Frror Estimation of Collocation Solutions

By

Andrew Fraser

A Thesis Submitted to

Saint Mary’s University, Halifax, Nova Scotia

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Applied Science.

Oct 24, 2023, Halifax, Nova Scotia

Copyright (©) Andrew Fraser, 2023

Approved: Dr. Paul Muir

Approved:

Approved:

Approved:

Supervisor
Department of Mathematics
and Computer Science

Dr. David Iron

External Examiner
Department of Mathematics
and Statistics,

Dalhousie University

Dr. Walt Finden
Supervisory Committee
Department of Mathematics
and Computer Science

Dr. Jiju Poovvancheri
Supervisory Committee
Department of Mathematics
and Computer Science

Date: Oct 24, 2023.

Abstract

Error Estimation of Collocation Solutions

By Andrew Fraser

Partial differential equations (PDEs) often arise in mathematical models that explain, investigate,
or predict real-world phenomena. The error-controlled numerical solution of time-dependent PDEs
with one spatial dimension is an area that has seen much work, but the error-controlled numerical
solution of PDEs with more than one spatial dimension has not had much focus. One of the goals of
this thesis is to extend established algorithms for spatial error estimation of numerical solutions of
PDEs in one dimension to PDEs in two dimensions. We focus on spatial error estimation schemes
for numerical solutions obtained through the use of B-spline Gaussian collocation. This thesis also
includes an investigation into the impact of error control on the computation of numerical solutions
to a time-dependent, one-dimensional COVID-19 PDE model.

Oct 24, 2023.

Contents

1 Introduction 1
1.1 Overview of Thesis e 2

1.2 General Problem Definitiono 2
1.2.1 One-Dimensional Non-Time-Dependent 3

1.2.2 One-Dimensional Time-Dependent 3

1.2.3 Two-Dimensional Non-Time-Dependent 3

1.2.4 Two-Dimensional Time-Dependent 4

2 Background 6
2.1 B-spline Gaussian Collocation for 1D time-dependent PDEs 6
2.1.1 Error Estimation and Control for ID PDEs 9

2.1.2 Interpolation Based Error Estimation for 1D PDEs 11

2.2 B-spline Gaussian Collocation for 2D PDEs 12
2.2.1 B-spline Gaussian Collocation for 2D time-dependent PDEs 13

2.2.2 B-spline Gaussian Collocation for 2D non-time-dependent PDEs 15

3 Error Controlled Numerical Solution of a COVID-19 PDE Model 17
3.0.1 Compartmental ODE Models 18

3.1 Numerical Solution of a Covid-19 PDE Model 19
3.1.1 A Covid-19 PDE Model 19

3.1.2 Scenario 1 Problem Definition 21

3.1.3 Scenario 2 Problem Definition 22

3.2 Numerical Results 23
3.2.1 Scenario 1 Results 24
3.2.2 Scenario 2 Results 25
3.2.3 Results Discussion 25

4 2D Interpolants for Error Estimation of 2D Collocation Solutions 27

4.1 2D Interpolants for 2D Gaussian Collocation Solutions 27
4.1.1 2D Hermite-Birkhoff Interpolants 27
4.1.2 The SCIlin 2 Dimensions v v v v i i i et 29
4.1.3 The LOIin 2 Dimensions 30
4.1.4 The LOI2 e 31

4.2 Testing Software L e 33

4.3 Collocation Solution Error and Convergence Results 34
4.3.1 2D Non-Time-Dependant PDEs 34
4.3.2 2D Time-Dependant PDEs 40
4.3.3 Collocation Convergence Results Discussion 46

4.4 Interpolant Error and Convergence Results 46
4.4.1 2D Non-Time-Dependant PDEs 47
4.42 2D Time-Dependant PDEs L. 49
4.4.3 Interpolant Error and Convergence Rate Discussion 50

4.5 FError Estimation Results o o 51
4.5.1 2D, Non-Time-Dependant Case 52
4.5.2 2D, Time-Dependant Case 59

4.6 FError Estimation Results Discussion 65

5 Conclusion 67

2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.1

4.2

List of Figures

Visual representation of collocation points and knot sequence across 2 subintervals

Visual representation of collocation points across 2 subintervals with p=q¢=4. . . .

Plot of the initial condition I(x,0). L
Plot of the diffusivity parameter Dg(x) for Scenario 1.
I(x,t) solution component of the sharp tolerance tolerance solution to Scenario 1. . .
Plot of the diffusivity parameter Dg(x) for Scenario 2.
I(x,t) solution component of the sharp tolerance solution to Scenario 2.
Absolute maximum difference between the lower tolerance I(x,t) solutions and the
I(x,t) solution obtained using the sharpest tolerance, for Scenario 1.
Comparison of coarse and sharp tolerance solutions to COVID-19 model at ¢t = 50 for
Scenario 1.
Absolute maximum difference of lower tolerance I(z,t) solutions to the I(x,t) solution
with atol = 10710 for scenario 2.
Comparison of coarse and sharp tolerance solutions to COVID-19 model at ¢ = 50 for

Scenario 2.

Visual representation of points where 2D SCI interpolates solution and derivative
values when p=qg==0. L
Visual representation of points where 2D LOI interpolates solution and derivative

values when p=q="7.

14

20

21

22

24

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

Visual representation of points where the LOI2 interpolates solution values when

D= =0. o o o o e e 32
Error estimates for 2D non-time-dependent PDE Problem 1, degree 4, nint 4. 53
Error estimates for 2D non-time-dependent PDE Problem 1, degree 4, nint 8. 53
Error estimates for 2D non-time-dependent PDE Problem 1, degree 4, nint 16. . . . 54
Error estimates for 2D non-time-dependent PDE Problem 1, degree 5, nint 8. 54
Error estimates for 2D non-time-dependent PDE Problem 1, degree 6, nint 8. 55
Error estimates for 2D non-time-dependent PDE Problem 1, degree 7, nint 8. 55
Error estimates for 2D non-time-dependent PDE Problem 2, degree 4, nint 8. 56
Error estimates for 2D non-time-dependent PDE Problem 2, degree 5, nint 8. 56
Error estimates for 2D non-time-dependent PDE Problem 2, degree 6, nint 8. 57
Error estimates for 2D non-time-dependent PDE Problem 2, degree 7, nint 8. 57
Error estimates for 2D non-time-dependent PDE Problem 3, degree 4, nint 8. 58
Error estimates for 2D non-time-dependent PDE Problem 3, degree 5, nint 8. 58
Error estimates for 2D non-time-dependent PDE Problem 3, degree 6, nint 8. 59
Error estimates for 2D non-time-dependent PDE Problem 3, degree 7, nint 8. 59
Error estimates for 2D time-dependent PDE Problem 1, degree 4, nint 4. 60
Error estimates for 2D time-dependent PDE Problem 1, degree 4, nint 8. 61
Error estimates for 2D time-dependent PDE Problem 1, degree 4, nint 16. 61
Error estimates for 2D time-dependent PDE Problem 1, degree 5, nint 8. 62
Error estimates for 2D time-dependent PDE Problem 1, degree 6, nint 8. 62
Error estimates for 2D time-dependent PDE Problem 1, degree 7, nint 8. 63
Error estimates for 2D time-dependent PDE Problem 2, degree 4, nint 8. 64
Error estimates for 2D time-dependent PDE Problem 2, degree 5, nint 8. 64
Error estimates for 2D time-dependent PDE Problem 2, degree 6, nint 8. 65

Error estimates for 2D time-dependent PDE Problem 2, degree 7, nint 8. 65

3.1

4.1

4.2

4.3

44

4.5

4.6

4.7

4.8

List of Tables

Value and role of parameters for COVID-19 type PDE model.

Relative position of interpolation points corresponding to solution values within the
sub-rectangle that are used in the construction of the 2D SCI.
Relative position of interpolation points corresponding to solution values within the
sub-rectangle that are used in the construction of the 2D LOI.
Interpolation points used to construct the LOI2 for collocation solutions of degrees 4
through 7. e
Value of n for each 2D non-time-dependent PDE, p, and nint value used to define
tolerance, 107", provided to fsolve.o o
Global error (GE) and convergence rate (Rate) of collocation solution for 2D, non
time-dependent problems, p = 4,5,6,7, and nint = 2,4,8,16.

Maximum error (Error) and convergence rate (Rate) of collocation solution values at

mesh points for 2D, non time-dependent problems, p = 4,5,6,7, and nint = 2,4, 8, 16.

Maximum error (Error) and convergence rate (Rate) of = spatial derivative of colloca-
tion solution values at mesh points for 2D, non time-dependent problems, p = 4,5,6,7,
and nint = 2,4,8,16. L
Maximum error (Error) and convergence rate (Rate) of y spatial derivative of colloca-
tion solution values at mesh points for 2D, non time-dependent problems, p = 4,5, 6,7,

and nint = 2,4,8,16.

37

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

Maximum error (Error) and convergence rate (Rate) of xy spatial derivative of
collocation solution values at mesh points for 2D, non time-dependent problems,
p=4,5,6,7,and nint =2,4,8,16.
Value of n for each 2D time-dependent PDE, p, and nint value used to define tolerance,
107", provided to daskr.o
Global error (GE) and convergence rate (Rate) of collocation solution for 2D, time-
dependent problems, p = 4,5,6,7, and nint =2,4,8,16.

Maximum error (Error) and convergence rate (Rate) of collocation solution values

at mesh points for 2D, time-dependent problems, for p = 4,5,6,7, and nint = 2,4, 8, 16.

Maximum error (Error) and convergence rate (Rate) of x spatial derivative of collo-
cation solution values at mesh points for 2D, time-dependent problems, p = 4,5,6,7,
and nint = 2,4,8,16. L L e
Maximum error (Error) and convergence rate (Rate) of y spatial derivative of collo-
cation solution values at mesh points for 2D, time-dependent problems, p = 4,5,6,7,
and nint = 2,4,8,16.
Maximum error (Error) and convergence rate (Rate) of xy spatial derivative of collo-
cation solution values at mesh points for 2D, time-dependent problems, p = 4,5,6,7,
and nint = 2,4,8,16. L
Global error (GE) and convergence rate (Rate) of SCI for 2D, non time-dependent
problems, p =4,5,6,7, and nint = 2,4,8,16.
Global error (GE) and convergence rate (Rate) of LOI for 2D, non time-dependent
problems, p =4,5,6,7, and nint =2,4,8,16. L.
Global error (GE) and convergence rate (Rate) of LOI2 for 2D, non time-dependent
problems, p =4,5,6,7, and nint =2,4,8,16. L.
Global error (GE) and convergence rate (Rate) of SCI for 2D, time-dependent prob-

lems, p =4,5,6,7, and nint = 2,4,8,16.

43

49

4.20 Global error (GE) and convergence rate (Rate) of LOI for 2D, time-dependent prob-
lems, p =4,5,6,7, and nint = 2,4,8,16. 49
4.21 Global error (GE) and convergence rate (Rate) of LOI2 for 2D, time-dependent prob-

lems, p =4,5,6,7, and nint =2,4,8,16. 50

Chapter 1

Introduction

Differential equations are a natural choice to model the change of a given phenomenon in time.
In recent years many models of the spread of COVID-19 have been based on using partial differential
equations (PDEs), e.g. [1], [17]. Examples of other models that are based on PDEs are the growth
of a brain tumour [14], and the population of an invasive species [10].

Differential equations typically do not have a closed-form solution and are complicated enough
that the only feasible approach is to calculate an approximate solution using numerical methods
implemented in software. Since we get an approximate solution, it will of course have an error
associated with it.

For PDEs, the error of an approximate solution can be attributed to the spatial discretization
and time integration. The spatial discretization error is associated with factors such as the size and
shape of the spatial domain, the location of mesh points, the distance between mesh points, and
the numerical method used to perform the discretization. The temporal integration is affected by
the tolerance employed by the time integrator used in order to advance the approximate solution
through time. The accuracy of the time integration depends on the time step and numerical method

used to perform the time integration.

1.1 Overview of Thesis

In Chapter 2, we begin by discussing the collocation method for time-dependent PDEs in one
spatial dimension (1D). We then introduce error estimation and control with an example of numerical
software which implements both. This is followed by a discussion of two interpolation-based error
estimation schemes and why it is desirable to use an interpolant as the basis for an error estimation
scheme. We then discuss the generalization of collocation so that it can be applied to PDEs with
two spatial dimensions (2D PDEs).

Chapter 3 considers a COVID-19 type model involving a system of 1D time-dependent PDEs
which is solved using numerical software featuring error estimation and control. The model is solved
for two different scenarios and with a range of error tolerances. The goal of this chapter is to
demonstrate how error control can be useful for these types of models.

Chapter 4 introduces a two-dimensional Hermite-Birkhoff interpolant to be used for estimating
the error of an approximate solution to a 2D PDE that has been computed using a 2D colloca-
tion method. We also introduce generalizations of existing 1D interpolation-based error estimation
schemes to two dimensions. These depend on collocation solution and derivative values. A new
two-dimensional interpolant for error estimation which does not depend on collocation solution
derivative values is also introduced. Chapter 4 also contains numerical results from the testing of
these interpolants to assess their usefulness for error estimation.

The thesis concludes with Chapter 5 which summarizes the results and identifies potential future

work.

1.2 General Problem Definition

The numerical methods we will use within this thesis require the PDEs to be provided in cer-
tain forms. The following subsections introduce the general form for the different classes of PDEs

considered in this thesis.

1.2.1 One-Dimensional Non-Time-Dependent

The general from we will use for a 1D non-time-dependent problem is as follows:

The ordinary differential equation (ODE) is given by

o () = f,u(x), us (2))), (L1)

where u(x) is the true solution of the differential equation. The spatial domain is defined by

A <z < B. The boundary conditions are g,(u(A),u,(A)) =0 and gy(u(B),u,(B)) = 0.

1.2.2 One-Dimensional Time-Dependent

The general from we will use for a 1D time-dependent problem is as follows:

The PDE is given by

ug(x,t) = fx, t,u(z, t), up(z, 1), uge (2, 1)), (1.2)
where u(z,t) is the true solution of the PDE. The spatial domain is defined by A < 2 < B and the

temporal domain is £y <t < t¢. The initial condition is,

u(zx, tg) = p(x), (1.3)

where p(x) is a function that represents the beginning state of the solution across the spatial domain

at time tg. The boundary conditions are

ga(t,u(A,t),u. (A, 1)) =0 and gp(t, u(B,t),u.(B,t)) = 0.

1.2.3 Two-Dimensional Non-Time-Dependent

The general form we will use for a 2D non-time-dependent problem is as follows:

The PDE is given by

Uza (T, Y) + gy (2,y) = [y, 0(2,y), ua (2, y), uy (2,), tay (2, Y)), (1.4)

where u(z,y) is the true solution to the PDE. The spatial domain is defined by A < z < B,

C <y < D. The boundary conditions are:

ga(yau(Avy)auy(Avy)7u:E(Aay)) =0, gb(yau(B?y)’uZI(Bvy)7ua:(B’y)) =0,

ge(z,u(z, C), uy(z,C),us(x,C)) =0, ga(z,u(x,D),uy(z, D), u(z, D)) = 0.

Note that at each of the four corners of the spatial domain, the two boundary conditions which are

relevant must be consistent. For example, when 2 = A and y = C', we must have:

9a(C u(A, C),uy(A,C),uz(A,C)) = ge(A,u(A, C),uy (4, C),us (A, C)).

1.2.4 Two-Dimensional Time-Dependent

The general form we will use for a 2D time-dependent problem is as follows:

The PDE is given by

ut(xayat) = f(zvyata u(x7y>t)a um(xa yvt)aurx(xayat)auy(xayvt)auyy(zayat)aumy(xa yat))a (15)

where u(z,y,t) is the true solution to the PDE. The spatial domain is defined by A < z < B,
C <y < D, and the temporal domain is tyg <t < ty.

The initial condition is:

u(z,y, to) = p(z,y), (1.6)

where u(z,y) is a function which represents the beginning state of the solution across the spatial

domain at time ¢y3. The boundary conditions are:

Ga(t,y, u(A, y, 1), uy(A,y, 1), up(A,y,1)) =0, go(t,y, w(B,y,t), uy(B,y,t), us(B,y,t)) =0,

gC(t7x7u(x707 t)?uy(xﬁo’ t)7u$(z7ca t)) = 0’ gd(t,z,u(x,D,t),uy(aj,D,t),ux(x,D,t)) =0.

Note that at each of the four corners of the spatial domain, the two boundary conditions which are

relevant must be consistent. For example, when z = A and y = C, we must have:

ga(t, C,u(A, C),uy(A,C),uz(A4,C)) = ge(t, A, u(A, C), uy (A, C),uz (A, C)).

Chapter 2

Background

This chapter introduces the B-spline Gaussian collocation method [18] for time-dependent partial
differential equations with one and two spatial dimensions and non-time-dependent PDEs with two
spatial dimensions. Error estimation and control are also introduced along with some examples of
software which implement these concepts. These topics are all discussed in the context of the BA-
COLI software package [16]. Interpolation based error estimation methods implemented in BACOLI

are also discussed.

2.1 B-spline Gaussian Collocation for 1D time-dependent PDEs

Collocation is a method of solving PDEs which gives a continuous solution approximation across
the spatial domain at a set of discrete points in time along the temporal domain. The general idea
of collocation is to represent the space of all potential approximate solutions as a linear combination
of basis functions. We assume a B-spline basis which means that the basis functions are piecewise
polynomials of a given degree, p. The method then calculates the coefficients of these basis functions
which we can use with the basis functions to obtain an approximate solution to the PDE.

To begin the calculation, the number of subintervals into which the spatial domain will be
divided, N, and the degree of the basis functions, p, must be set. The number of subintervals can

be any positive integer while the degree must be greater than 3 and is typically less than 8. Both of

these parameters, as they are increased, can increase the accuracy of the approximate solution, but
increasing these parameters will also lead to a greater computational cost.

We will consider the simple case of the spatial domain being equally divided into N subintervals
by N + 1 equidistant mesh points labelled x; : i =1,2,..., N + 1, where z; = A and 41 = B. As
mentioned above, we assume that the spatially dependent basis functions are B-splines [7]. The B-
spline functions are piecewise polynomials defined on the spatial mesh {xl}f\gl To define B-spline
basis functions, b;(x) : i = 1,2, 3, ..., NCPTS, with number of components NCPTS = N(p—1)+2,
of degree p over the N subintervals, with C'-continuity, we define a knot sequence based on the
mesh points. This knot sequence will have NCPT'S 4+ p + 1 points and is constructed by repeating
the points z; and xny1, p+ 1 times and repeating all other mesh points, zo to 2y, p — 1 times.
Further details on the construction of B-spline basis functions are available in [7].

Each of the NCPT'S basis functions will have a corresponding time-dependent coefficient. These
coefficients will be defined as ¢;(¢t) : i = 1,2,..., NCPTS. We can then express the approximate

solution, U(z,t), in the form,
NCPTS

Uz, t)= Y ci(t)bi(x). (2.1)

i=1
The collocation points are points within each subinterval where we require the approximate
solution to satisfy the PDE. There are p — 1 points per subinterval and they are set as the mapping
of the p—1 Gauss-Legendre points from [—1, 1] onto [z;, z;11], for each of the N subintervals. Figure
2.1 shows an example of this. There will be a total of N(p — 1) = NCPTS — 2 collocation points,

which we will label v; : ¢ =1,2,..., NCPTS — 2.

71 72 73 Y4 75 76

I I I
I I I
L1 L2 L3

{5131, ey L1, X9y +vuy T2, I3, ...,.3133}
p+1 p—1 p+1

Figure 2.1: Visual representation of collocation points and knot sequence across 2 subintervals with p = 4.

The collocation conditions, obtained by requiring that the approximate solution satisfy the PDE

at the collocation points, have the following form:

F (it U (4,) Uy (iy 8) y Uz (7358)) = Uy (i, 8) =0:i=1,2,..., NCPTS — 2. (2.2)

In addition to the above NC'PTS — 2 equations, we use the 2 boundary conditions to complete
the system. We require the approximate solution to satisfy the boundary conditions at x = A and

x = B. The general form for these conditions is:
9a(t, U(A1),U(A,t)) =0, and ¢,(¢t,U(B,t),U,(B,t)) = 0. (2.3)

Combining the boundary and collocation conditions, we obtain a NCPT'S x NCPT'S system of
time-dependent, non-linear differential-algebraic equations (DAEs) whose solution gives the B-spline
coefficients, ¢;(t), that define the approximate solution. A DAE solver can then be used to solve for
these coefficients at a set of time points, across the temporal domain. These coefficients can then
be used to represent the approximate solution at these points in time across the spatial domain. To
begin the computation, an initial set of B-spline coefficients based on the provided initial conditions
must be calculated and then provided to the DAE solver. That is, we project the initial conditions
onto the B-spline basis at time ty3. Also, due to the locality of the B-spline basis functions, the
equations that make up the DAE system can be ordered so that the Jacobian of the system has an
almost-block diagonal (ABD) structure [8], which can be leveraged by the DAE solvers to speed up
the computation.

When B-spline Gaussian collocation is applied to a 1D ordinary differential equation (ODE) the

error of the collocation solution, U(x), has the form [2] at non-mesh points:

xr — X;

%

u(j)(x) _ U(j)(x) — u(p+1)(xi)p(j) () hf“’j + O(h€+2fj) + O(hz(p—u), (2.4)

where z; < x < 2441, 3 = 1,..., N, u(x) represents the true solution, u)(x) is the jth derivative of

u(x), 7 =0,1,...,p, and where,

1 [=
PO = gy [(= =i (2.5)

r=1
where p, represents the mapping of the p — 1 Gauss points onto [0, 1].

At mesh points the error satisfies:
w9 (z) — UD (z) = O(R2P~1) (2.6)

where j =0, 1.

In equation (2.4), assuming p > 2, the error will be dominated by the h?*! term. As such, we
expect that the error over the entire spatial domain will be O(hP*!). Furthermore, since the hP*!
term is multiplied by the function P, at the zeros of P, the error will be dominated by the hP*+2
term. These results have also been experimentally observed in the time-dependent PDE case [2].

In the BACOLI software package [16] the DAE solver used is DASSL [15]. DASSL is a DAE
solver based on a family of backward differentiation formulas (BDF's) [15]. DASSL implements error
control through adaptivity of the order of methods used as well as the size of the time step taken.
The version of DASSL used in BACOLI has been modified to employ the COLROW [8] linear system

solver to efficiently solve the ABD matrices that arise during the computation.

2.1.1 Error Estimation and Control for 1D PDEs

When calculating any approximate solution with numerical software, there will be some error
associated with the approximation, meaning that there is a difference between the true solution
and the approximate solution. In most practical cases where numerical software is being used to
calculate an approximation, the true solution is not known, and the error of the approximate solution
cannot be directly calculated. An error estimate can be calculated instead to give an idea of how
good a given approximation is, which is a desirable feature of numerical software. The method by
which a high-quality, reliable error estimate can be calculated depends on the method by which the

approximate solution was calculated.

In cases where the true solution to a problem is unknown, a second approximate solution may be
used to calculate an error estimate for an approximate solution. The second approximate solution
can be calculated with a more accurate method which is expected to yield an approximate solution
that is closer to the true solution than the original approximate solution. For example, if we had
an approximate solution calculated using a collocation method with an error that is O(h*), we
could then calculate a second approximate solution whose error is O(h*+1). Here h is the maximum
subinterval size and k is dependent on the degree of the basis functions. When an approximate
solution has an error that is O(h¥) we say that the approximation is of order k. The difference
between this second approximate solution and the first approximate solution is then used to calculate
the error estimate.

The error can be divided into two main contributors, the spatial and temporal errors. The spatial
error is dependent on the width of the subintervals and the degree of the basis functions. The DAE
solver must also feature error control so that the temporal error can be controlled so that it is less
than the spatial error.

A desirable feature of numerical software is error control. Error control allows the user of the nu-
merical software to specify a tolerance, i.e., an upper bound on the estimated error, and the software
will attempt to return an approximate solution whose estimated error satisfies the provided toler-
ance. This not only has the benefit of the user being returned an approximation which meets their
desired tolerance but also can allow for the approximate solution to be calculated more efficiently.

Error control is typically achieved by using adaptive methods. The BACOLI software [16] im-
plements spatial error control through spatial mesh refinement. Once the collocation method has
been applied, the DAE systems are solved by the DAE solver using a slightly sharper tolerance
than the user provided tolerance. When the DAE solver returns from each time step, the error
across the spatial domain is estimated and compared with the user-supplied error tolerance. If this
tolerance is not met, the software then evaluates if more subintervals should be added, so that the
error tolerance will be met. Conversely, if the estimated error is significantly smaller than the error

tolerance, the algorithm can also adjust the mesh to have fewer subintervals. As an approximate

10

solution with more subintervals will tend to take more computational time, error control can allow
for a more optimal number of subintervals to be used while still returning an approximation that
satisfies the tolerance. In addition to determining the optimal number of subintervals, the mesh
refinement algorithm also determines the optimal placement of the mesh points across the spatial
domain so that the estimated error will be evenly distributed over the subintervals of the spatial

domain.

2.1.2 Interpolation Based Error Estimation for 1D PDEs

While calculating a second, higher accuracy, approximate solution can enable the calculation
of an error estimate, it also incurs extra computational cost. If a full collocation method, using a
B-spline basis of degree p + 1, is used to obtain the second approximate solution, this will cause
the overall computation time to be more than double that of the original approximate solution.
Interpolation based error estimation aims to avoid this extra computational cost by instead using
an interpolant to the original approximate solution; this is relatively cheap to evaluate compared to
the computation of a second collocation solution. The difference between the interpolant and the
original approximate solution can be used to calculate an error estimate.

The BACOLI software package [16] is a PDE solver based on B-spline Gaussian collocation
as introduced above. It also features two distinct interpolants that can be used for calculating
error estimates. The Superconvergent Interpolant (SCI) [2], an approximate solution that is of one
order higher than the original approximate solution, and the Lower Order Interpolant (LOI) [3],
an approximate solution that is of one order lower than that of the original approximate solution.
When using the SCI error estimation method, BACOLI is said to be operating in standard error
control mode. When the LOI error estimation method is used within BACOLI, the software is said
to be operating in local extrapolation mode. This error estimate provides an overestimate of the
error but has the advantage that its construction is simpler than that of the SCI.

To have an order of accuracy that is one order higher than that of the collocation solution, the

SCI ensures that the data error dominates the interpolation error by interpolating the mesh point

11

solution and derivative values and the collocation solution at a sufficient number of special points
within each subinterval for which the order is one order higher than that of the collocation solution
at a non-mesh point. To obtain sufficiently many points, the SCI also interpolates the nearest
higher-order points from each adjacent subinterval. The LOI gives an approximate solution of one
order lower by interpolating sufficiently few points so that the interpolation error dominates the
data error of the collocation solution and derivative values that it interpolates.

Both the SCI and LOI are expressed in a Hermite-Birkhoff interpolant form [9], with points w;
representing points where the approximate solution is evaluated and s; : i = 1, 2 representing points
where both solution and derivative values are interpolated. The number of w; points is dependent
on p, as well as which of the SCI or LOI error estimation methods is being used. The general form

is as follows:

q(z) = Z H; () u(si) + lZ Hi () ug (si) + f} Gj () u(w;), (2.7)
i=1 i=1 j=1
where,
Hi(z)=(1—(z—s;)N) H; (), H;(x)=(x—s;) H; (2),
H:(2) = ey G @ = e
and where,

=

Is|
ZZ% (I) = H ($ - Sk)a ’l/) (I) - (‘T - Sk)a

k=1 k=1
ki
|w] |w]
¢j (x) = [(z—wy), ¢(z)=II (z —wg).
2

Both the SCI and LOI can return reliable error estimates allowing for the BACOLI software

package [16] to feature error control, while also doing so efficiently.

2.2 B-spline Gaussian Collocation for 2D PDEs

Collocation can also be used to calculate approximate solutions for PDEs with more than one

spatial dimension. In this section, we will introduce collocation for time-dependent and non-time-

12

dependent PDEs with two spatial dimensions. The method introduced here is based on the imple-

mentation in [13].

2.2.1 B-spline Gaussian Collocation for 2D time-dependent PDEs

As with the 1D case, we will begin dividing the spatial domain into /N intervals in the z-domain
and M intervals in the y-domain. This will create a grid of subrectangles across the spatial domain.
However, it is useful to continue considering the subintervals of each spatial domain; these subin-
tervals are used to define the basis functions and collocation points for each spatial dimension. We
will also use degree p and ¢ basis functions in « and y respectively.

The mesh points, defined as z; : ¢ =1,2,3,..., N+1,and y; : : = 1,2,3,..., M +1, are used to cre-
ate a knot sequence in x and y following the same approach as in the 1D case. These knot sequences
will then define NCPT,, = N(p — 1) + 2 B-spline basis functions in and NCPT, = M(g—1) +2
B-spline basis functions in y. These basis functions will be b;(z) : i = 1,2,3,..., NCPTS, and d;(y) :
1,2,3,..., NCPT,. Instead of each basis function having a corresponding time-dependent coefficient,
each product of basis function in = and y will have a coefficient, ¢; ;(t) : ¢ = 1,2,3,..., NCPT,,j =
1,2,3,..., NCPT,.

This leads to an approximate solution that has the form,

NCPT, NCPT,

Uy)= Y Y b)), (28)

The collocation points are once again defined as the mapping of Gauss-Legendre points from
[—1,1] onto each subinterval of each spatial domain. There will be N(p — 1) = NCPT, — 2 and
M(q—1) = NCPT, — 2 points in the z and y domains, respectively. We will define the collocation
points as y; : ¢ = 1,2,..,. NCPT, —2in z and 6; : ¢ = 1,2,..., NCPT, — 2 in y. By requiring
the approximate solution to satisfy the PDE at these collocation points, we obtain the following

collocation conditions,

13

f (’7176]7755 U (77,’ 6]) t)) UJL (7717 5]7 t)) ULJE (7176]at) 7Uy (7176]at) 7Uyy (7176_]’-&) 7Uly (’7176]775))

—Ut (’yi, (Sj, t) = O, (29)

@
\
-

N

...,NCPTX -2, j=1,2,...,NCPTY —2.

-
PR
EEER N
PR

|
e ----
|

>
ot
Jecaaa

3
w
""'1""'1""'1‘"""""'1""'

---1---1---1------1---.]---1---

Ll el el e e

---r---r---r------r---l.---r---

T el el el el
T el el el el

Y1

7172 73 Y475 6
Figure 2.2: Visual representation of collocation points across 2 subintervals with p = ¢ = 4.
Once again the remaining conditions are obtained by using the boundary conditions. The bound-
ary conditions are imposed at the collocation points along each edge of the spatial boundary, and

each of the four corners of the complete spatial domain for the problem. These boundary conditions

will have the following form:

9a(t,C,U(A,C,t),Uy(A,C,t), Uz (A,C,t)) =0, ga(t,D,U(A,D,t),Uy(A,D,t),Uy(A,D,t)) =0,
gb(tacv U(B,C, t)a Uy(B7C7 t)a U@(B,O, t)) = O’ ga(tva U(Bvth)7Uy(B7D7t>7U$(BvD7t)) = 07

ga(tv(;j’U(Av(;j’t)vUy(Av(;j’t)7UI(A75jat)) = 07 gb(t75j7U(Ba(sjvt)aUy(Bv(sjvt)aUI(Bv(sj’t)) = 07

14

9e(t, 7, U (i, C, 1), Uy (i, C, 1), Uy (i, C, 1)) = 0, ga(t, i, U(vi, D, t), Uy(7i, D, t),Us(7i, D, t)) = 0,

i=1,2,...,NCPTX -2, j=1,2,...,NCPTY —2.

