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Automated prediction of tailings areas at historic gold mine districts in Nova Scotia 
using multispectral images and a random forest classifier 

 

by Daniel A. Jewell 

 

Abstract 

 

Satellite imagery can be analyzed to offer a preliminary regional assessment of mine tailings indicators, 
enabling identification before performing in-depth fieldwork. Nova Scotia, Canada, still retains mine 

tailings produced in the 1860s to the 1940s in 64 historic gold districts, which exceed soil guidelines for 
arsenic (As) and mercury (Hg) levels. Tailings data often relies on historical maps, which may not 

accurately depict the current extent due to wind and rain transportation. This study employs historical 
data to train a classifier, enabling the classification of multispectral satellite images from Sentinel-2. 
Both pixel-wise and object-based methods were evaluated, yielding a median F1-score above 0.7 for 
most tested methods at two case study sites. Accuracy varied at other sites, particularly those with 
significant proportions of wetland areas. Lastly, we investigate false positives and propose future 

research to create a more resilient classifier. 
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Note: This thesis was written in manuscript style, with the intent to publish separately. Chapters are 
formatted according to the style guide of Remote Sensing of Environment. Some details are presented in 
both chapters. Chapter 1 presents a case study in which big data techniques are applied to indicate the 
presence of tailings at two mine sites. Chapter 2 provides an exploration of potential causes of false 
positives following classification using the methods described in Chapter 1.  
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Chapter 1: Introduction and Research 
Objectives 

 

Mining and processing of gold ore has historically been an economic driver in many 

regions around the world, but a poor understanding of the environmental impact of mine 

waste, or tailings, has often led to inadequate long-term management. Waste from mines 

active over a century ago often contain contaminants, such as arsenic (As), at quantities well 

above recommended soil guidelines (CCME, 1997). Contaminated sediment at these sites may 

also be transported by streams or wind, increasing the potential area of their negative 

environmental impact. In regions where historic mine waste is prevalent it may be impractical 

to remediate all sites at once. Sites must first be assessed to determine which pose the greatest 

risk. In Nova Scotia, Canada, over 300 mines were developed between the 1860s and 1940s, 

organized into 64 historic gold mine districts. In many cases, the best available data are 

historical records that may no longer accurately depict tailings areas. Sending researchers to 

the field to observe all 64 districts and collect and test sediment samples would be expensive 

and time consuming. Analysing satellite images using remote sensing techniques can provide a 

preliminary assessment of mine tailings areas, helping to better plan fieldwork and make more 

efficient use of resources. 

Identifying mine tailings across a large region using passive remote sensing satellites 

requires that tailings comprise spectrally active minerals, and that those minerals are distinct 

from those of background sediment. In the following chapters of this thesis these concepts are 

explored, as well as several methods developed to classify Sentinel-2 images and identify mine 
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tailings areas within them. This introductory chapter describes the problem addressed by this 

study and provides fundamentals of remote sensing analysis, as well as a brief overview of 

relevant existing literature. 

1.1. Historic Gold Mining and Modern Secondary Minerals 

1.1.1. Regional Mining History 

Most of the gold in Nova Scotia has been historically mined in the Meguma Supergroup. 

The Meguma Group shares its name with the Meguma Terrane which makes up about half of 

the mainland of Nova Scotia, the other half being the older Avalon Terrane to the northwest. 

The high-grade gold consist mainly of quartz, though sulphide minerals are common as well and 

their quantities vary directly with that of gold (Sangster et al., 2007). These sulphide minerals 

have been the main source of As released by mining and processing and are generally the 

greatest threat to human and ecosystem health of any mining by-product (Ngole-Jeme and 

Fantke, 2017; Walker et al., 2009). 

Ore rock was extracted mainly from shafts in the ground and crushed in stamp mills. In 

many cases, particularly in the 19th century, mercury (Hg) was used to separate gold from the 

crushed material (Bates, 1987; LeBlanc et al., 2020; Parsons et al., 2012). The leftover waste 

rock and sand to silt-sized sediment, called tailings, was deposited in streams, wetlands, or 

nearby depressions with little to no regard for potential environmental impacts (LeBlanc et al., 

2020). In these tailings dumping areas, sulphide minerals were exposed to oxygen and surface 

water, leading to oxidation and dissolution of As and other metals (DeSisto et al., 2017). This As, 

as well as the Hg introduced in processing, may be capable of travelling long distances. New 
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minerals may incorporate available As, or it may be adsorbed onto existing minerals, either 

temporarily under certain local environmental conditions, or long-term as more stable 

secondary minerals (Jamieson et al., 2015; Walker et al., 2009). Though it can be transported 

via fine particles, Hg has been found to concentrate along watercourses in or near tailings 

sources (Lane et al., 1989).  While Hg does pose a risk to human and ecosystem health and may 

be associated with mine tailings at these sites, it is neither visible via spectral analysis (using the 

methods and sensors explored in this study) nor associated with secondary minerals that are 

visible. This study focuses instead on As and its associated minerals. 

In the early days of mining in the province, the government formed 64 gold mine 

districts. These districts were intended to expedite mining projects as well as keep claims 

organized. An estimated 3 000 000 tonnes of tailings were produced from these districts 

(Parsons et al., 2012), almost all of which has sat untouched since its deposition, with the 

exception of recreational vehicle use at some sites. Though the districts are no longer formally 

used, modern exploration and operations typically coincide with the historic districts, with 

modern open pit mines often existing alongside or even displacing historic tailings. The 

Government of Nova Scotia has initiated remediation plans, and at the time of this writing two 

sites have been selected for cleanup. The first is Montague Gold District, just north of Nova 

Scotia’s capital city of Halifax. Bulk geochemical analysis of tailings at Montague has shown that 

tailings contain a median of approximately 11 000 ppm As (Parsons et al., 2012). The second 

site is Goldenville Gold District, which the same study showed has a median of approximately 

7000 ppm As. This study looked at 14 sites in total, finding an overall median of 2550 ppm As 
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across all tailings samples. 99% of samples exceeded the Canadian Council of Ministers of the 

Environment (CCME) recommended limit of 12 ppm As (CCME, 1997; Parsons et al., 2012). 

1.1.2. Tailings Mineralogy 

Though no two sites have exactly the same mineralogy, the gold mines of mainland Nova 

Scotia do share similar bedrock geology and processing methods. Most mines targeted 

auriferous quartz veins present in slate and metasiltstone. Common accessory minerals tend to 

include chlorite, biotite, muscovite, and plagioclase, which are present alongside carbonates 

and sulphides (Walker et al., 2009). Environmental impact was not a consideration in this 

period, and tailings were routinely left exposed to the environment. This study explores 

whether tailings, left exposed in some cases for over a century, are sufficiently different in 

mineralogy from natural sediment to be identified via spectral analysis.  

1.1.3. Spectrally Active Minerals 

Although the classifier used in this study relies on image sampling and does not depend 

on prior knowledge of the components of tailings, it is still important to understand what 

minerals are expected to be present and how they might contribute to the reflectance of 

tailings as a whole. Though tailings are made up of bedrock local to a site, they differ from 

bedrock in grain size and concentration. By increasing surface area, concentrating sulphides, 

and leaving this mixture exposed to the elements, mineralogy will begin to diverge from 

naturally occurring nearby sediment. If spectrally active minerals form in tailings, or the 

concentration of existing spectrally active minerals changes, it will be possible to determine 

tailings from background sediment. 
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Sulphide minerals, primarily arsenopyrite, are the primary source of As at these sites, 

and therefore are the most important minerals to identify. Ideally, these could be target 

directly by colour on the tailings surface, or by their reflectance spectra in the remote sensing 

imagery. Unfortunately, sulphide minerals are not considered spectrally active. They have fairly 

flat spectra and overall low reflectance, making them poor targets for this kind of analysis. They 

also are often covered in a rim of iron oxide, iron hydroxide, or hydrous iron arsenate 

(Corriveau et al., 2011; Walker et al., 2009). Fortunately, these rims are spectrally active. Iron 

oxides and iron oxyhydroxides have distinct absorption features between 750 and 910 nm, 

known as the iron absorption feature (Davies and Calvin, 2017; Mielke et al., 2014), that makes 

them viable remote sensing targets. Sentinel-2 imagery lacks the spectral resolution to 

determine the specific location of these absorption features, but it does have several bands 

placed in this range with geological applications in mind, including the narrow band 8A at 860 

nm (European Space Agency, 2015). It may be able to detect, broadly, colour differences in this 

range that could differentiate pixels with these absorption features from those without.  

The classifier used in this study assigns binary labels (tailings vs. non-tailings) to each 

pixel, defining tailings in the broadest sense and likely containing large inter-class variability in 

mineral composition. Interpreting the results of the classifier is dependent largely on 

understanding mineralogy typical at these sites, and which minerals are actually contributing to 

the spectral reflectance values in the imagery. This mineralogy is obtained either from 

previously published sources, or it could be gathered from field sampling designed around the 

classifier’s results. The classifier may describe the extent of tailings, and with expert knowledge 

of a site mineralogy may be inferred, but the classifier itself cannot provide mineralogy. 
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1.1.4. Mobility of As and Environmental Impact 

Arsenopyrite, which is the main As host mineral at these sites, occurs naturally 

throughout the Meguma Group. Meguma rocks contain elevated As, regardless of mining 

history, however, the process of mining gold ore brings arsenopyrite to the surface, 

concentrating it and increasing surface area (Corriveau et al., 2011; Weisener, 2003), making it 

more prone to oxidation and weathering. 

The impact of As and its stability at surface depends primarily on mineral host, pH, and 

exposure to the atmosphere. Arsenopyrite is vulnerable to oxidation and frequently weathers 

to form scorodite (FeAsO4•2H2O), amorphous ferric arsenate-sulphate or pharmacosiderite 

(KFe4(AsO4)3(OH)4•6-7H2O), and, rarely, arsenolite (As2O3) (DeSisto et al., 2017; Walker et al., 

2009).  

Without proper containment using liners, fill, or other engineering techniques, As is 

likely to move in and out of solution and minerals over time. Meteoric water and groundwater 

changes may dissolve minerals and salts which may change pH drastically. This, in turn, will 

alter the solubility of minerals containing As and other metals. Fluctuating water levels due to 

regular seasonal changes, or long-term due to climate change or other major impacts to 

hydrological regimes, may leave minerals exposed to oxygen, changing their oxidation states. 

Ferrous iron (Fe3+) can be a powerful oxidizing agent in certain pH ranges. Bacterial activity can 

increase oxidation in some cases by several orders of magnitude (Seal and Hammarstrom, 

2003). The interplay of these factors is complex and cannot be fully described by the snapshot 

provided by the remote sensing methods proposed in this study. The proposed classification 
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model is meant to observe sites in their current state, taking in the sum of all these factors, 

though not describing any of them quantitatively. 

1.2. Mapping Mine Tailings Indicators Using Multispectral Remote Sensing 

The objective of this study is to indicate areas which exhibit similar spectral reflectance 

to tailings and should be investigated further to determine levels of contaminants. There are 

many options available for retrieving the spectra of a material, whether handheld or mounted 

on an aircraft or satellite. This section provides an overview of different kinds of sensors and a 

more detailed description of the Sentinel-2 satellite used in this study. 

1.2.1. Remote Sensing Types and Platforms 

Remote sensing images have been used extensively at historic and modern mine sites 

around the world since the 1970s. Broadly, remote sensing images can be captured by three 

kinds of platforms: field/lab instruments, aerial (planes and remotely-piloted aircraft), and 

space-based (satellites). Remote sensing images differ from other remote sensing or 

spectroscopic data in that they are composed of a grid of pixels, each of which has a stack of 

values (called data number, brightness value, grey level, etc.) corresponding to various bands. 

The meaning of those pixel values depends on the type of sensor being used. Sensors can be 

divided into active and passive, sometimes referred to as direct and apparent, respectively 

(Schowengerdt, 2007). Active sensors emit a signal which reaches a target and returns to the 

sensor. Information is derived from the difference between the emitted and received light. 

Active sensors include radar and lidar. Passive sensors only receive a signal, relying on light 

from the sun or an artificial, external source to illuminate their target. Radar signals can 
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penetrate clouds, some vegetation cover, and even certain sediments, but provide information 

in a limited electromagnetic range. Atmospheric effects, including thin, high-altitude clouds, 

can be removed from passive sensor images, but otherwise data from these sensors represent 

only the topmost surface of the earth. Passive sensors, however, provide information from a 

wide range of the electromagnetic spectrum. Specific sensor ranges vary widely, but generally 

range from 450 nanometres (nm) (visible range) to 2500 nm (shortwave-infrared range), with 

some sensors exceeding 10 000 nm (thermal range – e.g., NASA’s ASTER). Passive sensors can 

be further divided by the number of bands that they have. Hyperspectral sensors contain 

anywhere from 40 to 400 or more contiguous bands, each of which spans only a few 

nanometers. Multispectral sensors contain a small number of relatively wide, non-contiguous 

bands. Landsat 9 contains a total of 11 bands between its 2 sensors, with bandwidths ranging 

from about 100 nm to 2000 nm. Sentinel-2 contains 13 bands, with bandwidths ranging from 

200 nm to 1850 nm. Generally, bands at higher wavelengths have larger bandwidths due to 

lower emission from the sun in that range, and less sensitivity at the sensor. The broader 

bandwidth captures more photons, increasing signal-to-noise ratio. A sensor with narrower and 

more numerous bands is said to have a higher spectral resolution. This may allow greater 

discrimination of target materials. Often, higher spectral resolution comes at the cost of spatial 

resolution, resulting in larger pixels. 

The trade-off between spectral and spatial resolutions is an important consideration 

when choosing a sensor for a study. Identifying materials in remote sensing imagery relies on 

the presence of distinct absorption and reflectance features, that may not be captured by the 

broader bands available from multispectral sensors. Sensors with low spatial resolution, 
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however, produce pixels that cover a larger area on the ground. In real-world applications this 

means that pixels are very unlikely to be pure, and more materials being mixed into a pixel may 

make it harder to identify a target. 

There are other technical and practical considerations when choosing a sensor for a 

remote sensing study. While some platforms provide current and historical data free of charge, 

images from others must be purchased and costs can quickly become prohibitive. Some sensors 

capture images continuously, meaning that large libraries are already available and there is no 

need to requisition data for a study area. Others only capture data on request, making them 

inappropriate for time series analyses if past conditions are being considered. Depending on 

orbital parameters, it may be some time before an image is captured, and there is no guarantee 

of a cloud-free capture at that date. On the point of time series, revisit time may be an 

important consideration. Whether images are captured continuously or not, a platform’s orbit 

varies. Revisit time is the frequency at which a satellite returns to the same point on the earth. 

Landsat 9’s revisit time is 16 days, while Sentinel-2’s is 10 days, which is cut to 5 days as the 

mission comprises a pair of nearly-identical satellites, offset in orbit by 180°.  

1.2.2. Sentinel-2 

Images from Sentinel-2 were selected for this study. The Sentinel-2 mission comprises a 

pair of nearly-identical satellites launched by the European Space Agency in 2015 and 2017 

(Sentinel-2A and Sentinel-2B, respectively). Each has a return frequency of 10 days at the 

equator, and slightly less at higher latitudes. Their orbits are offset by 180°, and a new image is 

acquired at a given location every 5 days with the same viewing conditions, and more 

frequently with different viewing conditions (European Space Agency, 2015). 
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Sentinel-2 has 13 bands in varying spatial resolutions and bandwidths. It differs in this 

way from hyperspectral sensors which may contain several hundred contiguous bands, often at 

very narrow bandwidths (as small as ~2-5 nm). The 13 bands were chosen carefully based on 

observations from previous missions such as Landsat and to fulfill specific objectives (van der 

Meer et al., 2014). In general, Sentinel-2’s bands are narrower than Landsat’s to reduce the 

influence of water vapour in the atmosphere. Sentinel-2’s band 8A (a near infrared band 

centered at 865 nm) was carefully placed to avoid water vapour, target peak NIR reflectance in 

vegetation, and be sensitive to iron oxides in soil (European Space Agency, 2015; van der Meer 

et al., 2014; Van der Werff and Van der Meer, 2015). For the purposes of this study, this 

represents a significant advantage for the Sentinel-2 over Landsat satellites. More accurate 

discernment of vegetation improves the ability of the model to filter out vegetation on the 

surface, and iron oxides are an important indicator when classifying tailings. 

Sentinel-2 bands come in varied spatial resolutions. 4 bands are provided in 10 m 

resolution, 6 in 20 m, and 3 in 60 m. This is another advantage over the Landsat mission, which 

has a resolution of 30 m (excluding its panchromatic band). Many of the tailings areas at the 

historic mine sites in this study are less than 100 m wide. These are relatively small targets, and 

it is important to maximize the number of pixels within the target areas. 

1.3. Existing Data at Nova Scotia’s Historic Gold Mines 

The gold mines throughout Nova Scotia have a long history, and a large quantity of data 

has been produced, ranging from the earliest collection of surveys in the early 20th century 

(Faribault, 1900) to present. The amount of data already available allows for a range of 

experimentation when creating a remote sensing model of the mine sites. 
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1.3.1. Nova Scotia Mine Tailings Database 

An invaluable collection of data used in this study is the Nova Scotia Mine Tailings 

Database (NSMTD) (Hennick and Poole, 2020). This database is an aggregation of data of 

studies and surveys from all gold mine districts in the province. Tailings extents have been 

compiled into a spatial data format, alongside information on ore types, processing methods, 

and quantities of crushed rock. These tailings polygons were used as training and validation 

data in this study. 

1.3.2. Select Mine Studies 

In addition to the broad collection of tailings found in the NSMTD, studies of individual 

mines have been used for reference, geochemical, and mineralogical data. These sites have 

been the subject of considerable research efforts since the first environmental studies in the 

1970s connected a case of As intoxication to the Waverley Gold Mine District (Hindmarsh et al., 

1977; LeBlanc et al., 2020). Numerous studies have since been published describing sediments, 

As and Hg contamination, and biological accumulation. This section describes just a few key 

presenting data pertaining to the sites at large, or those that focus directly on Montague and 

Goldenville, which will be described in more detail in a later section. 

Parsons et al., 2012, is an influential regional study of modern tailings extent and 

conditions. The researchers analyzed sediment from 14 sites for geochemistry and water 

quality. A total of 482 tailings and sediment samples were collected and analyzed for metal 

concentrations, showing a range in As from 10 to 312 000 ppm, and a median of 2250 ppm 

(LeBlanc et al., 2020; Parsons et al., 2012). This study prompted the province to create the 

Historic Gold Mines Advisory Committee in April 2005. 
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Chemistry of tailings will reveal metal concentrations, including As, which is the main 

focus of most environmental studies, but geochemical studies do not always include 

mineralogical data. Total As is a good measure of potential environmental and human health 

risk, it can be determined quickly, and it is easy to compare across multiple mine sites. 

Understanding As stability and transport potential requires mineralogical data. Understanding 

site mineralogy is important for remote sensing assessment because minerals in tailings, and 

not bulk chemistry, are what determine spectral absorption and reflection features in the 

visible to short-wave infrared region. Many studies have sought to determine mineralogy at 

Nova Scotia’s historic gold mine sites, often explicitly focusing on minerals that contain As or 

influence its dissolution, precipitation and/or adsorption. In Walker et al., 2009, researchers 

determined mineralogy of tailings at 3 mine sites: Montague, Goldenville, and Caribou. DeSisto 

et al., 2016 likewise assessed As minerals at Montague and Goldenville. They identified 4 

categories of tailings in which to sample: hardpan, oxic, wetlands, and high-Ca. Cores collected 

for this study included pore water, which was analyzed for pH and soluble metal concentration, 

as well as other aqueous parameters. By including near-surface and deeper (~50-200 cm) 

mineralogy, a better understanding is gained of the relationship between sediments exposed to 

the atmosphere and those at depth, especially if they exist within the saturated zone. This 

connection is especially important when drawing conclusions from optical remote sensing 

images, which only describe the topmost sediment. 

At the time of this writing, Percival et al., 2013 is the only paper in which indicators of 

tailings are mapped at Nova Scotia’s historic gold mines using remote sensing methods. 

Samples were collected at the Dufferin, Lower Seal Harbour, and Upper Seal Harbour gold mine 



   

 

13 
 

districts. Mineralogy of these samples was determined, and a linear spectral unmixing 

technique was used on a hyperspectral image from the (no longer operational) EO-1 Hyperion 

satellite. Linear spectral unmixing is a method in which the spectra of known endmembers are 

combined to recreate the composite spectra found within a pixel. In this case, the endmembers 

were selected from the image. Areas showing 14 land cover classes, including a tailings 

endmember, were chosen based on field observations. Linear unmixing provides not only an 

indicator of endmembers present in a pixel, but their areal proportion. This paper includes a 

discussion of the spectral reflectance of minerals observed in tailings, which is useful in 

explaining classifier results. 

1.3.3. Google Earth Engine 

Desktop analysis, including data pre-processing, image acquisition, image sampling, 

classification, and accuracy assessment, was performed in Google Earth Engine (GEE) (Jewell, 

2021). GEE is a cloud platform created by Google for remote sensing analysis (Gorelick et al., 

2017). It is available in web browsers or as a Python package. GEE allows uploading of spatial 

data and imagery, though there are many datasets available in its built-in library. Sentinel-2 

surface reflectance images are available, allowing for easy selection of images from a range of 

dates and locations that have already been corrected to remove atmospheric effects. In 

addition to the data library, GEE has a large selection of functions which can be implemented in 

its JavaScript and Python application programming interfaces (APIs). Computation performed in 

GEE is run on Google’s cloud servers, allowing for the rapid processing of massive datasets. 

