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Abstract

The analysis of Proxima Centauri’s radial velocities recently led Anglada-Escudé et al. to claim the presence of a low-
mass planet orbiting the Sun’s nearest star once every 11.2 days. Although the a priori probability that Proxima b
transits its parent star is just 1.5%, the potential impact of such a discovery would be considerable. Independent of
recent radial velocity efforts, we observed Proxima Centauri for 12.5 days in 2014 and 31 days in 2015 with the
Microwave and Oscillations of Stars space telescope. We report here that we cannot make a compelling case that
Proxima b transits in our precise photometric time series. Imposing an informative prior on the period and phase, we
do detect a candidate signal with the expected depth. However, perturbing the phase prior across 100 evenly spaced
intervals reveals one strong false positive and one weaker instance. We estimate a false-positive rate of at least a few
percent and a much higher false-negative rate of 20%–40%, likely caused by the very high flare rate of Proxima
Centauri. Comparing our candidate signal to HATSouth ground-based photometry reveals that the signal is somewhat,
but not conclusively, disfavored (1σ–2σ), leading us to argue that the signal is most likely spurious. We expect that
infrared photometric follow-up could more conclusively test the existence of this candidate signal, owing to the
suppression of flare activity and the impressive infrared brightness of the parent star.
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1. Introduction

Proxima Centauri is the Sun’s nearest stellar neighbor at a
distance of 1.295 pc (van Leeuwen 2007). Despite this,
Proxima’s late spectral type (M5.5; Bessell 1991) makes it
too faint to be seen by the naked eye ( =V 11.1; Jao
et al. 2014), elucidating why this is not the easiest target in
the search for extrasolar planets. This challenge is exacerbated
by the activity of Proxima itself, being a classic flare star
(Christian et al. 2004).

Nevertheless, Proxima is one of the best-studied low-mass
stars, and its diminutive mass offers an enhanced radial velocity
semiamplitude, K, scaling as 

-M 2 3. Accordingly, translating
the same planet from the Sun to Proxima would cause K to

increase by a factor of four. Early radial velocity campaigns,
such as those of Endl & Kürster (2008) and Zechmeister et al.
(2009), found no signals at the few m s−1 level, ruling out
super-Earths in the habitable zone.
The hunt for planets around our nearest star fell to the

sidelines in the following years, notably during the era of
NASA’s Kepler mission. With thousands of planetary
candidate detections pouring in (Batalha et al. 2013), the
exoplanet community reasonably focused on these immediate
discoveries. Although only a few thousand M dwarfs were
observed by Kepler (out of ∼200,000 targets), the Kepler
results ultimately rekindled our team’s interest in the prospect
of planets around Proxima.
First, with the discovery of a planetary system around one of

Kepler’s lowest-mass stars, Kepler-42 (M5 dwarf), Muirhead
et al. (2012) illustrated a putative template for what a potential
planetary system around Proxima could resemble. Notably, the
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planets were all sub-Earth sized and would thus have eluded the
radial velocity search efforts of Endl & Kürster (2008) and
Zechmeister et al. (2009), should similar planets orbit Proxima.
Moreover, the planets were at extreme proximity to the star, with
periods ranging from 0.45 to 1.86 days, leading to sizable
geometric transit probabilities. Indeed, should Proxima harbor a
Kepler-42-like system, the transit probability would be ∼10%.

Second, Kepler occurrence rate statistics showed that
planets around early M dwarfs are very common, with an
average of 2.5 0.2 planets per star (Dressing & Charbon-
neau 2015). Radial velocity campaigns come to similar
conclusions, finding evidence for at least one planet per M
dwarf (Tuomi et al. 2014). Together then, this implies not
only that Proxima has an excellent chance of harboring a
planetary system, but also that such planets have a reason-
able probability of transiting and producing millimagnitude-
level signals. These arguments inspired our team to conduct
a transit survey of Proxima starting in 2014 with the
Microwave and Oscillations of Stars (MOST) telescope.

MOST is a 53 kg satellite in low Earth orbit with a 15 cm
aperture visible band camera (35–750 nm). MOST is able to
deliver millimagnitude-level photometry (for V 12) at high
cadence over several-week baselines, although observations
are typically interrupted once per 101-minute orbit as the
spacecraft passes behind Earth. MOST has been successful in
discovering several new transiting systems, such as 55Cnce
(Winn et al. 2011), HD97658b (Dragomir et al. 2013), and
most recently HIP116454b (Vanderburg et al. 2015). For
Proxima Centauri, we estimated that MOST should deliver
∼0.3 mmag precision photometry on an hour timescale,
making it well suited for detecting the 4.2 mmag transit
expected to be caused by an Earth-sized planet, and thus two
seasons of observations were undertaken in 2014 and 2015.

Evidently, our team was not alone in returning to Proxima,
with the Pale Red Dot (PRD) campaign conducting their own
intensive search using radial velocities in 2016. By
combining the PRD data with previous radial velocities,
Anglada-Escudé et al. (2016) recently announced the
detection of a 11.2-day planetary candidate, Proxima b.
Since radial velocities do not reveal the inclination of the
planetary orbit, only the minimum mass of Proxima b is
currently known at = -

+M isin 1.27P 0.17
0.19 M⊕. Since the

transition from Terran (solid-like) to Neptunian worlds
occurs at 2.1 0.6( ) M⊕(Chen & Kipping 2016), the
compositional nature of Proxima b is currently ambiguous.
If transits of Proxima b were observed, the inclination could
be resolved, as well as offering the opportunity to further
characterize this remarkable world.

In this work, we present the results of our search for
transiting planets around Proxima Centauri with MOST
photometry. We describe the observations and data treatment
stages in Section 2 and our photometric model in Section 3.
In Section 4, we present the results of a localized search
using the reported Proxima b ephemeris, followed by two
sets of tests in Sections 5 and 6. Finally, we discuss the
constraints our data place on Proxima b in Section 7.

2. Observations

2.1. MOST Observations

MOST observed Proxima Centauri in 2014 May (beginning
on HJD(2000) 2,456,793.18) for about 12.5 days. Proxima

Centauri falls outside of the continuous viewing zone of MOST
(−19° to +36° in decl.; see Walker et al. 2003) and can only be
observed for a fraction of the satellite’s 101-minute orbit. For
this reason, and for other science queue considerations, data
were collected for about 30% of each MOST orbit and were
sampled at an average rate of 63.4 s. MOST again observed
Proxima Centauri in 2015 May (starting on HJD(2000)
2,457,148.54), this time for a total of 31 days with extended
coverage to almost 50% of every MOST orbit. Data were again
sampled at an average rate of about 63 s.
Flux measurements were extracted from each image using

aperture photometry techniques outlined by Rowe et al. (2006).
Background counts, interpixel correlations, and pointing drifts
were accounted for by subtracting polynomials fitted through
correlations between the measured target flux and those
parameters. Removal of stray earthshine onto the CCD was
done by folding the time series at the orbital period of MOST
and subtracting a running mean through 30 orbital bins. Any
remaining statistical outliers were removed, resulting in ∼2600
individual time series measurements from the 2014 data set and
∼13,000 data points from 2015.
The time series was then inspected for flare-like events using

v1.3.11 of the flare-finding suite FBEYE from Davenport et al.
(2014). The results of this exercise are discussed in detail in the
accompanying paper of Davenport et al. (2016), but for the
purposes of this work these points are removed in all
subsequent analyses of the photometry. The locations of these
events are highlighted in Figure 1.

