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A Critical Exploration, Analysis, and Contextualization of Discrete and Continuous

Models of Criminal Behaviour for the Prediction of Future Real-World Crime Occurrence

Abstract

This interdisciplinary project explores “predictive policing”, a blanket term given to a
number of crime prediction algorithms and tools used by police departments across the

globe in an effort to predict and pre-empt crime occurrence. This project attempts to cut
through the profound amount of both positive and negative rhetoric surrounding predictive

policing software to understand what theory they are based on, how they are actually
implemented in software, and how they interface with police officers working on-the-beat.
Through a literature review of empirical environmental criminology research, a theory of

how crime self-concentrates in space and time is discussed, as well as the potential
explanations for this behaviour. Using this literature, two predictive models of criminal
behaviour are introduced, explained, tested, and analysed, to understand how empirical
crime observations can be translated into software. Using numerical results obtained from
these models in conjunction with existing meta-critiques of predictive policing tools, the

argument is made that while current predictive policing tools may hold theoretical value in
the field of crime prediction, they have enough significant drawbacks as to cast doubt on

their use to predict real world crime.
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Chapter 1

Introduction: Predictable Crime &
Predetermined Punishment

First published in 2021 by investigative reporter Matt Stroud, “Heatlisted” [45] tells the

story of Chicago citizen Robert McDaniel’s interactions with the Chicago Police Depart-

ment (CPD) leading up to his eventual shootings. Summarizing his narrative, a 22-year-old

McDaniel living in Austin, a predominantly Black neighbourhood of Chicago, was visited at

his home by CPD officers sometime in mid-2013. This police visit was not in response to any

misconduct on the part of McDaniel, but was prompted based on results from a new, secre-

tive policing pilot program. Although it was known only at the time as the “CPD heat list”,

McDaniel was victimized by what has come to be known as the CPD’s “Strategic Subjects

List” (SSL). Under this program the CPD implemented a “Strategic Subject Algorithm”

created by researchers from the Illinois Institute of Technology designed to attribute a nu-

merical score to those with criminal records in order to quantify their risk of being involved

in a future violent crime [9]. It was due to the SSL pilot program that Robert McDaniel

was identified and singled-out by CPD officers: Although McDaniel had no previous record

of violent crime, having been charged only with selling marijuana and street gambling, the

SSL identified McDaniel as being more likely than over 99.9% of Chicago’s population to be

involved in a deadly shooting, either as the victim or as the perpetrator [45]. Commenting

on the nature of the SSL author Matt Stroud invokes the imagery of “pre-crime” from Philip

K. Dick’s 1956 novella “Minority Report”, in that the CPD was attempting to figure out
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“who would commit a crime before they actually did” [45].

Following his visit from the CPD, Robert McDaniel became someone of suspect within his

community. Based on their algorithmic predictions, the CPD began to surveil McDaniel in-

tensely, following him throughout his community, staking him out at his work, and routinely

questioning those close to him about his daily activities [45]. As a result of the intense police

presence surrounding him, McDaniel’s neighbours, friends, and community turned against

him, suspecting him of snitching to the CPD. McDaniel spent years living in the shadow of

the CPD, and one day in early-2017 was the victim of a drive-by shooting just blocks away

from his home. One bullet pierced McDaniel in his knee, leading him to be hospitalized

with non-life-threatening injuries [45]. Following this, in the Summer of 2020 McDaniel was

the victim of yet another shooting, luckily surviving for a second time. When questioned

by Stroud on the motivation behind his two shootings, McDaniel comments decisively that

while the SSL was designed to reduce violent crimes, “it brought violence directly to (me)”

[45].

I chose to begin this project by introducing Robert McDaniel’s story for two key reasons:

Firstly, Chicago’s SSL is just a small piece in a much larger network of what has come to

be known as the regime of “predictive policing”. Using advancements in data science and

computing power achieved over the past number of decades, both researchers and private

technology firms have been hard at work, developing software tools designed to be able to

predict crime before it occurs in the first place. While a number of these tools (such as

the SSL) are “individual-based”, attempting to quantify either the likelihood with which an

individual will be involved in a future crime or will re-offend, the second class of these tools

are “place-based”, attempting to quantify where crime is likely to occur in a given geographic

region. Regardless of regime, Robert McDaniel’s story serves as a gateway into the ideo-

logical warfare surrounding predictive policing today. On one side of this conflict are those
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strongly advocating against the use of predictive policing tools: Not only Matt Stroud, but a

number of other investigative reporters have jumped at the chance to criticize the seemingly

dystopian nature of predictive policing (see [15, 30, 16, 10, 3] to name but a handful). In

addition, larger institutions have broadly advocated against the use of predictive policing

technologies, including both the RAND Corporation in [17] and Data for Black Lives in [4].

Perhaps most damningly, an open letter published in the October 2020 issue of Notices of the

American Mathematical Society urges mathematicians at large to avoid providing police de-

partments with mathematical resources or research, specifically indicting predictive policing

as a problematic technology that deserves a broad audit from the mathematical community

at large [25]. On the other side of the predictive policing debate, many police departments

have openly spoken in favour of the technology, commenting that predictive policing has

contributed to noticeable reductions in overall crime occurrence [38]. It is no small task to

sift through the mountain of rhetoric surrounding predictive policing, to understand whether

such tools are actually of merit or whether they serve only to entrench existing police violence.

Concerning predictive policing, there are a number of central issues that I intend to

unpack and analyse to get at the nature of predictive policing as an area of study. Before

outlining these central issues, I would like to note that there are a great number of “predictive

policing tools” that are in active use today: I opt here to focus on place-based predictive

policing tools over individual-based predictive policing tools, for the sake of scope. Even

within the category of place-based predictive policing tools however, one runs up against the

“blue wall” of policing, in that it is often difficult to obtain concrete information about day-

to-day police operations. I thus restrict the scope of the algorithms I intend to analyse within

this project to two key models of residential burglary, first introduced by Martin B. Short

et al. in [44] and most notably used in some form within the predictive policing software

PredPol [37]. While my ultimate conclusions pertaining to these two models are in no way

intended to be statements about predictive crime modelling in general, later insights from
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an analysis of these two models do have results generalizable to other place-based predictive

policing models.

Turning specifically then to place-based predictive policing and the two models of resi-

dential burglary introduced by Short et al. in [44], I am interested to question the theoretical

foundations of these models. Upon what criminological work are these models based, and

are these models able to be motivated by data obtained by empirical criminologists? That

is, does crime in the real world display definitive and predictable behaviour that can be

leveraged to create a mathematical model of criminal behaviour? In the context of Short et

al.’s two models of residential burglary, I am curious to understand the mathematics that

governs these models at their most fundamental level: What is the basis for the expectation

that these models are able to form predictions about where crime will occur, and what be-

haviours can be expected from these models? Further, do these models accurately represent

what real-world criminal behaviour looks like? Can these models feasibly be used to generate

crime predictions that are accurate with respect to the real world? Finally, I look to see

how these models are actually implemented within real-world police departments. How do

police officers interface with predictive policing tools, and how do predictive policing tools

translate crime predictions into concrete suggestions for police officers? How does historic

policing data play a role in tuning predictive policing models to real-world environments,

and do these models hold up against empirical field trials? These questions will be discussed

in sequence throughout the following chapters.

Charting a more detailed roadmap for this thesis, I begin in Chapter 2 by discussing

environmental criminology, the sub-area of criminology concerned with understanding the

geography of crime. I examine the work of a number of environmental criminologists to

quantify both spatial and temporal trends in criminal behaviour that appear to be present

regardless of context. Building on this work, I discuss criminologist David Weisburd’s “physi-
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cal law of crime concentrations” [49] as a foundational theory to motivate predictive policing

as an area of study. I then briefly discuss potential explanations for the aforementioned

trends in criminal behaviour, from both criminology and behavioural psychology. In Chap-

ter 3, I use both these potential explanations and work from Short et al. to motivate and

describe Short et al.’s discrete model of residential burglary. I discuss the details of this

agent-based model of crime, as well as possible parameter choices for this model. I then use

my implementation of this model in Python to perform a number of simulations of criminal

behaviour, the results of which are included at the end of Chapter 3. In Chapter 4, I begin by

introducing a general discussion of partial differential equations (PDEs), and their potential

solution behaviour. I then follow Short et al.’s derivation of a continuous model of residential

burglary, based on the discrete model of residential burglary. Before performing simulations

using this second model of criminal behaviour, I describe both the BACOL and BACOLI

solvers for the computation of error-controlled numerical solutions to systems of parabolic

PDEs. Using a special Python wrapper for BACOLI (BACOLI PY), I perform a number of

simulations using the one-dimensional variant of the continuous model of criminal behaviour,

the results of which are included at the end of Chapter 4. In Chapter 5, I reintroduce the

results from both the discrete and continuous models of residential burglary, to compare and

contrast against each other. I discuss my results in the context of the environmental crim-

inology literature introduced first in Chapter 2, to assess whether either model agrees with

the work of empirical criminologists. In Chapter 6, I pull back from a detailed discussion

of the discrete and continuous models of criminal behaviour to discuss implementation chal-

lenges with predictive policing tools at a more fundamental level. I discuss how predictive

policing as an area of study is actually far more poorly understood than it may seem to an

outsider. I speak to how regardless of the underlying mathematics, there are fundamental

challenges to creating predictive policing tools, such as the issues of flawed historic policing

data and problematic officer integration. I finally discuss the few empirical field trials of pre-

dictive policing tools that exist within the peer-reviewed literature, to assess whether there
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is any evidence pointing to predictive policing having a noticeable impact on crime reduction.

As a final note, I mentioned previously that I chose to include Robert McDaniel’s story

for two key reasons. The second of the two reasons why I raise McDaniel’s story, is to

underscore this entire project in the real systemic violence that many face at the hands of

the police. Within the coming chapters I discuss the criminological theory contributing to

predictive crime modelling, the applied mathematics behind building and solving discrete

and continuous models of criminal behaviour, and some critical insights from sociologists on

the efficacy of crime prevention, among other things. It can be easy when digging deep into

these muddy details of predictive policing to forget that predictive policing tools are in use in

the real world to this day, and are in at least some way contributing to police violence against

racialized and otherwise marginalized communities. It is my hope that Robert McDaniel’s

story should serve as a continuing reminder throughout this project: That predictive policing

is not simply some mathematical curiosity to be debated within the ivory halls of academia,

but a regime of policing that has the capacity to enact extreme violence within innumerably

many communities. Let Robert’s story underline the gravity of predictive policing as a topic

for discussion and analysis.
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Chapter 2

Environmental Criminology and the
Hotspot Behaviour of Crime

“Since time immemorial, humans seem to have had a natural pre-disposition for committing

mayhem and coming up with novel sanctions to punish those who perpetrated the acts” [39,

pg. 18]. For millennia humans have engaged in behaviour seen as antithetical to the soci-

etal norms of the time, and have received punishment according to their actions. Although

the modern conceptions of law, order, crime, and punishment may be unrecognisable in the

context of earlier societies, crime and criminality themselves are as old as the human race

[39]. Developing in parallel to the existence of deviant behaviour, forms of law and policing

have attempted to treat the endemic issue of crime for organized society. While the fight

against crime has been ongoing for thousands of years, it has only been in the past hand-

ful of decades that strategies of crime prevention have shifted from being reactive to being

proactive in nature. Whereas the crime problem was once primarily addressed by harshly

punishing criminal behaviour [31] (and although in many ways this practice is all the more

prevalent today [42, 13]), in more recent years we have begun to consider fighting crime via

attempts to prevent it in the first place. By means of increased state surveillance and a

more profound culture of police dominance, some argue that crime can now be addressed

by police forces before it even occurs [29, 36]. Within the overall cognitive shift in policing

towards crime prevention, the idea of “predicting” where crime will occur has begun to gain

traction. Suppose that if we are able to use empirical data in tandem with criminological
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theory to understand exactly where, when, and why crime occurs, would we be able to stop

crime at the source? There is a growing body of work analysing how crimes are distributed

both in space and in time, in the effort to further develop and refine proactive policing

strategies. By analysing the geography of crime it has been found that remarkably, urban

crime displays profound spatial and temporal patterns. Such foundational work like that of

David Weisburd in [49] (to be discussed in further detail in throughout this chapter) has

laid the foundations for software marketed to be able to “predict” where crime will occur in

the future (predictive policing software), a very strong claim that deserves a close critique.

To perform this critique, it is first essential to understand the empirical motivation for and

theory underlying this predictive policing software.

Within this chapter I consider the field of environmental criminology, the area of criminol-

ogy concerned with understanding and mapping the geography of crime. I define a number

of key concepts relating to environmental criminology and consider how environmental crim-

inologists employ the idea of “microplaces” to understand the spatial dynamics of crime at

the resolution of individual street segments. I then look at a number of empirical studies

examining the dispersion of crime in urban environments at this small spatial resolution,

highlighting that crime displays a profoundly consistent “hotspot” behaviour within cities. I

consider a number of explanations for this hotspot behaviour, more specifically in the context

of residential burglary. By using the insights of a number of environmental criminologists,

I examine how we are in theory able to craft a mathematical model designed to “predict”

crime.

2.1 The criminology of places

Before digging into environmental criminology and crime hotspots it is important to discuss

the words often used to describe the geography of crime, and their precise meanings. Fore-
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most, what precisely is meant by “crime”? While there is room to debate the nature of crime

itself, what constitutes a “criminal act”, and who is liable to punish such acts [23], for the

purposes of discussing environmental criminology I opt here to define crime in a relatively

simple sense. Following a legal precedent, I consider crime to be “anything prohibited under

the criminal law - the criminal law being that branch of law dealing with state punishment”

[23, pg. 609]. Of note is that there is a seemingly small but important distinction between

the words “crime” and “criminality”. Whereas the word “crime” most often refers to actual

concrete criminal acts, the word “criminality” most often refers to the ability and desire for a

person to commit crimes given the right circumstances [51]. In a way, the difference between

questioning crime and questioning criminality can be understood as approaching the study

of criminology from either the fields of geography or sociology. Studies of crime are focused

more on the act itself, where and when crime is most likely to occur, what types of crimes

prevail in certain environments, what environmental conditions lead to changes in crime

distribution, etc. In contrast, studies of criminality are focused on the people who commit

crimes, their motivations, life circumstances, economic standings, family history, etc. [51].

To focus on environmental criminology and hotspots of crime therefore focuses on questions

of crime itself over questions of criminality.

Discussing the geography of crime involves “crime places”: places where crime is likely

to or has occurred. Hence, another important term to consider is that of “place”. Crimi-

nologist David Weisburd understands the word place to mean an expanse that is “defined

by its internal characteristics that differentiate it from other places” [51, p.17]. This con-

ceptualization of place does not put restrictions on the scope nor the contents of a place.

The idea of place is left as general as possible. In this sense, any specific and distinguishable

expanse can be considered a place: the produce section of an individual grocery store can be

understood as a place, just as the entirety of the state of Ohio can be understood as a place.

As there are no restrictions placed on the context of a place, one is able to label and consider
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any specific area as a “crime place”, using the tools of environmental criminology accordingly.

In addition to precise definitions of “crime” and “place”, there are a few terms inherent

to environmental criminology and more specifically. predictive policing, in specific that merit

precise definitions. Often when discussing the geography of crime and predictive crime mod-

elling, the “criminal attractiveness” (sometimes used interchangeably with “attractiveness”)

of a given place is considered. In essence, criminal attractiveness is a qualitative measure

of how likely a certain place is to be victimized, relative to the other places in a specific

environment (often a city) [44]. Although in practice it is impossible to measure and ascribe

a value indicating how attractive a certain place is to a prospective criminal, using the term

criminal attractiveness gives language to discuss how differing places may appear to poten-

tial criminals. When studying crime and place, it is also important to consider the impacts

of scale. Given the more general definition of “place”, one can study crime and place using

entire neighbourhoods and cities as the spatial unit of analysis. I follow the convention set

by David Weisburd in [51] to call places on this scale “macroplaces”, where one studying

crime at this resolution would be considering the “macrogeography” of crime. Conversely,

one is able to study crime and place at the spatial resolution of city blocks and individual

street addresses. Places at this smaller resolution are often called “street segments”, or

“microplaces”, where one studying crime at this smaller resolution would be considering the

“microgeography” of crime [51].

Although there is a much to be learned by considering the dynamics of crime at the

spatial resolution of macroplaces (see [52] for a broad overview of such research), I restrict

the conversation here to that of microplaces. In the effort to predict individual crimes, any

predictive model of criminal activity must clearly work on the scale of microplaces. As will be

discussed in the coming sections, crime displays profound patterns at the spatial resolution of

microplaces, with these patterns motivating the development of the predictive crime models
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in use today. I follow the convention set by Lawrence Sherman et al. in their influential 1989

article “Hot Spots of Predatory Crime: Routine Activities and the Criminology of Place” to

label the study of crime and place at a microgeographic scale as “the criminology of places”.

This is in contrast to the study of criminality, which is aptly labelled as “the criminology of

people”, or “the criminology of collectives” [43]. An important note on the criminology of

places is that the type of crime need not be specified to study crime at place. The spatial

dynamics of all different forms of crime can be considered at the resolution of microplaces,

although, as will be discussed in further detail later, the microgeographic dynamics of resi-

dential burglary are of particular interest to those attempting to develop predictive models

of crime. For a number of reasons (to be discussed in the following sections), the spatial

dynamics of residential burglary are far simpler to quantify when compared with other forms

of crime (for example, motor vehicle theft or hit-and-runs), hence this focus.

Within the wider sphere of criminology, there has been relatively little work considering

the spatial dynamics of crime in general, let alone at the resolution of microplaces. In a 2015

study, David Weisburd finds that throughout the history of modern criminology, researchers

have been far more interested in questioning criminality rather than questioning the nature

of crime itself: Examining Criminology, one of the leading peer-reviewed journals dedicated

to the study of criminology, Weisburd finds that approximately 66% of the 719 empirical

articles published between 1990 and 2014 in Criminology focus on people and criminality,

over focusing on place and crime [49]. Even further, whereas approximately 30% of the 719

empirical articles published in Criminology between 1990 and 2014 focus on studying crime

and place at macrogeographic units of analysis, only approximately 4% of these 719 articles

focus on studying crime and place at microgeographic units of analysis. Although Weisburd

notes that the number of empirical articles considering microplaces in criminology published

each year has been increasing, there is still a surprising absence of research considering

microplaces within the context of criminology. Considering this disparity of articles published
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on microplaces, Weisburd asks the following key question: “Why should there be a turning

point [in modern criminology] that would focus on microgeographic units of analysis?” [49,

p.135].

2.2 The strong correlation between crime and microplaces

While there have been relatively few publications considering microplaces within the crim-

inology of places when compared with the entirety of criminological publications [49], the

growing body of literature shows that crime exhibits strong patterns at small spatial res-

olutions. Further, the works of a number of different scholars in different cities show that

microgeographic trends in crime are remarkably consistent between cities [51]. This consis-

tency has led to the development of a physical “law of crime concentration across cities” [49].

The empirical work shown in this section forms the impetus for the development of predic-

tive models of crime: By quantifying and analysing the ways in which crime is arranged into

hotspots at a microgeographic scale, allows for a discussion of the ways in which crime can

potentially be predictively modelled.