1.4. Summary and Future Work 
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The goals of this study were to test if multispectral images could be used to classify mine 

tailings, and to determine if historic data could provide adequate training data for said 

classifier. The mine sites throughout Nova Scotia presented an excellent setting for these 

objectives. Many of the sites are well studied, and the NSMTD provides a thorough database of 

previously recorded tailings areas. All of the historic gold mine sites in the mainland of the 

province contain Meguma Group bedrock and similar processing histories and long-term 

storage methods. Though mineralogy is not exactly the same at any two sites, these similarities 

provide partial control over mineralogy and allow us to treat all tailings as one material. By 

combining Sentinel-2 imagery and the NSMTD tailings polygons, we can test the viability of 

using a broad spatial dataset to obtain image pixels and train a classifier. The spatial dataset 

requires no information whatsoever on the nature of tailings beyond a boundary. This allows 

historical and modern data to be combined, increasing the range of available training 

information. The classifier is trained and tested on images representing modern conditions, 

even if the tailings boundaries were recorded long ago.  

Spectral variation of tailings training pixels, as well as spatial autocorrelation, are not 

measured directly in this study, but they are to some degree inherently linked to the accuracy 

of the classifier. A valuable question to explore in a future study would be the applicability of 

this method, perhaps even using this training data, to other areas. Is there a distance at which 

training data begins to produce a less accurate classifier, even in similar bedrock? Is distance 

irrelevant, so long as the target is tailings resulting from hydrothermal gold deposits? How 

much does grain size and storage facility type affect spectral variation? 
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Chapter 2: Historical Gold Mine Tailings 
Indicators: Pixel and Object-Based 
Classification Models 
 

2.1.  Introduction 

Multiple gold rushes took place in Nova Scotia, Canada during the 19th and early 20th 

centuries. Though technologies, methods, and yields changed over time, for much of this period 

a lack of environmental regulations meant that waste rock and tailings resulting from 

processing were often discharged directly into the environment (Drage, 2015). This is true in 

the 64 historical gold districts in Nova Scotia, where gold mining and amalgamation practices 

between the 1860s and the 1940s have left behind tailings containing arsenic (As) and mercury 

(Hg) concentrations that frequently exceed the recommended guidelines, posing a risk to 

human and ecosystem health (CCME, 1997; LeBlanc et al., 2020; Parsons et al., 2012). If sites 

are to be remediated, they must first be surveyed to determine the extent of tailings and 

degree of contamination (Intrinsik Corp et al., 2020, 2019b, 2019a). There are over 360 

individual historic gold mines within the province’s 64 historic gold districts, and surveying 

these has been a time-consuming and expensive process, often relying on a foundation of 

historical records. In many cases, the surficial extent of tailings, as recorded in these 

documents, may no longer be accurate due to decades of wind and water transport of tailings, 

weathering reactions, mixing with natural soils and sediments, and overgrowth from 

vegetation. Following the preprocessing steps described in this paper, these historical data can 
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be used to train a classifier that can indicate the present extent of exposed tailings, including 

areas that may not have been recorded previously. This will help identify and prioritize 

potential tailings areas before planning fieldwork, which can be expensive in terms of 

equipment, time, labour, and logistics.  

Much of the work in remote sensing analysis of mine waste sites has been performed 

using hyperspectral imagery, which tends to have pixels of approximately 30 m or more. 

Recently, researchers have begun exploring the use of multispectral images for identifying mine 

waste and adapting hyperspectral methods for use with multispectral imagery. Multispectral 

satellite missions such as Landsat (30 m pixels, excluding panchromatic) and Sentinel-2 (10-20 

m pixels) provide free images at frequent intervals, with new images captured as often as every 

five days for Sentinel-2. These platforms capture images continuously and make them available 

almost instantly, with no need to submit a request beforehand and wait for the images to be 

processed. This means that images can be acquired from almost anywhere on the planet 

without having to first build an image library while waiting for the satellite to acquire cloud-free 

data within the desired date range. 

In this study, images from the Sentinel-2 mission were used to create a classification 

model to provide a first look at mine sites to help guide sampling and mapping efforts for 

abandoned historical tailings. This model was developed using Google Earth Engine (GEE), a 

cloud-supported platform that allows instant access to a massive and expanding collection of 

satellite images and the creation of apps that can be easily shared with users. Many past 

studies using passive remote sensing to detect mine waste have used hyperspectral images, 

containing up to several hundred very narrow wavelength, contiguous bands. In this study, we 
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explore the viability of using multispectral images containing a small number of wide (15-175 

nm), noncontiguous bands to identify pixels that may indicate the presence of tailings. To 

indicate the presence of a material using remote sensing images, our target must have one or 

more distinctive spectral features that coincide with one or more bands. Two models were 

developed in GEE: (1) a pixel-based model, where each pixel was labelled as tailings or non-

tailings with no regard to the labels of neighbouring pixels; and (2) an object-based model, 

including a segmentation step in which seed points were placed within the tailings regions and 

then grown according to an algorithm that considered distance and spectral similarity (Achanta 

and Süsstrunk, 2017). With these models, we attempt to show that the Sentinel-2 bands are 

well-placed to capture the spectral features present in tailings, which can be used to train a 

classifier that can indicate tailings elsewhere in the image. 

2.1.1. Historic Mining and Present Contaminants 

Three distinct gold rushes took place in the Canadian province of Nova Scotia between 

the 1860s and the 1940s. This gold was mainly extracted from quartz-carbonate veins present 

throughout the Cambro-Ordovician metasedimentary rocks of the Meguma Supergroup in 

mainland Nova Scotia (Little et al., 2015; Sangster et al., 2007). In addition to gold, these veins 

contain abundant sulphide minerals, particularly arsenopyrite (FeAsS). 

In the late 1800s, mined ore was crushed in stamp mills, and gold was concentrated 

using mercury (Hg) amalgamation. Beginning in the 1890s, some mills also started using 

cyanidation to recover additional gold as well as more efficient milling techniques (e.g. ball 

milling) (Bates, 1987; LeBlanc et al., 2020; Parsons et al., 2012). After gold was extracted, the 

waste rock and sand- to silt-sized sediment, called tailings, was slurried into streams, wetlands, 
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or nearby depressions with little to no regard for potential environmental impacts (Drage, 

2015). In the decades following tailings deposition, sulphide minerals were exposed to oxygen 

and surface water, leading to the dissolution of As and other metal(loid)s (DeSisto et al., 2017). 

This As, as well as the Hg introduced in gold processing, may be transported long distances via 

air as dust or via water as dissolved or suspended sediment load (Cleaver et al., 2021; Mudroch 

and Clair, 1986). New minerals may form via weathering reactions at these sites, incorporating 

As, or As can be adsorbed onto existing minerals, either temporarily under certain local 

environmental conditions or long-term as more stable secondary minerals (DeSisto et al., 2017; 

Montero et al., 2005). Inorganic As compounds can be toxic, as well as carcinogenic in humans. 

Invertebrates may bioaccumulate As, though its bioavailability is highly dependent on 

speciation and geochemical conditions (Azizur Rahman and Hasegawa, 2012; Walker et al., 

2009). Some forms of Hg can pose a risk to humans and the environment. In particular, the 

methylation of Hg to methylmercury by iron- or sulphate-reducing bacteria in anoxic conditions 

is of most concern (LeBlanc et al, 2020). Analysis has shown that Hg is common in tailings in the 

region, however, it has not been observed in spectrally active minerals at these sites. The 

remainder of this paper focuses on As and its mineral hosts. 

An estimated 3,000,000 tonnes of tailings were produced by over 360 mines in 64 

historical gold districts across the province between the 1860s and 1940s (Parsons et al., 2012). 

Most sites have been abandoned for decades, with tailings left exposed and subject to 

weathering and transport into the surrounding and downstream environments. 

In recent years, concerns about ecosystem and human health risks due to tailings have 

led to site assessments and the development of cleanup plans at some historic gold 
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minedistricts. Assessment and remediation plans were initiated by the Government of Nova 

Scotia in 2018, and as of 2023 two sites, Montague Gold District and Goldenville Gold District, 

have been selected for cleanup with a budget of over $60 million for both sites (Intrinsik Corp 

et al., 2019a, 2019b). These sites have been prioritized due to their elevated level of As 

contamination and, in the case of Montague, proximity to residential communities (Willick, 

2021). The Montague Gold District is in a suburban region within the city limits of Halifax. 

Tailings samples at Montague have been found to contain a median of approximately 11 000 

ppm As (Parsons et al., 2012). The Goldenville Gold District is near the village of Sherbrooke on 

the eastern shore of Nova Scotia and tailings at this site have a median As concentration of 

approximately 7000 ppm (Parsons et al., 2012). In Parsons et al. (2012), 14 gold districts were 

surveyed, finding an overall median of 2550 ppm As across all 482 tailings samples.  Almost all 

(99%) samples exceeded the Canadian Council of Ministers of the Environment recommended 

soil quality guideline of 12 ppm As (CCME, 1997; Parsons et al., 2012).  

2.1.2. Geology of Nova Scotia Gold Deposits 

All 64 gold mine districts are found in the Halifax and Goldenville Groups within the 

Meguma Supergroup. The Meguma Supergroup shares its name with the Meguma Terrane, 

which forms the southern portion of mainland Nova Scotia. The Cambro-Ordovician Meguma 

Supergroup has an exposed section over 480 km long by 120 km wide, with east-west trending 

folds (Sangster et al., 2007). It has a base of Cambrian metagreywacke, metasiltstone, and slate 

belonging to the Goldenville Group, overlain by black slate and metasiltstone of the Halifax 

Group (Percival et al., 2013) (Figure 1).  

The high-grade gold deposits that were the main target of historic mining are in quartz-
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carbonate veins found in the hinges of these folds, where gold has been concentrated by 

hydrothermal fluids (Sangster et al., 2007). The concentration of minerals may vary by site, but 

their common bedrock should provide similar mineralogy overall. One study of tailings at 

Goldenville and Montague found mostly quartz (SiO2), muscovite (KAl2(AlSi3O10)(F,OH)2), 

plagioclase ((Na,Ca)[(Si,Al)AlSi2]O8), and chlorite group minerals, with occasional calcite 

(CaCO3), ankerite ((Na,Ca)[(Si,Al)AlSi2]O8), and vermiculite (Mg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 

8H2O) (Walker et al., 2009). In some cases, these represent up to 90% of mineralogy in gold 

veins, with sulphides and other minor phases making up most of the remainder (Kontak and 

Jackson, 1999; Walker et al., 2009). 

Though sulphide minerals have a relatively low concentration in tailings (~5%), they are 

the main source of As and acid rock drainage (Jamieson et al., 2015). Sulphides are a threat to 

both human and ecosystem health near many mine sites around the world (Ngole-Jeme and 

Fantke, 2017). Ideally, we would be able to target sulphide minerals directly using remote-

sensing methods. Sulphide minerals, however, have fairly flat, low-magnitude reflectance 

spectra (Kokaly et al., 2017), and are not considered spectrally active. At our study sites, 

sulphides are typically coated in a rim of iron oxide, iron hydroxide, or iron arsenate which 

often have absorption features around 700 to 1000 nm, making them viable spectral targets 

(DeSisto et al., 2016; Van der Werff and Van der Meer, 2015). Minerals with this feature that 

appear at these mine sites include hematite (Fe2O3), goethite(FeO(OH)), scorodite 

(FeAsO4·2H2O), and others. 

 

2.1.3. Spectral Reflectance and Pixel Mixing 
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The goal of this study was to develop a remote-sensing methodology to identify areas 

that have similar spectral reflectance to gold mine tailings, and in turn, may be associated with 

elevated levels of As, which is also correlated to heightened Hg in the study region due to 

historical processing techniques. If successful, these methods could be used to identify and 

prioritize sites of concern before costly and time-consuming on-the-ground assessments. The 

methods used in this paper were not intended to obtain mineralogical data or quantify 

contaminant concentrations. Though mineralogical analysis is common using spectroscopy, this 

typically requires hyperspectral sensors with a spatial resolution on the millimetre to 

centimetre scale, which is currently only possible via laboratory tools, hand-held spectrometers, 

or possibly remotely piloted aircraft. Space-based hyperspectral sensors have been effective in 

some cases, depending on the mineral being targeted (Clark et al., 2003; Mielke et al., 2016; 

Swayze et al., 2014; van der Meer, 2004) As the surficial materials represented in the pixels of 

our images are poorly sorted, otherwise known as intimate mixtures, even if one could obtain 

centimeter-scale pixels via remote sensing technology, those pixels would still represent a 

mixture and not one pure material (Clark and Lucey, 1984; Stehman, 2009). Therefore, due to 

the nature of tailings at these sites, and the limitations of the Sentinel-2 satellite’s spatial 

resolution, we treat tailings as a single mixed material, rather than trying to separate it into 

different tailings types or mineral groups. This adds versatility and follows guidance of other 

studies attempting to detect tailings in satellite imagery, though it reduces our descriptive 

ability.   

All surface materials within the ground area captured within a pixel contribute to the 

apparent reflectance factor of that pixel. The apparent reflectance factor is the measure of 
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upwelling radiance normalized by the downwelling irradiance of the sun and sky, resampled 

from the continuous EM spectrum to a sensor’s discrete bands by wavelength (Percival et al., 

2013). This will be referred to simply as “reflectance” in this study. When assessing mine sites 

across a large area, surface materials are likely to vary in composition and thus reflectance. 

Even tailings from two nearby sites may contain different minerals and will not have the same 

spectral signature, so some generalization is required. Such is the case between Goldenville and 

Montague gold districts, which have similar levels of As concentration in the tailings but 

variable mineralogy, degrees of water saturation, and vegetative overgrowth at each site 

(Corriveau et al., 2011; DeSisto et al., 2016; Walker et al., 2009). By treating tailings from across 

all gold districts as one material, we can sample these areas to create a broad tailings class. 

Sentinel-2’s sensors lack the spectral resolution to discern individual tailings minerals from one 

another, so here we test its ability to discriminate a wider tailings class from the background 

non-tailings class. We take advantage of the ease of acquiring new Sentinel-2 images using 

Google Earth Engine (GEE), to include data from a large region. 

2.1.4. Detecting Gold Mine Tailings at Historic Mines Using Space-Based Remote Sensing 

2.1.4.1. Sentinel-2 Mission and Sensors 

Images from Sentinel-2’s MultiSpectral Instrument were selected for this study. The 

Sentinel-2 mission comprises a pair of identical satellites launched by the European Space 

Agency (ESA) in 2015 and 2017 (Sentinel-2A and Sentinel-2B, respectively). Each has a return 

frequency of 10 days at the equator. Their orbits are offset by 180°, such that a new image is 

acquired at a given location every five days with the same viewing conditions, and more 
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frequently with different viewing conditions, based on latitude (European Space Agency, 2015). 

Sentinel-2 has 13 bands in varying spatial resolutions and bandwidths ranging from 15 to 175 

nm (Table 1). It differs in this way from hyperspectral sensors that may contain several hundred 

bands at very narrow bandwidths (~2 to 5 nm) and have continuous or near-continuous 

spectral coverage. The locations of Sentinel-2’s 13 bands were chosen carefully to avoid 

atmospheric absorption, target peak NIR reflectance in vegetation, and be sensitive to iron 

oxides in soil (European Space Agency, 2015). In general, bands are narrower than those of 

Landsat’s sensors to avoid atmospheric water vapour absorption bands. Accurate discernment 

of vegetation improves the ability of the model to mask out vegetation on the surface, and an 

indication of iron oxides is important for discriminating tailings from non-tailings. 

Sentinel-2’s bands come in different spatial resolutions. Four bands are provided in 10 m 

resolution, six in 20 m, and three in 60 m for atmospheric analysis. The 10 and 20 m bands were 

used in this study, with the 10 m bands resampled to 20 m. Spatial resolution is another 

advantage over the Landsat mission, which has a maximum resolution of 30 m, excluding the 

panchromatic band. The sites in this study are typically less than 100 to 200 m wide, so smaller 

pixels allow for better capture of areas in the center of sites, with less mixing from edges that 

may contain vegetation or water. 

2.1.4.2. Google Earth Engine 

Desktop analysis in this study was performed using Google Earth Engine (GEE), a cloud-

based platform launched by Google in 2010 that allows access to and analysis of a huge 

collection of satellite images (Gorelick et al., 2017). There are application programming 

interfaces (APIs) available for GEE using JavaScript or Python. The JavaScript API is web-based 
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and includes a graphical user interface with search functions for datasets, console output, an 

interactive map including geometry drawing/import tools, and a documentation browser. 

Scripts written on GEE can also be exported as standalone apps that can be shared with others 

without requiring them to register for the platform themselves (Jewell, 2021). Sentinel-2 data is 

included in GEE’s collection, including images corrected from top-of-atmosphere to at-surface 

reflectance. This collection can easily be filtered to obtain images by, e.g., date ranges, low 

cloud cover, etc., while requiring no preprocessing by the user. 

2.1.5. Study Area 

Though the purpose of this study is to create a model that can incorporate tailings data 

from mine districts across the province, Goldenville and Montague were the target districts 

used for validation. The remaining 62 districts were available for sampling training data and 

were used when they intersected the Sentinel-2 image containing either of the target districts 

(Figure 2). Since the two test districts are approximately 125 km apart and Sentinel-2 images 

are roughly 100 km by 100 km, each test district required its own image and therefore used 

different training districts. There are eight districts with exposed gold mine tailings in the image 

containing Montague, and nine in the image containing Goldenville. Moose River Gold District is 

in the small overlap between the images, so it was used in the analyses of both images and 

counted twice. The buffered circle around Goldenville was intersected slightly by the edge of 

the image, reducing the analysis area, though this did not remove any of the historic tailings 

areas mapped in the Nova Scotia Mine Tailings Database (NSMTD), which would later be used 

to obtain training data (Figure 2). 
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2.2. Methods 

2.2.1. Data Acquisition and Initial Processing 

2.2.1.1. Pre-Processing of Sentinel-2 Images 

Sentinel-2 images are available to end users mainly as two products: Level-1C and Level-

2A. Level-1C products have undergone radiometric and geometric corrections and represent 

top-of-atmosphere reflection. Level-2A images have been further processed to create surface 

reflectance, or “bottom-of-atmosphere” images. As photons pass through the Earth’s 

atmosphere and reach a satellite’s sensor, the reflectance signal is altered by water vapour and 

other atmospheric constituents, even on cloudless days. Water vapour, as well as cirrus clouds, 

can be effectively removed via atmospheric correction methods (Homem Antunes and Bolpato, 

2018). Around 1.4 and 1.9 µm, respectively, are absorption features where water vapour 

absorbs light, rendering that EM region opaque and unusable for analyzing the Earth’s surface, 

even with corrections (Richards, 2013). 

ESA began automatically generating Level-2A products globally in December 2018. 

Previously, a user had to take a Level-1C product and perform corrections either manually or by 

using specialized software such as the ESA’s Sentinel Application Platform. Automatic 

generation of surface reflectance imagery has made it possible to quickly swap out input 

images in models. The methods used to perform atmospheric corrections on Sentinel-2 images 

are continually refined and may not be the same across all datasets available in Google Earth 

Engine. 

In addition to atmospheric correction, Level-2A imagery contains several added data 
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products. The scene classification map is a coarsely classified land cover data layer (provided as 

an imagery band) which includes vegetation, bare soil, water, and cloud classes at a 20 m 

resolution (European Space Agency, 2015). This band will be used to distribute sample points 

for the classifier across land cover types. 

2.2.1.2. Nova Scotia Mine Tailings Database 

In 2020, the Nova Scotia Department of Energy and Mines, now the Department of 

Natural Resources and Renewables, developed the NSMTD, derived from historical maps and 

modern surveys (Hennick and Poole, 2020). A total of 219 historic mineral processing sites were 

identified, out of which 194 processed gold. This project was an effort to update the previous 

map database, produced in 2009 by digitizing 64 maps originally produced between 1884 and 

1919. These original maps were largely based on the work of E.R. Faribault at the Geological 

Survey of Canada (Drage, 2015; Faribault, 1900). These historical maps lack tailings from 

modern mining operations and may no longer be accurate due to the transport of tailings 

downstream from mine sites, or the burial of historic tailings by later mine wastes. The NSMTD 

compiled data from the digitized Faribault maps in a spatial data format and updated it with 

additional data from modern studies, where available. While the NSMTD is a thorough product, 

using data from across such a large area and period to classify modern images presents several 

challenges. Filtering and preprocessing were necessary before it could be used to train a 

classification model. 

NSMTD tailing polygons and accompanying metadata were imported to GEE for 

processing and to be used as reference and validation data for the classification models. 

Relevant metadata properties used in the initial filter included metal mined and quantity of ore 
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extracted. From these, gold tailings could be specified and mine areas with no waste rock could 

be excluded. While polygon layers of the boundaries of mine districts were available, 

abandoned historic tailings often exist beyond those boundaries, according to the NSMTD. 