2.2. Time-correlated Structure and Trends

After correcting the photometry and removing the flares, it is
clear that our MOST data exhibit time-correlated structure in
both seasons (see Figure 1 and Table 1). Long-term trends are
pronounced in both seasons, with 2014 displaying a slow
brightness increase along with a sinusoidal-like few-millimag-
nitude variation on the timescale of a week. In 2015, the
structure appears more complex and exhibits a slow brightness
decrease. These trends are not seen in any of the comparison
stars, and thus we identify them as being astrophysical in
nature.
The slow brightness trends may be associated with the

claimed 83-day rotation period of Proxima Centauri (Benedict
et al. 1998). The remaining, and quite pronounced, structure
may be a result of frequent flaring (Davenport et al. 2016) and
associated coronal mass ejections, as well as magnetic activity
such as evolving spots, plages, and networks.
Interpreting the origin of the observed structure is beyond the

scope of this work, for which this structure represents an
impediment in our ability to detect putative transits of Proxima.

2.3. Gaussian Process (GP) Regression

In order to search for transits, the structure and trends present
in our data require modeling. For reasons described in what
follows, we elected to use GP regression to model out this
structure. Here, one assumes that the data are distributed
around the transit model as a multivariate Gaussian including
off-diagonal elements within its covariance matrix, S. This
eliminates the assumption of independent uncertainties and
allows each point in the time series to have some degree of
correlation with every other point. The log-likelihood function,

2
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used for subsequent regression, may be written as

 pS S= - - --r rlog log det log 2 , 1T n1

2
1 1

2 2
( )

where r is a vector of the residuals between the transit model
and the data. The very large number of covariance matrix
elements are a priori unknown to us, but GPs model the
covariance matrix with some assumed smooth, functional form,
known as the kernel. The kernel, K , is described by one or
more hyperparameters, qhyper, which are freely explored along
with the usual model parameters, qtransit, during the fitting
procedure.

GPs have emerged as one of the most popular and successful
methods of modeling time-correlated noise in the analysis of
transit photometry (Gibson et al. 2012; Berta-Thompson et al.
2015; Evans et al. 2015) and are appealing for their ability to
model complex structure with relatively few new regression
parameters. However, inverting the covariance matrix at each
realization is computationally expensive, and typically GPs are
computationally prohibitive for n 103[ ] data points, which
is particularly relevant in this work given that we have over 104

photometric measurements.

2.4. Binning and Kernel Selection

To overcome the computational challenge of inverting the
covariance matrix, one may first apply modest binning to the

time series. Ideally, the relevant correlation timescale(s) should
be significantly greater than the timescale used for binning,
such that correlations are preserved.
The native cadence of our photometric measurements is

63.5 s, and after removing outliers and flares, we have 2461
data points in the 2014 season and 11,473 points in 2015. We
first assume that the kernel parameters for each season are
wholly independent, given the large change in time. We then
focus on the null model of a transit-free case, where the data are
solely described by an offset parameter, a, and the GP.
Accordingly, the 2014 season can be treated independently
of 2015.
We found that a total of 2461 data points was not a

computationally prohibitive number of points for GP regres-
sion, which allows us to directly compare the inferred GP
kernel parameters between the binned and unbinned data. We
set a binning timescale equal to 317.5 s (equivalent to five
consecutive cadences), or approximately 5 minutes, and
employ temporal windows for the binning rather than N-point
binning, due to the considerable number of data gaps present.
For the GP kernel, we adopted the popular Matérn 3/2 kernel
given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟a a= +

-
-

-
K l

t t

l

t t

l
, 1

3
exp

3
, 2i j

i j i j
,

2( )
∣ ∣ ∣ ∣

( )

where l controls the timescale of correlations and α controls the
magnitude. The full covariance matrix, S, is the sum of the
matrix K and a diagonal matrix of the square of the
measurement uncertainties. We then regressed both versions
of the 2014 time series using MULTINEST (Feroz &
Hobson 2008; Feroz et al. 2009) and computed parameter
posteriors. The agreement between the two is excellent,
with = -

+a 0.79 0.57
0.59 mmag from the unbinned data versus

= -
+a 0.78 0.58

0.58 mmag using the binned data. Similarly, the l
correlation timescale is almost identical— = -

+l 130 15
16 minutes

in the unbinned data versus = -
+l 130 15

17 minutes in the binned
data. Further, this timescale is much greater than the 5-minute
binning timescale adopted, ensuring that key correlations are
not affected by the binning procedure.
For the 2015 data, we are unable to repeat this test given the

much larger number of unbinned points. However, regressing

Figure 1. Corrected photometric observations of Proxima with MOST in 2014 (top) and 2015 (bottom) shown with 5×cadence binning (∼5.3 minutes). Each orbital
visit of MOST is binned together in black. The vertical colored regions denote regions ignored in this work, since flares were identified by Davenport et al. (2016).

Table 1
Reduced MOST Photometry Used in This Work,

Excluding Times Afflicted by Large Flares

HJDUTC–2,451,545 Δmag Uncertainty

5248.197851471566 0.0118 0.0030
5248.200048126498 0.0116 0.0030
5248.259628134210 0.0028 0.0026
5248.262194952687 0.0092 0.0030
5248.270990357013 0.0065 0.0030
5248.329765768074 0.0072 0.0026
5248.332326375948 0.0054 0.0030
5248.399228360851 0.0155 0.0030

(This table is available in its entirety in machine-readable form.)
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the same model and GP on the 2015 binned data reveals
= -

+l 269 15
15 minutes, which is again much greater than the

binning timescale (in fact, even more so than before).
Accordingly, we conclude that the 5-minute binning procedure
does not affect the GP inference, nor should it affect our ability
to detect transits, given that such events occur on significantly
longer timescales too. Our final binned time series includes 709
points in the 2014 season and 2850 points in 2015, which are
the points plotted in gray in Figure 1.

Although we assumed a Matérn 3/2 kernel in these tests,
several other commonly used kernels are investigated before
continuing. We compared the Bayesian evidence (or marginal
likelihood) resulting from refitting both seasons of data for a
Matérn 3/2 kernel, a Matérn 3/2 quasi-periodic kernel, a
Matérn 5/2 kernel, and a squared-exponential kernel. After

conducting these fits on the 2014 unbinned, 2014 binned, and
2015 binned data, with identical priors, we find in all cases that
the Matérn 3/2 kernel is favored, as shown in Table 2. We
therefore adopt the Matérn 3/2 kernel in all subsequent
photometric analysis of Proxima Centauri and show this
favored GP overplotted with the data in Figure 2.