After the initial B-spline coefficients have been determined based on the initial condition for the
problem, the boundary and collocation conditions are then combined to form a DAE system which

can then be solved using a DAE solver to obtain the coefficients of the basis functions.

2.2.2 B-spline Gaussian Collocation for 2D non-time-dependent PDEs

The collocation method may also be used to solve non-time-dependent PDEs. The entire colloca-
tion process, in this case, is similar to a single time step of the time-dependent case. The differences
arise in the collocation conditions which no longer include a U(z,y); term, causing the resultant
system of boundary and collocation conditions to no longer be a system of DAEs but instead a
system of non-linear equations with the B-spline basis coeflicients as the unknowns.

We must first divide the spatial domain into N intervals in the z-domain and M intervals in
the y-domain. We will also use degree p and ¢ basis functions in z and y respectively. The knots
are created in the same manner as section 2.2.1 to define the B-spline basis functions, b;(z) :
i=1,23,..,NCPTS,, and d;(y) : 1,2,3,..., NCPT,. The basis functions will have coefficients
cij:t=123,..,NCPT,,j =1,2,3,..., NCPT,, which can be used to express the approximate

solution in the form,

NCPT, NCPT,

Ulz,y) = Z Z ci,jbi()d;(y)- (2.10)
=1 j=1

We will define the collocation pointsasy; : i = 1,2,..., NCPT,—2inzand §; : ¢ = 1,2, ..., NCPT,—
2 in y following the same procedure as in section 2.2.1. The collocation conditions are represented

by the following equation:

f (%,51‘, U (%‘75]’) U ('Vi75j) Uy (%‘753‘)) —Usz (%‘,5j) —Uyy (%,53‘) =0, (2~11)
i1=12,.... NCPTX -2, j=12,...., NCPTY —2.

15

The boundary conditions are of the form:

94(C,U(A,0),Uy(A,C),Us(A,C)) =0, ga(D,U(A, D),Uy(A, D),Us(A, D)) =0,
9(C,U(B,C),U,(B,C),Us(B,C)) =0, ga(D,U(B,D),U,(B,D),U(B,D)) =0,
905, U(A,65),U,(A,65),Ux(A,65)) =0, gv(8;,U(B,9;),Uy(B,9;), U (B, ;) =0,
9¢(7i, U (73, C), Uy (7, C), U (73, €)) = 0, ga(vi, U (i, D), Uy(vi, D), Uz (7i, D)) = 0,

i=1,2,...,NCPTX -2, j=1,2,...,NCPTY —2.

These conditions are then combined to create a system of non-linear equations which is solved

for the unknown coefficients of the B-spline basis functions, using a non-linear system solver.

16

Chapter 3

Error Controlled Numerical

Solution of a COVID-19 PDE

Model

Recently the idea of mathematical modelling of epidemics, specifically COVID-19, has seen an
extreme focus. Many of these models are compartmental models, which divide the population
into distinct compartments and consider how these compartments interact with one another. The
SIR model [12] is one of the first of this type and is one of the simplest, consisting of only three
compartments: Susceptible (S), Infected (I), and Recovered (R). To more accurately model the
spread of diseases with an incubation period, the SEIR model was developed as an extension of
the SIR model. This adds the Exposed (E) category, which allows the model to account for the
incubation period of a virus. Other variations of the SIR model have also been developed which
account for other behaviours a virus may exhibit [1], [17].

The traditional SIR model is defined by a system of ODEs. These ODE models have the in-
dependent variable, time, and the resulting solution is the proportion of the population in each

compartment through time.

17

These ODE models have also been extended to systems of PDEs which include a spatial and
temporal domain. That is, there is an independent variable corresponding to time, and one or more
corresponding to space. The simplest of these have one spatial dimension. These models still contain
the same compartments as an ODE model, although the solution will represent the proportion of the
population in each compartment across the spatial domain and through time. This allows for the
modelling of phenomenon such as the interaction between two distant regions of high infection, or
modelling the spatial spread of the disease. PDE models may also contain two spatial dimensions.
This case is more natural, where we seek a solution approximation over a region and the spread of

disease (i.e. the population of the compartments) throughout it over time.

3.0.1 Compartmental ODE Models

The first compartmental model, given by equations (3.1), was introduced by Kermack and McK-
endrick in 1927 [12]. This model is now known as a susceptible-infected-recovered (SIR) model. The
population is separated into these three compartments and a system of equations is created which

defines how each compartment affects the others. The system has the form,

dsS
@ LST
i kSI,
ﬂ
dt
dR

— =11.
dt

= kST —1I, (3.1)

The variables S, I, R from equations (3.1) represent the proportion of a total population, N,
which is contained in each compartment. These variables represent the proportion of the population
that is susceptible (S), infected (I), and removed (R) respectively. The constant, k, represents the
infectivity rate, and the constant, [, represents the rate of removal (sum of deaths and recoveries).

Variations of this model have also been developed which can factor in the dynamics of different
diseases. The most relevant to the COVID-19 pandemic is the susceptible-exposed-infected-removed
(SEIR) model, which accounts for the time period between when an individual is exposed and when

they will become infectious. Equations (3.2) present an ODE SEIR model. The model has the form,

18

Si(t) = uN = pS(t) = {FSHI), (3-2)

Ey(t) = £S®)I(t) — aB(t) — pE(t),
Lit) = aB(t) —~I(t) — pl(t),
Ry(t) = VI(t) — pR(t).

The variables S, E, I, R from equations (3.1) represent the proportion of a total population, NN,
which is contained in each compartment. These variables represent the proportion of the population
that is susceptible (S), Exposed (F), infected (I), and removed (R) respectively. The death and
birth rates, u, are assumed to be equal. The infection rate is represented by the constant 5. The
incubation period to model the time between exposure and infection is determined by the constant

«. The recovery rate is represented by the constant ~.

3.1 Numerical Solution of a Covid-19 PDE Model

In this section, we will consider a COVID-19-type PDE model, with two diffusion functions to
represent two different scenarios. The BACOLI software package [16] is used to solve these problems
using an equidistributed initial spatial mesh set by the BACOLI software; this defaults to a mesh
with 10 subintervals. The number of collocation points used is, kcol = 5; this means that the degree
of the B-spline basis functions will be p = kcol +1 = 6. The error control mode used is standard
error control which means that the SCI-based error estimation scheme will be used, and the error

tolerance is only applied to the estimate of the absolute error.

3.1.1 A Covid-19 PDE Model

The Covid-19 model used in both scenarios involves the PDEs (3.3), [6]. The system has the

form,

19

Ds(x)S(x,t)ge + pN — pS(x,t) — %S(m, t)I(z,t), (3.3)
E(z,t)t = Dg(x)E(z,t) + %S(m,t)[(m,t) —aE(z,t) — pE(x,t),
Dr(z)I(x,t)pe + aE(z,t) — yI(x,t) — pl(x,t),

Dr(x)R(2,t) 00 +vI(2,t) — pR(2,1).

The spatial domain is —5 < z < 5, and the temporal domain is 0 < ¢ < 50. The value and role of

parameters appearing in equations (3.3) are given in Table 3.1.

birth/death rate | p | %92
recovery rate v | 0.06
transmission rate | [0.9
incubation rate a | 0.125
total population | N 1

Table 3.1: Value and role of parameters for COVID-19 type PDE model.
The diffusion functions Ds(z), Dg(x), Di(x), and Dg(x) will be discussed individually for each
scenario. The initial conditions used are,

S($7 O) =1- I(.’IJ, 0)7 I(x7 0) — 0.26_10($+1)27

E(z,0) = R(z,0) = 0.

Figure 3.1 showing the inital state of I(z,0).

0.18

0.16]

0.14

0.1

1(x,0)

0.08]

0.06]

0.04

0.02]

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Spatial Domain (x)

Figure 3.1: Plot of the initial condition I(x,0).

20

3.1.2 Scenario 1 Problem Definition

This scenario aims to represent two nearby population centres, and this is done by creating
a diffusion function with two nearby local maximums; Dg(z) is shown in Figure 3.2 and all four

diffusion coefficients are defined in equations (3.4).

Ds(z) = Dp(z) = Dgr(z) = (max Ds — min Ds)e~10(V#>=D* 4 min Ds, (3.4)

Dl(m) :.DE(fl')/lo7

where max Ds = 0.05 and min Ds = 0.001. These points are chosen arbitrarily to provide a high
level of diffusivity in the areas of dense population while still maintaining a baseline of diffusivity at

all other areas.

0.045]
0.035]
5
% 0.025]
Q
0.015]

0.0

0.0035]

0 T T T T T T T T T T T T T T
-5 -4.5 -4 -3.5 -3 -2.5-2 -1.5 -1 -0.50 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Spatial Domain (x)

Figure 3.2: Plot of the diffusivity parameter Dg(z) for Scenario 1.

As mentioned earlier, these models do not have a closed-form solution and thus we can not know
the exact error of any approximate solution. However, we will use as a reference solution an ap-
proximate solution computed using a very sharp tolerance. We can then take the difference between

this reference solution and a less accurate approximate solution to obtain a reasonable estimate of

21

the error for the lower tolerance (i.e., less accurate) approximate solution. The I component of the

sharp tolerance approximate solution for Scenario 1 can be seen in Figure 3.3.

Figure 3.3: I(x,t) solution component of the sharp tolerance tolerance solution to Scenario 1.

3.1.3 Scenario 2 Problem Definition

This scenario aims to represent a lone population centre, and employs a diffusion function with
one local maximum. For this scenario, Dg(x) is shown in Figure 3.4 and all four diffusion coefficients

are defined in equations (3.5).

Dg(z) = Dp(z) = Dr(z) = (max Ds — min Ds)e~ 0" 4 min Ds, (3.5)

Dy(x) = Dp()/10,

where max Ds = 0.05 and min Ds = 0.001.
The I component of the sharp tolerance approximate solution for Scenario 2 can be seen in Figure

3.3.

22

0.005]

0 T T T T T T T T T T T T T T T T T T T
-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Spatial Domain (x)

Figure 3.4: Plot of the diffusivity parameter Dg(z) for Scenario 2.

Figure 3.5: I(z,t) solution component of the sharp tolerance solution to Scenario 2.

3.2 Numerical Results

The approximate solutions to these models were calculated using the error control BACOLI
software [16] with a range of error tolerances, 107%,i = 2,3, 4, ..., 10.

This section contains two main types of plots. The first shows the absolute maximum of the
difference between the coarser tolerance I(x,t) solution approximations and the I(x,t) reference
solution approximation computed using the sharp tolerance of 10710, for ¢ from 0 to 50. The second
type of plot shows the two approximate solutions obtained using the most coarse and the most sharp

tolerances (i.e., 1072 and 1071°) at a specific point in time.

23

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Temporal Domain (t)

Figure 3.6: Absolute maximum difference between the lower tolerance I(z, t) solutions and the I(x,t) solution
obtained using the sharpest tolerance, for Scenario 1.

3.2.1 Scenario 1 Results

In Figure 3.6 we plot the maximum difference, across the spatial domain, between the coarser
tolerance I(z,t) solution approximations and the reference sharp tolerance solution approximation.
From this figure, we can see there is a clear trend of the coarser tolerance solution approximations
converging to the sharp tolerance solution as the tolerance decreases, which suggests that the error
control makes an impact on the accuracy of an approximate solution to this model. We also see that
as the time advances the error increases in all of the solutions, eventually to the point where they
no longer satisfy the provided absolute error tolerance. This is related to the exponential growth of
some of the solution components over the time domain.

Figure 3.7 shows the solution approximation calculated with a tolerance of 10~2 and the reference
solution (computed with a tolerance of 1071%) at ¢t = 50. From this plot, we see that the approximate
solutions show different spatial behaviour. Also from Figure 3.7, we can see that these two solution
approximations have a maximum difference of about 107!, or about 10% of the total population.
Furthermore, we see that the coarse tolerance solution is negative on certain regions of the spatial
domain; this result is unacceptable as I(z,t) represents a proportion of the population and should

always be zero or greater. This suggests that error control can have a significant impact on the

24

accuracy of an approximate solution of a COVID-19 PDE model.

— 1
— 10

Figure 3.7: Comparison of coarse and sharp tolerance solutions to COVID-19 model at ¢ = 50 for Scenario
1.

3.2.2 Scenario 2 Results

Figure 3.8 is similar to Figure 3.6 from Scenario 1. We see a decrease in error as the tolerance
is sharpened, suggesting that error control is having an impact. However, the increase in the error
through time is more noticeable. Similar to Scenario 1, in Figure 3.8, we also see the errors increasing
beyond the tolerance as time progresses. However, the solution solved with a tolerance of 10~2 does
begin to regain some accuracy near the end of the temporal domain.

In Figure 3.9 we see a plot that is similar to the one shown in Figure 3.7, with the coarse toler-
ance solution approximation being noticeably different from the reference solution approximation.
In Figure 3.9, we see larger oscillations near the flat portions of the coarse tolerance solution ap-
proximation. We also note that the coarse tolerance solution is negative on certain regions of the

spatial domain.

3.2.3 Results Discussion

In both scenarios, as the tolerance supplied to BACOLI is sharpened, the resultant approximate

solutions converge to the reference solution. Also when using the coarsest tolerances, we see a

25

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Temporal Domain (t)

Figure 3.8: Absolute maximum difference of lower tolerance I(z,t) solutions to the I(z,t) solution with atol
= 107" for scenario 2.

Figure 3.9: Comparison of coarse and sharp tolerance solutions to COVID-19 model at ¢ = 50 for Scenario
2.

different spatial behaviour compared to the reference approximate solutions, as seen in Figures
3.7 and 3.9. If we were to consider a scenario where a group in charge of implementing COVID
restrictions is performing modelling to help inform their decisions, and they were to use a PDE
solver without error control, then the approximate solution they compute could easily have a large
error, although the software would provide them with no indication of this. However, if they were
to use a PDE solver with error control they would be able to specify a sharp tolerance and have

reasonable confidence that they will compute an accurate solution approximation.

26

Chapter 4

2D Interpolants for Error
Estimation of 2D Collocation

Solutions

In this chapter, we introduce 2D generalizations of two previously developed 1D interpolants and
one new 2D interpolant that can be used to calculate error estimates for 2D Gaussian collocation
solutions. We will also assess the performance of these interpolants to investigate their rates of
convergence and the quality of the error estimates for 2D collocation solutions that can be obtained

using these interpolants.

4.1 2D Interpolants for 2D Gaussian Collocation Solutions

4.1.1 2D Hermite-Birkhoff Interpolants

Here we introduce a general form for a 2D Hermite-Birkhoff interpolant. These interpolants
depend on solution and derivative values at several points associated with each grid of the spatial

domain. We will label the points at which both solution and derivative values are interpolated as

27

s1 and sg for the z domain, and t; and ¢5 for the y domain. The points where only solution values

are interpolated are labelled as w; in the x domain and v; in the y domain. The number of w;, v;,

points will depend on the degree of interpolant being constructed. With these values defined, one

can then represent the interpolant as follows (note that the superscripts (z), and (y), are used to

differentiate between two versions of the function G with different parameters corresponding to each

spatial dimension):

2 2 2 2
q(z,y) = Z Z Hz(sz)FJ (tj)Usy(si, t;) + Z Z Hz(sz)FJ (tj)Us(si,t5)+
=1 1=y Jj=11i=1
2 v 2 2 -
Z Z JFHz(Sz)GSy)(Uj)Ur(SZa vj) + Hi(si)Fj(t;)Uy(si,t5)+
=1 5=1 =1 5=1
2 |w| 2 2
SO E)G (wi)Uy (wisty) + > Hilsi) Fy (U (54 1)+
j=11i=1 =1 j=1
2 v » 2 |wl|)
Z Z HZ(SZ)G]y (v;)U(si,v5) + Z Z Fj ()G (wi)U (wi,)+
i=1 j=1 j=1i=1
lw| o]
>3 GP w) G () U (wi, vy)
i=1 j=1
where
H;(x) = (1— (z —s;) \i) Hi (z), Hi (z) = (x — ;) H; (x),
g _ i (x)¢(x) (z) _ A (@)di(x)
Hi (@) = giata G () = 9tadesGa
Fi(y) = (1= (y = t)A) 5 (y), Fi(y) = (y — ;) F3(v),
I _ W)e() (v) _ ()P, ()
Fi(y) = SHanay 61) = wneiy
and

k=1 k=1
lei
[w] |w]|
¢ (z) = (x —wg), ¢(z)= (x — wy),
k=1 k=1
k#j
|w] 2
A=y 42y
j=1"" " j=1 "%
J#i
[t] ||
Ui(y) =11 (y—te), ¥(y)=II (y—t),
2

4.1.2 The SCI in 2 Dimensions

The generalization of the 2D SCI that we will consider is constructed by interpolating the solution
values and spatial derivatives for each dimension in the same manner as the 1D case. However, in
order to have sufficiently many interpolation points, we also interpolate the cross derivative at
the four corners of the sub-rectangle upon which the interpolant is constructed. If we consider a
collocation solution of degree p in x and ¢ in y and the sub-rectangle bounded by [z, < z < z,,] and
Yo <y <y, we have 81 = x4, S2 = Xy, t1 = Ya, and ty = y,,. We will also have p — 1 points, w;,
and ¢ — 1 points, v;, of which p —3 and ¢ — 3 are set relatively across each spatial domain according
to Table 4.1. The nearest interpolation points within each adjacent sub-rectangle are also included
in order to obtain the remaining interpolation points for each dimension.

Figure 4.1 shows how these points, w; and v;, are set when p = ¢ = 6 and the sub-rectangle for
which we are constructing the interpolant is not on the edge of the spatial domain of the PDE. In
such a case where the point closest to an edge would be outside the spatial domain of the problem
we instead use the two nearest points from the adjacent sub-rectangle. Equation 4.1 can then be

used to obtain the 2D SCI on a given sub-rectangle.

Degree of Collocation Solution
4 | 5 \ 6 \ 7
0.5 | 0.3110177634953864 | 0.2113248654051871 | 0.1526267046965671
0.6889822365046136 0.5 0.3747185964571342
0.7886751345948129 | 0.6252814035428658
0.8473732953034329

Table 4.1: Relative position of interpolation points corresponding to solution values within the sub-rectangle
that are used in the construction of the 2D SCI.

29

| XXX W UG U
| | | | | Uy(z,y), Usy(z,9)
Yo ——@ @ o—i—
! ! ! ! ! O U(z,y), Us(z,y)
R SR (Rl SRR X3 X--@--X---
| | | | ! ® U(r,y),U,(2,9)
| | | | | X Ur.y)
Yyl K@K K3 K--P--K---
T e
N
w1 Lo way w3 Wy Ty Wy
. -

Figure 4.1: Visual representation of points where 2D SCI interpolates solution and derivative values when
p=q=6.

Degree of Collocation Solution

415] 6 \ 7
0.5 [0.3110177634953864 | 0.2113248654051871
0.6889822365046136 0.5

0.7886751345948129

Table 4.2: Relative position of interpolation points corresponding to solution values within the sub-rectangle
that are used in the construction of the 2D LOI.

4.1.3 The LOI in 2 Dimensions

The generalization of the 1D LOI we will consider is constructed by treating each spatial dimen-
sion independently to determine the points where solution and derivative values will be interpolated.
If we consider a collocation solution of degree p in x and ¢ in y, and the sub-rectangle bounded by
[q <2 < x,] and [yo <y < Y], we have $1 = 4, S2 = Tw, t1 = Ya, and ta = y,,, where solution
and derivative values are interpolated. We will also have p —4 points, w;, and ¢ —4 points, v;, which
are set relatively across the spatial domain, according to Table 4.2, where only solution values are
interpolated.

The LOI does not have any edge cases to consider as it only utilizes solution information from
within the sub-rectangle on which the interpolant is being constructed. Equation 4.1 can then be

used to obtain the LOI on a given rectangle.

30

A
| | | B U(r,9),Us(z,y)
| | | UU $:y)7U1y z !/)
Y —e ® o—i
: : : O U(z,y),Us(z,y)
vy ¢ XXX P
1 1 1 ® U(z,y),Uy(x,y)
| | | X U(z,y)
| e G KKK
P SECS S S
Ya H ‘ H
e "LL'l ‘IUQ ‘w;g Ty

x
Figure 4.2: Visual representation of points where 2D LOI interpolates solution and derivative values when
p=q=T.

4.1.4 The LOI2

The LOI2 is a 2D interpolant that we introduce in this subsection. The LOI2 does not interpolate
any spatial derivatives and we will show later in this chapter why this may be an advantage.

We first consider a 1D version of the LOI2. For a 1D collocation solution of degree p, the
corresponding 1D version of the LOI2 is constructed using p points; these are the 2 mesh points
bounding the subinterval and p — 2 internal points. The internal points are chosen so that the
L2-norm, over the spatial domain, between the interpolation error and the known collocation error,

as seen in Equation (2.4), is minimized. The points for collocation solutions of degrees 4 through 7

are given in Table 4.3.

Degree of Collocation Solution

4 5 \ 6 7

0 0 0 0
0.302331973224813 | 0.179424182143275 | 0.143465814421734 | 0.107235231524833
0.697668026790731 0.5 0.37051884018424 | 0.283676545203967

1 0.820575567392312 | 0.629481160240031 0.5
1 0.856534185886017 | 0.716323434111384
1 0.892764777407028

1

31

Table 4.3: Interpolation points used to construct the LOI2 for collocation solutions of degrees 4 through 7.

X Uz,y).

5
=}
g
g
&

5
€

»
»

z
Figure 4.3: Visual representation of points where the LOI2 interpolates solution values when p = ¢ = 5.

As this 1D version of the LOI2 does not make use of any spatial derivative values it can be
constructed as a Lagrange interpolant. With interpolation points w; : ¢ = 1,2, ..., p, the 1D version

of the LOI2 can be constructed as follows:

q(z) =Y Ulw;)li(z) (4.2)
i=1
where
Ip|
(z —wg)
Li(z) = —-_—
]]g (w; — wg)

The 2D LOI2 can be represented using the 2D Hermite Birkhoff interpolant introduced in 4.1.1,
choosing the internal points in each dimension appropriately according to the degree of the col-
location solution in that dimension (see Table 4.3). However, because the 2D LOI2 does not use
any spatial derivative values, we can instead use a simpler 2D Lagrange interpolant form. Given
a collocation solution, U(x,y), of degree p in z, and degree ¢ in y, and a sub-rectangle based on

the subintervals, z € [z4,z,] and y € [Ya, Yw], and the interpolation points, w; : i = 1,2,...,p,

32

v;:1=1,2,...,q, the 2D LOI2 can be constructed as follows:

a(@) = 2D L@ @)U), (43)

=1 j=1
where
|p| lq|
(z—wk) (y — vr)
ll(x) - 9 l) - .
kli[l (wi —wy) 7 kl;[l (vj — vk)
k#i k#j

4.2 Testing Software

Testing scripts have been written in Scilab version 6.1.0 to implement these interpolants, investi-
gate their convergence rates, and assess the quality of error estimates they can provide. The scripts
implement B-spline Gaussian collocation as described in Chapter 2. For the time-dependent case,
the Scilab daskr ([4], [5]) function is used to solve the DAEs that arise from the collocation process.
For the non-time-dependent case, the Scilab nonlinear solver function fsolve is used to solve the
nonlinear equations that arise from the collocation process. The Mingw compiler module for Scilab
is also required as the B-spline software is implemented in Fortran. The testing scripts are available

in the appendix.

33

4.3 Collocation Solution Error and Convergence Results

Collocation solutions to the following test problems were calculated with a range of basis function
degrees and number of subintervals dividing the x and y spatial domains. We choose the degree and
number of subintervals in each dimension to be the same.

As the Scilab scripts used to calculate these approximate solutions utilize the error control
software daskr or fsolve, an error tolerance must be provided. We consider pure absolute error
control. The absolute tolerance, atol, is set such that: atol = 10~ where n is the largest integer
such that daskr or fsolve will successfully return with a solution. The values of n used for the tests
are provided in Tables 4.4 and 4.10.

The errors of the collocation solutions are calculated as the difference between the collocation
solution and the known exact solution. The differences are calculated on a grid of 7 by 7 points on
each sub-rectangle of the spatial domain. The grid is constructed as an even spacing of 7 points
including the 2 mesh points bounding each subinterval. The maximum of these differences over all
the sub-rectangles is defined to be the maximum error of the collocation solution. This selection of
a 7 by 7 grid was tested against resolutions of points up to 40 by 40 and it was found that a 7 by 7
grid is sufficient to obtain reliable results.

The convergence rates, labelled ”"Rate” in the following tables is calculated as follows. The
errors of collocation solutions for the same degree but different number of intervals is compared.
If ERROR; and ERROR, represent the error for a collocation solution of degree p with 2 and 4

intervals, the rate is calculated as —loga(FRROR4/ERROR,).

4.3.1 2D Non-Time-Dependant PDEs
Test Problems

2D, Non-Time-Dependant Test Problem 1:
The PDE is given by:
uzx(xv y) + “yy(xa y) = xeyv

34

with spatial domain:
z €10,1], y € [0,1],
and boundary conditions taken from the true solution:
u(z,y) = xev.
2D, Non-Time-Dependant Test Problem 2:
The PDE is given by:
Uaa (T, Y) + uyy(,9) = (22 +y?)e,
with spatial domain:
z € [0,1], y € [0,1],
and boundary conditions taken from the true solution:
u(z,y) = e™v.
2D, Non-Time-Dependant Test Problem 3:
The PDE is given by:
Use (2, Y) + Uy (2,y) = cos(z +y) + cos(z —y),
with spatial domain:
x €10,7], y € [0,7],
and boundary conditions taken from the true solution:

u(z,y) = cos(z) cos(y).

35

Degree (p)
4 5 6 7
nint n n n n
Problem 1
2 14 || 14 || 13 || 14
4 14 || 14 || 14 || 13
8 14 || 14 || 14 || 13
16 14 || 14 || 14 || 13
Problem 2
2 14 || 14 || 13 || 14
4 14 || 14 || 14 || 13
8 14 || 14 || 14 || 13
16 14 || 14 || 14 || 13
Problem 3
2 14 || 14 || 14 || 13
4 16 || 14 || 13 || 13
8 14 || 14 || 14 || 14
16 14 || 14 || 14 || 13

Table 4.4: Value of n for each 2D non-time-dependent PDE, p, and nint value used to define tolerance,

10™", provided to fsolve.

Convergence Results

Degree (p)
4 5 6 7
nint GE \ Rate GE \ Rate GFE \ Rate GE \ Rate
Problem 1
2 3.96 x 107° 8.53 x 10~° 1.33 x 1077 2.15 x 10~ 11
4 151 x 1077 [4715 || 1.59 x 1079 [5.745 || 1.23 x 10~ | 6.761 || 9.90 x 10~ | 7.763
8 517 x 1077 | 4.864 || 2.77 x 10711 | 5.842 || 1.06 x 10713 | 6.859 || 1.38 x 10~ 1% | 2.847
16 || 1.69 x 10~ [4.933 [[4.62 x 10~ | 5.907 || 9.57 x 10~ [0.143 || 4.75 x 10~ ™* | -1.787
Problem 2
2 3.91 x 1076 8.25 x 10~% 9.85 x 1010 1.80 x 10~ 11
4 2.00x 1077 [4293 [[1.89 x 1079 | 5.45 || 1.28 x 10711 | 6.261 || 7.99 x 10~ 1% | 7.816
8 841 x 1077 | 4.569 || 3.71 x 10~ | 5.668 || 1.50 x 10~ 13 | 6.418 || 1.89 x 10~ 1% | 2.082
16 || 3.05 x 10710 [4.784 [7.54 x 10713 | 5.622 || 1.31 x 10713 | 0.201 || 7.06 x 10~ | -1.903
Problem 3
2 6.67 x 1071 4.68 x 1075 2.38 x 1076 1.08 x 1077
4 2.00x 1075 [5.056 || 1.19x107% [5301 || 1.73x10=% | 7.103 || 7.25 x 10~10 | 7.216
8 6.40 x 1077 | 4.968 || 2.12x10°% | 5.811 || 1.37 x 10710 | 6.983 || 3.20 x 10712 | 7.824
16 2.01 x 1078 | 4.996 || 3.41 x 10719 | 5.954 || 1.04 x 10~12 | 7.035 || 1.563 x 10~ 1% | 7.707

Table 4.5: Global error (GE) and convergence rate (Rate) of collocation solution for 2D, non time-dependent
problems, p = 4,5,6,7, and nint = 2,4, 8, 16.

Table 4.5 shows the errors and corresponding observed convergence rate for the calculated col-

location solutions.

36

GFE is the global maximum of the difference between the collocation solution

Degree (p)
4 5 6 7
nint Error \ Rate Error \ Rate Error \ Rate Error \ Rate
Problem 1
2 3.48 x 10~ 7 2.50 x 10~° 7.23 x 10711 413 x 10712
4 6.73x 1079 | 5.691 || 5.01 x 10710 | 5.639 || 3.56 x 10~ | 7.667 || 2.04 x 10~ | 7.659
8 1.18 x 10710 | 5.828 [[8.85 x 10712 [5.823 |[1.62 x 10~ | 4.456 || 1.33 x 10~ | 0.617
16 || 1.97x 10712 | 5913 || 1.47 x 10~ | 5.912 || 9.53 x 10~ ™ [-2.555 || 4.71 x 10~ 1% | -1.821
Problem 2
2 3.48 x 10~ 7 2.50 x 10~° 7.23 x 10711 413 x 10712
4 6.73x 1079 | 5.691 || 5.01 x 10710 | 5.639 || 3.56 x 10~ | 7.667 || 2.04 x 10~ | 7.659
8 1.18 x 10~ 10 [5.828 |[8.85 x 10712 | 5.823 [[2.13 x 10~ | 4.061 || 1.87 x 10~ [0.131
16 || 1.97x 1072 | 5913 || 1.47x 10~ [5912 || 1.30 x 10~ | -2.61 | 6.99 x 10~* | -1.907
Problem 3
2 2.20 x 10~17 4.51 x 1017 2.78 x 1017 1.96 x 10~17
4 2.16 x 1076 | -36.51 || 1.47 x 1077 | -31.6 || 1.11 x 1072 | -25.25 || 5.98 x 10~ 11 | -21.54
8 437x107% | 5.627 || 3.21 x 1079 [5517 || 5.70 x 10~ | 7.604 | 3.24 x 10-13 | 7.527
16 || 7.24 x 10710 | 5916 | 541 x 10~ | 5.89 | 2.40 x 10~'* | 7.893 || 1.12 x 10~ | 4.853

Table 4.6: Maximum error (Error) and convergence rate (Rate) of collocation solution values at mesh points
for 2D, non time-dependent problems, p = 4,5,6,7, and nint = 2,4, 8, 16.

