and Hermite interpolation

cavhom  p

We observe that the defects in all cases are quite small which indicates that the approximate

continuous solution almost satisfies the given ODE.
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Chapter 5

Summary, Conclusions, and Future Work

In this thesis we havepresentedthe general formfor Initial ValueODE along with some
examples Wehavepresentedgeneral forns for Explicit Rung&utta methodsof ordersc to

T and found the optimal values for the free coefficiehtssed on minimizing the Rdipal Error
Coefficient of the methodising optimization softwaré/Ne observed thatte Principal Error
Coefficiens of several othe standardERK methoslare very close tthose ofthe optimal ERK
methods We have also provided acomparison between thestandard and optimal ERK
methodsby testing them on various IVODRge note that the problem itself haan effect on
the error of the approximate numerical soluti@s the unsatisfiedorder conditionghat make
up the components ofhe Principal Error Coefficiemre multiplied by problem dependent
factors We confirmed the order of convergence of thtmtimal methodsthat we obtained
based ondiscreteapproximatesolutionscomputedby the ERK method$Ve used Hermite
interpolants toaugment the discrete approximate solutionsabtain continuous approximate
numerical solutions across the whole domain. Thallowed us to plot the continuous
approximate solution andto find the defect associated with itWe observed that the
continuous approximate numerical solutionswere quite accurate asheir corresponding

defects werequite small.

Regardinguture work, further testing of the ERK methods using a larger test set would be
helpful in order to determine how frequently the optimal methods actually lead to more
accurate resultsThe next stepvould be to develop a new software that is ableperform
adaptive step controbased onsome estimate of the maximum defect on each stdjis

would allow the python tool to provide morefficient results by adjusting the stepsizes. The
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idea here is toadjust the stepsize in order to kedpe maximumdefect kelow the user
providedtolerance. Another idea would be to extend the research to higher order methods.
That will also include using an interpotaof higher order than Hermite interpolatiolong

with that, it would be helpful to add a graphical usereriaice aspect to the Python software.

It would allow the user tasethe software and enter new IVODBE®re easily.
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Appendix

This software is available https://github.com/C\BRPHRK/Researglhesis
Optimization.py
import scipy.optimize as scope

case =0

Name: optimize
Description: This function finds the optimal values to minimize the given
Principal Error Coefficient and provides the results in

the console.
Parameters:
f . fis the name of the function used as Principal Error
Coefficient.
Returns: None
def optimize(f):
if (f == E2):
alpha = [0.1]
elif(f == E3):
alpha =[0.01, 0.01]
elif(f == E4):
if (case == 1):

alpha =[0.1, 0.2]

elif (case == 3):
alpha=[ -0.1]

elif ((case == 2) or (case == 4) or (case == 5)):
alpha = [0.1]

res = scope.minimize(f, alpha, tol=1e - 8)
print ("Message: ", res.message)

print ("E2: ", res.fun)

print ("Free Coefficients: ", res.x)

Name: E2
Description: This function represents as the Principal Error Coefficient
for second order ERK methods. Provided the value of the
free coefficient (alpha), this function provides the
Principal Error Coefficient value.
Parameters:
alpha : alphai s the list of values for the free coefficients.
Returns:
result : result is the Principal Error Coefficient value for the
given free coefficient.

def E2(alpha):
b=[1 - (1/(2*alpha[0])), 1/ (2 * alpha[0])]
c = [0, alpha[0]]
A =[[0, 0], [alpha[0], 0]]
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csq = [c[0] ** 2, c[1] ** 2]

besq = (b[0] * csq[0]) + (b[1] * csq[1])

Ac = [(A[0][0] [ %[10]) + (A[O][1] * c[1]).(A[1][0] * c[O]) + (A[L][1] *
c[l

bAc = (b[0] * Ac[0]) + (b[1] * Ac[1])

re sult = (((1/2) * (bcsq - (1/3))) ** 2) + ((bAc - (1/6)) ** 2)

return result

Name: setValuesForThirdOrderCasel
Description: This function sets and returns the values for all the
coefficients for Case 1 of the third order ERK methods.

Parameters:

alpha : alpha is the list of values for the free coefficients.
Returns:

c2, c3, bl, b2, b3, a31, a32: coefficients for Case 1 of the

third order ERK methods.

def setValuesForThirdOrderCasel(alpha):

c2 = alpha[0]

c3 = alpha[1]

bi1=@2 - (3*(c2+c3))+(6*c2*c3))/(6*c2*c3)
b2=(3 - (23)/(2*c2*(c3 - ¢2)

b3 = ((2/3) - ¢c2)/( 2*c3*(c3 - ¢2)
a31=(c3*(c3 - (8*c2)+(B*c2*c2))/(c2*((B3*c2)
a32 =(c3*(c2 - ¢3))/(c2*((3*c2) - 2)

return c2, c3, b1, b2, b3, a3l, a32

Names: E3Eql, E3EQ2, E3EQ3, E3Eg4
Description: These functions com pute and return the weighted values of
the order conditions of Principal Error Coefficient
of third order ERK methods.
Parameters:
C :c are the nodes.
b : b are the weights.
A : Ais the matrix.
Returns:
weighted values of the order conditions of Principal Error
Coefficient of third order ERK methods.

def E3Eq1(c, b, A):
#For Equation 1, find b*c"3
ccube = [c[0] ** 3, c[1] ** 3, c[2] ** 3]
bccube = (b[0] * ccube[0]) + (b[1] * ccube[1]) + (b[2] * ccube[2])

return ((1/6) * (bccube - (1/4))

def E3Eq2(c, b, A):
#For Equation 2, find b*c*A*c
be = [(b[0] * c[0]), (b[1] * c[1]), (b[2] * c[2])]
Ac = [((A[O][O] * c[O]) + (A [O][1] * c[1]) + (A[O][2] * c[2])),
((ALL][O] * c[O]) + (A[L][1] * c[1]) + (A[L][2] * c[2])),
((A2][0] * c[O]) + (A[2][1] * c[1]) + (A[2][2] * c[2]))]
bcAc = (bc[0] * Ac[0]) + (bc[1] * Ac[1]) + (bc[2] * Ac[2])

return (bcAc - (1/8))

def E3Eq3(c, b, A):
#For Equation 3, find b*A*c/2

- 2)
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csq = [c[0] ** 2, c[1] ** 2, c[2] ** 2]
Acsq = [((A[0][0] * csq[0]) + (A[O][1] * csq[1]) + (A[O][2] * csq[2])),

((A[L][0] * csq[0]) + (A[L][1] * csq [1]) + (A[1][2] * csq(2])),

((A[2][0] * csq[0]) + (A[2][1] * csq[1]) + (A[2][2] * csq[2]))]
bAcsq = (b[0] * Acsq[0]) + (b[1] * Acsq[1]) + (b[2] * Acsq[2])

return ((1/2) * (bAcsq - (1/12))
def E3Eqg4(c, b, A):

#For Equation 4, find b *AN2*C

Asq =]

for i in range (0, len(A)):
Asqg.append([])
for j in range (0, len(A)):
Asq[i].append((A[i][0] * A[O][i]) + (Ali][1] * A[L][]) +
(AlIE2] * AL2]0D)

Asqc = [((Asq[0][0] * c[0]) + (Asq[0] [1] * c[1]) + (Asq[0][2] * c[2])),
((Asq[1][0] * c[0]) + (Asq[1][1] * c[1]) + (Asq[1][2] * c[2])),
((Asq[2][0] * c[0]) + (Asq[2][1] * c[1]) + (Asq([2][2] * c[2]))]

bAsqc = (b[0] * Asqc[0]) + (b[1] * Asqc([1]) + (b[2] * Asqc[2])

r eturn (bAsqc - (1/24))

Name: E3
Description: This function represents as the Principal Error Coefficient
for third order ERK methods. Provided the values of the
free coefficients (alpha), this function provides the
Principal Error Coefficient value.
Parameters:
alpha : alpha is the list of values for the free coefficients.
Returns:
result : result is the Principal Error Coefficient value for the
given free coefficients.

def E3(alpha):
if ((alpha[0] == 0) or (alpha[0] == 2/3) or (alpha[1] == 0) or (alpha[0]
== alpha[1])):
return 1

€2, c3, bl, b2, b3, a31, a32 = setValuesForThirdOrderCasel(alpha)
c =10, c2, c3]

b =[bl, b2, b3]

A =10, 0, 0],[c2, 0, 0],[a31, a32, 0]]

#For Equation 1
eql = E3Eql(c, b, A)

#For Equation 2
eq2 = E3Eqg2(c, b, A)

#For Eq uation 3
eq3 = E3Eq3(c, b, A)

#For Equation 4
eq4 = E3Eqg4(c, b, A)

#E3"2
result = (eql ** 2) + (eq2 ** 2) + (eq3 ** 2) + (eg4 ** 2)

return result
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Name: setValuesForFourthOrder
Description: This function sets and returns the values for all the
coefficients for the fourth order ERK methods.

