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ABSTRACT
We estimate the stellar mass that satellite galaxies lose once they enter groups (and clusters)
by identifying groups in a high-resolution cosmological N-body simulation, assigning entry
masses to satellite galaxies with halo abundance matching at the entry time and comparing
the predicted conditional stellar mass function of satellite galaxies at z � 0 with observations.
Our results depend on the mass of the stars that form in satellite galaxies after the entry time.
A model in which star formation shuts down completely as soon a galaxy enters a group
environment is ruled out because it underpredicts the stellar masses of satellite galaxies even
in the absence of tidal stripping. The greater is the stellar mass that can form, the greater the
fraction that needs to be tidally stripped. The stellar mass fraction lost by satellite galaxies after
entering a group or cluster environment is consistent with any value in the range 0–40 per cent.
To place stronger constraints, we consider a more refined model of tidal stripping of galaxies
on elongated orbits (where stripping occurs at orbit pericentres). Our model predicts less tidal
stripping: satellite galaxies lose ∼20–25 per cent of their stellar mass since their entry into the
group. This finding is consistent with a slow-starvation delayed-quenching picture, in which
galaxies that enter a group or cluster environment keep forming stars until at least the first
pericentric passage.
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1 IN T RO D U C T I O N

1.1 Constraints from the intracluster light

The notion of intracluster light (ICL) began to emerge after Zwicky
(1957) and Welch & Sastry (1971) detected a diffuse luminous back-
ground around NCG 4874 and NGC 4889, the two supergiant ellip-
tical galaxies that dominate the central region of the Coma cluster.
Since central dominant (cD) galaxies with extensive outer envelopes
are a common occurrence in very rich clusters (Matthews, Morgan
& Schmidt 1964; Morgan & Lesh 1965; Bautz & Morgan 1970),
Gallagher & Ostriker (1972) interpreted the ICL at the centre of
Coma as ‘a diffuse intergalactic cloud of stars evaporated from col-
liding galaxies’, which ‘will contribute to the formation of a cD
system’s envelope or in fact may constitute the cD “galaxy” itself’.
Analytical calculations and N-body simulations have confirmed that
tidal stripping by companion galaxies and by the cluster’s potential
can explain the origin of the ICL (e.g. Merritt 1983; Mamon 1987;
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Ghigna et al. 1998; Hayashi et al. 2003; Willman et al. 2004; Mihos
et al. 2005; Abadi, Navarro & Steinmetz 2006; Purcell, Bullock &
Zentner 2007). Klimentowski et al. (2009), Łokas, Kazantzidis &
Mayer (2011) and Kazantzidis et al. (2011) found a median stellar
mass loss of ∼30–35 per cent at each pericentric passage.

Forty years after Gallagher & Ostriker (1972), there is still no
consensus whether the outer envelopes of cD galaxies belong to the
ICL or to the galaxies themselves. The issue could be dismissed as
largely semantic, but is also the reason why the galaxy stellar mass
functions (SMFs) of Baldry et al. (2012) and Bernardi et al. (2013)
differ by ∼0.5 dex at high masses (but see Bernardi et al. 2017).

The ICL contributes ∼10–30 per cent of a cluster’s total lumi-
nosity (Gonzalez, Zabludoff & Zaritsky 2005; Zibetti et al. 2005;
Krick, Bernstein & Pimbblet 2006) and sometimes even more (Lin
& Mohr 2004). However, stellar haloes formed out of disrupted
satellites are also present in lower mass systems. In particular, it has
become clear that the stellar halo of the Milky Way contains consid-
erable substructure in the form of stellar streams (Helmi et al. 1999;
Yanny et al. 2003; Bell et al. 2008). In some cases, the streams can
be unambiguously associated with the satellite galaxies from which
they came (Ibata, Gilmore & Irwin 1994; Odenkirchen et al. 2002).
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Similar streams have also been detected in our neighbour galaxy
M31 (e.g. Ferguson et al. 2002). In this article, we assess the impact
of tidal stripping on the stellar masses of galaxies not just in clusters
but across a broad range of environments.

1.2 Constraints from the growth of cD galaxies

Conroy, Wechsler & Kravtsov (2007) studied the mass growth of
cD galaxies from z ∼ 1 to 0 by using the abundance matching
(AM) technique (Marinoni & Hudson 2002; Vale & Ostriker 2004),
described in detail by Behroozi, Conroy & Wechsler (2010), which
assumes that halo masses (or equivalent properties) are strongly
correlated with observable galaxy properties such as luminosity or
stellar mass.

Let n∗(m∗) be the galaxy SMF, which can be determined from ob-
servations, and let nh(Mh) be the halo mass function (HMF), which
depends on the cosmology and can be determined either analyti-
cally (e.g. Press & Schechter 1974) or from N-body simulations.
If the stellar mass m∗ is a growing function of the halo mass Mh

with negligible scatter,1 then the number density of galaxies with
stellar mass >m∗ will be equal to the number density of haloes with
mass >Mh:∫ ∞

m∗
n∗(m′

∗) dm′
∗ =

∫ ∞

Mh

nh(M ′
h) dM ′

h. (1)

Given the stellar masses (from observations), AM determines the
halo masses by solving equation (1) for Mh, and conversely, given
the halo masses (from a simulation), AM provides the stellar masses
by solving equation (1) for m∗. In other words, the most massive halo
is assigned the largest stellar mass, the second most massive halo
is assigned the second largest stellar mass, and so on. The power
of AM was nicely illustrated by Conroy, Wechsler & Kravtsov
(2006), who painted galaxy luminosities on halo maximum circular
velocities to predict very well the two-point correlation function of
galaxies in bins of luminosity.

Conroy et al. (2007) used the results of AM at z = 1 to populate
haloes at z = 1 with galaxies, and they followed these galaxies until
z = 0. They asked what happens when a smaller halo disappears into
a larger one due to hierarchical merging. Three possibilities were
considered: (i) the galaxy in the smaller halo merges with the central
galaxy of the larger halo; (ii) the galaxy in the smaller halo becomes
a satellite galaxy in the larger halo; (iii) the galaxy in the smaller
halo is disrupted and its stars become part of the ICL of the larger
halo. The first assumption leads to cD galaxies those were far too
bright. The second assumption underestimated the total luminosity
of the central galaxy plus the ICL by about a magnitude. The third
assumption was found to be in reasonably good agreement with the
observations.