Charting an abridged history of empirical studies on the criminology of places, as early as

1988 scholars began considering crime patterns at the resolution of microplaces. Criminolo-

gist Glenn L. Pierce led a project published in 1988 to assess the strategies of policing and

crime control available at the time [35]. Pierce et al. made use of the Boston Police Depart-

ment’s (BPD) Computer Aided Dispatch System as a dataset to analyse crime occurrence

in Boston at the spatial resolution of microplaces. Although Pierce et al. did not consider

types of crime (they only measured the number of phone calls to the BPD by address, not

the contents of the calls), by surveying how calls to the police were spatially distributed

within Boston between the years 1977 to 1982, Pierce et al. found that while 80.79% of

all street addresses within Boston produced at least one call to the BPD per-year over the
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period of study, only 18.32% of all street addresses within Boston produced five or more calls

to the police per-year over the period of study [35, p.VI-9]. Even further, they found that

just 0.89% of all street addresses within Boston produced fifty or more calls to the police

per-year over the period of study [35, p.VI-9]. While it is to be expected that increasingly

smaller percentages of overall street addresses should account for larger volumes of calls (it

would be ridiculous to assume that a large number of street addresses would produce fifty or

more calls to the BPD per-year), that such a small percentage of street addresses produced

such a vast number of calls is statistically significant [35]. Put in a different way, over the

period of study Pierce et al. found that 18.32% of all street addresses within Boston were

responsible for 74.78% of the demand for BPD services, and that just 0.89% of all street

addresses within Boston were responsible for 23.56% of the demand for BPD services. The

entirety of the results from [35] are enumerated in Figure 2.1. Although this study was

quite rudimentary (not considering types of crime nor performing any extensive statistical

analysis), from this work alone there is enough cause to consider the ways in which crime is

unequally distributed on a microgeographic scale. It is clear from this study that a vast ma-

jority of crime in Boston (over the period of study) occurred at a relative minority of street

addresses, a finding that many authors would replicate in a number of different contexts in

the following years.

Following the study on policing in Boston, a 1989 study by Lawrence Sherman et al.

examined crime occurrence at the resolution of street segments in Minneapolis over the span

of one year (From December 15, 1985 to December 15, 1986) [43]. In this study Sherman et

al. were able to replicate the results of Pierce et al., this time in the context of Minneapolis:

Over the year of study, although approximately 60% of street addresses generated at least

one call to the Minneapolis Police Department (MPD), a remarkable 3.3% of street addresses

generated a majority (50.4%) of the overall calls to the MPD [43]. Of note, is that Sherman

et al. were also unable to consider types of crime, as their data was collected in much the
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same way to that of Pierce et al. before them. The entirety of the results from [43] are

enumerated in Figure 2.2. Although their findings were similar to those from Pierce et al.,

Sherman et al. found that when compared against a normal distribution for the expected

number of addresses generating a certain number of phone calls to the MPD, the real-world

data showed that a disproportionate majority of places generated very few phone calls to

the MPD whereas a disproportionate minority of places generated many phone calls to the

MPD. In addition to their statistical analysis, Sherman et al. used their work to motivate the

framework of the criminology of places, as discussed previously. Though there were probes

into the microgeography of crime, it was with this 1989 study that the study of crime at

microplaces became more widely accepted as potentially being able to offer valuable insights

into the organization of crime. The work performed by Sherman et al. in Minneapolis so-

lidified the trend that between cities, crime displays significant “hotspot behavior”: That

relatively small geographic regions within a city seem to fall victim to a majority of overall

crimes.

Over the following decades, many more studies considering the spatial distribution of

crime within cities would be published. In Analysing Crime Patters: Frontiers of Practice,

a criminology text dedicated to the exploration of the hotspot behaviour of crime [11], au-

thors Eck et al. examined crime occurrence in the Bronx, a borough of New York City.

Agreeing with the work that came before them, Eck et al. discovered that over their period

of study (October 1, 1995 to October 15, 1996) crime within the Bronx was arranged into

strong hotspots, with a relatively small proportion of places being responsible for a relative

majority of overall crime occurrence [11]. Note that within this study Eck et al. make

the distinction between robberies, assaults, burglaries, grand larceny, and auto theft: In all

cases, significant crime hotspot behaviour can be seen. The results from [11] are enumerated

in Figure 2.3.
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Figure 2.1: Results from Pierce et al. demonstrating the disproportionate demand for the
Boston Police Department coming from a minority of street addresses from the years 1977
to 1982 [35, Table VI-I].

Figure 2.2: Results from Sherman et al. demonstrating the disproportionate demand for the
Minneapolis Police Department coming from a minority of street addresses over the span of
a year [35, Table I].
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Figure 2.3: Results from Eck et al. demonstrating the disproportionate demand for the New
York Police Department coming from a minority of street addresses in the Bronx over the
span of a year [11, Table 5.1].
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Figure 2.4: Results from Weisburd and Amram demonstrating the proportion of street ad-
dresses in Tel Aviv-Jaffa that account for %25, %50, %75 and %100 of crime, respectively
[50, Figure 1].

Following these studies performed in the United States, further probes on crime hotspots

considered cities outside of the United States: A 2014 study by David Weisburd and Shai

Amram examined crime distribution in Tel Aviv-Jaffa, Israel. Perhaps unsurprisingly, Weis-

burd and Amram found that over the year 2010, approximately 4.5% of street addresses

produced over 50% of the overall crime within Tel Aviv-Jaffa [50]. These results parallel the

findings of previous authors, and contribute to the idea that regardless of context, crime is

very distinctly arranged into tight spatial hotspots. The results from [50] are enumerated in

Figure 2.4.

Although nowhere near exhaustive, the studies collected here all show a remarkably sim-

ilar trend: That a majority of crime appears to occur at a minority of street addresses,

regardless of city. Building on this foundation, in a 2015 article, criminologist David Weis-

burd examined eight cities in an effort to develop a more rigorous physical law governing the

arrangement of overall crime within cities [49]. Of the eight cities considered by Weisburd,

five of which (Sacramento, Seattle, New York City, Tel Aviv-Yafo, and Cincinanati) have

populations ranging from approximately 300,000 people to 8,000,000 million people, and are

considered by Weisburd to be “large cities”. The remaining three cities (Brooklyn Park, Red-

lands, and Ventura) have populations ranging from approximately 70,000 people to 100,000
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people, and are considered by Weisburd to be “small cities”. Weisburd notes that in the case

of the five larger cities, crime is distributed unevenly as previously discussed, with a majority

of crimes occurring at a tight “bandwidth” of street segments. On examining these five cities,

Weisburd finds that 50% of all crime incidents within each larger city occurs at anywhere

between 4.2% (Sacramento) and 6.0% (Cincinnati) of all street segments. Further, Weisburd

finds that 25% of all crime incidents within each larger city occurs at anywhere between 0.8%

(Sacramento) and 1.6% (Cincinnati) of all street segments. There is a remarkable observed

consistency between these five large cities in terms of overall crime distribution: A given

percentage of crime incidents (say, 50% or 25%) occur at a consistently small percentahe of

overall street addresses, between multiple large cities. The results pertaining to these five

larger cities are enumerated in Figure 2.5. In the case of the three smaller cities Weisburd

finds that there is an almost identical pattern, with the only difference being that crimes are

even more highly concentrated at a minority of street addresses. Weisburd finds that 50% of

all crime incidents within each smaller city occur at approximately 3% of all street segments,

and that 25% of all crime incidents within each smaller city occurs at approximately 0.5% of

all street segments. Though there is a noticeable difference in the severity of crime concentra-

tions between large and small cities as discussed by Weisburd, the conclusion for both cases

is the same. The results pertaining to these three smaller cities are enumerated in Figure 2.6.

From both the wealth of research on the spatial distribution of crime performed before

him and from his extensive 2015 study, David Weisburd proposes a “physical law of crime

concentration” [49]. Moving further than simply noticing that crime displays simple hotspot

behaviour, Weisburd proposes that “for a defined measure of crime at a specific microgeo-

graphic unit, the concentration of crime will fall within a narrow bandwidth of percentages

for a defined cumulative proportion of crime” [49]. Unpacking this statement, Weisburd

is claiming that not only are a majority of crimes concentrated at a minority of microgeo-

graphic units, but that regardless of context, the percentage of microgeographic units at
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Figure 2.5: Results from Weisburd demonstrating the disproportionately small percentage
of street addresses that generate %50 and %25 of all crime incidents, in five large cities [49,
Figure 3].

Figure 2.6: Results from Weisburd demonstrating the disproportionately small percentage
of street addresses that generate %50 and %25 of all crime incidents, in three small cities
[49, Figure 4].
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which a certain overall amount of crime occurs, is consistent. Putting this law in context of

the preceding results, regardless of the city examined, approximately 50% of crime occurs at

anywhere between 2.1% to 6.0% of all street segments and approximately 25% of crime oc-

curs at anywhere between 0.4% to 1.6% of all street segments. Through his work, Weisburd

has found that the “bandwidth of percentages for a defined cumulative proportion of crime”

representing the concentration of crime is quite small, a range of about 4% when consid-

ering 50% of all crimes and a range of less than 1.5% when considering 25% of all crimes [49].

Finally, it is important when building a law of crime concentration, to consider how crime

is distributed not only spatially, but through time. David Weisburd was one of the first to

consider this question, asking whether the tight hotspot behavior seen in crime distribution

is consistent over time, or whether crime hotspots can grow and shrink in intensity over time.

From the cities previously discussed, Weisburd was able to obtain sufficient microgeographic

data over a period of many years for Tel Aviv-Yafo, Seattle, Brooklyn Park, and New York

City. Examining Weisburd’s data, it is first abundantly clear that the overall number of

crime incidents in each city varies radically between years. Further, there is no discernible

global trend in the overall number of crime incidents between years in each city. That is,

when comparing overall crime levels per-year between each of the cities studied by Weisburd,

there are no notable patterns in overall crime levels shared between any of the cities. Of

interest however, is that the percentage of street segments at which both 50% and 25% of

crime occurs remains consistent over time, between all cities. Although these findings are

only preliminary, Weisburd comments that the stability of this percentage lends credence to

his proposed law of crime concentration, going as far to argue that that there is sufficient

evidence to consider this law as a scientific principle [49]. The results from this study on the

consistency of crime hotspots are enumerated in Figure 2.7.
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Figure 2.7: Results from Weisburd examining the variability in overall crime levels and in
crime concentrations over time [49, Figure 5].

2.3 Explanations for the hotspot behaviour of crime

and the possibility to predict crime hotspots

It is made clear by examining the empirical evidence that crime, regardless of type or context,

is arranged into tight spatial hotspots. This is a good motivation for developing a predictive

model of crime: The fact that crime displays such consistent patterns in space and time lend

themselves to being predicted and replicated using mathematical models. To create these

models however, requires a baseline understanding of the theoretical criminological frame-

works designed to explain the observed hotspot behaviour of crime. Any mathematical model

designed to “predict” criminal behaviour must not only make use of empirical data, but must

also align with frameworks that explain how crime is spatially distributed. Although this

is by no means an exhaustive review of research explaining the spatial behaviour of crime,

understanding basic principles will allow for a much richer discussion of the development of

the mathematical models for the prediction of crime.
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Beginning by speaking more generally, there are two leading models to explain why

arbitrary types of crime are generally arranged into tight spatial hotspots: The temporal

cognition model (sometimes called the state-dependence model) and the population hetero-

geneity model (sometimes called the flag model) [51].

The basic principle motivating the temporal cognition model is that following a successful

crime at a given place, a criminal is more likely to return to the same place and re-offend, a

process known as repeat-victimization [20]. This idea generally follows from rational choice

theory, a fundamental framework to understand criminal behaviour. Although not without

its detractors, rational choice theory states, in simple terms, that a criminal will weigh the

benefits and consequences of a potential crime, eventually making a rational and informed

decision about whether they will or will not commit a crime [7]. If, for a person about to

engage in a potential criminal act, the perceived benefits of a success outweigh the perceived

consequences of a failure, rational choice theory states that the person will behave rationally

and will follow through with the criminal act. Relating this framework back to the idea of

the temporal cognition model of crime and repeat-victimization, suppose a person commits

a successful residential burglary. In committing this crime, the person will learn a great deal

of information about the layout, weaknesses, etc., of the residence where they committed

their crime. Due to both the information gain and the boost in confidence following their

successful criminal act, the perceived chance of encountering consequences in subsequent

burglaries at the same residential address will decrease in the mind of the criminal. What

results is that at this address, in the mind of the criminal, the perceived benefits remain the

same where the perceived chance of encountering consequences decreases. Rational choice

theory thus states that the criminal is significantly more likely to re-victimize this same

address, motivating the process of repeat-victimization.

Using the framework of rational choice theory, the idea of repeat-victimization can be
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easily extended to that of near-repeat-victimization. Supposing again that a person com-

mits a successful residential burglary, they will not only learn about the exact residence in

which they burgled, but about the surrounding residences, and about the qualities of the

neighbourhood as a whole. Thus, the perceived chance of encountering consequences in

subsequent burglaries at neighbouring addresses will decrease in the mind of the criminal,

leading to increased rates of victimization at nearby addresses [19]. Of importance, is that

the temporal cognition model to motivate crime hotspots assumes nothing about the un-

derlying addresses being victimized: The only assumptions being made are that potential

criminals engage in rational choice theory. The temporal cognition model posits in fact that

there is a “beginning state” of criminal attractiveness, where all addresses are equally as

attractive to potential criminals. It is only after a number of seemingly “random” criminal

acts have occurred, that certain places become hotspots for crime. The complete lack of

reliance on geographic information in the temporal cognition model lends itself well to the

fact that crime hotspots seem to form regardless of context, as seen in the preceding section.

This framework to understand crime hotspots states that regardless of context, hotspots of

crime are destined to form due to the underlying psychology of criminals.

For decades rational choice theory has been well accepted within criminology, serving as

a strong framework with which to understand the hotspot behaviour of criminal activity. As

mentioned previously however, this is not the only means with which we are able to justify

hotspots of crime: The contrasting yet complimentary population heterogeneity model serves

to justify crime hotspots not through the psychology of individual criminals, but through

the geographic differences in the crime places themselves. The basic principle motivating the

population heterogeneity model is that (in stark contrast to the temporal cognition model)

there is no such “beginning state” where all places in a given environment are equally at-

tractive to potential criminals. To the contrary, this model states that all places in a given

environment have differing levels of criminal attractiveness due to potentially unquantifiable
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internal and external geographic factors. The population heterogeneity model states that

factors such as the amount of neighbouring green space, average household income, style

of architecture, distance to certain amenities, etc., all play a role in determining the crim-

inal attractiveness of an individual address. According to this model, potential criminals

encountering places of low criminal attractiveness are less likely to commit crimes, whereas

potential criminals encountering places of higher criminal attractiveness are thus more likely

to commit crimes.

Discussing these two general models to explain crime hotspots, David Weisburd comments

that these two frameworks are in no way mutually exclusive, and in reality quite probably

work in tandem to inform the developments of crime hotspots. Boiling down the insights

from these two models, we can identify two major factors that will influence a given place’s

criminal attractiveness and thus the possibility of a crime hotspot forming: The number

of successful crimes that have occurred recently at said place, and the baseline criminal

attractiveness of said place. These two factors can and have been leveraged, to form the

foundation for a mathematical model to predict crimes, to be discussed in the following

sections.
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Chapter 3

A Discrete Mathematical Model of
Criminal Behaviour

In their 2008 paper “A Statistical Model of Criminal Behavior” [44], authors Martin B.

Short et al. introduced a continuous mathematical model of residential burglary, building on

recent advancements in the study of the criminology of places. This model uses a system of

reaction-diffusion partial differential equations (PDEs) to model how both criminal attrac-

tiveness and criminal density evolve over time in idealized urban environments. The PDE

model introduced by Short et al. has had deep implications not only within the study of envi-

ronmental criminology, but within the day-to-day operations of many police departments: A

number of technology start-ups took this model and implemented it into commercial software

that police departments today are currently using to influence their decisions on what places

within their jurisdictions to target [27, 38]. Though there have been critiques of regimes of

proactive policing and predictive policing software more generally (see both Chapter 6 and

[22, 40, 1] to name a very small few critical articles), there has been a relative lack of critical

work examining the base model introduced by Short et al. in [44]. A critical examination

of the model of criminal behaviour as introduced by Short et al. is the principal goal of

this project, and the following three chapters will follow the development of and perform

numerical trials with this model.

Before diving into a discussion of the continuous model of residential burglary introduced
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by Short et al. in [44], it is important to provide a detailed discussion of the origins of this

model. Building on the criminological work from the previous chapter, we begin by describing

how both the temporal cognition and population heterogeneity models of criminal behaviour

discussed previously can be leveraged to create a discrete model of criminal behaviour. We

then summarize the development of the discrete model of residential burglary provided by

Short et al., in [44]. Following this, we provide the results from our own numerical simulations

in Python using this discrete model. A discussion of the intricacies of this discrete model

will allow for a much richer discussion of the continuous model of residential burglary in the

following chapter.

3.1 Motivating a Discrete Model of Criminal Behaviour

Recall from the previous chapter that there is extensive empirical evidence indicating that

regardless of type, crime appears to be arranged into tight spatial hotspots (see [35, 43,

11, 50, 49]). The discrete model of residential burglary proposed by Short et al. seeks to

replicate this behaviour, building on criminological frameworks that explain this hotspot

behaviour. Recall from the previous chapter that criminologists have proposed a number of

theories attempting to explain why regardless of urban environment, crime is generally very

concentrated in space. The two leading models justifying crime hotspots are the temporal

cognition model of criminal behaviour and the population heterogeneity model of criminal

behaviour [49]. Put in very simple terms, the temporal cognition model of criminal behaviour

states that following a successful crime, a criminal is more likely to return to the same lo-

cation or a nearby location to re-offend. These processes, known as repeat victimization

and near-repeat victimization respectively are well accepted within criminology literature

and are considered to be one of the fundamental reasons behind crime hotspot formation.

The second of the two models to justify crime hotspots, the population heterogeneity model

of criminal behaviour, states that fundamentally each potential crime place within a larger
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environment has a differing level of baseline criminal attractiveness and that potential crim-

inals are far more likely to victimize a site that is relatively more attractive when compared

to the other places in an environment. When combined, the temporal cognition and popu-

lation heterogeneity models of criminal behaviour form the foundation used by Short et al.

to build their numerical model of criminal behaviour.

It should be noted, that while the above two models work well as theoretical tools to

explain the spatial dynamics of crime, they should only be understood as more general ex-

planations for these dynamics. In reality, when examining specific types of crime there are a

number of more complicated factors to take into consideration: As an example, consider the

case of motor vehicle thefts. As the potential targets for motor vehicle thefts (the vehicles

themselves) are able to move throughout space, it stands to reason that the dynamics under-

lying this type of crime are more complicated than say, the dynamics underlying residential

burglary. Short et al. have taken this into consideration and have opted to restrict their

initial model to the case of residential burglary. They comment that “residential burglary

[is] in many ways the simplest crime type, since mobile offenders are coupled to stationary

target sites, and further complexity arising from the relative movement between the agents

at play may be ignored.” [44].

3.2 Building a Discrete Model of Criminal Behaviour

The discrete model of residential burglary introduced by Short et al. (as originally described

in [44]) is composed of two components: The houses where crimes may occur and a collection

of criminals that are able to move freely between neighbouring houses. The model generally

allows for the houses to be arranged arbitrarily, though for the sake of simplicity, Short et al.

opt for the houses to be arranged on a rectangular grid. Each house has a value representing

criminal attractiveness, which is the sum of the underlying attractiveness of the site (see the
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population heterogeneity model of criminal behaviour discussed previously) with a “dynamic

component of criminal attractiveness” which is set according to the number of recent crimes

occurring nearby (see the temporal cognition model of criminal behaviour discussed previ-

ously). Within this model, criminals are generated at a steady rate across the grid of houses

and will be removed from the grid once they have committed a burglary (modelling the fact

that criminals will often “lie low” for a period of time after offending). Each criminal has

the potential to commit a burglary according to the criminal attractiveness of each site. If

a criminal does not commit a burglary, they will move to an adjacent site biased towards

neighbouring sites with higher criminal attractivenesses.