Degree (p)
4 5 6 7
nint Error \ Rate Error \ Rate Error \ Rate Error \ Rate
Problem 1
2 2.84 x 1076 2.98 x 10~7 1.65 x 1079 1.28 x 10~10
4 1.04 x 1077 [4774 || 1.23x 1078 [4.599 || 1.60 x 10~ | 6.693 | 1.31 x 10~ 2 | 6.616
8 3.62x 1079 | 4.84 [[436 x 10710 | 4819 || 6.04 x 10~1* | 8.047 || 1.81 x 10~13 | 2.855
16 || 1.20 x 10710 | 4.919 || 1.45 x 10~ [4.906 || 6.52 x 10~ | -3.433 | 3.13 x 10~ ™3 | -0.791
Problem 2
2 5.83 x 1075 1.41 x 10~6 2.71 x 1078 4.66 x 1010
4 4.02x107% [3861 || 494x107% | 4.84 || 470 x 10710 | 5.848 || 3.98 x 10~ | 6.869
8 2.63x 107 | 3.93 1.63x 1079 [4919 || 7.75 x 1072 | 5.923 | 1.71 x 10~1% | 4.546
16 1.69 x 1078 | 3.965 || 5.25 x 10~ [4.956 || 7.30 x 10~ | 3.408 || 3.38 x 10~ 13 | -0.987
Problem 3
2 1.95 x 1073 1.45 x 1071 8.95 x 10~° 4.76 x 1077
4 1.52x10°% [3.687 || 5.75x 1076 [4.654 || 1.74 x 10~ 7 | 5.68 470 x 1079 | 6.661
8 9.80 x 107% [3.953 [1.91x1077 [4915] 2.85x 1077 | 5.937 || 3.89 x 10~ | 6.919
16 6.18 x 10=7 [3.988 || 6.04 x 1079 | 4.979 || 4.50 x 10~ T | 5.985 || 3.69 x 10~ 13 | 6.717

Table 4.7: Maximum error (Error) and convergence rate (Rate) of x spatial derivative of collocation solution
values at mesh points for 2D, non time-dependent problems, p = 4,5,6,7, and nint = 2,4, 8, 16.

37

Degree (p)

4 5 6 7
nint Error \ Rate Error \ Rate Error \ Rate Error \ Rate
Problem 1
2 5.83 x 1075 1.41 x 107 2.71 x 1078 4.66 x 10710
4 4.02x107% | 3.861 || 4.94x 1078 | 4.84 | 4.70 x 10710 | 5.848 || 4.05 x 10~ | 6.843
8 2.63x1077] 393 || 1.63x1077 [4919 || 775 x 1072 | 5.923 || 1.60 x 10~ 13 | 4.664
16 || 1.69 x 1078 | 3.965 || 5.24 x 10~ | 4.96 || 6.15 x 10713 | 3.656 || 2.84 x 10~ | -0.827
Problem 2
2 5.83 x 1075 1.41 x 107 2.71 x 1078 4.66 x 10710
4 4.02x107% | 3.861 || 4.94 x 1078 | 4.84 | 4.70 x 10710 | 5.848 || 4.05 x 10~ | 6.843
8 2.63x 1077] 393 || 1.63x1077 [4919 || 775 x 1072 | 5.923 || 1.60 x 10~ 13 | 4.664
16 || 1.69 x 1078 | 3.965 || 5.24 x 10~ | 4.96 | 7.62 x 10713 | 3.346 || 3.52 x 10~ 13 | -1.139
Problem 3
2 1.95 x 1073 1.45 x 10~* 8.95 x 107° 4.76 x 107
4 1.52 x107* | 3.687 || 5.75 x 1076 | 4.654 || 1.74 x 10~7 | 5.68 | 4.70 x 10~° | 6.661
8 080 x 107913953 1.91x1077 | 4915 || 2.85 x 1072 | 5.937 || 3.89 x 10~ | 6.919
16 || 6.18 x 1077 | 3.988 || 6.04 x 1079 | 4.979 || 4.50 x 10~ | 5.985 || 3.41 x 10~ '3 | 6.832

Table 4.8: Maximum error (Error) and convergence rate (Rate) of y spatial derivative of collocation solution
values at mesh points for 2D, non time-dependent problems, p = 4,5,6,7, and nint = 2,4, 8, 16.

Degree (p)
4 5 6 7
nint Error \ Rate Error \ Rate Error \ Rate Error \ Rate
Problem 1
2 8.15 x 1074 3.54 x 107° 1.03 x 10~ 2.54 x 10~8
4 1.13x 1077 [2849 || 2.49 x 1076 | 3.828 || 3.59 x 10~8 | 4.845 || 4.42 x 10~V | 5.847
8 1.49x 107° [2.925 || 1.66 x 107 | 3.913 || 1.18 x 1079 | 4.924 || 3.55 x 10~ 1T | 3.636
16 || 1.91x 10702963 || 1.07 x 107% | 3.958 || 7.86 x 10~ 1T | 3.912 || 1.72 x 10710 | -2.275
Problem 2
2 1.79 x 10~3 7.37 x 107° 2.11 x 1076 5.16 x 1078
4 232x 107112941 [[5.04 x 1079 | 3.87 || 723 x107% | 4.869 | 8.85 x 10~ 10 | 5.865
8 3.00x 107° [2.954 || 332 x 1077 [3.925 || 2.38 x 1079 | 4.925 || 3.20 x 10~ 1T | 4.791
16 || 3.83x1070 [2971 [[2214 x 1078 [3.958 || 9.64 x 10~ 1T | 4.625 || 8.55 x 10~ 1T | -1.42
Problem 3
2 1.44 x 10~2 2.20 x 1073 1.83 x 10~* 1.63 x 10~°
4 1.36 x 1073 | 3.41 || 1.84 x 10~% [3585 || 4.25 x 1076 | 5.427 || 3.27 x 107 | 5.637
8 1.77x107% [2944 [1.23 x107° [3.898 || 1.39 x 1077 [4.937 || 5.43x 1077 | 5.913
16 || 223 x107° [2.986 || 7.84 x 10~7 | 3.975 || 4.38 x 1079 | 4.985 || 1.03 x 10~ 10 | 5.725

Table 4.9: Maximum error (Error) and convergence rate (Rate) of xy spatial derivative of collocation
solution values at mesh points for 2D, non time-dependent problems, p = 4,5,6,7, and nint = 2,4, 8, 16.

38

and the known true solution. For degrees 4 through 6, the experimental convergence rate is close
to the expected rate of p+ 1, with the larger values of nint corresponding to better agreement with
the expected convergence rates. For degree 7, the errors begin to reach the practical minimum of
about 1074, where the accuracy limitations of fsolve interfere with the accuracy of the collocation
solution; however, there are a few entries that approximately agree with the expected rate. These
accuracy limitations arise because fsolve is solving for the B-spline coefficients to within its specified
tolerance, however we are analysing the solution and its derivative values which will not have the
same errors as the coefficients.

Table 4.6 shows the maximum error of the collocation solution at each point where both the
x and y values are mesh points. Tables 4.7, 4.8, and 4.9 provide results that assesses the error of
the x spatial derivatives, the y spatial derivatives, and the x,y cross derivatives, of the collocation
solution.

In Table 4.6, when p = 4, the experimentally observed convergence rates agree with the expected
rate of 2(p — 1). However, when p = 5, the convergence rate is the same as the rate for p = 4, which
means that this case does not agree with the expected convergence rate. For p = 6, the magnitude
of the errors becomes small enough that the accuracy of the results from fsolve becomes an issue.
However, from the few results which are not affected by the accuracy of fsolve, the error seems to
converge at a rate close to 8, which is well below the expected rate of 10. The results for p = 7 are
also affected by the accuracy of the results from fsolve with the few reasonable results showing a
convergence rate of about 8, far below the expected rate of 12.

In Table 4.7 we expect to see a convergence rate of 2(p — 1) for the derivative values. For p = 4,
the results for the first test problem show a convergence rate of 5, which is below the expected rate
of 6. Test problems 2 and 3 show a convergence rate of 4, which is also below the expected rate of
6. Also, the error of the derivative is larger than the corresponding error of the collocation solution
(see Table 4.5). For p = 5, the results are consistent across the three test problems; however, the
convergence rate is 5, which is far below the expected rate of 8. The errors of the derivatives are

larger than the errors of the collocation solutions, as seen in Table 4.5.

39

For p = 6 and p = 7 in Table 4.7, the errors begin to be impacted by the accuracy limitations
of fsolve, and this impacts the convergence rates. There are however a few entries not impacted by
this issue. When p = 6 the observed convergence rate is about 6, and when p = 7, the observed
convergence rate is about 7. These are both substantially below their expected convergence rates of
10 and 12. These errors are also larger than the corresponding errors of the collocation solutions as
seen in Table 4.5.

In Table 4.8 we expect to see similar results to those presented in Table 4.7. However, since the
test problems are not all symmetric in « and y, there are some differences. When p =6 and p =7,
there is much less impact from the accuracy limitations of fsolve compared to the results for the
x derivative. All of the values of p give derivatives whose errors converge at a rate of p, which is
well below their expected rates of 2(p — 1). Also, the errors of the derivatives are larger than the
corresponding collocation solution errors given in Table 4.5.

Examining Tables 4.7 and 4.8 together, we can see that the z and y derivative values at the
mesh points have a convergence rate of p, and the errors of these derivatives are larger than the
corresponding collocation solution errors.

In Table 4.9 the errors of the cross derivatives converge at a rate of p — 1. There is minimal
interference from the accuracy limitations of fsolve because the errors are even larger than the errors
of the first derivatives which we noted earlier were larger than the corresponding collocation solutions

€rrors.

4.3.2 2D Time-Dependant PDEs
Test Problems

2D time-dependent PDE Test Problem 1:

The PDE is given by:

Ut(l',y,t) = €(u$$(z7y7t) + uyy(z7y7t))7

40

the spatial domain is:
z€(0,2],y €[0,2],

and the initial and boundary conditions are taken from the true solution:

—etn?

u(z,y,t) = sin(Fx)sin(Fy)e 2

The time integration is from t =0 to t = 1.

2D time-dependent PDE Test Problem 2:
The PDE given by:

ur(2,y,t) = €(uaa (2, Y, 1) + tyy (2,4, 1)) — ule, y, 1) (ue (2, y, 1) + uy (2,9, 1)),

the spatial domain is:
xz €[0,1], y € [0,1],

and the initial and boundary conditions are taken from the true solution:

oty—t,_

u(z,y,t) = (1+e 2)71

The time integration is from ¢t =0 to t = 1.

Convergence Results

Table 4.11 shows the global error and convergence rate of the collocation solutions for the 2D
time-dependent PDE test problems. The convergence rate for the global error is expected to be of
order p + 1. When p = 4, the experimental convergence rate closely agrees with the expected rate.
For p = 5 the experimental convergence rates for nint from 2 to 8 do agree with their expected
rates, although not as closely as for p = 4.

For p = 6 in Table 4.11, the accuracy limitations of daskr significantly impact the observed
convergence rates. These accuracy limitations arise because daskr is solving for the B-spline coeffi-

cients to within its specified tolerance, however we are analysing the solution and derivative values

41

Degree (p)
4 5 6 7
nint | n [n || n | n]
Problem 1
2 10 || 10 || 10 || 10
4 11 | 11 || 11 || 11
8 11 11 || 11 10
16 11 || 11 9 4
Problem 2
2 11 || 10 9 5
4 141 9 8 8
8 11 9 8 5
16 13| 8 3 1

Table 4.10: Value of n for each 2D time-dependent PDE, p, and nint value used to define tolerance, 10™",

provided to daskr.

Degree (p)
4 5 6 7
nint GE | Rate GFE | Rate GE | Rate GE | Rate
Problem 1
2 3.73 x 1074 2.86 x 10~° 1.52 x 10=© 6.55 x 1078
4 1.24 x 107 [4.909 || 7.60 x 107 [5.233 || 1.09 x 10°% | 7.12 [[1.21x107° | 5.76
8 393 %1077 [4983 [1.38x10°% | 5.778 || 8.03 x 10710 | 3.763 || 3.30 x 1079 | -1.451
16 || 1.23x 1078 [4.995 [[9.62 x 10719 | 3.847 || 4.08 x 1077 [-2.342 || 1.63 x 10~* | -15.59
Problem 2
2 2.04 x 1073 3.19 x 10~4 3.91 x 10~° 419 x 1074
4 982x107° | 438 || 649x107% | 562 || 6.72x 1077 | 5.865 || 3.88x 10~8 | 134
8 3.36 x 1079 [4.868 || 1.48 x 1077 | 5.457 || 1.22x 1078 | 578 | 4.29x 1076 | -6.788
16 || 1.06 x 1077 [4.984 || 1.72 x 108 | 3.105 || 1.70 x 10=3 | -17.08 || 0.00 x 10° | Inf

Table 4.11: Global error (GE) and convergence rate (Rate) of collocation solution for 2D, time-dependent
problems, p = 4,5,6,7, and nint = 2,4, 8, 16.

42

which will not have the same errors as the coefficients. For p = 6, the measured convergence rate of
the error for test problem 1, for nint from 2 to 4, does agree with the expected convergence rate.
However, for larger values of nint there is no clear convergence rate. For test problem 2 and p = 6,
the errors converge at an order of about p although this could be caused by the collocation solution
only being calculated to a tolerance of 108, as indicated in Table 4.10.

For p = 7 in Table 4.11, no clear convergence rates are observed. For test problem 1 we quickly
run into issues associated with the accuracy of the results from daskr. For test problem 2 the errors
are limited by the tolerance with which the collocation solutions were calculated, so we would not

expect to see any obvious convergence rate.

Degree (p)
4 5 6 7
nint Error \ Rate Error \ Rate Error \ Rate Error \ Rate
Problem 1
2 9.91 x 1076 411 x 1077 2.28 x 1078 3.46 x 10710
4 3.22x 1077 [4.943 || 6.50x 1077 | 5.984 || 9.36 x 10~ | 7.929 [8.98 x 10~19 | -1.374
8 499 %1077 [6.012 || 477 x 10710 | 3.768 || 7.88 x 10~ [-3.073 || 3.30 x 1077 | -1.88
16 || 330 x10710 | 392 [[754 x 10710 | -0.661 || 4.08 x 1079 | -2.371 || 1.63 x 10~* | -15.59
Problem 2
2 1.44 x 10~* 6.95 x 10~° 3.40 x 1076 2.38 x 1074
4 1.83x 107 [2.971 || 7.84 x 1077 | 6.471 || 1.98 x 108 | 7.422 | 6.41x 1079 | 15.18
8 4.09x 1077 | 5.486 || 1.85 x 10~% | 5401 || 6.91 x 102 | 1.522 || 4.13 x 1075 | -9.329
16 6.79 x 1079 | 5911 || 1.49 x 10=% | 0.316 | 1.61 x 10~ | -17.83 || 0.00 x 10T° Inf

Table 4.12: Maximum error (Error) and convergence rate (Rate) of collocation solution values at mesh
points for 2D, time-dependent problems, for p = 4,5,6,7, and nint = 2,4, 8, 16.

Table 4.12 shows the error of the solution value from the collocation solutions at the mesh points.
The expected convergence rate is of order 2(p — 1). Most of the results in this table are impacted
by the accuracy limitations of daskr as the values of the measured errors quickly approach 10710,
However, for p = 4, the experimental convergence rate agrees with the expected rate of 6. For p =5
and test problem 1, we see an error close to 10710 for nint = 4; however, for the collocation solutions
with nint = 4 and nint = 5 we see an experimental convergence rate of about 6, below the expected
rate of 8. Test problem 2 has similar results for p = 5, although the error only reaches a minimum
value of about 1073.

For p =6 and p = 7 in Table 4.12, no clear convergence rates are evident as the majority of the

43

errors are impacted by the accuracy limitations of daskr. However, if the values of the errors are

compared to the global error recorded in Table 4.11, we can see that the solution values at these

points are more accurate. There are, however, a few exceptions when p and nint are large (e.g., test

problem 1, p = 7, and nint = 8). The collocation solutions with p = 4 and p = 5 have a consistently

smaller error at the mesh points than the corresponding global error from the entire spatial domain

as observed in Table 4.11.

Degree (p)
4 5 6 7
nint Error \ Rate Error \ Rate Error \ Rate Error \ Rate
Problem 1
2 5.06 x 10~° 3.32x 1076 3.66 x 10~° 1.51 x 1079
4 1.88 x 1076 [4.747 || 5.38 x 1079 | 9.268 [1.38 x 10~ 10 | 8.053 || 1.41 x 10~° | 0.095
8 276 x 1078 [6.092 || 7.64 x 10710 | 2.816 || 1.24 x 1079 [-3.168 || 5.19 x 107 | -1.88
16 || 1.06 x 1079 | 4.7 1.18 x 10792 | -0.633 || 6.40 x 109 | -2.371 || 2.56 x 10~* | -15.59
Problem 2
2 6.94 x 1073 2.14 x 1073 3.94 x 104 2.15 x 1073
4 6.58 x 107% [3.399 || 1.12x10°% | 4.251 || 2.92x10°% | 7.078 | 1.37 x 10°% | 10.61
8 6.96 x 107° | 3.239 || 2.55 x107°% | 5.461 | 1.85x 107 | 3.983 | 1.10 x 10~* | -6.326
16 || 4.82x10°% [3.853 || 1.58 x 10~7 | 4.014 || 1.76 x 102 | -16.54 || 0.00 x 1070 | 1Inf

Table 4.13: Maximum error (Error) and convergence rate (Rate) of x spatial derivative of collocation

solution values at mesh points for 2D, time-dependent problems, p = 4,5,6,7, and nint = 2,4, 8, 16.

Degree (p)
4 5 6 7
nint Error \ Rate Error \ Rate Error \ Rate Error \ Rate
Problem 1
2 5.06 x 10> 3.32x 1076 3.66 x 10° 1.51 x 1079
4 1.88 x 1076 | 4.747 || 5.38 x 1079 | 9.268 || 1.38 x 10710 | 8.053 || 1.41 x 10~ | 0.095
8 276 x 1078 [6.092 || 7.64 x 10719 | 2.816 || 1.24 x 1077 [-3.168 || 5.19 x 107 | -1.88
16 || 1.06 x 1079 | 4.7 1.18 x 1079 | -0.633 || 6.40 x 1079 | -2.371 || 2.56 x 10~ % | -15.59
Problem 2
2 6.94 x 10~3 2.14 x 1073 3.94 x 1074 2.15 x 1073
4 6.58 x 107% 3399 || 1.12x10°% | 4.251 || 2.92x10°% | 7.078 | 1.37 x 1079 | 10.61
8 6.96 x 107° [3.239 || 255 x 1079 | 5.461 || 1.85 x 10~ 7 | 3.983 || 1.10 x 10~* | -6.326
16 || 4.82x107% [3.853 || 1.58 x 107 | 4.01 1.76 x 1072 | -16.54 || 0.00 x 1079 | Inf

Table 4.14: Maximum error (Error) and convergence rate (Rate) of y spatial derivative of collocation

solution values at mesh points for 2D, time-dependent problems, p = 4,5,6,7, and nint = 2,4, 8, 16.

In Tables 4.13 and 4.14, the expected convergence rate of the spatial derivative is of order 2(p—1).

As these test problems are symmetric in the x and y dimensions, the two tables have the same results.

For test problem 1, most of the errors are sufficiently small that they are greatly impacted by the

44

accuracy limitations of daskr, although for p = 4, we see a convergence rate between 5 and 6.

For test problem 2, in Tables 4.13 and 4.14, there are fewer results impacted by the accuracy
limitations of daskr. When p = 4, the errors converge at a rate of 4, while for p = 5 the error
converges at a rate between 4 and 5. For p = 6 and p = 7, no clear convergence is rate observed
although this is likely due to the solutions being calculated with a relatively coarse tolerance, as
seen in Table 4.10.

Comparing the magnitude of the spatial derivative errors in Tables 4.13 and 4.14 to the global
errors from Table 4.11, we see that these solution derivative values are more accurate than the
solution values of an arbitrary point. Comparing the spatial derivative errors at the mesh points
to the solution values at those points, we see that the errors of the solution values are consistently
one order of magnitude smaller than the error of the spatial derivatives (e.g., for problem 1, p = 4,
nint = 2, the spatial derivatives have an error that is 5.06 x 10~°® while the solution values have an

error that is 9.91 x 107°).

Degree (p)
4 5 6 7
nint Error \ Rate Error \ Rate Error \ Rate Error \ Rate
Problem 1
2 1.83 x 1074 9.41 x 1076 1.71 x 10~7 3.88 x 1077
4 6.72x107% | 4772 || 8.81 x 10710 | 13.38 || 2.01 x 10~19 | 9.731 || 2.22 x 10~2 | 0.808
8 091 x10°%[6.082 [1.22x1077 |-0.475 || 1.94 x 1079 [-3.271 |[8.15 x 1077 | -1.88
16 || 2563 x 1079 | 5.295 || 1.86 x 1079 | -0.604 || 1.01 x 1078 | -2.371 || 4.02 x 10~* | -15.59
Problem 2
2 5.78 x 1072 1.72 x 1072 7.07 x 1073 470 x 1073
4 993 x 1073 [2542 || 356 x 1073 | 2.271 || 1.59 x 10~% | 5.477 [[9.27 x 1075 | 5.664
8 1.75x 1073 [2.501 || 1.60 x 10~% | 4.476 || 1.77 x 107" | 3.163 || 9.05 x 10~ | -6.61
16 || 454 x107* [1.952 || 1.23 x 10~° 3.7 3.51 x 1071 | -14.27 || 0.00 x 107% | 1Inf

Table 4.15: Maximum error (Error) and convergence rate (Rate) of zy spatial derivative of collocation
solution values at mesh points for 2D, time-dependent problems, p = 4,5,6,7, and nint = 2,4, 8, 16.

In Table 4.15 we expect a convergence rate of order 2(p — 1) for the xy cross derivative at the
mesh points; however this rate is not observed in these experiments. While the values of the errors
in this table are relatively large, they are likely still impacted by the accuracy limitations of daskr
as the solutions from which these derivatives are calculated are affected by the accuracy limitations

of daskr. Furthermore, we see the trend of the magnitude of the error increasing as the order of the

45

derivative increases, similar to the x and y spatial derivatives compared to the solution values at the
mesh points.

Comparing the errors in Table 4.15 to the corresponding errors in Table 4.11, we see that the
errors of the xy cross derivatives are larger than the global error for most combinations of p and

nint.

4.3.3 Collocation Convergence Results Discussion

In the time-dependent and non-time-dependent PDE cases, we see that the global error of the
collocation solution agrees with its theoretically expected convergence rate, suggesting that the test
collocation software is performing correctly.

However, when we consider the error of the solution values at mesh points, there are some cases
where the expected convergence rate is met, although, in the majority of cases it is not. However,
across the entire spatial domain, the error at these points is smaller than the global error, indicating
that there is higher accuracy at these points.

The errors of the x and y spatial derivatives at the mesh points also do not meet their expected
convergence rates. For the non-time-dependent case, the magnitude of the errors is the same or larger
than the global solution value errors across the spatial domain. However, for the time-dependent
case, the errors are smaller than the global error of the solution values.

The xy cross derivatives also do not meet the expected convergence rate. Looking at the mag-
nitude of these errors, we see that for both the time-dependent and non-time-dependent cases the

errors of the xy cross derivative are larger than the global error of the solution values.

4.4 Interpolant Error and Convergence Results

In this section, we examine the errors and convergence rates for the interpolants described earlier
in this chapter. These results are calculated using the same method as was used for the collocation
solution in section 4.3. The expected order of convergence for the LOI and LOI2 is p while the

expected order of convergence for the SCI is p + 2. These expected convergence rates for the SCI

46

and LOI are based on assuming that the 2D versions presented in this thesis converge at the same

rate as their original 1D versions.

4.4.1 2D Non-Time-Dependant PDEs

Degree (p)
1 5 6 7
nint GE | Rate GE | Rate GFE | Rate GE | Rate
Problem 1
2 4.95 x 107° 9.04 x 10~8 1.98 x 10~ 2.25 x 10~
4 191 x 1077 | 4.694 || 1.65x 1072 [5.777 || 1.83 x 10~ ™ [6.754 || 9.90 x 10~ ™ | 7.83
8 6.66 x 1079 | 4.842 [[278 x 1071 | 5.89 || 1.59 x 10~ 13 | 6.849 || 1.38 x 10~ 1% | 2.847
16 || 2.20 x 10710 [4.922 [[4.65 x 1073 | 5.903 [9.55 x 10712 [0.736 || 4.71 x 10~ | -1.774
Problem 2
2 6.51 x 107° 1.12 x 10~7 1.98 x 10~ 2.25 x 10~
4 299 x 1077 [4.445 || 259 x 1077 [5436 || 1.97 x 10~ T [6.652 || 1.08 x 10~ 3 | 7.7
8 1.14 x 1078 [4714 || 493 x 1071 [5.717 || 2.33 x 10753] 6.399 || 1.93 x 10~ | 2.488
16 || 3.94x 10710 [4.855 [847 x 1073 [5.863 || 1.31 x 10~ [0.837 || 7.06 x 10~ ™% | -1.87
Problem 3
2 1.08 x 1073 6.35 x 10~° 3.85 x 1076 1.14 x 107
4 215x 1075 [5.654 || 1.26 x 107 | 5.651 || 1.91 x 10=% | 7.653 || 7.25 x 10~ 10 | 7.301
8 6.46 x 10~7 | 5.059 || 2.12x107% [5.902 || 1.30 x 1010 | 7.197 || 3.20 x 1012 | 7.824
16 2.03x 1078 [4.993 [[3.41 x 10719 | 5.954 || 9.88 x 10~13 | 7.041 || 1.61 x 10~ ™* | 7.635

Table 4.16: Global error (GE) and convergence rate (Rate) of SCI for 2D, non time-dependent problems,

p=4,5,6,7, and nint = 2,4, 8, 16.

Table 4.16 presents the errors and convergence rates of the SCI. The magnitudes of the errors are

very similar to that of the collocation solution with the errors of the SCI being marginally larger.

As such, the errors of the SCI converge at a rate of p+ 1, which is below the expected rate of p 4 2.

However, this lower rate of convergence of the SCI is expected as the solution and derivative values

of the collocation solution which are interpolated by the SCI do not satisfy the expected convergence

rates, as seen in section 4.3.

Table 4.17 presents the errors and convergence rates of the LOI. We observe that the LOI

converges at its expected rate of p. In Table 4.18, the errors and convergence rates of the LOI2 are

presented. The LOI2, like the LOI, converges at its expected rate of p. However, the errors of the

LOI tend to be about one order of magnitude larger than those of the LOI2; this could be caused

by the fact that the LOI interpolates several less accurate derivative values.

47

Degree (p)
4 5 6 7
nint GE \ Rate GE \ Rate GE \ Rate GE \ Rate
Problem 1
2 3.45 x 104 4.54 x 1076 1.03 x 10~7 1.51 x 1079
4 244 x 1075 [3822 [1.61x10°7 | 4.821 || 1.82x 1079 | 5.822 || 1.33 x 10~ 1T | 6.826
8 1.62x107%] 391 [534 x107Y | 491 [[3.02x10" T | 591 [[1.11x 10713 | 6.913
16 || 1.05x 1077 [3.955 || 1.72 x 10710 | 4.955 || 4.88 x 10~ % | 5.95 || 4.71 x 10~ | 1.232
Problem 2
2 3.45 x 104 4.54 x 1070 1.03 x 10~7 1.51 x 1079
4 2.63x 1075 [3717 [2.02x 1077 [4491 || 1.82x 1077 | 5.822 || 1.35 x 10~ 1T | 6.81
8 237 x 10753472 || 831 x1077 | 4.602 || 3.87 x 10~ 1T | 5.554 || 1.58 x 10~ 13 | 6.418
16 || 1.79x 1077 [3.725 [3.04 x 10~ [4.773 || 7.77 x 10~ | 5.637 || 7.02 x 10~ 1* | 1.168
Problem 3
2 1.57 x 102 7.86 x 10~ 4.54 x 10™° 2.51 x 107°
4 1.67x1073 [3229 || 2.22x107° | 5.148 || 1.23 x107% | 5.201 || 1.79 x 108 | 7.133
8 1.19x 107% [3814 || 6.79x 10~7 | 5.03 || 2.18 x 1078 | 5.821 [[1.37 x 10~19 | 7.022
16 || 7.66 x 1076 | 3.954 || 2.07 x 10=® | 5.037 || 3.52 x 10719 | 5.956 || 1.05 x 10~'2 | 7.031

Table 4.17: Global error (GE) and convergence rate (Rate) of LOI for 2D, non time-dependent problems,
p=4,56,7, and nint = 2,4, 8,16.

Degree (p)
4 5 6 7
nint GE \ Rate GFE \ Rate GE \ Rate GFE \ Rate
Problem 1
2 5.63 x 10 1.53 x 1076 2.45 x 1078 423 x 10710
4 3.94x 1076|3836 || 5.42x107% | 4.822 || 4.34 x 10710 | 5.822 || 3.74 x 10712 | 6.822
8 261 x1077 [3917 || 1.80x1077 | 491 |[[721 x107 2| 591 || 3.20 x 10~ 1% | 6.868
16 || 1.68 x 1073 | 3.958 || 5.81 x 10~ 11 [4.955 || 1.21 x 10~ 1% | 5.896 || 4.75 x 10~ | -0.572
Problem 2
2 7.03 x 10°° 1.53 x 1076 2.45 x 1078 4.29 x 10~10
4 621 x10°% | 35 6.51 x 1078 | 4.558 | 4.34 x 10719 | 5.822 || 5.33 x 10~ 12 | 6.331
8 4.63 x 1077 | 3.746 || 2.80 x 1079 | 4.539 || 9.23 x 1012 | 5.554 || 5.33 x 10~ | 6.644
16 || 316 x 1073 [3.872 [1.02 x 10710 [4771 || 1.81 x 10~ [5.671 || 7.13 x 10~ | -0.42
Problem 3
2 2.89 x 10~3 2.68 x 10~ 1.08 x 107 8.22 x 10~ 7
4 2.80x 1074 [3.366 || 7.53x 107 % [5.155 || 2.94 x 10=7 | 5.193 || 5.43 x 1079 | 7.242
8 1.92x 107° [3.865 || 2.30 x 107 | 5.032 || 5.21 x 1079 | 5.819 [4.10 x 10~ 1T | 7.047
16 [1.23x10°% | 3.967 || 7.00x 1072 | 5.04 [839 x 10~ | 5.956 || 3.17 x 10~ 3 | 7.018

Table 4.18: Global error (GE) and convergence rate (Rate) of LOI2 for 2D, non time-dependent problems,
p=4,5,6,7, and nint = 2,4, 8, 16.