3. Priors, Models, and Tests

3.1. Predicting the Transit Ephemeris

The radial velocity solution of Anglada-Escudé et al. (2016)
provides joint posterior distributions for numerous parameters,
including the orbital period, P, and the mean anomaly at a
reference time t0, M0. We first converted the M0 column into a
time of inferior conjunction, tIC, via Kepler’s equation. For
low-eccentricity orbits, such as that of Proxima b ( <e 0.3 to
95% confidence; Anglada-Escudé et al. 2016), the time of
transit minimum, τ, is equal to the time of inferior conjunction
(Kipping 2011).
The time of inferior conjunction can be computed at any

epoch of our choosing by adding on some integer number of
periods. We therefore elected to calculate tIC at every possible
epoch from −200 to +200 orbital periods. For each realization,
we computed the standard deviation of the resulting posterior
and also the correlation with respect to the P posterior samples.
We found that both are minimized for the -65th epoch, for
which = t 2, 456, 678.78 0.56IC HJD. Both this term and
the orbital period of = P 11.1856 0.0013( ) days are well
approximated as two independent normal distributions.

3.2. Predicting the Radius

In order to guide our targeted search for transits of Proxima
b, we first estimate the amplitude of the transit signal expected.
If the mass of a planet is known, the radius can be predicted
using an empirical mass–radius relation. In this work, we use
the relation of Chen & Kipping (2016), which is probabilistic,
includes freely inferred transitional regions, and was calibrated
on the widest range of data available.
If the planet is transiting, this imposes the condition that
< +b p1 . Given that Proxima b is an Earth-mass planet, we

expect p 0.06 and thus p 1. This allows us to write that a

Figure 2. Corrected photometric observations of Proxima with MOST in 2014 (top) and 2015 (bottom) shown with 5×cadence binning (∼5.3 minutes) with large
flares excluded. The black line is the maximum likelihood fit of a GP using a Matérn 3/2 kernel, with the 0.5σ, 1.0σ, and 1.5σ confidence regions denoted by the gray
regions (GP shown is from model2).

Table 2
Comparison of Bayesian Evidences,  , for Four

Commonly Used Kernel Choices

Kernel log

2014 unbinned

Squared-exponential 9856.304±0.088
Matérn 3/2 9865.807±0.083
Matérn 5/2 9862.166±0.085
Quasi-periodic Matérn 3/2 9865.513±0.084

2014 binned

Squared-exponential 2989.686±0.088
Matérn 3/2 2998.977±0.084
Matérn 5/2 2995.398±0.085
Quasi-periodic Matérn 3/2 2998.795±0.084

2015 binned

Squared-exponential 11192.194±0.109
Matérn 3/2 11337.855±0.100
Matérn 5/2 11284.873±0.102
Quasi-periodic Matérn 3/2 11337.101±0.103

Note. The preferred model for each data set is shown in bold.
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transiting Proxima b must satisfy

w
<

-
+

i
a

e

e
cos

1 1

1 sin
. 3

R

2
( )

Using the joint posterior distribution samples for P, e, and ω
from Anglada-Escudé et al. (2016), this condition requires
< i 89 . 1 to 95.45% confidence. For any transiting planet then,

the isin effect on the true mass is much smaller than the present
measurement uncertainty on M isinP . Accordingly, we may
simply adopt M M isinP P in estimating the radius of a
transiting Proxima b.

We now use the posterior samples of M isinP to estimate a
probabilistic range for RP using the Forecaster code of
Chen & Kipping (2016). This estimate accounts for the
measurement uncertainty of Anglada-Escudé et al. (2016), the
measurement uncertainties in the calibration of Chen &
Kipping (2016), and the intrinsic dispersion in radii observed
as a function of mass (Chen & Kipping 2016). Under the
assumption that Proxima b is transiting, we estimate that

= -
+R 1.06P 0.11

0.13 R⊕. Normalizing by the radius of the star
(Demory et al. 2009), we predict = = -

+p R R 0.0693P 0.0083
0.0095,

which is well fit by a logistic distribution with shape parameters
m = 0.069 and s=0.0051. We also find that 99% of the
posterior samples for p satisfy <p 0.1, and we conservatively
double this limit to <p 0.2 as a truncation point to our prior.
This also provides a cutoff for the impact parameter of <b 1.2.

3.3. Models Considered and Associated Priors

We considered three different transit models in our targeted
search for transits of Proxima b, where we varied the degree of
prior information we used from the Anglada-Escudé et al.
(2016) discovery. We label the models as 1, 2, and 3,
where the subscript increases with increased use of prior
information. These fits may be compared directly to the null fit
of 0, where no transit is included and only the GP
hyperparameters, qhyper, are fitted.

We list the priors used in Table 3, where it can be seen that
the GP hyperpriors are identical in all fits. This allows us to
compare the Bayesian evidences between each model to aid
model selection. All three transit models used the normal prior

on orbital period; otherwise, the search would be blind rather
than targeted. 2 uses an informative prior on the time of
transit minimum, unlike 1. The final model, 3, also uses
these period and phase informative priors plus an informative
prior on the radius of the planet, as computed earlier in
Section 3.2.
Limb-darkened transits are generated using the Mandel &

Agol (2002) algorithm. Two quadratic limb-darkening coeffi-
cients are kept fixed at u1=0.7948 and u2=0.0825,
estimated by finding nearest-neighbor interpolation of the
PHOENIX model grids for MOST generated in Claret et al.
(2014) (using =glog 5.25 and =T 3050eff K). Eccentricity is
kept fixed at zero, since Proxima b has a low eccentricity
(Anglada-Escudé et al. 2016). Similarly, we fix the mean stellar
density of the star, which is very well constrained given that
Proxima is one of the most well-studied M dwarfs. These fixed
parameters significantly reduce the number of parameters to
explore, making the calculation of the Bayesian evidence of
models using GP with several thousand data points computa-
tionally feasible. By fixing these terms, transit parameter
inferences may slightly underestimate the true uncertainties,
but since our primary objective is signal detection, the ability to
feasibly compute evidences outweighs this cost, in our view.

