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Abstract

Measurement of charge-changing cross section of neutron-rich

nitrogen isotopes for determining their proton radii

By Aritra Roy

Exploring neutron-rich nuclei near the drip-line exposes exotic phenomena, includ-
ing neutron halo or skin and the (dis)appearance of the existing magic numbers. A
systematic study of point proton radii along an isotopic chain provides insights into the
extended neutron wavefunction’s impact on protons. This work, conducted at RIKEN,
Japan, presents the first determination of the charge-changing cross section (σcc) for 23N
as well as the σcc for 21N, with a secondary beam energy of around 250A MeV. The mea-
sured σcc values for 21N and 23N were 752 ± 4 mb and 747 ± 3 mb, respectively. Their
comparable σcc suggests that the center-of-mass of the two valence neutrons in 23N is
not spatially separated from that of the core. Combined with the previously reported
σcc of 22N, these results indicate a shell closure at N = 16 for nitrogen isotopes. A higher
two-neutron separation energy in 23N supports the presence of a shell closure at N = 16
and raises questions about the reported large matter radius of this drip-line nitrogen
isotope.

April 11, 2024
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Chapter 1

Introduction

All visible matter is fundamentally composed of protons, neutrons, and electrons, with

the attractive Coulomb force between positively charged protons and negatively charged

electrons being responsible for holding atoms together. However, the mystery surround-

ing the nucleus persists, primarily due to the electromagnetic repulsion among its many

protons. Despite being significantly heavier than electrons, protons and neutrons are

confined to an extraordinarily minute space of 10−15 m, making them beyond the reso-

lution of any microscope.

E. Rutherford, H. Geiger, and Marsden’s famous gold foil experiment gave the first

insight into a nucleus [1, 2]. In 1914, while studying the scattering of α particles from a

thin gold foil, E. Rutherford found that a fraction of α particles deflected at surprisingly

large angles [2]. The results led to the planetary model of an atom where the electrons re-

volve around the protons. The discrepancy between atomic number (number of protons)

and atomic mass hinted at the presence of a third neutral particle. Almost two decades

later, in 1932, J. Chadwick completed the picture of an atom by adding a charge-less

particle, the neutron, inside the nucleus [3]. However, the pinching question remained:

why do protons not fly apart? The answer came two years later. In 1934, H. Yukawa pro-

posed the particle exchange mechanism between nucleons (collective term for neutrons

1



and protons) which results in an attractive force [4]. The discovery of the lightest meson

particle, pion, confirmed this mechanism [5]. The resultant attractive force later turned

out to be the strongest among the four fundamental forces and is hence referred to as

the Strong Force. Constant wrestling between repulsive electromagnetic and attractive

strong force binds the nucleons. Only certain combinations of protons and neutrons can

create a perfect balance between these two strongest forces of nature. As of now, about

300 nuclei have achieved this rare stability criterion and most of our understanding of

nuclear models was formulated based largely on data from these stable nuclei. In princi-

ple, one can add neutrons or protons to a nucleus until the nuclear drip-line is reached,

where the binding energy is not enough to prevent the last nucleon from “dripping” off

the nucleus. The proton and neutron drip-lines form the boundaries of nuclear existence

(Fig. 1.1).

Figure 1.1: The nuclear landscape where each square represents a nucleus. The valley of
stability is shown by black, unstable nuclei are represented by yellow and green region
shows theoretically predicted bound nuclei. The magic numbers for the proton number
(Z) and neutron number (N) are marked with horizontal and vertical red lines, respec-
tively. Adapted from [6].
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Although on the nuclear chart stable nuclei are confined to a narrow region called

the valley of stability, unstable nuclei dominate the nuclear landscape. Despite a huge

difference in their sizes, observations revealed striking similarities between the atom and

the nucleus. A careful analysis of proton and neutron separation energies indicated the

presence of a shell structure inside the nucleus [7]. The shell gaps, i.e. shell closures were

observed at neutron and proton numbers of 8, 20, 28, 50, 82, and 126 which are referred to

as the “magic numbers”. The sudden decrease in the neutron-capture cross sections and

the nuclear charge radius at magic numbers [8] strengthened the idea of shell existence.

All evidence suggested the potential application of the atomic shell model concepts to

the nucleus by assuming different spherically symmetric mean potentials, e.g., infinite

square well, harmonic oscillator, and Woods-Saxon potential (WS). However, the energy

levels predicted by considering a harmonic oscillator (HO) potential do not correspond

to the empirical magic numbers except for the lowest few. In 1949, M. Mayer [8, 9]

and O. Haxel et al. [10] (independently) successfully explained the magic numbers by

incorporating the spin-orbit term in a nuclear potential.

Figure 1.2: Mayer-Jensen’s shell model scheme predicted with harmonic oscillator po-
tential and the spin-orbit force. Figure adapted from [11].

3



Fig. 1.2 depicts the energy levels of harmonic oscillator potential and their splitting

due to the spin-orbit coupling. Each energy level can accommodate 2j + 1 nucleons,

where j is the total angular momentum. Unfortunately, aside from the lowest ones, these

shells do not align with the observed magic numbers empirically. The shell model re-

produces measured excitation energies, spin/parities for ground states and low-energy

excited states. However, for some nuclei, the shell model could not predict magnetic

dipole moments, electric quadruple moments, or excited state spectra. As a result, vari-

ous models to account for the collective motion of nucleons were proposed.

In the mid-1980s, the availability of Rare Isotope Beams (RIBs) made possible the

study of nuclei with extremely high ratios of neutrons (N) to protons (Z) [12, 13]. Such

nuclei with N/Z >> 1 (or Z/N >> 1 ) ratios are referred to as exotic nuclei because

they are exhibiting properties that don’t align with the known model. On the nuclear

chart, exotic nuclei can be found far away from the valley of stability, hence they are

short-lived (few tens of milliseconds). This new arena is changing the conventional

magic number paradigm. Interestingly, near the drip-line, where nucleon(s) is (are) at

the brink of dripping from the core nucleus, some traditional magic numbers vanished

and new ones appear instead (N= 16, 32) [14]. The following section provides an in-

depth exploration of the observed properties exhibited by these highly asymmetric (N/Z

>> 1) exotic nuclei in close proximity to the dripline.

1.1 Properties of exotic nuclei

Exploring the diverse properties of exotic nuclei is a prominent area of research in nu-

clear science, shedding light on the nature of the short-range nuclear forces and con-

tributing to the understanding of the origin of chemical elements in the universe [15].

As discussed above, for exotic nuclei, the ratio of protons and neutrons is highly asym-

metric. In the region near the drip-line (Fig. 1.1), the valence nucleons (usually neutrons)

4



are very weakly bound, giving rise to exotic properties like the formation of a halo and

skin. Due to the absence of a confining Coulomb barrier, these features are prominent in

neutron-rich nuclei compared to proton-rich nuclei.

1.1.1 Neutron skin

In stable nuclei, the one neutron separation energy(Sn) and one proton separation energy(Sp)

are nearly equal. In addition, for light stable nuclei, the root mean square (r.m.s) radius

of the proton distribution (⟨r2
p⟩

1
2 ) is almost identical to the neutron distribution (⟨r2

n⟩
1
2 ).

Figure 1.3: The mean field potential (top) and the density profile (bottom) for protons
and neutrons. For (a) stable nuclei, Sn = Sp and ⟨r2

p⟩
1
2 ≈ ⟨r2

n⟩
1
2 (b) neutron-rich nuclei,

a significant difference in Sn and Sp results in a thick neutron skin; and (c) neutron
drip-line nuclei, the valence neutron(s) forms a halo structure as Sn = 0. Figure adapted
from [16].

However, for nuclei with a high N/Z ratio, the difference between Sn and Sp change

drastically, as shown in 1.3(b). The neutron density extends significantly further than

the proton density, forming a thick neutron skin. Neutron skin thickness (∆R) is defined

as a difference between the rms neutron and proton radius [17]:

∆R = Rn − Rp (1.1)
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The root mean square matter radius (Rm) is related to the root mean square neutron

radius (Rn) and the root mean square proton radius (Rp) through the following equation:

R2
m =

N
A

· R2
n +

Z
A
· R2

p (1.2)

Here, the atomic number is denoted as Z, the mass number as A, and the neutron

number as N. The root mean square matter radius (Rm) incorporates the contributions

of both neutron and proton distributions within the nucleus. The determination of Rn

and ∆R can be achieved through measurements of the matter radius and proton radius,

respectively, utilizing the Eq. 1.1 & 1.2.

1.1.2 Neutron halo

In nuclear physics, the term ‘halo’ refers to an extended surface of low density formed

by one or two weakly bound neutrons around a core with similar density distributions

for protons and neutrons. In some cases, introducing two neutrons to the core results in

the formation of a three-body bound system, often referred to as a Borromean nucleus

(e.g., 6He, 11Li, 22C, etc.). This concept draws a parallel to Borromean rings, where each

of the three rings is interlinked, and yet, there is no direct link between any two rings.

For instance, the two-neutron halo nucleus, like 6He, can be imagined as a three-body

system composed of an alpha particle and two neutrons. It is interesting to note that

6He is bound in this configuration, while neither 5He nor the dineutron are bound.

Nuclear halos result from the spatial distribution of outermost neutrons, causing a

low-density extended neutron surface and a notable increase in matter radius. A system-

atic study of the point proton radii (i.e. protons as point particle in the nucleus) along

an isotopic chain reveals insights into the impact of the extended neutron wavefunction

on protons. Halo occurrences in light neutron-rich nuclei such as 11Li have led to a new

era in nuclear science. These particular phenomena of exotic nuclei are of quantum me-
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chanical origin and are well explained by considering the probability distribution of the

least bound nucleon. For simplicity, if we assume the interaction potential is a square

well between the halo neutron and the core, then under this scenario, the wave function

of an s-wave neutron can be described as,

ψ(r) =
(

2π

k

)(
−ekr

r

)[
ekR

(1 + kR)1/2

]
(1.3)

where, k is the slope of the density tail and R is the width of the potential [18]. Using

this wavefunction, the asymptotic density tail (ρ(r)) of an s-wave neutron will be,

ρ(r) =| ψ(r) |2=
(

2π

k

)2
(
−e2kr

r2

)[
e2kR

(1 + kR)

]
(1.4)

The parameter k in the given equations is intricately linked to the neutron separation

energy (Es), with its relationship expressed as (h̄k)2 = 2µEs, where µ denotes the re-

duced mass of the system [17]. A diminished value of Sn contributes to a decrease in

the parameter k, resulting in an elongated distribution tail in halo nuclei. In addition to

a low separation energy, the presence of a small orbital angular momentum is a crucial

prerequisite for a nucleus to exhibit a halo state. The higher angular momentum intro-

duces an extra centrifugal barrier, reducing the likelihood of tunneling to a larger radius.

Consequently, halos are anticipated to be more prevalent when valence neutrons occupy

the s or p states [19]. The charge radius of a nucleus also serves as a significant parame-

ter for identifying halo formation in neutron-rich nuclei. An isotopic charge radii chain

can unveil signatures of shell closures as local minima [20]. Combining the knowledge

of proton radii together with matter radii (distribution of nucleons in nuclei) enhances

our understanding of these exotic nuclei and facilitates the derivation of their properties.
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1.1.3 Change in magic numbers

Another interesting feature for exotic nuclei is the disappearance of conventional magic

numbers such as N = 8 and 20, and the emergence of new magic numbers like N= 14

and 16. These features suggest a significant modification in the nuclear shell structure

for nuclei in the neutron-rich region. The neutron number (N) dependence of experi-

mentally observed neutron separation energies (Sn) reveals an anomaly in p − sd and sd

shell nuclei, as illustrated in Fig. 1.4. The separation energies of nuclei with the same

isospin Tz = (N − Z)/2 are connected by lines, where the kinks represent the magic

numbers. Notably, kinks are evident for magic numbers N = 8 and 20 in small Tz nuclei

but disappear in large Tz nuclei. The absence of nucleon shell closure at N = 8 (kink)

signifies disappearance of the shell gap for p− sd shell nuclei. Additionally, a new magic

Figure 1.4: The dependence of neutron number (N) with the experimentally observed
neutron separation energies (Sn) for nuclei with (a) odd N and even Z, and (b) odd N
and odd Z. Numbers next to the line indicate 2Tz. Figure adapted from [21].

number at N = 16 is suggested by the appearance of a kink for large isospin Tz ≥ 5/2.
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The tensor monopole interaction between proton and neutron orbit pairs with j = l + 1
2

and j = l − 1
2 is attractive in nature compared to pairs with j = l + 1

2 and j = l + 1
2

(or j = l − 1
2 and j = l − 1

2 ) [22]. Therefore, the valence neutron and valence proton

orbits, along with the nature of their interaction (attraction/repulsion), determine the

shell gaps between neighboring orbits and consequently influence shell closure. The

proton radius (Rp) of 22
8 O decreases along the oxygen isotopic chain and then increases

again for 23O, indicating the presence of a neutron sub-shell closure at N = 14 [23]. The

origin of this N = 14 sub-shell closure is believed to stem from the attractive monopole

proton-neutron interaction between the p(1p1/2) and n(1d5/2), leading to the lowering

of the n(1d5/2) orbital and the creation of an energy gap at N = 14.