48

4.4.2 2D Time-Dependant PDEs

Degree (p)
4 5 6 7
nint GE | Rate GFE | Rate GE | Rate GE | Rate
Problem 1
2 4.06 x 1074 2.82 x 10~° 1.44 x 10~ 8.10 x 108
4 1.49x 107° [4.769 || 7.60 x 10~ 7 [5212 || 1.41x 1078 | 6.673 || 1.21 x 1077 | 6.067
8 5.00 x 107 | 4.897 || 1.38 x 10~% | 5.778 || 8.03 x 10719 | 4.133 | 3.30 x 10~9 | -1.451
16 || 1.59x 1078 [4.973 [9.62 x 10719 | 3.847 || 4.08 x 1077 [-2.343 || 1.63 x 10~ % | -15.59
Problem 2
2 2.33x 1073 3.78 x 1071 6.50 x 1073 419 x 1072
4 9.71 x107° | 4586 || 6.42x107°% | 5.88 || 9.03x 107 | 6.17 || 5.62 x 10~8 | 12.86
8 350x 10708 | 4.795 || 1.48 x 10~7 | 5.442 || 1.20 x 10~ | 6.236 || 4.29 x 1076 | -6.255
16 || 1.17x 1077 [4.902 || 1.72 x 108 | 3.105 || 1.70 x 10=3 | -17.11 || 0.00 x 10° | Inf

Table 4.19: Global error (GE) and convergence rate (Rate) of SCI for 2D, time-dependent problems, p =
4,5,6,7, and nint = 2,4, 8, 16.

Table 4.19 presents the errors and convergence rates of the SCI. The results for larger values of

p and nint become affected by the accuracy limitations of the collocation solution and derivative

values that are interpolated and it is difficult to assess the convergence rates. However, from the

smaller values of p and nint, we can see that the convergence rate is p + 1, this is one order lower

than is expected based on corresponding results for the 1D case. As with the non-time-dependent

case, the lower convergence rate of the SCI follows from the fact that the derivative values which

are interpolated by the SCI do not converge at the expected rate, as discussed in section 4.3.

Degree (p)
4 5 6 7
nint GE \ Rate GE \ Rate GE \ Rate GE \ Rate
Problem 1
2 9.48 x 1073 4.82 x 1074 2.77 x 10~° 1.53 x 1076
4 1.02x 1072 [3.214 || 1.35 x 10°° [5.155 || 7.54 x 10~ 7 | 5.201 || 1.13 x 10~% | 7.074
8 726 x 1075 | 3.816 || 4.15 x 10~7 | 5.028 || 1.41 x 10=% | 5.741 || 3.30 x 1079 | 1.778
16 || 468 x107°% [3.955 || 1.30 x 10=° | 4.993 || 4.21 x 1079 | 1.742 || 1.63 x 10~* | -15.59
Problem 2
2 1.05 x 1072 1.82 x 1073 2.69 x 104 433 x 1072
4 1.28 x 1073 [3.034 || 894 x 105 | 4.352 || 5.37 x 1076 | 5.646 || 6.92x 10~7 | 9.29
8 920 x 107° | 3.802 || 3.14 x 107% | 4.829 || 1.55 x 10~ 7 | 5.119 || 4.29 x 1076 | -2.632
16 || 624 x 107 [3.882 || 1.13 x 10~7 | 4.793 || 1.70 x 10~3 | -13.42 || 0.00 x 1079 | Inf

Table 4.20: Global error (GE) and convergence rate (Rate) of LOI for 2D, time-dependent problems, p =
4,5,6,7, and nint = 2,4, 8, 16.

Tables 4.20 and 4.21 present the errors and convergence rates of the LOI and LOI2, respectively.

49

The results for larger values of p and nint are affected by the accuracy limitations of the collocation
solution and derivative values that are interpolated. However, from looking at smaller values of p
and nint, we observe that both interpolants converge at their expected rate of p. Comparing the

magnitude of error, we see that the LOI tends to have an error which is one order larger than the

LOI2.
Degree (p)
4 5 6 7
nint GE | Rate GE | Rate GE | Rate GE | Rate
Problem 1
2 1.70 x 1073 1.65 x 102 6.56 x 1076 5.06 x 10~7
4 1.70 x 107% [3.324 || 4.60 x 107° [5.169 |[1.80 x 10~7 | 5.191 || 2.90 x 10~° | 7.448
8 1.17x107° [3.858 || 1.41 x 10~7 [5.029 || 3.94 x 1079 | 5.51 3.30 x 1079 | -0.191
16 || 7.51 x 1077 | 3.965 || 4.67 x 1079 | 4.915 [4.09 x 107 | -0.055 || 1.63 x 10~* | -15.59
Problem 2
2 3.50 x 1073 6.62 x 102 8.19 x 1075 421 x 1072
4 2.74x 1074 | 3.671 || 3.08 x 107° | 4.428 || 1.07 x 107 | 6.266 || 1.55 x 10~7 | 11.41
8 1.63x107° [4.072 || 1.07x 1076 [4.852 || 4.19 x 1078 | 4.667 || 4.29 x 10°% | -4.795
16 || 1.02 x 1076 [4.001 || 4.64 x 1078 | 4.522 || 1.70 x 10=3 | -15.31 || 0.00 x 1070 | Inf

Table 4.21: Global error (GE) and convergence rate (Rate) of LOI2 for 2D, time-dependent problems,
p=4,5,6,7, and nint = 2,4, 8, 16.

4.4.3 Interpolant Error and Convergence Rate Discussion

For all of the interpolants, there is no significant difference between the results for the non-
time-dependent and time-dependent problem cases; therefore, the following discussion applies to
both.

We observe that the SCI converges at a rate of only p+ 1, which is the same as that of the global
error of the collocation solution. This is below the expected rate of p + 2 that is observed for the
1D case. As the SCI is constructed such that the data error dominates the interpolation error, it
is no surprise that the expected convergence rate is not met. In section 4.3 we observed that the
derivative values of the collocation solution that are interpolated by the SCI do not converge at their
expected rates.

The LOI converges at its expected rate of p despite also interpolating the same derivative values

as the SCI. This is because the LOI is constructed so that the interpolation error dominates the data

50

error. Thus, an increase in the error of some of the data values does not make a significant impact
on the convergence rate as long as that error is still dominated by the interpolation error. The LOI2
also converges at its expected rate of p; there is no concern about the impact of the interpolated

points not being sufficiently accurate as it does not interpolate the solution derivative values.

4.5 FError Estimation Results

In this section, we will examine the three error estimate schemes obtained from the SCI, the LOI,
and the LOI2. The error estimation results are obtained by examining the accuracy of the error
estimate on each sub-rectangle. An error estimate is calculated for each sub-rectangle by subtracting
the interpolant from the collocation solution. This difference is then divided by the true error, and
we take log base 10 of the result. This process will represent an error estimate that is one order of
magnitude smaller than the true error as —1. An error estimate that is the same as the true error
will be 0. An error estimate which is one order larger than the true error will be +1.

To plot this data, we group the error estimates from each sub-rectangle based on the log ratio as
described above. The interval between the smallest and largest log ratios is divided into subintervals
of width 0.1. Then, by counting how many of the error estimates for the sub-rectangles fall within
each discrete subinterval, we can see how consistent the error estimates are. Within this section,
we will use the term “consistent” to describe an interpolant that provides error estimates of similar
accuracy for all of the sub-rectangles. In the graphs, a consistent error estimate will be tall and
narrow, while an inconsistent error estimate will be short and wide. We can also assess the accuracy
of the error estimates by examining where along the x-axis the error estimates are. If the error
estimate plots are close to 0, that means that the error estimate correlates well with the true error.

In Chapter 2 we discussed local extrapolation where we saw that an approximate solution with
an error of order p — 1 is used to estimate the error for an approximate solution that has an error
of order p. The LOI and LOI2 yield this type of error estimate. This type of error estimate tends
to overestimate the true error. We will try to correct this overestimation in the LOI and LOI2 by

also applying a scaling factor of h? (the area of the sub-rectangle) to the results; these results are

o1

labelled as LOI (S) and LOI2 (S).

4.5.1 2D, Non-Time-Dependant Case

Figures 4.7 through 4.17 present the error estimation results from each interpolant for each of
the three non-time-dependent test problems, degrees 5 through 7, and with 8 subintervals in each
spatial dimension. The first three figures, 4.4 to 4.6, consider problem 1, degree 4, and 4, 8, and 16
subintervals in each dimension. In these first three figures, we see that the number of subintervals
makes no meaningful difference to the consistency or accuracy of the error estimates. Problem 1
results in the least amount of variance in the accuracy of the error estimates while the error estimates
for Problem 2 have the most variance. The variance in the quality of the error estimates also increases
with the degree of the collocation solution, with the LOI and LOI2 being more impacted by this
than the SCI.

The SCI based error estimate performs well in these test cases and provides very consistent error
estimates except for certain cases of higher degree. This is unexpected as we saw in the previous
sections that the collocation solution and derivative values at mesh points which are interpolated by
the SCI do not meet their expected convergence rates.

The LOI based error estimate, as expected, tends to overestimate the error for most test cases;
however the scaling, mentioned earlier, brings the error estimate to within the right order of magni-
tude in some cases (see Figures 4.7 and 4.8). However as the degree increases the scaled LOI, begins
to underestimate the error and the original LOI gives a better error estimate. Results for Problem
3 show significant issues for the LOI with all of the degrees resulting in error estimates of variable
quality. For Problem 2 we see that the LOI delivers more consistent error estimates. For Problem
1 we see that the LOI error estimates are very consistent.

The LOI2 based error estimate yields results that are very similar to those of the LOI, and the
scaling is very useful for lower degrees but results in underestimations of the true error for higher
degrees. The LOI2 does however provide error estimates with more variance than those associated

with the LOI. Also, the LOI2 tends to give a smaller error estimate than the error estimate associated

52

with the LOI in most cases.

Problem 1, degree 4, nint varies

8 Accuracy of error estimate on subrectangles g Accuracy of error estimate on subrectangles
1 16
g o g E= r01(5) M
E S 14| w— o1
»10)
® 012
48 410
Bl Bl
2] 0
w 6 w 8
o o
6
g g
4
5, 5
Z Z 2
0 0 0
-1 -0.5 0 0.5 1 1.5 2 -1 -0.5 0 0.5 1 1.5 2
log(Error Estimate / Actual Error) log (Error Estimate / Actual Error)
o
=]
‘&)’ Accuracy of error estimate on subrectangles T'U Relative true error of collocation solution
16 >
) 1012 (S) s
514 1012 °
D
3] o
12 (=)
% g
10
8
4 0 0.
g 6 b
o
Q 4 ©
5 v 5.2
2 2 a 0.2 0.4)
Spatial domain). f Spatial domain (
0 0 0.8
-1 -0.5 0 0.5 1 1.5 2
log (Error Estimate / Actual Error)
Figure 4.4: Error estimates for 2D non-time-dependent PDE Problem 1, degree 4, nint 4.
g’) Accuracy of error estimate on subrectangles g’) Accuracy of error estimate on subrectangles
60 70
?J" NN sCI ?J'v = o1 (s) _
5 5 60 | m— o1
0 50 I
o o
50
440 a
& @ 40
o 030
0 s
9] 9]
8 8 20
210 210
0 = 0
-1 -0.5 0 0.5 1 1.5 2 -1 -0.5 0 0.5 1 1.5 2
log(Error Estimate / Actual Error) log(Error Estimate / Actual Error)
o
3
3 Accuracy of error estimate on subrectangles o Relative true error of collocation solution
70 >
’_57‘ 0I2(8)
5 LOI2 5
560 S
9 4
g 50
4 2
0 40 =
e
° 30 g
5 i
§20 d
£ —
] @
Zz 10 1
0
-1 -0.5 0 0.5 1 1.5 2

log (Error Estimate / Actual Error)

Figure 4.5: Error estimates for 2D non-time-dependent PDE Problem 1, degree 4, nint 8.

53

Accuracy of error estimate on subrectangles Accuracy of error estimate on subrectangles

12] 12]
9] 9]
— —
o e o LOI(S)
% E 101
5 200 D
3] 0
: :
200
?] 150 ?)
“ w150
%100 °
3 5100
£ 50 £
=)
E 2 50
0 - 0
-1 -0.5 0 0.5 1 1.5 2 2.5 -1 -0.5 0 0.5 1 1.5 2 2.5
log (Error Estimate / Actual Error) log (Error Estimate / Actual Error)
3 Accuracy of error estimate on subrectangles Relative true error of collocation solutidn
300 —
) 1012 (S)| N
% 1012
8250 5
o f
§200 1 Q
; 2
« 150 g
© 0.5%
o
5100 >
g ' b
Z 50) 0% S
Spatial domain o
P 0.4 0.2 o
o 0 0.6 sSpatial domain (y)
-1 -0.5 0 0.5 1 1.5 2 2.5

log (Error Estimate / Actual Error)

Figure 4.6: Error estimates for 2D non-time-dependent PDE Problem 1, degree 4, nint 16.

Problem 1, degree varies, nint = 8

Accuracy of error estimate on subrectangles Accuracy of error estimate on subrectangles

60 . SCI

-
o

8 o1 (5)

2] n
]]
g >
g 2
550 8 60
: :
50
440 a
& @40
o 030
() &
é ézo
210 210
0 0
-1 -0.5 0 0.5 1 1.5 2 -1 -0.5 0 0.5 1 1.5 2
log (Error Estimate / Actual Error) log (Error Estimate / Actual Error)

Accuracy of error estimate on subrectangles Relative true error of collocation solution

70
1012 (S)|
60 LOI2

50

40

30

20

Number of subrectangles
Relative True Error Value

10

©n
el
]
ot
-
)
=
o
o
2
)
[
5
<

-1 -0.5 0 0.5 1 1.5 2
log(Error Estimate / Actual Error)

Figure 4.7: Error estimates for 2D non-time-dependent PDE Problem 1, degree 5, nint 8.

54

Accuracy of error estimate on subrectangles

BN sC1

Number of subrectangles
= = N N w w
o w o o o w

&

am
-0.5 0 0.5 1 1.5 2 2.5
log (Error Estimate / Actual Error)

=
-

Accuracy of error estimate on subrectangles

1012 (8)
LOI2

Number of subrectangles
= = N [} w w
o w o w o w

ol

m
-0.5 0 0.5 1 1.5 2 2.5
log (Error Estimate / Actual Error)

=
-

Accuracy of error estimate on subrectangles

70
LOI(S)

LoI

60
50
40
30
20
10 H

-1 -0.5 0 0.5 1 1.5 2 2.5
log (Error Estimate / Actual Error)

Number of subrectangles

Relative true error of collocation solution

Relative True Error Value

Figure 4.8: Error estimates for 2D non-time-dependent PDE Problem 1, degree 6, nint 8.

Accuracy of error estimate on subrectangles

L (e}

Number of subrectangles
= N W s oy

oA
-2.5 -2 -1.5 -1 -0.5 0 0.5 1
log(Error Estimate / Actual Error)
8 Accuracy of error estimate on subrectangles
~10
o
<]
@
D
o 8
4]
<
E
26
W
© 4
o
o
£
5 2
Z
oA
-2.5 -2 -1.5 -1 -0.5 0 0.5 1

log (Error Estimate / Actual Error)

Figure 4.9: Error estimates for 2D non-time-dependent PDE Problem 1, degree 7, nint 8.

Problem 2, degree varies, nint = 8

3 Accuracy of error estimate on subrectangles
1

;; = o1 (s)

5 — 101

210

o

I

o 8

=]

2]

w 6

o

4

o 4

Q

]

2 2
0 1]
-2.5 -2 -1.5 -1 -0.5 0 0.5 1

log(Error Estimate / Actual Error)

Relative true error of collocation solution

Relative True Error Value

(%}
el
o
ot
-
o
s}
Q.
o
El
o
iy
=}
<

Accuracy of error estimate on subrectangles

50

40

30

20

10

Number of subrectangles

L[}

I,

Number of subrectangles

Relative True Error Value

Accuracy of error estimate on subrectangles

20

15

10

o

== o1 (s)
N 01

.,

0.

5 0 0.5 1 1.5 2 2.5 3

log(Error Estimate / Actual Error

Relative true error of collocation solution

(%)
el
o
o
-
o
s
Q.
o
El
@
"y
=}
e

Figure 4.10: Error estimates for 2D non-time-dependent PDE Problem 2, degree 4, nint 8.

0 a
-1 -0.5 0 0.5 1 1.5 2 2.5 3
log(Error Estimate / Actual Error
$ Accuracy of error estimate on subrectangles
25
el
<]
@
520
4]
S
21
215
W
°10
o
o
2
5 5
Z
oA
-1 -0.5 0 0.5 1 1.5 2 2.5 3
log (Error Estimate / Actual Error
g Accuracy of error estimate on subrectangles
E% E—— sC1
40
D
0
o
q 30
=]
n
20
o
8
£ 10
=]
=4
0 on
-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
log(Error Estimate / Actual Error
B Accuracy of error estimate on subrectangles
30
§7 LOI2(S)
LoI2
525 \—‘
o
I
a 20
=]
n
w15
o
s
o 10
Q
5
2 5
0 7} o
-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

log (Error Estimate / Actual Error

Number of subrectangles

Accuracy of error estimate on subrectangles

w
o

[N}
&

N
o

-
&

-
=

= ro1(s)

o]

-1

[

.5

-1

-0.5 0 0.5 1 1.5 2 2.5
log(Error Estimate / Actual Error

Relative true error of collocation solution

Figure 4.11: Error estimates for 2D non-time-dependent PDE Problem 2, degree 5, nint 8.

56

3 Accuracy of error estimate on subrectangles
~10
o E— sCI
3
o 8
9]
]
Q
3 6
2]
S
4
o
g
5 2
Z
oA

-3 -2.5-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

log(Error Estimate / Actual Error

Accuracy of error estimate on subrectangles

-

—
=)

o

Number of subrectangles
IS @

N}

0.5 1

oA
-3 -2.5-2 -1.5 -1 -0.50 1.5 2 2.5

log (Error Estimate / Actual Error

3 Accuracy of error estimate on subrectangles
ot
o = vo1(s)
5407 | == 01
D
0
9]
430
=]
2]
B 20
"
8
£10
]
Z
o
-3 -2.5-2 -1.5 -1 -0.50 0.5 1 1.5 2 2.5
log(Error Estimate / Actual Error
Relative true error of collocation solution
1

Figure 4.12: Error estimates for 2D non-time-dependent PDE Problem 2, degree 6, nint 8.

Accuracy of error estimate on subrectangles

. cCT

Number of subrectangles
o

0
-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

log(Error Estimate / Actual Error

Accuracy of error estimate on subrectangles

Number of subrectangles

O b N W s U o a ©

-0.5 0

|
w
o

-3 -2.5 -2 -1.5 -1 0.5 1 1.5

log (Error Estimate / Actual Error

Relative True Error Value

%)

Accuracy of error estimate on subrectangles

Number of subrectangles
N w s w, o ~

=

0

-3.5 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

log(Error Estimate / Actual Error

-3

Relative true error of collocation solution

Figure 4.13: Error estimates for 2D non-time-dependent PDE Problem 2, degree 7, nint 8.

57

Problem 3, degree varies, nint = 8

Accuracy of error estimate on subrectangles

o
o

o
=)

w
o

Number of subrectangles
N B
o o

-
o

I sCT

=
-

-0.5 0 0.5 1 1.5 2
log(Error Estimate / Actual Error

Accuracy of error estimate on subrectangles

e

Number of subrectangles
S T = S Y

|
-

LOI2 (S)|
LOI2

-0.5 0
log (Error Estimate / Actual

Figure 4.14: Error estimates for 2D non-time-dependent PDE Problem 3, degree 4, nint 8.

0.5 1 1.5 2

Error)

Accuracy of error estimate on subrectangles

70

60

50

40

30

Number of subrectangles

L (e}

-0.5 0 0.5 1 1.5 2 2.5

log(Error Estimate / Actual Error

Accuracy of error estimate on subrectangles

Number of subrectangles

O = N W s U o 3 ©

1012 (8)
1012

|
-

-0.5 0 0.5 1 1.5 2 2.5
log (Error Estimate / Actual Error

] Accuracy of error estimate on subrectangles
35
) == 01 (S
5 30/ | m— o1
D
0
25
Q
@20
“
015
3
210
z 5
O i
-1 -0.5 0 0.5 1 1.5 2

elative True Error Value

Spatial domair - Py

log (Error Estimate / Actual Error)

Relative true error of collocation solution

Accuracy of error estimate on subrectangles

30

25

20

15

10

Number of subrectangles
o

== ro1(s)
10T

0

}kelative True Error Value

S

-0.5 0 0.5 1 1.5 2

log(Error Estimate / Actual Error

2.5

Relative true error of collocation solution

Figure 4.15: Error estimates for 2D non-time-dependent PDE Problem 3, degree 5, nint 8.

o8

g Accuracy of error estimate on subrectangles fv’ Accuracy of error estimate on subrectangles
~ 50 ~1
o e o E= ro1(s5)
5 5 1o | — roz
3 §
S S og
E E
0 30 0
W “ 6
50 o
] g 4
£ £
510 3 2
=4 =4
0 0
-1 -0.5 0 0.5 1 1.5 2 2.5 -1 -0.5 0 0.5 1 1.5 2 2.5
log (Error Estimate / Actual Error) log (Error Estimate / Actual Error)
o
=1
g Accuracy of error estimate on subrectangles o Relative true error of collocation solution
8
T | o1z (5) =
5 7| = o2 5
13 "
06 =
4 o
5
a 01
“ 4 B
o o
E £o 0
o 2
g2 5
5 o . 1 . .
Z 1 Sp&tial domalljr'?y '5Spat1al domain (
0 .
-1 -0.5 0 0.5 1 1.5 2 2.5 373
log (Error Estimate / Actual Error)
Figure 4.16: Error estimates for 2D non-time-dependent PDE Problem 3, degree 6, nint 8.
3 Accuracy of error estimate on subrectangles 3 Accuracy of error estimate on subrectangles
70 1
’ED‘ L (e} g = o1 (s)
5 60 5 — 101
B »10
] o
g 50 Sog
E E
0 40 2]
w w 6
030 o
S g
o o
2% £
])
Zz 10 =4
0 0
-1 -0.5 0 0.5 1 1.5 2 2.5 -1 -0.5 0 0.5 1 1.5 2 2.5
log(Error Estimate / Actual Error) log(Error Estimate / Actual Error)
o
=1
g Accuracy of error estimate on subrectangles) Relative true error of collocation solution
8
o | [ror2 (s .
5 71| o= ro12 5
I3 ;
06 =
4 o
55 5
2] il
w i -
° 2
u 3 P
4 &
£? 3
Z 1 SF%\
0
-1 -0.5 0 0.5 1 1.5 2 2.5

log (Error Estimate / Actual Error)

Figure 4.17: Error estimates for 2D non-time-dependent PDE Problem 3, degree 7, nint 8.

4.5.2 2D, Time-Dependant Case

Figures 4.21 through 4.27 present the error estimation results for each interpolant for each of the
two time-dependent test problems, for degrees 5 through 7, and with 8 subintervals in each spatial
dimension. The first three figures, 4.18 to 4.20, consider problem 1, degree 4, and 4, 8, and 16

subintervals in each dimension. In these first three figures, we see that the number of subintervals

99

makes no meaningful difference to the consistency or accuracy of the error estimates.

For all of the interpolants, as the degree increases so does the variance of the error estimates. The
SCI based error estimate seems to be more impacted by the degree than in the non-time-dependent
case. The SCI is able to provide very good quality and consistent error estimates for some of the test
cases when the degree is low. However, for degree 7, the SCI based error estimate underestimates
the true error.

The LOI and LOI2 based error estimates also provide a smaller error estimate than their non-
time-dependent counterparts. This means that scaled versions of the error estimates are the better
choice for degree 4. The test cases where the LOI and LOI2 based error estimates perform very
erratically are also when the SCI based error estimates do not perform well. This could be due to

the nature of the test problems or the accuracy with which the collocation solutions were calculated.

Problem 1, degree 4, nint varies

Accuracy of error estimate on subrectangles

. sCT

Accuracy of error estimate on subrectangles

N
N

o1 (5)
LBl

-
=)
-
=)

o
o

s

4

Number of subrectangles
©

Number of subrectangles
©

N}

2

0 0
-1 -0.8-0.6-0.4-0.20 0.20.40.60.8 1 1.21.4 -1 -0.8-0.6-0.4-0.2 0 0.20.40.60.8 1 1.21.4

log (Error Estimate / Actual Error) log (Error Estimate / Actual Error

Accuracy of error estimate on subrectangles Relative true error of collocation solutlﬁn

NN 1012 (S)|
N 1012
1
= 0.9
Spatial domain % .
1
. Spatial domain

-1 -0.8-0.6-0.4-0.20 0.2 0.40.60.8 1 1.21.4
log(Error Estimate / Actual Error

Figure 4.18: Error estimates for 2D time-dependent PDE Problem 1, degree 4, nint 4.

Number of subrectangles

[R N -)

~Relative True Error Val

X)

60

g Accuracy of error estimate on subrectangles $ Accuracy of error estimate on subrectangles
= 60 ~ 35
g e g == o1 (5)
© © 3| M= 10T
» 50)
: :
25

440 a
& %20
w 30 u
o 015
40 s
o o
g 8 10
=} =]
", o M ol bl

0 i 0

-1 -0.5 0 0.5 1 1.5 2 -1 -0.5 0 0.5 1 1.5 2

log (Error Estimate / Actual Error) log (Error Estimate / Actual Error
9 9

Accuracy of error estimate on subrectangles Relative true error of collocation solution

Relative True Error Value

Number of subrectangles

O b N W s GO o a ©

8

Sp
-1 -0.5 0 0.5 1 1.5 2
log (Error Estimate / Actual Error)
Figure 4.19: Error estimates for 2D time-dependent PDE Problem 1, degree 4, nint 8.

a3 Accuracy of error estimate on subrectangles Accuracy of error estimate on subrectangles

160 60
é\‘ NN sC1 == ro1(s)
@ 140 L______[BVCH
D 50
9120

w
o

Number of subrectangles
N b
o o

Number of subr
o
o

—

o

I o
=S
o

0
-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 -1 -0.5 0 0.5 1 1.5 2 2.5 3
log(Error Estimate / Actual Error) log(Error Estimate / Actual Error

Accuracy of error estimate on subrectangles Relative true error of collocation solution

w
5

LOI2 (S)

w
o

N}
&

[N}
=)

-
&

-
o

Number of subrectangles
Relative True Error Value

&

Spatial domain (

9}

patial domain

o

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 272
log (Error Estimate / Actual Error

Figure 4.20: Error estimates for 2D time-dependent PDE Problem 1, degree 4, nint 16.

Problem 1, degree varies, nint = 8

61

Accuracy of error estimate on subrectangles

Accuracy of error estimate on subrectangles

20

15

10

Number of subrectangles

== o1 (s)
N 01

|_L0Ad]

Relative True Error Value

)

P

-0.5 0 0.5 1 1.5 2 2.5
log(Error Estimate / Actual Error

Relative true error of collocation solution

Figure 4.21: Error estimates for 2D time-dependent PDE Problem 1, degree 5, nint 8.

2]
470
2 E— sCI
©60
o
¢ 50
3
0 40
w
© 30
"
o
820
5
Z 10
0
-1 -0.5 0 0.5 1 1.5 2 2.5
log(Error Estimate / Actual Error
g Accuracy of error estimate on subrectangles
1
g LOI2(S)
i 1 1012
D
o1
<
91
0
W
o
“
o
Q
£
3
- I
-1 -0.5 0 0.5 1 1.5 2 2.5
log (Error Estimate / Actual Error
$ Accuracy of error estimate on subrectangles
16
> S sCI
G514
D
12
o
g10
n
W 8
o
o 6
8
2 4
=l
Z 2
0

e

Number of subrectangles
o N & o © O N & o

1.4-1.2-1 -0.8-0.6-0.4-0.20 0.20.40.60.8 1
log(Error Estimate / Actual Error

Accuracy of error estimate on subrectangles

1.4-1.2-1 -0.8-0.6-0.4-0.2 0 0.6 0.8 1
log (Error Estimate / Actual Error

0.2 0.4

Accuracy of error estimate on subrectangles

40

30

20

Number of subrectangles

= ro1(s)

ol

0

-1.4-1.2 -1 -0.8-0.6-0.4-0.2 0

Relative True Error Value

)

patial domain %y)

0.2 0.40.60.8 1
log(Error Estimate / Actual Error

Relative true error of collocation solution

Spatial domain

Figure 4.22: Error estimates for 2D time-dependent PDE Problem 1, degree 6, nint 8.

62

Number of subrectangles

Number of subrectangles

e e

e

Accuracy of error estimate on subrectangles

6 e

4

2

0

8

6

4

2

0

-5 -4.5-4 -3.5-3 -2.5-2 -1.5-1 -0.50 0.5 1

log (Error Estimate / Actual Error

Accuracy of error estimate on subrectangles

6 LOI2(S)

4 LOI2

2

0

8

6

4

2

04

-4.5-4 -3.5-3 -2.5-2 -1.5-1 -0.50 0.5 1
log (Error Estimate / Actual Error)

|
o

Accuracy of error estimate on subrectangles

== 101 (S)
10T
20

15

10

Number of subrectangles
w

Relative True Error Value

)

patial domain

04
-5 -4.5-4 -3.5-3 -2.5-2 -1.5-1 -0.50 0.5 1

log(Error Estimate / Actual Error

Relative true error of collocation solution

Figure 4.23: Error estimates for 2D time-dependent PDE Problem 1, degree 7, nint 8.

63

(

Problem 2, degree varies, nint = 8

g Accuracy of error estimate on subrectangles $ Accuracy of error estimate on subrectangles
=35 —~ 40
o EE—— sCI o === 01 (5)
5 30 5 35| —vor
I3 I3
30
g% %
25
@20 a
w— w 20
015 o
E s15
10
Q Q
2 £ 10
=]]
z 5 Z 5 HH
0 b 0 (I a0
-2 -1.5 -1 -0.5 0 0.5 1 1.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
log (Error Estimate / Actual Error) log (Error Estimate / Actual Error)
o
=]
o Accuracy of error estimate on subrectangles = Relative true error of collocation solution
16 >
’{_)i' LOI2(S)
) s
<14 L0I2 o}
5 g
©12 ol
&
210 g
@ e
— 8 o
o
;6 5
0]
£ 4 L
S 9 .
R o~ R
| | Spatial domain ()3
oA
-2 -1.5 -1 -0.5 0 0.5 1 1.5
log(Error Estimate / Actual Error
Figure 4.24: Error estimates for 2D time-dependent PDE Problem 2, degree 4, nint 8.
3 Accuracy of error estimate on subrectangles 3 Accuracy of error estimate on subrectangles
> W SC1 > [101 (S)
5 40] 101
B 20
0 o
g g
30
e 815
2] 2]
820 810
S &
4 4
£10 E 5
=] =]
z z
0 0 [_m
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

log(Error Estimate / Actual Error

Accuracy of error estimate on subrectangles

= =
=) &

Number of subrectangles
w

-1 0.5 1 1.5 2
log (Error Estimate / Actual Error

-1.5

-0.5 0

Relative True Error Value

log(Error Estimate / Actual Error

Relative true error of collocation solution

(%}
el
o
ot
-
o
=
Q.
o
El
o
"y
=}
<

Figure 4.25: Error estimates for 2D time-dependent PDE Problem 2, degree 5, nint 8.