3.4. Mis-specified Likelihood Function

As discussed earlier, the likelihood function used in this
work is that of a GP, described in Section 2.3 and given by
Equation 1. Additionally, we are computing evidences using
MULTINEST, in order to conduct model comparison. Note that
the computational expense of this work prohibited us from
computing evidences with several different methods, and thus
we adopt those from MULTINEST only in what follows.
A common perception of GPs is that they are extremely

flexible models, seemingly able to model out just about any
observed correlated noise structure, particularly when one
regresses the GP kernel hyperparameters simultaneously with
the model. Indeed, Feng et al. (2016) go as far as to actively
caution against using GPs since they lead to frequently missing
true signals, due their overzealous ability to fit out time series
structure. This logic suggests that a GP-only model (0)
would generally be favored over a GP+transit model (2 and

Table 3
Priors Used in the Targeted Transit Search of Proxima b, Spanning Four Different Models

Parameter 0 1 2 3

a2014 (mmag)  - - -10 , 102 2[ ]  - - -10 , 102 2[ ]  - - -10 , 102 2[ ]  - - -10 , 102 2[ ]
a2014  - -10 , 101 1[ ]  - -10 , 101 1[ ]  - -10 , 101 1[ ]  - -10 , 101 1[ ]
l2014  - -10 , 102 0[ ]  - -10 , 102 0[ ]  - -10 , 102 0[ ]  - -10 , 102 0[ ]
a2015 (mmag)  - - -10 , 102 2[ ]  - - -10 , 102 2[ ]  - - -10 , 102 2[ ]  - - -10 , 102 2[ ]
a2015  - -10 , 101 1[ ]  - -10 , 101 1[ ]  - -10 , 101 1[ ]  - -10 , 101 1[ ]
l2015  - -10 , 102 0[ ]  - -10 , 102 0[ ]  - -10 , 102 0[ ]  - -10 , 102 0[ ]

=p R RP( ) L  - -10 , 103 0.70[ ]  - -10 , 103 0.70[ ]  0.069, 0.0050[ ]
b L  0, 1.2[ ]  0, 1.2[ ]  0, 1.2[ ]
τ (HJD –2,456,000) L  +t t P,ref ref[ ]  678.78, 0.59[ ]  678.78, 0.59[ ]
P (days) L  11.1856, 0.0013[ ]  11.1856, 0.0013[ ]  11.1856, 0.0013[ ]
r (kg m−3) L d 104.792[ ] d 104.792[ ] d 104.792[ ]
e L d 0[ ] d 0[ ] d 0[ ]

log −14,300 36.763±0.065 46.286±0.089 38.290±0.079 41.336±0.077

Note. denotes a uniform prior, a wraparound uniform, a log-uniform, δ a delta function prior, and a logistical distribution prior. We set the reference time to
=t 2,457, 165.385ref HJD.
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3) even when real signals are present. Or, equivalently, it
implies that our evidences may be conservative and the actual
weight of evidence for the transit models may be higher than
that formally calculated.

This logic can be flawed if our likelihood function is mis-
specified, which means that the marginal likelihood would be
inaccurate. This can occur if the assumed functional form of the
GP kernel is a poor approximation of the true (and unknown)
covariance matrix. In this study, the high flare activity of
Proxima makes this a plausible scenario. By extrapolating the
rates of large flares, Davenport et al. (2016) estimate that
Proxima exhibits a 0.5% brightness increase once every
∼20 minutes (on average). Note that this issue is not limited
to just MOST data but implies that any visible light photometry
of Proxima will be affected by ostensibly constant stochastic
deviations at the level of 5 mmag, as a result of flares. A Matérn
3/2 kernel is not designed to describe a superposition of flare
events, and thus formally we expect our likelihood function to
be mis-specified for this reason.

In conclusion, the marginal likelihoods from our fits will not
be accurate. It is not clear what alternative kernel or likelihood
function could deal with this kind of noise structure either, and
thus we still favor GPs over any alternatives. Although our
evidences will be inaccurate, they may still be useful in guiding
which models are preferred. Even if the Bayes factor is
inaccurate, this does not mean it cannot be used to rank models
in order of preference, since, after all, the majority of the
residuals are indeed normally distributed. However, any
candidate solutions from this process must be treated with
great caution and subject to higher scrutiny and skepticism than
usual.

4. Results

4.1. Signal S

We first discuss the results of model 1, where the transit
phase is described by an uninformative prior. The marginal
likelihood indicates a strong preference for1 over0, with

D = log 9.52 0.11. Hereafter, we refer to this solution as
signal S.

The1 ephemeris yields four transit epochs within our MOST
time series, although one of these occurs during a data gap, as
shown in Figure 3. We note that signal S is primarily driven by a

large feature in the fourth epoch, at HJD 2,457,173.3. To ensure
that the recovered signal was not an artifact of our data processing
method, one of us (J. Rowe) reprocessed the data independently.
As shown by the squares in Figure 3, the signal appears coherent
in both data products.
The time of transit minimum, τ, has a non-Gaussian but

narrow marginal posterior with a 1σ credible interval of
t = -

+1150.9348 0.0026
0.0019 (HJD –2,456,000), which deviates sub-

stantially from the predicted time based on the radial velocity
fits of Anglada-Escudé et al. (2016). For reference, all of the
model parameter credible intervals, from all four models, are
listed in Table 4.
To quantify the ephemeris disagreement, we used the

posterior samples of the radial-velocity-predicted time of
transit minimum, computed earlier in Section 3.1, and
propagated the joint posterior of P and τ to the equivalent
epoch, giving t = -

+1148.59 0.59
0.59 (HJD –2,456,000). The p-

value of signal S’s τ posterior exceeds 4σ and is difficult to
reconcile with the radial velocity solution. Note that the radial
velocity posteriors include a floating eccentricity, and thus this
effect is accounted for here. This point is formally established
in the Bayesian framework by the fact that models2 and3
do not recover signal S when using the radial-velocity-derived
τ prior.
We also note that the inferred planetary radius is at the 2σ

upper limit of the Forecaster prediction, which, although
not concerning in isolation, does compound upon these earlier
concerns. Further, visual inspection of the transits (Figure 3)
shows that the signal is primarily driven by an apparent flux
increase around the times of transit, rather than a flux decrease,
which raises additional skepticism.
While one could, in principle, refit the radial velocities

imposing this transit phase as a prior, that model would be
implicitly assuming that signal S is real—an assumption that is
not warranted given the challenging noise structure of our data
set and the arguments made above. The incompatibility of the
transit phase, and to a lesser degree the poor phase coverage
and inflated radius, leads us to conclude that signal S is
unlikely associated with Proxima b and is either spurious, as a
result of flare-induced likelihood mis-specification, or poten-
tially an additional transiting planet, driven by a single event
within our data.

Figure 3. Left: zoom-in of the Proxima b transits for the spurious signal (signal S) from models1. The GP+transit model 0.5σ, 1.0σ, and 1.5σ confidence regions
are shown by the colored regions, whereas the GP-only (model0) is depicted in gray. Right: phase-folded light curve of the transit signal S after removing the GP
component of model1 using the nominal MOST data (top) and an independent reprocessing (bottom).
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4.2. Signal C

We next consider the results of models2 and3, both of
which recover the same transit signal, which we hereafter refer
to as signal C. Three modes are recovered by the fit of2, but
the dominant mode is strongly favored at a Bayes factor of
20.1. Of the three modes, only the dominant is preferred over
the null model of 0, and it is this mode that is compatible
with the signal recovered by model 3. We therefore ignore
the other two modes in what follows.