Moving now to discuss the discrete model of criminal behaviour in more detail, consider a

discrete two-dimensional rectangular lattice with spacing l to represent potential residences.

The position of each lattice point (or, site) is given by s = (i, j) and the quantity δt is the

discrete time interval over which the model is to be updated to a new state. Note that the

choice of l and δt will specify the speed at which criminals move throughout the lattice,

and thus the choice of the two quantities must align with real-world behaviour. The overall

“criminal attractiveness” of a given lattice point s at a given time t is given by As(t) ∈ [0,∞).

Note that As(t) is able to vary over time, to allow for the criminal attractiveness of a given

site to vary according to the repeat and near-repeat victimization effects discussed previously.

As(t) is thus defined to be the sum of two components:

As(t) = A0
s +Bs(t) (3.1)

where A0
s represents the underlying criminal attractiveness of a given site s (a quantity that

is not allowed to vary over time) and Bs(t) represents the dynamic component of criminal

attractiveness (a quantity to represent neighbourhood effects on the overall criminal attrac-

tiveness).
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Throughout the lattice, criminals are generated at each lattice point at a rate Γ. Over

each time-step of length δt criminals are able to perform one of two actions: They are able to

either burglarize their current site or move to an adjacent site based on the attractiveness of

adjacent sites. For a criminal beginning at site s, over the time step [t, t+ δt] the probability

that the criminal will burglarize site s is given by:

ps(t) = 1− e−As(t)·δt. (3.2)

This probability function is chosen by Short et al. using a standard Poisson process, given

that the expected number of burglaries at site s over the time step [t, t + δt] is As(t) · δt.

Note, that the higher the criminal attractiveness is at a site s, the higher the probability

that a criminal will burglarize site s. Further, note that the longer the discrete time-step δt

is the greater the chance site s will be burglarized. Upon a successful burglary, the criminal

will be immediately removed from the grid. If however, for a criminal at site s, over the time

step [t, t+ δt], no burglary occurs, the criminal will instead move to a random neighbouring

lattice point with a bias towards neighbouring sites of higher criminal attractivenesses. Let

Ns denote the set of all sites neighbouring s. Given that the criminal does not burglarize s

during the current time step, the probability that the criminal will move to site n ∈ Ns is

given by:

qs→n(t) =
An(t)∑
i∈Ns

Ai(t)
. (3.3)

With this, the behaviour of criminals throughout the lattice has been entirely specified.

What remains is to discuss how the dynamic component of criminal attractiveness, Bs(t),

evolves over time. Recall from previous discussions that, after being victimized, a given

location and its neighbours will experience a heightened risk of being re-victimized (this
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is the repeat and near-repeat victimization behaviour discussed in [49]). Put differently,

we would expect that for a site s, after being victimized, its overall criminal attractiveness

should increase. To first model the repeat victimization behaviour, Short et al. begin by

introducing the quantity ω to represent the rate at which the dynamic component of criminal

attractiveness decays. Further, the quantity θ is introduced to represent the amount by

which an individual burglary will increase the criminal attractiveness of a site and Es(t)

is introduced to represent the number of burglaries occurring at site s over the time step

[t, t+ δt]. Bs(t) is updated between time steps according to:

Bs(t+ δt) = Bs(t)(1− ω · δt) + θEs(t). (3.4)

Describing equation (3.4) in words, between time-steps the dynamic component of crimi-

nal attractiveness will experience both some decay proportional to ω and δt and some growth

due to the recent number of burglaries occurring at site s (Es(t)). Equation (3.4) accounts

for repeat victimization effects at an individual site s, though does not take into account

the effect that burglaries at sites neighbouring s have on the criminal attractiveness of site s

(near-repeat victimization effects). To account for this, Short et al. introduce the quantity η

to represent the significance of neighbourhood effects on the dynamic component of criminal

attractiveness of site s. Equation (3.4) can then be modified to account for near-repeat

victimization effects as follows:

Bs(t+ δt) =

[
(1− η)Bs(t) +

η

z

∑
i∈Ns

Bi(t)

]
(1− ω · δt) + θEs(t), (3.5)

where z is simply the number of sites that neighbour s (put differently, z = |Ns|). Describ-

ing equation (3.5) in words, it is functionally identical to equation (3.4) but instead of the

dynamic component of criminal attractiveness at site s decaying based on its value during

the previous time-step, it is instead modified based on a weighted average of each of the

dynamic components of criminal attractiveness from all sites neighbouring s. If the average
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Figure 3.1: Flowchart from Short et al. representing a single time step from the discrete
model of residential burglary, modified slightly to reference the correct equations in this
document [44, Figure 2]

.

values of the dynamic components of criminal attractiveness over each site neighbouring s

are actually greater than the dynamic component of criminal attractiveness at site s, then

Bs(t + δt) will increased based on the higher attractivenesses at neighbouring sites. At the

end of each time step the dynamic component of criminal attractiveness is updated according

to the above rule to simulate the process of repeat and near-repeat victimization.

A summary flowchart of the discrete model adapted from Short et al. is provided in

Figure 3.1. In addition, a table of all free parameters of the discrete model along with their

potential ranges is included in Table 3.1.

Though the discrete model of residential burglary was ultimately designed by Short et al.

to derive their continuous model of residential burglary, there are still benefits to analysing

the discrete model in isolation. A number of simulations of residential burglary are included

in [44], though I opt here to perform a more extensive number of simulations using a wider

variety of parameters. My Python code implementing this discrete model is included in
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Param. Desc. Range
l Distance between adjacent lattice points (0,∞)
δt Duration of one time step (0,∞)
A0

s Baseline crim. attractiveness Mm×n(R+)
Γ Rate of generation of criminals at each lattice point [0,∞)
ω Decay rate of dynamic component of crim. attractiveness [0,∞)
θ Crim. attractiveness increase amt. due to one burglary [0,∞)
η Significance of neighbourhood effects on crim. attractiveness [0, 1]

Table 3.1: All free parameters in the discrete model of residential burglary along with de-
scriptions and available ranges.

Appendix A, and results from my simulations will be discussed in the following section.

3.3 Results from Simulations Using the Discrete Model

of Criminal Behaviour

Using my implementation of Short et al.’s discrete model of residential burglary [44] included

in Appendix A, I performed four large-scale simulations with different parameter sets. For

all four trials I used a 100 × 100 rectangular lattice, with l = 1 and δt = 0.01. Each sim-

ulation also set A0
s = 1/30 for all lattice points s and set ω = 1/15. Following the work

done by Short et al. in [44], the only parameters allowed to vary between trials were η (the

significance of neighbourhood effects), Γ (the rate of criminal generation), and θ (the amount

to increase a site’s criminal attractiveness due to one burglary). The choices of parameters

are taken from the trials performed in [44] and are shown in Table 3.2.

Each of the four simulations using the discrete model of residential burglary was run

for 1000 time steps, with no criminals initially present on the grid. Snapshots from each

of the four trials are included in Figures 3.2, 3.3, 3.4, and 3.5 respectively. In each of the

four figures, criminal attractiveness is plotted as a heat-map: Black regions represent areas

where the dynamic component of criminal attractiveness is equal to zero (that is to say, the

32



Trial η Γ θ
A 0.2 0.019 0.56
B 0.2 0.002 5.6
C 0.03 0.019 0.56
D 0.03 0.002 5.6

Table 3.2: Parameter choices obtained from [44] for each of the four simulations using the
discrete model of residential burglary as shown in Figures 3.2 through 3.5.

criminal attractiveness at such a site is only composed of the static component, A0 = 1/30).

In contrast, lighter regions represent areas of higher criminal attractiveness. We will discuss

these results in detail in Chapter 5.
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Figure 3.2: Trial A simulation results from the discrete model of residential burglary [44],
using the parameters given for Trial A in Table 3.2.
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Figure 3.3: Trial B simulation results from the discrete model of residential burglary [44],
using the parameters given for Trial B in Table 3.2.
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Figure 3.4: Trial C simulation results from the discrete model of residential burglary [44],
using the parameters given for Trial C in Table 3.2.
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Figure 3.5: Trial D simulation results from the discrete model of residential burglary [44],
using the parameters given for Trial D in Table 3.2.
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Chapter 4

A Continuous Mathematical Model of
Criminal Behaviour

4.1 Partial Differential Equations and Their Solutions

At a high level, a differential equation is simply an equation involving a function and its

derivatives with respect to one or more independent variables. If a differential equation

relates a function in one variable with its derivatives, then it is known as an ordinary dif-

ferential equation (ODE). Further, the order of an ODE is simply the order of the highest

derivative included in the ODE. Let y : R → R be dependant on x and Cn continuous, and

let y(k) denote the k-th derivative of y. The general form of an n-th order ODE (sometimes

called the implicit form of an n-th order ODE) is:

f(x, y, y′, y′′, . . . , y(n)) = 0, (4.1)

where f is an arbitrary function f . As a more concrete example, consider the following

first-order ODE:

y′(x)− cos(x) · y(x) = 0, x ∈ R. (4.2)

It can be easily verified that the solution to the above ODE is y(x) = esin(x) + C for an

arbitrary C ∈ R. Note that there is an infinite family of solutions to this ODE, parametrized
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by the constant C. When coupled with an initial condition of the form y(x0) = C for some

x0 ∈ R, a first-order ODE, under appropriate assumptions, will have precisely one exact

solution [14]. The combination of an ODE together with an initial condition is often called

an initial value problem (IVP or IVODE). Consider again the same first-order ODE, this

time with an initial condition:

y′(x)− cos(x) · y(x) = 0, y(0) = 2, x ∈ R. (4.3)

As before, the solution to this ODE is y(x) = esin(x) + C, but using the initial condition

one can substitute x = 0 into this exact solution to obtain C = 1. Hence, the unique exact

solution to the above IVP is y(x) = esin(x) + 1.

Continuing, note that for a general n-th order ODE there will be an infinite family of

solutions, parametrized by n constants {C1, . . . Cn}. In this more general case there are

several ways to assert a unique exact solution. Two notable examples being either by spec-

ifying a set of n initial conditions at the same x0 ∈ R of the form {y(x0) = C1, y
′(x0) =

C2, . . . , y
(n−1)(x0) = Cn} (resulting again in an IVP), or by specifying n conditions at differ-

ent points over the problem domain of the form {y(x0) = C1, y(x1) = C2, . . . , y(xn−1) = Cn},

resulting in what is known as a multi-point value problem (BVP, or BVODE). While we do

not include a discussion of the techniques to compute exact solutions to both IVPs and

BVPs here, of importance is the idea that n additional conditions must be imposed on an

n-th order ODE to assert an exact solution

If a differential equation relates a function in multiple variables with its partial deriva-

tives, then said equation is known as a partial differential equation. As with ODEs, the

order of a PDE is simply the order of the highest partial derivative included in the PDE.

Often, PDEs that model real-world phenomena consist of a function with only two indepen-
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dent variables (normally one variable representing time and one representing space, or two

variables representing space) with its partial derivatives. Let u(x, t) : R × [0,∞) → R be

C2-continuous in both x and t. Further, let ux(x, t) and uxx(x, t) denote the first and second

derivatives of u with respect to x, and let ut(x, t) and utt(x, t) denote the first and second

derivatives of u with respect to t. The general form (sometimes called the implicit form) for

a second-order PDE in one spatial variable and one time variable is as follows:

f (x, t, u(x, t), ux(x, t), ut(x, t), uxx(x, t), utt(x, t)) = 0, (4.4)

where f is an arbitrary function. While a general theory concerning n-th order PDEs is

outside the scope of this project, it should be noted that the behaviour of PDEs can be

roughly categorized into three separate categories [14]:

1. Hyperbolic PDEs are those that are time-dependant and do not have solutions evolving

towards a steady-state.

2. Parabolic PDEs are those that are time-dependant and do have solutions evolving

towards a steady-state.

3. Elliptic PDEs are those that are time-independent, instead depending on only spatial

variables.

For an arbitrary higher order PDEs, it should be noted that the PDE may exhibit dif-

ferent types of behaviour at a number of different regions throughout the problem domain.

Regardless, the above terminology allows for a richer discussion of the solution behaviour of

a number of PDEs.

As is the case with ODEs, a PDE by itself will generally have an infinite family of

solutions parametrized by a number of constants. Depending on the general behaviour of

a PDE, different combinations of initial and boundary conditions are required to assert the
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Equation Type Examples of Req. Conditions
(4.5) Hyperbolic I.C. u(x, 0) and left B.C. bl(a, t)
(4.6) Parabolic I.C. u(x, 0), left B.C. bl(a, t), and right B.C br(b, t)
(4.7) Elliptic Four B.C.s: u(a, y), u(b, y), u(x, c), u(x, d)

Table 4.1: Different types of PDEs, and the additional initial conditions (ICs) and boundary
conditions (BCs) required to assert unique solutions.

existence of a unique exact solution. Note that in contrast to the ODE case, for a PDE both

the initial and boundary conditions are continuous functions instead of scalar quantities. Let

a, b, c, d ∈ R such that a < b and c < d. Consider the following three PDEs:

ut(x, t) = ux(x, t), a ≤ x ≤ b, t ≥ 0 (The 1D wave equation) (4.5)

ut(x, t) = uxx(x, t), a ≤ x ≤ b, t ≥ 0 (The 1D heat equation) (4.6)

0 = uxx(x, y) + uyy(x, y), a ≤ x ≤ b, c ≤ y ≤ d (The 2D Laplace equation) (4.7)

The above three PDEs (equations (4.5), (4.6), (4.7)) are examples of hyperbolic, parabolic,

and elliptic PDEs, respectively. To help describe how initial and boundary conditions must

be used in each of these three cases, Table 4.1 describes examples of potential additional

constraints that must be placed on each of these three PDEs to assert the existence of unique

exact solutions. In addition to this, Figure 4.1 provides a reference for the problem domains

for equations (4.5), (4.6), and (4.7).

As a final note, there are a number of different potential boundary conditions that can

be applied to a PDE. Consider an arbitrary parabolic PDE in one space and one time di-

mension. As mentioned previously, to assert the existence of a unique exact solution this

PDE requires two boundary conditions (as well as an initial condition). Table 4.2 uses this

type of PDE as an example to outline the two most common types of boundary conditions

that can be used in conjunction with a PDE to assert a unique exact solution.
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Figure 4.1: Visual depiction of the problem domains of hyperbolic, parabolic, and elliptic
PDEs in one spatial dimension and one time dimension. The top left diagram shows a
typical hyperbolic PDE problem domain. The top right diagram shows a typical parabolic
PDE problem domain. The bottom diagram shows a typical elliptic PDE problem domain.
Bolded lines indicate either initial or boundary conditions that must be imposed on the PDE
to assert a unique exact solution.

Type of B.C. General Form Note
Dirichlet u(a, t) = bl(a, t), u(b, t) = br(b, t) Boundary of u specified explicitly
Neumann ut(a, t) = bl(a, t), ut(b, t) = br(b, t) Boundary of ut specified explicitly

Table 4.2: The two most common types of boundary conditions that can be imposed on
PDEs, with their general forms.
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There are a number of other potential types of boundary conditions that can be imposed

on a PDE, though these two are by far the most common when considering PDEs to model

real-world phenomena. Very often as well, “no-flux Neumann boundary conditions” are

considered, where the value of the PDE along the given boundary is uniformly zero. In

terms of the notation included in Table 4.2, no-flux Neumann boundary conditions would

take the form ux(a, t) = ux(b, t) = 0. Ultimately, the continuous model of residential burglary

to be discussed in the following section will be based on two parabolic PDEs with no-flux

Neumann boundary conditions.

4.2 Deriving a Continuous Model of Criminal Behaviour

As discussed in the previous section, differential equations lend themselves well to the math-

ematical modelling of continuous real-world phenomena. Turning back to the discrete model

of residential burglary as introduced by Short et al. in [44], there are a number of key theoret-

ical problems with this discrete model that can be addressed using a continuous model based

on differential equations. Foremost, while crime occurrence is discrete in nature, criminal

density and criminal attractiveness are better represented by functions that are continuous

throughout space. The discrete model of residential burglary only considers criminal density

and attractiveness at its discrete lattice points, a problem that is addressed by modelling

residential burglary using PDEs. As well, we would prefer that a model of residential bur-

glary to be deterministic in nature, not relying on weighted random walks as the discrete

model does. Building a continuous model of residential burglary allows for an alternative

and generally more robust model.

A number of modifications must be made to Short et al.’s discrete model of residential

burglary to obtain a continuous model of residential burglary. The final continuous model is

a system of two partial differential equations, one concerning how the dynamic component
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of criminal attractiveness evolves over time and space and the other concerning how criminal

density evolves over time and space. I begin here with the simpler derivation as originally

presented in [44], to obtain the PDE concerning the dynamic component of criminal attrac-

tiveness. To begin, recall that within the discrete model for a given site s, the dynamic

component of criminal attractiveness at s is updated between time-steps according to the

following rule:

Bs(t+ δt) =

[
(1− η)Bs(t) +

η

z

∑
i∈Ns

Bi(t)

]
(1− ω · δt) + θEs(t), (4.8)

where we recall that Bs(t) is the dynamic component of criminal attractiveness at site s at

time t, Es(t) is the number of criminal events occurring at site s over the time-step beginning

at time t, Ns is the set of all sites neighbouring s, δt is the time step, and η, z, ω, θ are all

parameters (originally introduced in Table 3.1). Essentially, this equation governs how to

update the dynamic component of criminal attractiveness at a given site s while simulating

criminal behaviour over the time-step beginning at time t. The first step in deriving a

PDE representing the dynamic component of criminal attractiveness is to modify the above

equation to represent the expected value of Bs(t) after one time-step. To do so, simply

substitute Es(t) = ns(t)ps(t) as follows:

Bs(t+ δt) =

[
(1− η)Bs(t) +

η

z

∑
i∈Ns

Bi(t)

]
(1− ωδt) + θns(t)ps(t), (4.9)

where ns(t) is the number of criminals at site s at time t and ps(t) is the probability that

given a criminal is at site s, they will burglarize s at time t. This new formula is further

modified by converting ns(t) from an absolute measure to a density function, ρs(t) = ns(t)/l
2

(recall, l is the spacing between adjacent lattice points). This leads to a modification of the
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above formula as follows:

Bs(t+ δt) =

[
(1− η)Bs(t) +

η

z

∑
i∈Ns

Bi(t)

]
(1− ωδt) + θl2ρs(t)ps(t). (4.10)

Next, consider the discrete spatial Laplacian of Bs(t), defined as:

∆Bs(t) =

∑
i∈Ns

(Bi(t)−Bs(t))

l2
. (4.11)

The discrete spatial Laplacian is useful in this context as taking the limit of ∆Bs(t) as

the mesh spacing l tends to zero results in the continuous Laplacian of Bs(t). Put differently,

for s = (x, y), let B(x, y, t) = liml,δt→0{Bs(t)}, and proceed as follows:

lim
l,δt→0

∆Bs(t) = ∇2B =
∂2B

∂x2
+

∂2B

∂y2
. (4.12)

Using the discrete spatial Laplacian, equation (4.10) can be modified as follows (recalling

that Ns denotes the set of sites that directly neighbour s and that z indicates the number

of sites neighbouring s):

Bs(t+ δt) =

[
(1− η)Bs(t) +

η

z

∑
i∈Ns

Bi(t)

]
(1− ωδt) + θl2ρs(t)ps(t),

=

[
Bs(t)−

ηzBs(t)

z
+

η

z

∑
i∈Ns

Bi(t)

]
(1− ωδt) + θl2ρs(t)ps(t),

=

[
Bs(t) +

η

z

∑
i∈Ns

(Bi(t)−Bs(t))

]
(1− ωδt) + θl2ρs(t)ps(t),

=

[
Bs(t) +

ηl2

z

∑
i∈Ns

(Bi(t)−Bs(t)) /l
2

]
(1− ωδt) + θl2ρs(t)ps(t),

=

[
Bs(t) +

ηl2

z
∆Bs(t)

]
(1− ωδt) + θl2ρs(t)ps(t). (4.13)

Continuing, let l2/δt be fixed with a value of D, and let θδt be fixed with a value of ϵ.
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Subtract Bs(t) from each side then divide each side by δt to obtain the following:

Bs(t+ δt)−Bs(t)

δt
=

[
Bs(t) +

ηl2

z
∆Bs(t)

]
(1− ωδt) + θl2ρs(t)ps(t)−Bs(t)

δt
,

=
ηl2

zδt
∆Bs(t)−

ωηl2

z
∆Bs(t)− ωBs(t) +

θl2

δt
ρs(t)ps(t),

=
ηD

z
∆Bs(t)−

ωηl2

z
∆Bs(t)− ωBs(t) + θDρs(t)ps(t). (4.14)

Finally, to obtain the continuum version of equation (4.8), take the limit of both sides

of equation (4.14) as both l and δt tend to zero (recalling the definition of ps(t) from the

previous chapter), as follows:

lim
l,δt→0

{
Bs(t+ δt)−Bs(t)

δt

}
= lim

l,δt→0

{
ηD

z
∆Bs(t)−

�
���

���ωηl2

z
∆Bs(t)− ωBs(t) + θDρs(t)ps(t)

}
,

∂B

∂t
=

ηD

z
∇2B − ωB + lim

l,δt→0
{θDρs(t)ps(t)} ,

=
ηD

z
∇2B − ωB + lim

l,δt→0

{
θDρs(t)

[
1− e−As(t)δt

]}
,

=
ηD

z
∇2B − ωB + lim

l,δt→0

{
θDρs(t)

[
1−

∞∑
n=0

(−As(t)δt)
n

n!