1.2 Motivation to study neutron-rich nitrogen isotopes

Understanding the origins of the changes in shell structure is crucial to identifying the

emerging signs of these changes. The presence of neutron halos in 11Li and 11Be relates

to the breakdown of the N = 8 shell gap [24]. Evidence has been found for a new

shell gap at N = 16 at the drip-line of carbon to fluorine isotopes. Studies of excited

states and momentum distributions have discussed a shell gap at N= 14 between the

1d5/2 and 2s1/2 orbitals in oxygen isotopes. However, its reduction for the nitrogen

isotopes is signalled and its disappearance due to level inversion of the ν1s1/2 and the

ν0d5/2 levels is predicted in the carbon isotopes [25–29]. A reduction in the width of

the longitudinal momentum distributions (∆P||) between 21N (∆P|| = 160 ± 32 MeV/C)

and 22N (∆P|| = 77 ± 32 MeV/C) from one neutron removal reaction indicate a change

of dominating neutron orbitals from l = 2 to l = 0 in 21N and 22N, respectively [25].

The P|| for 18,19N are explained by ∼ 69% probability of the neutron in the l = 2 orbital

with the core nucleus in excited states. The situation changes in 20,21N where the P||

are explained with 83% and 68% probability, respectively of valence neutrons in the
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l = 2 orbital with the core in its ground state. A shell gap at N = 14 in 22O was first

indicated from the high excitation energy of its first excited state [30]. Proton inelastic

scattering [31] affirms this, implying a small quadrupole deformation (β = 0.26(4)) and

an electric quadrupole transition probability [B(E2)] value deduced to be 21(8) e2fm4.

However, proton inelastic scattering of 21N is consistent with a much larger B(E2) value

of 56(18) e2fm4 [27], and it indicates a reduction of the N = 14 shell gap by 1.2 MeV

when transitioning from O to N. Recently, quasifree knockout reaction studies of 22,23O

and 21N show a decrease in the width of the momentum distribution in going from 22O to

21N suggesting a reduced N= 14 shell gap for this nucleus leading to more configuration

mixing of the 2s1/2 orbital [32]. This shell gap was found to be strongly reduced to

1.41(17) MeV in 22N and predicted to disappear in the carbon isotopes [26]. Ref. [33]

however deduces a moderately large energy gap of 3.02 MeV at N = 14 from the excited

states in 21N.

Figure 1.5: The experimental point matter radii (black open circles) and (b) measured
neutron skin thicknesses (black filled circles) are compared to the respective theoretical
calculations. The experimental point proton radii, Rex,avg

p , are shown by black-filled
circles in (a) where those for 14,15N are from e− scattering. The blue crosses correspond
to VS-IMSRG radii, the black open triangles are coupled-cluster radii computed with
oxygen cores. Figure adapted from [34].
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In 2019, S. Bagchi et al. [34] reported the point proton radii of 17−22N measured from

charge-changing cross sections (σcc) on a carbon target at ∼ 900A MeV. A thick neutron

skin for 19−21N is reported, while for 22N a neutron halo-like structure develops. The

rapid increase in the nuclear matter radii, as observed from 22N (3.07± 0.13 fm)(Fig. 1.5)

to 23N (3.41 ± 0.23 fm) [35], hints towards the halo structure of 23N. A decrease (within

uncertainties) in the point-proton radii from 17N to 21N is also reported [34], which may

reflect a transition from deformation towards sphericity at the N = 14 shell closure. The

notable increase in radius beyond 21N may be attributed to the influence of the 2s1/2 neu-

tron in 22N. The sudden increase in the proton radius beyond 21N highlights the critical

necessity of investigating the proton radius of 23N for a comprehensive understanding

of the nitrogen isotope chain. Given the absence of available data on the proton radius

of this drip line nucleus with N=16, this study aims to make the first determination of

the point proton radius for 23N. The derived proton radius from this investigation, along

with the previously reported significantly large matter radius of 23N, provides valuable

insights into the structural features of this neutron-rich isotope. The halo formation due

to the large matter radius of 23N is challenged by the stronger binding of the valence

neutrons. The two-neutron separation energy (S2n) of 23N is 4.7 MeV, higher than both

its single-neutron separation energy (3.12 MeV) and single-neutron separation energy

(Sn) of 22N (1.28 MeV) [36,37] obtained using Eq. 1.5. Hence, the obtained proton radius

from this study will be extremely useful to further constrain the structure of this dripline

nitrogen isotope. Consequently, the findings of this study promise to shed light on the

presence of the N = 16 magic number in the nitrogen isotopic chain.

Sn = −M(A, Z) + M(A − 1, Z) + n

S2n = −M(A, Z) + M(A − 2, Z) + 2n
(1.5)

Therefore, a systematic study of the point proton radii along the nitrogen isotopic

chain is necessary to evaluate the impact of the extended neutron wavefunction on pro-
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tons. Systematic trends of proton radii along the nitrogen isotopic chain can reveal the

presence of neutron magic numbers [38]. This study also includes the measurement of

21N at a different beam energy than that reported in Ref. [34], which will serve as a

comparison point to its radius derived from the previous study at GSI. This will allow

an assessment of the need for scaling factor for the σcc as reported in earlier works in the

intermediate energy-range.

1.3 Conventional methods to determine the proton distri-

bution radii

The matter radii of unstable nuclei have been primarily derived by analyzing interaction

cross sections [35,39]. However, data on proton radii for unstable nuclei is scarce. Below

is a summary of various methods for measuring the proton distribution radii.

1.3.1 Electron scattering

Electron scattering provides the most accurate information about the charge distribu-

tion in nuclei and nucleon structure. This method avoids the complications of strong

interactions between the projectile and target, making it a precise tool for studying the

distribution of charges in nuclei. The focus is solely on elastic electron scattering when

examining the charge distribution in nuclei. The differential cross section for elastic scat-

tering from a spinless nucleus using the Plane-Wave Impulse-Approximation (PWIA) is

expressed as [40],

dσ

dΩ
=

dσMott

dΩ
| Fc(q) |2 (1.6)

where Fc(q) is the charge form factor and dσMott/dΩ is the Mott cross section which

is the elastic scattering cross section and for a point particle of charge Z, it is expressed
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as,

dσMott

dΩ
=

(Zα)2 cos2( θ
2)

4e2 sin4( θ
2)

(1.7)

here, θ is the scattering angle, e is the electron charge, and α is the fine-structure constant.

The form factor is a Fourier transform of the charge distribution (ρc(r)), for momentum

transfer, q,

Fc(q) =
1

2π3/2

∫
ρc(r)e−iq·⃗r rd⃗r (1.8)

The charge distribution (ρc(r)) of a target nucleus can be determined through the

inverse Fourier transformation of the charge form factor, which is experimentally ob-

tained.

Elastic electron scattering measurements have been used to determine the charge

radii or proton distribution radii of stable nuclei. The elastic electron scattering data

for long-lived nuclei 3He and 14C have been analyzed [41, 42], but no studies of nuclei

far from the stability line have been reported as of yet, as it requires long-half lives to

prepare a sufficiently thick radioactive target. However, the Self-Confining RI Ion Target

(SCRIT) electron scattering facility at the RIKEN RI beam factory in Japan aims to study

the internal nuclear structure of these unstable nuclei through its innovative internal

target system [43].

1.3.2 Muonic atom x-ray spectroscopy

Muons are used to study the charge distribution of nuclei by forming muonic atoms.

Negative muons are fired at a target material which when captured, orbit the nucleus

closely due to their greater mass. This results in a cascade of muonic transitions emitting

X-rays and Auger electrons, and enables the determination of charge radii of most stable

elements through Muonic X-ray spectroscopy [38,44], due to the sensitivity of low-lying

muonic transitions to nuclear charge distribution. However, this method is not suitable
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for investigating radioactive nuclei as it requires several tens of milligrams of the target

material. Efforts are underway to extract the nuclear charge radii of radioactive isotopes

using only a few micrograms of the target [45].

1.3.3 Isotope shift

The charge distribution within a nucleus can be determined through isotope shifts for

lighter elements. This has been the most commonly used method to determine the

charge radii of nuclei far from stability among electron scattering, muonic atoms, and

isotope shift. Isotope shift measurements consist of two components, the mass shift (MS)

and the volume shift or field shift (FS), that reveal the charge radius information. The

mass shift refers to the change in nuclear mass between two isotopes, while the volume

shift reflects the difference in the charge distribution within a nucleus. The measurement

of charge radii in lithium isotopes through isotope shift provided a model-independent

value of the charge radius of the 11Li nucleus, which is a Borromean halo nucleus [46,47].

In the case of light nuclei, the mass shift is the dominant factor and decreases quickly

with increasing mass number as A−2. In contrast, the volume shift or field shift is

more pronounced in heavy elements, increasing with the nuclear charge number Z as

Z2 A−1/3. Determining the charge radius of light nuclei through isotope shift measure-

ments is difficult and can only be done on very simple and stable atoms with no more

than two electrons. To achieve this, an extremely accurate theoretical calculation of the

atomic structure contributing to the MS of at least one reference isotope is necessary. The

difference in charge radius is then obtained by comparing the experimentally observed

isotope shift to the atomic theory calculations. This method was used to determine the

6He nuclear charge radius using the charge radius of 4He measured through electron

scattering and muonic atom spectroscopy and the difference in charge radius from the

4He −6 He isotope shift measurement [48, 49]. A similar approach was applied to deter-

mine the charge radii of Be [50] isotopes, as shown in Fig. 1.6. An interesting pattern is
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Figure 1.6: The radii of point nucleon distribution in (a) Li isotopes (b) He isotopes (c)Be
isotopes. Figures adapted from [24].

seen in isotopic chains where the proton radius increases when a neutron halo is formed,

such as in 11Li, 6He, and 11Be. Surprisingly, there is a decrease in charge radius from 6He

to 8He despite an increase in matter radius with a higher nucleon number. In Borromean

halo 6He, the correlated pair of neutrons moving against the recoil motion of the α-like

core smears the charge distribution, resulting in an increase in charge radius. However,

in 8He, the recoil effect is believed to be smaller due to a possibly spherical distribu-

tion of the four extra neutrons around the α-like core, thus resulting in a less spread

charge distribution and a smaller charge radius in comparison to 6He. The isotope shift

method was used to determine the charge radii of 41,51,52Ca [51]. The unexpectedly large

charge radius of 52Ca compared to theoretical predictions has raised new questions on

the change in nuclear structure in unstable neutron-rich nuclei. However, studying the

light neutron-rich nuclei through isotope shift is challenging, as it requires the produc-

tion of low-energy, high-intensity beams of short-lived isotopes, which is difficult. The

atomic structure calculations also become complex due to many-body electron correla-

tions in the atoms.
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1.3.4 Charge-changing cross section measurement

Charge-changing cross section (σcc) measures the change in the atomic number of a pro-

jectile nucleus due to interaction with protons in the nucleus. This helps to determine the

point-proton radius using the Glauber model theory. Webber et al. [52] and Cummings

et al. [53] used σcc to study the interstellar production of cosmic-ray fragments and so

to determine elemental and isotopic components of cosmic rays. Blank et al. [54] mea-

sured σcc of neutron-rich lithium isotopes to examine proton distribution. Chulkov et

al. [55] measured σcc of light stable and neutron-rich nuclei ( 14Be, 10−19B, 12−20C, 14−23N,

16−24O, and 18−27F), but the results were higher than previous studies and could not be

explained by proton radii from electron scattering, suggesting a systematic uncertainty.