While the two models recover the same signal, 2 is
favored over the null hypothesis with a Bayes factor of 4.6,
whereas3 is much stronger at 96.8. This can be understood
by the fact the two models recover very similar p posteriors
(  = -

+R 1.23P 2 0.15
0.13( ) R⊕ versus  = -

+R 1.14P 2 0.10
0.10( ) R⊕) but

2 used a broad, uninformative prior, over which the average
likelihood is lower, thus penalizing the model for effectively
being more complicated.

The signal is shown in Figure 4, where we highlight how
once again the independent reprocessing of the MOST data
produces a consistent signal.

The phase from both models is not incompatible with the
radial velocity constraints, giving a p-value of 1.56σ, although
this is to be expected since it was imposed as an informative
prior. A more useful test is that the freely fitted radius from
model 2 is compatible with the radius prediction from
Forecaster.

We also note that the impact parameter of the signal is
nongrazing (see Figure 5). This is important because observa-
tional bias of the transit method, given the Forecaster size
prediction, makes it less likely that a detected signal would be
caught on the limb. Integrating the conditional probability
distribution of Kipping & Sandford (2016), we are able to
estimate that it is in fact 35 times more likely that a real signal
would be nongrazing than grazing.
In conclusion, analysis of signal C shows it to be compatible

with that expected if Proxima b were observed to transit. While
promising, this in itself does not prove that the signal is
genuinely the transit of Proxima b, however, for reasons
discussed earlier in Section 3.4.

5. Type I and II Error Rates

5.1. Evaluating the False-positive (Type I) Rate

In Section 3.4, it was established that the Bayesian evidence
may not be a fully reliable tool for model selection in our case.
Accordingly, we seek alternative methods to interpret the
significance of signal C. While cross-validation would be a
powerful alternative, Proxima b’s period means that only two
transits of signal C occur in our MOST photometry, and
ignoring some fraction of the data is undesirable. Instead, we
elected to perform a bootstrapping procedure to emulate our
detection approach in the presence/absence of an injected
signal.

Table 4
A Posteriori Median and 68.3% Credible Intervals of Each Model Parameter for the Four Models Regressed to the MOST Photometry

Parameter 0 1 2 3

a2014 (mmag) -
-0.78 0.59

0.59
-
+0.78 0.54

0.55
-
+0.77 0.57

0.57
-
+0.78 0.58

0.58

a2014 -
+1.44 0.10

0.12
-
+1.44 0.09

0.10
-
+1.44 0.10

0.11
-
+1.45 0.10

0.11

l2014 (minutes) -
+131 15

16
-
+131 14

15
-
+130 14

15
-
+130 15

16

a2015 (mmag) -
+5.41 0.87

0.87
-
+5.38 0.80

0.82
-
+5.40 0.85

0.86
-
+5.40 0.89

0.89

a2015 -
+2.30 0.10

0.11
-
+2.30 0.09

0.11
-
+2.34 0.10

0.11
-
+2.34 0.10

0.11

l2015 (minutes) -
+269 14

16
-
+268 13

15
-
+274 14

16
-
+274 15

16

RP ÅR( )a L -
+1.38 0.12

0.11
-
+1.23 0.15

0.13
-
+1.14 0.10

0.10

b L -
+0.22 0.14

0.19
-
+0.28 0.19

0.24
-
+0.25 0.18

0.24

τ (HJD –2,456,000) L -
+983.1656 0.0330

0.0064
-
+980.0554 0.0023

0.0027
-
+980.0552 0.0026

0.0029

P (days) L -
+11.18467 0.00039

0.00200
-
+11.18725 0.00016

0.00012
-
+11.18723 0.00019

0.00014

Note.
a Assuming a fixed stellar radius of 0.123 Re.

Figure 4. Same as Figure 3, except for the candidate transit signal of Proxima b, signal C. Right panels reproduce the left panels, except including the independently
processed MOST data in lilac for comparison.
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We first consider the case of type I errors, which is the most
critical term in assessing the credibility of any signals inferred
by our approach. We specifically considered evaluating the
type I error of model2, which uses an informatively priored
ephemeris but uninformative priors on the radius of Proxima b
(see Table 3). To do this, we need a set of representative,
synthetic fits of null data.

Since the GP model is argued to not represent a complete
noise model (see Section 3.4), we cannot use the GP to
generate synthetic, representative data sets. We also cannot
randomly scramble the original data to create fake data, as this
would remove the time-correlated noise structure clearly seen
in our data. Performing a search for inverted transits is also not

useful, since flares are asymmetric flux increases mimicking
such events. The best option remaining is to move along the
data in a rolling-window style.
Accordingly, we use the original, unmodified MOST time

series and simply modify the priors used. Specifically, in 100
fits, we iteratively translate the prior on τ by P0.01 until we
loop back around to the original phase in the 100th trial. The
disadvantage of this approach is that we cannot ensure that the
null data are actually absent of signal (in fact, we already have
established the presence of a spurious signal in the form of
signal S; see Section 4.1). Consequently, our false-positive rate
estimate may be an overestimate if latent but genuine transit
signals reside in our MOST photometry.

Figure 5. Corner plot of the joint posterior distribution of the fitted parameters retrieved for model2. The parameters are consistent with those returned by3.
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In each fit, we rerun an identical fit as before, using
MULTINEST to explore the transit parameters and GP
hyperparameters using otherwise identical priors. As before,
we also compute the marginal likelihood. These tests, as well as
the others needed to evaluate the type II error rate, demanded
significant computational resources of tens of thousands of core
hours on the NASA PLEIADES supercomputer, and this is
why we are practically limited to only running 100 such tests.

In order to calculate the false-positive rate, we need to define
what constitutes a “detection.” A useful metric is to inspect the
convergence of the time of transit minimum posterior.
Detections will have a narrow posterior with most of the
density located on a single mode. In contrast, the τ posterior of
null detections will broadly reproduce the prior or display a
broad, unconverged and structured form.

To more explicitly define what we mean by a “narrow”
posterior, we demand that the range of the central 50%
quantile, thereby constituting the majority of the samples, is
less than one-half of the characteristic transit duration, .
Assuming a circular orbit, adopting a representative impact
parameter21 of b=0.5, and using the mode of our stellar
density prior (see Table 3) give a characteristic transit duration
of  = 65.3 minutes. Further, we require that the Bayes factor
between the fit and the null model 0( ) exceeds e. We
therefore require the following:

(i) The interval from the 25% quantile to 75% quantile of the
τ posterior should be less than one-half of the
characteristic transit duration,  2.

(ii) The evidence ratio should satisfy D >log 1.