Parameters:

alpha : alpha is the list of values for the free coefficients.
Returns:

c2, c3, c4, bl, b2, b3, b4, a31, a32, a4l, a42, a43:

coefficients for the fourth order ERK methods.

def setValuesForFourthOrder(alpha):
if (case == 1):

c2 = alpha[0]

c3 = alpha[1]

c4=1

a3l =(c3*((3*c2) - ¢c3 - (4*c2*c2))/(2*c2*(1
c2)))

a32=(c3*(c3 - c2)/(2*c2*(1 - (2*c2))

a4l = (((c3*2)*((12*c2*c2) - (12*c2) +4))
c2 *c2) - (15*c2)+5)+ ((4*c2*c2)

(2*c2*c3)* (3 - (4% (c2 +c3)) + (6 * c2 * c3)))
- c2)/((2*c2)*

ad2=((( -4*c3*c3)+(5*c3)+c2 -2 (1
(c3 - c2)*(3 - (4*(c2+c3))+(6*c2*c3)))

a43=((1 - (2*c2)*(1 - c3)*(1 - ¢2))/(c3*(c3

(4*(c2+c3))+(6*c2*c3)))
bi1=(1 - (2*(@2+c3))+(6*c2*c3))/(12*c2*c3)
b2 = ((2 * c3) - 1)/((12*c2) * (c3 - c2)*(1
b3=(1 - (2*c2))/((12*c3)*(c3 - c2)*(1
b4=@ - (4*(c2+c3))+(6*c2*c3))/(12*(1
c3))
elif (case == 2):
b3 = alpha[0]
c2=c3=1/2
c4=1
a3l =((83*b3) - 1)/(6*b3)
a32=1/(6*b3)
a4l1=0
a4d2 =1 - (3*b3)
a43=3*Db3
bl=1/6
b2=(2/3) - b3
b4 =1/6
elif (case == 3):
b3 = alpha[0]
c2=1/2
c3=0
c4=1
a3l= -1/(12*b3)
a32=1/(12*b3)
a4l =( -1/2) - (6*h3)
ad2 =3/2
a43=6*b3
bl = (1/6) - b3
b2 =2/3
b4 =1/6
elif (case == 4):
b4 = alpha[0]
c2=1
c3=1/2
c4=1
a31=3/8
a32=1/8

- (2*

- (c3*((12*

(6 *c2) +2)) /

- ¢c2)*(3

c2))
c3))
- c2)*(1
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adl=1 - (1/(4*b4))
ad42= -1/(12*b4)
a43=1/(3*b4)
bl =1/6
b2 =1/6 - b4
b3 =2/3
elif (case == 5):
c2 = alpha[0]
c3=1/2
c4=1
a3l=((4 *c2) - 1)/(8*c2)
a32=1/(8*c2)
adl=(1 - (2*c2)/(2*c2)
ad2= -1/(2*c2)
a43=2
bl =1/6
b2=0
b3 =2/3
b4 =1/6

return c2, c3, c4, bl, b2, b3, b4, a31, a32, a4l, a42, a43

Names: E4AEql, E4Eq2, E4EQ3, E4Eq4, E4EQ5, E4EQ6, E4EqQ7, E4AEQ8, E4EQ9
Description: These functions compute and return the weighted values of
the order conditions of Principa | Error Coefficient
of fourth order ERK methods.
Parameters:
C : c are the nodes.
b : b are the weights.
A : Alis the matrix.
Returns:
weighted values of the order conditions of Principal Error
Coefficient of fourth order ERK methods.
def E4Eql(c, b, A):
#For Equation 1, find b*c"4
cquad = [c[0] ** 4, c[1] ** 4, c[2] ** 4, c[3] ** 4]
bcquad = (b[0] * cquad[0]) + (b[1] * cquad[1]) + (b[2] * cquad[2]) +
(b[3] * cquad3])

retur n ((1/24) * (bcquad - (1/5)))

def E4Eqg2(c, b, A):
#For Equation 2, find b*c"2*A*c
csq = [c[0] ** 2, c[1] ** 2, c[2] ** 2, c[3] ** 2]
besq = [b[0] * csq[0], b[1] * csq[1], b[2] * csq[2], b[3] * csq[3]]
Ac = [((A[0][0] *[C][;J)]) + (A[O][1] * c[1]) + (A[0][2] * c[2]) + (A[O][3]
*c[3])),
((A[1][0[] *])<);[o]) + (A[L][1] * c[1]) + (A[1][2] * c[2]) + (A[1][3]
* c[3])),
((A[2][0[] * C][g))]) + (A[2][1] * c[1]) + (A[2][2] * c[2]) + (A[2][3]
*c[3 ,
((A[3][0[] ’3)3][0]) + (A[3][1] * c[1]) + (A[3][2] * c[2]) + (A[3][3]
*c[3

bcsgAc = (besq[0] * Ac[0]) + (bcsq[1] * Ac[1]) + (besq[2] * Ac[2]) +
(besq[3] * Ac[3])

return ((1/2) * (bcsgAc - (1/10))

def E4Eq3(c, b, A):
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#For E quation 3, find b*c*A*c"2
csq = [c[0] ** 2, c[1] ** 2, c[2] ** 2, c[3] ** 2]
bc = [b[0] * ¢[0], b[1] * c[1], b[2] * c[2], b[3] * c[3]]
Acsq = [((A[0][0] * csq[Q]) + (A[O][1] * csa[1]) + (A[O][2] * csq[2]) +
(A[O][3] * csa[3])),
((A[ 1][0] * csq[O]) + (A[L][1] * csq[l]) + (A[1][2] * csq[2]) +
(A[L][3] * csq[3])),
((A[2][0] * csq[O0]) + (A[2][1] * csq[1]) + (A[2][2] * csq[2]) +
(A[2][3] * csa[3])),
((A[3][0] * csq[0]) + (A[3][1] * csq[1]) + (A[3][2] * csq[2]) +
(A [31[3] * csal3D)]
bcAcsq = (bc[0] * Acsq[0]) + (bc[1] * Acsq[1]) + (bc[2] * Acsq[2]) +
(bef3] * Acsq(3])

return ((1/2) * (bcAcsq - (1/15)))

def E4Eqg4(c, b, A):
#For Equation 4, find b*c*A”"2*c

be = [b[0] * ¢[0], b[1] * c[1], b{2] * c[2], b[3] * c[3]]

Ac = [((A[O][(1] ;[g][?)],) + (A[0][1] * c[1]) + (A[0][2] * c[2]) + (A[O][3]
((A[ll[O] * c[0]) + (A[L][1] * c[1]) + (A[1][2] * c[2]) + (A[1][3]
((A[ZE[B[]s*])g’[O]) + (A[2][1] * c[1]) + (A[2][2] * c[2]) + (A[2][3]
((A[3E[§]z*i§]’[0]) + (A[3][1] * c[1]) + (A[3][2] * c[2]) + (A[3][3]

AAc = [((A[O][O] * Ac[0]) + (A[O][1] * Ac[1]) + (A[O][2] * Ac([2]) +
(A[O][3] * Ac(3])),
((AL][0] * Ac[0]) + (A[L][1] * Ac[1]) + (A[1][2] * Ac(2]) +
(A[L][3] * Ac(3])),
((A[2][0] * Ac[0]) + (A[2][1] * Ac[1]) + (A[2][2] * Ac[2]) +
(A[2][3] * Ac(3])),
((AI3][0] * Ac[0]) + (A[3][1] * Ac[1]) + (A[3][2] * Ac[2]) +
(AIB][3] * Ac[3]))]
bcAAc = (bc[0] * AAc[O]) + (bc[1] * AAc[1]) + (bc[2] * AAc[2]) + (bc[3] *
AAc[3])

return (bcAAc - (1/30))

def E4Eqg5(c, b, A):
#For Equation 5, find b*(A*c)"2
Ac = [((A[9][0] *[C][?)]) + (A[O][1] * c[1]) + (A[Q] [2] * c[2]) + (A[O][3]
* c[3])),
((A[1][0[] *])f)J[O]) + (A[L][1] * c[1]) + (A[1][2] * c[2]) + (A[1][3]
* c[3])),
((A[2][0[] 3)()2[0]) + (A[2][1] * c[1]) + (A[2][2] * c[2]) + (A[2][3]
*c[3]),
((A[3][0[] ?)()2][0]) + (A[3][1] * c[1]) + (AI3][2] * c[2]) + (A[3][3]
*c[3

