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Abstract  
 

In this thesis, we investigate the performance of available methods and tools for sequence 
alignment in assembly and de Bruijn graphs. Sequence alignment tools are employed to 
detect antimicrobial (AMR) gene sequences within the assembly graphs. Utilizing precise 
and efficient tools for identifying these genes enables us to locate their neighboring genes 
and evidence of horizontal gene transfer (HGT) more accurately. To this end, we have 
considered three sequence alignment tools namely Bandage, SPAligner and 
GraphAligner. The tools have similar input and output types. The outputs are analyzed 
qualitatively and quantitatively using Panda, Numpy and GFA libraries in Python. The 
paths returned by each pair of tools for each query are compared to measure the similarity 
between them. Furthermore, the output sequences from each software are compared to 
the target sequence using a modified version of edit distance. It was seen that Bandage 
was the most efficient and precise tool, followed by GraphAligner and then SPAligner for 
the datasets tested.  
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Abstract

In this thesis, we investigate the performance of available methods and tools for

sequence alignment in assembly and de Bruijn graphs. Sequence alignment tools

are employed to detect antimicrobial (AMR) gene sequences within the assembly

graphs. Utilizing precise and e�cient tools for identifying these genes enables us

to locate their neighboring genes and evidence of horizontal gene transfer (HGT)

more accurately. To this end, we have considered three sequence alignment tools

namely Bandage, SPAligner and GraphAligner. The tools have similar input

and output types. The outputs are analyzed qualitatively and quantitatively

using Panda, Numpy and GFA libraries in Python. The paths returned by each

pair of tools for each query are compared to measure the similarity between

them. Furthermore, the output sequences from each software are compared to

the target sequence using a modified version of edit distance. It was seen that

Bandage was the most e�cient and precise tool, followed by GraphAligner and

then SPAligner for the datasets tested.
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Chapter 1

Introduction

The genome sequencing technology has developed and improved rapidly. As a

result, research in microbiome has had some significant breakthroughs making

reference genomes more available as well as improving the ability to sequence

entire microbial communities using high-throughput sequencing. These techno-

logical advancements have introduced more questions such as how the data, in

the form of short-read sequences, are managed, processed and analyzed. Given

the short length of the reads, meaningful DNA information such as genes can-

not be extracted right away. Assembly methods are hence used to construct

longer sequences. These methods in turn create large assembly graphs. In order

to process the graphs and extract information from them, special software are

available for sequence alignment in such graphs. The research presented in this

thesis investigates the performance of the software readily available for use in

this area.
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1.1 Motivation

In this thesis, we apply sequence alignment tools to identify the sequence of

antimicrobial (AMR) genes in the assembly graphs. The motivation behind this

project is finding the pros and cons of available tools and choosing the best one

based on requirements and limitations. Having accurate and e�cient tools for

identifying genes such as AMR genes can help us to find their neighborhood

genes and evidences of horizontal gene transfer (HGT) precisely.

1.2 Objectives

Our main objective is the comparison of the state-of-the-art sequence align-

ment tools available in terms of e�ciency and accuracy.The results from this

research can be used to find a replacement for Bandage in software that are

currently using it given that the code behind Bandage is no longer being up-

dated. Our research focuses on the application of sequence alignment in large

genome assembly and De Bruijn graphs. The tools we are considering for this

purpose are Bandage [1], SPAligner [2], and GraphAligner [3]. Although, there

exists some other tools for sequence alignment on graphs as well (e.g.Astarix [4]

and GraphChainer [5]), the chosen ones are the most popular ones which are

available online and have similar type of input graphs for sequence alignment.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 provides an overview

of the background materials such as de Novo assembly, antimicrobial resistance

and the algorithm behind the tools discussed. In Chapter 3, the experiment

undertaken to compare the tools as well as a description of the datasets are

documented. After describing the methodology, Chapter 4 presents an analysis
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of the time and memory consumption for every datasets in each tool, comparison

of the output paths for each pair of tools as well as a measurement of similarity

of the output sequences. Finally in Chapter 5, we conclude and summarize the

contributions presented in this thesis, and discuss several potential extensions

to our research.
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Chapter 2

Background

2.1 Introduction

Every living organism is made up of cells. A cell consists of 3 components

namely the cell membrane, the nucleus and the cytoplasm [6]. The molecule

inside the cell contains information on the function and development of the

cell. Deoxyribonucleic acid (DNA) resides in the nucleus of the cell. During

cellular reproduction, DNA allows the cellular information to be passed from

one generation to the other. Genes are associated to DNA. In fact, genes

are composed of specific DNA segments which control the hereditary traits of

organisms. On the other hand, the Genome is the entire hereditary information

of a living thing. It is the total DNA content in a cell [7].