Turning to the results, we first note that from inspecting the τ
posteriors of the 100 fits ran, it was immediately obvious that a
considerable fraction of the fits recovered the signals S and C
discussed in Sections 4.1 and 4.2. This can be seen from the top
panel of Figure 6, where the τ posteriors latch onto a single
solution and exhibit a linear-like trend on signals S and C.
Since the τ prior (x-axis) is shifted each time but the best-fitting
solution is the same, this creates the linear structure observed.
As a result of this behavior, it is necessary to establish a

criterion to identify fits that recovered previously recognized
signals, namely, signals S and C. We define such fits as those
for which the median posterior τ sample lies within ±0.5 transit
durations of signal S/C’s median posterior τ sample. Note that
here it is unnecessary to use the characteristic duration, but
instead we can use the actual duration measured from our
earlier model fits. We thus define spurious signals as those
satisfying the following criterion as well as criteria (i) and (ii)
(to remove unconverged cases):

(iii) The median posterior τ sample of the fit should be within
±0.5 transit durations of the median posterior τ sample of
either signal S or signal C.

Using this criterion, we found that 26 of the 100 fits
converged to signal S and another 14 converged to signal C.
Inspection of Figure 6 reveals that a third signal appears to exist
in the data, located around a phase of 0.4, causing 12 additional
tests to converge to the same solution. We label this new signal
as signal T. We show the credible intervals of the fitted
parameters τ, p (converted to planetary radii), and b in Figure 6,
with each realization color-coded to the aforementioned

Figure 6. The 1σ (dark bars) and 2σ (light bars) credible intervals from 100 model2 fits on the original MOST data, but slightly perturbing the informative prior on
τ (x-axis). The color-code key is at the top. The horizontal region in the second panel denotes the Forecaster prediction for the planetary radius (Chen &
Kipping 2016).

21 We use the median of the probability distribution of b after accounting for
observational bias derived in Kipping & Sandford (2016).
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identities. We also plot the maximum a posteriori solution for
signal T in Figure 7.

Signal T immediately raises skepticism about its validity.
Over 95% of the posterior trials correspond to a grazing
geometry, as evident from the shape of signal T in Figure 7. As
discussed earlier in Section 4.2, observational biases mean that
it is 35 times more likely that a detected transit would be
nongrazing than grazing. Moreover, it is generally easier for
sharp data artifacts to mimic a V-shaped event than a full transit
morphology, by virtue of the former’s simpler shape. The ratio-
of-radii posterior is pushed up against the upper bounds of the
prior, favoring a planet of -

+2.35 0.55
0.48 R⊕, which is highly

incompatible with the Forecaster prediction. Finally,
inspection of the data themselves reveals a far less convincing
signal than signals C and T. We assert that signal T would
never be genuinely considered a candidate transit signal of
Proxima b, even if the phase had matched with the radial
velocity prediction.

Because signal T would not be considered a detection if its
phase had been compatible, we do not consider it to be a false-
positive signal in what follows and simply discount it from the
false-positive evaluations. In contrast, signal S shows no features
that would have caused us to dismiss it as a false positive, had it
landed at the correct phase. Therefore, of the 74 realizations not
affected by signals C and T, 26 converge to a single spurious
solution. Counting these cases as unique false positives would
imply a false-positive rate of = FPR 35 7( )%, whereas
counting them as belonging to a single false positive would
give = FPR 2 2( )%. In conclusion, it is unclear precisely
how to define the false-positive rate from these tests, but
certainly the false-positive rate is nonzero and at least a few
percent.

5.2. Evaluating the False-negative (Type II) Rate

To evaluate the false-negative rate, we used the same setup
as for the type I tests, except we inject a 1.06 R⊕ planet (see
Section 3.2) with b=0.5 into the time series at each phase
point. In each of the 100 tests we ran, the model is seeking an
injected Proxima-b-like transit signal located within the
specified phase prior. Since the data have been perturbed, it
was necessary to rerun the null model, 0, on each of these
synthetic data sets, in addition to model2.

We classify null detections (i.e., the false negatives) as being
any case for which criteria (i) and (ii) are not both satisfied,

which occurs for 23 of our 100 simulations. This sets a
minimum limit on the false-negative rate of = FNR 23 5( )%.
We classify successful recoveries as cases where criteria (i)

and (ii) are both satisfied and the median of the fit’s τ posterior
is less than one-half of the injected transit duration from the
injected transit time. However, we exclude cases where signal
C, S, or T is recovered using criterion (iii) (and extended now
to include signal T). Defined in this way, we count 40
successful recoveries.
In addition to 21 redetections of signal S, 6 redetections of

signal T, and 8 redetections of signal C, we find 2 additional
“detections” that do not correspond to the injected signal, i.e.,
false positives. We plot the credible intervals of these
simulations for three key transit parameters in Figure 8, where
we color-code each of these cases.
Ignoring the previous redetections, we are left with 65

simulations, of which 2 are false positives and 40 are
successful recoveries. First, this supports the previous
argument for a false-positive rate of a few percent (here

3 3( )%). Second, it implies that the false-negative rate may
be as high as = FNR 39 8( )%.

5.3. Summary

Since we lack a complete model to describe the noise
structure of our data, new synthetic, representative data sets
cannot be generated to evaluate the false-positive and false-
negative rates of our putative Proxima b transit (signal C). This
limits our options to using the original data themselves, which
are unfortunately contaminated by three signals—the putative
signal itself and two additional, likely spurious, signals.
Although these signals severely impede our ability to

investigate the error rates of signal C, we estimate that the
false-positive rate is at least a few percent, whereas the false-
negative rate is considerably higher at ∼20%–40%. Both of
these numbers are sufficiently high to warrant serious
skepticism regarding the reality of signal C.
At this point, we concluded that the MOST data alone were

unable to conclusively confirm or reject this candidate signal.
While MOST data have some unique challenges, due to the
orbital motion and data sparsity, we consider that the most
likely reason why this analysis is so challenging is not
associated with MOST itself but rather with Proxima’s high
flare activity, which leads to likelihood mis-specification.
Cross-validation is perhaps the model selection tool least

likely to suffer from the effects of likelihood mis-specification.

Figure 7. Same as Figure 3, except for the third transit signal found, signal T. The signal is far less convincing than signals S and C.
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As mentioned earlier, this is impractical with just two transits
observed by MOST for signal C. However, cross-validating the
signal against other data sets would be a viable and robust way
to establish the reality of signal C. Accordingly, we discuss
such a test in the next section.

6. Cross-validating with Hatsouth Data

6.1. Observations

Independent of the MOST observations, Proxima Cen was
also monitored by the HATSouth ground-based telescope
network (Bakos et al. 2013). The network consists of six wide-
field photometric instruments located at three observatories in
the Southern Hemisphere (Las Campanas Observatory [LCO]
in Chile, the High Energy Stereoscopic System [HESS] site in
Namibia, and Siding Spring Observatory [SSO] in Australia),
with two instruments per site. Each instrument consists of four
18 cm diameter astrographs and associated 4K×4K backside-
illuminated CCD cameras and Sloan r-band filters, placed on a
common robotic mount. The four astrographs and cameras
together cover a  ´ 8 .2 8 .2 mosaic field of view at a pixel
scale of 3. 7 pixel−1.