Kang & van den Bosch (2008) and Cattaneo et al. (2011) pro-
vided independent arguments in support of Conroy et al.’s (2007)
conclusion. Kang & van den Bosch (2008) argued that tidal disrup-
tion is necessary to avoid that mergers with bluer satellites spoil the
colours of massive red galaxies. In Cattaneo et al. (2011), we used
a method intermediate between semi-analytic and halo occupation
distribution (HOD) modelling to quantify the relative importance
of gas accretion and mergers in the mass growth of galaxies. We
calibrated our model to fit the galaxy SMF around and below the

1 Throughout this article, we use lower case letters for stellar masses and
radii within subhaloes, and upper case letters for dark matter (DM) masses
and subhalo radial coordinates within haloes.

knee of the Schechter function, where most of the galaxies are, and
we found that the SMF above a stellar mass of 3 × 1011 M� was
overestimated by ∼0.2 dex. This discrepancy disappeared when we
included a simple model of tidal stripping, assuming a fixed relative
loss of stellar mass at each orbit, calibrated on the simulations of
Klimentowski et al. (2009).

1.3 Constraints from satellite galaxies

While Conroy et al. (2007) and Cattaneo et al. (2011) focused on
tides as a mechanism to prevent overgrowth of cD galaxies between
z ∼ 1 and 0, Liu et al. (2010) compared the predictions of three semi-
analytical models (SAMs, Kang et al. 2005; Bower et al. 2006; De
Lucia & Blaizot 2007) with the conditional SMF of satellite galaxies
in Sloan Digital Sky Survey (SDSS) groups (the conditional SMF
φ(m∗|Mh) is defined so that dφ is the number of satellite galaxies
with stellar mass between m∗ and m∗ + dm∗ in a host system of halo
mass Mh). In all three models, the number of satellite galaxies was
systematically overpredicted, particularly at low halo masses. Tidal
stripping was considered as a possible explanation. A mechanism to
reduce the number of satellites in massive haloes is also necessary
to bring SAMs in agreement with the observed clustering properties
of red galaxies (de la Torre et al. 2011).

The galaxy stellar mass–metallicity relation is another source
of observational evidence. Galaxies that are more massive have
higher metal abundances (e.g. Gallazzi et al. 2005). Pasquali et al.
(2010) found that satellite galaxies have higher metallicity than
central galaxies of the same mass. They interpreted this observation
as a consequence of tidal stripping, which has reduced the stellar
masses of satellite galaxies, while preserving their stellar metal-
licities. Henriques & Thomas (2010) confirmed that incorporating
tidal disruption improves the agreement with the mass–metallicity
relation, but their interpretation of this finding differs from that of
Pasquali et al. (2010). For Pasquali et al. (2010), tidal stripping of
stars changes the position of galaxies on the stellar mass–metallicity
relation by reducing their masses at constant metallicity. However,
ram-pressure and tidal stripping of gas can produce a similar shift
by increasing metallicity at constant stellar mass (starvation of gas
accretion shuts down star formation and causes galaxies to behave
like close boxes; Peng, Maiolino & Cochrane 2015). Collectively,
these articles highlight the difficulty of disentangling the effects of
stripping and starvation.

1.4 This work

In this article, we build on Conroy et al.’s (2007) method and extend
its scope to the investigation of the conditional SMF of satellites.
We start by identifying group and cluster haloes in a cosmological
N-body simulation of dissipationless hierarchical clustering. Merger
trees extracted from the simulation allow us to follow galaxies from
the entry time to the present. We use AM to assign stellar masses to
satellite galaxies at the entry time. By comparing the distribution of
entry stellar masses mentry to the distribution of satellite masses ms

observed in the Universe today (Yang, Mo & van den Bosch 2009;
Yang et al. 2012), we can derive a lower limit mentry − ms to the
stellar mass lost through tidal stripping (the lower limit is zero if
statistically mentry � ms).

For a better estimate of the stellar mass �mstrip lost through tidal
stripping, we must increment this lower limit by the mass �m∗ of
the stars formed in the satellite after the entry time:

�mstrip = mentry + �m∗ − ms. (2)
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While mentry is determined from AM at the entry time, estimating
�m∗ requires additional assumptions. We can however derive an
upper limit for �m∗ by assuming that the masses of satellite galaxies
grow with those of their subhaloes following the same stellar mass–
halo mass (SMHM) relation established for central galaxies from
AM (see Section 5.1 for more details). We can therefore determine
a lower and an upper limit for �mstrip, which we can compare to
a theoretical estimate of �mstrip based on a model described in
Section 5.2.

Implementing this research programme requires an accurate de-
termination of the sub-HMF and of the orbits of subhaloes in groups
and clusters (the strength of the tides depends on the pericentric ra-
dius). In this article, we describe in detail how we solve the technical
problem of reconstructing the orbits of orphan galaxies, the sub-
haloes of which are no longer resolved by the N-body simulation.
We have tested the convergence of our scheme by comparing our
results when we use merger trees from a simulation with 5123 par-
ticles and from another with 10243 particles, both of which were
run for the same cosmology and the same initial conditions.

The plan of the article is thus as follows. In Section 2, we describe
the N-body simulation and the way we analyse it (identification of
haloes and subhaloes, measurement of halo properties and construc-
tion of merger trees). In Section 3, we present our scheme to handle
orphan galaxies (how we compute their orbits and how we decide
at which time they merge with the central galaxy). In Section 4, we
explain how we use AM to compute m∗(Mh, z), the stellar mass of
the central galaxy in a halo of mass Mh at redshift z. In Section 5,
we elaborate on our two different models to assign stellar masses
to subhaloes: one in which ms grows following the same relation
for central galaxies, the other in which there is a complete shut-
down of star formation in groups and clusters. We also present our
model (following the simpler model of Mamon 2000) for comput-
ing the stellar mass stripped from galaxies in a simple form of the
impulsive stripping approximation, where stripping occurs instan-
taneously at the pericentric passage. In Section 6, we compare our
predicted distribution for mentry + �m∗ and mentry + �m∗ − �mstrip

with observations of the conditional SMF (the distribution for ms

as a function of the global environment). For each model, we also
compare the results of our calculations with the masses of central
galaxies. Finally, in Section 7, we discuss the uncertainties that
affect our results and summarize the conclusions of the article.