Rectangular mine district boundaries were converted to buffered circles with a 2.5 km radius, 

extending from the original district centroid. The radius was chosen based on a visual 

inspection of tailings maps. Too small, and the buffer would not capture all tailings around a 

mine point. Too large, and the buffer would overlap with nearby districts. The area of exposed 

tailings at mine districts varies greatly, impacting the amount of training data available in each 

district. Since the model relies on a random selection of districts for training and testing, 

districts with fewer than five tailings pixels, or 2000 m2 were excluded. Overlapping within a 

small area was especially a problem around Goldboro, which contains the Upper Seal Harbour, 

Isaacs Harbour, and Lower Seal Harbour historic gold districts within a small region. 

2.2.1.3. Masking Vegetation and Water Pixels 

For classification, only pixels containing mine tailings exposed at the surface were viable 

for training and detection of the target class. Many of the NSMTD’s tailings pixels were at least 

partially covered by vegetation or water. These areas have either been overgrown since they 

were mapped, or they were surveyed by removing vegetation and testing the sediment. In 

some cases, historic tailings were deposited directly into lakes or wetlands. This is commonly 

represented in the NSMTD as a fan-shaped polygon corresponding to the documented 

deposition location (Hennick and Poole, 2020). In other cases, shallow temporary pools are 

common, at least seasonally, and these may be deep enough to obscure tailings from detection 

within the reflectance imagery. Tailings polygons were converted to a raster image and 
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vegetation and water masks were applied as described below.  

Normalized difference vegetation index (NDVI, Equation 1) and modified normalized 

difference water index (MNDWI, Equation 2) images were generated from the Sentinel-2 

surface reflectance image. A threshold was set for each, chosen via histogram inspection, with 

any pixel with a value (NDVI or MNDWI) below this threshold used to create the mask. The 

histogram for NDVI was bimodal, with peaks around 0.0 and 0.8, likely corresponding to bare 

pixels (including water) and healthy, green vegetation, respectively. The flat area of the 

histogram between these peaks represents the range of viable NDVI thresholds. Choosing a 

value closer to the leftmost peak (lower NDVI) would make the mask more restrictive. A 

threshold value closer to the rightmost peak (higher NDVI) would allow pixels with more 

vegetation, increasing sample area but also introducing noise to the training data. MNDWI was 

chosen for the water mask over the normalized difference water index (NDWI) because it has 

been demonstrated to be better at differentiating water and built-up areas (Du et al., 2016). 

The MNDWI histogram also showed a bimodal distribution, with peaks around 0.0 and 0.35, 

likely corresponding to dry land and shallow water, respectively. 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
=  

(𝐵𝑎𝑛𝑑 8 − 𝐵𝑎𝑛𝑑 4)

(𝐵𝑎𝑛𝑑 8 + 𝐵𝑎𝑛𝑑 4)
 ( 1 ) 

𝑀𝑁𝐷𝑊𝐼 =  
(𝐺𝑟𝑒𝑒𝑛 −  𝑆𝑊𝐼𝑅)

(𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅)
=  

(𝐵𝑎𝑛𝑑 3 − 𝐵𝑎𝑛𝑑 11)

(𝐵𝑎𝑛𝑑 3 + 𝐵𝑎𝑛𝑑 11)
 ( 2 ) 

 

The accuracy of these NDVI and MNDWI masks was tested by training a classifier at the 

threshold values and classifying the Montague mine district. The precision metric (Equation 4) 

was used, which is the ratio of true positives out of combined true and false positives. Precision 



   

 

15 
 

was used over recall or F1-Score for this test, as it penalizes false positives, and the goal was 

not to predict new tailings areas at this time (Branco et al., 2015; Van Rijsbergen, 1979). 

Precision is explained in more detail in section 2.2.4.2. 

Several threshold values were tested for the vegetation and water masks applied to the 

rasterized NSMTD polygons. The two masks removed pixels indicating green vegetation and 

water. Threshold values were tested by repeating classification at various values and obtaining 

precision. To ensure that the difference in accuracy was a result of the thresholds, input 

variables and target district were kept the same. Twenty metre Sentinel-2 bands were used as 

variables, and only Montague was used as the target district. Each test consisted of 25 

iterations, and a summary of the results was obtained (Figure 3 and Figure 4). The values 

chosen to test the thresholds were based on the histograms of NDVI and MNDWI, respectively. 

These histograms were bimodal, and the distribution of test values targets the space between 

histogram peaks. 

Additional methods were tested to remove waterbodies. Sentinel-2’s SCM is a general 

land cover classification that is generated with the level 2A data products and includes a water 

class. GIS layers of waterbodies were imported from a provincial database, rasterized, and used 

as a mask. This data was based on either field surveys, or digitization of existing maps, and 

didn’t reflect seasonal fluctuations in surface area. Though they might have provided a more 

accurate water body extent in some cases, there was no ability to locate temporary standing 

water on sites.  

Before training and testing, districts were filtered one last time to remove those with 

little or no exposed tailings. Pixels were counted in each district and a filter was then used to 
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select only mine districts with at least five pixels or 2000 m2 at a scale of 20 m. Tailings pixels 

from districts that were filtered out were still available to be sampled for the training dataset. 

2.2.2. Characterization of Historic Gold Mine Waste Samples 

2.2.2.1. Tailings Sample Collection 

Tailings samples were collected at the Montague, Oldham, and Waverley historic gold 

mine districts (Figures 5a, 5b, and 5c, respectively) near Halifax (Figure 6). Sample locations 

were chosen based on visual inspection of tailings areas to target different colours of tailings at 

the surface. This was based on the assumption that tailings colour is a result of differing 

mineralogy (Percival et al., 2013). Large, open patches of tailings, ideally at least 10 m by 10 m 

(the minimum pixel size of the Sentinel-2 images) were targeted, to try and avoid locations 

where the image pixel would be mixed with forest or other land cover types. Two types of 

samples were collected at each location. A surface sample from the top cm was collected using 

a shovel, and another of the top 10-15 cm depth (including the top cm) was collected using a 

hand auger. Neither stratigraphic sequence nor way-up were maintained in the latter 10-15 cm 

samples, which would later be mixed to obtain random subsamples. Samples were put in 

labelled bags and placed in a cooler until they could be stored in a freezer. 

Surface samples were meant to represent the material that is being directly observed by 

Sentinel-2’s sensors, which cannot penetrate the sediment. Bulk samples were collected to 

investigate the correlation between the surface and underlying tailings and show that material 

composition observed by the satellite is not restricted to the immediate top layer when 

sediment is relatively homogenous. The shovel and hand auger were rinsed with distilled water 
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and wiped clean between each sample. We collected 16 paired samples (32 total), with six pairs 

at Oldham and four at Waverley on September 15th, 2020, and six at Montague on October 

20th, 2020. Photos of tailings were taken at sample sites to record colour, the general level of 

vegetation and other environmental conditions. Coordinates were obtained by taking the mean 

of three points at each sample location with a consumer-grade GPS. 

Soil samples were kept in a cooler in the field and brought directly to Saint Mary’s 

University, where they were stored in a freezer. They were later thawed, placed in foil-lined 

glass dishes, dried in an oven at 50°C, checked daily, and removed when dry (roughly one to 

two days). It is worth noting that drying at this temperature may have led to a loss of Hg of 

approximately 4% (Smeds et al., 2022). Dried samples were shipped to Bureau Veritas 

Commodities Canada Ltd., in Vancouver, Canada. Samples were pulverized via mortar and 

pestle and processed by dissolution in aqua regia and analyzed by ICP-MS for 37 elements, 

including As, Hg, and iron (Fe). 

 

2.2.2.2. Scanning Electron Microscope (SEM) Analysis 

A subsample of each of the 16 surface samples was analyzed using a TESCAN Mira3 LMU 

SEM, equipped with an Oxford Instruments INCA X-max 80 mm2 Energy Dispersive 

Spectroscopy (EDS) system at Saint Mary’s University. Silt to sand-sized tailings grains were set 

in resin pucks, polished, and coated in carbon for analysis. Iron-bearing grains, specifically 

arsenopyrite, were easy to locate within each sample, as they were comparatively bright when 

using the backscattered electron (BSE) detector and could be further characterized by texture 

and habit (general shape of natural crystals). When bright minerals resembling target minerals 
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(sulphide and iron oxide minerals) were discovered, an image was saved, and the grain was 

further analyzed via EDS to obtain its composition. As hydrogen cannot be detected by EDS, 

identification of hydroxides was not possible, but certain sulphide and iron oxide minerals were 

identified.  

2.2.3. Image Sampling for Training and Classification 

2.2.3.1. Remote-Sensing Image Sample Design 

To classify pixels in an image, a supervised classifier must first be trained using reference 

data labelled with the appropriate land-cover class. Our image sampling procedure follows 

recommendations by Stehman and Foody (2019). This process is simplified when using a binary 

classifier, where reference data need only be labelled as either belonging or not belonging to 

the target class, e.g., tailings, or non-tailings. The non-tailings class included all land cover, 

including bare sediment or soil, that was not mapped as tailings in the NSMTD or masked out 

using the vegetation and water masks described above. Relative to non-tailings pixels, tailings 

pixels were a very small class. Having a rare target class has implications on both sampling for 

training and accuracy assessment (Genuer et al., 2010), and as such slightly different sampling 

approaches were taken to sample the tailings and non-tailings classes. Tailings were sampled 

from areas labelled in the NSMTD that were not masked out. Non-tailings were sampled from 

throughout the entire image. These two training point sets were then combined to train the 

binary classifier. 

2.2.3.2. Non-Tailings Sampling Using Stratified Random Sampling 
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To ensure that all land cover classes were sampled sufficiently in the non-tailings class, a 

stratified random sample design was implemented. Stratified random sampling was used on the 

scene classification map band automatically generated and attached to the Sentinel-2 Tier-2A 

image to provide spectral data for a variety of non-tailings land cover. The area of each of these 

classes was determined, and sample quantities per class were distributed according to their 

area proportion. The exact number of samples would vary for each image, but an example, as 

well as the landcover types, is given in Table 2. Scene classification map classes two to nine 

were used for stratification (Table 1). The number of pixels in each class was divided by the sum 

of pixels in the training area to obtain class area proportion. The total number of sample points 

was set at 7500, and this number was multiplied by each class proportion to reach the desired 

number of samples per class. After proportions were determined, 25 samples were added to 

each class to ensure that rare classes were still captured. 

2.2.3.3. Sampling Tailings Areas in Sentinel-2 Images 

Mapped tailings are present only around the 64 historic mine districts, and these 

districts were chosen as the minimum mapping unit (Olofsson et al., 2014) for the classification 

and training of the tailings class. Tailings were randomly sampled from all districts but the test 

districts, including those districts that were disqualified from the training/testing selection for 

having too few tailings pixels. We randomly selected 1/3 of the pixels and labelled them as 

tailings for the classifier trainer. Once non-tailings and tailings samples were collected, the two 

were merged into one feature collection and used as the training data for the classifier. 

2.2.3.4. Splitting Training and Test Areas for Cross-Validation 
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The pixel-wise classifier was tested in two ways. In the first, only the Montague and 

Goldenville districts were used. In the second, Monte-Carlo cross-validation was used, where all 

districts in a Sentinel-2 image were split repeatedly into testing and training sets. By removing 

control over which districts were used, this method provided some insight into the difficulties 

of classifying districts that were not as well-documented as Montague or Goldenville. In each 

split, a random number was generated for each district, districts were ranked according to this 

number, and the top 1/3 of districts were set aside for testing. Training data was collected from 

the remaining 2/3 districts. Sample points were generated using the same procedure as in the 

Montague and Goldenville tests. 

 

2.2.4. Classification 

2.2.4.1. Random Forest Classifier 

Once sample points for the target and non-target classes were collected, the classifier 

was trained and implemented. A random forest (RF) classifier was chosen – specifically, the 

Statistical Machine Intelligence and Learning Engine (SMILE) random forest (RF) classifier (Li, 

2014), which is available within GEE. RF classifiers are ensemble tree classifiers that pass data 

through a series of nodes, randomly selecting variables and voting on their class membership. 

The majority of votes determines the input data’s class label. These classifiers are popular in 

remote sensing because they are capable of high accuracy, even with large data sets and large 

amounts of input variables. The SMILE RF also has the advantage of automatically producing a 

variable importance value, which was used during classification to obtain an optimized set of 
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variables. 

2.2.4.2. Accuracy Assessment: F-Score 

Before variables could be optimized and classification could be performed, a method was 

established to test the accuracy of the model. There are many classification accuracy 

assessment metrics, including overall accuracy, producer’s accuracy, and consumer’s accuracy. 

These are poor choices, however, when the target class is rare compared to the non-target 

class (or classes) – a common scenario in binary classifiers (Branco et al., 2015). If every pixel in 

an image or mapping unit is being assessed, accuracy may be high even when the target class is 

not classified at all. Mine district areas with a radius of 2.5 km have about 50 thousand total 

pixels at 20 m resolution and in some cases 10 or fewer pixels of tailings unobstructed by 

vegetation or water. Using overall accuracy, a classifier that completely ignores the target class 

(e.g., all pixels labelled non-tailings) in this case would be considered about 99.8% accurate (10 

errors out of 50 000 classified pixels), despite not attempting to classify the target. Other 

accuracy metrics have been developed to better address imbalanced target class distributions. 

The metric chosen in this study was the F-score, or more specifically, the F-Beta score, Fβ, 

which is the weighted harmonic mean between recall and precision (Van Rijsbergen, 1979). The 

variable β can be adjusted to weigh either metric above the other. We calculate Fβ as: 

 

Where: 

𝐹𝛽 = (1 +  𝛽2) ∗  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2+𝑟𝑒𝑐𝑎𝑙𝑙)
 ( 3 ) 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 ( 4 ) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 ( 5 ) 

 

True positives are determined by the classifier labelling a pixel as tailings that is also 

labelled tailings in the reference data. False positives are labelled tailings by the classifier but 

non-tailings in the reference data. False negatives were not labelled tailings by the classifier but 

are labelled as such in the reference data. Note that true negative predictions do not contribute 

to F-Score at all. To put these metrics in other terms, precision measures the number of 

correctly classified tailings pixels out of total classified tailings and recall measures correctly 

classified tailings pixels out of total reference tailings. With β set to 1, Fβ becomes F1-score or 

the balanced F-score. This is the most common configuration of the F-Score, and β was set to 1 

for accuracy testing in this study, though it can be adjusted within the model to prioritize recall 

or precision during training, in theory changing how conservative the model is when predicting 

new tailings areas. 

2.2.4.3. Variable Importance and Selection 

Variable importance (VI) is a measure of how much any one variable affects accuracy in a 

classifier node. The method of calculation for VI varies based on the classifier used. The SMILE 

random forest model, which was used in this study, measures variable importance based on the 

Gini impurity index. The Gini index measures the probability that a randomly selected sample 

would be misclassified if it were assigned a random class label based on class distribution (Joshi, 

2023). Each node in the classifier splits data according to model parameters, leading to a 
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decrease in impurity. In this case, VI was measured as the sum of the decrease in impurity for a 

variable across all nodes. The higher the VI, the greater impact a variable has on impurity. 

Once variable importance was collected for the full set of input variables, an 

optimization or calibration stage was initiated to attempt to reduce unimportant or redundant 

variables. This optimization was performed using these steps: 

1) Train a random forest classifier using previously obtained training points. Retrieve variable 

importance for each variable and out-of-bag (OOB) error for the classifier.  

2) Remove the variable with the lowest VI and obtain the OOB error again. If the OOB error 

increases or stays the same, discard the variable. If it decreases, keep the variable. 

3) Move through each variable, repeating the OOB error test. 

This is non-recursive feature elimination (NRFE) (Díaz-Uriarte and Alvarez de Andrés, 

2006; Gregorutti et al., 2017; Svetnik et al., 2004). It is contrasted by recursive feature-

elimination (RFE), which recalculates variable importance each time a variable is removed. 

Though RFE is generally considered superior to NRFE (Genuer et al., 2010; Gregorutti et al., 

2017; Svetnik et al., 2004), GEE does not handle recursive methods well due to the way it 

performs parallel processing on the cloud, and NRFE was selected. 

OOB error is obtained via bootstrapping, where a subset of the training data is set aside, 

and the accuracy of the classifier is tested on this subset. This allows the classifier to test its 

accuracy internally, without having to explicitly assign testing data. Bias is reduced by 

separating training and testing data, although spatial autocorrelation may still have been a 

factor. The districts used to test variable importance were kept constant, to control for the 

variability of accuracy between them. Tests were run on Montague and Goldenville (Figure 7). 
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Reducing the number of variables provides two advantages. First, it reduces the 

computational cost by removing input data. This may not be an important factor when using 

random forest, which easily handles very large variable inputs. This step could, however, be 

used before switching to a classifier such as support vector machines, which is very sensitive to 

the number of input variables (Mountrakis et al., 2011). The second, more important, 

advantage is that this cleanup removed some correlated variables, which would have 

introduced noise, reduced performance, and made it harder to explain results. For example, if 

iron feature depth and ferric iron index were included in the input, both would likely score high 

VI values because they are good at defining the tailings class. However, these indices are very 

similar, and one is not providing much new information over the other. A classifier based only 

on these two inputs would perform poorly. In the case of random forest nodes, which select a 

set number of variables randomly, if a node were to select both variables, they may be “taking 

up space” that would be better held for an uncorrelated variable. An individual variable’s 

impact can be described by VI, but this metric alone does not always lead to the best variable 

set. 

An alternative option to using OOB error would be to optimize using F-Score on the test 

district(s). F-Score has the added ability to change weight between recall and precision, 

potentially allowing optimization of one parameter over the other. This would introduce bias, 

however, since it only works if we have a priori knowledge of the site. It may be useful if only 

some tailings were known at a site and the goal of classification was to find other similar, 

nearby tailings. Training parameters could easily be changed, based on the context and the area 

being analyzed. 
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2.2.4.4. Pixel-Wise Classification of Test Areas 

Once variables were optimized, the classifier was used on the districts set aside for 

testing. Every pixel in the district was classified, based on its reflectance and index values, as 

either tailings or non-tailings. Accuracy assessment was performed in each district. Two types of 

tests were performed. One used only the Montague and Goldenville districts as test sites. The 

other used all districts within the boundary of the selected Sentinel-2 image, randomly 

assigning a subset for testing and using the rest for training.  

2.2.5. Object-Based Classification 

In addition to the pixel-wise classification, three object-based methods were tested. In 

object-based classification, rather than classifying each pixel individually, steps are taken to first 

segment an image by clustering pixels that are spectrally alike and/or near one another. These 

groups of pixels are then treated as one object or superpixel (Achanta and Süsstrunk, 2017; 

Kamal and Phinn, 2011) by aggregating values across all individual pixels and applying it to the 

group (e.g., assigning the mean value of each band across all pixels to the object). Incorporating 

surrounding pixels acknowledges the autocorrelation of classes of land cover. Object-based 

methods are well suited for the sites observed in this study, as tailings are not randomly 

distributed across the landscape (either at the district or regional scale) and tend to exist in 

patches.  

There are numerous methods and algorithms for clustering pixels into objects. In this 

study, the simple non-iterative clustering (SNIC) algorithm was used, which is available in GEE 

(Achanta and Süsstrunk, 2017). This algorithm takes a grid of points and grows these points 
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according to a distance measure that incorporates spatial and colour distance (proximity and 

spectral similarity). As objects grow, every pixel will eventually be added to the connected 

object with the lowest distance value. The user has control of several parameters to adjust 

compactness (how square the objects are) and whether pixels are connected orthogonally (4 

connected pixels) or in all directions (8 connected pixels). 

A potential downside of SNIC is that the objects it produces are highly dependent on the 

original starting points. A random grid may not place sufficient starting points on tailings, which 

at the largest only tend to be 10 or so pixels across. Due to its non-iterative nature, SNIC cannot 

subdivide objects once they are created, unlike other clustering algorithms (e.g., ISODATA. 

[Tou, 1974]). Increasing the density of the starting grid will create more objects, until 

eventually, the grid matches the image resolution, restricting space for objects to grow and 

producing objects which contain only one pixel each. Three different starting grids were tested, 

with increasing levels of user involvement. 

Rather than the regular grid recommended for use with SNIC, the first test was the “pure 

random seeds” experiment, which tested the use of random points distributed across the test 

districts. The model generated 500 randomly distributed points and converted them to a raster 

to be used as input to the SNIC segmentation function. The origin point for the regular seed 

grids is always the same, so if a land cover feature is missed once, it would always be missed at 

the same point density. Using random points should compensate for situations where land 

cover patterns exist and are missed by the regular grid points (Stehman, 2009). 

The second experiment was “classified pixels as seeds”, where 200 points were 

randomly sampled from the pixels labelled as tailings by the pixel-wise random forest classifier. 
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An additional 1000 non-tailings points were sampled. Objects were grown using SNIC using all 

1200 points. Non-tailings starting points were required because SNIC does not produce a 

background class. If only tailings were used to create SNIC objects, these objects would likely 

grow until they filled the entire test area. By sampling non-tailings as well as tailings pixels to 

create objects, we introduce bounds on the tailings objects. The accuracy of this method was 

tested per district by F-Score, recall, and precision. 

The third experiment, the “user-generated seeds”, had the highest degree of user 

interaction. Objects were grown from points dropped on the map. These points were on well-

documented tailings based on mineralogy and bulk chemistry datasets. Four points were 

created at Montague, based on locations sampled in this study. Five points were created at 

Goldenville, using locations sampled in Parsons et al. (2012). We also sampled 500 random 

points, distributed throughout the target districts, to provide background objects. By inputting 

a small number of collected samples or relying on high-quality datasets to verify tailings are 

present, a user could input their locations and use this model to estimate its extent. 