AcAc = [Ac[0] ** 2, Ac[1] ** 2, Ac[2] ** 2, Ac[3] ** 2]
bAcAc = (b[0] * AcAc[O0]) + (b[1] * AcAc[1]) + (b[2] * AcAc[2]) + (b[3] *
AcAc[3])

return ((1/2) * (bAcAc - (1/20))

def E4Eq6(c, b, A):
#For Eq uation 6, find b*A*c"3
ccube = [c[0] ** 3, ¢[1] ** 3, c[2] ** 3, ¢[3] ** 3]
Accube = [((A[0][0] * ccube[0]) + (A[O][1] * ccube[1]) + (A[O][2] *
ccube[2]) + (A[O][3] * ccube[3])),
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((A[1][0] * ccube(Q]) + (A[1][1] * ccube([1]) + (A[1][2] *
ccube[2]) + (A[1][3] * ccube[3])),
((A[2][0] * ccube[0]) + (A[2][1] * ccube[1]) + (A[2][2] *
ccube[2]) + (A[2][3] * ccube[3])),
((A[3][0] * ccube[0]) + (A[3][1] * ccube[1]) + (A[3][2] *
ccube [2]) + (A[3][3] * ccube[3]))]
bAccube = (b[0] * Accube[0]) + (b[1] * Accubel[1]) + (b[2] * Accube[2]) +
(b[3] * Accube[3])

return ((1/6) * (bAccube - (1/20)))

def E4Eq7(c, b, A):
#For Equation 7, find b*A*c*(A*c)

Ac = [((A[O][(i] *c[0]) + (A[O][1] * c[1]) + (A[O][2] * c[2]) + (A[O][3]
((A[ljlg[]s*])gylol) + (A[L][1] * c[1]) + (A[1][2] * c[2]) + (A[1][3]
((A[2E[§]z*1}j?:[0]) + (A[2][1] * c[1]) + (A[2][2] * c[2]) + (A[2][3]
((A[3E[2[]3*])f)l][0 1) + (A[BI[L] * c[1]) + (A[3][2] * c[2]) + (A[3][3]

cAc = [c[0] * Ac[0], c[1] * Ac[1], c[2] * Ac[2], c[3] * Ac[3]]
AcAc = [((A[0][0] * cAc(0]) + (A[O][1] * cAc[1]) + (A[O][2] * cAc[2]) +
(A[O][3] * cAc[3])),
((A[1][0] * cAc[O] ) + (A[L][1] * cAc[1]) + (A[1][2] * cAc[2]) +
(A[L][3] * cAc[3])),
((A2][0] * cAc[O]) + (A[2][1] * cAc[1]) + (A[2][2] * cAc[2]) +
(A[2][3] * cAc[3])),
((A[3][0] * cAc[O]) + (A[3][1] * cAc[1]) + (A[3][2] * cAc[2]) +
(A[3][3] * cAc[3 )]
bAcAc = (b[0] * AcAcl0]) + (b[1] * AcAc[1]) + (b[2] * AcAc[2]) + (b[3] *
AcAc[3])

return (bAcAc - (1/40))

def E4EQ8(c, b, A):
#For Equation 8, find b*A"2*c"2
csq = [c[0] ** 2, c[1] ** 2, c[2] ** 2, c[3] ** 2]
Acsq = [((A[0][0] * csq[0]) + (A[O][1] * csq[1]) + (A[O][2] * esq[2]) +
(A[O][3] * csq[3])),
((A[1][0] * csq[0]) + (A[L][1] * csq[1]) + (A[1][2] * csq[2]) +
(A[L][3] * csa[3])),
((A[2][0] * csq[0]) + (A[2][1] * csq[1]) + (A[2][2] * csq[2]) +
(A[2][3] csq[3])),
((A[3][0] * csq[0]) + (A[3][1] * csq[1]) + (A[3][2] * csq[2]) +
(A3][3] * esqal3D)]
AAcsq = [((A[0][0] * Acsq[Q]) + (A[O][1] * Acsq[1]) + (A[O][2] * Acsq[2])
+ (A[0][3] * Acsq(3])),
((AL][0] * Acsq[O]) + (A[1][1] * Acsq[1]) + (A[1][2] * Acsq[2])
+ (A[1][3] * Acsq[3])),
((A[2][0] * Acsq[O]) + (A[2][1] * Acsq[1]) + (A[2][2] * Acsq[2])
+ (A[2][3] * Acsq[3])),
((A3][O] * Acsq[O]) + (A[3][1] * Acsq[ 1]) + (A[3][2] * Acsq[2])
+ (A[3][3] * Acsq[3])]
bAAcsq = (b[0] * AAcsq[0]) + (b[1] * AAcsq[l]) + (b[2] * AAcsq[2]) +
(b[3] * AAcsq[3])

return ((1/2) * (bAAcsq - (1/60)))
def E4EQ9(c, b, A):
#For Equation 9, find b*A"3*c

Ac = [((A[0][0] ) * c[0]) + (A[O][1] * c[1]) + (A[O][2] * c[2]) + (A[O][3]
* c[3])),
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((A[1][0[] ’i)t):[O]) + (A[L][2] * c[1]) + (A[1][2] * c[2]) + (A[1][3]
* c[3])),
((A[2][0[] *])t):[Ol) + (A[2][1] * c[1]) + (A[2][2] * c[2]) + (A[2][3]
* c[3])),
((A[3 ][[g]]);] c[O]) + (A[3][1] * c[1]) + (A[3][2] * c[2]) + (A[3][3]
*c
AAc = [((A[0][0] * Ac[0]) + (A[O][1] * Ac[1]) + (A[0][2] * Ac[2]) +
(A[O][3] * Ac[3])),
((ALI[O] * Ac[O]) + (A[1][1] * Ac[1]) + (A[1][2] * Ac[2]) +
(A[L][3] * Ac[3])),
((AL2][0] * Ac[O]) + (A[2][1] * Ac[1]) + (A[2][2] * Ac[2]) +
(A[2][3] * Ac[3])),
((A3][0] * Ac[0]) + (A[3][1] * Ac[1]) + (A[3][2] * Ac[2]) +
(A[3]I3] * Ac[3D)]
AAAC = [((A[O][0] * AAc[0]) + (A[O][1] * AAc[1]) + (A[O][2] * AAC[2]
(A[O][3] * Ac[3])),
((A[L][O] * AAC[O]) + (A[L][1] * AAC[1]) + (A[1][2] * AAc[2]) +
(A[L][3] * Ac[3])),
((A[2][0] * AACO]) + (A[2][1] * AAc[1]) + (A[2][2] * AAc[2]) +
(A[2][3] * Ac[3])),
((AI3][0] * AAc[O]) + (A[3BI[ 1] * AAcl[1]) + (A[3][2] * AAc[2]) +
(AL3II3] * Ac[3D)]

bAAAC = (b[0] * AAAC[O]) + (b[1] * AAAC[1]) + (b[2] * AAAC[2]) + (b[3] *
AAAC[3])

return (bAAAC - (1/120))

Name: E4
Description: This function represents as the Principal Error Coefficient
for fourth order ERK methods. Provided the values of the
free coefficients (alpha), this function provides the
Principal Error Coefficient value.
Parameters:
alpha : alpha is the list of values for the free coefficients.
Returns:
result : result is the Principal Error Coefficient value for the
given free coefficients.

def E4(alpha):

if (case == 1):
if ((alpha[0] <= 0) or (alpha[1] <= 0) or (alpha [0]==1)or
(alpha[1] == 1)
or (alpha[0] == alpha[1]) or (alpha[0] == 1/2) or ((3 - (4
(alpha[0] + alpha[1])) + (6 * alpha[0] * alpha[1])) == 0)):
return 1

elif ((case == 2) or (case == 3) or (case == 4) or (case == 5)):
if (alpha]0] == 0):
return 1

c2, c3, c4, bl, b2, b3, b4, a31, a32, a4l, a42, a43 =
setValuesForFourthOrder(alpha)

[0, c2, c3, c4]
[b1, b2, b3, b4]
[[0, 0, 0, 0],[c2, 0, 0, 0],[a31, a32, 0, 0], [a41, a42, a4 3,0]]

c
b
A
#For Equation 1

eql = E4Eql(c, b, A)

#For Equation 2
eq2 = E4Eq2(c, b, A)
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#For Equation 3
eq3 = E4Eq3(c, b, A)

#For Equation 4
eq4 = E4Eq4(c, b, A)

#For Equation 5
eqg5 = E4Eqg5(c, b, A)

#For Equation 6
eq6 = E4Eq6(c, b, A)

#For Equation 7
eq7 = E4Eq7(c, b, A)

#For Equation 8
eq8 = E4Eq8(c, b, A)

#For Equation 9
eq9 = E4Eq9(c, b, A)

result = (eql ** 2) + (eq2 ** 2) + (eq3 ** 2) + (eg4 ** 2) + (eq5 ** 2) +
(eq6 ** 2) + (eq7 ** 2) + (eq8 ** 2) + (eq9 ** 2)

return result

Name: displayMenu
Description: This function displays the menu and asks the user to input

a choice.
Parameters: None
Returns:
choice : the interger value given by the user.
def displayMenu():

print ("1. Optimize E2")
print ("2. Optimize E3")
print ("3. Optimize E4")
choice = input("Enter your choice: ")

return int(choice);

Name: chooseE4Case
Description: This function displays a menu for the cases of the fourth

order ERK methods and asks the user to input a choice.