All living things have a unique genome (or genetic code). The genetic code

is composed of nucleotide bases (A, T, C and G). If the sequence of the bases in

an organism is determined, then we say that its unique DNA pattern has been

identified. Sequencing is the process by which the order of bases is determined.

Genome Sequencing is conducted through four main steps [8]:
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1. DNA Shearing: the DNA is cut into pieces so that they can be read by

the sequencing machine.

2. DNA Barcoding: barcodes are added in order to identify from which bac-

teria is the sheared DNA from.

3. DNA Sequencing: the DNA from multiple bacteria is combined and put

in a DNA sequence. The sequencer identifies the bases in each bacterial

sequence.

4. Data Analysis: computer analysis tools are used to compare sequences

from multiple bacteria.

Sequencing has been used to identify microbial communities in many environ-

ments as well as organisms including humans and animals. High throughput

sequencing, which is a technology to sequence DNA and RNA in a rapid and

cost-e↵ective manner, has paved the way to metagenomics. Metagenomics is

the analysis of the combined genomes of organisms co-existing in a community.

Metagenomics assembly is an important step in such analyses. It is the stitch-

ing of short DNA sequences, called reads into genes or organisms. Genome

assembly algorithms are used to identify the genomes of single organisms.

2.2 De Novo Assembly

De Novo assembly is an algorithm for Genome Assembly. In de Novo, genomes

are reconstructed without prior knowledge of the source DNA sequence length,

layout or composition. Since de Novo is NP-Hard, heuristic-based methods have

been devised to perform it. The strategies are greedy, overlap-layout-consensus,

and de Bruijn graph [9].
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De Bruijn graph considers the relationship between substrings of fixed length

k (also known as k-mers) derived from reads (i.e., sequence of base pairs cor-

responding to all or part of a single DNA). The nodes are k � 1 prefixes and

su�ces of k-mers, while the edges are k-mers. Instead of aligning the reads next

to each other, it is inferred that an overlap exists if they share the k-mers. The

goal is eventually to find an Eulerian Path (that is a path visiting each edge

once). Error correction a↵ects de Bruijn graphs. The errors are eliminated prior

to identifying an Eulerian path using heuristic strategies. SPADES [10] is one

such assembler that uses the De Bruijn graph paradigm.

As discussed previously, De Bruijn Graph (DBG) and Overlap-Layout-Consensus-

Approach (OLC) are both di↵erent paradigms of the de Novo assembly algo-

rithm. When considering the time and memory consumption, OLC is more

e↵ective for low-coverage long reads. On the other hand, DBG is more suitable

for high-coverage short reads. It is also worth noting that DBG is particularly

more suited for large genome assembly.[11]

2.3 Antimicrobial Resistance

One area that has piqued the interest of many bioinformaticians is Antimicrobial

Resistance (AMR). The AMR phenomenon can be attributed to the extensive

use of antibiotics in the medical as well as in the agricultural sector. AMR is

an important health problem globally. In fact, it is predicted that AMR-related

deaths will be around 10 million lives annually [12]. Active Horizontal Gene

Transfer (HGT) within the gut microbiota, antibiotic resistance genes and the

usage of antibiotics in world populations increase the chances that a pathogenic

microbes will obtain genetic resistance from commensal microbes inhabiting the

human body [13]. It is therefore important to look at how resistance is a↵ected

during and after antibiotic intake and the mechanisms of AMR transmission.
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HGT is the non-sexual way of transferring genetic information between genomes.

HGT enables microbes to share genetic materials with others to get beneficial

traits. This allows them to gain better adaptions, as well as to acquire genes

from distant species. HGT therefore increases the genetic diversity of the recip-

ients. It is also a key factor in the microbial evolution [14]. We focus on using

sequence alignment tools to identify AMR genes in assembly graphs. Accurate

and e�cient identification of these genes aids in locating their neighboring genes

and provides evidence for HGT with precision.