The finite range Glauber model theory will be presented in the following section.

Finite range Glauber model

The measurement of σcc has the advantage of allowing the cross section of many nuclei

to be measured using the same setup as for reaction/interaction cross section, which

is crucial in determining the matter distribution within a nucleus. A theoretical tool

based on the Glauber model framework [56] is widely used to calculate the reaction

cross section of projectile-target collisions by integrating the reaction probability over

the two-dimensional impact parameter vector b and is given by,

σR =

∫
[1 − T(b)] db (1.9)

The transmission function, T(b), is the likelihood of the projectile passing through

the target without interaction, given the impact parameter b. Meanwhile, the charge-

changing cross section (σcc) only involve the interaction of the protons of the projectile

nucleus. Thus, σcc can be written as,
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σcc =

∫
dbPcc(b) (1.10)

where Pcc(b) is the probability of charge changing reaction at the impact parameter b.

Pcc(b) is calculated using Optical Limit Approximation (OLA) [56, 57]. The Glauber

model assumes that at high energies, the nucleons have enough momentum while the

nuclei pass each other, resulting in nearly undeflected scattering. The probability of

charge changing reaction, Pcc(b), is given by [58],

Pcc(b) = 1 − exp

−2 ∑
N=p,n

∫ ∫
ds dt T(p)

P (s) TN
T (t)× Re ΓpN(b + s - t)

 (1.11)

where s is the two-dimensional vector of the projectile’s single particle coordinate, r,

measured from the projectile’s c.m. coordinates, and t is defined for the target nucleus

in a similar way. T(p)
P (s) is the thickness function of the projectile’s proton density

ρ
p
P(r) [23],

T(p)
P (s) =

∫ ∞

−∞
dz ρ

(p)
P (r) ; r = (s, z) (1.12)

The finite-range profile function, ΓNN(b), for the nucleon-nucleon (NN) scattering is

parameterized as [59]:

ΓNN(b) =
1 − iαNN

4πβNN
σtot

NN exp

(
− b2

2βNN

)
(1.13)

In equation 1.13, αNN is the ratio of the real to the imaginary part of the NN scat-

tering amplitude; βNN is the finite range parameter i.e the slope parameter of the NN

elastic differential cross section; and σtot
NN is the total cross section for NN collisions. The

parameters for the NN profile functions are listed in [59] for various energies. By us-

ing these parameters of nucleon-nucleon cross sections and applying the Glauber model
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framework to a target with a known density distribution, the point proton radii can be

determined.

Rp determined from σcc

Figure 1.7: The measured Rm (circles) and measured Rp
cc (triangles) for 12−17B (b) The

measured Rm (open circles) and measured Rp
cc (filled circles) for 12−19C. The blue sym-

bols represent the measured Rp derived from e scattering. Figure adapted from [60, 61].

The proton radii determined from the charge-changing cross section (σcc) are re-

ferred to as Rp
cc in the following. Estrade et al. [60] used a finite-range Glauber model

to determine the proton radii (Rp
cc) of 10−17B. The results (red triangles in Fig. 1.7

(a)) were consistent with electron scattering experiments (blue squares in Fig. 1.7 (a)),

showing a thick neutron skin of 0.51 ± 0.11 fm in 17B. Yamaguchi et al. [62] also

used the zero range Glauber model to determine the proton radii of 9−10Be, 14−16C

and 16−18O at 300A MeV, but had to introduce a universal scaling of the measured σcc

(F = σ
expt
cc /σcalc

cc = 1.05 ± 0.03) to reproduce the proton radii from electron scattering

measurements. However no scaling was required in Ref. [60]. The Glauber model has

also been successfully used to extract radii of 12−14C [61] and 14N [34] at 800 − 900A

MeV, consistent with electron scattering results. The proton radii of the carbon isotopic
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chain show an evolution of thick neutron surface from 0.5 fm in 15C to 1 fm in 19C, as

shown in Fig. 1.7 (b). The halo radius of 19C was found to be 6.4± 0.7 fm, similar to 11Li.

The radii of 13−18C also agree with ab initio calculations that use chiral nucleon-nucleon

and three-nucleon forces.

The upcoming chapters of this thesis are classified as follows:

- Chapter 2 provides details on the measurement principle, along with a description

of the detectors used in this experiment, explaining their working principles.

- Chapter 3 presents the techniques employed for analyzing data obtained from dif-

ferent sets of detectors.

- Chapter 4 discusses and concludes the results obtained from the experiment, pre-

senting the future outlook of this study.
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Chapter 2

Experimental setup and methodology

The measurement of charge-changing cross-sections of neutron-rich nitrogen isotopes

was carried out using BigRIPS fragment separator and Zero Degree Spectrometer (ZDS)

at the RI Beam Factory (RIBF) [63] in Japan. RIBF, operated by RIKEN Nishina Center,

features a high-power heavy-ion accelerator with three ring cyclotrons (fixed-frequency

(fRC), intermediate-stage (IRC) and superconducting cyclotron (SRC)), capable of boost-

ing light ion beams up to 440A MeV and heavy ion beams up to 350A MeV.

2.1 Radioactive Ion beam production at RIBF

The Radioactive Isotope Beam Factory is an advanced facility aiding researchers in un-

derstanding the formation of heavy elements in the universe. Recent upgrades enable

the RIBF to produce intense beams of approximately 4,000 unstable nuclei, extending

our exploration beyond the limit of known nuclei [65]. As an in-flight facility, RIBF gen-

erates secondary beams through projectile fragmentation, necessitating a primary beam,

target, mass separator, spectrometer, and beam transport system. At RIBF, the radioac-

tive isotope (RI) beams of 21,23N are produced by high-energy primary beam of 48Ca

accelerated to 345A MeV to interact with a 10 mm thick rotating 9Be target. Fig. 2.1

illustrates a schematic view of the RI Beam Factory at RIKEN Nishina Center.
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Figure 2.1: The schematic view of RIBF at RIKEN Nishina Center [64].

2.2 Fragment Separator at BigRIPS

The BigRIPS separator is a 78.2m long, two-stage high-resolution spectrometer that se-

lectively delivers isotopic fragments. It has large-ion optical acceptances and particle

identification capabilities. The first stage operates in separator mode, as depicted in

Fig. 2.2, and uses an energy degrader to separate the desired nuclei from the projectile

fragments. The second stage of the BigRIPS is a spectrometer designed to identify the

fragments produced in the first stage for further secondary reaction analysis.

The first stage of BigRIPS includes two 30o room-temperature dipole magnets (RTDs)

and a set of large-aperture superconducting quadrupoles (STQs) with large acceptances.

Its design enhances the accessible region of secondary reactions, increasing fragment col-
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Figure 2.2: Schematic drawing of the separation of RI beams in the 1st stage of BigRIPS
[66].

lection efficiency. BigRIPS is a two-bend achromat system with a momentum-dispersive

focus at F1 and an achromatic focus at F2. The separated fragments are transported from

the first stage to the second stage as shown in Fig. 2.2.

The second stage of BigRIPS consists of four dipole magnets and eight supercon-

ducting quadrupoles, forming a 4-bend achromat system. The system spans from the

experimental focus F3 to F7, with F3 and F7 being achromatic and the intermediate focal

planes F4, F5, and F6 being momentum-dispersive. The stage uses time-of-flight (TOF),

energy loss (∆E), and magnetic rigidity (χ) to identify isotopes produced in secondary

reactions, based on event-by-event information. After the BigRIPS separator, the beam

transport system operates as a forward spectrometer called the Zero Degree Spectrome-

ter (ZDS).

2.3 Zero Degree spectrometer

The Zero Degree Spectrometer (ZDS) is depicted in Fig. 2.1 and consists of two dipoles

and 6 STQs starting from the experimental focus F8 to F11. ZDS has a similar layout of
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magnets as BigRIPS with momentum-dispersive focal planes at F9 and F10, and a fully

achromatic final focus F11. The quadrupole magnets (STQ15 and STQ16) in the section

connecting BigRIPS and ZDS (F7-F8) ensure proper focusing ion-optical conditions at F8,

where a secondary reaction target is placed. Similarly, STQ20, STQ21, and dipole D8 in

sections F9-F11 are adjusted to direct the secondary reaction products to the achromatic

focus F11, where the carbon reaction target (2.5 g/cm2) was placed for the σcc measure-

ment. The ZDS is fixed at zero degree for secondary reaction studies with RI beams, and

it identifies and analyzes the projectile fragments after the secondary target at F8 using a

particle identification scheme similar to the BigRIPS separator, based on TOF− Bρ − ∆E,

with trajectory reconstruction.

2.4 Measurement of mass-to-charge ratio

Fig. 2.2 displays the utilization of the BigRIPS separator to separate the secondary beams.

The mass-to-charge ratio is determined through the Lorentz equation (Eq. 2.1), which

explains the motion of charged particles in uniform magnetic fields generated by dipoles:

F = qvB =
mv2

ρ
=

γm0v2

ρ
(2.1)

where q is the ionic charge state of the fragment, B is the magnetic field in the dipole,

ρ is the radius of the trajectory, m0 is its rest mass, and γ = 1√
1−β2

is the relativistic

factor with β = v/c (c is the speed of light). Eq. 2.1 can be rearranged as,

m0

q
≈ A

Z
=

Bρc
uβγ

(2.2)

where u is the atomic mass unit equal to 931.494 MeV/c2 and the charge equal to Z as

the nuclide of interest is fully stripped. The product Bρ is the magnetic rigidity (χ) of a
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beam, a parameter defined as following,

χ = Bρ =
p
q

(2.3)

where p and q are the momentum and charge of the particle, respectively. In a mag-

netic field, the particle with greater momentum will experience less bending as it moves

through the field. The variable χ is inversely proportional to the particle’s charge, mean-

ing that particles with higher atomic numbers (Z) will experience greater bending as

they travel through the magnetic field.

The BigRIPS and ZDS are designed to operate in the dispersion-matched mode,

where the dispersion of the first stage is compensated by the dispersion of the second

stage. For a specific A/Z fragment, the χ value of the F0-F1 (dispersive focal plane) and

F2-F3 (achromatic focal plane) is configured to converge the fragment back to the same

horizontal position, as illustrated in Fig. 2.3.

Figure 2.3: Schematic view of ion-optics on passing through a degrader [23].

A technique known as the momentum-loss achromat is utilized to separate the frag-

ments in flight by inserting wedge-shaped energy degraders at the experimental foci F1

and F5. This is done by taking advantage of the fact that the energy loss of particles

is proportional to Z2/v2, which causes isotopes to have different velocities as they pass

through the degrader. This results in fragments with the same A/Z being separated in

position, as shown in Fig. 2.3.
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The setup maintains its achromaticity due to the wedge-shaped design of the de-

grader. Higher velocity fragments pass through more degrading material, while lower-

velocity fragments pass through less. Additionally, the presence of slits at F0 helps to

reduce contaminants from the reaction, as shown in Fig. 2.2.

2.5 Experimental Methodology

As previously stated, the charge-changing cross-section (σcc) for reactions that alter the

proton number of the projectile nucleus was determined using the transmission method

on a carbon target. The number of incident nuclei was identified and counted based

on their total mass and proton number (AZ) on an individual event basis before the

reaction takes place. The nuclei that pass through the reaction target at F11 with charge

≥ Zincident are identified and counted.

The intensity of the beam particles diminishes as they interact with matter. The

reaction cross-section (σR) measures the nuclide-changing reactions, where the number

of collisions per unit time per unit area is then proportional to the number of incident

particles Nin and the number of target particles. The reaction cross-section is defined

as [67]:

N = Nine−σRt (2.4)

where N is the number of particles unreacted after passing through the target, and t

is the number of target nuclei per cm2. Analogous to the reaction cross-section, σcc is

defined as:

Nin − NZ = Nine−σcct (2.5)

Here, NZ denotes the number of particles per unit time that undergo a charge-changing

reaction. Nin − NZ consequently corresponds to the number of particles that emerge

with unchanged charge which can be denoted as Nout≥Z. Hence the σcc can be written
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as,

σcc = −1
t

ln
Nout≥Z

Nin
(2.6)

It is important to note that nuclear reactions may occur in the non-target materials

within the beamline. To account for this effect, measurements are taken without the

target in the setup. As a result, the charge-changing cross-section (σcc) can be represented

as,

σcc =
1
t

ln
RTout

RTin
(2.7)

The transmission ratio with the reaction target (RTin) can be expressed as RTin = Nout≥Z/Nin

and RTout denotes the transmission ratio without the reaction target. The main advan-

tage of this method is that it involves event-by-event counting of the selected incident

beam, thus eliminating uncertainty in selecting the incident particles (Nin) of the desired

isotope.