2 N- B O DY SI M U L ATI O N A N D M E R G E R - T R E E
E X T R AC T I O N

We use a cosmological N-body simulation with �m = 0.308, �� =
0.692, �b = 0.0481, σ 8 = 0.807 and H0 = 67.8 km s−1 Mpc−1

(Planck Collaboration XX 2014, Planck + WP + BAO). The sim-
ulation has a computational volume of (100 Mpc)3 and contains
10243 particles. The same simulation, with the same initial condi-
tions, has also been run with 5123 particles to test for convergence.

287 snapshots (regularly spaced in the logarithm of the expan-
sion factor) were saved to disc from z = 16.7 to 0. The correspond-
ing output times are in steps of 145 Myr (at z = 0) or smaller.
We have processed each snapshot with the halo finder HALOMAKER

(Tweed et al. 2009), which is based on ADAPTAHOP (Aubert, Pichon
& Colombi 2004). ADAPTAHOP is an excursion and percolation al-
gorithm. It selects all particles above a density threshold and links
each one to its 32 nearest neighbours. If the density distribution
within a halo has more than one peak separated by saddle points,
ADAPTAHOP decomposes it into a main host halo and a hierarchy of
subhaloes, sub-subhaloes, etc. For simplicity of language, we shall

refer to all substructures as subhaloes independently of their rank
in the hierarchy. The halo masses that we measure from the N-body
simulation are exclusive, i.e. they do not include those of subhaloes.
By construction, a host halo is always more massive than its most
massive subhalo.

We further assume that, to belong to a halo or subhalo, a particle
must be gravitationally bound to it.

For each halo containing at least 100 bound particles, we deter-
mine the inertia ellipsoid, which is centred on its centre of mass,
and we rescale it until the overdensity, defined as the mean density
inside the inertia ellipsoid divided by the critical density of the Uni-
verse, equals overdensity contrast given by the fitting formulae of
Bryan & Norman (1998) in the case a Planck cosmology (�c = 102
at z = 0).2 The halo virial mass Mh is the mass of the gravitationally
bound N-body particles contained within the virial ellipsoid (i.e. the
rescaled inertia ellipsoid). The virial radius Rvir = (a b c)1/3 is that
of a sphere whose volume equals that of the virial ellipsoid of semi-
axes a, b and c. We fit the spherically averaged density distribution
of each halo with the NFW profile (Navarro, Frenk & White 1996)
to measure its concentration c.

In case of a subhalo, we use the same procedure to obtain a
first estimate of its mass and radius. Then, we shrink the subhalo
by peeling off its outer layers until the density at the recomputed
radius Rt is at least as large as the host density at the position where
the subhalo is located. The subhalo mass Ms and the concentration
parameter c is recomputed accordingly. The particles peeled off the
outer layers of a subhalo are re-assigned to the host halo if they are
gravitationally bound to it.

The TREEMAKER algorithm (Tweed et al. 2009) is used to link
haloes/subhaloes identified at different redshifts and generate
merger trees. A halo is identified as the descendent of another when
it inherits more than half of its progenitor’s particles. Because of
this definition, a halo can have many progenitors, but at most one
descendent. The main progenitor is always the one with the largest
virial mass. A halo/subhalo is found to have no descendent if it
loses more than half its mass, but no single halo accretes enough
mass from it to qualify as its descendent. Typically, this happens
when a smaller halo crosses a larger one at high speed. In these
cases, the subhalo may be no longer identified but its particles are
not assigned to the larger one because they are not gravitationally
bound to it. However, subhaloes that disappear without leaving any
descendents are rare and of scarce statistical significance. Most of
those subhaloes disappear close to the pericentre, where the contrast
against the host is weakest, and a fraction of them is detected again
by the halo finder after their passage. As these objects are a possible
source of artefacts for our model, we decide to ignore all subhaloes
that have never been detected as central or field halo in any previous
snapshot.

3 O R P H A N G A L A X I E S A N D G H O S T
S U B H A L O E S

When a halo enters a group or a cluster and becomes a subhalo, it
begins to lose mass owing to the tides exerted by the gravitational
potential of the host (Fig. 1). Eventually, the mass loss may be so
large that the subhalo is no longer identified by the halo finder.
In SAMs, galaxies associated with subhaloes that are no longer

2 The formulae of Bryan & Norman (1998) are a fit to the predictions of the
spherical top-hat collapse model, but we have assumed that small deviations
from sphericity do not change the virial density of DM haloes.
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Figure 1. Trajectory and size of a small halo that becomes a subhalo of a
larger one and eventually merges with it. Before the halo finder identifies
the small halo as a subhalo, its virial radii are shown as small black circles.
Their overlapping demonstrates how good the time resolution of our merger
trees is. Once the halo finder identifies it as a subhalo (this occurs several
time-steps before the subhalo enters the virial radius of the host halo, shown
by the large black circle, the sizes of the tidal radii are shown as red circles,
the smallest of which denotes the subhalo’s last detection in the N-body
simulation. The subhalo then becomes a ghost subhalo and its orbit (solid
red line) is followed analytically, solving equation (4) in conjunction with
equations (5) and (3). The two small red filled circles correspond to the
first and the second pericentric passage of the ghost subhalo since the time
of last detection. The red cross indicates the position of the subhalo when
the dynamical-friction countdown timer comes to zero. The black plus sign
denotes the centre of mass of the host system. The thick part of the solid line
shows the part of the orbit around the pericentre along which the tides are
supposed to act on the stars in the impulsive approximation.

identified are called orphans (Springel, Yoshida & White 2001;
Guo et al. 2010). In reality, a subhalo still exists. We have simply
lost our capacity to detect it. We therefore call it a ghost subhalo.
Orphan galaxies may also be created by non-physical artefacts from
the halo finder itself (Knebe et al. 2011; Srisawat et al. 2013; Avila
et al. 2014).