]}
,

=
ηD

z
∇2B − ωB+

lim
l,δt→0

θDρs(t)

1− 1 + As(t)δt+

�
���

���
��∞∑

n=2

(−As(t)δt)
n

n!

 ,

=
ηD

z
∇2B − ωB + lim

l,δt→0
{θDρs(t)As(t)δt} ,

=
ηD

z
∇2B − ωB + lim

l,δt→0
{ϵDρs(t)As(t)} ,

∂B

∂t
=

ηD

z
∇2B − ωB + ϵDρA, (4.15)

which is the final equation presented in [44] representing the continuous version of equation

(4.8). A small modification to this equation is obtained by recalling that the overall criminal

attractiveness A is the sum of the dynamic component of criminal attractiveness B with a
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component that is static with respect to time, A0. Equation (4.15) can thus be modified to

be written in terms of the overall criminal attractiveness, A as follows:

∂A

∂t
=

ηD

z
∇2A− ω

(
A− A0

)
+ ϵDρA. (4.16)

This is the first of the two PDEs composing the continuous model of residential burglary.

To obtain the second PDE, more work is required than simply rearranging and limiting an

existing equation. Note that while the goal is for the second PDE to represent how criminal

density as a continuous function evolves over time, the discrete model does not contain

an “update rule” similar to that of equation (4.8), governing how criminal density changes

between time-steps in the discrete model. To begin the derivation of a PDE to represent how

criminal density evolves with respect to time, the following equation is introduced to give

the “expected” number of criminals at site s after the time-step beginning at time t. Note

that, as Ns denotes the set of all sites neighbouring s, for an arbitrary i ∈ Ns, Ni denotes

the set of all sites neighbouring i:

ns(t+ δt) = As(t)
∑
i∈Ns

ni(t) [1− pi(t)]∑
j∈Ni

Aj(t)

+ Γδt. (4.17)

To unpack the meaning behind this “update rule”, consider from the discrete model of

residential burglary that there are only two ways by which a criminal can be at a given

site s after a time-step: Either they moved from an adjacent site i during the time-step,

or they were generated at site s during the time-step. To account for the expected number

of criminals moving from adjacent sites during the time-step, consider that for an arbitrary

site i neighbouring s, ni(t) [1− pi(t)] gives the expected number of criminals that will chose

not to burglarize site i and that will instead opt to move to an adjacent site. Multiplying

this value by As(t)/
∑
j∈Ni

Aj(t) , the probability that a criminal will move from site i to site s

given they opted to move sites, will give the expected number of criminals that moved from
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site i to site s over the time-step. Finally, considering the summation of this value over all

sites neighbouring s, gives the expected number of criminals arriving at site s from adjacent

sites over the current time-step. To account for criminals being generated at site s, the term

Γδt is introduced, simply being the rate of criminal generation multiplied by the duration of

the given time-step.

As was the case in deriving the continuum version of equation (4.8), the above “update

rule” for ns(t + δt) will allow for the derivation of a continuum equation representing how

criminal density evolves over time. This derivation involves computing the following limit:

lim
l,δt→0

ρs(t+ δt)− ρs(t)

δt
= lim

l,δt→0

 1

l2δt

As(t)

∑
s′∼s

l2ρs′(t)[1− ps′(t)]∑
s′′∼s′

As′′(t)

+ Γδt− l2ρs(t)

 .

(4.18)

Once evaluated, the above limit results in the following continuum equation (where Γ/l2

is fixed and set equal to γ):

∂ρ

∂t
=

D

z
∇
[
∇ρ− 2ρ

A
∇A

]
− ρA+ γ. (4.19)

Together, equations (4.16) and (4.19) form a system of PDEs representing the continu-

ous model of residential burglary, as initially introduced by Short et al. [44]. Both PDEs

are parabolic in nature and thus require left and right boundary conditions along each of

the spatial axes considered (these equations can either be considered in one or two spatial

dimensions, along with one time dimension). No-flux Neumann boundary conditions suf-

fice for both equations (i.e. for the one-dimensional case, Ax(0, t) = Ax(L, t) = ρx(0, t) =

ρx(L, t) = 0 with L being the length of the spatial domain). It should be noted that both

the one-dimensional and two-dimensional cases are of theoretical interest: Whereas the two-

dimensional version of the PDE system can be interpreted as representing crime throughout
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an entire city, the one-dimensional version of the PDE system can be interpreted as repre-

senting crime along an individual street.

It turns out that one is not able to simply take this system of PDEs and obtain exact

solutions for A and ρ however. To address this issue, for the one-dimensional case we are

able to use software to compute approximate error-controlled solutions to the continuous

model of residential burglary. Before examining numerical solutions to the one-dimensional

continuous model, the BACOL and BACOLI solvers are discussed as a means by which

error-controlled numerical solutions to the continuous model of residential burglary may be

computed.

4.3 The BACOLI Software Package to Compute Nu-

merical Solutions to Partial Differential Equations

Though one is able to build mathematical models to represent real-world phenomena using

systems of PDEs, it is an entirely separate challenge to obtain solutions to these PDE sys-

tems. Very often in fact, the PDE systems that are used in real-world mathematical models

are impossible to solve exactly. Because of this difficulty there is a great deal of work dedi-

cated to studying and developing methods to approximate solutions to systems of PDEs. As

is the case with many of the other sub-fields of numerical analysis, an important problem is to

not only compute approximate solutions to PDE systems but to compute accurate estimates

of the error associated with these approximate solutions. If a software package is able to

estimate the error associated with a computed solution, it can compute several approximate

solutions, readjusting the parameters of the method until an appropriate solution is obtained

for which the associated error estimate lies within a user-defined tolerance, a process known

as error control.
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Within this section I discuss BACOL and BACOLI, two robust solvers written in the

Fortran programming language that can compute error controlled approximate solutions to

one-dimensional time-dependant systems of PDEs. While these two solvers use the same

underlying algorithm to compute their approximate solutions, they use related but differ-

ent methods to generate their error estimates. I explain how these two software packages

use DASSL [32], a differential-algebraic system solver, along with a collocation method to

compute their approximate solutions. I then discuss how both solvers are able to generate

error estimates for their approximate solutions and how they implement error control. I then

include in Appendix B an approximate solution to the one-dimensional Burgers’ equation

using BACOLI PY, a Python wrapper for BACOLI.

4.3.1 The collocation method to approximate solutions to partial

differential equations

Underlying both the BACOL and BACOLI solvers is a collocation method, which is used to

compute approximate solutions to systems of PDEs [14]. Consider the general explicit form

for a system of second-order PDEs in one spatial dimension, where a bold symbol represents

a vector quantity:

ut(t, x) = f(t, x,u(t, x),ux(t, x),uxx(t, x)), x ∈ [0, 1], t ≥ t0, (4.20)

with initial conditions:

u(t0, x) = u0(x), x ∈ [0, 1], (4.21)

and separated boundary conditions:

bleft(t,u(t, 0),ux(t, 0)) = 0, bright(t,u(t, 1),ux(t, 1)) = 0, t ≥ t0. (4.22)
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For simplicity of presentation, the spatial domain is assumed to be [0, 1], though BACOL,

and BACOLI are capable of dealing with arbitrary spatial domains of the form [a, b], where

a, b ∈ R [14, 48, 33]. The goal of the collocation method is to represent an approximate

solution, v(t, x), using a linear combination of known basis functions. Generally speaking,

given a set of C1-continuous basis functions {ϕi(x)}NC
i=1 defined on [0, 1], the collocation

method looks to find an approximate solution v(t, x) of the form:

v(t, x) =
NC∑
i=1

αi(t)ϕi(x), (4.23)

where the {αi(t)}NC
i=1 are time-dependant coefficients to be determined and where NC will

be defined shortly. To find these coefficients, we substitute v(t, x) into the PDE in equation

(4.20) and require that v(t, x) satisfies the PDE at a predefined set of collocation points

{ξi}NC
i=1 ⊂ [0, 1] with ξ1 = 0 and ξNC = 1. Performing this substitution for i = 2, . . . , (NC−1),

results in the following system of ODEs:

NC∑
j=1

α′
j(t)ϕj(ξi) = f

(
t, ξi,

NC∑
j=1

αj(t)ϕj(ξi),
NC∑
j=1

αj(t)ϕ
′
j(ξi),

NC∑
j=1

αj(t)ϕ
′′
j (ξi)

)
. (4.24)

It is simple to obtain a set of initial conditions for the above system of NC − 2 ODEs.

Imposing the condition that the approximate solution v(t, x) satisfies the initial condition for

the PDE system as given in (4.21) at the collocation points {ξi}NC−1
i=2 results in the following

linear system:

v(t0, ξj) =
NC∑
i=1

αi(t0)ϕi(ξj) = u0(ξj), j = 2, . . . , (NC − 2), (4.25)

where the {αi(t0)}NC
i=1 coefficients are easily determined using a linear system solver. Doing

so gives a complete set of initial conditions for the system of ODEs given in 4.24. As the

PDE itself is not defined for x = 0 nor for x = 1, instead of requiring that v(t, x) satisfies

the PDE at x = ξ1 = 0 and x = ξNC = 1, we require that v(t, x) satisfies the boundary

51



conditions at x = ξ1 = 0 and x = ξNC = 1 as follows:

bleft(t,v(t, ξ1),vx(t, ξ1)) = bleft

(
t,

NC∑
i=1

αi(t)ϕi(ξi),
NC∑
i=1

αi(t)ϕ
′
i(ξi)

)
= 0, (4.26)

bright(t,v(t, ξNC),vx(t, ξNC)) = bright

(
t,

NC∑
i=1

αi(t)ϕi(ξNC),
NC∑
i=1

αi(t)ϕ
′
i(ξNC)

)
= 0. (4.27)

Solving the IVODE system given by equations (4.24) and (4.25) together with the two

algebraic equations in equations (4.26) and (4.27) gives the {αi(t)}NC
i=1. For this type of

system, known as a Differential-Algebraic Equation (DAE) system, we can obtain solution

approximations using numerical software. One such DAE solver is DASSL [32]; this error-

control DAE solver is used in both BACOL and BACOLI [48, 33]. Using DASSL to compute

each of the {αi(t)}NC
i=1 functions, one is thus able to obtain an approximate solution to the

PDE system in equation (4.20).

Both BACOL and BACOLI use the same collocation method to compute approximate so-

lutions to systems of PDEs. First, BACOL and BACOLI begin by introducing an increasing

discrete spatial mesh:

0 = x0 < x1 < . . . < xN = 1. (4.28)

BACOL and BACOLI consider approximate solutions represented in terms of a basis

consisting of piecewise polynomials of degree p over each mesh sub-interval [xi, xi+1], i =

1, . . . , N , with C1-continuity imposed at each of the internal mesh points xi. The dimension

of the piecewise polynomial space over all of the spatial intervals is thus given by:

NC = N(p− 1) + 2. (4.29)

Instead of using globally supported basis functions {ϕi(x)}Ni=1 in their collocation scheme,
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BACOL and BACOLI use a B-spline basis {Bi(x)}NC
i=1, implemented using de Boor B-spline

package [8]. The reason a B-spline basis is used, is to ensure that each of the basis functions

is zero on a majority of the domain, greatly reducing the time complexity of the entire com-

putation [14]. Let v(t, x) be an approximate solution to a system of PDEs computed using

either BACOL or BACOLI. Using the B-spline basis, the sth component of the approximate

solution (given by vs(t, x)) is of the form:

vs(t, x) =
NC∑
i=1

γi,s(t)Bi(x), (4.30)

where the {γi,s(t)}NC
i=1 are time-dependant coefficients to be determined. Next, instead of

using NC globally defined collocation points, both BACOL and BACOLI chose the p − 1

Gaussian points defined relatively on each mesh subinterval [xi, xi+1], i = 1, . . . , N , to be

used as the NC collocation points. As with the more general collocation method, by requir-

ing that each component of the approximate solution vs(t, x) satisfy the PDE at the p − 1

Gaussian points over each of the mesh subintervals, in addition to requiring that the bound-

ary conditions are met, we obtain a DAE system which can be solved using DASSL. To solve

systems of DAEs, DASSL implements a special type of linear multi-step method, known as

the backwards differentiation method [8]. Of importance is the fact that DASSL functions

by taking discrete steps through the time domain, returning the values of its error-controlled

approximated solution at the end of each time step.

Both BACOL and BACOLI implement the same collocation method. The main difference

between the two solvers lies in the way that they compute their error estimates and implement

the process of error control, to be discussed in the following sections.
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4.3.2 Standard error control and local extrapolation error control

in BACOL

Though BACOLI is in a sense a refined version of BACOL, to understand BACOLI it is

essential to first understand how BACOL implements error control. Recall from the previous

section, that BACOL computes an approximate solution to a system of PDEs in the form of

a piecewise polynomial of degree p over the spatial mesh. This degree p computed solution is

what is ultimately returned to the user. In addition to this however, BACOL simultaneously

computes a second solution in exactly the same manner as the first, in the form of a piecewise

polynomial of degree p + 1. This degree p + 1 computed solution is hidden from the user

entirely, and is only used to compute estimates of the error associated with the degree p

computed solution. Let v(t, x) denote the approximate solution of degree p, where vs(t, x)

denotes the sth component of v(t, x). Note that the error associated with v(t, x) is O(hp+1),

where h is the maximum spatial mesh subinterval size [33]. Further, let v̄(t, x) denote the

approximate solution of degree p + 1, where v̄s(t, x) denotes the sth component of v̄(t, x).

Note that the error associated with v̄(t, x) is O(hp+2), where h is again the maximum spatial

mesh subinterval size [33]. Following each time step taken by DASSL, BACOL computes

an estimate of the error associated with each of the vs(t, x), each error estimate denoted by

Es(t). To do so, BACOL compares vs(t, x) with v̄s(t, x) for all s using the continuous L2

norm as follows:

Es(t) =

√∫ 1

0

(
vs(t, x)− v̄s(t, x)

ATOLs +RTOLs |vs(t, x)|

)2

dx, (4.31)

where t is the current time, and ATOLs and RTOLs denote the user-specified absolute error

tolerance for vs(t, x) and the user-specified relative error tolerance for vs(t, x), respectively.

As v̄s(t, x) has an error of O(hp+2) and vs(t, x) has an error of O(hp+1), considering their

difference will give an estimate of the error of vs(t, x).
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BACOL is not only able to compute error estimates for its approximate solutions, but

is able to adaptively modify the spatial mesh and recompute approximate solutions until

the corresponding error estimates lie within the absolute and relative tolerances as specified

by the user. If E(t) = max(Es(t)) ≥ 1, BACOL will perform a remeshing and will restart

from the beginning of the time step in an attempt to obtain an approximate solution with

a smaller error estimate. Further, if the normalized error estimates associated with each

subinterval defined by:

Êi =

√√√√∑
s

∫ xi

xi−1

(
vs(t, x)− v̄s(t, x)

ATOLs +RTOLs |vs(t, x)|

)2

dx, i = 1, . . . , N, (4.32)

are not all roughly the same size, BACOL will initiate a remeshing and will restart from

the beginning of the time-step. To perform a remeshing, BACOL will add and redistribute

spatial mesh points so that the normalized error estimates are quasi-equidistributed and so

that the overall error estimate should lie within the user-specified tolerances. BACOL is able

to iterate this process until the current time-step is successful. At that point, it will then

proceed to the next time-step. At the end of the computation, BACOL will return v(t, x) to

the user. This is referred to as standard (ST) error control, ensuring that there is an error

estimate for the entire returned computed solution that falls within a given user-defined

tolerance.

While the ST error control scheme is the only error control scheme that is actually

implemented within BACOL, there is a second error control method that BACOL could

use: Local extrapolation error control (LE). While not implemented in the source code for

BACOL, LE error control for BACOL would follow the exact same process as previously

outlined for the ST error control scheme but instead would propagate and return the higher-

accuracy solution v̄(t, x) based on the error estimates for the lower-accuracy solution v(t, x).

Though the Es(t) are not accurate error estimates for v̄(t, x), as v̄(t, x) is generally more
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accurate than v(t, x), the same process of error control as previously outlined will generally

be effective, resulting in the error associated with v̄(t, x) lying within the user-specified

tolerances. Ultimately, when implementing the LE error control scheme, BACOL would

return v̄(t, x) to the user together with the error estimate for v(t, x). In essence, the ST

error control scheme works by propagating the lower order approximation based on an error

estimate for that approximation, while the LE error control scheme works by propagating the

higher order approximation based on an error estimate for the lower order approximation.

In terms of performance, neither scheme is entirely more efficient than the other [34].

4.3.3 Interpolation-based error control in BACOLI

BACOLI has two built-in methods to compute error estimates and thus implement error

control: The SCI error control scheme and the LOI error control scheme. The SCI scheme

can be understood as an modification of the ST scheme found in BACOL, whereas the LOI

scheme can be understood as an modification of the LE scheme found in BACOL. I begin

here by discussing the SCI error control scheme.

The major issue with BACOL lies in the fact that it computes two full solutions to a

given system of PDEs, one of degree p and the second of degree p+ 1. The second solution

of degree p+ 1 is used exclusively to compute error estimates for the first solution of degree

p, thus more than doubling the time-complexity of BACOL to compute error estimates.