2.4 Basic Local Alignment Search Tool (BLAST)

One of the most popular sequence analysis tools in the public domain is the Basic

Local Alignment Search Tool (BLAST) [15]. It is a computer algorithm that

can be accessed online at the National Center for Biotechnology Information

(NCBI) website. BLAST compares pairs of sequences and searches for regions

of local similarity. BLAST is heuristic in nature; compared to the alignment

programs (Needleman-Wunsch and Smith-Waterman algorithms), it does not

compare each residue against each other [16].

2.4.1 Heuristics of BLAST

The motivation of BLAST is that comparable sequences are almost certain to

contain a short high scoring similarity region, Hit. A seed is produced from each

hit. These seeds are extended by BLAST on both sides.

BLAST uses two parameters: W , length of a hit and T , minimum score of a

hit. It follows the following steps:

1. Compile a list of possible words which, if paired with those in Q, the query

sequence creates high scoring pairs.
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2. The database is then scanned to find exact matches with the list compiled

in step 1. This can be done e�ciently using hash tables.

3. The hits from 2 are then extended.

4. The significance of the extended hits from 3 is then assessed.

2.5 Description of the Tools

While BLAST is one of the most popular sequence alignment tools, it only works

with plain sequences. In recent years, new tools have been introduced that can

identify sequences in the assembly graphs. In this thesis, our focus is on such

tools, namely Bandage, GraphALigner and SPAligner.

2.5.1 Bandage

Repeated sequences can be challenging during genome assembly. These se-

quences cause fragmented assemblies which can be challenging as we try to

construct the DNA [17]. These distinct structures in the assembly graph can

be visualized within Bandage. While Bandage is primarily used to interact and

visualize assembly graphs, we are going to focus on the BLAST searches that

can be performed within the Bandage GUI [1].

Bandage constructs a BLAST search by building a BLAST database utilizing

all of the graph nodes. It then attempts to find a path through the graph which

covers the maximal amount of query for each BLAST query. Bandage uses the

following pseudo code to find a path for each query, Querypaths.

1. Search for all conceivable path beginnings which are within a satisfactory

distance from the query.

2. For each possible beginning, search the paths to each possible ending.
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3. Assuming that a path exists from start hit to end hit, the ideal length is

calculated. The ideal length is the query length minus parts of the query

that are not covered.

4. Find the minimum and maximum length for the path.

5. Discard any paths that are sub-paths of other longer paths

6. Sort the paths from best to worst.1

2.5.2 SPAligner

SPAligner (Saint Petersburg Aligner) tool is used to align nucleotide and amino

acid sequences, referred to as a query sequence S, against assembly graphs re-

ferred to as graph, G. The regions of high nucleotide identity between the query

and the graph sequences are identified. The regions are then extended to semi-

global alignments. In semi-global alignment, gaps are allowed at the beginning

and/or the end of the sequence. If we consider two sequences, s and t, semi-

global alignment is used if the sequences are related along the entire length of

the region where they meet.

The way SPAligner works is as follows (further highlighted in Figure 2.1):

1. Anchor search: The query and edge label regions with a high degree of

similarity are identified.

2. Anchor filtering: Secures the promising anchors, and discard the question-

able ones.

3. Anchor chaining: The anchors are given weights. The assigned weight is

proportional to the sequence’s length. Secures a and b are viable if the

1Extracted from https://github.com/rrwick/Bandage/blob/main/blast/blastquery.cpp
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negligible distance between them in G is less than or equivalent to their

positions in s [2]. A skeleton of the last arrangement is then made by

looking for the heaviest chain of viable anchors.

4. Reconstructing the filling paths: The skeleton’s successive anchors can be

identified by their paths. This reduces the alignment cost to a minimum.

It uses the Edlib, a library for sequence alignment for a faster rendition.

2

Figure 2.1: Steps used in SPAligner for sequence alignment [2].

2.5.3 GraphAligner

GraphAligner is a tool for aligning long reads to sequence graphs. According to

[3], it is 13x faster and uses 3x less memory compared to other state-of-the-art

tools namely minimap2 and VG toolkit. It can work with di↵erent types of

graphs.

2Extracted from https://github.com/ablab/spades/tree/spaligner-paper
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Figure 2.2: How GraphAligner works [3].

As shown in Figure 2.2, the algorithm uses a seed-and-extend approach and

works as follows:

1. The reads are aligned independently from each other.

2. The sequence of the read is matched to the sequences inside the nodes

(blue and green bars)

3. The seed hits are then grouped in locally acyclic parts of the graph and

scored.