2.3. Results 

2.3.1. Physical Analysis of Tailings 

2.3.1.1. Mineralogy and bulk geochemistry 

Out of the 16 paired samples for 3 historic tailings sites (Table 3) As was highest at 

Montague (Figure 5a), with a mean surface concentration of 9868 ppm As, a mean bulk sample 

concentration of 5692 ppm As, and the highest concentration of any sample 16,300 ppm As 

(MO02 surface sample). Waverley (Muddy Pond) had the next highest As concentrations (Figure 
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5b), with a mean value at the surface of 1921 ppm As, and a mean bulk sample value of 4364 

ppm As, with the highest value at 6143 ppm As (WV01 bulk sample). In addition, Waverley was 

the only site of the three in which bulk samples had a higher As concentration than surface 

samples. Oldham had the lowest As concentrations of the three sites, with a mean surface 

value of 999 ppm As, and a bulk sample mean of 635 ppm As (Figure 5c). The highest As 

concentration at Oldham was 2362 ppm As (OH06 surface). All samples exceeded the CCME 

guidelines of 12 ppm As, which is consistent with previous studies of historical gold tailings at 

other sites in Nova Scotia (Parsons et al., 2012). 

2.3.1.2. SEM Results 

We examined the 16 resin pucks via SEM, each of which contained a random sample of 

material from shallow tailings at each site. Potential sulphides, iron oxides, arsenates, and iron 

oxyhydroxides were targeted in the 16 resin pucks containing sub-sample of the surface 

samples using backscatter and EDS. Sulphide mineral grains (arsenopyrite or, more rarely, 

pyrite) were commonly weathered around the rim, where iron oxide minerals were identified 

(Figure 8), which corresponds with established documentation of sulphide minerals with 

weathered edges overgrown with secondary phases (DeSisto et al., 2016; Swayze et al., 2000). 

The presence of these weathered rims was considered evidence that a sample comprised 

tailings and not naturally-occuring sediment. 

2.3.2. Vegetation and Water Masks 

The NDVI threshold was tested first, using values of 0.2, 0.4, 0.6, 0.8, and 1.0, with the 

water threshold set to 0.0 (Figure 3). The interquartile range within each threshold was 
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generally low, except for 0.2 NDVI. Mean precision increased until reaching 0.64 at 0.6 NDVI, 

then it began to decline. An NDVI threshold of 1.0 (i.e., no vegetation mask) had the lowest 

mean precision, at 0.39, as it included all vegetated pixels in the training data. Based on those 

results, 0.6 was chosen as the optimized NDVI threshold for its high precision and small 

interquartile range, as all dense canopy cover in treed areas and thick grass patches were 

reduced. Just as importantly, this value of 0.6 did not filter out sparse vegetation that 

sometimes encroached on tailings areas, which allowed mixed pixels that were still dominated 

by tailings to remain in the training set. A more precise threshold value may have been 

identified by using a step size finer than 0.2, though this may have been less generalizable when 

expanding to all sites. More robust threshold detection methods (e.g., Otsu’s method, Otsu, 

1979) could potentially provide an optimized threshold for each site on the fly, though methods 

that require recursive iteration may be difficult to implement in GEE. The histogram for MNDWI 

showed a bimodal distribution with peaks around 0.0 and 0.35, likely corresponding to dry land 

and shallow water, respectively. Deep water pixels appear to have more noise and values were 

distributed evenly across the 0.35-1.0 range. The right peak was not as well-defined as the peak 

around 0.0 and was slightly positively skewed. A narrow area existed around most waterbodies 

that was not successfully masked using this threshold. Lowering the threshold (making it more 

restrictive) started to remove tailings pixels as well. An MNDWI threshold value of 0.0 was 

selected which captured shallow ponds and larger waterbodies, except for the area at their 

shores. 

Water thresholds were tested at values of -0.4, -0.2, 0.0, 0.2, and 0.4, with the 

vegetation threshold set at 0.6 (Figure 4). The water threshold value results showed much less 
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variation than the vegetation threshold values. Though -0.4 had the highest precision by a small 

margin, visual inspection of the image showed that such a low threshold would remove areas of 

tailings that could not be confirmed as wet or dry. A value of 0.0 was chosen, as a balance 

between avoiding possibly dry tailings while still removing most areas of open water. Pixels 

below thresholds were included in the mask. The result was a single image where pixels in the 

mask indicated an “unvegetated and dry” surface. This filtered image was used to train the 

classifier. 

2.3.3. Variable Optimization 

Potential variable sets were determined via the non-iterative feature elimination process 

previously described, then target districts were classified 25 times using each optimized set 

(Figure 7). All model parameters were kept constant, including the vegetation and water 

threshold values, which were set at 0.6 and 0.0, respectively. Only one district was tested at a 

time, and five optimized sets were generated per district. Montague and Goldenville were used 

as the target districts, with the other districts present in their respective Sentinel-2 image 

boundaries used as training districts (Figure 2). A total of 250 iterations were tested, and 

summary statistics of each variable set are displayed in Figure 7. The set [Band 3 (green), Band 

6 (vegetation red edge), Band 7 (vegetation red edge), Band 8A (NIR), Band 12 (SWIR), NDVI, 

MNDWI] was selected based on its high mean F1-Score and low variance. The inclusion of two 

red edge bands may be redundant. On the other hand, the exclusion of the two iron indices was 

surprising. Indices do not actually provide new data, however, as they are just combinations of 

existing data that can reduce noise and highlight features. It is possible that these were also 

determined by the model to be redundant, and so they were removed.  
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2.3.4. Pixel-Wise Classification 

2.3.4.1. Montague and Goldenville Districts 

Once threshold values were chosen and variable sets were generated, classification was 

performed again. First, Montague and Goldenville were classified, using all other districts in 

their respective images for training. Accuracy (F1-Score) was collected in the test district for 

each iteration. The model was run 50 times per district, and summary statistics were obtained. 

Results are visualized in Figure 9a and 9b, based on the frequency of positive classification per 

pixel. Where the background (satellite image) is visible, this indicates the pixel was never 

labelled as tailings. 

2.3.4.2. All Districts Using Random Testing and Training Subsets 

Finally, all districts within the two Sentinel-2 images were tested using a Monte Carlo 

cross-validation technique (Lyons et al., 2018). The classifier was run 100 times, each time 

randomly selecting two test districts and using the remainder for training. This captures a range 

of accuracy across iterations, each of which uses different combinations of testing and training 

districts, as well as different randomly selected training points and random forest outcomes. 

F1-Score was collected for all test districts and is displayed in Figure 10a and 10b. Note that 

Caribou is present in both the Montague and Goldenville regions, as there is a slight overlap in 

Sentinel-2 images (Figure 2). 

2.3.5. Object-Based Classification 

Three methods were tested to classify tailings from segmented images, using the object-

based methods. The same sample points were used to train these classifiers as from the pixel-
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wise classification. Results from Montague and Goldenville are shown here, as these sites were 

the only ones tested using the “objects grown from samples” method.  

The pure random seeds experiment did not outperform pixel-wise classification. At its 

best, it came close to the F1-Score of the pixel-wise classification. Results were good at 

Goldenville but very poor at Montague, which had a median of just over 0.5 but a high variance 

and many results with no tailings classified at all (Figure 11). 

The classified pixels as seeds results showed an improvement over the random points 

but this experiment still failed to outperform the pixel-wise classification (Figure 12). It did have 

the advantage of cleaning up some of the scattered false positives that were often present as 

single, isolated pixels. Median F1-Score increased for both sites, and Montague had at least 

some classified pixels in all iterations. The mean recall was consistently higher than both the 

median F1-Score and mean precision. 

The final experiment was creating objects from user-generated seeds. Locations of 

physical tailings sample sites were manually entered. For Montague, the locations of samples 

collected in this study were used (Figure 5a). At Goldenville, locations were taken from Parsons 

et al. (2012). Four points were used for Montague and five for Goldenville. These manually 

entered points existed in addition to the random points used in the previous iterations. This 

method was like previous ones but allowed a more guided object generation when information 

was available. Goldenville has a slightly lower median F1-Score than in the previous method 

and a much larger interquartile range that is highly negatively skewed (Figure 13). The mean 

precision for Goldenville is much higher than the mean recall. Results at Montague were better 

using this method than the previous methods. Median F1-Score is slightly higher, and the 
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variance is lower.  

2.4. Discussion 

2.4.1. Data Sources for Training and Validation 

Studying sites that have been known to historical surveyors and modern researchers for 

such a long time means that a wealth of data is available that can potentially be used for the 

training and validation of models. These historic gold mine sites are ideal in many ways as a 

workshop and testing ground for big data analytical methods. The use of existing data, 

however, has advantages and disadvantages. Using existing data significantly reduced the cost 

of this study, and the amount of time spent in the field. Data was also available from a much 

greater spatial range than what would have been practical to collect on our own, in the 

available timeframe. Time restrictions were especially important, as the scheduled field sample 

season was impacted by safety restrictions put in place during the Covid-19 pandemic. Without 

using existing data, the number of sites included in this study would likely have been restricted 

to just two or three. 

Using existing data was not as simple as putting everything in a spatial format and 

feeding it into the model. There were limitations in the data that had to be considered when 

training and validating, and that must be accounted for when interpreting results. The age of 

the data ranged from very recent (i.e., the Nova Scotia Mine Tailings Database, [Hennick and 

Poole, 2020]) to a century old (Faribault, 1900). Even the oldest data can help to provide an 

idea of the location and possibly the spatial extent of tailings, but it does not provide a reliable 

description of the current tailings extent, much less the detailed modern mineralogy. While 
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gold mine tailings may reach an equilibrium point where mineralogy can become relatively 

stable in the medium-long term (Roussel et al., 2000; von der Heyden and Roychoudhury, 

2015), shifts in pH, bacterial activity, or water-level changes may cause rapid dissolution or 

more gradual remineralization (Riaza and Müller, 2010; Seal and Hammarstrom, 2003), 

changing the minerals present and thus the spectral signature of the aggregate tailings. For this 

reason, it is generally better for most remote sensing methods to use data from samples 

collected as close as possible to the date of satellite image acquisition. The large time range of 

data used in this study would have made spectral-matching techniques such as spectral mixture 

analysis difficult and likely inappropriate, as validation would require up-to-date mineralogical 

data. We addressed this problem by using the data to define only the areal extent of tailings 

and collecting training data directly from the images. In theory, this method captures 

mineralogical changes that have occurred between physical sampling and image classification, 

allowing for discrimination of tailings and non-tailings, as long as reflectance of tailings differs 

from that of surrounding sediment. 

When using existing data, there may be varied definitions of tailings between studies. 

Previous surveys that physically sampled tailings typically sought to discover and describe 

tailings whether they were under vegetation, non-tailings sediment or soil, or under water. In 

the context of optical remote sensing, only tailings that are exposed at the surface are useful 

for training and validating a classification model. If, for instance, the entire Nova Scotia Mine 

Tailings Database were used to train a model, it would have included many pixels labelled as 

tailings that were obscured in the satellite imagery. This would have introduced non-tailings 

sample points to the tailings training data, reducing the model’s ability to discriminate between 
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these two land cover types. This is also related to the time range of data collection, especially 

concerning vegetation. Data collected even a few years ago may indicate exposed tailings in a 

particular pixel that may have become overgrown. This was addressed using the vegetation and 

water masks derived from image band values to remove some tailings pixels before training the 

model. As a test, the model was run without filtering tailings pixels for vegetation, and it 

performed as expected – vastly overestimating tailings regions (Figure 14) due to incorporating 

pixels with vegetation into the tailings class. The NDVI threshold test showed a similar result 

when a value of 0.2 was used (Figure 3). 

Setting the vegetation and water thresholds was the fastest and simplest way to remove 

large areas of incompatible training data and these data layers consistently ranked high in 

variable importance. In regions with ample forest cover, tailings often remain unvegetated, 

allowing easy discrimination via NDVI. This index alone would not necessarily help in 

distinguishing non-tailings sediment or soil from tailings, since pure pixels of either of these 

classes should have values near zero for either index, but they provide enough information to 

the classifier that it was able to focus on bare, dry sediment. Water masking via MNDWI was 

not as effective as vegetation masking but still helped to remove some areas from the Nova 

Scotia Mine Tailings Database layers which, for our purposes, should not be considered tailings. 

Initially, the same vegetation and water masks were applied to classifier results that were 

applied in pre-processing the training data, but it made very little difference in the total number 

of pixels classified. The random forest model was able to decide on its own to prioritize these 

indexes when classifying. 

2.4.2. Variable Importance 
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Feature reduction is an important step in hyperspectral image analysis, where a large 

number of bands can lead to problems of correlation while also being computationally 

expensive to process (Gregorutti et al., 2017), but it is not commonly used with multispectral 

data. Sentinel-2 bands are spaced apart, reducing correlation, and there are fewer of them, 

reducing the computational cost. Even with a small number of bands, feature elimination 

methods may identify redundant bands which do not effectively increase accuracy, but it seems 

to have had a limited effect in this study. The random forest classifier performs an internal 

variable selection process repeatedly as it runs by randomly selecting a subset of variables at its 

nodes and testing accuracy on a subset of training data (Breiman, 2001; Genuer et al., 2010). 

With only 10 spectral bands used and four indices to start with, though it showed a slight 

benefit, F1-Scores across the tested variable sets did not vary by a large degree and the slight 

reduction in the quantity of input variables had little to no impact on model performance 

(Figure 7). The optimization step could likely have been omitted with little effect. 

2.4.3. Pixel-Wise Classification 

Accuracy, measured in F1-score, was high for most sites for the pixel-wise classification. 

This shows that it is possible to train a classifier to differentiate exposed tailings from non-

tailings using only multispectral bands. The analysis was largely made possible by the existence 

of good-quality training data captured over a large region. It does not appear that the large 

distance separating the sites is hindering the model’s performance. An advantage of the sites 

used in this study is that they all exist in the same geological terrane, spanning only a few 

different formations. While many conditions may vary at the surface of these sites, bedrock and 

the ore extracted during mining are similar, providing a relatively consistent background signal 
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(Figure 15). 

Waverley and Lake Catcha had the lowest median F1-scores, and variance was high at 

Lake Catcha. These sites both consist of partial wetlands, and large shoreline areas, both land 

cover types which appear to confuse the classifier. 

The average reflectance of tailings was recorded at all sites that exceeded the minimum 

pixel count threshold (Figure 15). Mean spectra plots are divided between the sites around 

Montague and the sites around Goldenville, for a total of 12 spectra (Caribou is included in both 

regions and only counted once). Some absorption can be observed for band 8 at many of the 

districts which could be attributed to the iron absorption feature of various iron-bearing 

minerals present in tailings that may not be present in background sediments or soils. Band 8 

was not used in the classification, however, due to its overlap with band 8A. Band 8A was 

chosen over band 8 to reduce band correlation, and based on the assumption that its narrower 

bandwidth would help target iron absorption in minerals. Since absorption can be observed in 

band 8 but not band 8A, any absorption due to iron-bearing minerals was likely in band 8’s 

range below band 8A’s range (i.e., approximately 780 to 845 nm, Table 1).  

Moosehead, Fifteen Mile Stream, Lawrencetown, and East Rawdon are outliers in 

spectral shape, magnitude, or both. Exposed? Tailings areas at these sites are small, especially 

after filtering for vegetation. Several are just over the pixel count threshold for eliminating the 

sites, and there are fewer pixels to sample. The smaller areas may also lead to more mixed 

pixels at the edges of tailings. The tailings polygons for Moosehead and Lawrencetown from the 

Nova Scotia Mine Tailings Database appear to show deposition directly into the ocean. This may 

be observed in the relatively flat, low-reflectance spectra for these sites, which suggest that the 
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pixels are indicating water rather than tailings, or at least wet sediment (Lekner and Dorf, 1988; 

Nolet et al., 2014). The use of a more reliable method for removing wet pixels would likely shift 

the outlying spectra closer to the mean, providing better training data for the classifier. Some of 

the districts would be removed from the analysis entirely. Changing the MNDWI threshold 

would likely not suffice on its own. Setting the water threshold value aggressively began to 

remove tailings, and setting it conservatively failed to remove wetlands and pixels that seemed 

to contain turbid water. 

Many false positives were observed along shorelines, possibly resulting from the broad 

definition of tailings in the tailings data. It is difficult to determine whether the confusion was 

caused by a mixed-pixel effect at the boundary of water and land, or if the problem is the 

saturation of the shoreline sediment. If it was the former, sub-pixel identification could help 

improve results here. If it was the latter and the pore space of shoreline sediments is saturated, 

unmixing would be more difficult. It is possible that a classifier, trained on wet non-tailings 

sediment, could differentiate dry tailings from wet non-tailings, though it may require greater 

spectral resolution. This question is further explored in chapter two. 

Roads, and to a lesser extent other built-up areas like houses, were sometimes 

erroneously labelled as tailings by the classifier. Looking at Figure 9a and 9b, it does appear that 

there are trends along roads or in residential areas, with incorrect labels appearing throughout 

but in low frequencies. Urban and built-up land cover have similar spectra to tailings (Figure 

16), but the model appeared to be able to differentiate the two most of the time and false 

positives can likely be attributed to noise. 

2.4.4. Object-Based Classifier 
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Object-based classification using the SNIC algorithm shows some promise in removing 

false positives, especially lone pixels erroneously classified as tailings. The downside is that it 

sometimes misses tailings areas and missing these tailings objects contributes to greater 

omission error than missing an individual pixel. Growing objects from random points didn’t 

yield better results than the pixel-wise classification, performing very poorly at most sites. This 

may be because the boundary of tailings at most sites is not as well-defined as at Goldenville or 

Montague, making it harder for the algorithm to know where one object should stop, and 

another begin. On the other hand, when objects are grown from seeds which are placed on 

tailings, they seem to be more successful in classifying mixed pixels at the edges where 

vegetation or water begins. 

The user-generated seeds test was much more accurate and showed that expert input 

and geochemical testing of a limited number of physical samples can guide the classification 

process. The SNIC procedure allows for interactive and intuitive guidance of segmentation and 

subsequent classification. By using this method, tailings maps could be generated based only on 

a few well-defined samples. This could be applied after physical sampling has been performed, 

or beforehand to help predict tailings extent and guide sampling procedures. Combining this 

method with the collection of field spectra could allow for the prediction of an interpolated 

tailings area using a limited number of high spatial and/or spectral resolution measurements. 

Field spectra were not used in this study, as it would take many data points to train a random 

forest model, and we instead opted to use the large Nova Scotia Mine Tailings Database. 

Testing a classifier that has been trained on the large database and applied to higher resolution 

field spectra could be a valuable future study. 
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2.5. Conclusion 

The primary goal of this study was to determine if multispectral data from the Sentinel-2 

satellite mission provided sufficient data to train a random forest classifier to differentiate 

tailings from non-tailings. An optimization step was used to determine which spectral bands 

and computed indexes provided the best results. This step showed that some Sentinel-2 bands 

are not necessary or may even be detrimental, however, results did not vary greatly across 

different sets of variables. This can probably be attributed to the efficiency of random forest 

classifiers, which internally select variables based on an importance score. Two indexes, ferric 

iron index and iron feature depth, were computed that were meant to target the iron 

absorption feature suspected to be present in tailings. Neither of these indexes were included 

in the variable sets with the highest F1-Score and were not used in the final classification. This 

may have been because tailings did not display as clear an iron absorption feature as expected, 

or the iron absorption feature may have been captured adequately by the narrow NIR band – 

band 8A.  

Accuracy, as measured by F1-Score, varied greatly across the districts. Not surprisingly, 

the larger sites with clearly visible tailings were classified with much higher accuracy than small 

sites with vegetation or, especially, water and wetlands. If viability of tailings detection is a 

function of tailings area, a more sophisticated method of eliminating sites should be explored. 

In this study sites were eliminated as potential targets based on pixel count alone, under the 

assumption that tailings of a certain size were more likely to contain more “pure” tailings pixels. 

In other words, small sites would have more edge pixels and therefore more mixed spectra. 

This method did not consider the possibility that a large site may be narrow (i.e., fewer than 3 



   

 

41 
 

pixels across) and would still contain a large proportion of edge pixels. 

Tailings that are covered by vegetation cannot be identified via optical remote sensing, 

though it is possible that using multiple classes of tailings could increase accuracy in wetlands. 

Tailings were often deposited in wetlands at these historic mines, and if tailings in shallow 

water could be indicated it would greatly increase the applicability of these methods. 

Testing of variable importance often prioritized NDVI, indicating that the absence of 

vegetation was one of the most important factors in identifying tailings areas. It is important to 

note that this study took place in an area with a temperate climate and extensive forest cover. 

In an arid setting, NDVI would not have been as important a factor, though it is not clear how 

this would impact overall accuracy. There were enough bare ground pixels in the images that 

were correctly labelled as non-tailings that it seems the classifier was capable of discerning bare 

sediment from tailings, but it would be interesting to see the same model applied in a desert 

setting where NDVI would not be important at all. 