BACOLI addresses this issue by completely removing the computation of the approximate

solution of degree p+1. Instead, BACOLI makes use of what are known as superconvergent

points present in the approximated solution of degree p to obtain its error estimates.

Recall that for a solution of degree p computed by both BACOL and BACOLI, the overall

error associated with the solution is O(hp+1), where h is the maximum spatial mesh subinter-

val size [33]. It has been found empirically however, that for any arbitrary computed solution
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there are a number of special superconvergent points, where the error associated with the

solution at these specific points is much better, in some cases as high as O(h2(p−1)) [2]. As

well, it has been found that on each spatial mesh subinterval there are exactly p− 3 internal

superconvergent points where the error associated with these points is O(hp+2). Under the

SCI error control scheme, BACOLI constructs the SCI, a piecewise polynomial interpolant

with C1-continuity (implemented as a Hermite-Birkhoff interpolant [33]). Over each mesh

subinterval [xi, xi+1], i = 1, . . . , N , the SCI is built to interpolate the solution values at the

p − 3 internal superconvergent points with error O(hp+2), the solution values at the subin-

terval endpoints, xi and xi+1, along with their first derivatives, where the error is O(h2(p−1)),

and the solution values at the closest superconvergent points from each of the adjacent mesh

subintervals, where the error of the solution values is O(hp+2). This results in a total of p+3

interpolation points, and thus the interpolation error associated with the SCI is O(hp+3),

where h is the maximum spatial mesh subinterval size. As the errors associated with each of

the interpolation points is at worst O(hp+2), the error in the SCI is dominated by the error

of the superconvergent values used as interpolation points and the overall error of the SCI

is O(hp+2).

To implement the SCI error control scheme, BACOLI uses the SCI in exactly the same

way that BACOL uses the degree p+1 solution under its ST error control scheme. BACOLI

considers the continuous L2 norm between v(t, x) (with error of O(hp+1)) and the SCI (with

error of O(hp+2)) to obtain an error estimate for v(t, x). BACOLI is then able to adapt and

refine the spatial mesh in exactly the same manner as BACOL, to implement error control.

In many ways BACOLI works almost identically to BACOL, the only difference being that

the degree p + 1 solution computed in BACOL is replaced by the SCI in BACOLI. This is

why the SCI error control scheme in BACOLI can be considered as a modification of the ST

error control scheme present in BACOL.
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In much the same way, the LOI error control scheme in BACOLI can be considered as

a modification of the LE error control scheme present in BACOL, in this case replacing

the lower-accuracy solution with an interpolant. Recall that the high accuracy solution has

an error that is O(hp+2). To implement the LOI error control scheme, BACOLI begins by

constructing the LOI, a piecewise polynomial interpolant with C1-continuity. Over each

mesh subinterval [xi, xi+1], i = 1, . . . , N the LOI is built to interpolate solution values at

p− 3 internal points and the solution values at the subinterval endpoints xi and xi+1 along

with their first derivatives. The internal interpolation points are chosen so that the inter-

polation error of the LOI agrees asymptotically with the error of the collocation solution of

order p+ 1. Since it interpolates p+ 1 values, the LOI has an overall interpolation error of

O(hp+1). As the errors associated with the solution values are at worst O(hp+2), the error in

the LOI is dominated by the interpolation error, hence the overall error of the LOI is O(hp+1).

Recall from the discussion of the LE error control scheme, that BACOL would generate an

error estimate for the lower-accuracy solution then return the higher-accuracy solution. This

is valid as the error estimate for the lower-accuracy solution gives an upper bound for the

error of the higher-accuracy solution, thus being a valid error estimate for the higher-accuracy

solution. The LOI error control scheme implemented in BACOLI follows this template: The

LOI approximates the exact solution to the given PDE system with an overall error of

O(hp+1). Likewise, the approximate solution generated by BACOLI using the collocation

method approximates the exact solution to the given PDE system with an overall error of

O(hp+2). By using the continuous L2 norm as previously discussed, BACOLI creates an error

estimate for the LOI, which in turn is a valid error estimate for the approximate solution

obtained using collocation. BACOLI is then able to proceed with the process of error control

as previously discussed using the LOI. This is the LOI error control scheme as implemented

in BACOLI, a modification of the LE error control scheme as implemented in BACOL.
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4.4 Results and Discussion of Computed Solutions to

the Continuous Model of Criminal Behaviour

Using BACOLI, we are able to compute error controlled numerical solutions to the contin-

uous model of criminal behaviour as in introduced in Section 4.2. Note first however, that

BACOLI is only able to compute approximate error-controlled solution to PDEs in one spa-

tial dimension and one time dimension, whereas the PDE model of residential burglary is

given in two spatial dimensions and one time dimension. There are two ways to address this

incongruity: The first approach is to consider the PDE model of residential burglary in only

one spatial dimension, and extrapolate insights from the behaviour of this more simplified

model into two spatial dimensions. The second approach is to discretize the two-dimensional

PDE model of residential burglary into a large system of one-dimensional PDEs, approximat-

ing the entire 2D system. Unfortunately, my attempts to perform a spatial discretization of

the two-dimensional PDE system have not been compatable with the BACOLI solver, hence

only the first approach will be discussed in detail here.

Recall from Section 4.2 that the continuous model of residential burglary as proposed by

Short et al. in [44] is:

∂A

∂t
=

ηD

z
∇2A− ω

(
A− A0

)
+ ϵDρA, (4.16)

∂ρ

∂t
=

D

z
∇
[
∇ρ− 2ρ

A
∇A

]
− ρA+ γ, (4.19)

where (noting that we are considering only the one-dimensional case here), A(x, t) represents

the dynamic component of criminal attractiveness at a given point in time and space, ρ(x, t)

represents the overall criminal density at a given point in time and space, and no-flux Neu-

mann boundary conditions are imposed. Instead of using this statement of the continuous

model however, I will opt here to instead to use an equivalent restatement of the model
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provided by Tse and Ward in [46], which is as follows:

∂A

∂t
= ϵ2∇A− A+ ρA+ α, (4.33)

∂ρ

∂t
= D∇

[
∇ρ− 2ρ

A
∇A

]
− ρA+ γ − α (4.34)

where A(x, t) and ρ(x, t) are as defined previously, ϵ2 and D represent the diffusion coeffi-

cients of the criminal density, ρ, and criminal attractiveness, A, respectively, α represents

the static component of criminal attractiveness (assumed here to be constant over the entire

domain), and γ−α represents the rate at which criminals are re-introduced into the domain.

My reasoning for using this restatement of the continuous model of residential burglary is

twofold: Firstly, the statement of the model from equations (4.16) and (4.19) contains a

number of extraneous parameters which can be condensed into the dimensionless form pre-

sented in equations (4.33) and (4.34). Secondly, Tse and Ward give a much more detailed

account of choosing parameter values for equations (4.33) and (4.34) in [46] than Short et

al. do for equations (4.16) and (4.19) in [44]. It is for these reasons that we prefer the model

provided by Tse and Ward rather than the version of the model provided by Short et al. Re-

gardless, even though there are different parameters, the underlying models are the same [46].

It is not so straightforward however, to map parameter choices from simulations using

the discrete model of criminal behaviour as discussed in the previous chapter to simulations

using the continuous model of criminal behaviour expressed in equations (4.33) and (4.34).

Instead of attempting to correlate parameters between the two models, I instead used in-

sight from Tse and Ward in [46] for choosing optimal parameters designed to illustrate a wide

range of possible behaviours of the solutions to the continuous model of residential burglary.

As with the simulations from the previous chapter, I performed four separate trials of the

continuous model of residential burglary, varying parameters ϵ2, γ, and D. I opted to fix

α = 1 both based on simulations from [46] and to fix A0 = 1/30 from simulations of the
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Trial ϵ2 γ D
A 10−1 5 0.5
B 10−1 1.15 5
C 10−2 5 0.5
D 10−2 1.15 5

Table 4.3: Parameter choices obtained based off of those in [46] for each of the four simu-
lations using the continuous model of residential burglary as shown in Equations 4.33 and
4.34.

discrete model of residential burglary. Choices of ϵ2, γ, and D for each of the four trials

A,B,C, and D are contained in Table 4.3.

Each of the four trials were evaluated over the spatial domain x ∈ [0, 1] and time domain

t ∈ [0, 50], with no-flux Neumann boundary conditions imposed at each of the endpoints

x = 0 and x = 1. Further, each trial was run with the following initial conditions:

A(x, 0) = γ + 0.01 · e(−5000·(x−0.5)2) + 0.01 · e(−5000·(x−0.8)2) + 0.01 · e(−5000·(x−0.2)2), (4.35)

ρ(x, 0) = 1− α/γ. (4.36)

The initial conditions given in equations (4.35) and (4.36) are chosen to be small per-

turbations to a homogeneous steady state solution to the PDE system, A(x, t) = γ and

ρ(x, t) = 1 − α/γ as discussed in [46]. Plots of the dynamic component of criminal attrac-

tiveness A(x, t) associated with each of the four trials are included in Figures 4.2, 4.3, 4.4,

and 4.5, respectively. The results of each of these four plots will be discussed in the following

chapter.
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Figure 4.2: Approximate solution A(x, t) computed using BACOLI from the continuous
model of residential burglary [46], obtained using the parameters given for Trial A from
Table 4.3.

Figure 4.3: Approximate solution A(x, t) computed using BACOLI from the continuous
model of residential burglary [46], obtained using the parameters given for Trial B from
Table 4.3.
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Figure 4.4: Approximate solution A(x, t) computed using BACOLI from the continuous
model of residential burglary [46], obtained using the parameters given for Trial C from
Table 4.3.

Figure 4.5: Approximate solution A(x, t) computed using BACOLI from the continuous
model of residential burglary [46], obtained using the parameters given for Trial D from
Table 4.3.
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Chapter 5

Discussion of Results From the
Discrete and Continuous Models of
Criminal Behaviour

With the motivations for and the underlying mathematics of both the discrete and continu-

ous models of criminal behaviour introduced in the previous three chapters, we are now able

to pivot to analysing the solutions of these models. Recall the key question motivating this

entire project and introduced in Chapter 1: Do predictive policing tools accurately work to

predict future crime? Now that we have solutions for both of the models, we are able to

begin discussing the answer to this question. What types of behaviour are these models able

to produce, and do these behaviours agree with real-world crime dynamics? Further, how

are we able to rigorously assess whether either of these models are able to be used in the

real world, with a reasonable amount of accuracy?

Within this chapter, I will review the numerical results from both the discrete and con-

tinuous models of criminal behaviour, to comment on their general behaviour. I compare the

results from both models against existing literature on these models to assess whether my

computed results agree with previously published solutions to these models. I then contrast

both models against each other to understand their ranges of behaviour. I follow this with

a return to the work of David Weisburd [49] to comment on whether the numerical results

from these models are realistic with respect to existing theories in empirical criminology.
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5.1 An Examination of Results from the Discrete and

Continuous Models of Criminal Behaviour

5.1.1 The Discrete Model

To begin an analysis of the discrete model of criminal behaviour, first recall the four simula-

tions performed using the discrete model of criminal behaviour shown originally in Figures

3.2, 3.3, 3.4, and 3.5. Each of the four simulations were performed using this discrete model

with parameter choices obtained from [44]. Further, no criminals are present at time t = 0

and the criminal attractiveness is homogeneous throughout the entire domain at time t = 0.

For each of the four trials, snapshots of the overall criminal attractivenesses taken from early

in the simulation, at time t = 200, are displayed in Figure 5.1. The final snapshots of the

overall criminal attractivenesses from each of these four trials, each taken at time t = 900,

are displayed in Figure 5.2. Note that both Figures 5.1 and 5.2 are simply generated from

Figures 3.2, 3.3, 3.4, and 3.5, to aid here in discussing the behaviour of the discrete model

of criminal behaviour. Further, to align with the lettering used in Chapter 3 the four sim-

ulations performed using the discrete model are labelled A,B,C, and D, displayed in order

from top-left to bottom-right in both Figures 5.1 and 5.2.

There are a number of patterns present in the discrete model of criminal behaviour that

can be seen in the results shown in Figures 5.1 and 5.2. Using the parameters obtained

from [44] there are two general behavioural regimes apparent from these results: In both

trials A and B (see the upper two plots in Figures 5.1 and 5.2) the criminal attractiveness

initially displays intense small hotspots, that evolve into larger, amorphous hotspots. As the

simulations progress, these larger hotspots slowly combine and decrease in intensity, until a

homogeneous steady-state is reached. Contrasting this, in both trials C and D (see the lower

two plots in Figures 5.1 and 5.2) the criminal attractiveness initially displays intense small

hotspots that remain throughout the entire duration of the simulations. These hotspots grow

in number and in intensity, but remain absolutely static in space and almost absolutely static

65



Figure 5.1: Snapshots at t = 200 from each of the four separate simulations performed
using the discrete model of criminal behaviour first introduced and discussed in Chapter
3. Parameter choices for each of the four trials (labelled A,B,C, and D from top-left to
bottom-right) are discussed in Table 3.2 in Chapter 3.3.
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Figure 5.2: Snapshots at t = 900 from each of the four separate simulations performed
using the discrete model of criminal behaviour first introduced and discussed in Chapter
3. Parameter choices for each of the four trials (labelled A,B,C, and D from top-left to
bottom-right) are discussed in Table 3.2 in Chapter 3.3.
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in size. A number of the smaller hotspots are amalgamated with nearby larger hotspots in

both trials C and D as the simulations evolve, but regardless, the two trials do not evolve

towards a homogeneous steady state: Rather, they evolve towards a steady state of intense,

localized static hotspots.

While these trials represent a very small choice of potential parameters, their behaviour

is still notable. First, note that the behaviour of trials C and D aligns with an observation

documented in a number of empirical criminological studies discussed in Chapter 2: That

crime in a general sense is seemingly arranged into tight spatial hotspots that remain static

over longer periods of time. Note that while trials A and B do not display tight, static

hotspots of crime that last throughout the entirety of the simulation, the fact that hotspots

form at all in the short-term is notable. Further, while the hotspots in each of the four sim-

ulations are all of different size and shape, it can be seen that in all four trials, the hotspots

are relatively static in space. In no trial are there profoundly dynamic hotspots that move

throughout the entire lattice.

Of interest, is that Short et al. performed similar simulations using the same discrete

model and the same choice of parameters in [44] - the results of which are presented in Figure

5.3. The results of the simulations performed here generally do not agree with the results

from Short et al. in the short term, but the long term behaviours appear similar: Examining

the simulated results from Trial A, Short et al. find that the criminal attractiveness does

not display any hotspot behaviour whatsoever, where I found larger amorphous hotspots

forming near the beginning of the simulation.

Both simulations agree in the long term however, where a homogeneous steady state

is reached. In Trial B, Short et al. find that the criminal attractiveness is arranged into

large amorphous dynamic hotspots. While in my simulation the criminal attractiveness did
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Figure 5.3: Simulated results using the discrete model from Short et al., using the same
choice of parameters from Table 3.2 for each trial. Criminal attractiveness is plotted from
lower values displayed in violet to higher values displayed in red. [44, Figure 3]
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arrange into similarly shaped hotspots, these hotspots were not dynamic in space. In con-

trast to the results from Trial A, whereas in Trial B Short et al. found that these dynamic

hotspots remained constant throughout the duration of the simulation, I found here that a

homogeneous steady state was eventually reached. In Trials C and D, Short et al. find that

the criminal attractiveness was arranged into large well-defined hotspots, with those in Trial

C remaining static in space whereas those in Trial D were dynamic in space. These results

generally disagree with my simulated results again: Not only did my simulations display

much smaller hotspots than those from Short et al., but in both Trials C and D I found

static hotspots where Short et al. found static hotspots forming in Trial C and dynamic

hotspots forming in Trial D. Between both sets of simulations however, both hotspot and

steady state behaviour is present.

5.1.2 The Continuous Model

Pivoting now to the continuous model of criminal behaviour, recall the four numerical solu-

tions obtained from this model for different parameter choices, originally shown in Figures

4.2, 4.3, 4.4, and 4.5. Of these four numerical solutions, three different distinct behavioural

regimes are present, and are reintroduced here in Figure 5.4, to aid in discussing this con-

tinuous model. As was done previously with the discussion of the discrete model of criminal

behaviour, to align with the lettering used in Chapter 4, the three distinct solutions to the

continuous model of criminal behaviour are labelled A, B, and C, and are displayed in order

from left to right in Figure 5.4.

Before discussing the plots shown in Figure 5.4, it is important to recall the initial
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Figure 5.4: Separate numerical solutions to the continuous model of criminal behaviour first
introduced and discussed in Chapter 4, chosen to illustrate the three potential behaviours
of the model. Parameter choices for each of the three trials (labelled A,B, and C from left
to right) are discussed in Table 4.3 in Chapter 4.4.

condition for the criminal attractiveness as used in each of three Trials:

A(x, 0) = γ + 0.01 · e(−5000·(x−0.5)2) + 0.01 · e(−5000·(x−0.8)2) + 0.01 · e(−5000·(x−0.2)2). (4.35)

What this initial condition implies is that, essentially, each numerical solution was com-

puted with a uniform initial condition, save for three small non-uniformities at x = 0.2,

x = 0.5, and x = 0.8. Looking now at Figure 5.4, the three different behavioural regimes

of solutions to the continuous model of criminal behaviour are as follows: In Trial A (the

leftmost plot in Figure 5.4) the criminal attractiveness forms a large, static hotspot in the

center of the spatial domain. In Trial B (the center plot in Figure 5.4), the spikes in criminal

attractiveness immediately decay to a homogeneous steady state. In Trial C (the rightmost

plot in Figure 5.4), the initial spikes in criminal attractiveness persist and multiple strong

static hotspots form. Regardless of the trial, no dynamic hotspot behaviour is present.

Of further note is the fact that the computed solutions to the continuous model of resi-

dential burglary created and discussed here agree well with computed solutions to the same

model as discussed both by Short et al. in [44] and by Tse and Ward in [46]. Results from
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Figure 5.5: Three separate numerical solutions to the two-dimensional continuous model of
residential burglary from Short et al. Areas of red indicate higher criminal attractiveness,
areas of purple indicade lower criminal attractiveness, areas of green indicate average criminal
attractiveness [44, Figure 4].

simulations by Short et al. using the two-dimensional version of the continuous model of

residential burglary are included in Figure 5.5, where they find two different behavioural

regimes: The first behaviour displayed is that for certain choices of parameters no hotspots

form, and the entire spatial domain displays a uniform criminal attractiveness. The second

behaviour displayed is that for certain choices of parameters multiple small static hotspots

form. Both behavioural regimes align with those found by my computed solutions to the

same models. Results from a simulation by Tse and Ward using the one-dimensional version

of the continuous model of residential burglary are included in Figure 5.6, where they find

behaviour similar to that of Trial A shown in Figure 5.4 here. The computed solution pre-

sented by Tse and Ward shows one large static hotspot forming in the center of the spatial

domain, agreeing with results from my simulations.
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Figure 5.6: Numerical solution to the one-dimensional continuous model of residential bur-
glary from Tse and Ward. Leftmost plot indicates initial condition, and rightmost plot
indicates steady state behaviour of the computed solution. Criminal attractiveness is plot-
ted with a solid curve, where criminal density is plotted with a dashed curve [46, Figure
1].