64

$ Accuracy of error estimate on subrectangles $ Accuracy of error estimate on subrectangles
~ 20 — 40
o s
g e g)
@ o 35
+ +
915 930
4 4
=l 525
0 0
w10 w20
o o
o L 15
4 4
£ S 910
0 [} I 0 ITﬂn m 0
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
log (Error Estimate / Actual Error) log (Error Estimate / Actual Error

Relative true error of collocation solution

Accuracy of error estimate on subrectangles

NN 1012 (S)
N 1012

Number of subrectangles
Relative True Error Value

(%)
o
o
o
[
o
s}
Q.
o
2
o
iy
5
<

-2.5 =2 -1.5 -1 -0.5 0 0.5 1 1.5
log (Error Estimate / Actual Error

Figure 4.26: Error estimates for 2D time-dependent PDE Problem 2, degree 6, nint 8.

Accuracy of error estimate on subrectangles Accuracy of error estimate on subrectangles

L______JElei

-6 -5 -4 -3 -2 -1 0

I
g o

w
i~

N}
w

N

-

Number of subrectangles
i

Number of subrectangles

o

1 =7 -6 -5 -4 -3 -2 -1 0 1

log(Error Estimate / Actual Error) log(Error Estimate / Actual Error

|
-

Accuracy of error estimate on subrectangles Relative true error of collocation solution

—

Number of subrectangles
@
Relative True Error Value

. 1012 (S)]
N 1012

—
=)

o

=

N}

(%}
el
o
o
-
o
s}
Q.
o
El
o
iy
=}
<

o

-6 -5 -4 -3 -2 -1 0 1
log (Error Estimate / Actual Error

Figure 4.27: Error estimates for 2D time-dependent PDE Problem 2, degree 7, nint 8.

|
-

4.6 FError Estimation Results Discussion

From the error estimates for the time-dependent and non-time-dependent test cases, we see some
common trends. One such trend is that the error estimates underestimate the true error as the degree
increases. The number of subintervals per dimension does not seem to impact the error estimates.

Another trend we see is that the LOI and LLOI2 based error estimates have similar consistency. Also,

65

the error estimates provided by the LOI2 tend to give a smaller error estimate than those associated
with the LOI. This means that the LOI2 gives a better error estimate for smaller degrees. This also
means that at higher degrees the LOI2 will underestimate the true error by more than the LOT will.

The SCI based error estimates tend to be the most consistent. The SCI based error estimates
are very accurate for degrees 4 and 5. For degrees 6 and 7, the SCI based error estimates give an
underestimate of the true error. The LOI based error estimates give an overestimate of the true
error by about one order of magnitude. The scaled version of the LOI based error estimates also
give an overestimate of the true error, but the error estimates for most sub-rectangles are within
an order of magnitude of the true error. The LOI2 based error estimates provide an error estimate
which is between one and two orders of magnitude above the true error. The scaled LOI2 based error
estimates give an estimate of the true error that is of the correct order. However, some sub-rectangles
have an error estimate that is one order of magnitude larger than the true error.

Since the error estimates give underestimates of the true error as the degree increases, it may
be worthwhile to consider introducing a scaling factor for the error estimates which depends on the
degree. The performance of the SCI based error estimates also needs to be examined further. The
convergence results we saw in Section 4.3 indicate that the SCI should not provide a reliable error
estimate; however, we have seen from the results of this section that the SCI provides good-quality
error estimates in some cases. As well, the inconsistency of the LOI and LOI2 based error estimates

in cases where the SCI based error estimate is consistent needs further examination.

66

Chapter 5

Conclusion

From the results of Chapter 3 we saw that error control can have a significant impact on the
solution of COVID-19 type PDE models. While the error in an approximate solution with any error
tolerance increased as the time integration progressed, the errors remained relatively controlled.

From the results of Chapter 4, where we considered 2D collocation methods and 2D interpolation
based error estimates, we were able to experimentally confirm that the global convergence rate of
a collocation solution remains the same for two dimensions as in one dimension. However, at the
mesh points of the 2D collocation solution, we do not observe experimentally the higher order of
convergence which is observed in the one-dimensional case. The effects of this are seen in the
convergence rate of the 2D interpolants, as the 2D SCI converges at the same rate as the collocation
solution instead of one order higher, as in the one-dimensional case.

Despite not converging at the expected rate, the 2D SCI is still able to provide accurate and
reliable error estimates for most of the test problems. The 2D LOI and 2D LOI2 based error
estimates behave similarly to each other, although the 2D LOI2 will typically give a smaller error
estimate than that given by the 2D LOI. The 2D LOI and 2D LOI2 were able to provide accurate
error estimates in some cases although they did not match the accuracy or consistency of the 2D
SCI. As these two interpolants tend to overestimate the true error, the scaling that was applied to

their associated error estimates resulted in a more accurate error estimate. However, as the degree

67

of collocation solution grows, the 2D LOI and 2D LOI2 overestimate the error by less. Therefore,
a scaling factor which considers the degree of collocation solution could be more effective for these
interpolants.

A valuable future project could include a theoretical analysis of the rate of convergence of a 2D
collocation solution at the mesh points, i.e., at the corners of the rectangles into which the spatial
domain is subdivided. Also, the 2D interpolation-based error estimation methods could be imple-
mented within collocation software featuring error control to see if they provide error estimates with
enough quality to optimize the computation of approximate solutions. An error control algorithm
based on adaptive moving mesh algorithm [11] would appear to be a good framework within which

the error estimates considered in this thesis could be employed.

68

Bibliography

[1]

2]

3]

ARCEDE, J., CAGA-ANAN, R., MENTUDA, C., AND MAMMERI, Y. Accounting for Symp-
tomatic and Asymptomatic in a SEIR-type model of COVID-19. Math. Model Nat. Phenom.

15 (2020), Article 34.

ARrseNAULT, T., SMITH, T., AND MUIR, P. Superconvergent interpolants for efficient spatial

error estimation in 1D PDE collocation solvers. Can. Appl. Math. Q. 17, 3 (2009), 409-431.

ARrsenauLT, T., SMITH, T., MUIR, P., AND PEW, J. Asymptotically correct interpolation-

based spatial error estimation for 1D PDE solvers. Can. Appl. Math. Q. 20, 3 (2012), 307-328.

BrownN, P., HINDMARSH, A., AND PETZOLD, L. Using Krylov methods in the solution of

large-scale differential-algebraic systems. SIAM J. Sci. Comput. 15, 6 (1994), 1467-1488.

BrowN, P., HINDMARSH, A., AND PETZOLD, L. Consistent initial condition calculation for

differential-algebraic systems. SIAM Journal on Scientific Computing 19 (09 1998), 1495-1512.

CHRISTARA, C. Private Communication, December 2020.

DE BOOR, C. Package for calculating with B-splines. SIAM J. Numer. Anal. 14, 3 (1973),

441-472.

Di1az, J., FAIRWEATHER, G., AND KEAST, P. COLROW and ARCECO: FORTRAN packages
for solving certain almost block diagonal linear systems by modified alternate row and column

elimination. ACM Trans. Math. Softw. 9, 3 (1983), 376-380.

69

[9]

[11]

[12]

[13]

[14]

[15]

[17]

[18]

FINDEN, W. An error term and uniqueness for Hermite—Birkhoff interpolation involving only

function values and/or first derivative values. J. Comput. Appl. Math. 212, 1 (2008), 1 — 15.

HormEes, E., LEwis, M., BANKS, J., AND VEIT, D. Partial differential equations in ecology:

Spatial interactions and population dynamics. Ecology 75 (01 1994), 17-29.

Huang, W., AND RuUSSELL, R. Adaptive Moving Mesh Methods, vol. 174. 01 2011.

KERMACK, W., AND MCKENDRICK, A. A contribution to the mathematical theory of epi-

demics. Proc. R. Soc. Lond. A 115 (1927), 700-721.

L1, Z., AND MUIR, P. B-spline Gaussian collocation software for two-dimensional parabolic

PDEs. Adv. Appl. Math. Mech. 5, 4 (2013), 528-547.

PAPADOMANOLAKI, M., AND SARIDAKIS, Y. Hermite-collocation for one dimensional tumor

invasion model with heterogeneous diffusion. In Proceedings 9th HERCMA Conference (2009).

PeETzOLD, L. R. Description of DASSL: a differential/algebraic system solver. Tech. rep.,

Sandia Labs, Livermore, CA, 1982.

Pew, J., L1, Z., AND MuUIr, P. Algorithm 962: BACOLI: B-spline adaptive collocation
software for PDEs with interpolation-based spatial error control. ACM Trans. Math. Softw. 42,

3 (2016), 25:1-25:17.

SARKAR, K., KHAJANCHI, S., AND NIETO, J. Modeling and forecasting the COVID-19 pan-

demic in India. Chaos, Solitons Fractals 139 (2020), Article 11049.

WanNG, R., KEasT, P., AND MUIR, P. BACOL: B-spline adaptive collocation software for

1-D parabolic PDEs. ACM Trans. Math. Softw. 30, 4 (2004), 454-470.

70

Appendix

README.txt

Before these scripts can be run, the following setup must be done:

In each of the main scripts , BVODE.sce, PPDE.sce, EPDE.sce, 2DPPDE. sce
the variable codeDir

must be set to the directory where these files are. (example. codeDir =
”C:\ Users\name\Documents\ SciCol”)

There are also the verbose and jacMode control parameters which are
described in each of the main scripts.

These scripts require the Scilab MinGw toolbox (to compile included
Fortran code),

which requires the Equation solution Compiler gcc—6.2.0 package

the 32 bit version — http://atoms.scilab.org/toolboxes/mingw/0.10.0/
files /gcc —6.2.0—32.exe

the 64 bit version — http://atoms.scilab.org/toolboxes/mingw/0.10.0/
files /gcc —6.2.0 —64.exe

After this has been downloaded and installed , in the Scilab console you
can now install the MinGw toolbox with the following command
atomsinstall (” mingw”)

Once this has completed you must log out of your Windows account, and
back in to enable it.

Now when Scilab is launched, there should be a message stating that
MinGw has loaded, this may take a bit.

Finally , the main scripts can be executed with the following command
exec (”C:\ Users\name\Documents\ SciCol\BVODE. sce”,—1)
Where within the quotes should be the complete location to the desired
main script.
This will compile the included Fortran and run the required provided
Scilab code, and now the collocate function can be called to
calculate a collocation solution.

BVODE.sce

71

global codeDir verbose jacMode

codeDir = 7”7 // This must be set to the directory where the Scilab
scripts are
verbose = 0 // Determines the verbosity of the collocation procedure, 0

is no output, 1 outputs information about the progress, while 2 also
includes timing of various stages.

jacMode = 0 // Determines if fsolve/daskr will calculate the Jacobian
(0), or if it will be approximated using knowledge of the structure
and finite difference methods (1). Setting to 1 may speed up
computation, or may also result in fsolve/daskr failing to converge.

chdir (codeDir) ;
exec (codeDir+"\core.sci”);
exec (codeDir4+"\err.sci”);

exec (codeDir+”\corelD.sci”);
exec (codeDir+"\errlD.sci”);

exec (codeDir+"\coreBVODE. sci”);
exec (codeDir+” \probsBVODE. sci”);

PPDE.sce

global codeDir verbose jacMode

codeDir = 77 // This must be set to the directory where the Scilab
scripts are
verbose = 0 // Determines the verbosity of the collocation procedure, 0

is no output, 1 outputs information about the progress, while 2 also
includes timing of various stages.

jacMode = 0 // Determines if fsolve/daskr will calculate the Jacobian
(0), or if it will be approximated using knowledge of the structure
and finite difference methods (1). Setting to 1 may speed up
computation, or may also result in fsolve/daskr failing to converge.

chdir (codeDir) ;

exec (codeDir+”\core.sci”);
exec (codeDir4"\err.sci”);

exec (codeDir4"\corelD . sci”);
exec (codeDir+"\errlD . sci”);

exec (codeDir+”\corePPDE.sci”);
exec (codeDir4”\probsPPDE. sci”);

EPDE.sce

global codeDir verbose jacMode

72

codeDir = 7”7 // This must be set to the directory where the Scilab
scripts are

verbose = 0 // Determines the verbosity of the collocation procedure, 0
is no output, 1 outputs information about the progress, while 2 also
includes timing of various stages.

jacMode = 0 // Determines if fsolve/daskr will calculate the Jacobian
(0), or if it will be approximated using knowledge of the structure
and finite difference methods (1). Setting to 1 may speed up
computation, or may also result in fsolve/daskr failing to converge.

chdir (codeDir)

exec (codeDir47\core.sci”);
exec (codeDir4"\err.sci”);

exec (codeDir+”\core2D .sci”);
exec (codeDir4"\err2D . sci”);

exec (codeDir4"\coreEPDE . sci”);
exec (codeDir+"\probsEPDE. sci”);

2DPPDE.sce

global codeDir verbose jacMode

codeDir = 7”7 // This must be set to the directory where the Scilab
scripts are
verbose = 2 // Determines the verbosity of the collocation procedure, 0

is no output, 1 outputs information about the progress, while 2 also
includes timing of various stages.

jacMode = 1 // Determines if fsolve/daskr will calculate the Jacobian
(0), or if it will be approximated using knowledge of the structure
and finite difference methods (1). Setting to 1 may speed up
computation, or may also result in fsolve/daskr failing to converge.

chdir (codeDir) ;

exec (codeDir+"\core.sci”);
exec (codeDir+"\err.sci”);

exec (codeDir+”\core2D .sci”);
exec (codeDir4"\err2D .sci”);

exec (codeDir+” \core2DPPDE. sci”);
exec (codeDir+” \probs2DPPDE. sci”);

core.scl

// Global variables which are required by all PDE types.
global A // Lower x bound of the domain
global B // Upper x bound of the domain
global probNum // Specifies which problem is ’active

9

73

probNum = 1;

global ncpts // The number of equations total in the system

global p // Degree of the solution in x

global N // Number of intervals in x

global nconti // Number of continuity conditions imposed on the b—
splines at mesh points

nconti = 2;

global coeffs // Stores the coefficients of b—splines representing the
solution

global atol rtol // Absolute and relative tolerance used for error
estimation

atol = 1.d—4;

rtol = 0;

global meshX // The mesh points in x

global knotsX // The knots or breakpoint sequence in x used for the
creation of b—splines

global colX // The collocation points in x where the PDE must be
satisfied

global dy // difference used for finite difference approximations

dy = 2 % sqrt(%eps);

// Builds a knot sequence from meshP to allow for a b—spline basis
// of degree deg over nint intervals with global nconti internal
// continuity conditions.

function knots = buildKnots(meshP, deg, nint)

// Check if calling from 1D case

if argn(2) = 1 then
deg = p
nint = N

end

// Find ncpt for this dimension
ncpt = (deg—1) * nint + nconti

// Set the end knots
for 1 = 1:(deg—1+nconti)

knots (i) = meshP (1)

knots (i + ncpt) = meshP(nint+1)
end

// Set the internal knots

for i = 2:nint
ii = (i—2) % (deg—1) + (deg—1) 4+ nconti
for j = 1:(deg—1)

knots(ii + j) = meshP(i)

end

end

endfunction

// Returns numP Gaussian points mapped between xL and xR
function x = getGaussPts(xL, xR, numP)

74

// Calculate midpoint and radius of interval
mid = (xR + xL) /2.0
radius = abs (xR — mid)

// p determines how many collocation points we have
select numP
case 2 then
x(1) = —(1/sqrt(3)) = radius + mid
x(2) = (1/sqrt(3)) * radius + mid
case 3 then

x(1) = —sqrt(3/5) * radius + mid
x(2) = mid
x(3) = sqrt(3/5) * radius + mid
case 4 then
x(1) = —sqrt ((3/7)+(2/7)xsqrt(6/5)) * radius + mid
x(2) = —sqrt ((3/7) —(2/7)xsqrt (6/5)) * radius + mid
x(3) = sqrt ((3/7) —(2/7)*xsqrt(6/5)) * radius + mid
x(4) = sqrt ((3/7)4+(2/7)*sqrt(6/5)) * radius + mid
case 5 then
x(1) = —(1/3) % sqrt(5+2xsqrt(10/7)) * radius + mid
x(2) = —(1/3) % sqrt(5—2xsqrt(10/7)) * radius + mid
x(3) = mid
x(4) = (1/3) % sqrt(5—2xsqrt(10/7)) * radius + mid
x(5) = (1/3) % sqrt(5+2%sqrt(10/7)) * radius + mid

case 6 then
// Values taken from
// https://pomax.github.io/bezierinfo/legendre—gauss.html
x(1) = —0.9324695142031521 * radius + mid

x(2) = —0.6612093864662645 * radius + mid
x(3) = —0.2386191860831969 * radius + mid
x(4) = 0.2386191860831969 * radius + mid
x(5) = 0.6612093864662645 = radius + mid
x(6) = 0.9324695142031521 % radius + mid

case 7 then
// Values taken from
// https://pomax.github.io/bezierinfo/legendre—gauss.html
x(1) = —0.9491079123427585 % radius + mid
= —0.7415311855993945 * radius + mid
—0.4058451513773972 *x radius + mid
= mid
= 0.4058451513773972 * radius + mid
= 0.7415311855993945 * radius + mid
= 0.9491079123427585 * radius + mid

mid
mid
mid
mid
mid
mid
mid
mid

= —0.7966664774136267 x radius
= —0.5255324099163290 * radius
= —0.1834346424956498 * radius
= 0.1834346424956498
= 0.5255324099163290
= 0.7966664774136267
0.9602898564975363
then

) = —0.9681602395076261 * radius + mid

radius
radius
radius

)
)
)
)
)
)
t
) = —0.9602898564975363 * radius
)
)
)
)
)
)
) radius

* ¥ ¥ %
N

75

x(2) = —0.8360311073266358 * radius + mid
x(3) = —0.6133714327005904 x radius 4+ mid
x(4) = —0.3242534234038089 * radius + mid
x(5) = mid

x(6) = 0.3242534234038089 * radius + mid
x(7) = 0.6133714327005904 * radius + mid
x(8) = 0.8360311073266358 * radius 4+ mid
x(9) = 0.9681602395076261 * radius + mid

else
disp (string (numP) + 7 _Gauss_points_requested._.Only_2-9._is .
supported.”)
disp (" Aborting_execution.”)
abort
end
endfunction

// Returns ileft as required by the B-spline basis functions. Input x is
the point in a domain
// where we are evaluating , kts is the knot sequence of that domain, and
boolean isY specifies
// if it is the x or y domain.
function i = getileft (x, kts, isY)
// Default to being in x
if argn(2) < 3 then
isY = %F

end

if 7isY then
ind = getInd (x, meshX, N)
i = nconti + (p—1) * ind
else
ind = getlnd(x, meshY, M)
i = nconti + (gq—1) * ind
end

endfunction

// Simplified call to bsplvd which evaluates the nder—1th derivative
// of the degree p/q b—splines at pt associated with the global
// knotsX/Y. Set isY to true to evaluate a y value.
function y = bsplv(pt, nder, isY)
if argn(2) < 3 then
isY = %F
end
if isY then
knots = knotsY

deg = g

else
knots = knotsX
deg = p

end

indS = (deg+1)*(nder—1)+1
indE = indS + deg
y = bsplvd(pt, nder, knots, deg, 2, isY)(indS:indE)

76

endfunction

// Calls Fortran bsplvd to evaluate the b—splines associated with
// knots kts, and nconti internal continitui conditions. Returns
// the nder—1th derivative of degree deg b—splines at x. Set isY to
// true if evaluating a Y value.
function y = bsplvd(x, nder, kts, deg, nconti, isY)

if argn(2) = 5 then

isY = %F

end

ileft = getileft (x, kts, isY)

k = deg 4+ nconti — 1

vnikx = zeros(nder =k, 1)

call ("bsplvd’ kts ,1,’d" k,2,71",x,3,°d",ileft ,4,71" ,..

vnikx ,5,’d’ ,nder ,6, 1)

y = vnikx
endfunction

// Returns the mesh index of point val within mesh meshP, with max
// of nint.
function i = getInd(val, meshP, nint)
if argn(2) = 1 then
meshP = meshX
nint = N
end
i=1
while val >= meshP(i+1) && i < nint
i=1+1
end
endfunction

// Change to the temp directory and create bsplvd.f and bsplvn.f

// Link the newly created bsplvn.f and bsplvd.f
ilib_for_link (["bsplvd’, ’bsplvn’], [..
"bsplvd . f7, ’bsplvn.f’], [], "{");

exec loader.sce;

linked = %T;

corelD.sci

global Y_a
global Y_b

// Evaluates the collocation solution at point x with coefficients coef.
function y=Y(coef, x)

y = beval(coef, x, 1)
endfunction

// Evaluates the first derivative of the collocation solution at point x
// with coefficients coef.

7

function y=Yx(coef, x)
y = beval(coef, x, 2)
endfunction

// Evaluates the second derivative of the collocation solution at point
X

// with coefficients coef.

function y=Yxx(coef, x)
y = beval(coef, x, 3)

endfunction

// Evaluates the (d—1)th derivative of the collocation solution at point

X
// with coefficients coef.
function y = beval(coef, x, d)
basis = bsplv(x, d)
sum = 0
for i = 1:p+1
sum = sum + coef(i) x basis(1i)
end
y = sum
endfunction

// Creates and returns the mesh points in x. Contains deprecated uneven
mesh creation.

function x = buildMesh(levels)
// Calculate the mesh points
x = linspace (A, B, N+1);

// Set the knots
global knotsX
knotsX = buildKnots(x)

endfunction

// Returns the indexes within the Jacobian that are non—zero for the
// cIndth coefficient .

function inds = nonZerolnds(cInd)
if ¢cInd = 1 then
bndInd =1
ind =1
elseif cInd = ncpts
bndInd = ncpts
ind = N
else
bndInd = []

ind = getInt (cInd)
end
collnds = collnds (ind)
inds = cat (1, collnds, bndInd)

endfunction
// Returns the index of the collocation points in the xIndsth intervals.

function inds = collnds(xInds)
if size(xInds) (1) = 2 then

78

indsl = collndsI(xInds (1))
inds2 = collndsI(xInds(2))
else
indsl = collndsI(xInds)
inds2 = []
end
inds = cat (1, indsl, inds2)
endfunction

// Returns the index of the collocation points on the xIndth interval.
function inds = collndsI(xInd)

startInd = 2 + (xInd — 1) * (p—1)

endInd = startInd + (p — 2)

inds = (startInd:endInd)’
endfunction

// Returns the intervals which are affected by the xith coefficient.
function ind = getInt (xi)
if xi <= p — 1 then

ind =1

elseif xi >= ncpts — 2
ind =N

else
ind =1

xi = xi — (p—1)
while xi > 0
xi = xi — nconti
if xi < 1 then
if ind + 1 <= N then
ind (2) = ind + 1
end
break
elseif xi <= (p + 1 — 2 % nconti) then
ind = ind + 1
break
end
xi = xi — (p+1— 2 % nconti)
ind = ind + 1
end
end
endfunction

// Returns the index of the first coefficient for the ith interval.
function ind = firstCoef (1)

ind = (p—1) = (i — 1) + 1
endfunction

// Returns the index of the last coefficient for the ith interval.

function ind = last (i)
ind = firstCoef (i) + p
endfunction

// Evaluates the curent collocation solution at point x.
function y = U(x)

79

// Determine which interval X is in
index = getlnd(x)

// Calculate using the appropriate coeeficients
y = Y(coeffs (firstCoef(index):last (index)), x)

endfunction
// Evaluates the first derivative of the collocation solution at point x

function y = Ux(x)
index = getlnd (x)

y = Yx(coeffs (firstCoef(index):last (index)), x)
endfunction

// Evaluates the second derivative of the collocation solution at point
X.

function y = Uxx(x)
index = getInd(x)

y = Yxx(coeffs (firstCoef(index):last (index)), x)
endfunction

core2D.sci

// Global variables used for 2D collocation
global q M // Degree of solution and number of intervals in y
global CD // Lower and upper bound on y
global meshY // The mesh points in y
global knotsX knotsY // The knots in x and y used for creation of the b—
splines
global colX colY // Collocation points in x and y
global ncpts ncptX nceptY
global bndAvals bndBvals bndCvals bndDvals
global colXBasisVals colYBasisVals
global meshXBasisVals meshYBasisVals
global collnds xBndInds yBndInds cornlnds // The 1D index of conditions
// collnds (i, j, :) is the index of the (p—1)%x(q—1) col. conds. in
// rectangle i, j.
// x/yBndInds(i, j, k) is the index of the (q—1)/(p—1) boundary
conditions
// for the jth interval in x/y. i = 0 corresponds to x=A/y=C, and i
=1
// corresponds to x=B/y=D

// Evaluates the tensor product of b—splines at (x, y).

// derX/Y designate the desired order —1 of derivative with respect
// to X/Y

function z = U(x, y, derX, derY)

if argn(2) 2 then
derX =1
derY =1

80

end
co = getCoefs(getInd (x, meshX, N), getInd(y, meshY, M))
bv = getBasisVals(x, y, derX, derY)
z = sum(co .x bv)
endfunction

// Retrieve the apropriate coefficients fpr the potentially non—zero
// b—spline basis functions in mesh square xInd, yInd. coefs is the
// vector containing all of the coefficients. co(i, j) contains the
// coefficient for the ith x b—spline multiplied by the jth b—spline.
function co = getCoefs(xInd, yInd)

xStart = (xInd — 1) * (p — 1)

yStart = (yInd — 1) % (q — 1)

co = coefSq(xStart, yStart)
endfunction

+ 1
+1

// Calculate the product of the potential non—zero b—spline basis
// functions at point (x, y). derX/Y specifies which order of

// derivative with respect to X/Y. bv(i, j) will contain the product
// of the ith x b—spline multiplied by the jth b—spline.

function bv = getBasisVals(x, y, derX, derY)

// Check if x is col pt or mesh val

// If so then we can use the saved evaluation
xInd = getInd (x, meshX, N)

yInd = getInd (y, meshY, M)

if x = meshX(xInd) then

xVals = matrix (meshXBasisVals(xInd, :, derX), 1, p+1)’
elseif x = meshX(xInd+1) then

xVals = matrix (meshXBasisVals(xInd+1, :, derX), 1, p+1)’
else

for 1 = 1:(p—1)
if x = colX(xInd, i) then
xVals = matrix(colXBasisVals(xInd, i, :, derX), 1, p+1)’
i=-—1
end
end

// Calculate it if it isn’t a mesh or col pt
if i "= —1 then
xVals = bsplv(x, derX)
end
end

// Check if y is col pt or mesh val
// If so then we can use the saved evaluation
if y = meshY(yInd) then

yVals = matrix (meshYBasisVals(yInd, :, derY), 1, q+1)’
elseif y = meshY(yInd+1) then

yVals = matrix (meshYBasisVals(yInd+1, :, derY), 1, q+1)’
else

for 1 = 1:(q—1)
if y = colY(yInd, i) then
yVals = matrix(colYBasisVals(yInd, i, :, derY), 1, q+1)’

81

end

// Calculate it if it isn’t a mesh or col pt
if i "= —1 then
yVals = bsplv(y, derY, %T)
end
end
bv = xVals x yVals’
endfunction

// Returns a square of coefficients (p+1) by (q+1)
// starting at firstX , firstY in x and y respectively.
function ¢ = coefSq(firstX , firstY)
c(p+1,q+1) =0
for i = 1:(p+1)
os = neptY *x (firstX + i — 2)
for j = 1:(q+1)
c(i,j) = coeffs(os + (firstY + j — 1))
end
end
endfunction

// Sets the global meshes using the global A, B, C
// D, N, and M.
function prepareMesh ()
global meshX meshY
meshX = linspace (A, B, N+1)
meshY = linspace (C, D, M+1)
endfunction

// Sets the global knots variables using global meshX/Y, p, q, N, M.
function prepareKnots ()

global knotsX knotsY

knotsX = buildKnots (meshX, p, N)

knotsY = buildKnots (meshY, q, M)
endfunction

// Sets the global colX/Y variables using p, N, meshX, q, M, and
// meshY .
function prepareColP ()

global colX colY

colX = zeros (N, p—1)

colY = zeros(M, q—1)

for i = 1:N

colX(i,:) = getGaussPts(meshX (i), meshX(i+1), p—1)
end
for i = 1:M

colY (i,:) = getGaussPts(meshY (i), meshY(i+1), q—1)
end
endfunction

// Save the evaluations of basis functions which will be repeatedly used

82

// in colConds() to increase the efficiency.

function setSavedBasisVals ()
global colXBasisVals meshXBasisVals p q N M
global colYBasisVals meshYBasisVals
colXBasisVals = zeros (N, p—1, p+1, 3)
colYBasisVals = zeros (M, q—1, q+1, 3)
meshXBasisVals = zeros (N+1, p+1, 3)
meshYBasisVals = zeros (M+1, q+1, 3)

// Loop through the collocation points in x and save the basis

values
for i = 1:N
for j = 1:(p—1)
colXBasisVals(i, j, :, :) = bsplvSave(colX (i, j))
end
end

// Loop through mesh points in x
for i = 1:N+1

meshXBasisVals(i, :, :) = bsplvSave (meshX(i))
end

// Loop through the collocation points in y and save the basis

values
for i = 1:M
for j = 1:(q—1)
colYBasisVals (i, j, :, :) = bsplvSave(colY (i, j), %T)
end
end

// Loop through mesh points in y
for i = 1:M#1
meshYBasisVals(i, :, :) = bsplvSave(meshY (i), %T)

end
endfunction

// Version of bsplv() to be called by setSavedBasisVals() which
// returns the solution value, first , and second derivatives.
function y = bsplvSave(pt, isY)
if argn(2) < 2 then
isY = %F
end
if isY then
global q knotsY
knots = knotsY
deg = g
else
global p knotsX
knots = knotsX
deg = p
end
vec = bsplvd(pt, 3, knots, deg, 2, isY)
y(:,1) = vec(1l:deg+1)

83

y(:,2) vec (deg+2:2xdeg+2)
y(:,3) = vec(2xdeg+3:3xdeg+3)
endfunction

// Saves the boundary value at the collocation points into the global
// bnd_vals variables.
function saveBoundaryEvals ()
global bndAvals bndBvals bndCvals bndDvals
for i = 1:M
for j = 1:(q—1)
bndAvals(i, j) = bndA(colY (i, j))
bndBvals(i, j) = bndB(colY (i, j))

end
end
for i = 1:N
for j = 1:(p—1)
bndCvals(i, j) = bndC(colX (i, j))
bndDvals(i, j) = bndD(colX (i, j))
end
end

endfunction

// Converts the 1—dimensional index of a condition to a
// 2—dimensional coordinate
function [i, j] = toCoord(ind)
i = ceil(ind/ncptY)
j = pmodulo(ind —1, ncptY) + 1
endfunction

// Returns the indices of the jacobian which will be non zero for a
given

// coefficient. Uses the pre—calculated indices provided.

function inds = nonZeroInds(cInd, collnds, xBndInds, yBndInds, cornlnds)

// Get the coordinate of the coefficient
[xi, yi] = toCoord(cInd)