The single most important contributing factor to the accuracy of this model was the 

extensive database produced by the Nova Scotian government. This data provided a diverse 

training set and allowed for automated training and validation data collection for historic mine 

sites almost anywhere in the province. By using computed indices from the Sentinel-2 images, 

this data could be cleaned up to train the classifier and used across different dates and 

locations. Considering this, perhaps the greatest hindrance to improving the performance of 

the model was the inability to fully remove pixels representing saturated sediment from the 

training data. This is potentially what led to the consistent classification of shorelines as tailings. 

The results of this study show that tailings data from diverse sources, even spanning a 
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large time range, can be used to train an accurate classifier, as long as the data is processed to 

match remote sensing constraints. When using a binary classifier, multispectral data provided 

by Sentinel-2 appears to be sufficient to discern tailings from non-tailings, at least in non-

vegetated areas where bedrock is relatively homogenous between target sites. Further 

research may explore the use of hyperspectral data to determine whether tailings could be 

separated into sub-classes, which would provide more information on mineralogy and the risk 

of contaminants. These sub-classes could represent mineral groups, vegetation types (e.g., 

grasses vs. lichens), or they could separate dry, wet, and shoreline tailings pixels. Space-based 

hyperspectral platforms typically produce images with pixel sizes greater than those of 

Sentinel-2, so it is possible that the higher spectral resolution would not be sufficient to 

compensate for the mixed pixel effect. Field-based spectrometers produce data for a very small 

(and adjustable) region on the ground, largely removing the impact of mixed spectra. As the 

model described in this paper relied on a large number of training points, the use of a handheld 

spectrometer may not be practical, however, future work could determine the minimum 

number of points needed to train a classifier that could then be applied to a region (whether an 

area the size of a Sentinel-2 image, or a single tailings site). 

2.6. Figures 
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Figure 1. A map of gold-bearing geological formations in Nova Scotia. The province’s 64 historic gold 
mining districts are located in these areas.  
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Figure 2. The extent of the two Sentinel-2 images (left: Montague region. Right: Goldenville region. Both 
images were captured on August 2nd, 2019), and the location of various historic gold mine districts 
within each image. The “training districts” provided the pixels in each image were used to train and 
validate the classification model using a Random Forest Classification approach. The “target districts”, 
Montague and Goldenville, were used for the final model assessment, as there is more data available for 
those sites. 
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Figure 3. Box and whisker plot comparing precision to the NDVI value used to mask training data. Center 
horizontal line shows median, and whiskers represent 1.5 times the interquartile range. Precision value 
was chosen by classifying tailings at Montague 25 times at each NDVI threshold. The precision of results 
was used to determine the most appropriate mask value. Precision rose between an NDVI of 0.2-0.6, 
then began to decline. 
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Figure 4. Box and whisker plot comparing modified normalized difference water index (MNDWI) 
value and precision. Center horizontal line shows median, and whiskers represent 1.5 times the 
interquartile range. The water mask was generated by testing values of the MNDWI. Precision was 
measured at each threshold value. There was little variation in precision between the MNDWI values. 
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Figure 5a. Locations of tailings samples at the Montague historic gold mine district over a satellite image 
of the site. Sample ID is shown, and colour represents the surface (top 1 cm) As concentrations (ppm dry 
weight). Basemap image credit: Maxar. 
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Figure 5b. Locations of tailings samples at the Waverley (Muddy Pond) historic gold mine district over a 
satellite image of the site. Sample ID is shown, and colour represents the surface (top 1 cm) As 
concentrations (ppm dry weight). Basemap image credit: Maxar. 
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Figure 5c. Locations of tailings samples at the Oldham historic gold mine district over a satellite image of 
the site. Sample ID is shown, and colour represents the surface (top 1 cm) As concentrations (ppm dry 
weight). Basemap image credit: Maxar. 
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Figure 6. Region map showing the location of Montague, Oldham, and Waverley gold districts. Key map 
shows Nova Scotia with point representing study area. 
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Figure 7. Box and whisker plot comparing accuracy, as measured by F1-Score, to multiple variable sets at 
Montague (top) and Goldenville (bottom). Center horizontal line shows median, and whiskers represent 
1.5 times the interquartile range. The variable optimization process started with all Sentinel-2 bands, as 
well as 4 indices: NDVI, MNDWI, IFD, and FII. Variable importance was determined using the random 
forest classifier, measured by OOB error. A variable was kept if removing it increased out-of-bag error 
until each variable was tested, providing the final set. Five unique variable sets were generated for 
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Montague, and each was tested 25 times. The set with the highest overall F1-Score between this and 
the Montague tests (Goldenville set #4) was chosen as the “optimized” variable set for future analysis. 

 
Figure 8. SEM images of arsenopyrite grains found in tailings samples. Images are from backscatter SEM, 

except for D, which is a secondary electron image to emphasize texture. Arsenopyrite grains have iron 
oxide, iron oxyhydroxide, or iron arsenate forming in cracks and along outer edges. These images 

correspond with the sampling locations in Figures 4a-c: A) MO_SM00, B) MO_SM03, C) OH_SM06, D) 
OH_SM06, E) WV_SM00, F) WV_SM01. Analyzed using TESCAN Mira3 LMU SEM, equipped with an 

Oxford Instruments INCA X-max 80 mm2 Energy Dispersive Spectroscopy (EDS) system. 
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Figure 9a. Map showing areas classified as tailings by the model overlain on a satellite image. The 
Montague Gold District was classified 50 times and compared to ground-truth data from the NSMTD. 
Figure shows how many times each pixel was labelled as tailings. Background image (i.e., satellite 
basemap) indicates the pixel was never labelled as tailings. Satellite image credit: Maxar. 
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Figure 9b. Map showing areas classified as tailings by the model overlain on a satellite image. The 
Goldenville Gold Mine District was classified 50 times and compared to ground-truth data from the 
NSMTD. Figure shows how many times each pixel was labelled as tailings. Background image (i.e., 
satellite basemap) indicates the pixel was never labelled as tailings. Satellite image credit: Maxar. 
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Figure 10a. Box and whisker plot displaying F1-Score of classification at multiple mine districts within the 
Sentinel-2 image intersecting Montague. Points are jittered along the x-axis to help show distribution. 

 
Figure 10b. Box and whisker plot displaying F1-Score of classification at multiple sites within the 
Sentinel-2 image intersecting Goldenville. Points are jittered along the x-axis to help show distribution. 
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Figure 11. Box and whisker plot displaying the distribution of F1-Score for pure random seeds 
experiment. Points were scattered randomly throughout the target district, and the SNIC algorithm was 
used to grow objects from them. This method did not outperform the pixel-wise classification. This is 
especially evident at Montague, where in many cases no pixels were labelled as tailings. 

 
Figure 12. Box and whisker plot displaying F1-Score for “classified pixels as seeds” experiment. A 
stratified sample method was used in the target districts to create tailings and non-tailings seeds. The 
tailings seeds were placed in pixels labelled as tailings in the pixel-wise classification step. Though 
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improved from the pure random seeds test, results were only about as good or slightly lower than the 
pixel-wise classification. 

 
Figure 13. Box and whisker plot displaying F1-Score of “user-generated seeds” experiment. Physical 
sample locations were used to generate seed points for the SNIC algorithm. Four points were used each 
at Montague and Goldenville. These points coincide with sediment samples which have been analyzed 
and confirmed to consist of tailings. Results were much better than the two previous object-based 
experiments and had fewer false positives than the pixel-wise classification, as shown in the precision 
metric (Equation 4), which is especially high in this experiment.  
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Figure 14. An image showing pixels classified as tailings overlain on a satellite of Goldenville. This is an 
example of running the pixel-wise classification without filtering out training data (Nova Scotia Mine 
Tailings Database layer) for vegetation at Goldenville. Pixels that are labelled as tailings in the training 
data, but which are obscured by vegetation in the Sentinel-2 image introduce vegetated pixels to the 
training set. The result is a weaker boundary between tailings and non-tailings, especially when tailings 
are surrounded by vegetation. Red pixels are 20m by 20m, and north is at the top of the image. 
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Figure 15. Line chart showing mean reflectance of tailings at districts in Sentinel-2 image intersecting 

Goldenville (top), and Montague (bottom). Points represent Sentinel-2 band centers. Lines 
between points are linearly interpolated, and may not represent real reflectance in that 
spectral region. One spectrum is labelled with band names in each plot, though all spectra 
share the same band names. 

Figure 16. Faceted biplot of measured reflectance by wavelength at six land cover types. Points in plot 
denote Sentinel-2 band centers, while lines are a prediction of reflectance between bands based on 
linear interpolation. Land cover types were manually delineated and reflectance was measured via 
Sentinel-2 image. The tailings class was created at Montague.  

2.7. Tables 

Table 1. Sentinel-2 10 and 20 m bands, with bandwidth and band center. All bands were resampled to 
20 m for analysis. Values are shown for Sentinel-2A – Sentinel-2B has very similar band values. 

Band Name Bandwidth (nm) Band Center (nm) Spatial Resolution (m) 

B2 – Blue 66 492.4 10 
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B3 – Green 36 559.8 10 

B4 – Red 31 664.6 10 

B5 – Vegetation red 

edge 

15 704.1 20 

B6 – Vegetation red 

edge 

15 740.5 20 

B7 – Vegetation red 

edge 

20 782.8 20 

B8 – NIR 106 832.8 10 

B8A – Narrow NIR 21 864.7 20 

B11 – SWIR 91 1613.7 20 

B12 - SWIR 175 2202.4 20 

 

Table 2. Example of stratified samples used to collect non-tailings training points. These land cover 
classes are obtained from the Sentinel-2 Scene Classification Layer. Class integer corresponds to the 
default values of the Scene Classification Layer available with Sentinel-2 Level-2A images. Sample count 
is the number of points in each class.  

 

 

 

Class Sample Count 

2 – Dark Area Pixels 80 

3 – Cloud Shadows 26 

4 – Vegetation 4893 

5 – Bare Soils 97 

6 – Water 2496 

7 – Clouds Low Probability/Unclassified 52 

8 – Clouds Medium Probability 26 

9 – Clouds High Probability 26 

Sum 7696 
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Table 3. Statistical summary of arsenic across all 32 sample points at three tailings sites 

Site Min Arsenic (ppm) Max Arsenic (ppm) Mean Arsenic (ppm) Median Arsenic (ppm) 

Waverley 902.9 6142.6 3142.475 2513.35 

Oldham 160.7 2362.2 817.3083 680.6 

Montague 2085 16300 7780.333 6122.55 

 

 

2.8. References 

Achanta, R., Süsstrunk, S., 2017. Superpixels and Polygons Using Simple Non-iterative Clustering, in: 

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4895–4904. 

https://doi.org/10.1109/CVPR.2017.520 

Azizur Rahman, M., Hasegawa, H., 2012. Arsenic in freshwater systems: Influence of eutrophication on 

occurrence, distribution, speciation, and bioaccumulation. Appl. Geochem. 27, 304–314. 

https://doi.org/10.1016/j.apgeochem.2011.09.020 

Bates, J.L.E., 1987. Gold in Nova Scotia, Canadian Cataloguing in Publication Data. Nova Scotia Dept. of 

Mines and Energy, Halifax. 

Branco, P., Torgo, L., Ribeiro, R., 2015. A Survey of Predictive Modelling under Imbalanced Distributions. 

ArXiv150501658 Cs. 

Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 

CCME, 1997. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health - 

Arsenic (Inorganic). Can. Environ. Qual. Guidel. 7. 

Clark, A.J., Labaj, A.L., Smol, J.P., Campbell, L.M., Kurek, J., 2021. Arsenic and mercury contamination and 

complex aquatic bioindicator responses to historical gold mining and modern watershed stressors in 



   

 

63 
 

urban Nova Scotia, Canada. Sci. Total Environ. 787, 147374. 

https://doi.org/10.1016/j.scitotenv.2021.147374 

Clark, R.N., Lucey, P.G., 1984. Spectral properties of ice-particulate mixtures and implications for remote 

sensing: 1. Intimate mixtures. J. Geophys. Res. Solid Earth 89, 6341–6348. 

https://doi.org/10.1029/JB089iB07p06341 

Clark, R.N., Roush, T.L., 1984. Reflectance spectroscopy: Quantitative analysis techniques for remote 

sensing applications. J. Geophys. Res. Solid Earth 89, 6329–6340. 

https://doi.org/10.1029/JB089iB07p06329 

Clark, R.N., Swayze, G.A., Livo, K.E., Kokaly, R.F., Sutley, S.J., Dalton, J.B., McDougal, R.R., Gent, C.A., 

2003. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert 

systems. J. Geophys. Res. - Planets 108, 5131-n/a. https://doi.org/10.1029/2002JE001847 

Cleaver, A.E., Jamieson, H.E., Rickwood, C.J., Huntsman, P., 2021. Tailings dust characterization and 

impacts on surface water chemistry at an abandoned Zn-Pb-Cu-Au-Ag deposit. Appl. Geochem. 128, 

104927. https://doi.org/10.1016/j.apgeochem.2021.104927 

Corriveau, M.C., Jamieson, H.E., Parsons, M.B., Hall, G.E.M., 2011. Mineralogical characterization of 

arsenic in gold mine tailings from three sites in Nova Scotia. Geochem. Explor. Environ. Anal. 11, 179–

192. https://doi.org/10.1144/1467-7873/09-246 

DeSisto, S.L., Jamieson, H.E., Parsons, M.B., 2017. Arsenic mobility in weathered gold mine tailings under 

a low-organic soil cover. Environ. Earth Sci. 76, 773. https://doi.org/10.1007/s12665-017-7041-7 

DeSisto, S.L., Jamieson, H.E., Parsons, M.B., 2016. Subsurface variations in arsenic mineralogy and 

geochemistry following long-term weathering of gold mine tailings. Appl. Geochem. 73, 81–97. 

https://doi.org/10.1016/j.apgeochem.2016.07.013 



   

 

64 
 

DeSisto, S.L., Jamieson, H.E., Parsons, M.B., 2011. Influence of hardpan layers on arsenic mobility in 

historical gold mine tailings. Appl. Geochem. 26, 2004–2018. 

https://doi.org/10.1016/j.apgeochem.2011.06.030 

Díaz-Uriarte, R., Alvarez de Andrés, S., 2006. Gene selection and classification of microarray data using 

random forest. BMC Bioinformatics 7, 3. https://doi.org/10.1186/1471-2105-7-3 

Drage, J., 2015. Review of the Environmental Impacts of Historical Gold Mine Tailings in Nova Scotia. 

Open File Rep. ME 2015-004 15. 

Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., Li, X., 2016. Water Bodies’ Mapping from Sentinel-2 Imagery 

with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening 

the SWIR Band. Remote Sens. 8, 354. https://doi.org/10.3390/rs8040354 

European Space Agency, 2015. Sentinel-2 User Handbook 64. 

Faribault, E.R., 1900. The gold measures of Nova Scotia and deep mining / by E.R. Faribault. Together 

with other papers bearing upon Nova Scotia gold mines. Mining Society of Nova Scotia, Halifax, N.S. 

Genuer, R., Poggi, J.-M., Tuleau-Malot, C., 2010. Variable selection using random forests. Pattern 

Recognit. Lett. 31, 2225–2236. https://doi.org/10.1016/j.patrec.2010.03.014 

Goetz, A.F.H., Curtiss, B., Shiley, D.A., 2009. Rapid gangue mineral concentration measurement over 

conveyors by NIR reflectance spectroscopy. Miner. Eng. 22, 490–499. 

https://doi.org/10.1016/j.mineng.2008.12.013 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth Engine: 

Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27. 

https://doi.org/10.1016/j.rse.2017.06.031 



   

 

65 
 

Gregorutti, B., Michel, B., Saint-Pierre, P., 2017. Correlation and variable importance in random forests. 

Stat. Comput. 27, 659–678. https://doi.org/10.1007/s11222-016-9646-1 

Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., Robert, F., 1998. Orogenic gold 

deposits: A proposed classification in the context of their crustal distribution and relationship to other 

gold deposit types. Ore Geol. Rev. 13, 7–27. https://doi.org/10.1016/S0169-1368(97)00012-7 

Guha, A., 2020. Mineral exploration using hyperspectral data, in: Pandey, P.C., Srivastava, P.K., Balzter, 

H., Bhattacharya, B., Petropoulos, G.P. (Eds.), Hyperspectral Remote Sensing, Earth Observation. 

Elsevier, pp. 293–318. https://doi.org/10.1016/B978-0-08-102894-0.00012-7 

Hartlen, J., 1988. Gold! The Wealth of Waverley. Lancelot Press, Hantsport, Nova Scotia. 

Hennick, E.W., Poole, J.C., 2020. Nova Scotia Mine Tailings Database. 

Hindmarsh, J., McLetchle, O.R., Heffernan, L., Hayne, O., Ellenberger, H.A., Mccurdy, R., Thiébaux, H.J., 

1977. Electromyographic Abnormalities in Chronic Environmental Arsenicalism. 

https://doi.org/10.1093/JAT/1.6.270 

Homem Antunes, M.A., Bolpato, I.F., 2018. Atmospheric Correction and Cirrus Clouds Removal from MSI 

Sentinel 2A Images, in: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing 

Symposium. Presented at the IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing 

Symposium, IEEE, Valencia, pp. 9145–9148. https://doi.org/10.1109/IGARSS.2018.8518824 

Intrinsik Corp, EcoMetrix, Crippen Berger, K., Wood, 2020. Human Health Risk Assessment of Sediment, 

Surface Water, and Fish from Barry’s Run, Halifax Regional Municipality. 

Intrinsik Corp, EcoMetrix, Crippen Berger, K., Wood, 2019a. Conceptual Closure Plan For The Historic 

Goldenville Tailings Areas  Goldenville, Nova Scotia Final Report (Consulting). 



   

 

66 
 

Intrinsik Corp, EcoMetrix, Crippen Berger, K., Wood, 2019b. Conceptual Closure Study For The Historic 

Montague Mines Tailings Areas. Halifax, Nova Scotia. Final Report (Consulting). NS Lands Inc. 

Jamieson, H.E., Walker, S.R., Parsons, M.B., 2015. Mineralogical characterization of mine waste. Appl. 

Geochem., Environmental Geochemistry of Modern Mining 57, 85–105. 

https://doi.org/10.1016/j.apgeochem.2014.12.014 

Jewell, D.A., 2021. Tailings Classification NS Repository. https://doi.org/10.5281/zenodo.8273117 

Joshi, A.V., 2023. Decision Trees, in: Joshi, A.V. (Ed.), Machine Learning and Artificial Intelligence. 

Springer International Publishing, Cham, pp. 73–87. https://doi.org/10.1007/978-3-031-12282-8_7 

Kamal, M., Phinn, S., 2011. Hyperspectral Data for Mangrove Species Mapping: A Comparison of Pixel-

Based and Object-Based Approach. Remote Sens. 3, 2222–2242. https://doi.org/10.3390/rs3102222 

Koch, I., McPherson, K., Smith, P., Easton, L., Doe, K.G., Reimer, K.J., 2007. Arsenic bioaccessibility and 

speciation in clams and seaweed from a contaminated marine environment. Mar. Pollut. Bull. 54, 586–

594. https://doi.org/10.1016/j.marpolbul.2006.12.004 

Kokaly, R.F., Clark, R.N., Swayze, G.A., Livo, K.E., Hoefen, T.M., Pearson, N.C., Wise, R.A., Benzel, W.M., 

Lowers, H.A., Driscoll, R.L., Klein, A.J., 2017. USGS Spectral Library Version 7: U.S. Geological Survey Data 

Series 1035. US Geol. Surv. Data Ser., Data Series 1035, 61. https://doi.org/10.3133/ds1035 

Kontak, D.J., Jackson, S.J., 1999. Documentation of variable trace- and rare-earth-element abundances in 

carbonates from auriferous quartz veins in Meguma lode gold deposits, Nova Scotia. Can. Mineral. 37, 

469–488. 

Lane, P.A., Pett, Robert J., Crowell, M. J., MacKinnon, D. S., Graves, Milton C., 1989. Further studies on 

the distribution and fate of arsenic and mercury at a site contaminated by abandoned gold mine tailings. 

CANMET Spec. Publ. 89–9, 77–107. 



   

 

67 
 

LeBlanc, M.E., Parsons, M.B., Chapman, E.E.V., Campbell, L.M., 2020. Review of ecological mercury and 

arsenic bioaccumulation within historical gold mining districts of Nova Scotia. Environ. Rev. 28, 187–198. 

https://doi.org/10.1139/er-2019-0042 

Lekner, J., Dorf, M., 1988. Why some things are darker when wet. Appl. Opt. 27, 1278–80. 

https://doi.org/10.1364/AO.27.001278 

Li, H., 2014. Smile. 

Little, M.E., Parsons, M.B., Law, B.A., Milligan, T.G., Smith, J.N., 2015. Impact of historical gold mining 

activities on marine sediments in Wine Harbour, Nova Scotia, Canada. Atl. Geol. 51, 344. 

https://doi.org/10.4138/atlgeol.2015.016 

Lyons, M.B., Keith, D.A., Phinn, S.R., Mason, T.J., Elith, J., 2018. A comparison of resampling methods for 

remote sensing classification and accuracy assessment. Remote Sens. Environ. 208, 145–153. 

https://doi.org/10.1016/j.rse.2018.02.026 

Mielke, C., Muedi, T., Papenfuss, A., Boesche, N.K., Rogass, C., Gauert, C.D.K., Altenberger, U., de Wit, 

M.J., 2016. Multi- and hyperspectral spaceborne remote sensing of the Aggeneys base metal sulphide 

mineral deposit sites in the Lower Orange River region, South Africa. South Afr. J. Geol. 119, 63–76. 

https://doi.org/10.2113/gssajg.119.1.63 

Montero, I.C., Brimhall, G.H., Alpers, C.N., Swayze, G.A., 2005. Characterization of waste rock associated 

with acid drainage at the Penn Mine, California, by ground-based visible to short-wave infrared 

reflectance spectroscopy assisted by digital mapping. Chem. Geol., Geochemistry of Sulfate Minerals: A 

tribute to Robert O. Rye 215, 453–472. https://doi.org/10.1016/j.chemgeo.2004.06.045 

Mountrakis, G., Im, J., Ogole, C., 2011. Support vector machines in remote sensing: A review. ISPRS J. 