4. Seed hits are then extended (small dotted boxes) with a banded dynamic

programming algorithm, using Viterbi’s algorithm to decide when to cut

the alignment (red X).
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5. Each seed hit can bring about an alignment (blue and green paths).

6. Alignments that cross-over with another longer alignment in the query

sequence are classified as secondary.

7. Secondary alignments are usually discarded (red X), yet can be incorpo-

rated in the result with a discretionary boundary.

8. The output is then saved to a file either as alignments or corrected reads.

2.5.4 Comparing Bandage, SPALigner and GraphAligner

Regarding Sequence Alignment

Table 2.1 summarizes similarities and di↵erences among these tools in terms of

main usage and the algorithm behind them. As presented in the table, Bandage

provides a way to visualize the graph as well as sequence alignment. While

SPAligner and GraphAligner have similar usage in terms of sequence alignment,

they use di↵erent algorithms under the hood for this purpose.
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Table 2.1: This table describes the di↵erences among the 3 tools in terms of
usage and algorithms.

Tool Main uses Algorithms used to
find path

Bandage Used primarily to
visualize and interact
with Assembly Graphs.

Uses BLAST to find
paths within the

assembly graph based
on the query sequence.

SPAligner Used to align long
diverged molecular
sequences against
assembly graphs.

Uses BWA to detect
longer anchor

alignments. It also
uses the Edlib library

to calculate the
optimal alignment.

GraphAligner Used to align long
reads to sequence
graphs.

Uses BWA to detect
longer anchor. It also
uses the Bit vector
alignment extension

algorithm.
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Chapter 3

Methodology

3.1 Introduction

Since the genetic code has been discovered, scientists have accumulated DNA

and protein sequences rapidly. In order to make sense of this vast amount of

data, scientists attempt to answer the following questions [18]:

1. Can the functions of newly cloned genes be identified?

2. Can the evolutionary relationship between genes or proteins be estimated

just by examining their amino acids?

In order to answer these questions, it is important to identify the relation-

ships between di↵erent species. The sequence similarity is used to deduce the

function and evolutionary relationships [18]. One of the methods applied to

check similarity is sequence alignment on assembly graphs, in which sequence

alignment tools identify the path representing a query sequence in the graph.

For example in Figure 3.1, the query sequence is identified as a path starting

from the 90th nucleotide at node n2 and will end at the 80th nucleotide at node

n3.
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Figure 3.1: Sequence alignment in the assembly graph for a query sequence.

3.2 Steps to Compare the Output of the Tools

Here, we analyze the result from the selected tools, Bandage, SPAligner and

GraphAligner, available for sequence alignment in assembly graphs in terms

of time and memory usage. We also measure the accuracy of the output se-

quences identified by each tool for di↵erent samples as shown by the flowchart

in Figure 3.2.

19



Figure 3.2: This flowchart shows the steps used to compare the results from the

output file for each graph.

It is important to note that there is another tool called Astarix [4] that was

considered initially; however, it was excluded from our research due to signifi-

cant di↵erences in its input and output file format compared to the other tools.It

would not be worth the time to write separate scripts in order to process the

input and output.

Upon analyzing the output generated by Bandage, SPAligner, and GraphAligner,

we have identified several common elements that are suitable for further analysis

such as using the graphs in GFA format. These include the length of the query

20



sequence, the starting and ending positions on the graph, the specific nodes

considered on the graph, and the resulting output sequence. These shared char-

acteristics provide a basis for comparison and evaluation of the performance and

e↵ectiveness of these tools in genome assembly.

3.3 Experiments

3.3.1 Datasets

In order to compare Bandage, SPAligner and GraphAligner, the data sets in

Table 3.1 were used. We conducted the experiments on assembly graphs with a

variety of sizes from small (1 1 1) to medium (CAMI M 2) to large (CAMI H 1

and ERR1713331) graphs.

Table 3.1: Description of the datasets.