// Determine what conditions are needed
if xi = 1 then // On the low X boundary

if yi = 1 then // On the low Y boundary
cornlnd = cornInds (1, 1)
bndYinds = matrix (yBndInds(1, 1, :), 1, p—1)
yInd = 1

elseif yi = ncptY then // On the high Y boundary
cornlnd = cornInds (1, 2)
bndYinds = matrix (yBndInds(2, 1, :), 1, p—1)
ylnd =M

else // Not on a Y boundary
bndYinds = []
cornlnd = []
yInd = getYint (yi)

end

84

bndXinds = matrix(xBndInds(1, yInd, :), 1, (g—1)xsize(yInd) (1))
collnds = matrix(collnds (1, yInd, :), 1, (p—1)x(q—1)xsize (yInd)
(1))

elseif xi = ncptX then // On the high X boundary
it yi =1 then // On the low Y boundary
cornlnd = cornInds (2, 1)
bndYinds = matrix (yBndInds(1, N, :), 1, p—1)
yInd =1

elseif yi == ncptY then // On the high Y boundary
cornlnd = cornInds (2, 2)
bndYinds = matrix (yBndInds(2, N, :), 1, p—1)
yInd =M

else // Not on a Y boundary
bndYinds = |[]
cornlnd = []
yInd = getYint (yi)
end
bndXinds = matrix (xBndInds (2, yInd, :), 1, (q—1)*size(yInd) (1))
collnds = matrix(collnds (N, yInd, :), 1, (p—1)x(q—1)*size (yInd)
(1))

else // Not on an X boundary
xInd = getXint (xi)
if yi = 1 then // On the low Y boundary
bndYinds = matrix (yBndInds(1, xInd, :), 1, (p—1)xsize(xInd)
(1))
yInd =1

elseif yi = ncptY then // On the high Y boundary
bndYinds = matrix (yBndInds(2, xInd, :), 1, (p—1)xsize(xInd)
(1))
yInd =M

else // Not on a Y boundary
bndYinds = |[]
yInd = getYint (yi)

end

cornlnd = []

bndXinds = []

collnds = matrix(collnds (xInd, yInd, :), 1, (p—1)x(q—1)xsize(
xInd) (1)*size (yInd) (1))

end

// Concatenate the various indices and return them
inds = cat(l, cornlnd, bndXinds’, bndYinds’, collnds’)

endfunction

// Returns the interval(s) in X which coefficient xi will affect.
function indX = getXint (xi)
if xi <= (p + 1 — nconti) then
indX =1

85

elseif xi >= ncptX — nconti
indX = N
else
indX =1
xi = xi — (p — 1)
while xi > 0
xi = xi — nconti
if xi < 1 then
if indX + 1 <= N then
indX(2) = indX + 1
end
break
elseif xi <= (p + 1 — 2 % nconti) then
indX = indX + 1
break
end
xi =xi — (p+1— 2 % nconti)
indX = indX + 1
end
end
endfunction

// Returns the interval(s) in Y which coefficient yi will affect.
function indY = getYint (yi)
if yi <= (q + 1 — nconti) then

indY =1

elseif yi >= ncptY — nconti
indY =M

else
indY =1

yi = yi — (q-1)
while yi > 0
yi = yi — nconti
if yi < 1 then
if indY + 1 <=M then
indY (2) = indY + 1
end
break
elseif yi <= (¢ + 1 — 2 % nconti) then
indY = indY + 1
break
end
yi=yi— (q¢g+ 1 — 2 % nconti)
indY = indY + 1
end
end
endfunction

// Calculates the indices of the collocation conditions which occur in
// the rectangle with coordinate xInd, yInd
function inds = getCollnds (xInd, yInd)
ind =1
$qOs = neptY * ((p—1) * (xInd — 1) + 1) + 1 + (q—1) * (yInd — 1)
for i = 1:p—1

86

colLOs = (i—1) * ncptY + sqOs
for j = 1:q—1
inds (ind) = colLOs + j
ind = ind 1
end
end
endfunction

// Calculates the indices of the conditions which correspond to the X
boundary .
// yInd is the interval in Y, while isHigh determines if it is the low
or
// high X boundary (%F / %T)
function inds = getxBndInds(yInd, isHigh)
ind =1
if T"isHigh then
sqOs = (q—1) * (yInd — 1) + 1
else
sqOs = (((p—1) * N) + 1) % ncptY + (q—1) * (yInd — 1) + 1
end
for 1 = 1:(q—1)
inds (ind) = sqOs + i
ind = ind + 1
end
endfunction

// Calculates the indices of the conditions which correspond to the Y
boundary .
// xInd is the interval in X, while isHigh determines if it is the low
or
// high Y boundary (%F / %T)
function inds = getyBndInds(xInd, isHigh)
os = neptY x ((xInd — 1) % (p—1) + 1)
if "isHigh then
os = 0os — (ncptY — 1)
end
ind = os
for i = 1:(p—1)
ind = ind + ncptY
inds (i) = ind
end
endfunction

// Returns the index of the corner condition specified by xHigh, yHigh
// xHigh / yHigh = %T means it is the corner with the high X /Y
boundary .
function ind = getCornerInd (xHigh, yHigh)
if "xHigh then
if “yHigh then
ind =1
else
ind = ncptY
end
else

87

ind = ncpts
if “yHigh then
ind = ind — ncptY + 1
end
end
endfunction

// Calculates and returns the indices of the collocation conditions for
// all NxM rectangles

function collnds = saveCollnds ()
collnds = zeros(N, M, (p—1) * (gq—1))
for i = 1:N
for j = 1:M

collnds (i, j, :) = getCollnds (i, j)
end
end
endfunction

// Calculates and returns all of the X boundary condition indices.
function xBndInds = savexBndInds ()
xBndInds = zeros (2, M, q—1)
for i = 1:M
xBndInds (1, i, :)
xBndInds (2, i, :)

getxBndInds (i, %F)
getxBndInds (i, %T)

end
endfunction

// Calculates and returns all of the Y boundary condition indices.
function yBndInds = saveyBndInds ()
yBndInds = zeros (2, N, p—1)
for i = 1:N
yBndInds (1, i, :) = getyBndInds(i, %F)
yBndInds (2, i, :) = getyBndInds(i, %T)
end
endfunction

// Calculates and returns all of the corner condition indices.

function cornlnds = saveCornInds()
cornlnds (1, 1) = getCornerInd (%F, %F)
cornlnds (1, 2) = getCornerInd (%F, %T)
cornlnds (2, 1) = getCornerInd (%T, %F)
cornlnds (2, 2) = getCornerInd (%T, %T)
endfunction

// Returns which line of x a point is in along with which point in the
// line it is.
function [1, r] = getLine(ind)
1 =1
while ind > ncptY
ind = ind — ncptY
l1=1+1
end
r = ind
endfunction

88

// Returns the index of a collocation point for jacCond()
function [inter, col] = getColPt(rem, isY)

// Set variables for x or y

if argn(2) < 2 then

isY = %F
end
if isY then

deg = q
else

deg = p
end

// Find which interval and which col pt within the interval

col = rem — 1

inter =1

while col > (deg —1)
inter = inter + 1

col = col — (deg — 1)
end
endfunction

// Quicker version of U to be used when evaluating the collocation
solution at
// a collocation or boundary point in X and Y

function z = savedU (indX, indY, dx, dy)

if argn(2) = 2 then
dx =1
dy =1
end
if indX = 1 then
xVals = matrix (meshXBasisVals(1, :, dx), 1, p+1)’
interX =1
elseif indX == ncptX then
xVals = matrix (meshXBasisVals (N+1, :, dx), 1, p+1)’
interX = N
else
[interX, pt] = getColPt (indX, %F)
xVals = matrix(colXBasisVals (interX , pt, :, dx), 1, p+1)’
end
if indY = 1 then
yVals = matrix (meshYBasisVals(1, :, dy), 1, q+1)’
interY =1
elseif indY == ncptY then
yVals = matrix (meshYBasisVals (M+1, :, dy), 1, q+1)’
interY =M
else
[interY , pt] = getColPt (indY, %T)
yVals = matrix(colYBasisVals(interY, pt, :, dy), 1, q+1)’
end

bv = xVals % yVals’
co = coefSq ((interX —1)x(p—1)+1,(interY —1)*(q—1)+1)
z = sum(co .* bv)

endfunction

89

coreBVODE.sci

// Function to build system passed to fsolve
function [func] = fsol(coef)

// Index to facilitate population of system
index =1

// Two boundary conditions

//

func (index) = Y(coef (1:(p+1)), meshX(1)) — Y.a
index = index+1

// end boundary conditions

// Collocation conditions

//

// Loop through the N subintervals
for i = 1:N
// Loop for each collocation point per subinterval
for j = 1:(p—1)
func (index) = PDE(coef (firstCoef(i):last(i)), colX(i,j))
index = index + 1
end
end
/] ——— end collocation conditions

func(index) = Y(coef(firstCoef(N):last (N)), meshX(N+1)) — Y.b
index = index+l1

endfunction

function info = collocate (deg, nint)

global N
global p
global colX
global meshX
global ncpts
global coeffs

p = deg
N = nint

ncpts = N x (p—1) + nconti
meshX = buildMesh ()

if verbose > 0 then

disp ("probNum=" + string (probNum) + " _.p=" + string(p) + 7".N=" +

string (N))

90

end

colX = zeros (N, p—1)
for i = 1:N
colX(i,:) = getGaussPts(meshX (i), meshX(i+1), p—1);
end
global Y.a Y._b
Y_a = actual(A) // Y value at A boundary
Y._b = actual (B)
// Calculate Jacobian

// Generate a first guess
fg = ones((p—1)*xN+2,1);
fg(l) = Y.a
fg ((p—1) * N 4+ nconti) = Y.b
// Send system to fsolve
if verbose > 0 then
disp (" Solving._for._coefficients.”)
if verbose > 1 then
tic
end
end

if jacMode = 0 then

[coeffs , v, info] = fsolve(fg, fsol, atolx0.1)
elseif jacMode = 1 then

[coeffs, v, info] = fsolve(fg, fsol, fjac, atolx0.1)
end

if verbose > 0 then
disp (” Coefficients_set.”)
if verbose > 1 then
time = toc ()
disp (" Elapsed _time:.” 4+ string (time) + ”.seconds”)
end
disp (7 fsolve.info:.” + string(info))
disp (" fsolve _max_residual :.” 4+ string (max(abs(fsol(coeffs)))))
end
endfunction

// Approximates the Jacobian for fsolve
function r = fjac(coefs)

global coeffs t0 dy

inds = nonZerolnds (1)

coeffs = coefs

for k = 1:size(inds) (1)

ind = inds (k)

coeffs (1) = coefs (1)+dy

rpl = condI(ind)

coeffs (1) = coefs(1)—dy

r(ind,1) = (0.5%xrpl — 0.5%condI(ind))/dy
end

91

for i = 2:ncpts
inds = nonZeroInds(1i)
coeffs(i—1) = coefs(i—1)
for k = 1:size(inds) (1)
ind = inds (k)
coeffs (i) = coefs(i)+dy
rpl = condI(ind)
coeffs (i) = coefs(i)—dy
r(ind,i) = (0.5%xrpl — 0.5%xcondI(ind))/dy
end
end
endfunction

// Returns a single entry of the residual
function r = condI(ind)
global coeffs
if ind = 1 then
r = Y(coeffs (1:(p+1)), meshX (1)) — Y.a
elseif ind == ncpts then
r = Y(coeffs(firstCoef(N):last (N)), meshX(N+1)) — Y.b
else
i = ceil ((ind—1)/(p—1))
j = ind—1—(i—1)x(p—1)
r = PDE(coeffs (firstCoef(i):last(i)), colX(i,j))

end
endfunction

corePPDE.sci

global t0 // The initial time for time integration

global errScheme // The currently ’active’ error scheme. 1 = New LOI, 2
= LOI, 3 = SCI

global tc // The time which global coeffs is a collocation solution for

global colPtBasisVals // (i, j, k, 1) Stores the value of the (k—1)th
// derivative of the 1th non—zero b—spline basis function at the jth
// collocation point within the ith interval

// Functions for reducing calls to B-spline functions
function y = bsplvSave(pt, nder)
vec = bsplvd (pt, nder, knotsX, p, 2)
y = zeros (p+1, 3)
y(:,1) = vec(l:p+1)
if nder >= 2 then
yv(:,2) = vec(p+2:2xp+2)

end
if nder >= 3 then
v(:,3) = vec(2xp+3:3xp+3)
end
endfunction

function y = fastColPtU (i, j)
y = fastColPtEval(i, j, 1)

92

endfunction

function y = fastColPtUx (i, j)
y = fastColPtEval(i, j, 2)
endfunction

function y = fastColPtUxx (i, j
y = fastColPtEval(i, j, 3)
endfunction

)

function y = fastColPtEval(i, j, nder)
colnd = firstCoef (i)
y = sum(coeffs (colnd:colnd+p) .x matrix(colPtBasisVals(i, j, nder,

), ptl))
endfunction

function saveColPtBasisVals(nder)
global colPtBasisVals
colPtBasisVals = zeros(N, p—1, 3, p+1)

for i = 1:N
for j = 1:(p—1)
colPtBasisVals (i, j, :, :) = bsplvSave(colX (i, j), nder)’
end
end

endfunction

/!

// The residual function for setting the initial temporal derivative of
the coefficients

function r = fsolD (coefDer)
r = res(t0, coeffs, coefDer)
endfunction

// Function to build residual system passed to fsolve when setting
initial coefficients

function r = fsol(coef)
global coeffs
coeffs = coef
r(1) = uinit (A) — U(A)
ind = 2
for i = 1:N
for j = 1:(p—1)
pt = colX (i, j)
r(ind) = uinit(pt) — U(pt)
ind = ind + 1
end
end
r(ncpts) = uinit (B) — U(B)
endfunction

// Takes in the derivative of the coefficients w.r.t time and returns
the temporal derivative of the collocation

// solution at the evaluation points

function ptDer = getPtDer (coDer)

93

global coeffs

temp = coeffs

coeffs = coDer
saveColPtBasisVals (1)
for i = 1:N

for j = 1:(p—1)
ptDer((i—1) % (p—1) + j) = fastColPtU(i, j)
end
end
coeffs = temp
endfunction

// Generates a first guess for the initial coefficients
function coeffs = iniCoeffs ()
coeffs = ones ((p—1)*N+2,1);
coeffs (1) = uinit (A)
coeffs (ncpts) = uinit (B)
for i = 1:N
for j = 1:(p—1)
coeffs ((i—1)*(p—1)+j+1) = uinit (colX (i, j))
end
end
endfunction

// Sets the initial coefficient in the global coeffs
function initCoeffs ()
fg = iniCoeffs ()
global coeffs
if jacMode = 0 then
[coeffs ,n,inf] = fsolve(fg, fsol, 1.d—14)
elseif jacMode = 1 then
[coeffs ,n,inf] = fsolve(fg, fsol, fjac, 1.d—14)
end
if verbose > 1 then
disp (" fsolve.info:.” 4+ string(inf))
disp (" fsolve_residual :.” 4+ string (max(abs(fsol(coeffs)))))
end
endfunction

// Approximates the Jacobian for fsolve when setting the initial
coefficients

function r = fjac(coefs)
y = coefs
mockY =y

ydot = zeros(ncpts,1)
for i = 1l:ncpts
inds = nonZerolnds (i)
mockY (i) = y(i)
for k = 1:size(inds) (1)
ind = inds (k)
mockY (i) = y(i)+dy
rpl = resI(t0, mockY, ydot, ind)
mockY (i) = y(i)—dy
r(ind,i) = (0.5%xrpl — 0.5%resI(t0,mockY,ydot, ind))/dy

94

mockY (i) = y (i)
end
end
endfunction

// Returns a single entry of the residual
function r = resI(t,y,ydot,ind)
global coeffs

coeffs =y
if ind = 1 then

r = bndxa(t, U(A), Ux(A))
elseif ind == ncpts then

r = bndxb(t, U(B), Ux(B))
else

ptDer = getPtDer(ydot)
i = ceil((ind—1)/(p—1))
j = ind—1—(i—1)x(p—1)
r = f(t, colX(i, j), fastColPtU(i, j), fastColPtUx(i, j),
fastColPtUxx (i, j)) — ptDer(ind—1)
end
endfunction

// Approximates the Jacobian used for setting the initial spatial
derivative of the coefficients

function r = fjacD (ydot)
global coeffs t0 dy

inds = nonZerolnds (1)
y = coeffs
t = t0

mockYdot = ydot

for k = 1:size(inds) (1)
ind = inds (k)
mockYdot (1) = ydot (1)+dy
rdpl = resI(t, y, mockYdot, ind)
mockYdot (1) = ydot(1)—dy
r(ind,1) = (0.5%xrdpl — 0.5%xresI(t, y, mockYdot, ind))/dy

end
for i = 2:ncpts
inds = nonZerolnds (i)
mockYdot (i—1) = ydot(i—1)
for k = 1:size(inds) (1)
ind = inds (k)
mockYdot (i) = ydot (i)+dy
rdpl = resI(t, y, mockYdot, ind)
mockYdot (i) = ydot(i)—dy
r(ind,i) = (0.5%rdpl — 0.5%xresI(t, y, mockYdot, ind))/dy
end
end

endfunction

// Sets the initial temporal derivative of coefficients
function yOp = initCoeffsDer ()

95

fg = ones((p—1)xN+2, 1)
if jacMode = 0 then
[yOp,b,inf] = fsolve(fg, fsolD, atol % 0.1)
elseif jacMode = 1 then
[yOp,b,inf] = fsolve(fg, fsolD, fjacD, atol % 0.1)

end

if verbose > 0 then
disp (7 fsolve_info:.” 4+ string(inf))
disp (" fsolve _max_residual : .7 4+ string (max(abs(fsolD (yOp)))))
end
endfunction

// Residual function for time integration
function [r, ires] = res(t, u, up)
global coeffs
ptDer = getPtDer (up)
coeffs = u
saveColPtBasisVals (3)
r(1) = bndxa(t, U(A), Ux(A))
ind = 2
for i = 1:N
for j = 1:(p—1)
r(ind) = f(t, colX(i, j), fastColPtU(i, j), fastColPtUx(i, j
), fastColPtUxx (i, j)) — ptDer(ind—1)
ind = ind + 1
end
end
r(ncpts) = bndxb(t, U(B), Ux(B))
ires = 0
endfunction

function [coefs, status] = collocate(deg, nint, ti, tOut)
// Calculate the collocation points
global N
global p
global colX
global meshX
global ncpts
global numPts
global u0 allPts t0 tc

status = —1

t0 = ti

tc = t0

p = deg

N = nint

nepts = N % (p—1) + nconti
setBnds ()

meshX = buildMesh ()
if verbose > 0 then
disp ("probNum=" + string (probNum) + 7.p=" + string(p) + 7.N=" +
string (N))
if verbose > 1 then
tic ()

96

end
end

colX = zeros (N, p—1)

for i = 1:N

colX (i,:) = getGaussPts(meshX (i), meshX(i+1), p—1);
end

// Set the coefficients
if verbose > 0 then
disp (7 Calculating_initial_coefficients.”)
if verbose > 1 then
tic
end
end
initCoeffs ()
if verbose > 0 then
disp (” Coefficients.set.”)
if verbose > 1 then

time = toc ()
disp (" Elapsed _time:.” + string (time) 4+’ _seconds”)
tic

end
disp (7 Calculating._initial_derivative_of_coefficients.”)
end
coDer = initCoeffsDer ()
if verbose > 0 then
disp (" Derivative_of_coefficients._set.”)
if verbose > 1 then
time = toc ()
disp (" Elapsed _time:_.” 4 string (time) + ”._seconds”)
tic
end
disp (" Beginning .time._integration _.with DASKR_tolerance_of.” +
string (atol*0.1))
end

// Set DASSL options

info = list ([], 1, [], [], [], O, —ones(necpts,1), 0, 0, 0, O, [],
(1, 0)
ng = 0
deff(’[rts]o=cgrl(t,.y)’, ‘rts.=_.[1]")
// Call DASSL
if jacMode = 0 then
[r, nn] = daskr ([coeffs, coDer], t0, tOut, atol % 0.1, res, ng,
grl, info)
elseif jacMode = 1 then
[r, nn] = daskr([coeffs, coDer], t0, tOut, atol %= 0.1, res,
qjacRes, ng, grl, info)
end

if verbose > 0 then
disp (" Time_integration._.complete.”)

97

if verbose > 1 then

time = toc ()

disp (" Elapsed _time:.” 4+ string (time) + ”.seconds”)
end

end

global coeffs

for i = l:max(size (tOut))
coefs(:, i) = r(2:ncpts+1, 1)

end

coeffs = r(2:ncpts+1, size(r)(2))

te = r(1, size(r)(2))

status =1

endfunction

// Efficient approximation of Jacobian requested by DASKR.
function r = qjacRes(t, y, ydot, c¢j)

inds = nonZerolnds (1)

mockY =y

mockYdot = ydot

for k = 1:size(inds) (1)
ind = inds (k)
mockY (1) = y(1)+dy

mockYdot (1) = ydot (1)+dy

rpl = resI(t, mockY, ydot, ind)
rdpl = resI(t, y, mocdeot, ind)
mockY (1) = y(1)

mockYdot (1) = ydot()—dy
r(ind,1) = (0.5%xrpl — 0.5%resI(t,mockY,ydot, ind))/dy

r(ind,1) = r(ind,1) 4+ cj*(0.5%xrdpl — 0.5%xresI(t, y, mockYdot,

ind))/dy
end
for i = 2:ncpts
inds = nonZeroInds (i)
mockY (i—1) = y(i—1)
mockYdot (i—1) = ydot(i—1)
for k = 1:size(inds) (1)
ind = inds (k)
mockY (i) = y(i)+dy
mockYdot (i) = ydot (i)+dy
rpl = resI(t, mockY, ydot , ind)
rdpl = resI(t, y, mocdeot, ind)
mockY (1) = y(i)
mockYdot (i) = ydot () dy
r(ind,i) = (0. 5*rp1 — 0.5%xresI(t,mockY,ydot, ind))/dy
r(ind,i) = r(ind,i) + ¢j*(0.5%rdpl — 0.5xresI(t, y, mockYdot
 ‘ind)) /dy
end
end

endfunction

98

coreEPDE.sci

// Calculates a collocation solution of degree p with N intervals

// in x, and degree q with M subintervals in y. Stores the calculated
// coefficients in global coeffs

//function info = collocate (degX, intX, degY, intY, useFast, verbose)

function info = collocate (degs, ints, fg)

degX = degs (1)

if max(size(degs)) = 2 then
degY = degs(2)

else
degY = degs (1)

end

intX = ints (1)

if max(size(ints)) = 2 then
intY = ints(2)

else
intY = ints (1)

end

// Set global variables
global p N g M ncpts AC AD BC BD ncptX nceptY
global collnds xBndInds yBndInds cornlnds

p = degX
N = intX
q = degY
M = intY

neptY = M * (g—1) + 2)
neptX = (N % (p—1) + 2)
ncpts = neptX * neptY
info = —1

if verbose > 0 then

disp ("p=" + string(p) + 7.N=" 4 string (N) + 7_q=" + string(q) +

7 MET 4+ string (M))
end
setBounds ()

if verbose > 0 then
disp (7 Setting _.mesh, _knot ,_and_collocation._points.”)
end
// Set the mesh
prepareMesh ()

// Set the knot sequence
prepareKnots ()

// Set the collocation points
prepareColP ()

if verbose > 0 then

disp (" Points_set.”)
disp (”Saving._.reusable_b—spline_evaluations.”)

99

end

// Save basis values at mesh and col points
setSavedBasisVals ()
saveBoundaryEvals ()

if verbose > 0 then
disp (" Saved.”)

end

// Check if a first guess of coefficients was supplied
if argn(2) < 3 then

fg = zeros(ncpts,1)
end

// Send collocation to fsolve and save in global coeffs
global coeffs

coeffs (ncpts) = 0

collnds = saveCollnds ()

xBndInds = savexBndInds ()

yBndInds = saveyBndInds ()

cornlnds = saveCornInds ()

if verbose > 0 then
disp (" Solving._for_coefficients.”)
if verbose > 1 then
tic
end

end

jacMode = 1;
if jacMode = 0 then

[coeffs, b, info] = fsolve(fg, colConds, atolx0.1)
elseif jacMode = 1 then

[coeffs, b, info] = fsolve(fg, colConds, fjac, atolx0.1)
end

if verbose > 0 then
disp (7 Coefficients.set.”)
if verbose > 1 then
time = toc ()
disp (" Elapsed _time:.” + string (time) + ”_seconds”)

end
mprintf(” fsolve_info: %d\n”, info)
end
endfunction

// Calculates the residuals for given coefs for all of the collocation
// conditions.
function ¢ = colConds(coefs)

// Set coefs to global coeffs

100

global coeffs
coeffs = coefs
c¢(ncpts) =0

// Set x = A first
c(l) = savedU(1, 1, 1, 1) — bndA(C)
// Loop through the collocation points on x = A
for i = 1:M

for j = 1:(q—1)

c(i*q—i—q+j+2) = savedU(1, ixq—i—q+j+2, 1, 1) — bndAvals(i,
3)

end

end

c¢(neptY) = savedU (1, ncptY, 1, 1) — bndA(D)

// Loop through the collocation points in X
for i = 1:N
for j = 1:(p—1)

// Set the bottom boundary condition
c(neptY*(i*p—i—p+j+1)+1) =
savedU (i*p—i—p+j+2, 1, 1, 1) — bndCvals(i, j)

// Loop up through the collocation points in Y
for ii = 1:M
for jj = 1:(q-1)
c(neptY «(i*p—i—p+j+1)+ii*xq—ii—q+jj+2) =...
savedPDE (i, j, ii, jj)
end
end
// Set the top boundary condition
c(neptY*(i*xp—i—p+j+2)) = savedU (i*p—i—p+j+2, neptY, 1, 1) —
bndDvals (i, j)
end
end

// Set x =B
¢ ((neptX—1)*neptY+1) = savedU (neptX, 1, 1, 1) — bndB(C)

// Loop through the collocation points on x = B
for i = 1:M

for j = 1:(q—1)

¢ ((neptX—1)*neptY+ixq—i—q+j+2) = savedU (neptX, ixq—i—q+j—+2,
1, 1) — bndBvals(i, j)

end
end
c¢(ncpts) = savedU (ncptX, ncptY, 1, 1) — bndB(D)

endfunction

function r = fjac(coefs)
global coeffs t0 dy
inds = nonZerolnds (1)
coeffs = coefs

101

for k = 1:size(inds) (1)
ind = inds (k)
coeffs (1) = coefs (1)+dy
rpl = condI(ind)
coeffs (1) = coefs(1)—dy

r(ind,1) = (0.5%xrpl — 0.5%xcondI(ind))/dy

end
for i = 2:ncpts
inds = nonZerolInds (i)
coeffs (i—1) = coefs(i—1)
for k = 1:size(inds) (1)
ind = inds (k)
coeffs (i) = coefs(i)+dy
rpl = condI(ind)
coeffs (i) = coefs(i)—dy
r(ind,i) = (0.5%xrpl — 0.5%xcondI(ind))/dy
end
end

endfunction
function ¢ = condI(ind)

[line , rem] = getLine(ind)
if line = 1 then // x = A

¢ = savedU(line , rem)
elseif line == ncptX then // x =B
¢ = savedU(line , rem)

elseif rem = 1 then // y =C
¢ = savedU(line , rem)

elseif rem = ncptY then // y =D
¢ = savedU(line , rem)
else
cx = modulo(line —1,p—1)
cy = modulo(rem—1,q—1)
if cx = 0 then
cx = p—1
end
if cy = 0 then
cy = q—1
end

¢ = savedPDE (int ((line —2)/(p—1))+1, cx,int ((rem—2)/(q—1))+

end
endfunction

core2DPPDE.sci

global calcJacMode
calcJacMode = %F;

1, cy)

global coefTimes // Stores the times of the coefficients in allCoeffs

global t0 // The starting time given to DASKR
global tc

102

global allCoeffs
global t
global mockY mockYdot

// Calculates a collocation solution of degree p with N intervals
// in x, and degree q with M subintervals in y. Stores the calculated
// coefficients in global coeffs

function [c, status, iCoeffs, iCoDer] = collocate (deg, nints, ti, tOut,
iCoeffs , iCoDer)
status = 0 ;

// Check for proper number of input parameters

if “(argn(2) = 4 | argn(2) = 6) then
disp (” Unsupported._input _parameters.”)
return

end

// Set global variables
global p N g M ncpts AC AD BC BD ncptX ncptY t0 tc coeffs
global collnds xBndInds yBndInds cornlnds initY initYdot

p = deg
N = nints
q = deg
M = nints

neptY = M % (q—1) + 2)
neptX = (N % (p—1) + 2)
ncpts = ncptX * nceptY

if verbose > 0 then
disp ("p=" + string(p) + ".N=" + string (N) + "_.q=" + string(q) +

7 MET 4+ string (M))
end
setBounds ()

if verbose > 0 then
disp (7 Setting _mesh, _knot ,_and_collocation _points.”)
end
// Set the mesh
prepareMesh ()

// Set the knot sequence
prepareKnots ()

// Set the collocation points
prepareColP ()
if verbose > 0 then
disp (" Points._set.”)
disp (”Saving.reusable_b—spline._evaluations.”)
end

// Save basis values at mesh and col points
setSavedBasisVals ()

103

if verbose > 0 then
disp (7 Saved.”)

end
t0 = ti
tc = ti

collnds = saveCollnds ()

xBndInds = savexBndInds ()

yBndInds = saveyBndInds ()

cornlnds = saveCornInds ()

if verbose > 0 then
disp (7 Calculating_initial_coefficients.”)
if verbose > 1 then

tic
end
end
jacMode = 0
if argn(2) = 4 then
[coeffs , initErr] = initCoeffs ()
else
r = max(abs(fsol (iCoeffs)))
disp (" Previous_fsolve_residual:.” + string(r))
[coeffs, initErr] = initCoeffs(iCoeffs)
end

if initErr > atol then

status = —4
disp (" Initial_coefficients._could._not.meet_tolerance.”)
return

end

iCoeffs = coeffs
dasTol = max(initErr=0.1, atol) ;
if verbose > 0 then
disp (" Coefficients._set.”)
if verbose > 1 then
time = toc ()
disp (" Elapsed _time:.” 4+ string (time) +’._seconds”)
tic
end
disp (” Calculating._initial _derivative_of_coefficients.”)
end

jacMode = 0
if argn(2) = 4 then
coDer = initCoeffsDer ()
else
coDer = iCoDer
end

jacMode =1

if verbose > 0 then

104

disp (" Derivative_of_coefficients._set.”)
if verbose > 1 then

time = toc ()
disp (" Elapsed _time:.” 4+ string (time) + ”_seconds”)
tic

end
disp (" Beginning _time_integration _.with _DASKR_tolerance_of.” +
string (dasTol))
end

// INFO list which controls running of DASKR
info = list ([], 1, [], [], [], 0, ones(l,ncpts), O, 0, O, O, [], [],
0)

// Define the surfaces, which are required to call but not needed.
ng = 0
deff (' [rts]o=_grl(t,.y)’, 'rts_=_[1]")

// Call DASSL
if jacMode = 0 then
[r, nn] = daskr ([coeffs, coDer], t0, [t0, tOut], dasTol, resV ng
, grl, info)
elseif jacMode = 1 then
[r, nn] = daskr ([coeffs, coDer], t0, [tO, tOut], dasTol, resV,
qjacResV ;ng, grl, info)
end

// Check for failed first step
if size(r)(2) = 1 then
if verbose > 0 then
disp ("DASKR._failed con_first .step.”)
end
status = —1 ;
return
end

if verbose > 0 then
disp (" Time_integration._.complete.”)
if verbose > 1 then
time = toc ()
disp (" Elapsed _time:.” 4+ string (time) + ”.seconds”)
end
end