5.1.3 Summary of Numerical Results

In summation, the results of both the discrete and continuous models of criminal behaviour

appear to qualitatively agree with each other. For different choices of parameters, both

models display both a homogeneous steady state behaviour and a static spatial hotspot be-

haviour. Of note, whereas Trials A and B of the discrete model achieved a homogeneous

steady state near the end of the overall simulation, around time t = 900, Trial B of the con-

tinuous model achieved a homogeneous steady state almost instantly. Furthermore, Trials C

and D of the discrete model slowly developed intense spatial hotspots of heightened criminal

attractiveness, whereas Trials A and C of the continuous model very quickly developed strong

hotspots. In examining both cases, while the models show similar long-term behaviour, the

speed in which they achieve steady state differs greatly. As well, for the chosen parameters,

neither model displayed any type of dynamic hotspot behaviour.

Having used both the discrete and continuous models of criminal behaviour to generate

simulated crime data, what remains is to assess the applicability of these results. That
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is to say, how well do the results from either of these models agree with real-world crime

dynamics? Although both of the models are rooted in empirical criminology, and due to the

use of BACOLI, the error-controlled PDE solver, the computed numerical solutions to the

continuous model represent accurate solutions to the continuous model, how authentic are

the models themselves? Effectively answering this question is difficult, but not impossible.

5.2 Assessing the Applicability of Results from the Dis-

crete and Continuous Models of Criminal Behaviour

It is a complicated challenge to assess whether the results from either the discrete or continu-

ous models agree with crime trends from the real world. From the work discussed in Chapter

2, it is clear through an examination of empirical crime data that regardless of city, crime

as a phenomenon appears to self-arrange into tight spatial hotspots of high activity [49].

Criminal psychology gives further insight into this general trend, motivating this behaviour

in both rational choice theory and in the population heterogeneity model of space [51]. With-

out losing generality and looking into specific cities however, it is effectively impossible to

say anything more specific about these crime hotspots or their dynamics. When examining

either of the two mathematical models of criminal behaviour discussed in this project, for

certain parameter choices, they may describe criminal behaviour with high accuracy in cer-

tain environments, while simultaneously being completely inaccurate in other environments.

Pulling back even further, there is no clear mechanism by which to tune model parameters

or chose realistic initial conditions for either of the two models in an effort to predict crime in

a real city (in their paper introducing these models, Short et al. do not discuss in any detail

how in which they obtain their parameter choices for their simulations [44]). How possible

is it then, to attend to the clear question at the heart of this project: Can predictive models

of criminal behaviour fundamentally work to predict future criminal behaviour in the real

world?
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In an effort to comment on whether either the discrete or continuous models of criminal

behaviour are remotely effective at replicating criminal behaviour, recall the “physical law

of crime concentrations”, as proposed by Weisburd in [49], first introduced in Chapter 2.

Though (outside of a general hotspot behaviour) crime dynamics between cities are radi-

cally different and context-dependant, through an extensive review of empirical crime data

Weisburd has proposed a general law governing crime organization: “For a defined measure

of crime at a specific microgeographic unit, the concentration of crime will fall within a nar-

row bandwidth of percentages for a defined cumulative proportion of crime. For 50 percent

concentration, that bandwidth is about 4 percent (from 2.1% to 6%), and for 25 percent con-

centration, that bandwidth is less than 1.5 percent (from 0.4% to 1.6%)” [49]. Weisburd’s

physical law of crime concentrations serves as a concrete base-level test of the discrete and

continuous models of criminal behaviour. Should either model accurately replicate criminal

behaviour in the real world, then for realistic choices of parameters, these models should

agree with the physical law of crime concentrations. For the case of the discrete model of

criminal behaviour, consider Figures 5.7 and 5.8, each detailing the percentages of grid-points

at which 100%, 75%, 50%, and 25% of all crimes occur, for Trials A and D of the discrete

model respectively (due to the overall similar behaviour between Trials A & B, and Trials C

& D, this analysis is performed only on Trials A and D).

Upon examining Figures 5.7 and 5.8, it is immediately clear that Trials A and D of the

discrete model of criminal behaviour do not align with David Weisburd’s proposed law of

crime concentrations. In the case of Trial A, 50% of crime occurs at 34.64% of all possible

grid-points, and 25% of crime occurs at 13.56% of all possible grid-points. Were Trial A to

agree with Weisburd’s physical law, 50% of crime should occur at most at 6% of all possible

grid-points, and 25% of crime should occur at most at 1.6% of all grid-points. What this

ultimately means, is that the simulation of crime generated in Trial A of the discrete model
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Figure 5.7: For Trial A of the discrete model of criminal behaviour, a plot of what overall
proportion of grid-points, 100%, 75%, 50%, and 25% of all crimes occur at, over the course
of the entire simulation.

Figure 5.8: For Trial D of the discrete model of criminal behaviour, a plot of what overall
proportion of grid-points 100%, 75%, 50%, and 25% of all crimes occur at, over the course
of the entire simulation.
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does not give crime concentrations remotely close to what has been observed in the real

world. Trial A of the discrete model of criminal behaviour displays fundamentally different

behaviour from all empirical observations of real-world crime.

Though more concentrated, the results from Trial D of the discrete model are only some-

what more representative of real-world crime data. In the case of Trial D, 50% of crime

occurs at 8.11% of all possible grid-points, and 25% of crime occurs at just 1.99% of all

possible grid-points. These results are much more in line with what has been observed in

the real world (6% and 1.6% respectively), though still these concentrations do not quite

fall within Weisburd’s proposed bandwidth of percentages. These plots lend doubt to the

feasibility of this model of criminal behaviour being used to replicate real-world criminal be-

haviour, given they show that the computed solutions to the discrete model fundamentally

do not share notable characteristics with what would be expected of real-world crime.

Unfortunately, although it would be of substantial interest and use to compare the con-

tinuous model of criminal behaviour against the physical law of crime concentrations in the

same way as was done with the discrete model, there appears to be a major issue: While

with the discrete model it is possible to monitor and record crime occurrence throughout the

simulation, there is no discernible way to extrapolate crime occurrence from the continuous

model of criminal behaviour. The continuous model consists of two PDEs, one governing

how criminal attractiveness evolves through time and space, the second governing how crim-

inal concentration evolves through time and space. The same concrete analysis can thus

not easily be performed on the continuous model, due to there being no clear way to divine

actual crime occurrence from criminal concentrations. It is thus unclear, whether the con-

tinuous model of criminal behaviour accurately reproduces Weisburd’s physical law of crime

concentrations, or not.
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Although these models are able to generate intense hotspots simulating the general

hotspot nature of crime, it is unclear whether these models are actually capturing the subtle

dynamics of real-world criminal behaviour or are just plausibly painting similar pictures.

The comparisons against David Weisburd’s physical law of crime concentrations lend some

doubt to the effectiveness of these models, though this is still not an entirely conclusive test.

It is thus fundamentally inconclusive, whether either the discrete or continuous models of

criminal behaviour as proposed by Short et al. in [44] could actually be used to effectively

predict crime. Aside from a large-scale controlled field test of these models (something to be

discussed further in the following chapter), there does not appear to be any encompassing

way to assess whether these predictive models are truly able to accurately predict crime.

Potentially though, the focus of this project thus far has been misplaced. In a sense, ques-

tions of whether predictive crime models are mechanically effective at crime prediction do

not get to the core problems of predictive crime modelling. When discussing any problem

within an applied mathematics context, it is important to understand the greater context in

which one is working. Pulling back from the mechanics of crime prediction reveals an array

of issues completely isolated from the mathematics of generating crime predictions in the

first place. In a sense, whether the underlying math of predictive policing works or not is

irrelevant: What truly matters are the issues endemic to how predictive policing tools have

actually manifested in the real world.

78



Chapter 6

Reconsidering Predictive Policing

It is at this point that a serious question must be addressed: What exactly is predictive

policing? Although it may seem as though this is a simple question, the deeper one digs the

more confusing and sprawling the answer becomes. Until this point I have used a somewhat

vague working definition: That “predictive policing” is the collection of frameworks and tools

concerned with predicting crime occurrence within a given environment and advising on-the-

beat police officers on how to best address this forecasted crime. While this understanding of

predictive policing was sufficient to discuss both the discrete and continuous models of resi-

dential burglary as proposed by Short et al. in [44] and as discussed in Chapters 3, 4, and 5,

upon a closer examination, this definition begins to break down. Observe that this definition

is extremely broad: Under this definition the study of environmental criminology as a whole

must be a part of “predictive policing”, as it attempts to situate how crime is organized with

respect to space and time, hence grounding how to forecast crime occurrence in concrete

theory. Further, both proprietary software sold to police departments marketed to forecast

crime and existing tools and techniques of crime modelling used by police departments must

be a part of “predictive policing”, as their primary goal is to forecast and pre-empt crime

occurrence. Even further, the underlying mathematical models that these tools use, e.g.,

both the discrete and continuous models of residential burglary proposed by Short et al. in

[44] must be a part of “predictive policing”, given that they too are concerned with fore-

casting and thus advising police officers on the future occurrence of crime. The argument
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could even be made that under this definition of “predictive policing” the lived experiences

of on-the-beat police officers constitute “predictive policing”, as any given officer who has

worked the same beat for a long period of time will have some intuitive understanding of

where and when crime will occur throughout their patrol. If all of these are manifestations

of some nebulous “predictive policing”, then are we able to study and critique predictive

policing in the first place given its seemingly endless scope?

Ontological spiralling aside, there is remarkably little consensus towards a definition of

predictive policing within peer-reviewed academic literature. In their 2019 literature review

of to-date academic work on predictive policing [28], Meijer and Wessels comment that while

there is no absolute definition of predictive policing accepted by a majority of scholars, many

agree on some of the key properties of predictive policing. Based on the work of applied math-

ematicians Camacho-Collados and Liberatore in [5], Meijer and Wessels find in accordance

with my working definition proposed earlier that “predictive policing entails the application

of quantitative techniques to forecast where criminal activities might occur in the (near) fu-

ture” [28]. Based on the work of criminologists Chan and Moses in [6], Meijher and Wessels

proceed to argue that another key property of predictive policing is that “predictions based

on these analytic tools can guide the decision-making of law enforcement agencies, especially

with the deployment of its personnel” [28]. The work of Uchida of the United States National

Institute of Justice offers additional insight into the impetus for predictive policing: “pre-

dictive policing is a concept that is built on the premise that it is possible to predict when

and where crimes will occur again in the future by using sophisticated computer analysis of

information about previously committed crimes” [47]. Based on their review, Meijher and

Wessels ultimately settle on the following more precise definition of predictive policing:

“Predictive policing is the collection and analysis of data about previous crimes for iden-

tification and statistical prediction of individuals or geo-spatial areas with an increased prob-
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ability of criminal activity to help developing policing intervention and prevention strategies

and tactics” [28].

How then do the discrete and continuous models of residential burglary as proposed by

Short et al. in [44] and discussed throughout the previous chapters relate to this definition

proposed by Meijer and Wessels? It is clear, based on this more formal definition, that these

two models are not tools of predictive policing, at least not in isolation. Although these

models seek to replicate the behaviour of criminals engaging in residential burglary, they

do not inherently form predictions using data about previous crimes, nor do they have any

mechanism by which to advise police officers or analysts to develop policing intervention and

prevention strategies and tactics. It is only when these two models of residential burglary

are integrated into larger software packages that are able to generate appropriate parameter

choices, initial conditions, and boundary conditions, based on existing policing data, that

they are able to make specific predictions about future crime occurence within a given area.

Furthermore, it is not without both a significant front-end and back-end that these models

are able to be integrated for use by police officers on-the-beat, to advise their behaviour in a

meaningful way. It is this detail, that in the real world the two models of residential burglary

cannot function in isolation, that is the key focus of this chapter. Although the accuracy

of these two models is a key concern within the study of predictive policing more generally,

of equal importance is studying the way in which that these models are implemented in

real-world software, and the problems that this implementation may pose.

6.1 The Complicated Nature of Crime Data

If their primary goal is to predict future crime occurrence, it is essential that predictive polic-

ing tools make use of historical crime data pertaining to a given location. As discussed in the
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introduction to this chapter, the underlying mathematical models and criminological theory

can only perform so much of the work. In the specific cases of the discrete and continuous

models of residential burglary as proposed by Short et al. in [44], without realistic choices

of model parameters and initial/boundary conditions based on historical crime data there is

no chance that these models will be able to replicate crime trends in any specific context.

Although we do not know exactly how specific predictive policing tools integrate historic

policing data into their underlying numerical models, questioning the validity and nature of

this historic policing data in the first place has significant implications on the potential uses

of these tools.

For decades, criminologists have understood that significant issues arise when crime data

obtained by police departments are conflated with the real occurrence of crime. In 1963

criminologists Kituse and Cicourel [21] published a foundational work critiquing exactly this

problem. By examining how official statistics pertaining to the criminal justice system are

obtained, Kituse and Cicourel argue that at a base level these statistics are “unreliable

because some individuals who manifest devient behaviour are apprehended, classified and

duly recorded while others are not” [21]. Kituse and Cicourel argue further that regardless

of intention there are many “successive layers of error” within the criminal justice system

(certain crimes going unreported by civilians, certain reported crimes not getting proper re-

sponses by police, instances where some are implicated for crimes that they did not commit,

etc.), which ultimately lend a level of unreliability to the final data as catalogued by police

departments. Elliott, then-director of the Center for the Study and Prevention of Violence

expanded substantially on this work by analysing the extent to which police departments

and independent researchers have assumed that historic policing data is representative of real

crime occurrence. In his 1995 report to the American Society of Criminology [12], Elliott

first comments on how there is a vast “false-negative” problem within policing records, and

how many know of and accept this issue. In the context of the historic policing data for
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a given policing jurisdiction, a “false-negative” is introduced into a dataset when either an

individual commits a crime and is not apprehended, or when an individual has committed

a crime in a separate policing jurisdiction but the information pertaining to this previous

crime is not shared between jurisdictions [12]. Demonstrating this point, in a 2012 study for

the United States Department of Justice, researchers found that more than half (52%) of all

violent crimes within the United States each year were not reported to police; an average

total of 3,382,200 violent crimes per-year within the United States were not reported to

the police in the first place [24]. Although many analysts agree that historic policing data

has severe false-negative problems, Elliott further argues that the issue with this already-

problematic data lies in its assumed representativeness of all actual crime [12]. While it is

clearly the case that historic policing data is not entirely accurate, there has been an inher-

ent assumption that it at least forms a representative sample for actual crime. Researchers

examining this issue of representativeness have however found that generally, historic crime

data vastly over-implicates certain groups in committing certain crimes, based on a vast

history of racism, sexism, and police abuse over the past number of centuries.

There are a number of ways to critique the issue of representativeness within historic

policing data. The approach considered by Elliott again in [12], is to contrast the historic

arrest data pertaining to an individual as maintained by a police department with their own

self-reported assessment of the crimes they have committed. By analysing data obtained by

the National Youth Survey (NYS) between the years 1976 and 1990 for those aged 11-17 in

1976, Elliott is able to fundamentally question the supposed representativeness of historic

policing data: Foremost, policing data between the years 1976 and 1990 within the United

States demonstrates that 10% of males and 1.5% of females (within the specified age range)

were charged with at least one criminal felony [12]. In contrast, the self-reported felony

data obtained through the NYS indicated that 48% of males and 18% of females (within the

specified age range) committed at least one criminal felony [12]. As discussed previously,
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the fact that the self-reported percentages are so much higher than the official percentages

maintained by police records should not be shocking: Many agree that official police records

have a strong false-negative issue. Of significance, is that while official police records indi-

cate here that approximately 7 criminal felonies are committed by males for every 1 criminal

felony committed by females, the self-reported records obtained by the NYS indicate that

only approximately 3 criminal felonies are committed by males for every 1 criminal felony

committed by females. Elliott again performs this same analysis but instead in consideration

of broad ethnic groups: He finds that unsurprisingly, while official police records indicate that

approximately 2.5 criminal felonies are committed by Hispanic peoples for every 1 criminal

felony committed by Caucasian peoples, self-reported records obtained by the NYS indicate

that in reality this ratio is extremely close to 1:1. Further, while official police records in-

dicate that approximately 4 criminal felonies are committed by Black peoples for every 1

criminal felony committed by Caucasian peoples, self-reported records again indicate that

this ratio is extremely close to 1:1. Elliott’s findings confirm that the root problem with

policing data is not that it is inherently plagued by false-negatives, but that the data that

is obtained is not representative of overall crime occurrence.

If historic policing data is generally not accurate to actual crime occurrence, what is the

implication for predictive policing? In a critique of predictive policing, researchers Lum and

Issac invoke the adage of “garbage in, garbage out” to describe how historical policing data

interfaces with mathematical models to predict crime [27]. At their core, predictive math-

ematical models are designed with the goal of replicating and propagating trends present

within existing historical data forward into the future. Predictive models of any type are

thus constrained by the accuracy of the historical data that they are required to use: If there

is bias within historical data, predictive models will most often replicate that same bias.

In the context of predictive policing, given that historical crime data obtained by police is

not necessarily representative of actual crime occurrence, any predictive policing software
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will at best replicate and maintain existing biases present in police arrests. At worst, pre-

dictive policing has the potential to entrench existing biases in police arrests by advising

police officers to focus even more intensely on areas already disproportionately targeted by

police. Given that historic crime data is notably biased against Black and Hispanic men, as

described by Elliott in [12], predictive policing software using this data could reasonably be

assumed to disproportionately target areas with higher concentrations of Black and Hispanic

men, thus reaffirming and entrenching this discrepancy in crime data. Regardless of the ef-

ficacy of the underlying mathematical model, if the historic crime data used by predictive

policing software is problematic in any way, then the predictive policing software at its core

will not accurately predict the actual occurrence of crime. It is in this way that predictive

policing can be understood not as a set of tools and methodologies to predict and pre-empt

crime, but as a set of tools and methodologies to predict and replicate historical on-the-beat

police officer behaviour.

Notably, there have been a number of empirical studies comparing the on-the-beat use

of predictive policing against traditional crime modelling strategies, attempting to quantify

whether these tools are biased against certain minority groups (see [27, 41, 17, 26, 29, 36]).

These studies help to enrich the discussion of historic data biased against certain minority

groups: While in theory the use of biased data within predictive policing may lead to biased

results, these studies attempt to assess whether this bias actually manifests in practice. The

conversation surrounding these studies is nuanced however, and a number of these works

raise their own concerns within the philosophy of predictive policing. It is for this reason,

that these studies will be discussed in greater detail later in this chapter, though there exis-

tence should be noted here.

Predictive policing tools making use of flawed historic policing data to entrench existing

biases within day-to-day police operation is far from the only potential issue facing pre-
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dictive policing as it relates to the use of data. Recall the issue of representation within

historic policing data: A number of minority groups (such as Black and Hispanic men)

are generally overrepresented in this data [12], causing predictive policing tools to poten-

tially over-implicate these minority groups in criminal activity. Critical geographer Jefferson

adds additional context to this idea arguing that couching modern policing strategies in the

languages of mathematics, algorithms, and computing science, allows for an increased and

potentially misplaced trust in these newer strategies [18]. Essentially, although predictive

policing is simply a restatement of existing policing strategies and techniques making use

of problematic historical policing data, by invoking buzz-words like “artificial intelligence”

and “predictive modelling”, lends a perceived degree of scientific rigour to predictive polic-

ing. In a study of the Chicago Police Department’s engagement with predictive policing,

Jefferson comments that although predictive policing has essentially served to maintain the

status-quo of policing in Chicago (that is, predictive policing tools implicated the same dis-

proportionate percentages of minority groups in crime as were being implicated prior to the

trial), that “racialized policing simply has obtained a new, ostensibly scientific justification”

[18]. Given it’s reliance on historic data, it is arguable that the “best case-scenario” for

predictive policing is that it would replicate and maintain existing biases present in police

arrests. Jefferson’s work offers a more bleak outlook: At best predictive policing will not

only replicate and maintain existing biases present in police arrests, but that it will do so

while justifying and shielding these existing biases from critique and outside intervention,

using the language of “science” and “absolute objectivity”.