Observations of a field containing Proxima Cen were
collected as part of the general HATSouth transit survey, with
a total of 11,07122 composite ´3 80 s exposures gathered
between 2012 June 14 and 2014 September 20. These include
3430 observations made with the HS-2 unit at LCO, 4630
observations made with the HS-4 unit at the HESS site, and
3011 observations made with the HS-6 unit at the SSO site.
Due to weather and other factors, the cadence was nonuniform.
The median time difference between consecutive observations
in the full time series is 368 s.
The data were reduced to trend-filtered light curves using the

aperture photometry pipeline described by Penev et al. (2013)
and making use of the external parameter decorrelation (EPD)
procedure described by Bakos et al. (2010) and the trend
filtering algorithm (TFA) from Kovács et al. (2005). One
notable change with respect to the procedure described by
Penev et al. (2013) is that we made use of the proper-motion-
corrected positions of celestial sources from the UCAC4
catalog (Zacharias et al. 2013) to determine the astrometric

Figure 8. The 1σ (dark bars) and 2σ (light bars) credible intervals from 100 model2 fits on the originalMOST data with a Proxima-b-like transit injected at different
phases (x-axis). The color-code key is at the top. The horizontal bars on each plot denote the value of the injected signal.

22 This number does not count observations that were rejected as not useful for
high-precision photometry, or those that produced large-amplitude outliers in
the Proxima Cen light curve.
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solution for each image and to position the photometric
apertures. This modification was essential for Proxima Cen,
which, at the start of the HATSouth observations, was
displaced by 48″(13 pixels) from its J2000.0 location and
moved a total of 8. 7 (2.4 pixels) over the 828 days spanned by
the observations. In this paper we use these data solely to cross-
validate the candidate transit signals seen in the MOST light
curve. The stellar variability of Proxima Cen as revealed by
HATSouth, as well as a general search for transits in its light
curve, will be discussed elsewhere. The EPS and TFA
processed data are made available in Table 5.

We passed the TFA light curve through a median filter to
remove 4σ outliers, and the final photometric light curve

contains 10,869 data points spanning 206 nights (see Figure 9).
We find that the formal measurement uncertainties greatly
underestimate the observed scatter with c =n 7.32 , and
thus, in what follows, we treat these uncertainties as relative
weights but not as reliable estimates of the uncertainty on each
point.
We note that the light curve of Proxima Cen shows higher

scatter at short timescales than most stars observed by
HATSouth in the same field with comparable brightness. Stars
within 0.1 mag of Proxima Cen have a median post-TFA rms at
the same cadence of 5.3 mmag. For comparison, Proxima Cen
has an rms of 13.4 mmag without the additional 4σ clipping
and median filtering, or 10.1 mmag after these additional
cleaning procedures are applied. This high scatter is likely
astrophysical in nature and may be attributable to rapid low-
amplitude variations in brightness due to magnetic activity such
as flaring.

6.2. Detrending

In order to look for the signal C transit, the TFA light curve
requires detrending. We initially attempted to use a GP, as was
used for the MOST data, and experimentation with different
kernels again favored the Matérn 3/2 with a characteristic
covariance timescale of = s 5.6 0.4 hr.
Unlike with the analysis of the MOST data, however, we are

not attempting to conduct a joint fit of a GP+transit model, but
rather simply wish to detrend the light curve using a GP-only
model. This difference is important because GPs are highly

Figure 9. TFA-corrected photometric observations of Proxima with HATSouth from three observing seasons shown at native 240 s cadence (gray bars) and nightly
averages (circles). The TFA procedure suppresses real low-frequency variability in addition to removing instrumental trends. The variation seen at HJD –2,456,850 is
the residual, after TFA, of a much larger 79 mmag low-frequency astrophysical variation caused by the rotation of starspots.

Table 5
Reduced HATSouth Photometry Used in This Work,

After Correction for Systematic Trends by TFA

HJDUTC–2,451,545 TFA Magnitude Uncertainty

4547.6443629 7.17666 0.0018
4547.6501446 7.18168 0.0018
4595.5309943 7.22295 0.0016
4598.5210661 7.20900 0.0017
4598.5250688 7.22170 0.0014
4598.5290578 7.23077 0.0014
4598.5333811 7.22926 0.0015
4598.5360740 7.23682 0.0027

(This table is available in its entirety in machine-readable form.)
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flexible and as a detrending tool can actually remove the
signals we seek.

In our case, we wish to fold the detrended data on signal C’s
ephemeris and look for a coherent signal. The GP, particularly
with a covariance timescale of just a few hours, is sufficiently
flexible to detrend both the long-term changes and potential
transits themselves. Indeed, we can verify that this is true since
we initially attempted to perform the cross-validation using the
GP detrended curves but were unable to recover any injected
signals in 100 attempts.

Instead, we used a more tried and tested method for
HATSouth data: median filtering. Based on previous experi-
ence with HATSouth data, a 2-day window was selected. By
injecting fake transits into the HATSouth data and applying the
median filtering, we found that 2 days did not remove the
injected events. In contrast, when we set the median filtering
timescale to 6–12 hr, we observed that many injected signals
were not recovered. For these reasons, we ultimately settled on
the 2-day window.

6.3. Cross-validation

Phase-folding the detrended HATSouth light curve on the
maximum a posteriori ephemeris of signal C reveals visually
evident disagreement between the expected model and the
observations, as shown in Figure 10. Note that the phase-folded
light curve modifies the limb-darkening coefficients to account
for the fact that HATSouth is nearly a Sloan r’ bandpass (we
used the nearest T glogeff – grid entry from the tabulated list of
limb-darkening coefficients in Claret [2004] for the PHOENIX
stellar atmosphere results).

We binned the phase-folded light curve of 10,869 points to
6-point bins in phase and computed the weighted mean and
weighted standard deviation on each bin. This process enables
us to compute realistic uncertainties on each binned point, to
overcome the fact the formal uncertainties on the unbinned data
are underestimates. Against a simple flat-line model, though,
the 1806 binned points have a c = 29662 , indicating that these
weighted standard deviations still somewhat underestimate the
true uncertainty. Accordingly, we scale them up by a factor of
1.645 such that c = n2 .

The c2 of the maximum a posteriori solution of model2
should be lower than a simple flat line, if the transit were real,
but instead it is slightly higher at c c- = 8.42

2
0
2 for 1803

binned points. As a likelihood ratio, this corresponds to a 2.4σ
preference for the null model. Repeating for 3 reveals a
similar situation, with c c- = 4.43

2
0
2 , or a 1.6σ preference

for the null model. The slight dip seen around the time of transit
minimum in Figure 10 can be understood as due to
autocorrelation, which detects a very significant p-value for
the phase-folded data.
However, this single realization does not capture the range of

plausible models allowed by models 2 and 3. To assess
this, we took each posterior sample, performed a phase fold and
rebinning of the unbinned data, and then calculated the c2 of
each model draw relative to the phase-binned HATSouth data.
At each trial, we renormalized the errors such that a flat line
through the data yielded a c2 equal to the number of data
points, in order to fairly reproduce the procedure described
earlier. The resulting distributions in  cD = -Dlog 22 for
models2 and3 are shown in Figure 11.
Figure 11 reveals that signal C is clearly not confirmed by

this cross-validation exercise. Indeed, for both2 and3, the
majority of the draws favor a null model over the transit model
(73% of samples for ;2 70% of samples for3).