Photogramm. Remote Sens. 66, 247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001 



   

 

68 
 

Mudroch, A., Clair, T.A., 1986. Transport of arsenic and mercury from gold mining activities through an 

aquatic system. Sci. Total Environ. 57, 205–216. https://doi.org/10.1016/0048-9697(86)90024-0 

Ngole-Jeme, V.M., Fantke, P., 2017. Ecological and human health risks associated with abandoned gold 

mine tailings contaminated soil. PLOS ONE 12, e0172517. 

https://doi.org/10.1371/journal.pone.0172517 

Nolet, C., Poortinga, A., Roosjen, P., Bartholomeus, H., Ruessink, G., 2014. Measuring and Modeling the 

Effect of Surface Moisture on the Spectral Reflectance of Coastal Beach Sand. PLoS ONE 9, e112151. 

https://doi.org/10.1371/journal.pone.0112151 

Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., Wulder, M.A., 2014. Good 

practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57. 

https://doi.org/10.1016/j.rse.2014.02.015 

Otsu, N., 1979. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man 

Cybern. 9, 62–66. https://doi.org/10.1109/TSMC.1979.4310076 

Parsons, M.B., LeBlanc, K.W.G., Hall, G.E.M., Sangster, A.L., Vaive, J.E., Pelchat, P., 2012. Environmental 

geochemistry of tailings, sediments and surface waters collected from 14 historical gold mining districts 

in Nova Scotia (No. 7150). https://doi.org/10.4095/291923 

Parsons, M.B., Little, M.E., 2015. Establishing geochemical baselines in forest soils for environmental risk 

assessment in the Montague and Goldenville gold districts, Nova Scotia, Canada. Atl. Geol. 51, 364. 

https://doi.org/10.4138/atlgeol.2015.017 

Percival, J.B., White, H.P., Goodwin, T.A., Parsons, M.B., Smith, P.K., 2013. Mineralogy and spectral 

reflectance of soils and tailings from historical gold mines, Nova Scotia. Geochem. Explor. Environ. Anal. 

Vol. 14, 3–16. http://dx.doi.org/10.1144/geochem2011-071 



   

 

69 
 

Riaza, A., Müller, A., 2010. Hyperspectral remote sensing monitoring of pyrite mine wastes: a record of 

climate variability (Pyrite Belt, Spain). Environ. Earth Sci. 61, 575–594. https://doi.org/10.1007/s12665-

009-0368-y 

Richards, J.A., 2013. Remote Sensing Digital Image Analysis. Springer Berlin Heidelberg, Berlin, 

Heidelberg. https://doi.org/10.1007/978-3-642-30062-2 

Roussel, C., Néel, C., Bril, H., 2000. Minerals controlling arsenic and lead solubility in an abandoned gold 

mine tailings. Sci. Total Environ. 263, 209–219. https://doi.org/10.1016/S0048-9697(00)00707-5 

Sangster, A.L., Smith, P.K., Goodfellow, W.D., 2007. Metallogenic Summary of the Meguma Gold 

Deposits, Nova Scotia (Special Publication No. 5), Mineral Deposits of Canada: A Synthesis of Major 

Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. 

Geological Association of Canada, Nova Scotia. 

Sasaki, Y., 2007. The truth of the F-measure. Conf. Pap. 

Schowengerdt, R.A., 2007. Remote Sensing : Models and Methods for Image Processing, 3rd ed. 

Academic Press, Burlington, MA. 

Seal, R.R., Hammarstrom, J.M., 2003. Geoenvironmental Models of Mineral Deposits: Examples from 

Massive Sulfide and Gold Deposits, in: Environmental Aspects of Mine Waste, Short Course Series. 

Mineralogical Association of Canada, pp. 11–50. 

Smeds, J., Mats &Ouml, quist, Nilsson, M.B., Bishop, K., 2022. A Simplified Drying Procedure for 

Analysing Hg Concentrations. Water Air Amp Soil Pollut. 233, NA-NA. https://doi.org/10.1007/s11270-

022-05678-7 

Stehman, S.V., 2009. Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 30, 

5243–5272. https://doi.org/10.1080/01431160903131000 



   

 

70 
 

Stehman, S.V., Foody, G.M., 2019. Key issues in rigorous accuracy assessment of land cover products. 

Remote Sens. Environ. 231, 111199. https://doi.org/10.1016/j.rse.2019.05.018 

Svetnik, V., Liaw, A., Tong, C., Wang, T., 2004. Application of Breiman’s Random Forest to Modeling 

Structure-Activity Relationships of Pharmaceutical Molecules, in: Roli, F., Kittler, J., Windeatt, T. (Eds.), 

Multiple Classifier Systems, Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin, 

Heidelberg, pp. 334–343. https://doi.org/10.1007/978-3-540-25966-4_33 

Swayze, G.A., Clark, R.N., Goetz, A.F.H., Livo, K.E., Breit, G.N., Kruse, F.A., Sutley, S.J., Snee, L.W., Lowers, 

H.A., Post, J.L., Stoffregen, R.E., Ashley, R.P., 2014. Mapping Advanced Argillic Alteration at Cuprite, 

Nevada, Using Imaging Spectroscopy. Econ. Geol. 109, 1179–1221. 

https://doi.org/10.2113/econgeo.109.5.1179 

Swayze, G.A., Smith, K.S., Clark, R.N., Sutley, S.J., Pearson, R.M., Vance, J.S., Hageman, P.L., Briggs, P.H., 

Meier, A.L., Singleton, M.J., Roth, S., 2000. Using Imaging Spectroscopy To Map Acidic Mine Waste. 

Environ. Sci. Technol. 34, 47–54. https://doi.org/10.1021/es990046w 

Tou, J.T., 1974. Pattern recognition principles, Applied mathematics and computation, no. 7. Addison-

Wesley Pub. Co., Reading, Mass. 

van der Meer, F., 2004. Analysis of spectral absorption features in hyperspectral imagery. Int. J. Appl. 

Earth Obs. Geoinformation 5, 55–68. https://doi.org/10.1016/j.jag.2003.09.001 

van der Meer, F.D., van der Werff, H.M.A., van Ruitenbeek, F.J.A., 2014. Potential of ESA’s Sentinel-2 for 

geological applications. Remote Sens. Environ. 148, 124–133. https://doi.org/10.1016/j.rse.2014.03.022 

Van der Werff, H., Van der Meer, F., 2015. Sentinel-2 for Mapping Iron Absorption Feature Parameters. 

Remote Sens. 7, 12635–12653. https://doi.org/10.3390/rs71012635 

Van Rijsbergen, C.J., 1979. Information retrieval, 2d ed. ed. Butterworths, London ; Boston. 



   

 

71 
 

von der Heyden, B.P., Roychoudhury, A.N., 2015. Application, Chemical Interaction and Fate of Iron 

Minerals in Polluted Sediment and Soils. Curr. Pollut. Rep. 1, 265–279. https://doi.org/10.1007/s40726-

015-0020-2 

Walker, S.R., Parsons, M.B., Jamieson, H.E., Lanzirotti, A., 2009. ARSENIC MINERALOGY OF NEAR-

SURFACE TAILINGS AND SOILS: INFLUENCES ON ARSENIC MOBILITY AND BIOACCESSIBILITY IN THE NOVA 

SCOTIA GOLD MINING DISTRICTS. Can. Mineral. 47, 533–556. https://doi.org/10.3749/canmin.47.3.533 

Weisener, C.G., 2003. Novel Spectroscopic Techniques to Characterize Mine Waste, in: Environmental 

Aspects of Mine Waste, Short Course Series. Mineralogical Association of Canada, pp. 181–202. 

Wilkin, R.T., Barnes, H.L., 1997. Formation processes of framboidal pyrite. Geochim. Cosmochim. Acta 

61, 323–339. https://doi.org/10.1016/S0016-7037(96)00320-1 

Willick, F., 2021. Cost estimate for cleanup of abandoned N.S. mines still “a few years” away. CBC. 

  



   

 

72 
 

Chapter 3: Exploring the Causes of False 
Positives from a Tailings Classifier 
 

Mines operating in the 19th to mid-20th centuries throughout Nova Scotia, Canada have 

left behind tailings containing arsenic (As) and mercury (Hg). These sites have been identified as 

an ongoing source of contamination and a threat to human and ecosystem health since the 

1970s when the first cases of As intoxication from mine-impacted drinking water were reported 

(Hindmarsh et al., 1977). Ongoing surveys at additional historic mine sites have revealed that at 

some sites, tailings have moved downstream from their original locations to be deposited in 

lakes, riverbanks, and estuaries (Koch et al., 2007; Parsons et al., 2012). Over 300 gold mines 

have operated in the province, organized into 64 gold mine districts. Before sites can be 

cleaned up, they must first be assessed to determine whether tailings are present, and where. 

Remote sensing methods can provide a preliminary assessment of historic mine sites, 

quickly analyzing large areas to indicate where tailings may be present. We trained a random 

forest classifier using historical maps of tailings and multispectral Sentinel-2 images so that 

indicators of tailings could be mapped across multiple gold mine districts. Pixel-wise 

classification accuracy was tested by repeating classification and recording the distribution of 

results (Chapter 1). By separating the results by district, we determined that accuracy among 

them was inconsistent. The classifier performed poorly at sites with significant areas of 

standing water and shorelines, even after filtering satellite images to the driest season (July and 

August). In this study, we compare the spectra, as provided by Sentinel-2, of areas where the 

classifier provided false positives, as confirmed by lab analysis of sediment. We also present 
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scanning electron microscope (SEM) analysis and bulk geochemistry of sediment collected from 

coastal and wetland areas, which are commonly confused by the classifier with tailings, and 

compare these sediments to tailings. 

3.1. Historic Gold Mining and Modern Secondary Minerals 

Most of the gold in Nova Scotia has historically been mined in the Goldenville and 

Halifax formations of the Meguma Supergroup, which is exposed throughout the southern 

mainland of the province (Figure 1). The high-grade gold deposits that were the main target of 

historic mining are found in quartz veins in the hinges of east-west trending folds, where gold 

has been concentrated by hydrothermal activity (Parsons et al., 2012; Sangster et al., 2007). 

Sulphide minerals also present in these hinges have been the main source of arsenic (As) and 

acid rock drainage released by mining and processing, and present a threat to human and 

ecosystem health (Ngole-Jeme and Fantke, 2017; Walker et al., 2009). The most common 

sulphide mineral found at these mine sites is arsenopyrite (FeAsS), which has been observed to 

comprise up to 15% of gold-bearing quartz veins (Sangster et al., 2007). Generally, lode gold 

deposits like those found in Nova Scotia can be expected to contain up to three to five percent 

sulphide minerals (DeSisto et al., 2016; Groves et al., 1998).  

Ore was mainly extracted from underground shafts and was then crushed in stamp mills. 

In many cases, particularly in the 19th century, mercury (Hg) was used to separate gold from 

crushed material in a process called mercury amalgamation (Bates, 1987; LeBlanc et al., 2020; 

Parsons et al., 2012). The leftover waste rock and sand to silt-sized sediment, called tailings, 

was deposited in streams, wetlands, or nearby depressions with little to no regard for potential 

environmental impacts (Drage, 2015; LeBlanc et al., 2020). In these tailings areas, sulphide 
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minerals have been exposed to oxygen and surface water, leading to oxidation and dissolution 

of As and metals (DeSisto et al., 2017). Fine particles in tailings are susceptible to aeolian and 

fluvial transportation, spreading As and Hg beyond tailings areas (Cleaver et al., 2021). For 

example, at Lower Seal Harbour a large tailings deposit was discovered over two kilometres 

downstream of the original tailings area (Parsons et al., 2012). An estimated three million 

tonnes of tailings were produced across all districts (Parsons et al., 2012), most of which have 

sat untouched since their deposition, except for offroad vehicle use at some sites.  

3.1.1. Historical Gold Mine Tailings Mineralogy 

Though no two sites have identical mineralogy, the historic gold mine sites of mainland 

Nova Scotia share similar bedrock geology and processing methods. Most mines targeted 

auriferous quartz veins present in quartzite, slate, and metasiltstone. Present in smaller 

amounts are chlorite, biotite, muscovite, and plagioclase, alongside carbonates and sulphides 

(Walker et al., 2009). Long-term storage of tailings was not regulated in this period, and tailings 

were routinely left unmanaged and exposed to the environment. Up to a century of oxidation, 

reduction, dissolution, and precipitation have been at work at these locations, altering original 

mineralogy and producing a suite of secondary minerals.  

Tailings mineralogy fluctuates spatially, as well as at depth. Minerals and controls on 

precipitation are guided mainly by whether an environment is oxidizing or reducing, which is 

closely related to pH. Acidity varies widely within individual tailings sites, based on surface type 

(e.g., tailings, mining concentrates, hardpan). A study of pore and surface water at Montague 

showed a pH between 2.43 and 7.13 (DeSisto et al., 2011). 

 In oxidizing conditions, arsenopyrite will dissolve, releasing As into pore water and 
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lowering pH. Pore water As may be incorporated into Fe arsenates (commonly scorodite), 

arsenate sulphates, Fe oxyhydroxides, Mn oxides, and Ca(Fe) arsenates (DeSisto et al., 2016). It 

may also be adsorbed onto Fe oxyhydroxides and gangue minerals. The conditions for this 

dissolution and precipitation may only be present in microenvironments found throughout the 

tailings areas (DeSisto et al., 2011). 

In reducing conditions typical of subsurface tailings, sulphides will be more stable. 

Arsenopyrite is less likely to be dissolved, and secondary sulphides may precipitate. In these 

conditions, Fe and Mn oxides will be unstable and may dissolve, releasing As (DeSisto et al., 

2016). 

Secondary minerals of particular interest are Fe oxides and hydroxides, which have 

formed in many cases as rims on sulphide minerals such as arsenopyrite. These rims were 

ubiquitous on arsenopyrite grains from the Montague, Oldham, and Muddy Pond historic gold 

mine districts, as observed by SEM. For ground-truthing, we will consider sandy sediment with 

elevated As and weathered sulphides with Fe oxide rims to have originated from mine sites. 

3.2. Mapping Historical Mine Tailings Indicators Using Multispectral Remote 

Sensing 

Optical remote sensing images represent the surface of the earth as pixels, combining 

the reflectance of all materials within that pixel to produce values at each band. Bands 

represent a discrete range of the electromagnetic spectrum, measured from one wavelength to 

another. Sentinel-2 surface-reflectance images were obtained in Google Earth Engine for this 

study. These images have been georeferenced and corrected for the scattering of photons as 

they pass through the atmosphere (i.e., converted from “top-of-atmosphere” data as seen from 
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space to represent the “bottom-of-atmosphere” surface reflectance). Though some optical 

satellites have spatial resolutions approaching or below one metre, this still pales in comparison 

to handheld or lab spectrometers, which can provide reflectance spectra for a very precise 

point on the ground or on a mineral hand sample. Sentinel-2 pixels cover an area of 20 by 20 m 

on the ground. These are small pixels in comparison to those in images captured by past 

multispectral missions (e.g., the Landsat mission at 30 m), but at this resolution, a pixel will still 

likely capture many different surface materials. When a pixel contains a spectrum representing 

a mixture of materials, it becomes harder to assess the cause of false positive classifications. 

We could not collect spectra of pure tailings from within a mixed pixel, and the reflectance of a 

material spatially correlated to tailings may have been inadvertently captured, influencing our 

training class. For example, tailings consist largely of crushed quartz, and its inclusion in training 

pixels was inevitable, though it occurs in abundance elsewhere. Vegetation, whether at the 

edge of tailings or growing sparsely within it, would also be included in tailings training data. 

Comparing the spectra of tailings to areas that contain physically similar or co-occurring 

materials may indicate whether these materials are causing false positive results. 

Surface materials not spatially correlated to tailings may also be falsely classified as 

tailings based on their spectral similarity at the resolution of the Sentinel-2 sensors. As a 

multispectral sensor, spectral resolution is low. Each band covers a wide range, and the 

apparent reflectance is resampled, or convolved, from the continuous electromagnetic 

spectrum to the coarse resolution of the sensor. Materials may appear to have the same 

reflectance signature according to Sentinel-2 when a higher resolution sensor may have 

detected subtle differences. This may lead to false positives. 
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3.2.1. Collecting Training Data from Images 

A strength of our classifier was that its training data was collected using modern images. 

The spectra on which the classifier was trained represented modern mineralogy and 

incorporated mineralogical changes that have taken place since tailings were first deposited. 

The downside of this approach was that we could not explicitly control what spectral 

information was used to train the classifier, except by selecting training areas. The original 

hypothesis was that tailings mineralogy would be sufficiently different from other sandy 

sediments that it could be distinguished spectrally, even using only multispectral images. This 

appears to have been valid when analyzing dry sediment. False positives may have emerged 

when areas were included in the training dataset that should not have been, or because 

something (e.g., water in sediment pore space) shifted the reflectance of the false positive 

pixels to resemble dry tailings. 

If the former is true, analyzing the mineralogy and spectra of an area or land cover type 

in which there were many false positives may help to remove that area from the training 

dataset. If the latter, additional analysis steps could be performed in a future study to remove 

effects on spectra (e.g., continuum removal and normalization).  

Aside from false positives, there appear to be few false negative classifications.  

3.2.2. Spectrally Active Minerals 

Predicting the presence of a mineral or land cover type by using the reflectance 

spectrum of a remote sensing image pixel requires that the spectral signature of a target 

material be distinguishable from the background or other targets. This requires that the target, 

or a component of the target if it is made up of mixed spectra, be spectrally active. A spectrally 
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active material contains one or more absorption features in the spectral range of interest (i.e., 

400 to 2300 nm in this study). Absorption features are regions of the reflectance spectrum 

where incoming photons are absorbed, rather than reflected, producing local reflectance 

minima (Guha, 2020). When observing spectra of mixed materials, such as land cover classes 

(e.g., forest, urban, tailings), absorption features of constituent materials within the class may 

still be present. Therefore, if a material is consistently included in a land cover type, even if that 

land cover type consists of many materials, the absorption may still be detected. This is called a 

diagnostic absorption feature. A relevant example is the iron absorption feature, where 

photons in Fe-bearing minerals are absorbed between ~700 and 1000 nm (Van der Werff and 

Van der Meer, 2015) 

Identification of absorption features is limited by the spectral resolution of the sensor 

used. In hyperspectral image analysis, the spectral resolution is sufficient in some cases that 

absorption features can be used to indicate mineral species or chemical composition (Clark et 

al., 2003; van der Meer, 2004). Multispectral data, as obtained from Sentinel-2, lack the 

resolution to identify the center of an absorption feature. Sentinel-2 has bands with 

bandwidths ranging from 15 to 185 nm, whereas hyperspectral sensors typically have 

bandwidths of around 10 to 15 nm or less for all bands. If an absorption feature is captured by a 

wide band at a pixel, the reflectance value for the entire band will be lowered for that pixel. In 

other words, absorptions may affect multispectral band values, but we cannot determine 

absorption shape, including central wavelength and depth. We relied on bands 8 and 8A (with 

bandwidths of 106 and 21 nm, respectively) to detect subtle absorptions which may indicate 

the iron absorption feature of Fe oxides and hydroxides. The question then was whether 
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multispectral data and specifically Sentinel-2 bands 8 and 8A would be able to differentiate 

tailings from naturally occurring sand that originated from the same, or at least similar, 

Meguma bedrock, based only on this subtle difference. 

3.2.3. The Mine Tailings Classification Model 

Our model used existing mine tailings data from several sources to provide training data, 

in the form of pixels from Sentinel-2 images to a random forest classifier (Jewell, 2021). This 

section briefly describes the data used to train the classifier as well as its parameters. For more 

details on data processing, including how points were sampled and how images were selected, 

refer to chapter one. 

Historic mine districts in Nova Scotia are distributed across nearly the entire province, 

and many of them have been studied in detail. Documents, including surveys outlining tailings 

extent, date back to the early 1900s (Faribault, 1900). Since the first cases of acute As poisoning 

were reported in the 1970s, the effort to map tailings and quantify contaminants has increased 

(Drage, 2015). The focus of these studies varies between geochemistry and mineralogy (DeSisto 

et al., 2017; Parsons et al., 2012; Percival et al., 2013; Walker et al., 2009) and the risk to human 

and ecosystem health (Drage, 2015; LeBlanc et al., 2020). Of particular note are the Nova Scotia 

Mine Tailings Database (Hennick and Poole, 2020), which combines historical and modern 

tailings data into a spatial database, and Parsons et al. (2012), which provided detailed 

descriptions, mineralogy, and geochemistry for 14 mine districts. The breadth of knowledge, as 

well as the geographic area that is covered, helped us to determine which mine districts should 

be targeted for analysis with our model and to interpret the results. 