Parameters: None
Returns:
choice : the interger value given by the user.
def chooseE4Case():
print ("1. Case 1: 0, c2, ¢3, 1 all distinct,",

"\nc2i1/2 and(cc32 + ¢c3) + 6*c2*c3
print ("2. Case 2: c¢2 = ¢3 = 1/2, b
print ("3. Case 3: ¢2 = 1/2, ¢3 = 0
pri nt (" 4. Case 4: c2 = 1, c3 = 1/ 2,
print ("5. Case 5: c¢c2i0, ¢3 = 1/2
choice = input(" \ nEnter your case choice: ")

return int(choice)

0")
0")
b3io0o")
bal 0")

= 0")
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Name: initializeOptimizer

Description: This function initializes the optimization p
Principal Error Coefficient of user's choice.

Parameters:

choice : the interger value given by the user.

Returns: None
def initializeOptimizer(choice):
global case
if (choice == 1):
optimize(E2)
elif (choice == 2):
optimize(E3)
elif (choice == 3):
case = chooseE4Case()
if ((case < 1) or (case > 5)):
initializeOptimizer(choice)
else:
optimize(E4)
else:
print ("Invalid choice. Please try again.")
initializeOptimizer(displayMenu())

initializeOptimizer(displayMenu())

rocess for the
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main.py

import EulersMethod as em
import Function as f

import Methods as m

import FilelO.FilelO as FilelO
import config

imp ort Hermitelnterpolation as hi

Name: displayMenu
Description: This function displays a menu and asks the user to input

a choice.
Parameters: None
Returns:
choice : the integer value given by the user.
def displayMenu():

print ("1. Specific IVODE on Specific Method")

print ("2. Specific IVODE on All Methods and Export results to a file")
choice = input("Enter your choice: ")

print (")

return int(choice)

Name: chooseMenuOption
Description: This function runs the specific function to initiate
the testing of one or more ERK methods.
Parameters:
choice : the integer value given by the user.
Returns: Non e
def chooseMenuOption(choice):
if (choice == 1):
specific VODESpecificMethod()
elif (choice == 2):
specific VODEAIlIMethods()
else:
print ("Invalid Choice. \ n")
chooseMenuOption(displayMenu())

Name: specificlVODESpecificMethod
Description: This function initiates the specific ERK method
to solve a specific IVODE chosen by the user.
Parameters : None
Returns : None
def specific VODESpecificMethod():
t0, tf, yO = f.setFormulaV alues(f.displayFormulas())
em.setlnitialValues(tO, tf, y0)

m.displayMethods()

i=1
while(j <= 6):
if (f.exactExists):
ee, tt, yy = em.eulersMethod(j)
order = em.findOrder(ee, j)
for x in order:
print (em.dictToString(x))
print ()
else:
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k=0

tt, yy = em.eulersMethod(j)

fory in yy[len(yy) - 1]
print ("Steps:", (2 ** ( * ( -0, " \ ty[" + str(k) + "]:",

y)

k+=1

print ()

j=i+1
hi.plotHermite()

Name: specificl VODEAIIMethods
Description: This function initiates all the ERK methods
to solve a specific IVODE chosen by the user.
Parameters : None
Returns : None

def specific VODEAIIMethods():
t0, tf, yO = f.setFormulaValues(f.displayFormulas())
em.setlnitialValues(t0, tf, y0)

config.file = FilelO.File I0("Test Results/F" + str(f.formulaNumber) +
"Xt "w")
fname ="F" + str(f.formulaNumber) + " " + str(t0) + " " + str(tf)
fory in yO:
fname = fname + " " + str(y)
config.file.write(fname, end="' \ n\ nY)

orders =]
methodNumber = 1
i=1
while(methodNumber < 10):
case =i
methodInfo = "methodNumber: " + str(methodNumber)
if (methodNumber == 7) or (methodNumber == 9):
methodInfo = methodInfo + " Case: " + str(case)

config.file.write(methodinfo, end=")
m.setMethodValues(methodNumber, True, case)
i=1
while(j <= 6):
if (f.exactExists):
ee, tt, yy = em.eulersMethod(j)
order = em.findOrder(ee, j)
for x in order:
config.file.write(em.dictToString(x))
config.file.write("")
else:
k=0
tt, yy = em.eulersMethod(j)
for y in yy[len(yy) - 1]
config.file.write("Steps: " + str(2 ** (j * ( -1) +
"\ ty[" + str(k) + "]: " + str(y))
k+=1
config.file.write("")
j=j+1
if (f.exactExists):
orders.append(order)
if ((methodNumber != 7) and (methodNumber != 9)):
methodNumber += 1
else:
if (((methodNumber == 7) and (i == 3)) or ((methodNumber == 9)
and (i == 5))):
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methodNumber += 1
i=1
else:
i+=1
if (f.exactExists):
em.relToMinError(orders)

chooseMenuOption(displayMenu())

del config.file
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config.py

# Object created to be used for filelO
file = None

# Ob ject to store the list of lists of time intervals for Hermite
interpolation

t=1
# Object to store the list of lists of y values for Hermite interpolation
y=1

# Object to store the list of lists of function values for Hermite
interpolation

f=1

# Object to store the list of function values per Eulers Method call

fly =11
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EulersMethod.py

import math

import bokeh.plotting as bp
import Methods as m
import Function as f

import config

t0=tf=0
eeOld=y0 =]

Name: setlnitialValues
Descri ption: This function sets the initial values for a method.
Parameters:
t : tis the initial time.
tfinal : tfinal is the final time.
y .y is the initial value for the given IVODE.
Returns: None
def setlnitialValues(t, tfinal, y):
global t0, tf, yO
t0, tf, yO =t tfinal, y[:]

Name: eulerMethod

Description: This function computes the approximate solution for an IVODE

using a
given ERK method.
Parameters:
steps : steps is the parameter provided to compute the stepsize.
Returns:

if (f.exactExists = True):

ee : ee s the list of lists of errors in approximate numerical

solutions for the IVODE.

tt : ttis the list of points on the domain where the

approximate

numerical solution for the IVODE is computed.
yy :yy is the list of approximate numerical solutions for the

IVODE
computed at points (tt) on the domain.
if (f.exactExists = False):
tt : ttis the list of points on the domain where the
approximate

numerical solution for the IVODE is computed.
yy :yy is the list of approximate numerical solutions for the

IV ODE
computed at points (tt) on the domain.
def eulersMethod(steps):
# Setting up all the initial values
t=t0
tfinal = tf
y =yo0[]
h = math.pow(2, (steps * ( - 1))
tt = [t]
yy = [y[]]
ee =]
config.ffy =]

# Computing the approximate numerical solution
while (t < tfinal):
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fy = m.method(t, y[], h)
for i in range(0, len(y)):
ylil = y[i] + (h* fy[i])

t=t+h

tt.append(t)

yy.app end(y[:])
m.method(t, y[:], h)
config.t.append(tt[:])
config.y.append(yy[:])
config.f.append(config.ffy[])

if (f.exactExists):
# Computing the error
for j in range(0, len(yy)):
e = f.formula(2, tt[j], yylj] )
for i in range (0, len(e)):
eli] = abs(e[i])
ee.append(e[:])
return ee, tt, yy
else:
return tt, yy

Name: findOrder
Description: This function computes the ratio of the errors and
order of convergence of a given ERK method.
Parameters:
ee :eeisthe list of lists of errors in approximate numerical
solutions for the IVODE.

steps : steps is the parameter provided to compute t he stepsize.