Although our model is not a SAM, we face the same problem of
deciding how long a galaxy will survive after it becomes an orphan.
Immediately merging the orphan galaxy with the central galaxy of
the host system may produce too few satellites and too massive
central galaxies. The brute force solution is to increase the number
of particles until the results converge above a specified mass. The
most commonly followed alternative is to estimate the survival time
analytically from the orbital decay time through dynamical fric-
tion, tdf (see Knebe et al. 2015; Pujol, Skibba & Gaztañaga 2017,
for an overview of the orphan problem in SAMs of galaxy
formation).

In its simplest version, this assumption is coupled to that of
progressive decay on circular orbits (Somerville & Primack 1999;
Hatton et al. 2003; Cattaneo et al. 2006; Cora 2006; Gargiulo
et al. 2015). However, this approach neglects the high typical orbital
elongations of satellites (Ghigna et al. 1998), which are important
for our analysis because the strength of the tides depends on the peri-
centric radius. A more sophisticated approach is to track the defunct

subhalo’s most bound particle until a time tdf has elapsed (De Lucia
& Blaizot 2007; Benson 2012; Gonzalez-Perez et al. 2014). Here,
we follow a third approach, first applied by Lee & Yi (2013), which
consists of following the orbits of ghost suhaloes semi-analytically
by integrating their equations of motion in presence of two forces:
the gravitational attraction of the host halo (computed assuming
an NFW profile) and dynamical friction (the physical reason why
satellites lose energy, spiral in and eventually fall on to the central
galaxy).

When a subhalo ceases to be identified by the halo finder (more
precisely, when it is not the main progenitor of its descendant in
the merger tree3), we save its mass Ms, position R and velocity V
in the host halo’s reference frame at the time of last detection. If
the system that disappears is a halo, we treat its descendant’s main
progenitor as if it was its host. These values are the initial conditions
from which we start integrating the equations of motions for the
ghost subhalo (the red curve in Fig. 1 shows the orbit of a ghost
subhalo computed in this manner after the subhalo was no longer
resolved4).

We model the ghost subhalo as point particle of mass Ms that
moves under the action of two forces: the gravitational attraction of
the host and the dynamical-friction drag. However, we shall soon
see that the dynamical-friction drag depends on Ms. Therefore,
we cannot integrate the equations of motions without computing
the evolution of Ms due to tidal stripping at each time-step. The
structure of our calculation is thus as follows. In Section 3.1, we
describe our method for computing tidal stripping of ghost haloes,
which is based on the instantaneous-tide approximation (the tidal
radius of the ghost subhalo at a given time is entirely determined by
the configuration of the subhalo–host system at that time, although
we never allow the tidal radius to grow again after a ghost halo has
been stripped). In Section 3.2, we present the equations of motions
that we integrate to compute the orbits of ghost subhaloes. Finally,
in Section 3.3, we discuss the time at which we should stop their
integration because the satellite galaxy associated with the ghost
subhalo has merged with the central one.

3.1 Tidal stripping of ghost subhaloes

Once the halo finder identifies a structure as a subhalo, the radius it
returns is no longer the virial radius but the tidal radius Rt, computed
with the equation:

Ms(Rt)

R3
t

= |α|Mh(R)

R3
, (3)

where Ms is the subhalo mass within Rt, R is the distance of the
subhalo from the centre of mass of the host, Mh(R) is the host-halo
mass within R and |α| = 1.

3 The merger tree is constructed by linking haloes that the halo finder has
identified in output files at different time-steps. A halo can have more than
one progenitor but at most one descendent. If the halo fragments, its de-
scendent is the fragment that has inherited more than half of its particle.
If none of the fragments contain more than half of the particles that the
halo finder had assigned to the halo at the previous time-step, the halo is
considered to have disappeared. The halo or subhalo is also considered to
have disappeared if tidal stripping has been so strong that it has lost more
than half of its particles from one time-step to the next because the algorithm
that constructs the tree is not able to recognize that the stripped halo is the
descendent of its progenitor.
4 The rapid decrease in size when passing from the black circles to the red
circles in Fig. 1 is an artefact of the halo finder.
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Equation (3) has a theoretical justification because it is the pre-
diction of tidal theory in the approximation of circular orbits and
instantaneous tide (Appendix A). However, according to this the-
ory, α should be the local logarithmic slope of the DM mean-density
profile (α < 0 because density decreases with radius). For an NFW
profile, −2.6 � α � −2.2 for R = Rvir, but numerical experiments in
Appendix A suggest that the appropriate |α| (the one that gives the
correct value of Rt) is even higher (α � −3). For R → 0, α → −1 for
an NFW profile. However, the presence of a massive central galaxy
could imply that α 
 −1 even at relatively small radii (Fig. A2).
Therefore, the value |α| = 1 assumed by the halo finder is therefore
likely to overestimate Rt, at least within the circular-orbit approxi-
mation. This is not a problem for the orbits of detected subhaloes,
which are computed self-consistently by the N-body simulation, but
it is a point that we must consider when computing the tidal radii
of ghost subhaloes.

In this article, we compute Rt using α =−3 for all ghost subhaloes
and we never allow its value to grow again (although equation 3
is instantaneous and thus gives growing values of Rt between the
pericentre and the apocentre). The implications of assuming α = −3
will be discussed in Appendix A, after we have explained all the
elements that enter our analysis.

3.2 Orbital motion

A ghost subhalo is assumed to move in the gravitational potential
	(r) of the halo directly above it in the hierarchy of substructures.
10 per cent of ghosts are sub-subhaloes. For these systems, 	 is
the gravitational potential of the subhalo that contains them. In
46 per cent of these cases (which correspond to 4.6 per cent of all
ghost systems), the subhalo merges with its host before the ghost
sub-subhalo merges with the subhalo. When this happens, the ghost
sub-subhalo is promoted to ghost subhalo and continues its orbital
motion in the gravitational potential of the host halo.