2.6 Experiment setup at BigRIPS

Figure 2.4: Schematic view of experimental setup [68].

The exotic nitrogen isotopes were created by fragmenting a 48Ca beam with a 570 pnA

intensity and 345A MeV energy, which interacted with a 10 mm rotating Be target. The
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BigRIPS separator was used to separate the isotopes of interest from the contaminants

and identify them using in-flight energy deposit (∆E), time of flight (TOF), and magnetic

rigidity (Bρ). Aluminium degraders of 15 mm and 5 mm thicknesses were placed at

dispersive foci F1 and F5 [black inverted triangles in Fig. 2.4] to separate the beam

contaminants spatially. The magnetic rigidity determination requires the x position of RI

beams, therefore each focal plane is equipped with two sets of position-sensitive parallel

plate avalanche counters (PPAC) [green boxes in Fig. 2.4]. A multi-sampling ionization

chamber (MUSIC) at F7 and F11 [pink boxes in Fig. 2.4] provided ∆E information, while

plastic scintillator detectors [transparent boxes in Fig. 2.4] of 3mm thickness at focal

planes F3, F7 and F11 provided TOF information. A schematic view of the experimental

setup with these detectors is shown in Fig. 2.4. MUSIC detectors are placed before and

after a 2.5 g/cm2 thick carbon reaction target. The following sections outline the key

characteristics of the detectors employed in the experiment.

2.6.1 Multiple-Sampling Ionization Chamber (MUSIC)

As previously mentioned, the Z of the incident particles and reaction products at F11

is determined through the measurement of ∆E, using two multiple-sampling ionization

chambers (MUSIC) based on the design described in [69]. These MUSIC detectors were

from GSI in Germany. The ionization chamber utilized in the experiment consists of

eight anodes, which are made of a thin foil of mylar coated with aluminum on both

sides. A schematic view of the internal geometry is shown in Fig. 2.5. The active

length of the ionization chamber along the beamline is 400 mm, and the anodes are

electrically paired and connected together. The ionization chamber is filled with CF4

gas and operates at room temperature and atmospheric pressure. The ionizing particles

lose energy as they pass through the gas, generating electron-ion pairs. The amount of

electrons produced is proportional (to a first order approximation) to the square of the

charge of the penetrating particle. The energy loss of charged particles in a material is
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Figure 2.5: Schematic view of ions passing through the MUSIC detector.

described by the Bethe-Bloch formula:

− dE
ds

=
4πZ2

p

mec2β2

(
e2

4πϵ0

)2

ZtNt

(
ln

mev2

I
− ln(1 − β2)− β2

)
(2.8)

where s denotes the path length of the particle in the absorber, Zp and β correspond to

the charge and the velocity of the penetrating particle. Zt, Nt and I are the proton num-

ber, the particle density and the mean excitation potential of the material, respectively.

Finally, e and me are the charge and mass of the electron [70]. Electrons move towards

segmented anodes in an electric field and are collected there. Their charge is then trans-

formed into a proportional signal amplitude by charge-sensitive pre-amplifiers. To de-

termine the charge information, the geometric average of the signals from eight anodes

is calculated.

2.6.2 Parallel Plate Avalanche Counter (PPAC)

The X and Y positions of each beam event were determined using Parallel Plate Avalanche

Counters (PPACs) [71] installed at each focal plane for trajectory reconstruction. PPACs,
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(a) Operating principle of PPAC. (b) An enlarged view of the delay-line PPAC

Figure 2.6: Schematic and operating principle of a PPAC in BigRIPS [71].

with a material thickness of only 30 mg/cm2, have an extremely small impact on energy

loss in the beam path, in contrast to other position-sensitive detectors like multi-wire

proportional counters and multi-wire drift chambers. The lack of wires in PPACs, a

gas detector, further minimizes obstacles in the transport of RI beams. PPACs are also

durable and easy to maintain because of their simple design, and use a delay-line readout

technique for position determination, providing high Bρ resolution for particle identi-

fication. This not only facilitates RI beam production and transport but also supports

beam diagnostics for BigRIPS and ZDS.

The delay-line PPAC consists of electrode strips connected to a multi-tapped delay

line and position information is obtained from the time difference between signals from

either end. The anode electrode is sandwiched between two cathode electrodes (one for

the x-axis and one for the y-axis) with strip widths of 2.4 mm and inter-spacing of 0.15

mm. When a 1500 V bias voltage is applied between the electrodes, induced electrons

from incident ions undergo a Townsend Avalanche. The counter gas, such as isobutane

(C4H10) or perfluoropropane (C3F8), is used at a pressure of 3-50 Torr. When heavy ions

pass through the detector, they immediately create electron-ion pairs, resulting in an

electron avalanche (as shown in Fig. 2.6a) and a signal with excellent timing properties
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(rise and fall times of a few ns). This is a significant improvement over proportional

counters, which have a time delay before the electron shower occurs. As mentioned

earlier, each PPAC is comprised of two planes sensitive to position and angle in the X

direction and two planes segmented in the Y direction (Fig. 2.6b). The time-to-digital

converter (TDC) measures the delay time, which begins with the anode signal (electron

drift time) and ends with cathode signals. The fast induced signals in the cathode enter

the delay line and travel to the X1 and X2 cathode terminals on the left and right,

respectively. The delay time in the cathode terminals is expressed as TX1 (ns) and TX2

(ns), and the position of the ionizing particle, XPos, is calculated as follows:

XPos = KX ×
(

TX1 − TX2

2

)
+ Xo f f (2.9)

where KX (mm/ns) and Xo f f (mm) are the position coefficient and the offset correction,

respectively. The control sum is the sum of the total delay time which corresponds to

the total delay line length.

TsumX = TX1 + TX2 − 2Ta (2.10)

Similarly, YPos and TsumY are computed for the Y position. The control sum is a constant

value for normal events, as it is independent of the position of the ionizing particle.

However, if the avalanche region expands due to the production of δ−rays or multiple

hits, the control sum decreases as TX1 and TX2 become smaller than the normal value

[71].

2.6.3 Plastic Scintillators

Plastic scintillators are solid materials made of a polymer matrix mixed with a lu-

minophore that emit light when exposed to ionizing radiation. They are commonly

used in nuclear physics experiments to measure the time-of-flight (TOF) [72]. The work-
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ing principle of plastic scintillators in detecting exotic nuclei is based on the interaction

of ionizing radiation with the material. The scintillation mechanism in organic materi-

als is unique, as it results from the arrangement of the crystal lattice (Fig. 2.7). When

a high-energy particle passes through the plastic scintillator, it ionizes the molecules,

Figure 2.7: Energy levels of organic molecules.

causing the luminophore to emit light. This light is then detected by Photo-Multiplier

Tubes (PMT) or other types of light detectors. Plastic scintillators are popular in exotic

nucleus research due to their high efficiency, a short decay time ( ∼ 2 ns), low cost, and

relatively small size compared to other types of radiation detectors.

In the BigRIPS and ZDS setup, the plastic scintillator detectors utilized were the EJ-

212 and EJ-230 from Eljen Technology. The setup utilized Hamamatsu PMTs (H6533 and

H2431 models) connected to both ends of the plastic scintillator in the horizontal direc-

tion. The difference in time between the signals from these two PMTs provides informa-

tion about the position of the incoming particle. The PMT outputs serve as the start and

stop signals for the time-to-digital converters (TDC), and the average of the two timing

signals from each PMT is used as the final time-of-flight (TOF) measurement to eliminate

any time differences due to different hitting positions. The signals from the plastic scin-
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tillation detectors are split into two; one is fed to a Charge-to-Digital Converter (QDC)

for energy loss measurement and the other to a Leading Edge Discriminator (LED) with

a threshold set above the PMT noise level.

2.6.4 Veto Scintillator

Veto scintillators are typically positioned around the reaction area to help reject or “veto”

unwanted events. A veto scintillator was placed in front of the carbon reaction target at

F11. The aperture of the veto scintillator is smaller than the reaction target area, with

two PMTs connected on its right side and left side. The readout from these PMTs is used

to identify signals generated by charged particles passing through the scintillator. The

goal is to reject signals generated by particles near the edge of the reaction target, as well

as those produced by nuclear reactions along the beamline upstream. Therefore, in the

process of offline data analysis, signals detected by either PMTs are excluded from the

incident beam selection for the specific isotopes of interest (Fig. 2.8), thereby improving

the accuracy of its identification. The impact of these events (events identified by veto
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Figure 2.8: Energy deposited in the right PMT of the veto scintillator with the incident
23N beam. A comparable spectrum has been observed for the left PMT.

detectors) on the measured charge changing cross-section will be elaborated upon in the

concluding chapter.
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Chapter 3

Data analysis

This chapter provides an overview of the techniques employed to extract the physical

observables of interest from the detectors. The raw data collected from the detectors are

in a digitized form, for example in ADC and TDC. Performing detector calibration of

these TDCs and ADCs, we can convert the digital signal into a physical quantity like

time, charge, and energy. In the first few sections, calibration procedures of all the de-

tectors are discussed. Once the detectors are calibrated, the data analysis is divided into

two essential parts. The first part involves particle identification (PID) before the reaction

target for incident beam selection, while the second part focuses on identifying charge-

changing events after the reaction target, both of which are crucial for determining σcc.

The phase space restriction on the incident beam particles is discussed in detail in this

chapter.

3.1 Z identification

The atmic number Z of the incident particles and reaction products at F11 is deter-

mined through the measurement of ∆E, using two multiple-sampling ionization cham-

bers (MUSIC) placed before (MUSIC1) and after (MUSIC2) the carbon target at F11. The

ionization chamber used in the experiment consists of eight anodes, which are made
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of a thin foil of mylar coated with aluminum on both sides. The charged particle de-

posits energy as it passes through the detector material, which generates a voltage pulse.

(a)

(b)

Figure 3.1: (a) The geometric average of the uncalibrated MUSIC (ADC channels) spec-
trum. (b) The calibrated Z spectrum.

The voltage pulse is initially transformed into a channel number using a peak-sensing

ADC. Calibration, in this context, involves converting this channel number into a more

meaningful physical measurement, specifically energy loss. For individual anodes in the

MUSIC detector, pedestal subtraction is performed first, followed by gain matching to

ensure consistent gains by aligning their respective channel numbers. This alignment
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process is achieved by applying a multiplication factor ‘g’ that corresponds to the peak

position (channel) of the central anode, as described by the given equation,

Ec = (C − P)× g (3.1)

where C represents the channel numbers from the ADC, pedestal P is the zero-energy

point in the ADC spectrum, and g is the factor used for gain matching of the anodes. To

convert the pedestal-subtracted, gain-matched ADC channel numbers (Ec) (see Fig. 3.1a)

into a physical quantity, namely atomic number (Z) (see Fig. 3.1b), the geometric mean

of eight such Ec values is calculated. This geometric mean is then used to determine Z as

the stopping power (− dE
dx ) is directly proportional to Z2

β2 , where β represents the velocity

of the incident particle:

Z =
√

Geometric Mean of anodes × β (3.2)

Z obtained in this way for neighboring elements is then matched with their actual Z

value, i.e., Z = 5, 6, 7, to obtain the offset correction. The decision to use the geometric

mean for the anodes was based on its superior resolution compared to the arithmetic

mean of the anodes. The Z resolution for 23N is determined to be 0.18, represented by

the Full Width at Half Maximum (FWHM) (Fig. 3.1b).

3.2 Position determination

The determination of the X and Y position of each beam event is a critical aspect for

particle identification, and we achieve this using double PPACs strategically placed at

each focal plane for trajectory reconstruction. As discussed in 2.6.2, the delay-line PPAC

comprises electrode strips connected to a multi-tapped delay line. Essential position in-

formation is derived from the time difference between signals received from either end
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of the delay line. When one side of the PPAC detects an event or “hit”, this information

is utilized to figure out where the incident beams are positioned in both the horizontal

(X) and vertical (Y) directions at various focal planes in the experimental setup. The

process of track reconstruction is conventionally split into two steps: track finding and

track fitting. Track finding involves grouping together hits that come from the same

events, creating subsets of information. With these subsets, we can optimally estimate a

set of track parameters from the hit information. The track fitting step utilizes a math-

ematical technique called least square minimization. For optimal tracking performance,

the system requires specific hit configurations. Ideally, either all four planes from both

PPACs (Fig.3.2a) or a minimum of three out of the four planes from the double PPACs,

positioned upstream and downstream of the focal planes (Fig.3.2b), should register hits.