Returns:
orders : orders is the list of dictionaries which has error(s),
stepsize,
ratio of the errors and order of convergence of the
method.
def findOrder(ee, steps):
global eeOld
i=0
orders=[ ]
for e in ee[len(ee) -1
order = {}
order["ee[" + str(i) +"]"] = e
order["'Steps"] = math.pow(2, (steps * ( -1))
if (steps > 1):
ratio = eeOld[i]/e
order['eeOld/ee'] = ratio
if (ratio == 0):
order['Order] = 'n/a’
else:
order['Order’] = round(math.log(ratio, 2))
i+=1
orders.append(order)
eeOld = ee[len(ee) - 1]
return orders

Name: relToMinEr  ror
Description: This function computes the relative to minimum error for each
order of
ERK method and print them in the results text file.
Parameters:

108



orders : orders is the list of dictionaries which has error(s),
stepsize,
ratio of the errors and order of convergence of the
method.
Returns: None

def relToMinError(orders):
config.file.write("Rel. To Min. Errors:")
for j in range (0, len(orders|[0])):
minError = min(orders[1][j].get("ee[" + str() + '),
orders[2][j].get("ee[" + str(j) + "),
orders[3][j].get("ee[" + str(j) + "T"))
orders[1][jI'RelError] = (orders[1][j].get("ee[" + str(j) + "]") /

minError

orders[2][j]['RelError] = (orders[2][j].g et("ee[" + str(j) + ") /
minError

orders[3][j]['RelError] = (orders[3][j].get("ee[" + str(j) + ")) /
minError

minError = min(orders[4][j].get("ee[" + str()) + '),
orders[5][j].get("ee[" + str(j) + "T"),
orders[6][j].get("ee[" + str(j) + "),
orders[7][jl.get("ee[" + str(j) +"]"),
orders[8][j].get("ee[" + str(j) + ")
orders[4][j]['RelError] = (orders[4][j].get("ee[" + str(j) + "T")) /
minError
orders[5][jI['RelError] = (orders[5][j].get("ee[" + str(j) + "1")) /
minError
orders[6][j]['RelError] = (orders[6][j].get("ee[" + str(j) + "]")) /
minError
orders[7][jI['RelError] = (orders[7][j].get("ee[" + str(j) + "1")) /
minErro r
orders[8][j][RelError] = (orders[8][j].get("ee[" + str(j) + "T")) /
minError

minError = min(orders[9][j].get("ee[" + str(j) + ""),
orders[10][j].get("ee[" + str(j) + "]"),
orders[11][j].get("ee[" + str(j) + ")
orders[12][j].get("ee[" + str(j) + "),
orders[13][j].get("ee[" + str(j) + 7",
orders[14][j].get("ee[" + str(j) +"1")
orders[9][jI['RelError'] = (orders[9][j].get("ee[" + str(j) + ") /

minError

orders[10][j] [RelError] = (orders[10][j].get("ee[" + str(j) + ""))
/ minError

orders[11][j][RelError] = (orders[11][j].get("ee[" + str(j) + "T"))
/ minError

orders[12][j]['RelError'] = (orders[12][j].get("ee[" + str(j) + "T"))
/ minError

or ders[13][jl['RelError] = (orders[13][j].get("ee[" + str(j) + "]"))
/ minError

orders[14][j][RelError] = (orders[14][j].get("ee[" + str(j) + "T"))
/ minError

for x in orders:
foryinx:
config.file.write(dictToString(y))
config.file.write("™)

Name: dictToString
Description: This function converts the data stored in a dictionary into
string.
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Parameters:

dict : dict is the dictionary in which the data is stored.
Returns:
dictString : dictString is the string converted from the dictonary.
def dictToString(dict):
dictString =™

# Fetching data from the dictonary and saving it in the string
for xindict:
dictString = dictString + x + ": " + str(dict.get(x)) + " \t
# Returning the string after removing the extra whitespace
return dictString.strip()
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Function.py

import ivode as iv
import config

formulaNumber = 0
exactExists = True

Name: displayFormulas
Description: A function to get the formula number along
with the respective values.

Parameters:
None
Returns:
fname : returns a string with the formula number

and values provided by the user
def displayFormulas():
print ("Simple: f1 t tfinal y0")
print ("Predator Prey: f2 t tfinal x y alpha beta gamma delta")
print ("Simple System: f3 t tfinal x y")
print ("Test F4: f4 t tfinal y0")
print ("Test F5: 5 t tfinal y0")
print ("Test F6: f6 t tfinal y0")
print ("Test F7: f7 t tfinal yO alpha")

print ("Sample COVID - 19 Model: 18 t tfinal")
fname = input(" \ nEnter the formula with values respectively" +
" (Use spaces between the values like shown above): \'n")

return fname

Name: setFormulaValues
Description: A function to set formula number and the
respective values for the form ulas accordingly.
Parameters:
fname :fname has the formula number as well as the
respective values for the formulas to be used
Returns:
data[1] : The value of tO for the initial time of the
formula
data[2] : The value of tf for the final time of the
formula (tfinal)
y[0] : Alist of initial values of y at time tO

def se tFormulaValues(fname):
global formulaNumber, exactExists
yo =1
data = fname.split()
for i in range(1, len(data)):
data[i] = float(data[i])

formulaNumber = int (data[0][1:])

if(formulaNumber == 2):

exactEx ists = False

y0.append(data[3])

y0.append(data[4])

iv.setConstants(data[5], data[6], data[7], data[8])
elif (formulaNumber == 3):

y0.append(data[3])

y0.append(data[4])
elif (formulaNumber == 7):
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y0.ap pend(data[3])
iv.setConstants(data[4])
elif (formulaNumber == 8):
exactExists = False
y0 = iv.sampleCOVID19Modellnitializer()
elif  ((formulaNumber == 1) or ((formulaNumber >= 4) and (formulaNumber <=
6))):
y0.append(data[3])
else:
print ("No formula with that name.")
exit(0)

return data[1], data[2], yO

Name: formula

Description: A functio n to get the:

i = 0: approximate values of y

1: exact values of y

2: error values at t with a given'y

by calling the respective formula function
according to the formula num ber.
Parameters:
t : The value of t after a certain steps
y :The list of values of y at step t

Returns:
fori=0:
y[t+h] : The list of approximate values of y from
the respective formula func tion for the
nextstept+h
fori=1:

y[t] : The list of exact values of y from the
respective formula function for the
step t
fori=2:
e : The list of error values with a given'y
from the respective formula function
for the step t
def formula(i, t, y):
if (formulaNumber == 1):
return iv.simple(i, t, y)
elif  (formulaNumber == 2):
return iv.predatorPrey(i, t, y)
elif (formulaNumber == 3):
return iv.simple_sys(i, t, y)
elif (formulaNumber == 4):
return iv.TestF4(i, t, y)
elif (formulaNumber == 5):
return iv.TestF5(i, t . Y)
elif (formulaNumber == 6):
return iv.TestF6(i, t, y)
elif (formulaNumber == 7):
return iv.TestF7(i, t, y)
elif (formulaNumber == 8):
return iv.sampleCOVID19Model(i, t, y)
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Hermitelnterpolation.py

import  bokeh.plotting as bp
import Function as f
import config

Names: h0O(t), h10(t), h01(t) and h11(t)
Description: The functions given below work as Hermite Basis Polynomials,
h0O0(t), h10(t), h01(t) and h11(t).
Parameters:
t :Th e quantity t measures the relative distance across the
subinterval
Returns:
result for the Hermite Basis Polynomial at t.

def hOO(t):
return (1 + (2 *t)) * (1 - )**2)

def h10(t):
return (t* (1 - H)**2)

def hO1(t):
return ((t** 2*@ - (2*Y)

def h11(t):
return ((t**2) * (t - 1)

Names: h0O_d(t), h10_d(t), h01_d(t) and h11_d(t)
Description: The functions given below work as derivatives of Hermite Basis

Polynomials,
hooO(t), h10(t), h01(t) and h11(t).
Parameters:
t : The quantity t measures the relative distance across the
subinterval
Returns:

result for the derivative of Hermite Basis Polynomial at t.

def h00_d(t):
return (6 Rt - 1)

def h10_d(t):
return (1 + (3 * (t**2)) - (A1)

def hO1_d(t):
return (6 *t* (1 - 1)

def h11_d(t):
return ((3 * (t**2)) - (2*1)

Name: hermite
Description: This function evaluates Hermite form for u_i(t_i + (theta *

h_i))
and the associated defect.