The equation of motion for a ghost subhalo is:

V̇ = −∇	 + adf, (4)

where 	 is computed assuming an NFW profile for the density
distribution ρh of the system directly above the subhalo in the
hierarchy of substructures (heretofore, the host halo, even if it is a
subhalo) and where

adf = −4π G2ρh Ms ln �

V 3
f

(
V√
2 σ

)
V (5)

with

f (x) = erf(x) − 2√
π

x exp(−x2) (6)

is the acceleration due to the dynamical-friction force
(Chandrasekhar 1943). In equation (5), Ms is the mass of the ghost
subhalo, ρh is the density of the host at the location of the ghost
subhalo, σ is the radial velocity dispersion of the DM particles
(assumed to be Maxwellian) and ln � is the so-called Coulomb
logarithm.

Ms is computed assuming that the subhalo is described by the
same NFW profile it had when it was last detected truncated at the
radius Rt introduced in Section 3.1. The host density is computed
from the NFW profile ρh(R) of the host halo, where R is the distance
of the ghost subhalo from the centre of the host. The radial velocity

dispersion σ is taken from the appendix A of Duarte & Mamon
(2015).5 The Coulomb logarithm is given by:

ln � = ln

(
1 + Mh

Ms

)
. (7)

3.3 Survival time

The problem of computing the survival time tsurv is that of deter-
mining after how many pericentric passages we can stop integrating
equation (4) because we can consider that the satellite galaxy has
merged with the central galaxy of the host halo. Our calculation is
based on a modified version of the standard dynamical friction in
Binney & Tremaine (2008), which we briefly rederive to clarify its
assumption.

In the simplifying case of circular orbits, equation (4) implies that
the specific angular momentum loss due to the dynamical-friction
force is:

d

dt
(R Vc) = −R adf . (8)

For a singular isothermal sphere, Vc = √
2σ is independent of

radius and ρh = V 2
c /(4πGR2). Hence, inserting equation (5) into

equation (8) leads to:

dR
dt=−f (1) ln � G Ms

R Vc
.

(9)

The time the satellite takes to spiral in from R = Rvir to 0 is thus
(Binney & Tremaine 2008):

tdf =
∫ Rvir

0

Vc

f (1) ln �GMs
R dR = A

ln �

Mh

Ms

Rvir

Vc
, (10)

with A = 1/[2f(1)] � 1.17, since V 2
c = GMh/Rvir.

On eccentric orbits, ρh varies on a time-scale tdyn 
 tdf invalidat-
ing equation (10) (see Mamon 1996; Chan, Mamon & Gerbal 1997;
Cora, Muzzio & Vergne 1997).6 Furthermore, in equation (10), we
could take Ms out of the integral because we assumed it to be con-
stant. Real subhaloes are stripped by the tidal field of the host. This
reduces the dynamical-friction force and slows down the orbital
decay (Mamon 1987; Yi et al. 2013).

Jiang et al. (2008) have investigated these effects with cosmolog-
ical hydrodynamic simulations. They have found that equation (10)
gives an accurate measure of the time-scale on which a satellite ini-
tially at R = Rvir merges with the central galaxy if the Coulomb log-
arithm is computed with equation (7) and if the coefficient A = 1.17
is replaced by:

A = 1.17 (0.94 ε0.6 + 0.6) , (11)

where ε is the orbital circularity, that is, the ratio of the angular
momentum to that of a circular orbit with the same total energy
(ε = 1 for circular orbit and ε = 0 for radial orbit).

Moster, Naab & White (2013) modelled orphan galaxies/ghost
subhaloes in a manner similar to ours. They used equation (10) with

5 Duarte & Mamon (2015) solved the Jeans equation of local dynamical
equilibrium for a velocity anisotropy β = 1 − 2σ 2

r /σ 2
t with the radial de-

pendence β = (1/2)[1 − R/(R + R0)], which Mamon & Łokas (2005)
found to match well the velocity anisotropies measured in cosmological
simulations (R0 is the scale radius of the NFW profile).
6 Even on circular orbits, the time-scale for orbital decay can be up to four
smaller than predicted by the Chandrasekhar formula, because of resonances
between the halo and subhalo (Prugniel & Combes 1992).
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Stellar mass loss from satellites galaxies 4175

Figure 2. Comparison, for ghost subhaloes, between the expected survival
time tdf, ghost based on equations (10) and (11) and the actual survival time
tsurv = tmerg − tghost in our model, where mergers can occur only at a
pericentric passage. For clarity, we show only 10 per cent of the ghosts of
the simulation box. The black solid line represents tsurv = tdf, ghost. The
dashed lines correspond to a scatter ±0.3 dex and enclose 74 per cent of
the points on the diagram. Points are colour-coded according to the number
of pericentric passages between the subhalo’s last detection and the merger
time in our model. The fractions of ghost subhaloes that merge at the first and
the second pericentric passage are 23 per cent and 40 per cent, respectively.

A = 2.34, this value being based on idealized simulations of orbital
decay by Boylan-Kolchin, Ma & Quataert (2008). Given the mean
circularity 〈ε〉 � 0.55 found by Jiang et al., the mean value of A
in equation (11) is 1.47. Hence, our dynamical-friction times are
shorter than those used by Moster et al. by 40 per cent on average.

The dynamical-friction time tdf computed with equations (10)
and (11) sets the initial value of the merging countdown time, which
begins to tick for detected and ghost subhaloes at the time they first
enter the virial radius. When the time tdf elapses, a subhalo can be
at any point of its orbit (orbits shrink by dynamical friction but, for
highly elongated orbits, the apocentre may still be far away from
the centre of the host). Physically, however, the merger of a satellite
galaxy with the central one is expected to occur at a pericentric
passage. We therefore assume that a ghost subhalo merges with
its host at the pericentric passage that is closest in time to when
the merging countdown timer rings (marked by a red cross in the
example of Fig. 1).