The issues in how predictive policing tools make use of data are concerning, yet somewhat

speculative in nature. Though a number of studies have been performed analysing the

extent to which historic policing data exhibits bias, due to the colloquial “blue wall” (that

police departments are often very secretive about their internal operations), it is essentially

impossible to understand exactly how historic data is integrated into any particular predictive
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policing tool. This section should therefore not serve as an examination of a known issue

inherent to predictive policing, but moreover as a cautionary warning. Predictive policing

tools exist and are in use in real policing departments across North America and around the

globe: The known issues with historical data may not be conclusive proof that predictive

policing is a flawed technology, but these known issues add to the idea that we must be

increasingly critical and careful with novel technologies. Building on this point, recall that

in the revised definition of predictive policing proposed at the beginning of this chapter,

both historical policing data and predictive mathematical models operating in tandem do

not form what we commonly understand as “predictive policing”. A key piece of the puzzle

that has been so-far missing from this discussion is how predictive policing tools are used

and interpreted by police officers. In fact, the relationship between predictive policing and

police officer is equally as suspect as the predictions built using predictive policing in the

first place. Regardless of the quality of the predictive policing software, the bottom line

comes in how this software actually influences police behaviour and thus actual arrests, this

being a huge issue in-and-of itself.

6.2 The Gap Between Predictive Model and Police Of-

ficer

What if we were to perfect predictive policing? Suppose we were able to develop a soft-

ware tool that addressed the aforementioned concerns with historic policing data, and that

contained a “perfect” mathematical framework that was able to predict future crime occur-

rence with 100% accuracy. It may seem as though this is pointless speculation: Clearly no

predictive model, no matter how good, could ever come close to predicting a phenomenon

as chaotic as crime with anywhere close to perfect accuracy. Regardless, by considering

such an impossible tool, however unlikely, illuminates a second major concern inherent to

predictive policing: How is it that future crime occurrence forecast by a predictive policing
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model is translated and relayed to police officers working on-the-beat? How are these pre-

dictions interpreted by police analysts and then enforced by police officers? Although focus

is often placed on the accuracy of predictive policing models and their underlying math-

ematics, comparatively less time has been spent questioning how predictive policing tools

actually manifest as crime enforcement when placed in the hands of police officers. When

already-problematic tools are folded into the complex web of day-to-day police operation,

these existing issues may be exacerbated far beyond their initial scope.

Through a series of interviews with software developers and ride-alongs with police offi-

cers, sociologist Lally argues that the largest issue plaguing predictive policing tools does not

lie in the accuracy of their underlying models, but in how those models are interpreted and

used [22]. In an interview with an unnamed developer who worked on predictive policing soft-

ware, Lally reports that the developer comments on the issue of implementation, remarking

that “it makes almost no difference which algorithm you use, what matters is how the police

turn [predictions] into actionable plans” [22]. Building on this argument, another developer

speaks to how the focus of both developers and critics alike has been sorely misplaced on

the accuracy of predictive models, and that fundamentally most different algorithms used

in predictive policing tools perform with a similar accuracy: The big difference between any

two predictive tools lies in how forecasts are interpreted for use by police officers, and as a

direct consequence in how police officers enforce these predictions. Lally notices that while

many software developers seemed to be quite confident in the accuracy of their models, when

questioned about how these models were implemented into the real world many of these de-

velopers became much more hesitant to comment on their overall efficacy. There is no set

of best practices in place governing how predictions are converted into crime enforcement

strategies, a glaring and often unaddressed problem facing predictive policing tools.

Where Lally worked to understand how predictive policing forecasts were exercised in
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the real world through interviews with software developers, those responsible for creating

the predictive policing tools to generate these forecasts, policy analysts Sandhu and Fussey

look to understand the same issue, only through the eyes of the police officers who must use

these forecasts. Through interviews conducted between 2017 and 2019, Sandhu and Fussey

attempted to understand how police officers and departments in the United Kingdom are

both using predictive policing tools and addressing criticisms of these same tools [40]. While

a number of those interviewed throughout the course of the study indicated their hopes that

predictive policing could remove the subjectivity and bias from day-to-day police operations

and allow for more effective police patrols, many people commented that the predictive polic-

ing tools themselves only served to highlight the subjective decision-making of on-the-beat

police officers: Sandhu and Fussey comment that “many research interviewees claimed that

officers make the subjective decision as to how a particular event will be labelled and cat-

egorised in police records and, thus, how it will be understood by a predictive technology”

[40]. It is impossible to have an implementation of predictive policing that completely re-

moves human subjectivity, thus undermining the claims to absolute objectivity that prevail

in discussions on predictive policing. Further, Sandhu and Fussey find through their inter-

views that many of those officers using predictive policing technology are either unsurprised

by or unconvinced by the predictions generated by these tools. In the case of the former,

many officers noted that predictive policing tools were not telling them anything they didn’t

already know. One of those interviewed by Sandhu and Fussey, the head of a digital policing

unit, succinctly commented that:

“Predictive policing has taken off in the last 5 years, some of it is interesting, but some

of it just suggests the obvious; it is likely that burglary will continue in [location], that retail

theft will be concentrated in shopping malls... Well, no shit!” [40]

Put in this way, predictive policing tools are of interesting theoretical use, but in prac-
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tice they may not have the ability to improve on the lived experience of police officers who

have worked in the same geographic areas throughout their careers. In addition, Sandhu

and Fussey find that many of those interviewed were not only unimpressed by the predictive

policing tools, but were unconvinced that the forecasts generated by predictive policing tools

should be followed absolutely. In another interview, a separate head of a digital policing unit

conveyed that:

“I cannot ever envisage a time when we just take that suggestion or answer, or you

know, something will pop out of a machine and [we] will just blindly go and do that. There

will always be the need for a human being in that process... to be able to say, ’OK, well

the computer says this, but actually we need to [do that].’ [...] I would be really unhappy

with following a line of inquiry that was purely based on what a computer [was] saying.” [40]

In summary, there is noticeable scepticism both between software developers working on

creating predictive policing tools, and within police departments using these tools in the real

world. There is not necessarily scepticism that the models themselves are flawed, but simply

that there are “successive layers of error” [21] in how police officers deploy predictive polic-

ing tools to address crime. Despite claims from technology firms and police departments

investing in these firms, predictive policing software can never completely remove human

decision-making from the equation of policing. Regardless of reason or intention, if the po-

lice officers using predictive policing tools neglect to listen to the forecasts given to them,

then what is truly the point of using these tools in the first place?
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6.3 Is There Anything Truly Certain About Predictive

Policing?

Recall from earlier in the thesis the mention of a collection of empirical studies attempting

to assess the on-the-beat usage of predictive policing software. Throughout this project,

the ultimate goal has been to attend to the core question “does predictive policing work

to reduce crime occurrence?”One might hope that this collection of work should offer a

decisive answer to this key question. While discussing the theoretical background, mathe-

matical results, and sociological concerns pertaining to predictive policing tools does help

to understand the nature of these tools and their potential use-cases, controlled field-trials

of predictive policing tools should give the ultimate answer to the problem at the core of

this thesis. However, the problem with these empirical studies is that they fundamentally

do not agree with each-other. That is, there are as many studies in support of predictive

policing as there are studies claiming that predictive policing has had no noticeable impact

on crime occurrence. This final section looks to discuss these studies on predictive policing,

in an attempt to assess why it is that we still seem to know very little about these tools.

A number of authors have made a case against the use of predictive policing, on the

grounds that these tools simply do not seem to reduce crime. Though not examining ex-

actly the same technology as discussed in this project, a 2014 study published by the RAND

Corporation assessed a predictive policing tool known as “Risk Terrain Modelling” (RTM),

through a 29-week study on property crime levels in the city of Shreveport, Louisiana [17].

When comparing officers using RTM versus a control group of officers using traditional crime

deterrence techniques, the research team behind the report comments succinctly that “the

[RTM] program did not generate a statistically significant reduction in property crime” [17].

The authors of the report acknowledge that to conclusively answer the question of whether

predictive policing works or not, studies far deeper and broader in scope must be performed

on these tools before strong conclusions can be made about their efficacy:
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“What is not clear, however, is whether distributing hot spot maps based on predictive

analytics will lead to significant crime reductions compared with distributing hot spot maps

based on traditional crime mapping techniques. In the case of the Shreveport predictive

policing experiment, we did not see statistical evidence to this effect.”

The study by the RAND Corporation is not the only piece of empirical work on predictive

policing with inconclusive results. A 2016 study published in the Journal of Experimental

Criminology found that in examining the Chicago Police Department’s use of another sepa-

rate predictive policing tool designed to predict gun violence, the “Strategic Subjects List”

(SSL), the tool was again inconclusive in its results [41]. The authors of this report comment

that while the SSL did result in more violent offenders being arrested when compared against

control data, the number of violent homicides within Chicago over the course of the study

did not decrease due to the SSL. Further, the authors theorize that the SSL only served to

put officers into contact with already known violent offenders, that the officers would have

been in contact with regardless [41]. Agreeing with the RAND Corporation, the authors

of this report comment that more work must be done, as their results are fundamentally

inconclusive.

But what of those in support of the predictive policing project? As mentioned prior,

there are those authors of empirical studies who argue that predictive policing tools have in

fact had noticeable impacts on overall crime rates in certain cities. In contrast to the 2014

study performed by the RAND Corporation on Risk Terrain Modelling (RTM) [17], a 2010

study performed by Piza et al. on the use of RTM to predict violent crimes in Newark, New

Jersey, found that RTM drastically reduced the number of violent crimes, by 19% between

the years 2006 and 2009 [36]. While this initially seems remarkable, upon closer reading

the data in the paper is not controlled for any other factors, nor has the paper been peer-
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reviewed. Potentially more damming, the authors of this paper are in fact the creators of

RTM, a fact that is not mentioned anywhere within [36]. It is for these reasons, that the

findings of this report are, at the very least, somewhat suspect.

This report by Piza et al. is not the only empirical study in support of predictive policing.

Potentially the most popular study of this type was published by Mohler et al. in 2015 [29].

This work assesses the use of “Epidemic-Type Aftershock Sequence” (ETAS) crime forecast-

ing to predict and pre-empt crime by both the Los Angeles Police Department (LAPD) and

the Kent Police Department (KPD). Through controlled experiments, the authors of this

work found that by using ETAS crime forecasting, overall crime in both jurisdictions was

reduced by 7.4%. While this result seems decisive - that predictive policing does in fact have

positive impacts on crime rates - this paper is not without critique. Every co-author of [29]

either holds stock in, or is a co-founder of PredPol, the predictive policing firm using ETAS

in proprietary software. When examining the collection of empirical studies assessing the

efficacy of predictive policing tools, the results are decidedly unclear. Many studies have

found that predictive policing has had no real impact on crime, whereas other studies in

support of predictive policing have been authored by suspect groups. In many ways, we are

nowhere close to understanding predictive policing as a tool used in the real world.

It is at this point that potentially the most fundamental flaw with our current under-

standing and use of predictive policing must be underlined: there are (at the time of writing)

no true answers to the question “Does predictive policing work to reduce crime occurrence?”

From their literature review mentioned earlier, sociologists Meijer and Wessels comment

that of the papers reviewed, there is not enough peer-reviewed empirical scholarship on pre-

dictive policing tools to determine absolutely whether they work or whether they do not:

There exists only anecdotal evidence supporting both the perceived benefits and drawbacks

of predictive policing [28]. While many have argued both for the benefits and drawbacks of
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predictive policing, relatively few have run empirical trials examining the use of predictive

policing tools in the field to determine their efficacy. Once the vast amount of rhetoric both

supporting and opposing predictive policing has been stripped away, there is nothing left.

Looking back at the decade in which predictive policing has emerged as an applied policing

practice, we are no closer to understanding whether this tool works, or whether it has done

remarkably little at preventing crime.
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Chapter 7

Conclusion

Predictive policing is a remarkably complex topic. This project has aimed to describe and

understand modern predictive crime modelling tools at their most fundamental level, though

this work is only scratching the very surface of the greater picture of predictive policing. As-

sessing the effectiveness of any predictive policing algorithm necessitates understanding the

spatial dynamics of crime at a fundamental level.

Crime, regardless of environment, unambiguously displays distinct spatial patterns at

micro-geographic resolutions. From the work of empirical criminologists, as discussed in

Chapter 2, we know that across cities and countries, crime appears to self-arrange into

strong spatial hotspots, that appear remarkably consistent over time periods ranging from

weeks to years [49]. Criminologist David Weisburd takes these observations further, finding

that across a number of different cities urban crime is similarly concentrated in space [49].

From this work Weisburd proposes a “physical law of crime concentrations” that should hold

in all urban environments, promoting complex yet consistent dynamics underlying criminal

behaviour. While general, this work provides good motivation for a mathematical model of

criminal behaviour, work engaged by Martin B. Short et al. in their initial work that served

to motivate this entire project: “A Statistical Model of Criminal Behaviour” [44].

Within [44], Short et al. attempt to distill the patterns in crime, as observed by empirical
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criminologists and discussed in Chapter 2, into a discrete agent-based mathematical model of

criminal behaviour. Simulated criminals move throughout a finite grid of potential addresses

to burglarize, deciding whether or not to commit crimes based on the “criminal attractive-

ness” of a given address, an arbitrary number quantifying how attractive a potential site is to

a potential criminal with respect to all other potential sites. From this discrete agent-based

model, Short et al. derived a continuous PDE model of criminal behaviour, to model both

criminal attractiveness and criminal density throughout a given problem domain. These two

models, dubbed the “discrete” and “continuous” models of criminal behaviour and discussed

in Chapters 3 and 4, respectively, serve as the foundation of this project. While other models

of criminal behaviour exist and are in use in predictive policing software today [38], these

models represent one avenue by which to examine and discuss the mechanics of predictive

policing, and the ways in which predictive policing tools might fare in the real-world.

On examining simulations based on both the discrete and continuous models of crim-

inal behaviour as discussed by Short et al., we see that the results are somewhat varied.

While on one hand results from both models, as discussed in Chapter 5 generally agree with

existing results from literature (namely, from [44, 46]), it is questionable at best whether

these simulated results agree with real-world crime dynamics as studied by environmental

criminologists. Of particular note is that all simulations performed using the discrete model

of criminal behaviour do not agree particularly well with Weisburd’s physical law of crime

concentrations [51], casting doubt on whether these models can accurately represent real-

world crime dynamics. All this being said, upon a deeper review of literature concerning the

implementation of predictive policing tools within police departments, the issue of model ac-

curacy may be completely superseded by issues concerning the implementation of predictive

policing tools.

Upon considering how predictive policing must be integrated into the real world, a num-
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ber of key challenges arise. Foremost, to function in the real world any predictive policing

software must be “tuned” using historic policing data, to replicate patterns present in this

historic data. Given that essentially all historic policing data is marred with both false

negatives and false positives, thus disproportionately implicating marginalized populations

in crime occurrence [12], any predictive algorithm trained on this flawed data can at best

replicate these flawed trends. Further, predictive policing tools are essentially only able to

generate suggestions on where crime will occur. It is up to the individual police officer to

interpret and act on any suggestions from a predictive algorithm. While great emphasis

has been placed on the objectivity of predictive policing algorithms, to-date there is little

research on how officers use these algorithms in the field [22]. These concerns aside, the small

collection of peer-reviewed empirical studies on predictive policing performed to-date have

been either inconclusive, or have found that predictive policing has had no noticeable effect

on overall crime rates in the jurisdiction of study [28]. Any comments on the mathematics

of predictive policing aside, there are a number of serious issues with this technology at the

most fundamental level.

7.1 Potential Future Work

Concerning environmental criminology, while a great deal of work has been done to justify

Weisburd’s physical law of crime concentration [51], additional empirical data could be com-

piled on crime rates in more diverse contexts. Weisburd motivates his physical law using

crime data from a handful of cities in the United States as well as from Tel Aviv, Israel.

What remains to be shown is if this law holds in other cities and countries across the globe.

Further, a majority of environmental criminology literature on the spatial distribution of

crime focuses almost exclusively on the case of urban crime [51]. The spatial dynamics of

crime in rural contexts have been left relatively unexplored, and deserve further inquiry.
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As well, the models of criminal behaviour discussed within this project are concerned ex-

clusively with residential burglary. The spatial dynamics of other forms of crime such as

motor vehicle theft, assault, and commercial burglary are decidedly more complex, and as a

result the discrete and continuous models of residential burglary discussed in this project are

insufficient to address these other forms of crime. Potentially, models of criminal behaviour

tuned to these separate forms of crime could be constructed in much the same way as the

models shown here.

Turning specifically to the discrete model of criminal behaviour discussed in this project,

the jarring issue of this model disagreeing to some extent with Weisburd’s physical law

of crime concentrations must be addressed. Potentially, by experimenting with additional

choices of parameters outside of those used by Short et al. in [44], or by fundamentally

altering the model, this can be achieved. Additionally, it remains unclear if this model could

be tuned to historic data to potentially replicate real-world crime occurrence. By experi-

menting with model parameters obtained from historic crime data, in addition to varying

the grid shape to potentially be non-uniform, it may be possible to better simulate the crime

dynamics of a real-world city. Regardless, based on the preliminary work here, the discrete

model of criminal behaviour does not appear to stand on its own when tasked to accurately

model real-world criminal behaviour

Examining now the continuous model of criminal behaviour, the glaring challenge is to

compute error-controlled numerical solutions to the two-dimensional version of this model.

BACOL and BACOLI are only able to compute error-controlled numerical solutions to sys-

tems of PDEs in one spatial dimension and one time dimension: While it is potentially

possible to perform a spatial discretization on the two-dimensional variant of this model,

leading to a large system of PDEs in one spatial dimension, an implementation of this ap-

proach has proved elusive. Potentially, it would be a simpler first step to consider constrained
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versions of the continuous model of criminal behaviour in two spatial dimensions first, such as

assuming radial symmetry throughout the problem domain, though such sub-problems have

been left unconsidered here. Another potential problem of interest concerning the continu-

ous model, is whether it is possible to obtain numerical solutions to this model with crime

hotspots that are dynamic in space. Potentially by varying model parameters over time, or

by adding an extra time-dependant factor to the model this could be achieved to agree with

behaviour from the discrete model of criminal behaviour. In short, it is still unclear both the

entire range of potential behaviours that the continuous model can exhibit, and whether the

continuous model can be fit to historic policing data to replicate real-world crime dynamics.

Considering how predictive policing tools interface with existing police departments, there

are two major questions that require more work to fully understand: One, exactly how police

officers understand and actualize predictions made by software into their policing routines

and as a direct consequence, two, whether predictive policing tools have any substantive effect

on crime reduction. Due to the often difficult nature of studying day-to-day police operations

and publishing these results, empirical peer-reviewed studies concerning predictive policing’s

use in the field are remarkably few and far between. The simplest way to truly understand

the utility of this technology is by performing further controlled field trials to assess whether

predictive policing has any noticeable impact on crime reduction.

7.2 CanWe Predict Crime? ShouldWe Predict Crime?

To the potential outsider, predictive policing may appear to solve a number of difficult prob-

lems concerning both police departments and police culture today. In the face of mounting

criticisms of an overall lack of police accountability, predictive policing has been pitched by

police departments as a truly objective crime prevention measure, removing any individual

bias present in police officers in order to achieve a more just policing system. While predic-
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tive policing appears to have a solid foundation in both empirical criminology and applied

mathematics, upon a closer examination, predictive policing tools lack the degree of rigour

and specificity that proponents of predictive policing claim. Although crime displays definite

trends in both time and space, it appears to be fundamentally too chaotic for us to currently

understand.