Name Description Number of AMR
genes

Number of
nodes/edges

1 1 1 Simulated from
E.coli SMS-3-5,
k pneumoniae
MGH and S.
aureus Mu50

378 2529 nodes and
2406 edges

CAMI M 2 CAMI Challenge
with 132
genomes

54 396,319 nodes
and 101,235

edges
CAMI H 1 CAMI Challenge

with 596
genomes

698 939,234 nodes
and 127,706

edges
ERR1713331 Real

metagenomic
samples from
the Global
Urban Sewage
AMR
Monitoring
Project

355 3,852,226 nodes
and 1,256,367

edges
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As explained in Table 3.1, 1 1 1 is a simulated metagenomic dataset gener-

ated using one strain from each of Escherichia coli, Staphylococcus aureus, and

Klebsiella pneumoniae retrieved from RefSeq. The reads were simulated using

ART V2.5.8 on the HiSeq 2500 platform, with read length set to 150bp, insert

size at 500bp, and fold coverage at 20 [19]. CAMI M 2 and CAMI H 1 are

obtained from the Critical Assessment of Metagenome Interpretation (CAMI)

study. These datasets o↵er varying levels of complexity and real-world chal-

lenges for metagenome analysis [20]. ERR1713331 is from published metagenome

samples derived from urban sewage, which were sequenced using the Illumina

HiSeq platform [21].

During this validation process, we thoroughly assessed the performance and

capabilities of the three tools using this diverse range of datasets. For each

datatset, we used identified AMR sequences in each dataset as the queries and

ran the three tools to find them in the corresponding assembly graph. All

experiments were run on an iMac, with an Apple M1 chip and 8 GB memory.

Command to Run Bandage

In order to run Bandage, the following command was used:

./bandage querypaths <gfa_file> <sequence_file> <output_file> --minmeanid 0.66

Given that the default identity threshold(given by precise-clipping) for GraphAligner

was 0.66 and for the sake of fair comparison, we set minmeanid for Ban-

dage to 0.66. It was easier to change the default values in Bandage than in

GraphAligner.

Command to Run SPAligner

In order to run SPAligner, the following command was used:

./spaligner -d pacbio -g <gfa_file> -s <sequence_file> > <output_file>,

22



where the default values were used.

Command to Run GraphAligner

In order to run GraphAligner, the following command was run:

GraphAligner -g <gfa_file> -f <sequence_file> -a <output_file.gfa> -x dbg,

where the default values were used.

3.4 Comparing the Output Files

In order to compare the results, we chose two approaches.

1. We used:

usr/bin/time -l

to measure the time and memory usage for each command.

2. We also compared the accuracy of the results by comparing the paths

returned by di↵erent tools using the Numpy, GFA and Panda libraries

in Python. For example, the start position, end position and the node

returned by Bandage and GraphAligner for a given query were compared.

Edit distance was used for comparison between the query sequence and

the sequences returned by tools.

3.4.1 Analyzing the Output File from Bandage

As shown in Figure 3.3, the output file of Bandage, which is in a *.tsv format,

has the following columns and each row represents one output path1:

1Extracted from https://github.com/rrwick/Bandage/wiki/BLAST-searches
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Figure 3.3: A sample of output file from Bandage.

3.4.2 Analyzing the Output File from SPAligner

Compared to Bandage, the output file from SPAligner can be in *.tsv, *.fasta

and *.gpa format. In our experiment, we used *.tsv files to facilitate the com-

parison. Figure 3.4 shows the output format.

Figure 3.4: A sample of the output file from SPAligner.

Columns of this file represent the following items2:

1. name — sequence name

2. 0 — start position of alignment on sequence

3. 2491 — end position of alignment on sequence

4. 536 — start position of alignment on the first edge of the Path (here on

edge with id=44)

2Extracted from https://github.com/ablab/spades/tree/spaligner-
paper/assembler/src/projects/spaligner
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5. 1142 — end position of alignment on the last edge of the Path (here on

conjugate edge to edge with id=38)

6. 2491 — sequence length

7. 44+,24+,22+,1+,38- — Path of the alignment

8. 909,4,115,1,1142 — lengths of the alignment on each edge of the Path

respectively (44+,24+,22+,1+,38-)

9. AGGTTGTTTTTTGTTTCTTCCGC... — sequence of alignment Path

3.4.3 Analyzing the Output File from GraphAligner

Figure 3.5: A sample of the output file from GraphAligner.

The output file from GraphAligner is in *.gaf format. Figure 3.5 shows how the

output looks like in GAF format3, and Figure 3.6 provides the description of all

columns.
3Extracted from https://github.com/maickrau/GraphAligner
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Figure 3.6: This figure shows how the GAF format looks like.

4

4Extracted from https://github.com/lh3/gfatools/blob/master/doc/rGFA.md#the-
graph-alignment-format-gaf
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Chapter 4

Results And Findings

In this chapter, we analyzed the results from Bandage, SPAligner and GraphAligner.