Figure 10. Phase-folded light curve of the detrended HATSouth data on the maximum a posteriori ephemeris from models2 (top) and3 (bottom), corresponding
to signal C. The HATSouth data do not favor a model with signal C included.

Figure 11. Histogram of the likelihood ratio between a null model and the
phase-folded transit of signal C conditioned on the HATSouth data using the
posterior samples from models2 (light green) and3 (dark green). The gray
smoothed histogram shows the distribution from 100 injections of a signal-C-
like planet phase-folded on the injected ephemeris.
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To provide some context, we injected 100 signal-C-like
transits into the HATSouth data at equally spaced phases and
found greater D log values than those observed even in the
tail of signal C’s predictions.

We conclude that the HATSouth data do not provide
compelling supporting evidence for the existence of signal C
and moderately disfavor its existence at the 1σ–2σ level.
Excluding the signal to greater confidence will likely require
far-red, near-infrared, or infrared photometry, such as that
which could be provided by MEarth or Spitzer. Given the
sizable false-positive/negative rate of the MOST data, the high
rate and amplitude of flares produced by Proxima, the a priori
low transit probability (1.5%), and the lack of support from
independent ground-based photometry, we conclude that there
is not a compelling case to be made that our best candidate
signal for a transit of Proxima b is genuine.

7. Discussion and Conclusions

In this work, we have searched for the transits of the recently
announced planetary candidate, Proxima b (Anglada-Escudé
et al. 2016), in two seasons (2014 and 2015) of space-based
photometry obtained using the MOST satellite. Proxima b has an
a priori transit probability of 1.5% and an expected depth of
5 mmag lasting up to an hour (Anglada-Escudé et al. 2016).
Accordingly, the signal, should it exist, was expected to be quite
detectable with our photometry, which after detrending exhibits
an rms of 2–3 mmag per minute, with over 15,000 photometric
points spanning 43.5 days at a duty cycle of ∼30%.

Proxima Centauri exhibits a few-percent-level photometric
variability in the MOST bandpass and displays dozens of
detectable flares (Davenport et al. 2016). After removing
obvious flares detected with the FBEYE approach (Davenport
et al. 2014), we still expect a much greater number of smaller
flares to exist in our data. Indeed, Davenport et al. (2016) predict
5 mmag flares (the expected transit depth of Proxima b) to occur
every 20minutes, on average. The sheer volume of such large
flare events greatly complicates our analysis, and we argue in
this work that even our preferred model for the time-correlated
variability, a GP with a Matérn 3/2 kernel, is unlikely to be an
accurate description of the star’s true behavior.

We conduct Bayesian model selection of a GP-only versus GP
+transit model using the multimodal nested sampling algorithm
MULTINEST (Feroz & Hobson 2008; Feroz et al. 2009).
However, the mis-specified likelihood function formally invali-
dates the Bayes factors that result. Nevertheless, if we assume
that the sign of the Bayes factor is correct and impose an
informative prior on the period and transit mid-time based of the
radial velocity fits of Anglada-Escudé et al. (2016), then we do
find a candidate transit signal for Proxima b in our data, which
we label as signal C.

Signal C’s freely fitted planetary radius is consistent with that
expected based on the empirical, probabilistic mass–radius
relation of Chen & Kipping (2016) using the Forecaster
package, at -

+1.23 0.15
0.13 R⊕. As expected, repeating the fits but

imposing an extra informative prior on the radius using
Forecaster recovers the same signal. However, when we
relax the transit mid-time (or phase) informative prior, a stronger
transit signal is detected at a phase incompatible (at 4σ) with that
expected from the radial velocities, which we label as signal S.

Since our noise model is argued to be inaccurate, we are
unable to generate synthetic data sets for false-positive/
negative tests. Instead, we use the original data and perturb

the original fit’s phase prior 100 times and repeat the fit. These
tests reveal a false-positive rate of at least a few percent and a
much higher false-negative rate of 20%–40%. This process is
complicated by the presence of signals C and S in the data set,
though, as well an additional signal detected during these tests
dubbed signal T, which is likely spurious based on it’s
V-shaped morphology.
To resolve the validity of signal C, we phase-folded

HATSouth photometry onto the best-fitted ephemeris of our
model, and a flat line provides a slightly preferred description at
1σ–2σ significance. Repeating for the posterior draws of our
model fit reveals that ∼75% of our model predictions give a
worse likelihood than a simple flat-line model through the
HATSouth data. This final test leads us to conclude that our
signal C is unlikely to be associated with Proxima b and is most
likely a spurious detection driven by the time-correlated noise
structure of our data. As a result of the high false-positive and
false-negative rates, even when the period of the signal is
known, we did not pursue a blind-period search on this data set,
since the reliability of any “detections” would be highly
doubtful.
The high flare activity of Proxima Centauri poses a serious

challenge for any photometric follow-up of Proxima b. Even if
Proxima b is detected to transit, we predict that precise
transmission spectroscopy of its atmosphere would be impacted
by the flares. The most promising avenue to photometrically
follow up Proxima will likely be in the red end of the visible
spectrum, or with infrared measurements, where not only will
the star be brighter (K=4.4 versus V=11.1) but also the
influence of hot flares should be attenuated. Indeed, far-red/
near-infrared/infrared follow-up of the candidate transit signal
reported here is recommended to conclusively exclude its
existence.

Based on data from the MOST satellite, a Canadian Space
Agency mission, jointly operated by Microsatellite Systems
Canada Inc. (MSCI; formerly Dynacon Inc.), the University of
Toronto Institute for Aerospace Studies, and the University of
British Columbia, with the assistance of the University of
Vienna.
Based in part on observations from the HATSouth network,

operated by a collaboration consisting of Princeton University
(PU), the Max Planck Institute für Astronomie (MPIA), the
Australian National University (ANU), and the Pontificia
Universidad Católica de Chile (PUC). The station at Las
Campanas Observatory (LCO) of the Carnegie Institute is
operated by PU in conjunction with PUC, the station at the High
Energy Spectroscopic Survey (H.E.S.S.) site is operated in
conjunction with MPIA, and the station at Siding Spring
Observatory (SSO) is operated jointly with ANU. Development
of the HATSouth project was funded by NSF MRI grant NSF/
AST-0723074, and operations have been supported by NASA
grants NNX09AB29G and NNX12AH91H. J.H. acknowledges
support from NASA grant NNX14AE87G.
Resources supporting this work were provided by the NASA

High-End Computing (HEC) Program through the NASA
Advanced Supercomputing (NAS) Division at Ames Research
Center.
This research has made use of the corner.py (Foreman-

Mackey 2016).23

23 github.com/dfm/corner.py
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