Due to changing environmental conditions at mine sites, maps of tailings extent created 
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a century ago, or even a decade ago, may need to be confirmed and updated. Our model used 

the Nova Scotia Mine Tailings Database to indicate past tailings areas from which we could 

spectrally sample Sentinel-2 image pixels to train a classifier. Sentinel-2 is a satellite mission 

operated by the European Space Agency. It is comprised of two nearly identical satellites, 

launched in 2015 and 2017 (Sentinel-2A and Sentinel-2B, respectively). The mission has a revisit 

period of five days or less (depending on latitude), which is the frequency at which it captures 

an image at a given location on Earth.  

Sentinel-2 has 13 bands in varying spatial resolutions and bandwidths. It differs in this 

way from hyperspectral sensors that contain up to several hundred contiguous bands at very 

narrow bandwidths (as small as two to five nm in the lower wavelength region of the EM 

spectrum). The 13 bands were chosen carefully to fulfill specific objectives and fine-tune 

placement based on experience gained from similar multispectral missions such as Landsat (van 

der Meer et al., 2014). In general, Sentinel-2’s bands are narrower than Landsat’s to avoid 

spectral absorption due to water vapour in the atmosphere. Sentinel-2’s band 8A (a near-

infrared band centred at 865 nm) was carefully placed to avoid water vapour, target peak NIR 

reflectance in vegetation, and be sensitive to Fe oxides in soil (European Space Agency, 2015; 

van der Meer et al., 2014; Van der Werff and Van der Meer, 2015). More accurate discernment 

of vegetation improved the ability of our model to filter out vegetation on the surface, and Fe 

oxides were an important indicator when classifying tailings.  

The bands used as input are the values that are considered by the random forest 

classifier when labelling each pixel as tailings or non-tailings. We initially selected eight bands to 

use in our model. The three 60 m atmospheric bands were removed. Band 8 was also removed, 
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as it entirely overlaps the narrower band 8A and  was assumed to be highly correlated. Four 

indexes were generated and also included: normalized difference vegetation index (NDVI), 

modified normalized difference water index (MNDWI), ferric iron index, and iron feature depth. 

An optimization step removed some bands and indexes to determine which variables provided 

the most discrimination power between tailings and non-tailings pixels. The final model used 

seven variables: band 3 (red), band 6 (vegetation red edge), band 7 (vegetation red edge), band 

8A (narrow near-infrared), band 12 (shortwave infrared), NDVI, and MNDWI. 

Finally, we created a tailings spectral class – an averaged spectrum that the classifier 

would use to compare against all pixels when applying labels. To create the tailings spectrum, 

we sampled a Sentinel-2 image in areas previously mapped as tailings in the Nova Scotia Mine 

Tailings Database. The tailings areas included in this database were based on maps from within 

the last few years, as well as historic data. As such, we had to ensure that the pixels we sampled 

had not become overgrown with vegetation, or that the mapped area was not depicting where 

tailings had been deposited into water bodies. Optical reflectance data only represents the top 

mm or less (depending on the material) of the surface (Clark and Roush, 1984), so the inclusion 

of any pixels in which the surface is covered would have introduced noise to our tailings 

spectrum. An NDVI layer was generated to create a vegetation mask, where pixels with values 

over 0.6 were excluded from tailings sampling. Similarly, MNDWI was generated to filter out 

pixels which appeared to contain water. A value of 0.0 was used for the water mask, though 

this mask did not appear to be as effective as the vegetation mask (chapter 1). 

3.2.4. Google Earth Engine 

Desktop analyses, including data pre-processing, image acquisition, image sampling, 



   

 

82 
 

classification, and accuracy assessment, were performed in Google Earth Engine (GEE), a cloud 

platform created by Google for remote sensing (Gorelick et al., 2017). GEE is available via web 

browsers or as a Python package. GEE allows the uploading of spatial data and imagery, though 

there are many datasets available in its built-in library. Sentinel-2 surface reflectance images 

are available within GEE within a few hours of the original top-of-atmosphere images, allowing 

for the easy selection of images with no need for further processing. In addition to image 

collections, GEE has a large selection of functions that can be implemented in its JavaScript and 

Python APIs. Computation performed in GEE is run on Google’s cloud servers, allowing for the 

rapid processing of massive datasets.  

3.3. Applying Remote Sensing Model to Historic Gold Mine Sites 

Three historic mine districts, Montague, Oldham, and Waverley were physically sampled 

to obtain mineralogy and geochemistry of known tailings. These samples were used as 

reference material when analyzing sediment from non-tailings areas. Tailings areas at these 

sites are included in the Nova Scotia Mine Tailings Database, and their mean reflectance 

spectra were also recorded. Sulphide grains were located within samples via SEM to determine 

if Fe oxide rims were present. We compared the geochemistry, SEM images, and mean spectra 

at each site to those of coastal areas that are produced false positive results in the classifier.  

3.3.1. Montague Gold Mine District 

Montague Gold Mine District is located north of the city of Halifax, in central Nova Scotia 

(latitude: 44.714°, longitude: -63.521°). The first stamp mill was constructed here in 1865, and 

extraction continued in some capacity until 1940 (Parsons et al., 2012). Tailings were slurried 
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into nearby Mitchell Brook and surrounding wetlands. Tailings have been identified 2.5 km 

downstream in Lake Charles, which continues into the Shubenacadie Watershed (Clark et al., 

2021; Mudroch and Clair, 1986). Over 120,000 tonnes of ore were crushed during mining and 

processing at this site, and over 68,000 troy ounces of gold were produced. In hardpan areas, 

As was found to reach as high as 4.3 wt. % (DeSisto et al., 2011; Parsons et al., 2012). Montague 

has been of special interest to researchers and the provincial government because of its 

elevated As and Hg and its direct proximity to urban and residential areas, which continue to 

expand closer to historic tailings (Intrinsik Corp et al., 2020, 2019b).  

Six samples were collected at Montague in October 2020. Bulk geochemistry indicated a 

mean As level of 9868 ppm. The highest concentration observed was 16,300 ppm As. SEM 

analysis indicated that arsenopyrite grains were common, and all of those observed showed 

signs of weathering, with Fe oxide minerals growing along edges and in cracks. 

3.3.2. Oldham Gold Mine District 

The Oldham gold mine district is 30 km northeast of Halifax (latitude: 44.921, longitude: 

-63.493). Mining took place from 1862 to 1910, and again from 1936 to 1942 (Lane et al., 1989). 

Approximately 107,000 tonnes of ore were crushed, and over 85,000 troy ounces of gold were 

produced (Parsons et al., 2012). Oldham, like Montague, is in the Shubenacadie Watershed, 

though only a small tributary, Black Brook, flows through the site (Lane et al., 1989). Tailings 

can be seen on the banks of the brook as it leaves the site. We did not identify any studies 

indicating that tailings from Oldham have reached the Shubenacadie River, which is 

approximately 3 km downstream. 

Six tailings samples were collected in September 2020, which had a mean As 
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concentration of 999 ppm and a maximum of 2362 ppm. Though the lowest As of the three 

sites, all samples exceeded the Canadian Council of Ministers of the Environment’s soil 

guideline of 12 ppm As (CCME, 1997). Rims of Fe oxides were visible around weathered 

sulphide grains in SEM images. 

3.3.3. Waverley Gold Mine District: Muddy Pond 

There are multiple tailings areas in the Waverley district, however, this study focuses on 

the largest, called Muddy Pond. The district is located approximately 12 km north of Halifax 

(latitude: 44.787, longitude: -63.609). Over 150,000 tonnes of ore were crushed, producing 

73,100 troy ounces of gold (Parsons et al., 2012). Unlike Montague and Oldham, which were 

relatively remote and required infrastructure to be built to accommodate workers, Waverley 

was already a small village when gold was first mined in the 1860s (Hartlen, 1988). As such, 

mining was more or less continuous until the 1960s. Like the two districts previously 

mentioned, Waverley resides in the Shubenacadie Watershed, with Muddy Pond separated 

from the main river by only a small wetland and tributary. This site is surrounded by residential 

communities, and development continues to expand. 

Tailings samples from Waverley had a mean As concentration of 1921 ppm and a 

maximum of 2971 ppm. 

3.4. Mapping Indicators of Tailings 

In chapter one we described how the areas around the Goldenville and Montague gold 

districts were analyzed using a model built in GEE. Two main methods were tested for 

classifying images. First, we tested a pixel-wise classifier. Every pixel of the input image in the 
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target mine area was analyzed by the random forest classifier and assigned a label of tailings or 

non-tailings. Second, we tested an object-based method that first grouped pixels according to 

spectral and spatial proximity and then classified the grouped pixels as either tailings or non-

tailings. More detail on each model, and their results, are available in chapter one. In this study, 

we refer only to the pixel-wise classification, which produced more false positives than the 

object-based methods. 

The classification model was run 50 times for each district, and results (Figure 2) were 

recorded using F1-score (Chapter 1, Van Rijsbergen, 1979). Maps were also generated to 

illustrate the frequency at which each pixel was classified as tailings (Figure 3a and 3b). The 

maps displayed the land cover types that most frequently elicited false positive classifications. 

Results are also displayed as histograms (Figure 4a and 4b), which show that most pixels with at 

least one tailings classification were classified as tailings in all 50 iterations. Roads were 

sometimes classified as tailings; however, the main sources of error were shorelines and 

wetlands. False positives coinciding with roads are not discussed here, as road pixels were not 

misclassified as consistently as the other two classes. Roads are also easier to reject as positive 

by an analyst, based on context and simple visual assessment. Being able to spectrally 

distinguish wetlands or shorelines that contain tailings, versus those that do not, is a more 

difficult task for an analyst using visual clues, and would be a valuable application of the 

classification model. 

3.4.1. Possible Causes of Positive Classification 

There are three likely scenarios in which wetlands and shoreline pixels would be 

classified as tailings, even when the area of analysis is not near a mine district: 
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1. Polygons that were used to outline the extent of tailings and generate sample points 

(i.e., the training data) included wetlands and shoreline areas when they should not 

have. Masks were generated to remove pixels from training areas that contained water 

and vegetation, however, these masks (the water mask in particular) were imperfect. 

Therefore, when training the classifier, pixels consisting at least partially of wetlands and 

waterbodies may have been included. In this scenario, the classifier has inadvertently 

been trained to detect wetlands and shorelines, in addition to, or combination with, 

tailings. 

2. Wetlands and shoreline pixels are more likely to contain mixed spectra, and the spectral 

signature of these mixtures resembles that of tailings. The Sentinel-2 pixels used by the 

classifier are 20 by 20 m. Wetlands are a mixture of shallow water and vegetation, and 

these signals may combine to resemble the signal of tailings. Shorelines are typically 

narrow features and pixels that include them will have a reflectance signal consisting of 

some exposed sediment and some water (and likely vegetation). This combined signal 

may resemble tailings when apparent reflectance is resampled to the spectral resolution 

of Sentinel-2. 

3. The classifier was correct. Tailings were often deposited into wetlands and streams, and 

we should expect that tailings are still present in those areas, within and around mine 

sites or even up to several km downstream (Drage, 2015; Parsons et al., 2012). The 

minimum amount of tailings required in a pixel for the classifier to correctly identify it as 

tailings is unknown, and hard to quantify due to many complicating factors (grain size, 

sediment mixture type, etc.) (Clark et al., 2003; Goetz et al., 2009). The ability to detect 
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tailings deposits downstream of sites along riverbanks, coastal wetlands or estuaries 

would be valuable, but results in these land cover types are inconsistent. Isolating the 

factors causing confusion in these areas would increase confidence in the results, 

whether positive or negative. 

To explore some of these possibilities, we have sampled materials identified by the 

classifier as tailings, both physically and spectrally, at five coastal and wetland sites. Sediment 

was collected at three estuarine areas, downstream of multiple mine sites, as well as one 

wetland just north of Montague.  

3.4.1.1. Sediments of Estuarine Environments Downstream of Mine Districts 

The estuarine sediment deposits were larger than the shorelines of lakes and riverbanks 

found near mine sites and provided purer pixels in the Sentinel-2 image, allowing us to control 

for pixel mixing. Lawrencetown, Lower East Chezzetcook, and Martinique Beaches were 

selected for sampling (Figure 4). These areas are east of Halifax, ranging from about 15 to 35 

km along the coast. Each site consists of a narrow beach separating the ocean from salt 

marshes or lagoons. Samples were collected from low-energy areas, where fine sediment from 

upstream would be likely to be deposited. Lawrencetown and Lower East Chezzetcook are 

downstream of the Lawerencetown and Chezzetcook historic mine districts, respectively. These 

were minor districts, with Lawrencetown crushing 1534 tonnes of ore, and Chezzetcook just 73 

(Parsons et al., 2012). Martinique is near the Lake Catcha historic mine district, at which 29,426 

tonnes of ore was crushed. It does not appear that there are streams directly connecting this 

site to that mine district, making sediment transportation and deposition from there unlikely. 

These sediment deposits, originating from the same bedrock as the gold mine districts, 
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were presumed to be a close natural mineralogical proxy for tailings in grain size and 

composition. According to our hypothesis, the classifier’s ability to discriminate naturally 

occurring sand from tailings should rely primarily on the Fe absorption feature present in Fe 

oxides and hydroxides. If these minerals are not present, and pure pixels are still classified as 

tailings, that would indicate that the classifier is including minerals that resemble tailings but do 

not originate from mines and may not contain high levels of As or other related contaminants. 

If only pixels at the beach-ocean threshold are positively classified as tailings and not the purer 

pixels, we can extrapolate that false positives at shorelines are a result of pixel mixing. First, we 

explore if the estuarine sediment deposits contain those Fe oxides and hydroxides. 

Grains from the three coastal sites were analyzed via SEM. A random subsample from 

each main sample was set in resin pucks and placed in a TESCAN Mira3 LMU SEM. Grain size 

and shape were observed, and we inspected for the presence of sulphides (particularly 

arsenopyrite) using the same method as at Montague, Oldham, and Waverley (chapter 1). 

Samples from Lawrencetown and Lower East Chezzetcook consisted of sub-angular to 

angular coarse silt to medium sand grains (Table 2). The Martinique site appeared to be a 

mudflat and contained fine silt to fine sand grains that were slightly less angular than the grains 

of the other two sites. 

No sulphide grains were observed in the Lawrencetown or Lower East Chezzetcook 

samples. Some sulphide grains were seen in the Martinique mudflat samples and displayed a 

framboidal texture. Framboidal pyrite has been observed in deep tailings but is typical of a 

marine environment (DeSisto et al., 2016; Wilkin and Barnes, 1997). These sulphides did not 

have Fe oxide or hydroxide overgrowth. Whole Fe oxide or hydroxide grains were present, but 
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only in small amounts. Analysis of these grains via SEM suggests a reducing environment, rather 

than the oxidizing environment typical of tailings. 

For further confirmation of whether or not sediment deposits contained tailings, bulk 

geochemistry was obtained. The four samples had a mean As concentration of 16.15 ppm, still 

slightly above the CCME’s guideline of 12 ppm, but below the provincial guideline of 31 ppm, 

and within the range of As expected for non-tailings sediment within the province (Parsons and 

Little, 2015). Geochemistry suggests that these deposits did not originate from upstream 

tailings. 

3.4.1.2. Wetlands 

Two wetland areas were analyzed, in addition to coastal sediment deposits: one at 

Lawrencetown Beach, and another just north of the Montague tailings area. 

The Montague tailings sit on the border of two watersheds. Streams flowing west or 

northwest feed into the Shubenacadie watershed, while those flowing north or east flow into 

the Musquodoboit watershed. The wetland sampled is located in the Musquodoboit 

watershed, just before it feeds into Lake Major. This sample site’s proximity to Montague 

increased the probability that tailings could be present there. The area was highly vegetated, 

with patches of exposed sediment that would not have been large enough to dominate a 

Sentinel-2 pixel. 

The second wetland sample site was at Lawrencetown Beach, in the same estuarine 

environment as sample ES00, though three km east of it. This was a well-vegetated marsh, with 

patches of sandy material scattered throughout. Finding sediment to sample among the moss 

and humus was difficult. It would have been very unlikely to obtain pure pixels in the Sentinel-2 
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images at this location. 

Subsamples of the wetland sediment were placed in resin pucks and analyzed via SEM. 

No sulphides were observed in these samples. Some Fe oxides or hydroxides were observed as 

whole grains but were not common. 

Bulk geochemistry of these samples was determined via ICP-MS following aqua regia 

digestion. The Montague samples had As concentrations of 63.9 and 56.4 ppm, while the 

Lawrencetown sample had a concentration of 29.9 ppm. All three of these samples had higher 

As than any of the four coastal samples and exceeded the CCME guideline of 12 ppm As. 

Though the highest observed in these samples, these concentrations are still low compared to 

even the lowest tailings As observed, which was 160 ppm at Oldham. The lowest value 

observed at the main tailings area of Montague was 2085 ppm As. A study of non-tailings forest 

soils surrounding Montague showed a large natural As variation, that did not seem to be 

caused by mining (Parsons and Little, 2015). The values we observed are within the range 

defined in that study. 

3.4.2. Comparison of Land Cover Reflectance 

The five areas sampled for SEM and ICP-MS analysis were also virtually sampled to 

obtain mean reflectance (Figure 5) from a Sentinel-2 image using the 10 and 20 m bands (Table 

1). A fifth spectral sample was obtained from a tidal region in the Minas Basin containing red 

sand. This sand did not originate from the same bedrock as the mine sites previously included, 

but its colour suggests the presence of Fe oxides. We also provide mean spectra of tailings and 

other land cover types around the Montague mine district for comparison. To sample the non-

tailings spectra, polygons were created around the physical sampling areas, and a vegetation 
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mask was created. Only pixels with an NDVI value of less than 0.5 were viable for spectral 

sampling. 

Some similarities can be observed among the non-tailings spectra. All but the Minas 

Basin show absorption in the red band (B4, around 665 nm), before increasing in reflectance 

until around the NIR region (B8 and B8A, around 750 nm) and then steadily declining 

throughout the SWIR range. The red band absorption is likely due to vegetation, which was 

present in all of these sample areas despite attempting to mask it out. This same spectral shape 

is observed in our forest spectrum (Figure 6, top center). The spectra of Lawrencetown, 

Conrad’s, and the Montague wetland all match the forest spectra almost exactly, though the 

red band absorption is not quite as deep. This suggests a significant amount of vegetation was 

not successfully removed by the NDVI mask. 

Our tailings spectrum (Figure 6, top left) shows a gradual increase in reflectance 

between the visible and NIR bands, followed by a fairly flat response for the SWIR bands. The 

depth of absorption at B8 is less than the standard error, and the mean value for B8A shows no 

absorption at all. Martinique, Minas Basin, and Chezzetcook show similar degrees of absorption 

at B8, though Chezzetcook has a high standard error, possibly owing to a small sample size. 

The Minas Basin reflectance increases sharply until the red edge (around 700 nm), 

where there is an absorption feature at B6 (740 nm), followed by a decrease throughout the 

NIR and SWIR region. 

3.5. Results and Discussion 

Analysis of SEM and geochemistry did not indicate that these regions contain tailings. 

Sulphide minerals were uncommon at all observed sites, including in the two Montague 
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samples collected less than two km from the main Montague tailings area. When they were 

present, sulphides did not exhibit the Fe oxide or hydroxide alteration rims or remineralization 

that is common for sulphides found in tailings (Chapter One).  

After confirming that the false positive areas do not contain tailings, we compared the 

spectra of these areas to determine the sources of confusion for the classifier. Random forest 

classifiers calculate the importance of each input variable during the training stage and use 

these importance measures in their decisions (Chapter One, Gregorutti et al., 2017). The 

classifier sets some of its training points aside (an out-of-bag sample) and uses the remaining 

points to try and describe the subset. If all training points contain the same bias or error, that 

error will be included in the classifier. 

We included an additional optimization step to choose an ideal set of variables (Chapter 

One). We started with the Sentinel-2 20 m bands, except for B8, and the NDVI and MNDWI 

indexes. The model provided 10 unique variable sets, which we tested and ranked according to 

F1-Score. Out of these variable sets, only four included the red band, B4, which we are 

considering diagnostic of vegetation. The optimization step was performed using the 

Goldenville and Montague mine districts, which have relatively large and unvegetated tailings 

areas compared to many of the other districts. Tailings in those districts were less likely to 

contain vegetated pixels, and less likely to have pixels with a mixed forest signal from the 

tailings’ edge. While the red band may not be important for defining pure tailings pixels, it is 

important in discriminating vegetated tailings from non-vegetated tailings. 

Sentinel-2 has two NIR bands that overlap significantly. The narrow NIR band, B8A, is 

completely within the range of B8. Having multiple bands detecting the same wavelengths 
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would be redundant and was expected to introduce bias in the classifier’s training dataset. We 

chose to remove B8 and keep the narrow B8A, which would be easier to interpret and was 

thought to better target the iron absorption feature. By observing tailings spectra at multiple 

sites, we can see that absorption is negligible in B8A, but a slight absorption is often visible in 

B8. This suggests that iron absorption is taking place in the area of B8 that does not overlap 

B8A, i.e., from 800 to 853 nm. 