This condition proves crucial in significantly minimizing tracking errors. Furthermore,

tracking initiation mandates at least one hit in the planes of the upstream PPAC and

one hit in the planes of the downstream PPAC (Fig.3.2c). This requirement ensures the

robustness and reliability of the tracking process.

Figure 3.2: Diagram illustrating two PPACs and the distribution of ‘hits’ across their
planes at the experimental focal point.

The least square minimization technique yields deviations denoted as D2, computed
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on an event-by-event basis using the expression:

D2 = ∑
i
[Yi − (mXi + c)]2 (3.3)

Here, the subscript i corresponds to the side of the PPAC plane, as illustrated in Fig.

3.2. These deviations are minimized between the model (c + m × Xi) and the actual data

Yi, facilitating the determination of trajectories at the focal planes with high precision.

Fig. 3.3 shows the X and Y profile of the beam at the final focal plane (F11) with 21,23N

secondary beam selection.
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Figure 3.3: Beam profile at F11 with (a) 23N secondary beam selection and (b) 21N
secondary beam selection.
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3.3 Time of flight measurement

The time-of-flight (TOF) measurement of the Radioactive Ion (RI) beams is conducted

using plastic scintillators positioned at different focal planes (F3, F5, F7, F8, F11). Specif-

ically, in the BigRIPS and ZDS setup, the plastic scintillator detectors employed are the

EJ-212 and EJ-230 models from Eljen Technology. The setup incorporates Hamamatsu

Photomultiplier Tubes (PMTs), specifically the H6533 and H2431 models, connected to

both ends of the plastic scintillator along the horizontal direction.

To account for time variations resulting from incoming particles striking different

positions on the plastic scintillator, the average of the two timing signals recorded from

both sides of the PMT is determined. Let TL and TR represent the time recorded at the

left and right sides, respectively. The average time, denoted as TAvg, is calculated as:

TAvg =
TL + TR

2
(3.4)

The time-averaged signal from a single plastic scintillator positioned at a focal plane

lacks physical significance; therefore, the TOF between two focal planes is calculated by

taking the difference of these averaged values. For instance, the TOF between F11 and

F8 (TOF811) is given by:

TOF811 = (TAvg at F11 − TAvg at F8) (3.5)

Now, considering that TOF = L
βc , where L represents the flight path between the plastic

scintillators positioned at F8 and F11 (36.983 m), and c denotes the speed of light, the

relativistic velocity (β) can be calculated using the following equation:

β =
L

TOF · c
(3.6)

Time of Flight (TOF37) computation has been performed for the path between F3
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Figure 3.4: Absolute TOF (ns) for the flight path (a)F3 to F7 (b) F8 to F11, of 23N. The
red curve represents the fitted Gaussian distribution of the histogram.

and F7, where the distance between the focal planes is 46.978 m. Fig. 3.4 displays the

absolute TOF for the central region of 23N secondary beam at dispersive focal plane

F5. The absolute TOF is essentially the measured TOF plus the offset correction. This

offset correction is determined by comparing the measured TOF with the theoretical TOF

calculated for the 23N isotopes using the magnetic field.

A similar time-of-flight analysis has been conducted with the 21N incident beam

selection, using the same experimental setup as discussed previously for the 23N case.

The path length between F3 and F7, as well as between F8 and F11, remains consistent

with the previous analysis. The TOF for the 21N is presented in Fig. 3.5.

3.4 Particle identification

Multiple secondary beam fragments reach the reaction target situated at F11. Thus, the

accurate identification of a nucleus, determined by its mass and charge number, plays a

crucial role in distinguishing the incident beam of the isotopes of interest (21,23N). The

desired isotopes were distinguished from cocktail of fragments through the utilization
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Figure 3.5: Absolute TOF (ns) for the flight path (a)F3 to F7 (b) F8 to F11, of 21N. The
red curve represents the fitted Gaussian distribution of the histogram.

in the BigRIPS fragment separator, and their identification was accomplished employing

the methods of in-flight energy deposit (∆E), time of flight (TOF), and magnetic rigidity

(Bρ). The measurement of energy deposition in the MUSIC detectors yields the atomic

number (Z) for fully ionized heavy ions. The mass number is subsequently obtained

from the mass-to-charge ratio, described by the motion of Radioactive Ion (RI) beams

within the magnetic field. As discussed in Eq. 2.3, magnetic rigidity is essentially the

ratio of momentum to charge. The fractional momentum deviation (δ) is computed from

the deviation from the central trajectory (Bρ0). The Bρ value of the fragments on the

central trajectory (Bρ0) was determined using the magnetic fields of the dipoles with

NMR probes during the experiment.

δ =
p − p0

p0
=

Bρ − Bρ0

Bρ0
(q = q0) (3.7)

The dispersion matching of two stages requires that the deviation in the horizontal

position of the first stage (F3–F5) is compensated by the (F5–F7) dispersion (x|δ) of the

second stage in BigRIPS and in the ZDS the dispersion matching sections are F7–F9 and

F9–F11. The momentum spread of the fragment (+δ and −δ ) is dispersed in position at

the dispersive focus (F5 in BigRIPS and F9 in ZDS), while the angular spread is focused
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back to a point. Therefore, the position in x at the dispersive focus only depends on

the fractional momentum deviation δ. δ can be derived with the first-order ion optical

transfer matrix M [73]:


Xj

Aj

δij

 =


(x|x) (x|a) (x|δ)

(a|x) (a|a) (a|δ)

(δ|x) (δ|a) (s|δ)




Xi

Ai

δij

 (3.8)

Here, x and a represent horizontal position and angle, and s is the distance along

the central trajectory. Subscripts i and j denote upstream and downstream focal plane

information respectively. As previously mentioned, the horizontal position (x) remains

unaffected by the initial angle in a system employing point-to-point imaging. Conse-

quently, the matrix element in 3.8 (x|a) is zero. Hence, the derived quantity δij for all

particles is expressed as:

δij =
1

(x|δ)ij

[
Xj − (x|x) Xi

]
(3.9)

For, focal plane F5 and F7 in BigRIPS set up, the Eq. 3.9 can be re-written as:

δ57 =
1

(x|δ)57
[X7 − (x|x) X5] (3.10)

Eq. 3.7 is rearranged to express the magnetic rigidity as:

Bρ = (1 + δ57)Bρ0 (3.11)

To incorporate energy loss, a dual Bρ measurement, coupled with time-of-flight

(TOF) measurements, is utilized. The TOF measurement between plastics (F7–F3) de-
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termines the A/Q value of fragments:

TOF =
L35

β35c
+

L57

β57c(
A
Q

)
35

=
Bρ35c

β35γ35mu(
A
Q

)
57

=
Bρ57c

β57γ57mu

(3.12)

Subscripts 35 and 57 denote the F3–F5 and F5–F7 sections in the BigRIPS, respectively.

If there is no alteration in A/Q (Q ∼ Z, as the ions are fully stripped) in Eq. 3.12, then:

β35γ35

β57γ57
=

Bρ35

Bρ57
(3.13)

Using the measured TOF and magnetic rigidity, fragment velocities before (β35) and

after (β57) the wedge degrader at the dispersive focal plane (F5) can be deduced. The

absolute A/Z value is determined using:

m0

q
≈ A

Z
=

Bρ0c
uβγ

(1 + δ57) (3.14)

The absolute Z value derived from the energy loss in the MUSIC detector is vital for par-

ticle identification. Therefore, with the absolute values of Z and A/Z, particle identifica-

tion can be accomplished. A similar methodology is employed to achieve Particle IDen-

tification (PID) at the final focal plane position (F11), particularly relevant for measuring

charge-changing cross sections. This involves utilizing track information obtained from

double position-sensitive PPAC detectors located at F9 and F11. The magnetic rigidity

(Bρ) of fragments along the central trajectory is determined using a method analogous

to that used for BigRIPS, involving the measurement of magnetic fields of the dipoles

through NMR probes. At F11, the A/Z ratio is determined using the same technique as
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Figure 3.6: Particle identification plot for 23N fragments from a 48Ca primary beam in
BigRIPS at F11 (without any cleaning conditions). The color bar represents the number
of events on the z-axis (in log scale).

explained for A/Z at F7:
A
Z

=
Bρ0c
uβγ

(1 + δ911) (3.15)

Here, Bρ0 represents the magnetic rigidity on the central trajectory, and δ911 accounts for

the fractional momentum deviation. With the absolute values of A/Z and Z obtained

from the MUSIC detector, Particle IDentification (PID) can be achieved at F11 before the

target (Fig. 3.6). The neighbouring isotopes such as 22N and 20C are clearly observable

in close proximity to the 23N secondary beam, as illustrated in Fig. 3.6.

Using a technique identical to the one employed for the identification of 23N events,

the 21N events are also identified based on magnetic rigidity (Bρ), time-of-flight (TOF),

and energy-loss (∆E)(Fig. 3.7) information. The PID plot in Fig. 3.7 reveals the presence

of 21N along with its neighboring isotopes, 18−20C and 20,22N.

The selection of incident beam for both 21,23N requires a careful analysis of the posi-

tion and angular correlations of the secondary beam detected by detectors positioned at
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Figure 3.7: Particle identification plot for 21N fragments from a 48Ca primary beam in
BigRIPS at F11 (without any cleaning conditions). The color bar represents the number
of events on the z-axis (in log scale).

different focal planes upstream of the carbon target at F11. This process is essential for

filtering out spurious events, and a detailed discussion of this matter will follow in the

subsequent section.

3.5 Incident beam selection

As discussed in 2.5, the charge-changing cross-section is obtained by counting the num-

ber of incident beam particles (Nin) and the particles with unchanged charge (Z) (NsameZ).

The charge-changing cross-section (σcc) can be represented as,

σcc =
1
t

ln
RTout

RTin
(3.16)

The transmission ratio with the reaction target (RTin) and without the reaction target
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(RTout) is Nout≥Z/Nin. The main advantage of this method is that it involves event-by-

event counting of the selected incident beam, thus eliminating uncertainty in selecting

the incident particles (Nin) of the desired isotope.

3.5.1 23N incident beam selection
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Figure 3.8: PID at F11 before target. The geometric cut (gate 1) represents the extended
selection of 23N.

The primary objective of incident beam selection is to minimize the impact of spu-

rious events while preserving essential statistical data by analyzing position and angle

correlation plots at various focal planes ranging from F5 to F11 before reaching the

target. Upon thorough analysis of various correlation plots and their influence on the

Z spectrum after the reaction target, several graphical events selections (referred to as

gates) have been implemented in the detectors placed before the reaction target. Major

concerns arise regarding the background events of lower Z along A/Z = 3.3, as depicted

in the PID plot shown in Fig 3.6. Therefore, an extended gate of 23N was made (gate 1
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in Fig. 3.8) to investigate the origin of these events. This tail can be partially removed

after examining the correlation between the vertical position (Y at F11) of the selected

beam at F11 and the atomic number (Z) derived from the MUSIC detector placed be-

fore the target. The events within the tail portion of the correlation plot (Fig. 3.9) have
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Figure 3.9: Correlation plot between Z before the target at F11 and the vertical position
(Y) from MUSIC before the target at F11 with extended 23N (gate 1) selection.

been discarded, and only the central region of the correlation plot (gate 2 in Fig. 3.9),

i.e restricting the Y position at F11, has been selected for the incident beam selection.

The reason behind this tail-like structure could not be established, but it is believed to

be a detector artifact. Even after this tail rejection, another comparable tail-like correla-

tion has been noticed with gate 1 and gate 2 between the Z after the reaction target and

the vertical position (Y from MUSIC2), acquired from the MUSIC detector positioned

beyond the target at F11 (Fig. 3.10).