Parameters:

tt : ttis the list of times after each step.

yy :yyis the list of lists of y values at the given times at
each step.

ffy : ffy is the function value for f(t, y ) using the above values.
Returns:

t :tisthe list of points on the whole domain.
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points

uu :uuis the list of lists of lists of Hermite forms at uniform

for system of equations in each interval. These are known as
the continuous approximate numerical solutions.

ffe :ffe is the list of exact solutions at all the t values.

delta : delta is the defect assoc iated with the continuous

approximate

numerical solution.

def hermite(tt, yy, ffy):
h =tt[1] - tt[0]
# To store all the t values from start to end

t=1

# To store the u value computed at (t_i + (theta * h_i)).

u =1

# To store the derivative of u computed at (t_i + (theta * h_i)).
ud=J]

# To store the defect at (t_i + (theta * h_li)).

d=1

# To store all the u values computed

uu =]

# To store all the exact solutions at all the t values
ffe=

# To store all the defect values in variable 'delta’

delta =]

for k in range (0, len(yy[0])):

h01(0)) +

# For the first value, u_0(t_0)
u.append((yy[0][k] * h00(0)) + (h * ffy[O][k] * h10(0)) + (yy[1][K] *
(h* ffy[1][K] * h11(0)))

# For the first derivative value, u_0'(t_0)
u_d.append(((yy[0][k] / h) * h0O_d(0)) + (ffy[O][k] * h10_d(0)) +

((yy[1][k] / h) * h01_d(0)) + (ffy[1][k] * h11_d(0)))
# Here fu = f(t_0, u_0(t_0))
fu = f.formula(0, tt[0], u[:])
if (f.exactExists):

# Exact value att 0

fe = f.formula(l, tt[O], u[:])

# Storing the value in the list named 'ffe'
ffe.append(fe)

#d_0(t_0)=u_0 '(t_0) - f(t_0, u_0(t_0))
for k in range (0, len(u)):

d.append(u_d[K] - fulk])

# Storing the values in their corresponding lists
t.append(tt[0])

uu.append(u)

delta.append(d)

# Performing hermite interpolation on all the in tervals
for i in range (0, len(tt) - 1)

for jin range (1, 11):
theta = j/10
u=J]
ud=J]
d=[
for k in range (0, len(yy[i])):
# u_i(t_i + (theta * h_li))
u.append((yy[il(k] * h0O(theta)) + (h * ffy[i][k] *

h10(theta)) + (yy[i + 1][k] * hO1(theta)) + (h * ffy[i + 1][k] * h11(theta)))
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#u_i'(t_i + (theta * h_i))

# Here u_d denotes the derivative of u

u_d.append(((yy[il[k] / h) * hOO_d(theta)) + (ffy[il[K] *
h10_d(theta)) + ((yy[i + 1][k] / h) * h01_d(theta)) + (ffy[i + 1][k] *
h11l_d(theta)))

# Here fu = f(t_j + (theta * h_i), u_i(t_i + (theta * h_i)))
fu = f.formula(o, (t {[i] + (theta * h)), u[:])

if (f.exactExists):
# Exact value at (t_i + (theta * h_i))
fe = f.formula(l, (tt[i] + (theta * h)), u[:])
# Storing the value in the list named 'ffe’
ff e.append(fe)

#d_i(t_i + (theta * h_i)) = u_i'(t_i + (theta * h_i))
(theta * h_i), u_i(t_i + (theta * h_i)))
for k in range (0, len(u)):
d.append(u_d[k] - fulk])

# Storing the values in their corresponding lists
t.append(tt[i] + (theta * h))
uu.append(u)
delta.append(d)
return t, uu, ffe, delta

Name: displayResults
Description: This function performs Hermite interpolation and displays the
results in the console.
Parameters:
reset : reset is used to check if the lists containing the data
require
a reset or not. The default value for reset is False.
Returns: None
def displayResults(reset=Fal se):
# For a full display of hermite interpolant
for i in range (0, len(config.t)):
t, u, fe, d = hermite(config.t[i], config.y[i], config.f[i])
if (f.exactExists):
print (i Vevebee VeveVtu NV eveVef Vel td)
fo riinrange (0, len(t)):

print (i+1, " \ i, \t, i, \t, fe[i], "

else:
print ("i Vevtevtt VevtVtu\ e\ t\td”)
for i in range (O, len(t)):

print (i+1, " ], " \ ', ufi], " \ t, d[i])
input("Press Enter to continue")
if(reset):
config.t =]
config.y =]
config.f =]

Name: plotHermite
Description: This function performs Hermite interpolation and plots those
results
on the graph. It provides two graphs:
Hermite Interpolant.html
Defect.html
Parameters : None
Returns : None

- f(i+

\ t, d[il)

115



def plotHermite():

# Calling the hermite() function on the data at the smallest stepsize

t, u, fe, d = hermite(config.t[len(config.t) - 1], config.y[len(config.y) -
1], config.f[len(config.f) -1))

# Creating lists to prepare them for plotting

t list=1]

u_list=1]

if (f.exactExists):
f list=1]

d_list=1]

fo rjin range (0, len(u[0])):
t_list.append(t)
u_list.append([])
if (f.exactExists):

f_list.append([])

d_list.append([])

# Preparing the lists for plotting
for i in range (0, len(t)):
forjinran ge (0, len(u[i])):
u_list[jl.append(u[i][iD)
if (f.exactExists):
f_list[j].append(fe[i][j])
d_list[j].append(d[i][i])

# Creating an object to create an HTML file for plotting
bp.output_file("Plots/Hermite Interpolant.html")

# Creating a figure to plot in the HTML file
p = bp.figure(plot_width = 1366, plot_height = 768)

# Plotting the data
if (f.e XactExists):

p.multi_line(t_list + t_list, u_list + f_list)
else:

p-multi_line(t_list, u_list)

# Showing the data in the browser
bp.show(p)

# Creating an object to create an HTML file for plotting
bp.output_file("Plots /Defect.html")

# Creating a figure to plot in the HTML file
p = bp.figure(plot_width = 1366, plot_height = 768)

# Plotting the data
p-multi_line(t_list, d_list)

# Showing the data in the browser
bp.show(p)
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Methods.py

import Function as f
import config

methodNumber = alpha = beta = case =0

def displayMethods():
print ("1. Forward Euler Method")
print ("2. Explicit Midpoint Method")
print ("3. Heun's Second Order Method")
print ("4. Second Order RK Met hod")
print ("5. Heun's Third Order Method")
print ("6. Ralston's Third Order Method")
print ("7. Third Order RK Method")
print ("8. RK4 Method")
print ("9. FourthOrderRKMethod")
mname = input("  \ nEnter the method with values respect ively (Use spaces
between the values like shown above): \'n")
setMethodValues(mname, False)

def setMethodValues(mname, auto, caseNumber=None):
global methodNumber, case

methodNumber = int(mname)
if ((methodNumber < 1) or (methodNumber > 9)):
print ("No Method with that number. \'n")
displayMethods()
else:
if (auto):
case = caseNumber
autoChooseCase()
else:
userChooseCase()

def autoChooseCase():
# To fully automate this, the coefficients are assigned with the optimal
values
global alpha, beta
caselnfo =""
if (methodNumber == 4):
alpha =2/3
caselnfo = " alpha=" + str(alpha)
elif (methodNumber == 7):
if (case ==1):
alpha = 0.49650476
beta = 0.75174749
caselnfo =" ¢2=" + str(alpha) + " c3=" + str(beta)
elif (case == 2):
alpha =1/8
caselnfo =" b3=" + str(alpha)
else:
alpha = 3/8
caselnfo =" b3=" + str(alpha)
elif (methodNumber == 9):
if (case == 1):
alpha = 0.35774159
beta = 0.59148821
caselnfo =" c2="+ str(alpha) + " c3=" + str(beta)
elif (case == 2):
alpha = 0.83316441
caselnfo =" b3=" + str(alpha)
elif ((case == 3) or (case == 4)):
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else:

alpha=1/6
caselnfo =" b" + str(case) + "="

alpha=1
caselnfo =" ¢2=" + str(alpha)

config.file.write(caselnfo)

def userChooseCase():
global alpha, beta, case
if (methodNumber == 4):
alpha = input("Enter the alpha: ")
i f("/"in str(alpha)):

else:

res = alpha.split('/")
alpha = int(res[0]) / int(res[1])

alpha = float(alpha)

elif (methodNumber == 7):

print ("Case 1: if c2io0,
print ("Case 2: if b3io,
print ("Case 3: if b3io,

choice = input("
= choice.split()

data

\ nEnter your case choice: ")

for i in range(1, len(data)):

if ("/" in str(data]i])):

res = datal[i].split(/")

datali] = int(res[0]) / int(res[1])
else:

datali] = float(datali])

case = int(data[0])
if (case == 1):

alpha, beta = data[1], data[2]

elif ((case == 2) or (case == 3)):

else:

alpha = data[1]

print ("No case of that choice.")
exit(0)

elif (methodNumber == 9):
print ("Case 1: 0, c2, c3, 1 all di stinct,”,
"\nc2l 1/ 2 and(c32 + c¢c3)

c3")
print ("Case 2: c2 = c¢3
print ("Case 3: c¢2 = 1/ 2,
print ("Case 4:c2 =1, c3 = 1/ 2, b
print ("Case 5: c¢c2i0, ¢3

choice = input("
= choice.split()

data

\ nEnter your case choice: ")

for i in range(1, len(data)):

case

if (/" in str(datali])):

res = datal[i].split('/")

data[i] = int(res[0]) / int(res[1])
else:

data[i] = float(data[i])