The analysis is divided into three sections:

1. Analyzing and comparing the path returned by the three tools, including

start position, end position and nodes in the path, for each dataset.

2. Comparing time and memory consumption for each dataset in each soft-

ware.

3. Comparing the similarity between the query sequence and the output se-

quence from each software for each dataset to check the accuracy of the

sequences.

4.1 Comparing the Output Files

For each dataset, the query sequences were combined into one file. The file, along

with the corresponding graph, were then used as inputs to run each software.

The results were analyzed for each pair of tools by comparing start position(s),

end position(s) and node(s) involved in the output path(s). For example, in
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Figure 4.1, the Path column represents a path consisted of a single node with

ID 605844, where the start position of the query sequence in the node is 130

and its end position is 990.

Figure 4.1: A sample path returned by Bandage representing a query sequence in a

graph.

For these experiments, Numpy, Pandas and GFA libraries in Python were

used extensively.

4.1.1 Categories

The categories used to compare the paths returned by each pair of tools are as

follows:

1. Full: The start position, end position and node list are identical in paths

returned by both tools.

2. Partial: The path(s) returned by the pair of software have some meaning-

ful similarities, i.e for the same query, Bandage and GraphAligner return

the same but with di↵erent start positions and/or end positions.

3. Di↵erent: The node list, start position and end position are di↵erent in

the two tools.

The motivation behind these categories was to find out which tool between

SPAligner and GraphAligner returns the results closest to that of Bandage. This

could be helpful in the eventual quest for the replacement of Bandage.

Tables, 4.1-4.4, show the percentage of di↵erent categories regarding the pair

comparison of the tools for each dataset.
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As shown by the Bandage VS GraphAligner row in each table, the paths

returned by GraphAligner are closest to those in Bandage as compared to

SPAligner.

Table 4.1: The percentage of each category for 1 1 1 in pair comparison of the
tools.

Name Full Partial Di↵erent
Bandage VS

SPAligner

57.9 7.2 34.9

Bandage VS

GraphAligner

93.9 2.1 4.0

SPAligner VS

GraphAligner

57.7 4.8 37.6

Table 4.2: The percentage of each category for CAMI M 2 in pair comparison
of the tools.

Name Full Partial Di↵erent
Bandage VS

SPAligner

83.3 0 16.7

Bandage VS

GraphAligner

63 20.3 16.7

SPAligner VS

GraphAligner

0 85.2 14.8

Table 4.3: The percentage of each category for CAMI H 1 in pair comparison
of the tools.

Name Full Partial Di↵erent
Bandage VS

SPAligner

0 94.5 5.5

Bandage VS

GraphAligner

71.0 24.0 5.0

SPAligner VS

GraphAligner

0 95.3 4.7
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Table 4.4: The percentage of each category for real sample in pair comparison
of the tools.

Name Full Partial Di↵erent
Bandage VS

SPAligner

0 63.8 36.2

Bandage VS

GraphAligner

22.1 23.5 54.4

SPAligner VS

GraphAligner

0 63.1 36.9

4.2 Comparing the Time Consumption

As shown by the plots in Figure 4.2, for all of the scenarios Bandage took the

shortest time to align all the sequences. With the exception of 1 1 1 dataset,

SPAligner took the longest time.

The following plots show the time taken to run the tools for sequence align-

ment.

(a) (b)

(c) (d)

Figure 4.2: Time consumption for each datasets.
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4.3 Comparing the Memory Consumption

As shown by the plots in Figure 4.3, for all of the scenarios Bandage used the

smallest amount of memory. With the exception of 1 1 1 dataset, GraphAligner

consumed the largest amount of memory. The following plots show the memory

consumption to run the tools for sequence alignment.

(a) (b)

(c) (d)

Figure 4.3: Memory consumption of the tools for each datasets.

4.4 Measuring Match rate

In order to test the quality of the sequences rendered by each software, we mea-

sured the similarity between any target query sequence and its corresponding

output sequences from the three tools. To do so, we measured the edit dis-

tance between the target sequence and the output sequence. The edit distance

metric measures the minimum number of character changes that is insertions,

deletions, or substitutions required to change one sequence into the other [22].

In an attempt to facilitate the comparison, the edit distance was normalized

to make it between 0 and 1. For the new metric, called match rate, the closer
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is the value to 1, the more similar the output sequence is to the target query

sequence. The following formula was used to calculate match rate:

match_rate= 1-[edit_Distance/

max(length(targetSequence),length(output))]

For some queries, Bandage returned multiple paths and sequences. For the

sake of consistency, we just chose the path with the highest confidence.