However, unlike the previous issue with the tail-like structure, it cannot be resolved

through graphical cuts to eliminate events. Therefore, an investigation was conducted

into the origin of these events within the tail-like structure before the target placed at

F11. It was observed that, by filtering out events based on the vertical position (Y9) at the

F9 focal plane, the tail-type structure can be effectively removed without a substantial
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Figure 3.10: Correlation plot between Z after the target at F11 and the vertical position
(Y from MUSIC2) for 23N with gate 1 and gate 2 (Target-in files).
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Figure 3.11: Left: Correlation plot between Z after the target at F11 and the vertical
position (Y from MUSIC2) for 23N with gate 1, gate 2 and Y9 restriction (target-in files).
Right: The effect of the Y9 restriction (Y9 < 20) on the Z spectrum after the reaction
target with 23N incident beam selection.

loss in statistics, resulting in an approximate 11% reduction in statistics. The same event

selection cuts have also been applied to target-out setup files for consistency in incident

beam selection.

Fig. 3.11 shows the correlation plot between the Z after the reaction target and vertical
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position (Y from MUSIC2) with the mentioned restrictions. It can be observed that the

tail-type feature around the Y = 10 mm region (Fig. 3.10) has been significantly reduced

in Fig. 3.11, essentially improving the separation between Z = 6 and Z = 7 after the

F11 carbon target. The importance of this separation will be discussed in the following

sections. It should also be noted that, during the incident beam selection process, events

with ADC overflow in the MUSIC detector located before the target have been filtered

out.

3.5.2 21N incident beam selection

A similar approach has been applied to the incident beam selection of 21N. Initially, the

correlation between Z and Y at F11 before the target was examined with a rough selection
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Figure 3.12: PID at F11 before target. The geometric cut (gate 3) represents the extended
selection of 21N.

of 21N (gate 3) as shown in Fig. 3.12. Due to a more restricted selection of 21N in the PID,

the tail is notably shorter in nature (Fig. 3.13). However, the central part was still selected

48



(gate 4) since rejecting events inside the tail improved the resolution of the Z spectrum

after the reaction target. Similar to the 23N case, even with this tail rejection before the

target, the correlation plot of Z after the reaction target vs. Y from MUSIC2 also shows
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Figure 3.13: Correlation plot between Z before the target at F11 and the vertical position
(Y) from MUSIC before the target at F11 with extended 21N (gate 3) selection.

a tail-type correlation. However, restricting Y at F11 before the target doesn’t provide a

solution. Therefore, an investigation into the origin of these events was conducted by

examining the correlation between after target Z and vertical position at F9 (Y9). As

shown in Fig. 3.14, the imposition of a restriction on the Y9 position from -13.5 mm to

11.5 mm notably enhances the separation between Z = 6 and Z = 7 in the Z spectrum

after the reaction target. Consistent with the approach applied to the 23N data files,

events with ADC overflow in the MUSIC detector positioned before the target at F11

have been excluded during the incident beam selection process, in addition to all the

previously implemented selections.
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Figure 3.14: Left: Correlation plot between Z after the target at F11 and Y at F9 (mm) for
21N with gate 3 & gate 4. Right: The effect of the Y9 restriction (−13.5 ≤ Y9 ≤ 11.5) on
the Z spectrum after the reaction target.

3.6 Z identification after the reaction target at F11

As discussed in Section 3.1, the Z spectrum after the reaction target has been obtained

from the energy loss information in MUSIC 2 placed after the target at F11. However,

from the individual spectrum of each of the 8 anodes of MUSIC2 positioned downstream

from the target at F11, it has been observed that the 4th anode has presented issues.

Hence, the 4th anode has been omitted while computing the geometric mean of the

remaining anodes to obtain the Z spectrum after the reaction target.

3.6.1 Z after the reaction target for 23N data

The Z spectrum after the reaction target is shown with final PID selection (Fig. 3.15),

which consists of the graphical events restrictions mentioned before and the phase space

selection discussed in later sections. The blue histogram represents the Z spectrum for
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the target-in measurements, and the red histogram represents the target-out measure-

ments, where the target-out spectrum is normalized to the target-in spectrum using the

incident beam events.
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Figure 3.15: Z spectrum after the reaction target with 23N incident beam selection -
target-in (blue) and target-out (red) files. Z beyond the vertical black line will be consid-
ered for counting Nout≥Zincident in order to obtain the desired σcc.

However, as discussed previously, the charge-changing cross-section is based on the

transmission technique. The transmission ratio (RT) is determined from the ratio of

proton-unreacted nuclei Nout≥Z and the incident particles Nin. The Nout≥Zincident are

the particles with the proton number greater than or equal to the selected events of the

incident beam Nin. In this case, it is Z = 7, as shown in Fig. 3.15. The spectrum shows

three different particles apart from nitrogen (Z = 7); boron (Z = 5), carbon (Z = 6), and

oxygen (Z = 8). Z = 5, 6 result from the incident nitrogen beam losing a proton, whereas

Z = 8 is produced by picking up a proton from the reaction target. The production of

the oxygen isotope with Z = 8 originates from the charge exchange where one proton
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is added to the incident nucleus 23N. These reactions do not involve interactions with

the protons of the incident nitrogen isotope and will be considered in the Nout counting.

Schematically, the Z beyond the vertical line shown in Fig. 3.15 will be considered to

obtain the desired σcc. In order to accurately count the Nout, it’s necessary to account for

the influence of the contamination (Z = 5, 6) on the Z = 7 peak by subtracting it, while

also adding the contribution of the Z = 7 tail to the Z = 6 peaks. Therefore, a precise

fitting of both Z = 6 and Z = 7 is essential. A Gaussian fit for the Z = 7 peak appears

insufficient when considering the complexity of the spectrum.

3.6.2 Z after the reaction target for 21N data
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Figure 3.16: Z spectrum after the reaction target with 21N incident beam selection -
target-in (blue) and target-out (red) files. Z beyond the vertical black line will be consid-
ered for counting Nout≥Zincident in order to obtain the desired σcc.

Similar to the methodology employed for 23N in 3.6.1, an analogous approach was

employed for 21N to get the Z after the reaction target. The Z spectrum after the re-
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action target, in Fig. 3.16, incorporates the final PID selection involving graphical cuts

as previously mentioned and phase space selection discussed in subsequent sections.

The normalization of the target-out spectrum to the target-in spectrum is achieved by

considering the 21N incident beam events.
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Figure 3.17: MUSIC2 (Z) spectrum for the (a) target-in and (b) target-out measurements
of 23N – fitted using the GausExp function.
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3.7 Functions used for counting Nout≥Z

The peaks at Z = 5, 6, 7 for both target-in and target-out measurements (Fig. 3.15,

3.16) exhibited skewness, indicating that a single Gaussian function is insufficient for

accurate modeling. Consequently, a combination of two distinct functions, Gaussian

and GausExp [74], was employed to establish lower limits (3.5σ) on the Z = 7 (peak) for

the isotopes of interest, 21,23N.

Fig. 3.17 illustrates the fitting of each of the Z = 5, 6, 7 peaks using a novel function

named GausExp, which consists of four parameters: three from the Gaussian fit, and the

fourth parameter, k, represents the exponential tail on the lower side of the Gaussian.

The x, x̄, and σ represent the counts, the mean, and the standard deviation obtained

from the Gaussian fit, respectively, while k represents the number of standard deviations

on the side of the tail where the Gaussian switches to an exponential, as given by the

equation:

f (x; x̄; σ; k) = e−
1
2 (

x−x̄
σ )2

, for
x − x̄

σ
≥ −k;

= e
k2
2 +k( x−x̄

σ ), for
x − x̄

σ
< −k

(3.17)

The 3.5σ region to the left of the Z = 7 peak is crucial for establishing a lower limit

for counting Nout ≥ Z particles (7 in this case). The Z = 5, 6 peaks of boron and carbon

isotope are fitted with the same GausExp to assess the total contamination levels within

the set counting limits for Z = 7 particles. The yellow region indicates contamination

from Z < 7 isotopes, while the green-filled region represents missing Z = 7 outside the

3.5σ counting region.

Counts from the green region (Z = 7) are added, and counts from the yellow region

(Z < 7) are subtracted from Nout ≥ Z particle counts before determining the final

cross-section. The estimated contamination from Z < 7 is approximately 6.8 × 10−4
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(1.1 × 10−5) for 23N target-in (target-out) measurements, as determined by the GausExp

function. The Z = 7 counts missing from the lower limit of the 3.5σ region are around

4.9× 10−4 for 23N for both target-in and target-out measurements. For 21N, the estimated

contamination from Z < 7 is approximately 1.8 × 10−4 (2.7 × 10−4) for target-in (target-

out) measurements, as determined by the GausExp function (Fig. 3.18). The counts of

Z = 7 missing from the lower limit of the 3.5σ region are around 4.9 × 10−4 (5 × 10−4)

for target-in (target-out) measurements.
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Figure 3.18: MUSIC2 (Z) spectrum for the (a) target-in and (b) target-out measurements
of 21N – fitted using the GausExp function.

The impact of contamination from Z < 7, the absence of Z = 7 counts, and the

consistency in choosing a 3.5σ lower limit for Nout ≥ Z particles on the final σcc will be

discussed in the following chapter.

3.8 Phase space restriction within a region of constant trans-

mission

To mitigate losses of Nout≥Zincident events beyond the target resulting from large-angle

scattering of particles outside the detector acceptance, it is necessary to limit the phase
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space of incident beam events at the target location. This restriction is made based on

a constant transmission ratio across different positions and angles at the reaction target

location.

The horizontal position (XT) and vertical position (YT) at the target location are deter-

mined based on the distance between the focus point at F11, determined by ion optics,

and information regarding the horizontal and vertical positions at F11 (Eq. 3.18). This

determination is facilitated by the double PPAC detectors located at F11. However, the

horizontal angle (A11) and vertical angle (B11) at target location remain the same as they

were at F11:

XT = X11 + 571 · tan
(

A11

1000.0

)
YT = Y11 + 571 · tan

(
B11

1000.0

) (3.18)

here, 571 mm represents the distance between F11 and the target location, and the factor

of 1000 is used for the conversion from milliradians to radians. Fig. 3.19 illustrates the

spectrums of the horizontal position (XT) and angle (A11), and vertical position (YT) and

angle (B11) of the 23N incident beam at the target location.

Particles not undergoing charge-changing reactions are represented using a transmis-

sion ratio, denoted as:

RTin =
Nout≥Z

Nin
(3.19)

where, Nin represents the count of incident particles, and Nout≥Z is the count of particles

with Z values equal to or greater than those of the incident particles after interacting with

the target. The same principle is applied to target out measurements (RTout =
Nout≥Z

Nin
).

These ratios quantify the transmission of incident and outgoing particles for non-target

reactions. The selection of the constant region in RT at each phase space is a critical

step, involving an iterative process. The ultimate selection of the constant region in RT
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Figure 3.19: Horizontal position (XT), angle (A11), vertical position (YT), and angle (B11)
of the 23N incident beam at the target location.

for each phase space is determined after examining all the phase spaces individually

and subsequently iteratively reviewing all upstream phase spaces following the initial

selections.

3.8.1 23N phase space selection

As discussed previously, the phase space selection is an iterative process. Initially, the

constant transmission region was determined for the horizontal position at the target lo-

cation (XT). Subsequently, with the selected XT phase space region, the vertical position

at the target location (YT) was scrutinized. Following that, with restrictions on both XT

and YT, the horizontal angle (A11) phase space was restricted. Finally, with restrictions

on XT, YT, and A11, the vertical angle (B11) phase space was examined. After a series

of iterations, the phase space for each position and angle was examined with the phase

space of the other variables restricted. The constant phase space from the final iteration
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(a) (b)

Figure 3.20: Transmission ratio variation for different (a) X (mm) and (b) Y (mm) at
the target location with 23N incident beam selection. Vertical lines show the region of
constant transmission.