= int(data[0])

if (case == 1):

alpha, beta = data[1], data[2]

4

+

1
Cc
0

+ str(alpha)

/
3

P -

elif ((case == 2) or (case == 3) or (case == 4) or (case == 5)):

else:

alpha = data[1]

print ("No case of that choice.")
exit(0)

6*c2*c3

2
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def method(t, y, h):

if (method  Number == 1):

return forwardEulersMethod(t, y)
elif (methodNumber == 2):

return explicitMidpointMethod(t, y, h)
elif (methodNumber == 3):

return HeunsSecondOrderMethod(t, y, h)
elif (methodNumber == 4):

return se  condOrderRKMethod(t, y, h)
elif (methodNumber == 5):

return HeunsThirdOrderMethod(t, y, h)
elif (methodNumber == 6):

return RalstonsThirdOrderMethod(t, y, h)
elif (methodNumber == 7):

return  thirdOrderRKMethod(t, y, h)
elif (methodNumber == 8):

return RK4Method(t, y, h)
elif (methodNumber == 9):

return FourthOrderRKMethod(t, y, h)

def forwardEulersMethod(t, y):

fy = f.formula(0, t, y[:])

config.ffy.append(fy)
return fy

def explicitMidpointMethod(t, y, h):

def

k1 = f.formula(0, t, y[:])

config.ffy.append(k1)

yn =1

for i in range (0, len(k1)):
yn.append(y[i] + ((h/2) * k1[i]))

fy = f.formula(o, (t + (h/2)), yn[:])

return fy

HeunsSecondOrderMethod(t, y, h):

k1 = f.formula(o0, t, y[:])

config.ffy.append(k1)

yn=1l

for i in range (0, len(k1)):
yn.append(y[i] + (h * k1[i]))

k2 = f.formula(0, (t + h), yn[:])

fy =11

fori in range (0, len(k2)):
fy.append((1/2) * (k1[i] + k2[i]))

return fy

def secondOrderRKMethod(t, y, h):

global alpha
k1 = f.formula(o0, t, y[:])
config.ffy.append(k1)
yn=1l
for i in range (0O, len(k1)):

yn.a ppend(y[i] + (h * (alpha * k1[i])))
k2 = f.formula(0, (t + (alpha * h)), yn[:])
fy=1]
for i in range (0O, len(k1)):

fy.append(((1 - (1/(2 * alpha))) * k1[i]) + ((1/(2 * alpha)) *

k2[i]))

return fy

119



def HeunsThirdOrderMethod(t, v, h):
c2=1/3
c3=2/3
bl=1/4
b2=0
b3 =13/4
as3l=0
a32=2/3
k1 = f.formula(o0, t, y[:])
config.ffy.append(k1)

yn=1]

for i in range (0, len(k1)):
yn.append(y[i] + (h* (c2 * k1[i])))

k2 = f.formula(0, (t + (c2 * h)), yn[:])

yn.clear()
for i in range (0, len(k2)):

yn.append(y[i] + (h * ((a31 * k1[i]) + (a32 * k2[i]))))
k3 = f.formula(0, (t + (c3 * h)), yn[:])

fy =1
foriin range (0, len(y)):
fy.append((bl * ki[i]) + (b2 * k2[i]) + (b3 * k3][i]))

return fy

def RalstonsThirdOrderMethod(t, y, h):
c2=1/2
c3=3/4
bl=2/9
b2 =1/3
b3 =4/9
a3l=0
a32=3/4

k1 = f.formula(0, t, y[:])
config.ffy.append(k1)

yn=1]

for i in range (0O, len(k1)):
yn.append(y[i] + (h * (c2 * k1[i])))

k2 = f.formula(o, (t + (c2 * h)), yn[:])

yn.clear()
for i in range (0, len(k2)):

yn.append(y[i] + (h* ((a31 * k1[i]) + (a 32 k2[i)))
k3 = f.formula(0, (t + (c3 * h)), yn[:])

fy=1]
for i in range (0, len(y)):
fy.append((bl * k1[i]) + (b2 * k2[i]) + (b3 * k3[i]))

return fy

def setValuesForThirdOrder(alpha):

if (case == 1):
c2 = alpha[0]
c3 = alpha[1]
bl=(2 - (3*(2+c3)+(6*c2*c3))/(6*c2*c3)
b2=(3 - (2/3))/(2*c2*(c3 - ¢2)
b3 = ((2/3) - ¢c2)/(2*c3*(c3 - ¢2)
a3l =(c3*(c3 - (8*c2)+(B*c2* c2)))/(c2*((3*c2) - 2))
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a32 =(c3*(c2 - ¢3))/(c2*((3*c2) - 2)
elif (case == 2):

c2=2/3

c3=0

b3 = alpha[0]

bl = (1/4) - b3

b2 = 3/4

a3l= -1/(4*b3)

a32=1/(4*b3)
else:

c2=c3=2/3

b3 = alphal0]

bl=1/4

b2 = (3/4) - b3

a31 = ((8 * b3) - 3)/(12*b3)

a32=1/(4*b3)

return c2, c3, bl, b2, b3, a31, a32

def thirdOrderRKMethod(t, y, h):
#Here, alpha is used for c2 or b3 and beta for c3
global alpha, beta

c2, c3, bl, b2, b3, a31, a32 = setValuesForThirdOrder([alpha, beta])

"print (" \'nc2 =", c2)
print ("c3 =", c3)

print ("b1 =", bl)

print ("b2 =", b2)

pri nt ("b3 =", b3)

print ("a31 =", a31)

print ("a32 =", a32)"

k1 = f.formula(o0, t, y[:])
config.ffy.append(k1)

yn =1
for i in range (0, len(k1)):
yn.append(y[i] + (h * (c2 * k1]i])))
k2 = f.formula(0, (t+ (c2 *h ), yn[:])

yn.clear()
for i in range (0, len(k2)):

yn.append(y[i] + (h * (@31 * k1[i]) + (a32 * k2[i]))))
k3 = f.formula(0, (t + (c3 * h)), yn[:])

fy =1
foriin range (0, len(y)):
fy.append((b1 * k1[i]) + (b2 * k2[i]) + (b3 * k3[i]))

return fy

def RK4Method(t, y, h):

k1 = f.formula(0, t, y[:])

config.ffy.append(k1)

yn=1]

for i in range (0, len(k1)):
yn.append(y[i] + ((h/ 2) * k1[i]))

k2 = f.formula(o, (t + (h / 2)), yn[:])

yn.clear()

for i in range (0, len(k2)):
yn.append(y[i] + ((h / 2) * k2[i]))

k3 = f.formula(o, (t + (h / 2)), yn[:])
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yn.clear()
for i in range (0, len(k3)):
yn.append(y[i] + (h * k3[i]))
k4 = f.formula(0, (t + h), yn[:])
fy =1l
for i in range (0, len(y)):
fy.append((1/6) * (k1[i] + (2 * k2[i]) + (2 * k3[i]) + k4][i]))

return fy

def FourthOrderRKMethod(t, y, h):
#Here, alpha is used for c2, b3 or b4 and beta for c3
global alpha, beta