4.4.1 Results for 1 1 1 Dataset

For Bandage, match rate for most of the output sequences was closer to 1.

GraphAligner was the second software that rendered the most accurate se-

quences. The output sequences from SPAligner were the least accurate as shown

in Figure 4.4.
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Figure 4.4: The percentage of sequences with di↵erent values of match rate for each

software for 1 1 1 dataset.

4.4.2 Results for CAMI M 2 Dataset

As shown in Figure 4.5, Bandage created sequences that were identical to the

query sequence. Similar to the real dataset, SPAligner outperfomedGraphAligner

and some sequences were not found by the GraphAligner.
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Figure 4.5: The percentage of sequences with di↵erent values of match rate for each

software for CAMI M 2 datatset.

4.4.3 Results for CAMI H 1 Dataset

For Bandage and GraphAligner, the output sequences hover mostly around 0.5.

On the other hand, for SPAligner there was a consequent number of sequences

that did not match the target sequence at all as shown in Figure 4.6.
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Figure 4.6: The percentage of sequences with di↵erent values of match rate for each

software for CAMI H 1 dataset.

4.4.4 Results for the real Dataset

For this dataset, Bandage created sequences that were identical to the query

sequence. For the graph in particular, SPAligner outperfomed GraphAligner as

shown in Figure 4.7.
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Figure 4.7: The percentage of sequences with di↵erent values of match rate for each

software for real dataset.

4.5 Average Match Rate

This section shows the average match rate for each dataset by each tool.
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Figure 4.8: The average match rate for 1 1 1dataset.

Figure 4.9: The average match rate for CAMI M 2 dataset.
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Figure 4.10: The average match rate for CAMI H 1 dataset.

Figure 4.11: The average match rate for ERR1713331 dataset.
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Chapter 5

Conclusion and Future

Work

5.1 Summary and Conclusion

In this thesis, we analyzed and compared the performance of three popular

sequence alignment tools, namely Bandage, GraphAligner and SPAligner with

respect to accuracy, run-time and memory consumption. We conducted experi-

ments with datasets and graphs of di↵erent sizes from small (1 1 1) to medium

(CAMI M 2) to large (CAMI H 1 and real sample). The results show that

Bandage produces the most accurate outputs. Also, as shown by the results,

Bandage is the most e�cient tool when time and memory are considered. This

is followed by GraphAligner and then SPAligner in most cases.

Regarding generated outputs, Bandage and SPAligner construct the se-

quences as part of the output results. However, GraphAligner does not cre-

ate the sequences, and additional scripts had to be written to construct the

sequences. Table 5.1 summarizes the results.
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Table 5.1: Summary of the results

Experiment Best Performing tool
Run-time and memory usage Bandage
Accuracy of output sequences Bandage
Potential replacement for

Bandage

GraphAligner

5.2 Challenges

The study observed a prevailing issue concerning the source codes available on-

line, indicating a lack of compatibility with the Apple Silicon M1 chip. The

development communities faced delays in providing versions tailored for this

specific architecture. Furthermore, it was noted that certain software o↵erings

were deficient in well-structured documentation, impeding users’ understanding

of their functionalities. Consequently, a substantial number of trial and error

attempts were required to gain a comprehensive grasp of the software’s capa-

bilities. These findings highlight the importance of addressing compatibility

challenges and improving documentation to enhance the user experience and

e�ciency of software utilization on the Apple Silicon M1 chip.

5.3 Future Works

Given that Bandage seems to be discontinued, both SPAligner and GraphAligner

are promising replacements. In our experiments, GraphAligner outperfomed

SPAligner in terms of memory and time for most of the datasets. As far as

sequence accuracy, GraphAligner outperformed SPAligner for two datasets. We

also noted that extra coding had to be done to be able to get the output se-

quences for GraphAligner. On the other hand, although SPAligner missed some

queries, the software does construct the sequences. For future works, it will be

beneficial to explore additional tools available that are gaining momentum for
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sequence alignment and might provide more comparable outputs to Bandage

than GraphAligner and SPAligner.
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Rätsch, and Martin Vechev. Astarix: Fast and optimal sequence-to-graph

alignment. In International Conference on Research in Computational

Molecular Biology, pages 104–119. Springer, 2020.
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