Throughout the entirety of this project I have been concerned with questioning our ability

to predict and understand crime. Potentially however, this line of inquiry is fundamentally

at fault. Predictive policing acts as a hopeful solution to the issue of our “natural predispo-

sition to committing mayhem” [39]. Perhaps it is wrong though, to think that by surgically

addressing crime before it even occurs is the most effective strategy for “crime reduction”.

Our time may better be served by addressing the root inequalities that cause people to com-

mit crimes, rather than trying to anticipate criminal behaviour in the first place. Through

the work shown here neither predictive policing nor any similar tools appear to be adequate

solutions to our modern crime problem. It is perhaps time then, to consider an altogether

novel approach to the way that we envisage crime reduction today.
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Appendix A

Python Script Implementing Short et
al.’s Discrete Model of Residential
Burglary

"""

Discrete Residential Burglary Simulation

This is an implementation of the discrete model of residential burglary as

introduced in ’A Statistical Model of Criminal Behavior’ (M.B. Short et al.,

2008).

Model parameters can be set in the ’varInit’ method, plot parameters can be set

in the ’genPlot’ method. The overall simulation is saved as a .gif file to the

working directory by default.

"""

import numpy as np

import numpy.random as random

import matplotlib.pyplot as plt

from matplotlib.animation import FuncAnimation

class CrimeSite:

"""

A class used to represent an individual crime site (s) in the overall model,

containing all necessary values associated with the crime site (s)

Attributes

----------

loc : tuple

The coordinates of the site in the overall model’s grid

A0 : double

The value of the static component of criminal attractiveness associated
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with the site

Bst : double

The value of the dynamic component of criminal attractiveness associated

with the site at the current time-step (initialized by default to 0)

BstNext : double

A buffer value, holding the value of the dynamic component of criminal

attractiveness associated with the site for the next time step

(initialized to 0)

Nst : int

The number of criminals residing at the site at the beginning of the

current time-step (initialized by default to 0)

NstNext : int

A buffer value, holding the number of criminals to reside at the site

at the beginning of the next time-step (initialized to 0)

Est : int

The number of criminal events that occured at the site over the duration

of the current time-step (initialized to 0)

Methods

-------

setBstNext(setVal)

Sets the value of BstNext

decNst()

Decrements the value of Nst by 1

incNstNext()

Increments the value of NstNext by 1

incEst()

Increments the value of Est by 1

getLoc()

Returns the value of loc

getAst()

Returns the overall criminal attractiveness Ast=A0+Bst

getBst()

Returns the value of Bst

getBstNext()

Returns the value of BstNext

getNst()

Returns the value of Nst

getNstNext()

Returns the value of NstNext

getEst()

Returns the value of Est

copyBuffer()

Copies the values from BstNest and NstNext to Bst and Nst respectively,

then zeros BstNext, NstNext and Est
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"""

def __init__(self, loc, A0, Bst=0, Nst=0):

"""

Parameters

----------

loc : tuple

The coordinates of the site in the overall model’s grid

A0 : double

The value of the static component of criminal attractiveness

associated with the site

Bst : double, optional

The value of the dynamic component of criminal attractiveness

associated with the site at the current time-step (initialized by

default to 0)

Nst : int, optional

The number of criminals residing at the site at the beginning of the

current time-step (initialized by default to 0)

"""

self.loc = loc

self.A0 = A0

self.Bst = Bst

self.BstNext = 0

self.Nst = Nst

self.NstNext = 0

self.Est = 0

def setBstNext(self, setVal):

"""

Sets the value of BstNext.

Parameters

----------

setVal : double

the value to set to BstNext

"""

self.BstNext = setVal

def decNst(self):

"""

Decrements the value of Nst by 1.

"""

self.Nst -= 1
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def incNstNext(self):

"""

Increments the value of NstNext by 1.

"""

self.NstNext += 1

def incEst(self):

"""

Increments the value of Est by 1.

"""

self.Est += 1

def getLoc(self):

"""

Returns the value of loc.

"""

return self.loc

def getAst(self):

"""

Returns the overall criminal attractiveness Ast=A0+Bst.

"""

Ast = self.A0 + self.Bst

return Ast

def getBst(self):

"""

Returns the value of Bst.

"""

return self.Bst

def getBstNext(self):

"""

Returns the value of BstNext.

"""

return self.BstNext

def getNst(self):

"""

Returns the value of Nst.

"""

return self.Nst

def getNstNext(self):

"""
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Returns the value of NstNext.

"""

return self.NstNext

def getEst(self):

"""

Returns the value of Est.

"""

return self.Est

def copyBuffer(self):

"""

Copies the values from BstNest and NstNext to Bst and Nst respectively,

then zeros BstNext, NstNext and Est.

"""

self.Bst = self.BstNext

self.BstNext = 0

self.Nst = self.NstNext

self.NstNext = 0

self.Est = 0

class CrimeGrid:

"""

A class used to represent the overall grid of crime sites in the model.

Each crime site is represented as an instance of the ’CrimeSite’ class,

stored in a numpy ndarray representing the grid of lattice points.

Attributes

----------

shape : tuple

The shape of the overall grid of crime sites

modelGrid : numpy.narray

A matrix with entries of a specified shape filled with datatype

’CrimeSite’, representing the grid of lattice points in the model

Methods

-------

runSiteCrimes(pos)

Simulates n potential criminal events at a given CrimeSite indicated by

pos, where n is the number of criminals at the given CrimeSite (or, the

value of Nst at the given crimeSite) and pos is a tuple corresponding to

the loc value of the given crimeSite. The probability of a criminal

event being sucessful is given in ’A Statistical Model of Criminal

Behavior’ (M.B. Short et al., 2008). For each successful criminal

event, decrement the value of Nst and increment the value of Est at the
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given CrimeSite. For each unsuccessful criminal event, decrement the

value of Nst at the given CrimeSite and increment the value of NstNext

at an adjacent crime site, determined using a random walk formula given

in (M.B. Short et al., 2008).

runAllCrimes()

Runs the method ’runSiteCrimes(pos)’ on all CrimeSites in modelGrid.

compBstNext(pos)

Computes the value of the dynamic component of criminal attractiveness

for the next time-step (BstNext) for a given CrimeSite indicated by pos,

a tuple corresponding to the loc value of the given CrimeSite. This

value BstNext is computed using a formula given in ’A Statistical Model

of Criminal Behavior’ (M.B. Short et al., 2008), and once computed is

stored in the given CrimeSite.

compAllBstNext()

Runs the method ’compBstNext(pos)’ on all CrimeSites in modelGrid.

genCriminals(pos)

Generates a new criminal at a given CrimeSite indicated by pos with

probability Gamma, where pos is a tuple corresponding to the loc value

of the given CrimeSite and Gamma is a global model parameter specified

in the ’varInit’ method. To simulate the generation of a criminal,

increment the NstNext parameter of the given CrimeSite.

genAllCriminals()

Runs the method ’genCriminals(pos)’ on all CrimeSites in modelGrid.

copyAllBuffers()

For all CrimeSites in modelGrid, runs the method ’copyBuffer()’ to

initialize the necessary variables for the next time-step.

returnStepData()

Returns an narray containing the current dynamic component of each

site’s overall attractiveness.

printGridInfo(printShape=False, printAst=False, printBst=False,

printBstNext=False, printNst=False, printNstNext=False,

printEst=False)

A helper method to print out information pertaining to the grid’s

current state. Parameters represent the possible pieces of information

to print, and are all set to ’False’ by default.

"""

def __init__(self, shape, A0, Bst):

"""

Parameters

----------

shape : tuple

The shape of the overall model grid

A0 : double

The value of the static component of criminal attractiveness
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associated with the grid. Though A0 can vary between grid sites, in

this implementation it is fixed for all grid sites

Bst : Double

The initial value of the dynamic component of criminal

attractiveness associated with each site. Though this initial value

can vary between grid sites, in this implementation it is fixed for

all grid sites

"""

self.shape = shape

self.grid = np.empty(shape=shape, dtype=CrimeSite)

for i in range(shape):

self.grid[i] = CrimeSite(i, A0, Bst=Bst)

def runSiteCrimes(self, pos):

"""

Simulates n potential criminal events at a given CrimeSite indicated by

pos, where n is the number of criminals at the given CrimeSite (or, the

value of Nst at the given crimeSite) and pos is a tuple corresponding to

the loc value of the given crimeSite. The probability of a criminal

event being sucessful is given in ’A Statistical Model of Criminal

Behavior’ (M.B. Short et al., 2008). For each successful criminal

event, decrement the value of Nst and increment the value of Est at the

given CrimeSite. For each unsuccessful criminal event, decrement the

value of Nst at the given CrimeSite and increment the value of NstNext

at an adjacent crime site, determined using a random walk formula given

in (M.B. Short et al., 2008).

Parameters

----------

pos : tuple

The coordinates corresponding to the given CrimeSite with which to

simulate n potential criminal events

"""

while self.grid[pos].getNst() > 0:

# Decrementing the total number of criminals at site

self.grid[pos].decNst()

# Generating a random number to compare against the probability of

# a criminal event

rand = random.rand()

crimeProb = 1 - np.exp((-1)*(self.grid[pos].getAst())*(dt))
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if rand < crimeProb:

# Successful criminal event. Increment the number of criminal

# events at site, Est

self.grid[pos].incEst()

else:

# Unsucessful criminal event. Begin by generating an array of

# probabilities representing how likely the criminal agent will

# be to move to any adjacent site

adjSites = getAdjVals(self.grid, pos)

AstSum = 0

for site in adjSites:

AstSum += site.getAst()

moveProbArray = []

for site in adjSites:

moveProb = site.getAst()

moveProb = moveProb / AstSum

moveProbArray.append(moveProb)

# Based on the array of movement probabilties, move the criminal

# agent to an adjacent site

moveChoice = random.choice(adjSites, p=moveProbArray).getLoc()

self.grid[moveChoice].incNstNext()

def runAllCrimes(self):

"""

Runs the method ’runSiteCrimes(pos)’ on all CrimeSites in modelGrid.

"""

for site in self.grid:

self.runSiteCrimes(site.getLoc())

def compBstNext(self, pos):

"""

Computes the value of the dynamic component of criminal attractiveness

for the next time-step (BstNext) for a given CrimeSite indicated by pos,

a tuple corresponding to the loc value of the given CrimeSite. This

value BstNext is computed using a formula given in ’A Statistical Model

of Criminal Behavior’ (M.B. Short et al., 2008), and once computed is

stored in the given CrimeSite.

Parameters

----------

pos : tuple

112



The coordinates corresponding to the given CrimeSite with which to

compute BstNext

"""

# Computing the sum of the adjacent Bst values

adjSites = getAdjVals(self.grid, pos)

adjBstSum = 0

for site in adjSites:

adjBstSum += site.getBst()

# Computing BstNext

BstNext = ( (1-eta)*self.grid[pos].getBst() + (eta/len(adjSites))* \

adjBstSum ) * (1-omega*dt) + theta*self.grid[pos].getEst()

self.grid[pos].setBstNext(BstNext)

def compAllBstNext(self):

"""

Runs the method ’compBstNext(pos)’ on all CrimeSites in modelGrid.

"""

for site in self.grid:

self.compBstNext(site.getLoc())

def genCriminals(self, pos):

"""

Generates a new criminal at a given CrimeSite indicated by pos with

probability Gamma, where pos is a tuple corresponding to the loc value

of the given CrimeSite and Gamma is a global model parameter specified

in the ’varInit’ method. To simulate the generation of a criminal,

increment the NstNext parameter of the given CrimeSite.

Parameters

----------

pos : tuple

The coordinates corresponding to the given CrimeSite with which to

generate criminals at

"""

rand = random.rand()

if (rand < Gamma):

self.grid[pos].incNstNext()

def genAllCriminals(self):

"""
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Runs the method ’genCriminals(pos)’ on all CrimeSites in modelGrid.

"""

for site in self.grid:

self.genCriminals(site.getLoc())

def copyAllBuffers(self):

"""

For all CrimeSites in modelGrid, runs the method ’copyBuffer()’ to

initialize the necessary variables for the next time-step.

"""

for i in range(self.shape):

self.grid[i].copyBuffer()

def returnStepData(self):

"""

Returns an narray containing the current dynamic component of each

site’s overall attractiveness.

"""

stepData = np.empty(self.shape)

for i in range(self.shape):

stepData[i] = self.grid[i].getBst()

return stepData

def printGridInfo(self, printShape=False, printAst=False, printBst=False,

printBstNext=False, printNst=False, printNstNext=False,

printEst=False):

"""

A helper method to print out information pertaining to the grid’s

current state. Parameters represent the possible pieces of information

to print, and are all set to ’False’ by default.

Parameters

----------

printShape : boolean, optional

Flag that indicates whether the shape of the model’s grid should be

printed or not. Set to false by default

printAst : boolean, optional

Flag that indicates whether the Ast values should be printed or not.

Set to ’False’ by default

printBst : boolean, optional

Flag that indicates whether the Bst values should be printed or not.

114



Set to ’False’ by default

printBstNext : boolean, optional

Flag that indicates whether the BstNext values should be printed or

not. Set to ’False’ by default

printNst : boolean, optional

Flag that indicates whether the Nst values should be printed or not.

Set to ’False’ by default

printNstNext : boolean, optional

Flag that indicates whether the NstNext values should be printed or

not. Set to ’False’ by default

printEst : boolean, optional

Flag that indicates whether the Est values should be printed or not.

Set to ’False’ by default

"""

if (printShape == True):

print("Grid shape:", self.shape)

if (printAst == True):

AstVals = []

for site in self.grid:

AstVals.append(site.getAst())

print("Ast Values:", AstVals)

if (printBst == True):

BstVals = []

for site in self.grid:

BstVals.append(site.getBst())

print("Bst Values:", BstVals)

if (printBstNext == True):

BstNextVals = []

for site in self.grid:

BstNextVals.append(site.getBstNext())

print("BstNext Values:", BstNextVals)

if (printNst == True):

NstVals = []

for site in self.grid:

NstVals.append(site.getNst())

print("Nst Values:", NstVals)

if (printNstNext == True):

NstNextVals = []

for site in self.grid:
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NstNextVals.append(site.getNstNext())

print("NstNext Values:", NstNextVals)

if (printEst == True):

EstVals = []

for site in self.grid:

EstVals.append(site.getEst())

print("Est Values:", EstVals)

print(’---------------------------------------------------------------’)

def varInit():

"""

Method to initialize the necessary model parameters.

- l denotes the length between adjacent CrimeSites

- dt denotes the duration between time-steps

- omega denotes the rate at which the dynamic component of criminal

attractiveness decreases

- eta denotes the measure of neighborhood effects on the dynamic component

of criminal attractiveness

- theta denotes the increase in attractiveness at a site due to a

successful criminal event

- Gamma denotes the probability of burglar generation at each site

- A0 denotes the static component of criminal attractiveness at each site

"""

global l, dt, omega, eta, theta, Gamma, A0

l = 1.0

dt = (1.0 / 100.0)

omega = (1.0 / 15.0)

eta = 0.03

theta = 5.6

Gamma = 0.002

A0 = (1/30.0)

def getAdjVals(array, pos):

"""

Method to return the adjacent values of a numpy array.

Parameters

----------

array : narray

Array to chose adjacent values from

pos : tuple

Location in array to find adjacent values of

"""
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adjValues = []

if (pos > 0 and pos < array.size):

adjValues.append(array[pos-1])

if (pos > -1 and pos+1 < array.size):

adjValues.append(array[pos+1])

return adjValues

def buildAnimation(data, gridSize, numFrames):

"""

Method to create the final simulation .gif from simulated crime data.

Parameters

----------

data : narray

Simulated crime data to create .gif file from

gridSize : tuple

Dimensions of the simulation grid

numFrames : int

The number of time-steps throughout the entire simulation

"""

fig = plt.figure()

ax = plt.axes(xlim=(0, gridSize), ylim=(0, 30))

line, = ax.plot([], [], lw=3)

def init():

line.set_data([], [])

return line,

def animate(i):

x = np.linspace(0, gridSize, gridSize)

y = data[:,i]

line.set_data(x, y)

return line,

anim = FuncAnimation(fig, animate, init_func=init, frames=numFrames, interval=20, blit=True)

anim.save(’1DCrimeSimD.gif’)

varInit()

gridSize = 100

numTimeSteps = 5000
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modelGrid = CrimeGrid(gridSize, A0=A0, Bst=0.01)

outputData = np.empty(shape=(gridSize, numTimeSteps))

for t in range(numTimeSteps):

modelGrid.runAllCrimes()

modelGrid.compAllBstNext()

modelGrid.genAllCriminals()

modelGrid.copyAllBuffers()

outputData[:,t] = modelGrid.returnStepData()

buildAnimation(outputData, gridSize=gridSize, numFrames=numTimeSteps)
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Appendix A

Python Script Implementing
BACOLI PY to Solve the 1D
Burgers’ Equation

# This program defines the one-dimensional Burgers’ equation along with

# initial and boundary conditions. It then calls bacoli_py to compute an

# approximate solution from t=0 to t=2. Finally, it plots the computed

# solution on the XYZ plane.

# Imports

import bacoli_py

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

from matplotlib import cm

# Defining problem-dependent parameters

npde = 1

# Defining the the PDE system

def f(t, x, u, ux, uxx, fval):

fval[0] = -1*u[0]*ux[0] + uxx[0]

return fval

# Defining the left spatial boundary condition

def bndxa(t, u, ux, bval):

bval[0] = u[0] - (1 / (1 - (t/4)))

return bval

# Defining the right spatial boundary condition
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def bndxb(t, u, ux, bval):

bval[0] = u[0] - (1 / (1 + np.exp(1/2) - (t/4)))

return bval

# Defining the initial condition

def uinit(x, u):

u[0] = 1 / (1 + np.exp(x/2))

return u

# Initializing a bacoli_py Solver object

solver = bacoli_py.Solver()

# Packing the functions as defined in the problem definition file and the

# number of PDE’s into a bacoli_py ProblemDefinition object

problem_definition = bacoli_py.ProblemDefinition(npde, f=f, bndxa=bndxa,

bndxb=bndxb, uinit=uinit)

# Specifying the initial time, initial mesh, output points and output times

spa_pnt_final = 1

t_res = 100

x_res = 100

initial_time = 0.0

final_time = 2.0

initial_mesh = [0, spa_pnt_final]

t_outputs = np.linspace(0.001, final_time, t_res)

x_outputs = np.linspace(0.0, spa_pnt_final, x_res)

# Calling the solver to compute an approximate solution to the PDE

evaluation = solver.solve(problem_definition, initial_time, initial_mesh,

t_outputs, x_outputs, atol=1e-6, rtol=1e-6,

dirichlet=True)

# Assigning the solution component of evaluation to an narray

solution = evaluation.u

# Building an x,y mesh to plot the solution values on and assigning

# the solution values to zMesh

xRange = x_outputs

yRange = t_outputs

xMesh, yMesh = np.meshgrid(xRange, yRange)

zMesh = solution[0,:,:]

# Building and saving the finalized graph:
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fig = plt.figure()

ax = plt.axes(projection=’3d’)

plot = ax.plot_surface(xMesh, yMesh, zMesh, cmap=cm.magma)

ax.set_title(’Approx. Sol\’n. to 1D Burgers\’ Equation’)

ax.set_xlabel(’x’)

ax.set_ylabel(’t’)

plt.show()
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