3.6. Conclusion 

When we classified images, the classifier was trained on all but the target districts. When 

classifying the most ideal target districts (i.e., Goldenville and Montague), we lost the most 

valuable training areas. When those districts were classified, training data was obtained from 

districts that may have contained excess vegetation and mixed pixels (Figure 3a and 3b). Pixels 

containing vegetation exhibited a chlorophyll absorption feature around 650 nm, lowering the 

value of B4. The result was false positives occurring in wetland areas.  

False positives along shorelines are likely due to mixed pixels. The shoreline spectrum 

(Figure , bottom left) closely resembles the Minas Basin tidal spectrum, with the addition of 

absorption at B4 (the red band at 660 nm). Shorelines of lakes and rivers are likely too narrow 

of geographic features to be accurately described using the 20 m bands of Sentinel-2. Pixels 

containing shorelines in our images are highly mixed, containing dry sediment or rocks, water, 

and vegetation. They do not quite cross the thresholds set by either the vegetation or water 

masks but should be masked out by some other means when using Sentinel-2 images. 

By analyzing the mineralogy and geochemistry of areas to confirm they are receiving 

false positive classifications, we can compare spectra band-by-band to determine what spectral 



   

 

94 
 

ranges are causing confusion. The primary source of error in our classifier appears to be the 

inclusion of pixels in the training data that contain vegetation or, to a lesser extent, water. 

Removing these areas from the training data would likely improve overall results. This is 

difficult to do with simple NDVI and MNDWI thresholding, however. A more sophisticated 

masking approach may be beneficial. A higher spatial resolution would improve sampling 

accuracy, allowing tailings to be targeted in between patches of vegetation. Smaller pixels 

would likely improve the model’s performance along shorelines as well, but this is a complex 

land cover type, and some mixing may always be present at the land-water boundary. 
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3.7. Figures 

Figure 1. A map showing the province of Nova Scotia, with the Goldenville and Halifax formations 
overlaid. These are the main gold-bearing formations in the province. 
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Figure 2. Box and whisker plot displaying F1-score at two districts. Values are spread out along 
the x-axis for clarity. The pixel-wise classification model was run 50 times each on Sentinel-2 
images for the Goldenville and Montague regions, respectively. 
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Figure 3a. Pixel-wise classifier at Goldenville displayed as a frequency. The model was run 50 times using 
a Sentinel-2 image, and the total count of positive classifications (i.e., the pixel was labelled as tailings by 
the classifier) is displayed in a range from 1 to 50. Where the basemap (satellite image) is shown, that 
pixel was never classified as tailings, and the count is 0. Image credit: Maxar.  
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Figure 3b. Pixel-wise classifier at Montague displayed as a frequency. The model was run 50 times using 

a Sentinel-2 image, and the total count of positive classifications (i.e., the pixel was labelled as tailings by 

the classifier) is displayed in a range from 1 to 50. Where the basemap (satellite image) is shown, that 

pixel was never classified as tailings, and the count is 0. Image credit: Maxar. 
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Figure 4. A map showing five sample sites in estuaries downstream of historic mine districts. All samples 
were collected in low energy areas, and are in the same watershed. 
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Figure 5. An array of biplots showing the mean spectrum for six non-tailings land cover types. The x 
value of points indicates the central wavelength of Sentinel-2 bands. Whiskers around points indicate 
the standard error at that band. These land cover types were often misclassified as tailings by our 
model. 
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Figure 6. An array of biplots showing the mean spectrum for six land cover types found around the 
Montague mine district. The x value of points indicates the central wavelength of Sentinel-2 bands. 
Whiskers around points indicate the standard error at that band. Similar spectra, at least for a certain 
wavelength range, were more likely to be confused when classifying. Tailings and shorelines were the 
most often confused classes. Absorption at Band 4 (third point from left) indicates potential chlorophyll 
absorption resulting from vegetation within pixels. 
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3.8. Tables 

Table 1. Sentinel-2 10 and 20 m bands, with bandwidth and band center. All bands were resampled to 
20 m for analysis. Values are shown for Sentinel-2A for simplicity – Sentinel-2B has very similar band 
values. 

Band Name Bandwidth (nm) Band Center (nm) 

B2 – Blue 66 492.4 

B3 – Green 36 559.8 

B4 – Red 31 664.6 

B5 – Vegetation red edge 15 704.1 

B6 – Vegetation red edge 15 740.5 

B7 – Vegetation red edge 20 782.8 

B8 – NIR 106 832.8 

B8A – Narrow NIR 21 864.7 

B11 – SWIR 91 1613.7 

B12 - SWIR 175 2202.4 
 

Table 2. A description of tailings samples collected from four coastal locations. 

Sample ID Area Description 

ES00 Lawrencetown 
(Conrad’s Beach) 

Mixed fine sand and organic material. Seemingly dry area 

ES01 Lawrencetown 
(wetland) 

Marshy area with patches of fine sand. Thick moss, lots 
of organic material 

ES02 Lower East 
Chezzetcook 

Sample further from waterline. Fine to medium grey 
sand. 

ES03 Lower East 
Chezzetcook 

Sample closer to waterline. Fine to medium red sand at 
surface, with dark grey to black sand underneath 

ES04 Martinique Very fine, muddy sediment. Grey-brown at surface, with 
grey-blue to black sediment beneath. 

MO06 Montague Wetland A small bare patch of light brown sediment. Poorly 
sorted grains ranging from sand to cobbles. 

MO07 Montague Wetland Sampled from a pathway, roughly one to two meters 
wide. Scattered shortgrass throughout. Similar light 
brown sediment to MO06 
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Appendix A: Raw Data 
 

Table 1. Geochemical analysis of all sediment samples. Table presented in two parts, showing results of 37 elements analysed via ICP-MS. Also 
available online, DOI: 10.6084/m9.figshare.23989908 

Analyte Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb 

Unit PPM PPM PPM PPM PPB PPM PPM PPM % PPM PPM PPB PPM PPM PPM PPM 

MDL 0.01 0.01 0.01 0.1 2 0.1 0.1 1 0.01 0.1 0.1 0.2 0.1 0.5 0.01 0.02 

Sample                 

WV00S 0.16 11.37 48.56 187.9 54 34.2 15.9 2596 1.27 2055.8 0.2 36.2 2.4 38.4 0.6 1.19 

WV00B 0.04 13.39 58.98 142.7 65 13.7 6.8 384 1.61 3740.4 0.3 25.7 2.9 30.2 0.64 0.85 

WV01S 0.09 14.67 66.65 328.5 63 19.9 6.2 463 1.46 2970.9 0.2 49.4 2.9 20.3 0.88 2.7 

WV01B 0.13 25.42 152.97 345.5 226 21.1 8.3 367 2.19 6142.6 0.3 200.6 3.9 25.9 1.4 5.71 

WV02S 0.08 15.22 71 237.3 93 16.3 5.6 478 1.4 1753.3 0.3 113 3.1 45.5 0.78 1.54 

WV02B 0.05 19.67 91.22 220.9 157 16.2 5.3 459 1.44 1885.5 0.3 281.2 3.4 32.8 1.01 0.99 

WV03S 0.09 5.85 43.63 134.7 68 11.6 5.3 821 1.82 902.9 0.2 83 2.6 18.1 0.35 0.55 

WV03B 0.24 32.34 294.53 505.3 470 46.9 12.9 802 3.66 5688.4 0.6 624 5.1 38.2 2.17 3.26 

OH06S 1.09 45.91 61.47 144.1 213 33.7 16.1 945 3.41 2362.2 0.4 835.2 4.7 22.5 0.26 3.07 

OH06B 0.59 36.86 53.22 116.4 112 29.8 11.8 326 2.64 749.2 0.4 198.4 5.1 19.9 0.2 1.55 

OH07S 0.63 46.55 70.52 133.4 183 36.7 15.6 532 2.87 827.2 0.5 473.2 5.6 34.7 0.22 1.52 

OH07B 0.44 47.13 92.16 122.9 205 39.3 18.5 739 2.92 1011.2 0.6 339.8 5.6 33.1 0.26 1.28 

OH08S 0.95 30.82 45.77 122.1 88 31.4 12.7 766 2.69 590.8 0.5 304.1 5.8 43 0.21 0.75 

OH08B 0.58 46.45 69.52 124.3 158 36.8 14.8 722 2.82 160.7 0.5 581.1 7.5 32 0.24 0.61 

OH09S 3.19 48.75 66.76 153.3 109 30 11.8 781 2.73 307.8 0.5 95.4 5.2 19.2 0.38 0.88 

OH09B 1.44 70.57 76.13 158.7 136 37 14.1 540 2.61 554.2 0.5 215.6 6.7 38.2 0.39 1.21 

OH10S 0.59 52.6 62.72 120 140 34.1 15.2 449 2.77 612 0.5 863.8 5.9 15.6 0.32 0.81 

OH10B 0.63 55.98 72.53 125.6 117 35.2 16.5 487 2.91 970.2 0.5 347.8 5.7 15.5 0.51 1 

OH11S 1.08 49.08 68.51 169.1 133 41.8 18.3 1251 3.12 1295.1 0.5 161.4 6.1 63.6 0.43 0.82 
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OH11B 0.82 84.04 111.21 203.2 208 53.7 21.3 676 3.84 367.1 0.6 281.3 7.3 34.3 0.51 1.85 

MO00S 0.71 59.45 54.61 110.7 124 28.5 10 448 4.05 12500 0.6 235.5 6 19.5 0.14 13.3 

MO00B 0.69 102.45 33.61 168.7 105 36.5 17 615 3.84 5629.3 0.7 209.2 6.6 18 0.3 5 

MO01S 0.46 52.18 44.86 94.4 84 26.2 10.5 415 3.6 9042.4 0.6 340.7 6.8 20.3 0.1 9.24 

MO01B 0.36 54.54 31.62 108.1 78 31.7 11 519 3.32 5481.1 0.7 116.6 7.1 28.1 0.13 4.95 

MO02S 0.54 119.85 79.12 257.1 229 57.4 28.1 746 4.95 16300 0.7 536.5 7.4 34.5 0.46 14.76 

MO02B 0.32 53.92 40.15 113.4 85 28.5 10.2 453 3.67 8405 0.6 286.3 6 17.8 0.18 9.35 

MO03S 1.01 59.22 37.69 124.3 121 41 13.7 519 4.19 4682 0.8 303.2 7.8 25.2 0.15 6.78 

MO03B 0.48 59.89 45.34 133.9 137 41.2 16.1 606 3.85 5802 0.8 451.2 8.5 28.9 0.21 7.12 

MO04S 0.67 24.84 73.68 75.2 188 24.8 8.9 315 4.38 14600 0.7 395 6.8 9.7 0.07 16.84 

MO04B 0.49 54.78 48.87 115.3 200 38.3 43.4 740 3.6 6443.1 0.8 1103.7 7.8 10.3 0.27 8.19 

MO05S 0.54 36.92 20.12 85 56 22.6 7.3 327 2.98 2085 0.6 165.2 6 11.3 0.09 2.03 

MO05B 0.61 45.19 25.23 89.6 54 21.8 7.3 279 3.42 2394.1 0.7 159.7 6 10.7 0.1 2.3 

MO06B 0.44 15.91 20.94 51.1 56 16.8 4.6 222 2.95 63.9 0.5 2.1 6.7 5.5 0.08 0.19 

MO07B 0.33 10.99 15.81 51.8 120 10.1 3.1 167 2.26 56.4 0.3 2.3 2.7 3.7 0.08 0.18 

ES01B 0.77 7.21 10.11 16.2 26 7.5 2.7 222 1.59 29.9 0.5 1 1.2 11.3 0.06 0.24 

ES00B 0.5 4.8 6.06 23.4 22 7.7 2.9 139 0.8 3.4 0.5 <0.2 1.7 37.9 0.04 0.06 

ES02B 0.44 7.09 6.34 31.5 11 9.3 4.4 255 1.64 17.4 0.6 <0.2 4.1 24.1 0.02 0.14 

ES03B 0.78 7.76 6.38 28.7 9 9.4 4.3 243 1.89 26 0.6 <0.2 4.1 27.8 0.04 0.18 

ES04B 3.93 18.47 21.23 63 109 24.3 8.6 334 2.71 17.8 1.9 5.8 4.1 47 0.53 0.15 
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Analyte Bi V Ca P La Cr Mg Ba Ti B Al Na K W Sc Tl S Hg Se Te Ga 

Unit PPM PPM % % PPM PPM % PPM % PPM % % % PPM PPM PPM % PPB PPM PPM PPM 

MDL 0.02 1 0.01 0.001 0.5 0.5 0.01 0.5 0.001 20 0.01 0.001 0.01 0.1 0.1 0.02 0.02 5 0.1 0.02 0.1 

Sample                      

WV00S 0.28 6 0.31 0.034 8.2 6.4 0.3 29.9 0.003 <20 0.49 0.048 0.07 0.6 0.7 0.03 0.03 939 <0.1 0.05 1.4 

WV00B 0.33 5 0.16 0.035 10.5 6.2 0.32 21.3 0.003 <20 0.56 0.012 0.07 0.5 0.7 0.03 <0.02 1249 <0.1 0.08 1.5 

WV01S 0.38 5 0.19 0.033 10.7 6.6 0.34 27.7 0.003 <20 0.59 0.007 0.09 1.1 0.8 0.04 0.03 1324 <0.1 0.07 1.5 

WV01B 0.94 6 0.22 0.048 13.4 10 0.43 23.9 0.003 <20 0.74 0.005 0.08 2.7 0.9 0.04 0.09 6827 0.1 0.14 1.9 

WV02S 0.49 5 0.64 0.034 10.8 7.9 0.41 25.6 0.003 <20 0.57 0.007 0.08 1.5 0.7 0.03 <0.02 2956 <0.1 0.06 1.5 

WV02B 0.63 5 0.38 0.038 11.9 7.5 0.42 22.1 0.003 <20 0.58 0.005 0.08 1.8 0.7 0.03 0.03 3518 <0.1 0.06 1.6 

WV03S 0.31 6 0.31 0.039 9.3 7 0.36 42.3 0.002 <20 0.59 0.006 0.05 2.4 0.7 0.03 0.02 3868 <0.1 0.04 1.6 

WV03B 2.01 11 0.56 0.057 15.9 20.2 0.92 48.4 0.004 <20 1.42 0.003 0.12 7.3 1.5 0.08 0.4 25368 <0.1 0.24 3.8 

OH06S 0.5 15 0.32 0.058 21.4 17 0.65 45.6 0.044 <20 1.21 0.007 0.23 13.8 1.6 0.21 0.11 6219 0.3 0.23 3.8 

OH06B 0.38 15 0.21 0.056 25.1 15.5 0.65 35.8 0.045 <20 1.18 0.005 0.23 5.2 1.6 0.21 0.07 3293 <0.1 0.11 3.7 

OH07S 0.48 17 0.75 0.054 26.1 17.7 0.74 49.4 0.052 <20 1.34 0.008 0.35 3.3 1.8 0.26 0.03 3241 <0.1 0.07 4.1 

OH07B 0.6 17 0.77 0.057 26.8 18.8 0.75 52.9 0.055 <20 1.36 0.008 0.37 1.2 2.1 0.26 0.02 9469 <0.1 0.09 4.1 

OH08S 0.29 15 0.74 0.06 26.3 15.6 0.69 43.7 0.044 <20 1.21 0.006 0.21 1.8 1.6 0.22 0.03 2307 <0.1 0.05 3.6 

OH08B 0.42 16 0.39 0.064 33.5 18.6 0.75 43.9 0.055 <20 1.35 0.006 0.29 10.8 2 0.23 <0.02 1954 <0.1 0.05 4.1 

OH09S 0.37 17 0.31 0.061 25.9 17.3 0.68 51.3 0.044 <20 1.3 0.011 0.23 1.4 1.8 0.2 0.05 2454 <0.1 0.04 3.9 

OH09B 0.47 16 0.89 0.055 31.9 17.6 0.69 42.9 0.047 <20 1.23 0.008 0.32 2.2 1.9 0.22 0.1 3464 <0.1 0.06 4 

OH10S 0.35 16 0.15 0.053 25.6 17.3 0.69 43.2 0.052 <20 1.26 0.007 0.32 0.5 1.8 0.25 <0.02 1683 <0.1 0.06 4 

OH10B 0.39 16 0.14 0.053 26.9 17.5 0.7 47.6 0.055 <20 1.27 0.007 0.34 3.3 1.8 0.25 <0.02 1977 <0.1 0.07 4 

OH11S 0.4 18 2.99 0.06 29.8 20.7 0.79 72.1 0.06 <20 1.39 0.006 0.3 2 2.2 0.32 0.05 2498 <0.1 0.06 4.5 

OH11B 0.61 22 0.9 0.071 35.5 26.9 1.02 57.4 0.074 <20 1.77 0.008 0.45 2.1 2.6 0.37 <0.02 4628 <0.1 0.1 5.4 

MO00S 0.9 18 0.26 0.045 22.3 18.1 0.83 59 0.06 <20 1.42 0.01 0.5 1.3 1.7 0.29 0.05 404 <0.1 1.2 4.1 

MO00B 0.64 18 0.27 0.046 26.4 22.9 0.89 61.6 0.062 <20 1.52 0.01 0.54 0.4 2.1 0.29 <0.02 490 <0.1 0.57 4 

MO01S 0.67 15 0.27 0.044 25.5 16.1 0.82 47.1 0.056 <20 1.3 0.006 0.44 1.3 1.6 0.25 0.06 427 <0.1 0.92 3.7 
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MO01B 0.58 16 0.47 0.045 26.4 16.8 0.93 57.5 0.061 <20 1.39 0.009 0.49 0.8 1.8 0.27 0.05 729 <0.1 0.57 4.1 

MO02S 1.26 22 0.28 0.059 25.8 18.2 0.97 69 0.07 <20 1.6 0.011 0.4 1.1 1.9 0.29 0.29 1801 <0.1 1.91 4.5 

MO02B 0.65 17 0.24 0.045 22.2 16.7 0.87 51.2 0.066 <20 1.4 0.006 0.48 1.7 1.7 0.28 0.04 293 <0.1 0.87 3.9 

MO03S 0.69 18 0.47 0.051 34.1 22.3 0.97 61.2 0.075 <20 1.58 0.015 0.52 0.9 2.1 0.32 0.04 1078 <0.1 0.59 4.5 

MO03B 0.77 19 0.47 0.058 33.6 19.9 1.02 63.8 0.08 <20 1.53 0.011 0.56 0.5 2.1 0.34 0.02 844 <0.1 0.84 4.2 

MO04S 1.17 19 0.11 0.048 25 18.4 0.81 59.3 0.068 <20 1.47 0.006 0.51 2.3 1.9 0.3 0.09 2804 <0.1 1.57 3.9 

MO04B 0.77 18 0.11 0.049 30 18.4 0.83 59.1 0.063 <20 1.5 0.006 0.49 0.5 1.9 0.29 0.04 5195 <0.1 1.62 4 

MO05S 0.35 15 0.13 0.04 23.8 16.4 0.72 55.8 0.057 <20 1.25 0.008 0.41 0.4 1.5 0.22 <0.02 2474 <0.1 0.23 3.6 

MO05B 0.59 15 0.12 0.043 23.3 17.7 0.74 48.8 0.058 <20 1.25 0.005 0.4 0.4 1.5 0.23 <0.02 3017 <0.1 0.29 3.6 

MO06B 0.16 24 0.05 0.04 17.1 19.9 0.41 50.8 0.035 <20 1.75 0.008 0.14 0.9 1.8 0.15 0.02 121 0.7 0.02 4.4 

MO07B 0.12 22 0.06 0.036 13.4 20.5 0.26 33.5 0.025 <20 1.57 0.005 0.08 0.9 1.3 0.1 0.03 60 0.7 <0.02 3.5 

ES01B 0.06 23 0.12 0.033 11.6 12.2 0.17 22.8 0.04 <20 0.39 0.015 0.06 <0.1 1 0.03 0.02 100 <0.1 <0.02 1.8 

ES00B 0.03 11 0.27 0.031 5.8 9.1 0.58 17 0.016 43 0.47 2.336 0.17 0.1 1.1 0.04 0.44 12 0.1 <0.02 1.5 

ES02B 0.04 27 0.38 0.047 11.7 13 0.36 27.3 0.104 <20 0.74 0.035 0.12 0.1 2.2 0.06 <0.02 38 <0.1 <0.02 3.2 

ES03B 0.03 26 0.37 0.046 11 12.7 0.32 26.9 0.09 <20 0.65 0.095 0.12 0.2 2 0.05 0.04 53 <0.1 <0.02 2.9 

ES04B 0.17 31 0.33 0.109 15.5 26.3 0.88 47.9 0.032 44 1.26 2.583 0.36 0.2 2.9 0.28 1.32 61 1 <0.02 4 
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Appendix B: Additional Maps 
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Figure 1. A map displaying all 64 historic gold mine districts in Nova Scotia 
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Figure 2. A map showing the Montague Gold Mine District and associated data found in the Nova Scotia Mine Tailings Database 
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Figure 3. A map showing the Oldham Gold Mine District and associated data found in the Nova Scotia Mine Tailings Database 
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Figure 4. A map showing the Waverley Gold Mine District and associated data from the Nova Scotia Mine Tailings Database 
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Figure 5. A map of all gold districts within, or on the border of, the Shubenacadie Watershed. This watershed includes the Montague, Waverley, 
and Oldham Gold Mine Districts. It feeds directly into the Atlantic Ocean. 