In formulae, let tentry be the time at which the subhalo enters
the virial radius for the first time (the large black circle in Fig. 1
shows Rvir at tentry), let tghost be the time at which the subhalo ceases
to be detected (the last red empty circle in Fig. 1) and let tmerg

be the time of the pericentric passage at which the galaxy merger
takes place (the point where the red curve ends). Then, tdf, ghost ≡
tentry + tdf − tghost is the remaining dynamical-friction countdown
timer when the subhalo turns into a ghost subhalo. The survival
time of the ghost subhalo from the time it becomes a ghost, tsurv ≡
tmerg − tghost, can be both larger or smaller than tdf, ghost depending
on whether the nearest pericentric passage occurs before or after
the cosmic time tentry + tdf. However, Fig. 2 shows that most ghost
subhaloes (74 per cent) lie on a tight correlation tsurv � tdf, ghost.
Nearly all the outliers merge at their first pericentric passage. They
are subhaloes that ceased being detected short after a pericentric
passage and for which the merging countdown timer rang while

they were still detected. As we assume that mergers can occur
only at pericentric passages, these subhaloes were obliged to make
another orbit even though their merging countdown timer had come
to zero.

4 THE ENTRY MASSES

This section explains our procedure to assign entry masses to galax-
ies that enter a group or cluster environment. The entry redshift zentry

is the redshift at which the subhalo associated with a satellite galaxy
is detected as subhalo of its host for the first time, and differs for
each galaxy. Since until zentry all galaxies are central, we can assume
that at zentry galaxies still obey the stellar mass–halo mass relation
for central galaxies, so that mentry = mc(Mh, zentry), where mc is the
stellar mass of the central galaxy for a halo of mass Mh at zentry.

In principle, we could derive mc(Mh, zentry) by solving equation
(1), where n∗ is the SMF of central galaxies at zentry and nh is the
HMF (without subhaloes) at zentry. In practice, while it is very easy
for a theorist to measure nh in an N-body simulation with or without
subhaloes at any redshift, separating central and satellite galaxies
in the observations is much more difficult: this requires large spec-
troscopic surveys and has only been done so far for local data (the
Main Galaxy Sample of the SDSS, where nearly all galaxies lie at
z < 0.2; Yang et al. 2009, 2012). The red dashed line in Fig. 3 shows
the SMHM relation that we obtain when we apply the procedure
described in this paragraph using Yang et al.’s (2012) measurement
of the local SMF of central galaxies on the seventh data release of
the SDSS.

The problem of this approach is that many of our satellite galaxies
have zentry outside the redshift range probed by Yang et al. (2012).
Fig. 4 shows the cumulative distribution of zentry for different bins
of host–halo (group) mass. The median entry redshift is zentry � 0.1
for Mh > 1013.5 M� but zentry � 0.3 for Mh < 1013.5 M�, while less
than one satellite in a thousand has zentry > 2.5. At z > 0.2, we only
have the total SMF of galaxies, with no splitting between centrals

Figure 3. SMHM relation computed by AM (equation 1) using the local
(z < 0.2) data of Yang et al. (2012). The AM is performed between the
SMF of central galaxies and the HMF without subhaloes (red) or between
the total SMF (central and satellite galaxies) to the total mass function of
haloes and subhaloes, and ghosts (black). The HMF is computed from the
virial mass Mh measured in the N-body simulation at z � 0.1, using the
procedure described in Section 2 (dashed lines) or from the maximum virial
mass Mmax that a halo/subhalo and its main progenitor ever had over its
entire history at z � 0.1 (solid lines).
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4176 É. Tollet et al.

Figure 4. Cumulative distribution of halo entry redshifts for different bins
of host-halo mass. The yellow, red, green and blue curves show the mean
distribution dN/dz for the entry redshift z = zentry in the bin of host-halo mass
12 < log(Mh/M�) ≤ 12.5, 12.5 < log(Mh/M�) ≤ 13, 13 < log(Mh/M�)
≤ 13.5 and log(Mh/M�) > 13.5, respectively. The vertical dashed line at
z = 2.5 marks the upper boundary of the redshift range probed by Muzzin
et al.’s (2013) data. At z < 0.2, entry masses are computed from the SMF of
Yang et al. (2012), who also provided a central/satellite decomposition.

and satellites. To explore the consequences of approximating the
SMF of central galaxies with the total SMF, we start by making this
approximation in the local Universe, where we know the correct
answer mc = mc(Mh) given by the red dashed curve in Fig. 3. If
n∗ is the total SMF and nh is the HMF including subhaloes and
ghosts, then equation (1) gives the relation m∗ = m∗(Mh) shown by
the black dashed curve in Fig. 3. The difference between the black
and the red dashed curves is sufficiently large that approximating
the latter with the former would compromise our analysis.

The black dashed curve lies above the red dashed curve be-
cause DM haloes are stripped more easily than the compact lumi-
nous galaxies at their centres. Subhaloes are stripped more heavily
and have higher stellar-to-DM mass ratios m∗/Mh than haloes. To
demonstrate that tidal stripping of subhaloes is the physical origin
for the difference between the black and the red dashed curves, we
have recomputed the curves using the maximum mass Mmax that a
halo ever had across its history rather than the virial mass Mh at
z � 0.1 as an estimator of Mh. In this definition, Mmax cannot de-
crease. Thus, this procedure removes the effects of mass loss from
haloes/subhaloes in our analysis. The relation mc = mc(Mmax) for
central galaxies (the red solid line) is very similar to mc = mc(Mh)
(the red dashed line) because, for haloes, mass loss is usually neg-
ligible. However, the relation m∗ = m∗(Mmax) for all galaxies (the
black solid line) is significantly different from m∗ = m∗(Mh) (the
black dashed line).

The main conclusion of Fig. 3 is that m∗(Mmax) � mc(Mh) for
Mmax = Mh (the black solid line and the red dashed line are very
close), at least for Mh > 1010.5 M� and m∗ > 107 M�. Thus, we are
justified to replace our original assumption mentry = mc(Mh, zentry)
with mentry = m∗(Mmax, zentry), from which we can compute entry
masses at redshifts much larger than z = 0.2.