// Save results from DASKR
global coeffs coefTimes allCoeffs
coeffs = r(2:ncpts+1, size(r)(2))
allCoeffs = r(2:ncpts+1, :)

te = r(l, size(r)(2))

¢ = coeffs

status = 1;

iCoeffs = r(2:ncpts+1,1)

iCoDer = r(ncpts+2:2xncpts+1)

105

endfunction

// Efficient approximation of Jacobian requested by DASKR.
function r = qjacRes4(t, y, ydot, cj)

tic
inds = nonZerolnds (1)
mockY =y

mockYdot = ydot

for k = 1:size(inds) (1)
ind = inds (k)
mockYdot (1) = ydot (1)+dy
mockY (1) = y(1)+dy
rdpl = resI(t, y, mockYdot, ind)
rpl = resI(t, mockY, ydot, ind)
mockYdot (1) = ydot(1)—dy
mockY (1) = y(1)—dy
rdml = resI(t, y, mockYdot, ind)
rml = resI(t, mockY, ydot, ind)
mockYdot (1) = ydot (1)—2xdy
mockY (1) = y(1)—2xdy
rdm2 = resI(t, y, mockYdot, ind)
rm2 = resI(t, mockY, ydot, ind)
mockYdot (1) = ydot (1)+2xdy
mockY (1) = y(1)+2xdy
rdp2 = resI(t, y, mockYdot, ind)
rp2 = resl(t, mockY, ydot, ind)
r(ind,1) = (((rm2)/12) + ((—2xrm1)/3) + ((2xrpl)/3) + ((—rp2)
/12)) /dy
r(ind,1) = r(ind,1) + cj * (((rdm2)/12) 4+ ((—2%rdml)/3) + ((2%
rdpl) /3) + ((1dp2)/12))/dy
end
for i = 2:ncpts
inds = nonZerolnds (i)
mockY (i—1) = y(i—1)
mockYdot (i—1) = ydot(i—1)
for k = 1:size(inds) (1)
ind = inds (k)
mockYdot (i) = ydot(i)+dy
mockY (i) = y(i)+dy
rdpl = resI(t, y, mockYdot, ind)
rpl = resI(t, mockY, ydot, ind)
mockYdot (i) = ydot (i)—dy
mockY (i) = y(i)—dy
rdml = resI(t, y, mockYdot, ind)
rml = resI(t, mockY, ydot, ind)
mockYdot (i) = ydot (i)—2xdy
mockY (i) = y(i)—2xdy
rdm2 = resI(t, y, mockYdot, ind)
rm2 = resI(t, mockY, ydot, ind)
mockYdot (i) = ydot (i)+2xdy
mockY (1) = y(i)+2xdy
rdp2 = resI(t, y, mockYdot, ind)
rp2 = resI(t, mockY, ydot, ind)

106

r(ind,i) = (((rm2)/12) + ((—2%rm1)/3) + ((2xrpl)/3) + ((—rp2
)/12))/dy
r(ind,i) = r(ind,i) + ¢j * (((rdm2)/12) + ((—2xrdml)/3) +
((2%rdpl)/3) + ((—rdp2)/12))/dy
end
end
time=toc ()
disp (string (time) + ”_seconds.spent.in.qjacres4.”)
endfunction

// Efficient approximation of Jacobian requested by DASKR.
function r = qjacRes(t, y, ydot, c¢j)

inds = nonZerolnds (1)

mockY =y

mockYdot = ydot

for k = 1:size(inds) (1)
ind = inds (k)
mockY (1) = y(1)+dy

mockYdot (1) = ydot (1)+dy

rpl = resI(t, mockY, ydot, ind)
rdpl = resI(t, y, mocdeot, ind)
mockY (1) = y(1) 4

mockYdot (1) = ydot()—dy
r(ind,1) = (0.5%xrpl — 0.5%resI(t,mockY,ydot, ind))/dy
r(ind,1) = r(ind,1) 4+ cj*(0.5%xrdpl — 0.5%xresI(t, y, mockYdot,
ind)) /dy
end
for i = 2:ncpts
inds = nonZeroInds (i)
mockY (i—1) = y(i—1)
mockYdot (i—1) = ydot(i—1)
for k = 1:size(inds) (1)
ind = inds (k)
mockY (i) = y(i)+dy
mockYdot (i) = ydot (i)+dy
rpl = resI(t, mockY, ydot, ind)
rdpl = resI(t, y, mocdeot, ind)
mockY (1) = y(i)-d
mockYdot (i) = ydot(')fdy
r(ind,i) = (0.5%rpl — 0.5%xresI(t,mockY,ydot, ind))/dy
r(ind,i) = r(ind,i) 4+ cj*(0.5%xrdpl — 0.5xresI(t, y, mockYdot
 ind)) /dy
end
end
endfunction

function r = gjacResV (tin, y, ydot, cj)
global mockY mockYdot t

inds = nonZerolnds (1)
mockY =y

mockYdot = ydot

t = tin

107

mockY (1) = y(1)+dy

mockYdot (1) = ydot (1)+dy

rpl = feval (inds, resIV)

rdpl = feval(inds, resdIV)

mockY (1) = y(1)—dy

mockYdot (1) = ydot (1)—dy

rml = feval(inds, resIV)

rdml = feval(inds, resdIV)

r(inds,1) = (0.5%xrpl — 0.5%rml)/dy

r(inds,1) = r(inds,1) + cj*(0.5*xrdpl — 0.5%xrdml)/dy

for i = 2:ncpts
inds = nonZeroInds (i)
mockY (i—1) = y(i—1)
mockYdot (i—1) = ydot(i—1)
mockY (i) = y(i)+dy
mockYdot (i) = ydot (i)+dy
rpl = feval(inds, resIV)
rdpl = feval (inds, resdIV)
mockY (1) = y(i)—dy
mockYdot (i) = ydot(i)—dy
rml = feval(inds, resIV)
rdml = feval(inds, resdIV)
r(inds,i) = (0.5%rpl — 0.5%xrml)/dy
r(inds,i) = r(inds,i) + cj*(0.5xrdpl — 0.5%rdml)/dy
end
endfunction

function r=resIV (ind)

global mockY y t

r=resI(t, mockY, ydot, ind)
endfunction

function r=resdIV (ind, t)
global mockYdot ydot t
r=resI(t, y, mockYdot, ind)

endfunction

// Approximates the Jacobian used for setting the initial spatial
derivative of the coefficients

function r = fjacD (ydot)
global coeffs t0 dy

inds = nonZerolnds (1)
y = coeffs
t = t0

mockYdot = ydot
for k = 1:size(inds) (1)

ind = inds (k)

mockYdot (1) = ydot (1)+dy

rdpl = resI(t, y, mockYdot, ind)

mockYdot (1) = ydot(1)—dy

r(ind,1) = (0.5%rdpl — 0.5%xresI(t, y, mockYdot, ind))/dy
end

108

for i = 2:ncpts
inds = nonZeroInds (i)
mockYdot (i—1) = ydot(i—1)
for k = 1:size(inds) (1)
ind = inds (k)
mockYdot (i) = ydot(i)+dy
rdpl = resI(t, y, mockYdot, ind)
mockYdot (i) = ydot(i)—dy
r(ind,i) = (0.5%rdpl — 0.5%xresI(t, y, mockYdot, ind))/dy
end
end
endfunction

// Approximates the Jacobian used for setting the initial coefficients

function r = fjac (y)
global coeffs t0 dy
inds = nonZerolnds (1)
coeffs =y

for k = 1:size(inds) (1)
ind = inds (k)
coeffs (1) = y(1)+dy
[xind ,yind] = toCoord(ind)
rpl = savedU(xind ,yind)
coeffs (1) = y(1)—dy
r(ind,1) = (0.5%xrpl — 0.5%savedU(xind,yind))/dy

end
for i = 2:ncpts
inds = nonZeroInds (i)
coeffs(i—1) = y(i—1)
for k = 1:size(inds) (1)
ind = inds (k)
coeffs (i) = y(i)+dy
[xind ,yind] = toCoord(ind)
rpl = savedU(xind ,yind)
coeffs (i) = y(i)-dy
r(ind,i) = (0.5%xrpl — 0.5%savedU(xind,yind))/dy
end
end

endfunction

function u = savedUV (ind)
[xind ,yind] = toCoord(ind)
u = savedU (xind ,yind)
endfunction

function r = fjacV (y)
global coeffs t0 dy

inds = nonZerolnds (1)
coeffs (1) = y(1)+dy

rpl = feval(inds, savedUV)
coeffs (1) = y(1)—dy

rml = feval (inds, savedUV)

109

r(inds,1) = (0.5%xrpl — 0.5%rml)/dy

for i = 2:ncpts
inds = nonZerolInds (i)
coeffs(i—1) = y(i—1)
coeffs (i) = y(i)+dy
rpl = feval(inds, savedUV)
coeffs (i) = y(i)—dy
rml = feval (inds, savedUV)
r(inds,i) = (0.5%rpl — 0.5%rml)/dy
end
endfunction

// Efficient version of F which only makes the neccesarry evaluations.
// t is the time for which the PDE is being evaluated at.
// x/y is the index (not value) of the point to evaluate at.

// x=1->x=A, x=2->x=colX(l, 1), ..., x = ncptX —> x =B
function r = resF(t, x, vy)

used = usedFEvals ()

evals = zeros (5, 1)

if used(1l) then

evals (1) = savedU(x, y, 1, 1)
end
if used(2) then

evals (2) = savedU(x, y, 2, 1)
end
if used(3) then

evals (3) = savedU(x, y, 1, 2)
end
if used(4) then

evals (4) = savedU(x, y, 3, 1)
end
if used(5) then

evals (5) = savedU(x, y, 1, 3)

end
x = getPtFromlInd (x)
y = = getPtFromInd (y, %T)

r = f(t, x, y, evals(1l), evals(2), evals(3), evals(4), evals(5))
endfunction

function r = resFV(x, y)

global t
used = usedFEvals ()
evals = zeros (5, 1)

if used(1l) then

evals (1) = savedU(x, y, 1, 1)
end
if used(2) then

evals (2) = savedU(x, y, 2, 1)
end
if used(3) then

evals (3) = savedU(x, y, 1, 2)
end
if used(4) then

110

evals (4) = savedU(x, y, 3, 1)
end
if used(5) then

evals (5) = savedU(x, y, 1, 3)

end
x = getPtFromInd (x)
y = = getPtFromInd (y, %T)

r = f(t, x, y, evals(1l), evals(2), evals(3), evals(4), evals(5))
endfunction

// Efficient version of bnd. condition
// t is the time to evaluate the boundary condition at
// y is the index of the point in y to evaluate at.

function r = resBndxa(y, t)
used = usedBndEvals(’'E’")
evals = zeros (3, 1)

if used(1l) then

evals (1) = savedU(1, y, 1, 1)
end
if used(2) then

evals (2) = savedU (1, y, 2, 1)
end
if used(3) then

evals (3) = savedU(1, y, 1, 2)
end
pt = getPtFromlInd(y, %T)
r = bndxa(pt, t, evals(l), evals(2), evals(3))

endfunction

// Efficient version of bnd. condition
// t is the time to evaluate the boundary condition at
// y is the index of the point in y to evaluate at.
function r = resBndxb(y, t)
used = usedBndEvals('E")
evals = zeros (3, 1)
if used(1l) then
evals (1) = savedU(neptX, y, 1, 1)
end
if used(2) then
evals (2) = savedU (ncptX, y, 2, 1)
end
if used(3) then
evals (3) = savedU(ncptX, y, 1, 2)
end
pt = getPtFromInd(y, %T)
r = bndxb(pt, t, evals(1l), evals(2), evals(3))

endfunction

// Efficient version of bnd. condition
// t is the time to evaluate the boundary condition at
// vy is the index of the point in y to evaluate at.
function r = resBndyc(x, t)

used = usedBndEvals('E")

111

evals = zeros (3, 1)
if used(1l) then

evals (1) = savedU(x, 1, 1, 1)

end
if used(2) then

evals (2) = savedU(x, 1, 2, 1)

end
if used(3) then
evals (3) = savedU(x,
end
pt = getPtFromlnd (x)
r = bndyc(pt, t, evals(1l), evals
endfunction

// Efficient version of bnd.

1, 1, 2)

(2), evals(3))

condition

// t is the time to evaluate the boundary condition at
// y is the index of the point in y to evaluate at.

function r = resBndyd(x, t)
used = usedBndEvals('E")
evals = zeros (3, 1)
if used(1l) then
evals (1) = savedU(x, ncptY,

end
if used(2) then

1, 1)

evals (2) = savedU(x, ncptY, 2, 1)

end
if used(3) then
evals (3) = savedU(x, ncptY,
end
pt = getPtFromInd (x)
r = bndyd(pt, t, evals(1l), evals
endfunction

1, 2)

(2), evals(3))

// Returns the value of a point from its index.

// ind is the index of the point.

// isY is a boolean to specify if it

function pt = getPtFromlInd(ind, isY)
if argn(2) < 2 then

is a point in x(T) or Y(F)

isY = %F
end
select isY
case %F then
if ind = 1 then
pt = A
elseif ind == ncptX then
pt =B
else
[inter , colp] = getColPt(ind, isY)
pt = colX (inter , colp)
end
case %I then
if ind = 1 then
pt = C
elseif ind == ncptX then

112

pt =D
else
[inter , colp] = getColPt(ind, isY)
pt = colX(inter , colp)
end
end
endfunction

// Sets global coeffs to an interpolation of the initial conditions
// using fsolve.
function [coeffs ,r] = initCoeffs(iCoeffs)
if argn(2) 0 then
iniCoeffs ()
r = atol;
else
coeffs = iCoeffs
r = max(abs(fsol(iCoeffs)))

end
//coeffs = ones(ncpts, 1)
info = 4

if r < atol then
disp ("Reusing_last_initial _coeffs.”)

return
elseif jacMode = 0 then
[coeffs , n, info] = fsolve(coeffs, fsolV, atol)
elseif jacMode = 1 then
[coeffs , n, info] = fsolve(coeffs, fsolV, fjacV, atol)
end
rml = r;

r = max(abs(fsol(coeffs)))

if verbose > 1 then
disp (" fsolve.info:.” 4+ string(info))
disp (7 fsolve._residual:.” + string(r))
end
endfunction

// Residual function for setting the initial condition so that they are
// interpolated. Parameter coefs gets set as the global coeffs and
// residual is calculated by the difference from the value of the
// collocation solution to the inital condition.
function ¢ = fsol(coefs)
// Set coefs to global coeffs
global coeffs
coeffs = coefs

// Set x = A first
c(nepts) =0
¢(1) = uinit (A, C) — savedU(1, 1)
// Loop through the collocation points on x = A
for i = 1:M
for j = 1:(gq—1)

113

c(i*q—i—q+j+2) = uinit (A, colY(i,j)) — savedU(1l, ixq—i—q+j
+2)
end
end
c¢(ncptY) = uinit (A, D) — savedU(1, ncptY)

// Loop through the collocation points in X
for i = 1:N
for j = 1:(p—1)

// Save the reused collocation point
colP = colX (i, j)

// Set the bottom boundary condition
xInd = (i—1) % (p—1) + j + 1
c¢(neptY*(i*xp—i—p+j+1)+1) = uinit (colP, C) — savedU(xInd, 1)

// Loop up through the collocation points in Y
for ii = 1:M
for jj = 1:(q—1)
c(neptY(ixp—i—p+j+1)+ii*xq—ii—q+jj+2) =...
uinit (colP, colY(ii, jj)) — savedU(xInd, (ii — 1) =
(a=1) + jj + 1)
end
end
// Set the top boundary condition
c¢(neptY*(i*p—i—p+j+2)) = uinit (colP, D) — savedU(xInd, ncptY

end
end

// Set x =B
¢ ((neptX—1)*ncptY+1) = uinit (B, C) — savedU(ncptX, 1)

// Loop through the collocation points on x = B
for i = 1:M
for j = 1:(q—1)
¢ ((neptX—1)*neptY+i*q—i—q+j+2) =...
uinit (B, colY (i, j)) — savedU(ncptX, ixq—i—q+j+2)
end
end
c¢(ncpts) = uinit (B, D) — savedU (ncptX, ncptY)
endfunction

function ¢ = fsolV (coefs)
// Set coefs to global coeffs
global coeffs

coeffs = coefs
evalX = []
evalY = []

if (N=M || p’=q) then
disp (" fsolV _only _works_with N=M_and._p=q”)

114

abort

return
end
evalX (1) = A
evalY (1) = C
ind =1
for 1 = 1:N
for j = 1:p—1
ind = ind + 1
evalX (ind) = colX (i, j)
evalY (ind) = colY (i, j)
end
end
evalX (neptX) = B
evalY (neptY) =D
tru = feval (evalX, evalY, uinit)

// Set x = A first
¢ = [l
tru = tru — feval (1:ncptX, 1l:ncptY, savedU)
for i = 1l:ncptX
c(((i—1)*ncptY+1:(i*xncptY))) = tru(i,:)’
end
endfunction

// Creates a first guess of the coefficients for fsolve before solving
for the
// initial conditions.

function iniCoeffs ()
//ind = 1

// Set coefs to global coeffs
global coeffs

// Set x = A first
coeffs (ncpts) = 0
coeffs (1) = uinit (A, C)

// Loop through the collocation points on x = A
for i = 1:M
for j = 1:(q—1)
coeffs (ixq—i—q+j+2) = uinit (A, colY (i, j))
end
end

coeffs (neptY) = uinit (A, D)
// Loop through the collocation points in X
for i = 1:N
for j = 1:(p—1)
// Save the reused collocation point

colP = colX (i, j)

115

// Set the bottom boundary condition
coeffs (neptY«*(i*p—i—p+j+1)+1) = uinit (colP, C)

// Loop up through the collocation points in Y
for ii = 1:M
for jj = 1:(q—1)
coeffs (neptY «(isp—i—p+j+1)+ii*xq—ii—q+jj+2) =...
uinit (colP, colY (ii, jj))
end
end

// Set the top boundary condition
coeffs (neptY*(i*p—i—p+j+2)) = uinit (colP, D)
end
end

// Set x =B
coeffs ((neptX—1)*ncptY+1) = uinit (B, C)

// Loop through the collocation points on x = B
for i = 1:M
for j = 1:(q—1)
coeffs ((neptX—1)*ncptY+i*q—i—q+j+2) = uinit (B, colY (i, j))
end
end
coeffs (ncpts) = uinit (B, D)
endfunction

// Residual function used for setting the derivative of coefficients

initial
// guess given to DASKR.
function r = fsolD (coDer)

[r, ires] = resV(t0, coeffs, coDer)
endfunction

// Returns the initial guess of derivative of the coefficients w.r.t
time
// Uses fsolve to minimize the residual at the inital time with the
// initial coefficients.
function yOp = initCoeffsDer (fg)
if argn(2) = 0 then
fg = zeros(ncpts, 1)
end
yOp = fg
endfunction

// Residual function which is used by DASKR.
// t is the current time to calculate the residual at
// u is the coefficients passed in by DASKR
// up is the derivative w.r.t of the coefficients
function [c, ires] = res(t, u, up)

global coeffs

//tic

116

ptDer = getPtDer (up)
coeffs = u

// Loop through the boundary conditions on x = A
for i = 1l:ncptY

c(i) = resBndxa(i, t)
end

// Loop through the vertical lines
for 1 = 2:(ncptX — 1)
c((i—1)*ncptY+1) = resBndyc(i, t)
for j = 2:(neptY — 1)
c((i—1)*ncptY+j) = resF(t, i, j) — ptDer((i—1)*ncptY+j)
end
c(i*ncptY) = resBndyd(i, t)
end

// Loop through boundary conditions on x = B
for i = 1l:ncptY
¢ ((ncptX—1)*xncptY+i) = resBndxb(i, t)

end

ires = 0

// time=toc ()

//disp(string (time) + 7 seconds spent in res.”)
endfunction

function [c, ires] = resV(tin, u, up)

//tic

global coeffs t

t = tin
ptDer = getPtDer (up)
coeffs = u

// Loop through the boundary conditions on x = A
c¢(l:ncptY) = feval (1:neptY, t, resBndxa)

c((1:(neptX — 2))*ncptY+1) = feval (2:(ncptX — 1), t, resBndyc)’
//colRes = feval (2:(ncptX — 1), 2:(ncptY — 1), resFV)
c((2:(neptX — 1))*ncptY) = feval (2:(ncptX — 1), t, resBndyd)’

// Fill col pt values
for i = 1:(neptY — 2)
c(i*neptX+(2:(neptX — 1))) = feval (i+1,2:neptX—1, resFV) — ptDer
(i*neptX+(2:(neptX — 1))) 7
end

// Loop through boundary conditions on x = B

¢ ((neptX—1)*ncptY+(1:neptY)) = feval (1:neptY, t, resBndxb)
ires = 0

//lcc, ires] = res(tin, u, up)

//disp (max(cc—c))

//time=toc ()

117

//disp (string (time) 4+ ” seconds spent in resV.”)
endfunction

function [c¢, ires] = res2(t, u, up)
global coeffs

ptDer = getPtDer (up)
coeffs = u

clear evalX evalY
evalX (1) = A
evalX (neptX) = B
evalY (1) = C
evalY (neptY) =D
ind = 2
if neptX == ncptY then
for i = 1:N
for j = 1l:p—1
evalX(ind) = colX (i, j)
evalY (ind) = colY (i, j)

end
end
else

for i = 1:N
for j = 1:p—1
evalX (ind) = colX (i, j)

end
ind = 2
for i = 1:M
for j = 1:q-1
evalY (ind) = colY (i, j)

end
end

// Loop through the boundary conditions on x = A
for i = 1l:ncptY
c(i) = bndxa(evalY (i), t)

end

// Loop through the vertical lines
for i = 2:(neptX — 1)
c((i—1)*ncptY+1) = bndyc(evalX (i), t)
for j = 2:(ncptY — 1)
c((i—1)*ncptY+j) = resF(t, i, j) — ptDer((i—1)*ncptY+j)
f(t, evalX (i), evalY(j))
c((i—1)*neptY+j) = — ptDer((i—1)*ncptY+j)
end
c(i*ncptY) = bndyd(evalX (i), t)
end

118

// Loop through boundary conditions on x = B
for i = 1l:ncptY
¢ ((neptX—1)*ncptY+i) = bndxb(evalY (i), t)
end
ires = 0
endfunction

// Returns the indth residual as would appear from the res() function
// given input t, u, up

function ¢ = resI(t, u, up, ind)

global coeffs

coeffs = u

[line , rem] = getLine(ind)

if line = 1 then // x = A
¢ = resBndxa(rem, t)

elseif line = ncptX then // x =B
¢ = resBndxb(rem, t)

elseif rem = 1 then // y =C
¢ = resBndyc(line , t)

elseif rem = ncptY then // y =D
¢ = resBndyd (line, t)

else
coeffs = up
ptDer = savedU(line , rem, 1, 1)
coeffs = u

¢ = resF(t, line, rem) — ptDer
end
endfunction

// Returns the derivative w.r.t of the condition points from a given
// derivative w.r.t of the b—spline coefficients.
function ptDer = getPtDer(coDer)

global coeffs

temp = coeffs

coeffs = coDer

ptDer(ncpts) = 0
for i = 1l:ncptY

ptDer(i) = savedU(1, i, 1, 1)
end

for xInd = 2:ncptX — 1
ptDer ((xInd —1)*ncptY+1) = savedU(xInd, 1, 1, 1)
for yInd = 2:ncptY — 1
ptDer ((xInd —1)*ncptY+yInd) = savedU(xInd, yInd, 1, 1)
end
ptDer (xInd*ncptY) = savedU(xInd, ncptY, 1, 1)
end

for i = 1l:ncptY
ptDer ((neptX—1)*ncptY+i) = savedU (nceptX, i, 1, 1)

end

coeffs = temp

119

endfunction

// Evaluates the known solution at the time of the collocation solution.

function z = truu(x, y)
z = correct (x, y, tc)
endfunction

probsBVODE.sci

// Specifies the bounds on x for solving the DE
function setBounds ()

global A B

select probNum

case 1 then

A=0
B=2
case 2 then
A=0
B =2
end
endfunction
function y = actual(x) // The actual answer

select probNum
case 1 then

y = (1/6)%(x"3)x(%e"x) —(5/3)*x*(%e"x)+2%(%e"x)—x—2
case 2 then

y =x * (%e"x — %e)

end
endfunction
function y = truu(x)
y = actual (x)
endfunction

// The right hand side of PDE goes here
function y = PDE(coeff , x)
select probNum
case 1 then
y = Yxx(coeff |, x) — 2 % Yx(coeff |, x) + Y(coeff, x) — xx(%e"x) +
X
case 2 then
y = Yxx(coeff, x) — %e"x x (x+2)
end
endfunction

probsPPDE.sci

// Problem parameters
global eps

120

eps = 1/16;

function setBnds ()
global A B
select probNum
case 1 then

A=0
B=1
case 2 then
A=0
B=1
end
endfunction
function r = bndxa(t, u, u_x)

select probNum
case 1 then
r=u— 0.5+ 0.5 % tanh((—0.5%t—0.25) /(4xeps))
case 2 then
r=u
end
endfunction

function r = bndxb(t, u, u_x)
select probNum
case 1 then
r = 0.5 % tanh((0.75—-0.5%t)/(4xeps))—0.5 + u
case 2 then
r=u
end

endfunction

function y = uinit (x)
select probNum
case 1 then
y = 0.5 — 0.5 % tanh((x—0.25)/(4%eps))
case 2 then
y =2 % sin(2 * %pi * x)
end
endfunction

function y = f(t, x, u, ux, u.xx)
select probNum
case 1 then
y = eps * U_XX — U * U_X
case 2 then
y = eps * U_XX
end
endfunction

function y = correct (x, t)
select probNum
case 1 then
y = 0.5 — 0.5 % tanh((x—0.5%t—0.25) / (4xeps))

121

case 2 then
y =2 % sin(2x %pi *x x) x %e —(t*(%pi~2)/4)
end
endfunction

function y = trux(x)
select probNum
case 1 then
y = —1.25 % sech(1.25xtc — 2.5%xx + 0.625) "2
case 2 then
y =4 % %pi * cos(2 * %pi * x) x %e"—(tcx(%pi~2)/4)
end
endfunction

function y = truu(x)
y = correct(x, tc)
endfunction

probsEPDE.sci

// The PDE to be satisfied at collocation points
// Use this function to evaluate at any point (x, y)
global eps
eps = 0.1
function p = f(x, y)
select probNum
case 1 then
p = U(x,y,3,1)+U(x,y,1,3) —
x *x %e’y
case 2 then
p = U(X,Ya331)+U(X7Y7133) -
(x"2 4+ y°2) * %e” (xxy)
case 3 then
p = U(x,y,3,1) + U(x,y,1,3) + (cos(xty)+cos(x—y))
end
endfunction

// Evaluates the PDE at a collocation point. xi and yi are the interval
// in x and y respectovely, while xj and yj are the index of the
collocation
// point within that interval.
function p = savedPDE(xi, xj, yi, vj)
xInd = (xi—1)*(p—1)+xj+1
yInd = (yi—1)x(q—1)+yj+1
x = colX (xi, xj)
y = colY (yi, vij)
select probNum
case 1 then
p = savedU (xInd,yInd,3,1)+savedU(xInd ,yInd,1,3) —
x x %e’y
case 2 then

p = savedU(xInd ,yInd,3,1)+savedU (xInd,yInd,1,3) —

122

(x"2 4+ y°2) * %e” (xxy)
case 3 then
p = savedU (xInd,yInd,3,1)+savedU(xInd,yInd,1,3)+(cos (x+y)+cos (x—
v))
end
endfunction

// Boundary condition along x = A
function z = bndA(y)
z= truu (A, y)

return
select probNum
case 1 then

z =0
case 2 then

z =1
case 3 then

z = cos(y)
end

endfunction

// Boundary condition along x = B
function z = bndB(y)
z = truu(B, y)
return
select probNum
case 1 then
z =2 x %e'y
case 2 then
z = %e (2 % y)
case 3 then
z = —cos(y)
end
endfunction

// Boundary condition along y = C
function z = bndC(x)
z = truu(x, C)
return
select probNum
case 1 then
z = X
case 2 then
z =1
case 3 then
z = cos(x)
end
endfunction

// Boundary condition along y =D
function z = bndD(x)

z = truu(x, D)

return

select probNum

123

case 1 then

z = %e * x
case 2 then

z = %e"x
case 3 then

z =0
end

endfunction

// Specifies the bounds on x and y for solving the PDE

function setBounds ()
global AB CD
select probNum
case 1 then

=0

=1

=0

=1

2 then

=0

=1

=0

=1

case 3 then

=0

= %pi

=0

= %pi

case

gaw» Taw»

gQwe

end
endfunction

// End functions defining the PDE being solved
/!