(a) (b)

Figure 3.21: Transmission ratio variation for different (a) A11 (mrad) and (b) B11 (mrad)
at the target location with 23N incident beam selection. Vertical lines show the region of
constant transmission.

is shown in Fig. 3.20 for each of XT, YT, A11, and B11, while the rest of the variables

remain constant. RT for the X and Y at the reaction target location, was determined
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at 5 mm intervals for selected isotope of interest. The vertical bars represent statistical

uncertainty in RT. The methodology for determining statistical uncertainty in RT will

be elaborated in the final chapter. The transmission ratios RTout (red points) and RTin

(blue points) for 23N exhibit a constant trend from X = -17.5 mm to 22.5 mm and Y =

-17.5 to 2.5 mm. The constant region of the transmission ratio, indicated by black vertical

lines, serving as the selected region in both RTout and RTin to obtain σcc. Similarly, the

horizontal angle (A11) and vertical angle (B11) have also been examined for a constant

transmission region with the 23N incident beam selection. Fig. 3.21 illustrates the se-

lected phase space regions for A11 and B11, with vertical black lines representing the

region of constant transmission. For A11 ranging from -17.5 mrad to 22.5 mrad and B11

from -12.5 mrad to 12.5 mrad, a constant trend is observed. This region has been selected

for the phase space of incident 23N beam selection.

It is also necessary to restrict the incident beam in momentum space to ensure that

the events selected to compute the desired cross-section follow a specific trajectory and

(a) (b)

Figure 3.22: (a)The momentum spread (δ911) distribution and (b) Transmission ratio
variation for different δ911 intervals for the 23N incident beam.

have consistent momentum characteristics. Therefore, a constant transmission region
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has been studied with the entire range of momentum spread (δ911), computed from the

deviation from the central trajectory from F9 to F11. Fig. 3.22 depicts the distribution of

momentum spread with the 23N incident beam selection and the constant transmission

region of δ911, obtained with the above restrictions in the phase space of XT, YT, A11,

and B11. A constant transmission region has been observed for δ911 = −0.025 to 0.025

for the 23N incident beam. With these phase restrictions, in conjunction with previous

graphical cuts in the PID plot, the incident beam events (Nin) have been identified for

both target-in and target-out measurements and will be utilized for the calculation of

σcc.

3.8.2 21N phase space selection

Similar to the methodology applied for 23N in 3.8.1, an iterative process was undertaken

to determine the phase space restrictions for the 21N incident beam selection. After in-

(a) (b)

Figure 3.23: Transmission ratio variation for different (a) X (mm) and (b) Y (mm) at
the target location with 21N incident beam selection. Vertical lines show the region of
constant transmission.

dividual restrictions on each variable (XT, YT, A11, and B11), a combined phase space
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restriction analysis was carried out to select the phase space for a variable with phase

space restrictions on all other variables obtained from the final iteration. Figures depict-

ing the constant phase space for each variable from the final iteration are attached (Fig.

3.23, 3.24) with vertical lines denoting the constant region of the transmission ratio. Mo-

(a) (b)

Figure 3.24: Transmission ratio variation for different (a) A11 (mrad) and (b) B11 (mrad)
at the target location with 21N incident beam selection. Vertical lines show the region of
constant transmission.

mentum space was also considered, and Fig. 3.25 displays the distribution of momentum

spread (δ911) with the 21N incident beam and the constant transmission region of δ911,

obtained with the above restrictions in the phase space of XT, YT, A11, and B11. For the

final phase space selection, XT ranges from -12.5 to 17.5 mm (Fig. 3.23a), YT ranges from

-7.5 to 7.5 mm (Fig. 3.23b), A11 ranges from -17.5 to 22.5 mrad (Fig. 3.24a), B11 ranges

from -22.5 to 17.5 mrad (Fig. 3.24b), and δ911 ranges from -0.0005 to 0.0055 (Fig. 3.25).

The phase space restrictions, along with graphical cuts in the PID plot, were employed

to identify incident beam events (Nin) in both target-in and target-out measurements.

This identification laid the groundwork for the subsequent measurement of σcc, which

is discussed in the following chapter.
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(a) (b)

Figure 3.25: (a)The momentum spread (δ911) distribution and (b) Transmission ratio
variation for different δ911 intervals for the 23N incident beam.
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Chapter 4

Results and discussion

4.1 Charge-changing cross section (σcc)

The σcc is determined through the transmission technique outlined in Eq. 2.7, where RTin

and RTout represent the transmission ratios of incident and outgoing particles with and

without the reaction target, respectively. The variable t is the number of target atoms

per cm2 and is described by the equation:

t = d × Na

Mu
(4.1)

where Na = 6.022 × 1023 is Avogadro’s number, Mu = 12.0107u is the molar mass of

carbon, and d = 2.5 g/cm2 is the thickness of the carbon reaction target used during the

experiment.

4.1.1 Measured σcc of nitrogen isotopes

The transmission ratios, denoted as RTin and RTout, have been determined for neutron-

rich nitrogen isotopes (21N and 23N). This involves the event-by-event counts for the

selected incident beam integrating over the constant transmission region across various
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beam phase space parameters such as horizontal position (X), vertical position (Y), and

the horizontal angle (A) and vertical angle (B) at different focal planes, as detailed in

the Section 3.5. The data corresponding to RTin and RTout for 21N are depicted by the

blue and red symbols, respectively, obtained when BigRIPS and ZDS were centered for

Figure 4.1: Transmission ratios for target-in & out set up with 21,23N incident beams.
The statistical uncertainties associated with these transmission ratio measurements are
within the sizes of the symbols shown.

20C. Similarly, the yellow and green symbols represent RTin and RTout for 23N, acquired

when the BigRIPS and ZDS was centered for 22C. The uncertainties associated with

these transmission ratio measurements are within the sizes of the symbols shown in

Fig. 4.1. Fig. 4.2 displays the measured σcc obtained using the Eq. 2.7 & 4.1 for 21,23N.

The uncertainties shown in the measured σcc in Fig. 4.2 account for both statistical and
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systematic uncertainties, as elaborated in the subsequent section.

Figure 4.2: Measured charge-changing cross-section (σcc) of 21,23N isotopes.

4.2 Uncertainty in the measured σcc

The uncertainty in σcc arises from statistical variations in the number Nout≥Z of events oc-

curring after the target, the measurement of target thickness, and the selection region for

counting Nout≥Z events. Both systematic and statistical uncertainties were determined

for the σcc across each isotope. The number of incident particle events (Nin) selected for

each isotope, as explained in Section 3.5, has no statistical uncertainty since these counts
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result from the desired event-by-event selection of the secondary beam. There is no DAQ

dead-time effect on σcc due to the event-by-event counting method used here. The sys-

tematic uncertainty arises from the measurement of the target thickness and from the

estimation of contaminant contribution derived using fit parameters used to fit the Z

spectrum after the target in both target-in and target-out measurements. The formula

used for the statistical and systematic uncertainty will be explained in the following

sections.

4.2.1 Statistical uncertainty in σcc

The primary source of error in the experiment is the statistical uncertainty, which signifi-

cantly impacts the measured charge-changing cross-section (σcc). The standard deviation

of σcc due to statistical uncertainty is determined by the equation:

∆σcc =

√(
∂σcc

∂RTin

)2

∆R2
Tin +

(
∂σcc

∂RTout

)2

∆R2
Tout (4.2)

Here, ∆RTin and ∆RTout are the standard deviations of transmission ratios RTin and

RTout respectively. The transmission ratio (RT) represents the ratio of particles after and

before the reaction target, incorporating statistical considerations. The partial derivatives

of σcc with respect to RTin and RTout are given by:

∂σcc

∂RTin
= − 1

t
1

RTin
(4.3)

∂σcc

∂RTout
=

1
t

1
RTout

(4.4)

By substituting these derivatives into Equation (4.2), the statistical uncertainty ∆σstat
cc

can be expressed as:

∆σstat
cc =

√√√√ 1
t2

[(
∆RTin

RTin

)2

+

(
∆RTout

RTout

)2
]

(4.5)
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The uncertainty in counts from the secondary beam selection is considered, and the

binomial distribution variance (i.e. Var(X) = n · p · [1 − p]) is used to calculate ∆RTin

and ∆RTout:

(
∆RTin

RTin

)2

=
1 − RTin

NTinRTin
(4.6)(

∆RTout

RTout

)2

=
1 − RTout

NToutRTout
(4.7)

The statistical uncertainty of the cross-section (∆σstat
cc ) is then given by:

(∆σstat
cc )2 =

1
t2

(
1 − RTin

NTinRTin
+

1 − RTout

NToutRTout

)
(4.8)

4.2.2 Uncertainty in σcc due to target thickness (σ∆t
cc )

The measurement of the target thickness introduces an additional uncertainty that must

be taken into account. The standard deviation of the measured charge-changing cross-

section for systematic uncertainty is expressed by the equation:

∆σcc =

√(
∂σcc

∂t

)2

∆t2 (4.9)

Here, ∆t represents the standard deviation in the measurement of the target thick-

ness, which serves as the systematic uncertainty in the measured σcc. The partial deriva-

tive is given by:

∂σcc

∂t
=

1
t2 ln

RTout

RTin
(4.10)

Substituting Equation (4.10) into Equation (4.9) yields:
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∆σcc =

√(
1
t

ln
RTout

RTin

)2(∆t
t

)2

(4.11)

In Equation (4.11), the term ∆t denotes the standard deviation in the measurement

of the target thickness. The uncertainty in the measured cross-section due to unceratinty

in target thickness, ∆σ∆t
cc , is then expressed as:

(
∆σ∆t

cc
σcc

)2

=

(
∆t
t

)2

(4.12)

The C reaction target (2.5 g/cm2) at F11 had a measured thickness of 13.704 mm with

a standard deviation of ∆t = 0.014 mm. The standard deviation found for the target

thickness is substituted into Eq. (4.12) to determine ∆t. The systematic uncertainties for

different isotopes are presented in the table 4.2 of charge-changing cross-sections.

The expression for the combined uncertainty from statistical unceratinty and due to

target thickness (∆σstat+∆t
cc ) is given by:

∆σstat+∆t
cc =

√(
∂σcc

∂RTin

)2

∆R2
Tin +

(
∂σcc

∂RTout

)2

∆R2
Tout +

(
∂σcc

∂t

)2

∆t2 (4.13)

The partial derivatives of Nt, RTin, and RTout given in the previous sections are used

to obtain the combined ∆σcc:

(
∆σstat+∆t

cc
σcc

)
=

√√√√[(∆RTin

RTin

)2

+

(
∆RTout

RTout

)2
](

ln
RTout

RTin

)−2

+

(
∆t
t

)2

(4.14)

Substituting the variances of ∆RTout and ∆RTin into Equation (4.14), the combined

uncertainty is given by:
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(
∆σstat+∆t

cc
σcc

)2

=

[
1 − RTin

NTinRTin
+

1 − RTout

NToutRTout

] (
1

σcc · t

)2

+

(
∆t
t

)2

(4.15)

4.2.3 Uncertainty from the Nout<Z in the Nout≥Z events

The analysis involved counting Nout≥Z events after the target at F11 by establishing a

lower limit in the 3.5σ region around the mean position of the Z of interest. In evaluating

the consistency of this 3.5σ selection limit, it was noted that for both 21N and 23N, the

values of σcc are consistent within the uncertainties across lower limit selections of 3σ,

3.3σ, and 3.6σ (Fig. 4.3). Therefore, for subsequent discussions, the 3.5σ lower selection

23.2 23.3 23.4

746

748

750

752

754

756

758

760

N 21 -- ccσ

σ3 σ3.3 σ3.6

 (
m

b)
ccσ

Figure 4.3: Comparison of σcc values for 21N with various lower limit selections. The σcc
values align consistently with lower limit selections at 3σ, 3.3σ, and 3.6σ for 21N. Similar
consistency has also been observed for 23N across different lower limit selections.

limit has been opted for. As discussed in the previous chapter, the selection of these

Nout≥Z events includes some contamination from lower Z events and missing events of

the desired nitrogen isotope that extend to the lower Z direction below the 3.5σ selection

boundary. The contribution from lower Z contaminants (Orange region in Fig. 3.17;

Zcont) introduces uncertainty in determining σcc. As depicted in Fig. 3.17, the peak

of interest (Z = 7) has non-negligible counts, as shown by the green shaded region
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(ZNmissing) outside the lower limit set for counting Nout≥Z particles. Consequently, these

counts should be added to the Nout≥Z counts.