The observational data that we use for the AM are the SMFs
of Yang et al. (2012) at z < 0.2 and of Muzzin et al. (2013) at
0.2 < z < 2.5. To avoid noise, we do the AM using four-parameter
double-power-law fits to the observed SMFs rather than the data

Figure 5. Observed SMFs used to compute the SMHM relation in Figs 3
and 6. The local data (z < 0.2, black squares) are from Yang et al. (2012).
The data at 0.2 < z < 2.5 (blue, red, green, yellow and purple squares) are
from Muzzin et al. (2013). The SMFs in the six redshift bins were fitted with
a double-power-law model (curves), the parameters of which were assumed
to vary linearly with redshift. See Appendix C for more details about the
fit. The black, blue, red, green, yellow and purple curves show our fits at
z = 0.1, 0.35, 0.75, 1.25, 1.75, 2.25, respectively. The grey circles are data
from Bernardi et al. (2013) (z < 0.2). They have not been used to fit the
evolution of the SMF, but are shown for comparison. The dashed black curve
is the fit we would have obtain by fitting Muzzin et al.’s (2013) data only
and extrapolating them at z ∼ 0.1. The quality of the fit to the black symbols
and the small difference between the solid and dashed black curves proves
the overall consistency of Muzzin et al.’s (2013) and Yang et al.’s (2012)
data.

points themselves. Furthermore, to compute n∗(m∗, z), we do not use
the best-fitting parameters at redshift z. We determine the parameter
value at redshift z by fitting a straight line to the evolution with
redshift of the best-fitting parameters over six redshift bins covering
the range 0 < z < 2.5. The exact fitting formula and the values of the
parameters used to fit the SMF are presented in Appendix C. Fig. 5
shows that this model for the galaxy SMF is in good agreement with
the data points of both Muzzin et al. (2013) and Yang et al. (2012).

To assess the consistency of the two data sets, we have computed
the local SMF by extrapolating the data of Muzzin et al. (2013) to
z ∼ 0.1, without including the data of Yang et al. (2012) in the fit.
The result (the black dashed line in Fig. 5) is intermediate between
the SMFs of Yang et al. (2012) and Bernardi et al. (2013), but much
closer to the former than to the latter.

Fig. 6 summarizes the results of this section by showing the m∗–
Mmax relation from AM at three different redshifts (z = 0, 1, 2). The
black curve (z = 0) is smooth up to Mmax � 1013.3 M�, where the
effects of low-number statistics in the N-body simulations begins to
be important (there are not many clusters in a volume of 106 Mpc3).
We also note that, for a fixed halo mass (e.g. Mmax = 1011.5 M�),
m∗ is higher at lower z, most likely because there has been more
time to convert gas into stars.

In Fig. 6, we also compare our SMHM relation at z = 0 with
lensing data (Leauthaud et al. 2010; Reyes et al. 2012, circles) and
previous AM/HOD models (Behroozi, Wechsler & Conroy 2013;
Leauthaud et al. 2012; Papastergis et al. 2012; Moster et al. 2013,
curves). The agreement with lensing data is very good considering
that lensing observations measure Mh ≤ Mmax. The agreement with
previous AM/HOD models is also quite good (particularly in the
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Stellar mass loss from satellites galaxies 4177

Figure 6. Stellar mass (m∗)–halo mass (Mmax) relation used to compute
mentry. The relation is computed from AM at all time-steps in the merger
tree. For clarity, we show it only at z = 0, 1 and 2 (thick solid black, red
and orange curves, respectively). The thin dashed curves show the results of
previous studies by Behroozi et al. (2013, purple), Leauthaud et al. (2012,
blue), Papastergis et al. (2012, green) and Moster et al. (2013, cyan). The
circles are lensing data. Each large green circle is the result of stacking
∼10 000 spiral galaxies (Reyes et al. 2012), while the small blue circles are
data points for individual galaxies (Leauthaud et al. 2010).

mass range 1011 M� < Mmax < 1012.5 M�), although models differ
from one another at the level of 0.1–0.2 dex. The impact that this
disagreement may have on our results is discussed in Section 7.1.5.
To ease the comparison with future AM work, we provide in Ap-
pendix C a fit of our SMHM relation.

5 THE STELLAR MASSES O F SATELLITE
G A L A X I E S TO DAY

5.1 Evolution without tidal stripping

We have described the AM method that we used to place a galaxy
at the centre of each halo in the volume of our N-body simulations.
This procedure determines the stellar masses that satellite galaxies
have when they enter a group or cluster environment. We now
consider how the masses of these galaxies evolve after their haloes
have become subhaloes. Here, we focus on the evolution without
tidal stripping of stars, the effects of which will be discussed in
detail in the next section.

In standard SAMs, a galaxy is composed of stars and cold gas,
and is surrounded by a halo of hot gas. The halo of hot gas accretes
mass from the intergalactic medium when the DM halo grows. The
hot gas cools and accretes on to the galaxy. The cold gas within
the galaxy forms stars. When the galaxy enters a larger system and
becomes a satellite, the hot component associated with the galaxy
can no longer grow and is depleted by ram-pressure stripping, tidal
stripping or cooling on to the galaxy (see McCarthy et al. 2008 for a
simple analytical model of how a subhalo is stripped of its hot gas).
Only after the halo of hot gas has been stripped down to the size
of the galaxy do ram-pressure and tidal stripping begin to remove
the cold gas within the galaxy (Bekki 2009). Stars are the last to go
because they are impervious to ram pressure and can be stripped
only by tides.

Our model is focused on the stellar component and does not
follow the presence of gas in either the hot or the cold component.

The stellar mass of a central galaxy is determined by an empirical
relation that depends only on halo mass Mmax and redshift, that is,
cosmic time. Its growth is the sum of two terms, the growth of
stellar mass with halo mass at constant cosmic time and the growth
of stellar mass with time at constant halo mass:

d

dt
m∗(Mmax, t) =

(
∂m∗

∂Mmax

)
t

Ṁmax +
(

∂m∗
∂t

)
Mmax

. (12)

The first term is directly related to the accretion of baryons on to the
halo. Thus, it is natural to interpret the second term as the depletion
of an existing gas reservoir by star formation (keeping in mind that
star formation is not the only process that may remove gas from
galaxies). In central or isolated galaxies, the first term dominates.
We say that these galaxies are in an ‘accretion mode’. In satellite
galaxies, the only contribution to the star formation rate comes
from the second term. We say that these galaxies are in a ‘starvation
mode’. We note that our definition of starvation does not exclude
accretion from a residual reservoir of hot gas. This definition may
not coincide with that of other authors, who define starvation as a
complete shutdown of gas accretion on to the galaxy.