// Information about the actual solution to the PDE, used for testing

// The true solution
function z = truu(x, y)
select probNum

case 1 then
z = x * %e’y
case 2 then
z = %e"(x % y)
case 3 then
z = cos(x) x cos(y)
end
endfunction

// The true solution
function z = trudx(x, y)
select probNum
case 1 then

z = %e’y

124

case 2 then
z =y % %e’(x *x y)
case 3 then
z = —sin(x) x cos(y)
end
endfunction

// The true solution
function z = trudy(x, y)
select probNum
case 1 then
z =x *x %e’y
case 2 then
z = xx %e"(x * y)
case 3 then
z = cos(x) x —sin(y)
end
endfunction

function z = trudxy(x, y)
select probNum
case 1 then
z = %e’y
case 2 then
z = (xxy+1)x %e’(x * y)
case 3 then
z = sin(x)*sin(y)
end
endfunction

// End actual solution information

probs2DPPDE.sci

global eps // Problem parameter
eps = 0.1;

// The PDE which is to be satsisfied at the collocation points
function r = f(t, x, y, u, ux, u.y, uUXx, u.yy)
select probNum
case 1 then
// Heat diffusion
r = eps * (u-xx + u.yy)
case 2 then
// Burgers equation
r = eps * (uxx + u_yy) — u * (u.x + u.y)
end
endfunction

// The PDE which is used when calculating the jacobian
function p = jacPDE(xi, yi)

125

select probNum
case 1 then
// Heat diffusion
p = savedU(xi, yi, 3, 1) + savedU(xi, yi, 1, 3)
case 2 then
// Burgers equation
p = savedU(xi, yi, 3, 1) + savedU(xi, yi, 1, 3) — savedU(xi,yi
,1,1) x(savedU (xi, yi, 2, 1) + savedU(xi, yi, 1, 2))
end
endfunction

// Gives the initial conditions of a problem
function z = uinit(x, y)
select probNum
case 1 then
// z = sin(xx%pi/2) * sin (yx%pi/2)
z = correct(x, y, t0)
case 2 then
2= 1/ (14 % ((x+y)/(2 % eps)))
end
endfunction

// Specifies which evaluations must be made to evaluate the boundary
// conditions. The indices of used correspond to U, Ux, and Uy.
function used = usedBndEvals(letter)
select probNum
case 1 then
used = [%T, %F, %F]
case 2 then
used = [%WT, %F, %F]
end
endfunction

// Specifies which evaluations must be made to evaluate the PDE.
// The indices of used correspond to U, Ux, Uy, Uxx, Uyy
function used = usedFEvals ()
select probNum
case 1 then
used = [%F, %F, %F, %T, %T|
case 2 then
used = [%T, %T, %T, %T, %T|
end
endfunction

// Boundary condition along x = A
function r = bndxa(y, t, u, ux, u.y)
select probNum
case 1 then
r =u
case 2 then
r =u — correct(A, y, t)
end
endfunction

126

// Boundary condition along x = B
function r = bndxb(y, t, u, ux, u.y)
select probNum
case 1 then
r = u
case 2 then
r = u — correct (B, y, t)
case 3 then
r =u — correct (B, y, t)
end
endfunction

// Boundary condition along y = C
function r = bndyc(x, t, u, ux, u.y)
select probNum
case 1 then
r = u
case 2 then
r = u — correct(x, C, t)
end
endfunction

// Boundary condition along y =D
function r = bndyd(x, t, u, ux, u.y)
select probNum
case 1 then

r=u
case 2 then
r = u — correct(x, D, t)

end

endfunction

// Specifies the bounds on x and y for solving the PDE
function setBounds ()

global ABCD

select probNum

case 1 then

A=0
B =2
C=0
D=2
case 2 then
A=0
B=1
C=0
D=1
end
endfunction

// The known true solution to the PDE

function z = correct(x, y, t)
if calcJacMode then
z =0
return

127

end
select probNum
case 1 then
z = sin ((%pi/2) * x) * sin((%pi/2) * y) * %e”—(t*xeps*((%pi/(B-A)
)2 + (%pi/(D-C))"2))
case 2 then
z =1/ (1 + %e” ((x+y—t) /(2 * eps)))
end
endfunction

function z = truu(x,y)
z = correct (x,y, tc)
endfunction

function z = trudx(x, y)
z = trudxt(x, y, tc)
endfunction
function z = trudxt(x, y, t)
select probNum
case 1 then
z = cos ((%pixx) /2)*sin ((%pixy) /2)*(%pi/2)*x%e” —((%pi~2/2)*eps*t)
case 2 then
z = —(%e" ((—ttxty) /(2xeps))) /((2xeps) x(%e” ((—t+xty) /(2% eps)) +1)
“2)
end
endfunction

function z = trudy(x, y)
z = trudyt(x, y, tc)
endfunction
function z = trudyt(x, y, t)
select probNum
case 1 then
z = sin ((%pixx) /2)xcos ((%pixy) /2)*(%pi/2)*x%e” —((%pi~2/2)*epsx*t)
case 2 then
z = —(%e” ((—t+xty) /(2%eps))) /((2xeps) *(Y%e” ((—t4x+ty) /(2xeps)) +1)
“9)
end
endfunction

function z = trudxy(x, y)
z = trudxyt(x, y, tc)
endfunction
function z = trudxyt(x, y, t)
select probNum
case 1 then
z = cos((%pixx)/2) * cos((%pixy)/2) * (1/4)% %pi~2 = %e” —((1/2)
x %pi"2 * eps x t)
case 2 then

z = ((50%x%e" (10%(—t+x+y)

V) /(%™ (5% (—t4+x+y))+1)"3)) — ((25x%e
T(5x(—ttxty)))/ ((%e” (5% (—

t+x+y))+1)°2))
end

128

endfunction

err.sci

// Weight function for HBI
function y = gammaHBI(j, s, w)

y =20
for i = l:max(size(w))
y=y + (1/((3) = w(i)))
end
for 1 = l:max(size(s))
if i "= j then
Y=y 2 s (1/(s(i) — s(i)))
end
end
endfunction

// Weight function for HBI
function y = eta(x, j, s)
y =1
for r = l:max(size(s))
if r "= j then
y =y * (x = s(r))
end
end
endfunction

// Weight function for HBI
function y = eta2(x, j, s)
y = eta(X7 j) S)A2

endfunction

// Weight function for HBI
function y = phi(x, j, w)

y =1
for r = l:max(size (w))
if r "= j then
y =y * (x —w(r))
end
end
endfunction

// Weight function for HBI
function y = G(x, j, s, w)
y = (phi(x, j, w) * eta2(x, —1, s))/(phi(w(j), j, w) = eta2(w(]),
*17 S))

endfunction
// Weight function for HBI

function y = Hsup(x, j, s, w)
y = (eta2(x, s S) * phi(X, -1, W))/(eta’2(s(j)7 s S) * phi(S(j),

129

-1, w))

endfunction

// Weight function for HBI
function y = Hbar(x, j, s, w)

y = (x — s(j)) = Hsup(x, j, s, w)

endfunction

// Weight function for HBI
function y = H(x, j, s, w)

y=(1— (x—s(j)) * gammaHBI(j, s, w)) =

endfunction

Hsup(x7 j) S? W)

// Returns Gaussian quadrature weights for k points
function wts = getQuadWts (k)

select k
case 5 then

case 7

case 9

o O o oo

[evian B en I an e M @)

OO OO OO OO

OO OO O oo

OO O OO oo

.2369268850561891
.4786286704993665
.5688888888888889
.4786286704993665
.2369268850561891

.1713244923791704
.3607615730481386
.4679139345726910
.4679139345726910
.3607615730481386
.1713244923791704

.1294849661688697
.2797053914892766
.3818300505051189
.4179591836734694
.3818300505051189
.2797053914892766
.1294849661688697

.1012285362903763
.2223810344533745
.3137066458778873
.3626837833783620
.3626837833783620
.3137066458778873
.2223810344533745
.1012285362903763

.0812743883615744
.1806481606948574
.2606106964029354
.3123470770400029
.3302393550012598
.3123470770400029
.2606106964029354

0.1806481606948574
0.0812743883615744

wts(8)
wts (9)

end

endfunction

// Returns numQp gaussian quadrature points and their weights
function [pts, wts] = getQuadPtsWts(meshL, meshH, numQp)

pts getGaussPts (meshL, meshH, numQp)

wts = getQuadWts (numQp)
endfunction

// Function which returns the appropriate superconvergent points to use
for

// the SCI on interval ind, on meshP having nint intervals, and for a

// collocation solution of degree deg.

function w = getsciW (ind , meshP, deg, nint)

// Get the superconvergent points internal to the subinterval
internal = scNonMeshP (meshP (ind:ind+1), deg, 1)

// External points depend on location of the interval
if ind = 1 then // Need to take both external from the next
interval
if deg = 4 then
// Only one scp so need to use next mesh point
ext (1) = scNonMeshP (meshP (2:3), 4, 1)
ext (2) = meshP(3)
else
// Take the first two scp
ext = scNonMeshP (meshP (2:3), deg, 1)(1:2)
end
elseif ind = nint then // Need to take both from last interval
if deg = 4 then
// Need to take meshpoint also
ext (1) = scNonMeshP (meshP (nint —1:nint), 4, 1)
ext (2) = meshP(nint —1)
else
// Take the last two scp
ext = scNonMeshP (meshP (nint —1:nint), deg, 1)(deg—4:deg—3)
end
else
// Take last scp from last interval and first from next interval
ext (1) = scNonMeshP (meshP (ind —1:ind) ,deg,1) (deg—3)
ext (2) = scNonMeshP (meshP (ind+1:ind+2) ,deg,1) (1)
end

// Combine the internal and external points
w = gsort ([internal;ext], 'g’, i)
endfunction

// Calculates and returns all the non—mesh super convergent points for
// meshP and deg. The values to calculate these points are taken from
// the BACOLI code

function p = scNonMeshP (meshP, deg, nint)

131

// Index for populating the points
ind =1

// Loop over the subintervals

for i = 1:nint
// Calculate h for this subinterval
h = meshP(i+1) — meshP (i)

// Split on deg, which determines the number of scNonMeshP
if deg = 4 then // 1 SC point

p(ind) = meshP(i) + 0.5 = h

ind = ind+1
elseif deg = 5 then // 2 sc points

p(ind) = meshP (i) + 0.3110177634953864 * h

ind = ind+1
p(ind) = meshP (i) + 0.6889822365046136 * h
ind = ind+1

elseif deg = 6 then // 3 sc points

p(ind) = meshP (i) + 0.2113248654051871 * h
ind = ind+1
p(ind) = meshP(i) + 0.5 % h
ind = ind+1
p(ind) = meshP (i) + 0.7886751345948129 % h
ind = ind+1

elseif deg = 7 then // 4 sc points

p(ind) = meshP (i) + 0.1526267046965671 * h

ind = ind+1
p(ind) = meshP (i) + 0.3747185964571342 x h
ind = ind+1
p(ind) = meshP (i) + 0.6252814035428658 * h
ind = ind+1
p(ind) = meshP (i) + 0.8473732953034329 x h
ind = ind+1

elseif deg = 8 then //

sc points

ot

p(ind) = meshP (i) + 0.1152723378341063 * h
ind = ind+1
p(ind) = meshP (i) + 0.2895425974880943 x h
ind = ind+1
p(ind) = meshP(i) + 0.5 = h
ind = ind+1
p(ind) = meshP (i) + 0.7104574025119057 * h
ind = ind+1
p(ind) = meshP(i) + 0.8847276621658937 x h
ind = ind+1

else
p=[]//p(ind) = —1;

end

end
endfunction

132

// Returns the points between pL and pH to be interpolated by the L2 for
// a collocation solution of degree deg.
function pt = getL2pts(pL, pH, deg)

diam = pH — pL

select deg

case 4 then
pt (1) = pL
pt(2) = pL + diam =% 0.302331973224813
pt(3) = pL + diam * 0.697668026790731
pt(4) = pH

case 5 then
pt (1) = pL
pt(2) = pL + diam =% 0.179424182143275
pt(3) = pL + diam % 0.5
pt(4) = pL + diam * 0.820575567392312
pt(5) = pH

case 6 then
pt (1) = pL
pt(2) = pL + diam * 0.143465814421734
pt(3) = pL + diam * 0.37051884018424
pt(4) = pL + diam * 0.629481160240031
pt(5) = pL + diam * 0.856534185886017
pt(6) = pH

case 7 then
pt (1) = pL
pt(2) = pL + diam * 0.107235231524833
pt(3) = pL + diam * 0.283676545203967
pt(4) = pL + diam % 0.5
pt(5) = pL + diam x 0.716323434111384
pt(6) = pL + diam * 0.892764777407028
pt(7) = pH

end
endfunction

errlD.sci

function val = evalGlobalErr (f, numQuadpts, hScale)

// Get the evaluation points and their weights
[pts, wts] = getQuadPtsWts(meshX (1), meshX(N+1), numQuadpts)

// Calculate the sum
val =0
for i = 1:numQuadpts
temp = U(pts(i))
val = val + wts(i) * ((temp — f(pts(i)))/(atol+rtolxabs(temp)))
"2
end
// Scale the quadrature

val = val x (B-A)/2
val = sqrt(val)

133

// Scale by max h
if hScale then
// Find the maximal h
maxH = 0
for i = 1:N
temp = meshX (i+1) — meshX (1)
if temp > maxH then
maxH = temp
end
end
val = val *x maxH
end
endfunction

function val = evalRectErr(f, numQuadpts, hScale, nind, pScale)

if argn(2) < 5 then
pScale = %T
end

// Get the evaluation points and their weights
[pts, wts] = getQuadPtsWts(meshX (nind), meshX(nind+1), numQuadpts)

// Calculate the sum
val =0
for i = 1l:numQuadpts
temp = U(pts(i))
val = val + wts(i) * (abs(temp — f(pts(i)))/(atol+rtol*abs(temp)
)) "2

end

// Scale the quadrature

diam = meshX (nind+1) — meshX(nind)
val = val x diam/2

val = sqrt(val)

// Scale by h

pow = p+1

if hScale then
val = val % diam
pow = p-+1

end

if pScale then
val = val”(1/pow)

end

endfunction

// Function called by sci(x) and loi(x) which evaluates a H-B
interpolant

// at x, with s as the points with a known solution and derivative , and

// w as the points with just a solution wvalue

function y = evalHBI(x, s, w)

suml = 0

134

sum2 = 0

sum3d = 0

for j = 1l:size(s)(2)
suml = suml + (H(x, j, s, w) = U(s(j)))
sum2 = sum?2 + (Hbar(x, j, s, w) * Ux(s(j)))

end
for j = 1l:size(w) (1)
sum3 = sum3 + (G(x, j, s, w) x Uw(j)))
end
y = suml + sum2 + sum3
endfunction

// Computes w_j for Barycentric Lagrange interpolation. Where
// wx are the x values of the points being interpolated , and j
// is the index of w which is being calculated.
function w = baryW (wx, j)
w=1
for k = 1:size(wx) (1)
if k "= j then

end
w=1/w
endfunction

// Calculates the value at x of a Lagarange interpolant to the
// collocation solution U at points wx.

function y = baryLagrange(x, wx)

y =20

1 =1

for j = l:size(wx)(1)
y =y + (baryW(ws, j)/(x — wx(j)))*U(wx(j))
=1 x (x - wx(j))

end

y=1=xy

// Check for Nan
if isnan(y) then
ind = find (wx = x)
y = U(wx(ind))
end
endfunction

// Returns the necessary non—mesh super convergent points outside of a
given
// interval for the SCI
function x = eScNonMeshP (ind)
if ind = 1 then // Use two from next interval
nextScnmp = scNonMeshP (meshX (2:3), p, 1)
x(1) = nextScnmp (1)
if p> 4 then
x(2) = nextScnmp (2)
else

x(2) = meshX(3)

135

end
elseif ind = N then
lastScnmp = scNonMeshP (meshX (N—1:N), p, 1)
x(1) = lastScnmp (p—3)
if p> 4 then
x(2) = lastScnmp (p—4)
else
x(2) = meshX(N — 1)

end

x(1) = scNonMeshP (meshX (ind —1:ind), p, 1)(p—3)
x(2) = scNonMeshP (meshX (ind+1:ind+2), p, 1)(1)
end
endfunction

// Function to evaluate the SCI of the current collocation solution at
// some x value.
function y = sci(x)

// Find which subinterval x is within

ind = getlnd(x)

// Get the internal and external non—mesh super convergent points
meshP = meshX (ind:ind+1)

inmscp = scNonMeshP (meshP, p, 1)

enmscp = eScNonMeshP (ind)

nmscp = cat(l, enmscp, inmscp)

// Evaluate the H-B interpolant for SCI
y = evalHBI(x, meshP, gsort(nmscp, 'r’,’ 1))
endfunction

// Evalutates the LOI of saved Col.Sol. in coeffs at x
function y = loi(x)

// Find which subinterval x is within

ind = getInd(x)

// Get the mesh points of that subinterval
meshP = meshX (ind:ind+1)

// Get the internal points to interpolate at
intP = scNonMeshP (meshP, p — 1, 1)
if intP = —1 then
intP = []
end
y = evalHBI(x, meshP, intP)
endfunction

function y = 12 (x)
ind = getlnd (x)
intP = getL2pts (meshX(ind), meshX(ind+1), p)
y = baryLagrange(x, intP)

endfunction

136

// Returns the error estimate from the LOI for rectangle xi, yi
function e = rLoiErr(xi)

e = evalRectErr(loi, p+1, %T, xi)
endfunction

// Returns the error estimate from the LOI for rectangle xi, yi
function e = rLoiErrNS(xi)

e = evalRectErr (loi, p+1, %F, xi)
endfunction

// Returns the global error estimate from the LOI
function e = gLoiErr ()

e = evalGlobalErr (loi, p+1, %T)
endfunction

// Returns the error estimate from the L2 for rectangle xi, yi
function e = rL2Err(xi)

e = evalRectErr (12, p+1, %T, xi)
endfunction

// Returns the error estimate from the L2 for rectangle xi, yi
function e = rL2ErrNS(xi)
e = evalRectErr (12, p+1, %F, xi)

endfunction

// Returns the global error estimate from the L2
function e = gL2Err()
e = evalGlobalErr (12, p+1, %T)

endfunction

// Returns the error estimate from the SCI for rectangle xi, yi

function e = rSciErr(xi)
e = evalRectErr(sci, p+2, %F, xi)
endfunction

// Retruns the global error estimate from the SCI
function e = gSciErr ()
e = evalGlobalErr (sci, p+2, %F)

endfunction

// Returns the actual error for rectangle of coordinate xi, yi

function e = rActErr(xi)
e = evalRectErr (truu, p+2, %F, xi)
endfunction

// Returns the actual global error for the collocation solution
function e = gActErr ()
e = evalGlobalErr (truu, p+1, %F)

endfunction

err2D.sci

137

Evalauates a Hermite—Birkhoff interpolant at (x, y) based off of
sx/y as the points in x/y where solution value and derivative with
respect to x/y is interpolated. wx/y are points in x/y where just
solution value is interpolated. Usx/y are the derivatives with
respect to x/y which are evaluated, while Usw has all of the
solution values being interpolated.

function z = evalHBIlobbed(x, y, sx, sy, wx, wy, Usx, Usy, Usw)

// Save H evals

Hx(1) = H(x, 1, sx, wx)
Hx(2) = H(x, 2, sx, wx)
Hy(1) = H(y, 1, sy, wy)
Hy(2) = H(y, 2, sy, wy)

Hbarx (1) = Hbar(x, 1, sx, wx)
Hbarx (2) = Hbar(x, 2, sx, wx)
Hbary (1) = Hbar(y, 1, sy, wy)
Hbary (2) = Hbar(y, 2, sy, wy)

// Save G evals
mmWx = max(size (wx))
mmWy = max(size (wy))
for i = 1l:numWx

end
for i = 1:numWy

Gy(i) = G(y, i, sy, wy)
end

// Initialize the sum
z =0

// Add value from Hx terms
for 1 = 1:2
// Set i
if 1=
ind
else
ind =1
end

d

=

then
numWx+2

[

// HxGy terms
for j = l:numWy

z =z + Hx(i) * Gy(j) * Usw(ind, j+1)
end

// HxHy terms
z =7 + Hx(i) % Hy(1) % Usw(ind, 1)
z =7 + Hx(i) * Hy(2) % Usw(ind, numWy+2)

// HxHbary terms

z =z + Hx(i) % Hbary(1) % Usy(l, ind)
z = 7z + Hx(i) * Hbary(2) % Usy(2, ind)

138

end

// Add value from Hbarx terms

for i = 1:2
// Set ind — Does this cause the wrong points to be used for
the derivatives?
if i = 2 then

ind = numWx+2
else

ind =1
end

// HbarxGy terms
for j = 1:numWy

z =z + Hbarx(i) * Gy(j) * Usx(i, j+1)
end

// HbarHy terms

z = z + Hbarx(i) % Hy(1) % Usx(i, 1)

z = z + Hbarx(i) * Hy(2) % Usx(i, numWy+2)
end

// Add value from Gx terms
for 1 = 1:numWx
// GxHy terms
z =z + Gx(i) % Hy(1) = Usw(i+1, 1)
z =z + Gx(i) % Hy(2) * Usw(i+1, nunWy+2)

// GxHbary terms
z =7 + Gx(i) * Hbary(l) % Usy(1l, i+1)
z =z + Gx(i) % Hbary(2) % Usy(2, i+1)

// GxGy terms
for j = 1:numWy
z =72 + Gx(i1) * Gy(j) * Usw(i+1, j+1)
end
end
endfunction

function z = evalHBI(x, y, sx, sy, wx, wy, Usx, Usy, Usw, Usxy)

// Save H evals

Hx(1) = H(x, 1, sx, wx)

Hx(2) = H(x, 2, sx, wx)

Hy(1) = H(y, 1, sy, wy)
Hy(2) = H(y, 2, sy, wy)

// Save Hbar evals

Hbarx (1) = Hbar(x, 1, sx, wx)
Hbarx (2) = Hbar(x, 2, sx, wx)
Hbary (1) = Hbar(y, 1, sy, wy)
Hbary (2) = Hbar(y, 2, sy, wy)

// Save G evals

139

numWx = max(size (wx))
mmWy = max(size (wy))

for

end
for

end

Gy?

i = 1:nmumWx

Gx(i) = G(x, i, sx, wx)
i 1 :numWy
) = G(y, i, sy, wy)

// Initialize the sum

z =0

// Cross derivative terms

z = z + Hbarx(1) * Hbary(1l) * Usxy(1,1)
z z + Hbarx (1) % Hbary(2) % Usxy(1,2)
z = z + Hbarx(2) * Hbary(l) * Usxy(2,1)
z = z + Hbarx(2) % Hbary(2) % Usxy(2,2)

// X—derivative terms

7 =
Z =
for

z + Hbarx(1) % Hy(1) % Usx(1l, 1)

z + Hbarx(2) % Hy(1l) % Usx(2, 1)

i = 1:numWy

z = 7z + Hbarx(1) * Gy(i) % Usx (1, i+1)
z = 7z + Hbarx(2) * Gy(i) % Usx(2, i+1)
z + Hbarx (1) % Hy(2) x Usx(l, numWy+2)
z + Hbarx(2) % Hy(2) x Usx(2, numWy+2)

// Y—derivative terms

Z ==
Z p—
for

z + Hbary (1) % Hx(1) % Usy(1l, 1)

z + Hbary(2) % Hx(1) * Usy(2, 1)

i = 1:numWx

z = 7z + Hbary(1l) * Gx(i) % Usy(1l, i+1)
z = 7z + Hbary(2) * Gx(i) % Usy(2, i+1)
z + Hbary (1) % Hx(2) x Usy(l, numWx+2)
z + Hbary(2) % Hx(2) * Usy(2, numWx+2)

// Solution value terms

end
for

end
for

=z + Hx(1) % Hy(1) % Usw(1, 1)
z + Hx(1) % Hy(2) * Usw(1l, numWx+2)
z + Hx(2) % Hy(1l) x Usw(nurnWy+2 1)
z + Hx(2) * Hy(2) % Usw(numWy+2, numWx+2)
i = 1:numWy
z =7 + Hx(1) % Gy(i) % Usw(1l, i+1)
z =7 + Hx(2) % Gy(i) % Usw(mumWy+2, i+1)
i = 1:numWx
z =1z + Hy(l) % Gx(i) * Usw(i+1, 1)
=z + Hy(2) * Gx(i) * Usw(i+1, numWx+2)
i = 1:numWx

for j = 1:numWy

140

z =z 4+ Gx(i) % Gy(j) * Usw(i+1, j+1)
end

end

endfunction

/!
/!

Returns the evaluation of a tensor product Lagrange interpolant
at (x, y). wx / wy are the coordinates in X / Y that are interpolated

// and Uvals is the value to interpolate at those points.

function z = evalLI(x, y, wx, wy, Uvals)
z =0
for i = l:max(size (wx)

)
for j = l:max(size (wy))
z =2+ G(x, i, [], wx) «G(y, j, [, wy) « Uvals(i, j)
end
end

endfunction

/!
/!
/!
/!
/!

Calculates a scaled error based off of global atol and rtol with a L2
norm .

f is the function used to calculate the error (Setting this as truu
gives

the actual error). numP is the number of points to use for the
Gaussian

quadrature. If hScale = %T then the error will be scale by the
interval

size in X and Y from the first interval of each.

function e = evalGlobalErr (func, numP, hScale)

xL = meshX (1)
xH = meshX (N+1)
yL = meshY (1)
yH = meshY (M+1)
ptsX = getGaussPts(xL, xH, numP)
ptsY = getGaussPts(yL, yH, numP)
weights = getQuadWts (numP)
e =0
for ix = 1:numP
for iy = 1l:numP
temp = U(ptsX (ix), ptsY(iy), 1, 1)
e = e + weights(ix) * weights(iy) * ((temp — func(ptsX(ix),
ptsY (iy)))/
(atol + rtolxtemp)) "2
end

e = e x (xHxL)/2 x (yH-yL)/2
e = sqrt(e)
if hScale then
e = e *x (meshX(2) — meshX (1)) % (meshY(2) — meshY (1))

end

endfunction

// Calculates a scaled error for rectangle of coordinate xi, yi based

141

off
// of global atol and rtol with a L2 norm. f is the function used to
calculate
// the error (Setting this as truu gives the actual error). numP is the
number
// of points to use for the Gaussian quadrature. If hScale = %T then
the error
// will be scale by the interval size in X and Y from the first
// interval of each.
function e = evalRectErr(func, numP, hScale, ix, iy)
ptsX = linspace (meshX(ix), meshX(ix+1), 7)
ptsY = linspace (meshY (iy), meshY(iy+1), 7)
e = max(abs(feval (ptsX, ptsY, func) — feval(ptsX, ptsY, U)))
if hScale then
e = e % (meshX(ix+1)-meshX(ix)) * (meshY (iy+1)—meshY (iy))
end
endfunction
function e = evalRectErr2(func, numP, hScale, ix, iy)
xL = meshX(ix)
xH = meshX(ix+1)
yL = meshY (iy)
yH = meshY (iy+1)
ptsX = getGaussPts(xL, xH, numP)
ptsY = getGaussPts(yL, yH, numP)
weights = getQuadWts (numP)
e =0
for i = 1:numP
for j = 1:numP
temp = U(ptsX (i), ptsY(j), 1, 1)
e = e + weights(i) * weights(j) * ((temp — func(ptsX (i),
ptsY (j)))/
(atol 4+ rtolxtemp)) "2
end
end

e =c x ((xHxL)/2) * ((yHyL)/2)

e = sqrt(e)
if hScale then
e = e x (xH=xL) % (yH—yL)
end
endfunction

// Saves the function value sthat will be interpolated by a Lagrange
// interpolant. wx / wy are the points in X / Y to interpolate at.
function vals = saveSolVals (wx, wy)
for 1 = l:size(wx)(1)
for j = l:size(wy) (1)
vals (i, j) = U(wx(i), wy(j), 1, 1)
end
end
endfunction

// Returns function evaluations at the points for the SCI/LOI which can

142

be reused
// sx/y is the mesh points in x/y for the interval being evaluated while
// wx/y are the points in x/y where just solution values are
interpolated .
function [Usx, Usy, Usw, Usxy| = saveFunctionEvals(sx, sy, wx, wy)
pX = [sx(1); wx; sx(2)]
pY = [sy(1); wy; sy(2)]
Usx = feval(sx, pY, Ux)
Usy = feval (pX, sy, Uy)
Usw = feval (pX, pY, U)
Usxy = feval(sx, sy, Uxy)
endfunction
function [Usx, Usy, Usw, Usxy] = saveFunctionEvals2(sx, sy, wx, wy)

// Get the numbr of w points
mmWx = size (wx) (1)
mmWy = size (wy) (1)

// X derivatives
for i = 1:2
Use(i, 1) = U(sx(i), sy(1), 2, 1)
for j = 1:numWy
Usx(i, j+1) = U(sx(i), wy(j), 2, 1)
end

Usx (i, numWy+2) = U(sx (i), sy(2), 2, 1)

end

// Y derivatives

for 1 = 1:2
Usy(i, 1) = U(sx(1), sy(i), 1, 2)
for j = 1:numWx
Usy(i, j+1) = U(wx(j), sy(i), 1, 2)
end

Usy (i, nunWx+2) = U(sx(2), sy(i), 1, 2)
end

// Cross—Derivatives

Usxy (1,1) = U(sx(1), sy (1), 2, 2)
Usxy(1,2) = U(sx (1), sy(2), 2, 2)
Usxy(2,1) = U(sx(2), sy(1l), 2, 2)
Usxy(2,2) = U(sx(2), sy(2), 2, 2)
// Solution values
for i = 1:numWx+2
if i = 1 then
xp = sx (1)
elseif i == numWx+2 then
xp = sx(2)
else
xp = wx(i—1)
end
for j = 1:numWy+2
if j = 1 then

143

yp = sy (1)
elseif j = numWy+2
yp = sy (2)
else
yp = wy(j—1)
end
Usw(i, j) = U(xp, yp, 1, 1)
end

end
endfunction

// Returns the value of the SCI at (x, y)
function z = sci(x, y)

xInd = getInd (x, meshX, N)

yInd = getInd (y, meshY, M)

sx = [meshX(xInd) ;meshX(xInd+1)]

sy = [meshY (yInd) ;meshY (yInd+1)]

wx = getsciW (xInd, meshX, p, N)

wy = getsciW (yInd, meshY, q, M)

[Usx, Usy, Usw, Usxy| = saveFunctionEvals(sx, sy, wx, wy)
Usy = Usy’
z = evalHBI(x, y, sx, sy, wx, wy, Usx, Usy, Usw, Usxy)

endfunction

// Returns the value of the L2 at (x, y)
function z = 12(x, y)
xInd = getlnd (x, meshX, N)
yInd = getInd(y, meshY, M)
wx = getL2pts (meshX (xInd), meshX(xInd+1), p)
wy = getL2pts (meshY (yInd), meshY (yInd+1), q)
z = evalLI(x, y, wx, wy, saveSolVals(wx, wy))
endfunction

// Returns the value of the loi at (x, y)
function z = loi(x, y)

xInd = getInd (x, meshX, N)

yInd = getInd (y, meshY, M)

sx = [meshX(xInd) ;meshX(xInd+1)]

sy = [meshY (yInd) ;meshY (yInd+1)]

wx = scNonMeshP (meshX (xInd: xInd+1)’,p—1,1)

wy = scNonMeshP (meshY (yInd:yInd+1)’,q—1,1)

[Usx, Usy, Usw, Usxy| = saveFunctionEvals(sx, sy, wx, wy)
Usy = Usy’
z = evalHBI(x, y, sx, sy, wx, wy, Usx, Usy, Usw, Usxy)

endfunction

// Returns the error estimate from the LOI for rectangle xi, yi
function e = rLoiErrS(xi, yi)

e = evalRectErr(loi, p+1, %T, xi, yi)
endfunction

function e = rLoiErr(xi, yi)

e = evalRectErr(loi, p+1, %F, xi, yi)
endfunction

144

// Returns the global error estimate from the LOI
function e = gLoiErr ()
e = evalGlobalErr(loi, p+1, %F)

endfunction

// Returns the global error estimate from the LOI
function e = gLoiErrS ()
e = evalGlobalErr(loi, p+1, %T)

endfunction

// Returns the error estimate from the L2 for rectangle xi, yi
function e = rL2Err(xi, yi)

e = evalRectErr (12, p+1, %F, xi, yi)
endfunction

function e = rL2ErrS(xi, yi)
e = evalRectErr (12, p+1, %T, xi, yi)
endfunction

// Returns the global error estimate from the L2
function e = gL2Err ()
e = evalGlobalErr (12, p+1, %F)

endfunction

// Returns the global error estimate from the L2
function e = gL2ErrS ()
e = evalGlobalErr (12, p+1, %T)

endfunction

// Returns the error estimate from the SCI for rectangle xi, yi

function e = rSciErr(xi, yi)
e = evalRectErr(sci, p+2, %F, xi, yi)
endfunction

// Retruns the global error estimate from the SCI
function e = gSciErr ()
e = evalGlobalErr (sci, p+2, %F)

endfunction

// Returns the actual error for rectangle of coordinate xi, yi

function e = rActErr(xi, yi)
e = evalRectErr (truu, p+1, %F, xi, yi)
endfunction

// Returns the actual global error for the collocation solution
function e = gActErr ()
e = evalGlobalErr (truu, p+1, %F)

endfunction

145