if (case == 1):
c2 = alpha
c3 = beta
c4=1
a3l =(c3*((3*c2) - 3 - (4*c2*c2)/(2*c2*(1 - (2*
c2)))
a32 = (c3*( c3 - c2)/(2*c2*(1 - (2*c2))
a4l = (((c3* 2) *((12*c2*c2) - (12*c2) + 4)) - (e3*(12*
c2*c2) - (15*c2)+5))+((4*c2*c2) - (6*c2)+2)/
((2*c2*c3)* (3 - (4*(c2+c3))+(6*c2*c3)))
ad2=((( -4* c3*c3)+(5*c3)+c2 - 2)*(1 - c2)/((2*c2)*
(c3 - c2)*(3 - (4*(c2+c3)) +(6*c2*c3)))
a43=((1 - (2*c2)*(1 - c3)*(1 - ¢2))/(c3*(c3 - ¢c2)*(3
(4 *(c2+c3)) +(6*c2*c3))
bl=(1 - (2*(c2+c3))+( 6*c2*c3)) /(12 *c2*c3)
b2 = ((2 * c3) - 1)/((12*c2)*(c3 - c2)*(1 - ¢2)
b3=(1 - (2*c2))/((12*c3)*(c3 - c2)*(1 - ¢3)
b4=@ - (4*(c2+c3))+(6*c2*c3))/(12*(1 - c2)*(1
c3))
elif (case ==2):
b3 = alpha
c2=c¢3=1/2
c4=1
a3l =((3*b3) - 1)/(6*b3)
a32=1/(6*hb3)
a4l1=0
ad2=1 - (3*b3)
a43=3*Db3
bl=1/6
b2=(2/3) - b3
b4 =1/6
elif (case == 3):
b3 = alpha
c2=1/2
c3=0
c4=1
adl= -1/(12*b3)
a32=1/(12*b3)
adl=( -1/2) - (6*h3)
a42 = 3/2
a43=6*b3
bl = (1/6) - b3
b2 =2/3
b4 =1/6
elif (case == 4):
b4 = alpha
c2=1
c3=1/2
c4=1
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a31=3/8
a32=1/8
adl=1 - (1/(4*b4))
ad2= -1/(12*b4)
a43=1/(3*h4)
bl=1/6
b2=1/6 - b4
b3=2/3

elif (case == 5):
c2 = alpha
c3=1/2
c4=1
a3l=((4*c2) - 1)/(@8*c2)
a32=1/(8*c2)
adl=(1 - (2*c2)/(2*c2)
ad2= -1/(2*c2)
a43=2
bl=1/6
b2=0
b3 =2/3
b4 =1/6

k1 = f.formula(o0, t, y[:])
config.ffy.append(k1)

yn=1[

for i in range (0, len(k1)) :
yn.append(y[i] + (h * (c2 * k1[i]))

k2 = f.formula(0, (t + (c2 * h)), yn[:])

yn.clear()
for i in range (0, len(k2)):

yn.append(y[i] + (h* ((a31 * k1[i]) + (a32 * k2[i]))))
k3 = f.formula(0, (t + (c3 * h)), yn[:])

yn.clear()
foriin range (0, len(k3)):
yn.append(y[i] + (h * ((a41 * k1[i]) + (a42 * k2[i]) + (a43 *
k3[i])))
k4 = f.formula(0, (t + (c4 * h)), yn[:])

fy =1
foriin range (0, len(y)):
fy.append((bl * k1[i]) + (b2 * k2[i]) + (b3 * k3[i]) + (b4 * k4[i]))

return fy
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ivodepy

import math

# global constants for the IVODEs
alpha = beta = gamma = delta = theta=0

Name: setConstants
Description: This function sets the constants for the chosen IVODE.
Parameters:
a : contant for the IVODE.
b, ¢, d, e : contant for the IVODE (optional).
Returns: None
def setConstants(a, b=None, c=None, d=None, e=None):
global alpha, beta, gamma, delta, theta
alpha, beta, gamma, delta, theta=a, b, ¢, d, e

Names: simple, predatorPrey, simple_sys, TestF4, TestF5, TestF6, TestF7
Description: These functions return the derivative values, exact
values or associated error for the IVODESs with
respect to user's choice.
Parameters:

: 1is an integer value to return the respective value.
t : tis the point on the domain.
y :yis the approximate numerical so lution for the IVODE.
Returns:
if (i==0):
the IVODE value.
if (i==1):
exact value for the IVODE. (if exists)
else:
Error associated with the IVODE. (if exists)
def simple(i, t, y):
#1 VODE
if (i==0):
return [y[0] * ( -1)]
# Exact value for the IVODE
elif (i == 1):
return [math.exp(( -1) *1)]
# Error associated with the IVODE
else:
return [y[O] - math.exp(( -1)*t)]

def predatorPrey(i, t, y):
# IVODE
if (i == 0):
return [((alpha * y[0]) - (beta *y[0] * y[1])), ((delta * y[O] *
y[1)) - (gamma *y[1]))]

def simple_sys(i, t, y):
# IVODE
if (i == 0):
return [y[1], (y[O] * ( - 1))l
# Exactv alue for the IVODE
elif (i == 1):
return [math.sin(t), math.cos(t)]
# Error associated with the IVODE
else:
return [y[0] - math.sin(t), y[1] - math.cos(t)]
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def TestF4(i, t, y):
# IVODE
if (i == 0):
return [( -1/2 ) * (y[0] ** 3)]
# Exact value for the IVODE
elif (i == 1):
return [(1 / math.sqgrt(1 + t))]
# Error associated with the IVODE
else:
return [y[O] - (1 / math.sgrt(1 + t))]

def TestF5(i, t, y):
# IVODE
if (i ==0):
return[ -2 *t* (y[0] ** 2)]
# Exact value for the IVODE
elif (i == 1):
return [(1/ (1 + (t ** 2)))]
# Error associated with the IVODE

else:
return [y[0] - @r@a+ 2]
def TestF6(i, t, y):
# IVODE
if (i == 0):
return [(1/4) * y[0] * (1 - (y[0]/20))]
# Exact value for the IVODE
elif (i == 1):
return [(20 / (1 + (19 * math.exp((( -1)*t) /1 4))]
# Error associated with the IVODE
else:
return [y[0] - (207 (1 + (19 * math.exp((( -1)*t) / 4))]
def TestF7(i, t, y):
# IVODE
if (i == 0):
return [( -1 * alpha * y[0]) - (math.exp( -1*alpha*t)*

math.sin(t))]
# Exact value for the IVODE

elif (i == 1):
return [(math.exp( -1 * alpha * t) * math.cos(t))]
# Error associated with the IVODE
else:
return [y[O] - (math.exp( -1 *alpha *t)* math.cos(t))]

Name: sampleCOVID19Modellnitializer
Description: This function sets the constants for the COVID - 19 model
and returns its initial values.
Parameters: None
Returns:
initial values of the COVID - 19 model.

def sampleCOVID19Modellnitializer():
setConstants(0.125, 0.9, 0.06, (0.01/365), 37.741e06)

y03=1
y02 = 103
return [theta -y03-y02, y02, y03, 0]

Names: sampleCOVID19Model
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Description: This function returns the derivative values for the IVODEs.

Parameters:
i is an integer value to return the respective value.

t :tis the point on the domain.
y @y is the approximate numerical solution for the IVODE.

Returns:
if (i==0):
the IVODE value.
def sampleCOVID19Model(i, t, y):
# IVODE
if (i==0):
yl=(( -beta*y[0]*y[2])/theta) + (delta * theta) - (delta*
y[0])
y2 = ((beta * y[0] * y[2]) / theta) - ((alpha + delta) * y[1])
y3 = (alpha * y[1]) - ((gamma + delta) * y[2])
y4 =(gam ma*y[2]) - (delta*y[3])

return [yl, y2, y3, y4]
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FilelO/FilelQy

import 0s

class FilelO:
def __init__(self, filename, accessMode):
if accessMode in ['r', 'rb', 'r+', 'rb+', ‘W', 'w+', ‘wb’, 'wb+',
‘a', 'at’, 'ab’, 'ab+17:
if ((accessMode in ['r', 'rb', 'r+', 'rb+7) and not
(os.path.exists(filename))):
print ("The given path is not a file, directory or a valid
symlink.")
else:
self.file = open(filename, accessMode)
else:
print ("Invalid access mode.")

def changeAccessMode(self, accessMode):
if (self.isCreated()):
self file.close()
self.file = open(self.file.name, accessMode)
else:
print ("The o bject is not initialized. Check the file path or the
accessMode.")

def read(self):
if (self.isCreated()):
if not (self.file.readable()):
self.changeAccessMode("r")
return self file.read()
else:
print ("The object is not initialized. Check the file path or the
accessMode.")
return "Nothing to read"

def readLine(self):
if (self.isCreated()):
if not (self.file.readable()):
self.changeAccessMode("r")
data = self.file.readline()
return data

else:
print ("The object is not initialized. Check the file path or the
accessMode."”)
return "Nothing to read”
def write(self, data, end="' \nY):

if (self.isCreated()):
if not (self.file.writable()):
self.changeAccessMode("a")
data = data + end
self.file.write(data)
else:
print ("The objec tis not initialized. Check the file path or the
accessMode.")

def name(self):
return self.file.name

def mode(self):
return self.file.mode

def isCreated(self):
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return hasattr(self, 'file")
def __del__(self):

if (self.isCreated()):
self.file.close()
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