The absolute value of σcc is determined using the transmission ratios, RT in = Nout≥Z/Nin,

as discussed in Section 4.1. The transmission ratio equation is adjusted to account for

contamination from Z < 7, and the inclusion of the missing Z = 7 (ZNmissing) events

within the selection boundary in the counting of Nout≥Z:

N∗
out≥Z = Nout≥Z + (ZNmissing − Zcont)

The modified equation for the transmission ratio, R∗
in = N∗

out≥Z/Nin, was used to

determine the transmission ratios for both target in and out measurements. The fitting

of both the target-in and target-out spectra with the GausExp function, as discussed in

Section 3.7, involves 3-4 parameters for each peak, depending on the skewness. Each

parameter in the best fit curve has its uncertainity. The individual unceratinty in each

parameter has been considered by adding and subtracting to the mean value of the

parameter, while keeping all other parameters constant to get σcc. A spread of 749.2 to

754.2 mb in σcc has been observed for 21N, while a range of 746.4 to 748.3 mb in σcc has

been observed for 23N due to the lower and higher limits in all possible combinations

of the parameters. Consequently, the uncertainty in the measured σcc due to these fit

parameters (∆σ
f itpars
cc ) is considered to be half of this spread in σcc. This results in an

∆σ
f itpars
cc of ±2.5 mb for 21N and ±0.95 mb for 23N.

However, even with this conservative approach, the uncertainty from fit parameters

is lower than the statistical uncertainty of the measured σcc. As a result, the uncertainty

from fit parameters doesn’t significantly impact the total uncertainty in the measured

σcc.
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4.2.4 Total uncertainty of the measured σcc

The sources of uncertainty included statistical variations in the number of events (Nout≥Z),

target thickness measurement, and the selection region for counting Nout≥Z events. The

total uncertainty, combining these factors, is determined to be ±4.23 mb for 21N and

±3.37 mb for 23N (Table 4.2). The central values and their corresponding uncertainties

are depicted in Fig. 4.2.

4.3 Impact of VETO scintillator on σcc

As discussed in the Section 2.6.4, during the experiment the veto scintillator was placed

in front of the carbon target at F11 to remove any spurious events due to multi-hit

from scattering of low Z particles upstream of the target during offline analysis. For

both 21,23N incident beams, excluding events at higher QDC channel numbers – cor-

responding to events detected in the veto scintillators – the resulting charge-changing

cross-sections were examined. The measured σcc values for both 21N and 23N, with and

without events detected in the veto scintillator, are presented in Table 4.2. Uncertainties

were determined following the same methodology discussed earlier. The σcc values for

both isotopes showed agreement within uncertainties in both cases. Given this consis-

tency, no additional rejection was implemented based on the VETO scintillator during

the incident beam selection.

4.4 Determination of beam energies before the reaction

target at F11

In the Glauber model framework, the finite-range profile function ΓNN(b) for the nucleon-

nucleon (NN) scattering involves several parameters, αNN, βNN, and σtotal
NN , as discussed

in Eq. 1.13. The values of these parameters in the profile function are energy dependent.
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Figure 4.4: Velocity (β811) profile for the 21N particles measured using plastic scintillators
located at F11 (PS11) and F8.

Thus, it is crucial to know the energy of the incident beams to extract the proton radius

from the measured charge-changing cross sections. The determination of beam energy

involves measuring the velocities (β811) of incident particles using plastic scintillators

located at F11 (PS11) and F8. For 21N, the mean value of the β spectrum (Fig. 4.4) is

measured at 0.64, corresponding to an energy of 277A MeV. Using the LISE++ tool [75],

which accurately simulates the beam propagation and ion optics through BigRIPS and

ZDS, the energy lost by the incident particle while passing through the various materi-

als between the plastic detector (PS11) and the reaction target at F11 is quantified. The

beam energy for 21N before reaching the target is determined to be 264A MeV, and after

passing through the target, it is 244A MeV. Therefore, an average of these two energies

Table 4.1: Beam energy for different isotopes at different positions at F11.

Isotopes β811

Beam energy (E/A in MeV)

Before PS11 Before the target After the target At mid-target

21N 0.64 277 264 244 254

23N 0.62 253 241 221.5 231
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is adopted for the energy at the mid-target region. Similarly, for 23N, following same

method, the calculated β811 spectrum has a mean value of 0.62, corresponding to 253A

MeV. The beam energy for 23N before and after passing through the target is 241 and

221.5 A MeV, respectively, resulting in an energy of 231A MeV at the mid-target region.

A summary of the beam energies at different positions is provided in Table 4.1.

4.5 Summary: σcc and uncertainties of different isotopes

The charge-changing cross-sections (σcc) of 21N and 23N isotopes were investigated using

the BigRIPS and ZeroDegree Spectrometer (ZDS) setup. Transmission ratios (RTin and

RTout) were measured for incident beams 21N and 23N. The σcc values were determined,

considering uncertainties from statistical variations in event counts, target thickness mea-

surement, and the selection region for counting events after the target. The impact of the

veto scintillator on σcc was assessed, and found to have no effect on the charge-changing

cross sections. Table 4.2 provides a summary of the results and uncertainties, offering

a comprehensive overview of charge-changing cross-section measurements for 21N and

23N isotopes.

Table 4.2: Charge-changing cross-sections (σcc) with uncertainties for 21,23N.

Isotopes

Without Veto rejection With Veto rejection Energy

at

mid target
σcc ∆σstat.

cc

∆σ
syst.
cc

∆σtotal
cc σcc ∆σstat.

cc

∆σ
syst.
cc

∆σtotal
cc

∆σ
f it pars
cc ∆σ∆t

cc ∆σ
f it pars
cc ∆σ∆t

cc

(mb) (MeV/u)

21N 752 3.32 2.5 0.77 4 754 3.34 1.75 0.77 4 ∼ 254

23N 747 3.14 0.95 0.76 3 744 3.24 0.8 0.76 3 ∼ 231
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4.6 Discussion of results

The measured σcc values for 21N and 23N were 752 ± 4 mb (at ∼ 254A MeV) and 747 ± 3

mb (at ∼ 231A MeV) respectively. The determined σcc for 23N was found to be compa-

rable to that of 21N within uncertainties.

As discussed in Section 1.2, S. Bagchi et al. [34] reported that the σcc on a carbon

target at approximately 900A MeV for 21N was 857 ± 7 mb, translating into a proton

radius of 2.49(3) fm for 21N. However, the matter radius obtained for 21N is 2.78(2) fm.

On the other hand, the matter radius of 23N is reported to be 3.41 ± 0.23 fm, determined

from interaction cross-section measurement [35]. The similar σcc for both nuclei (Fig.

4.5), despite the significantly larger matter radius of 23N, suggest the possible existence

of a two-neutron halo-type structure in 23N. The decrease (within uncertainties) in the

proton radius (Rp) from 17N to 21N (Fig. 1.5) with the filling of the 1d5/2 orbital reflects

a strong attractive interaction between the proton in 1p1/2 (l − 1
2 ) and the neutrons in

1d5/2 (l + 1
2 ), leading to the emergence of a shell gap at N = 14 and a reduction in

deformation. Ref. [34] also reports that the σcc for 22N at around 900A MeV was 869 ± 7

mb, translating into a proton radius of 2.53(3) fm for 22N. This observed increase in

proton radius for 22N, within the uncertainty, results from its extended neutron density

for the valence neutron in the 2s1/2 orbital with a closed-shell core of 21N. The motion of

the center-of-mass (c.m.) of 22N is therefore different from that of the core, causing the

c.m motion smearing of the core density and hence an increased proton radius.

For 23N, the neutrons (N = 16) in the most stable configuration fill the 2s1/2 orbital,

and protons fill the 1p1/2 orbital. The measured σcc values for 21N and 23N agree within

uncertainties (Fig. 4.5), and a previous study by Ref. [34] reports a higher σcc for 22N

compared to 21N. This trend in the σcc, moving from 21N to 23N, with an increase in σcc

for 22N (N = 15), followed by a decrease in σcc for 23N, signals the presence of a shell

closure at N = 16. The shell closure at N = 16 is attributed to the absence of attractive

monopole interaction between n(1d3/2) neutrons and p(1d5/2) protons, which are vacant
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Figure 4.5: (a): Measured σcc for 21N and 23N from this work at ∼250A MeV.
(b): Measured σcc for the nitrogen isotopes at ∼900A MeV taken from Ref. [34]. The
arrow indicates the observed increase in measured σcc (hence, in proton radius) for 22N.

for 23N. However, in stable nuclei, the shell gap at N = 16 disappears due to the nearly

complete filling of the p(1d5/2) shell.

The two-neutron separation energy (S2n) for 23N is 4.7 MeV, higher than its single-

neutron separation energy (3.12 MeV) and the single-neutron separation energy of 22N

(1.28 MeV) [36, 37]. As explained in Eq. 1.4, the neutron density distribution is highly

sensitive to the wave function of the valence neutron and its separation energy. A higher

two-neutron separation energy in 23N indicates a steeper density distribution tail (κ),

posing a challenge to the halo formation in 23N. This larger two-neutron separation

energy in 23N demonstrates strong binding of the valence neutrons in n(2s1/2) and sup-

ports the presence of a shell closure at N = 16. The similar measurement of σcc (hence,

proton radius) for both 21N and 23N suggests that the center-of-mass of the two valence

neutrons in n(2s1/2) of 23N is not significantly spatially separated from that of the core.

The extracted proton radius from the measured σcc of 23N, combined with its matter
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radius, will contribute to determining the neutron radius and, consequently, the neutron

skin thickness. This information will provide a comprehensive picture of the structure of

this nitrogen nucleus at the drip-line. However, the current observations challenge the

previously obtained large matter radius of 23N, which had high uncertainty [35], and

demand further precise measurements of this drip-line nitrogen isotope.
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4.7 Future work

The measured charge-changing cross sections (σcc) for 21N and 23N isotopes provide cru-

cial insights into their exotic neutron halo and neutron skin structures and the evolution

of nuclear shells. The presented data also contribute significant evidence related to the

potential origin of observed new shell gaps in neutron-rich nitrogen isotopes. The next

goal will be the extraction of proton radii (Rp) from the measured σcc using the finite

range Glauber model. The proton radius extracted from the measured σcc of 21N at a

beam energy different from that reported in Ref. [34] will be used as a comparison point

with its radius derived from the previous study at GSI. This comparison will facilitate an

assessment of the necessity for a scaling factor for the measured σcc in the intermediate

energy range.

The extracted proton radii, in conjunction with the known matter radii (Rm), will

enable the determination of the root mean square neutron radii (Rn) as described in

Eq. 1.1. With the obtained information on neutron (Rn) and proton (Rp) radii, the neu-

tron skin thickness (∆R) will be determined through (Rn − Rp). The measurement of

neutron skin thickness for 21,23N isotopes near the drip line will significantly contribute

to enhancing our understanding of their nuclear structure. Furthermore, the measured

charge-changing cross section (σcc) in this experiment provides ground for further de-

velopment of the state-of-the-art ab initio nuclear theories and the interactions utilized in

various calculations.
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[50] W. Nörtershäuser et al. Nuclear Charge Radii of 7,9,10Be and the One-Neutron Halo

Nucleus 11Be. Phys. Rev. Lett., 102:062503, Feb 2009.

[51] R. F. Garcia Ruiz et al. Unexpectedly large charge radii of neutron-rich calcium

isotopes. Nature Physics, 12(6):594–598, Jun 2016.

[52] W. R. Webber et al. Individual charge changing fragmentation cross sections of

relativistic nuclei in hydrogen, helium, and carbon targets. Phys. Rev. C, 41:533–546,

Feb 1990.

[53] J. R. Cummings et al. Determination of the cross sections for the production of

fragments from relativistic nucleus-nucleus interactions. I. Measurements. Phys.

Rev. C, 42:2508–2529, Dec 1990.

[54] B. Blank et al. Charge-changing cross sections of the neutron-rich isotopes 8,9,11Li.

Zeitschrift für Physik A Hadrons and Nuclei, 343(4):375–379, Dec 1992.

[55] L.V. Chulkov et al. Total charge-changing cross sections for neutron-rich light nuclei.

Nuclear Physics A, 674(3):330–342, 2000.

[56] M. E. Rose. Theoretical Physics. Science, 143(3605):460–460, 1964.

[57] Paul J. Karol. Nucleus-nucleus reaction cross sections at high energies: Soft-spheres

model. Phys. Rev. C, 11:1203–1209, Apr 1975.

[58] Y. Suzuki et al. Parameter-free calculation of charge-changing cross sections at high

energy. Phys. Rev. C, 94:011602, Jul 2016.

82



[59] B. Abu-Ibrahim et al. Reaction cross sections of carbon isotopes incident on a pro-

ton. Phys. Rev. C, 77:034607, Mar 2008.
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