The transition from an accretion mode to a starvation mode at
zentry is not an assumption of our model. It is a consequence of
the fact that subhaloes do not gain mass, they lose it. For most
subhaloes, Ṁmax = 0 at z < zentry

In a more extreme scenario, the entire reservoir potentially avail-
able for star formation (hot and cold gas) is removed from satellite
galaxies upon entry into the host halo. In this ‘shutdown’ scenario,
ṁ∗ = 0 for all satellite galaxies at z < zentry. We call this scenario,
the shutdown model because it corresponds to a complete shutdown
of star formation in satellite galaxies. The shutdown and the star-
vation models set lower and upper limits, respectively, to the star
formation that is possible in group and cluster environments.

The blue and the red curves in Fig. 7 illustrate the qualitative
evolution of m∗ in the starvation and the model, respectively, when
we neglect the effects of tides. Tidal stripping transforms the blue
curve into the green one and the red curve into the yellow one,
but here we focus on models without tidal stripping because we
postpone its discussion to Section 5.2.

In models without stripping, there is no mechanism that can re-
move stellar mass from galaxies, Hence at each time-step, the stellar
mass of a central galaxy is updated to the maximum between the
sum of the stellar masses of its progenitors7 and the mass predicted
by the m∗–Mmax relation at the current z. However, requiring that
the mass of a central galaxy be the largest between the sums of
the stellar masses of its progenitors and the mass from AM method
overestimates the masses of cD galaxies because the masses from
AM already includes the effects of mergers. This assumption applies
to both the shutdown and the starvation models.

We deal with this problem by introducing a maximum halo mass
Mlim, above which we assume that dissipationless mergers are the
only opportunity for galaxies to grow. Mlim is a free parameter
to be determined by fitting the SMF of galaxies (Section 6.1). In
haloes with Mmax > Mlim, m∗ is the sum of the stellar masses of the
progenitors independently of what the AM relation prescribes. The
condition that m∗(Mmax) can never be lower than the value set by
the AM relation is recovered in the limit Mlim → ∞.

7 By progenitors, we mean the galaxy main progenitor and all the satellites
that have merged with it, since the last time-step.
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4178 É. Tollet et al.

Figure 7. Illustration of our four scenarios for the evolution of stellar mass
as a galaxy enters (at time zentry, black vertical bar) and orbits (at times peri
and apo for pericentres and apocentres, respectively) in a group or cluster
(and thus transitions from a central in a small group before entry to a satellite
in a larger group or cluster after entry therein). In all four models, the stellar
mass first grows as expected from AM with the current halo maximum
mass, once the (sub)halo mass reaches its maximum value (black dashed
vertical bar), the stellar mass grows more slowly until zentry is reached. In the
shutdown model (red), the stellar mass after entry is maintained at the value
at entry. In the starvation model (blue), the stellar mass increases following
the AM prescription. Tidal stripping occurs at orbit pericentres (orange and
green for shutdown and starvation, respectively). After the first stars have
been stripped no more star formation is allowed. Satellite mergers are not
considered in this illustration.

5.2 Tidal stripping of stellar mass

We now need to estimate the effects of tidal stripping on the stel-
lar mass of the subhaloes. As a gravitational dynamical process,
tidal stripping does not distinguish between a star and DM parti-
cle. Therefore, the tidal radius, rt of the stellar distribution should
match the tidal radius, Rt of the subhalo, which we computed in
Section 3.1 for the DM, especially if we neglect the different dy-
namical structures of discs and haloes, which is beyond the scope
of our analysis, particularly since we do not distinguish between
satellites of different morphological types.

However, while a subhalo loses an important fraction of its DM
mass before its first pericentric passage (Klimentowski et al. 2009;
although we cannot exclude that this may be due to incomplete re-
laxation of the subhalo), the more concentrated stellar component
is stripped almost entirely at pericentric passages (strong variations
of the tidal acceleration along elongated orbits lead to a tidal shock
at pericentre; Ostriker, Spitzer & Chevalier 1972 and fig. 3 of Kli-
mentowski et al. 2009). Fig. 7 illustrates the qualitative effect of
adding tidal stripping on elongated orbits to our shutdown (now
orange) and starvation (now green) models. Since most satellite
galaxies/subhaloes are on elongated orbits (Ghigna et al. 1998), an
impulsive model for tidal stripping of stars is justified. In contrast,
the circular-orbit approximation behind equation (3) leads to errors
that are too large.

Moreover, equation (3) is based on the assumption that a particle
is immediately stripped as soon as the tidal acceleration is larger

than the gravitational acceleration that keeps it bound to the satellite.
In reality, it is also necessary that the impulse

�v =
∫

at dt (13)

imparted by the tidal acceleration at to the particle be sufficient for
the unbinding condition

1

2
(vs + �v)2 + 	s ≥ 0 (14)

to be satisfied, where vs is the velocity of the particle in the satellite
before the tidal perturbation and 	s is the gravitational potential of
the satellite system.

The pericentric passage is where the tidal acceleration at is
strongest, but also where the passage is fastest. The impulsive ap-
proximation consists of assuming that the integral in equation (13)
is dominated by the contribution around the pericentre. This leads
to

�v ∼ at �tp ∼ |α|GMh(Rp)

R3
p

(
Rp

Vp

)
r , (15)

where �tp ∼ Rp/Vp is the duration of the pericentric passage (Rp and
Vp are the pericentric radius and speed of the satellite in the host’s
reference frame), Mh(Rp) is the host-halo mass within Rp, r is the
distance of the particle from the centre of mass of the satellite, α is
the exponent of the mean-density profile and at has been evaluated
with equation (A11) from Appendix A. (Similar equations were
derived by Spitzer 1958 for a point mass perturber, and generalized
to extended perturbers by Gonzalez-Casado, Mamon & Salvador-
Sole 1994 and Mamon 2000.)

Let us assume that 〈vs · at〉 = 0, either because vs has a random
orientation or because the particle is assumed to lie on a circular
orbit (as stars in the discs of spiral and S0 galaxies), in which case
the only component of at parallel to vs is the azimuthal one, which
vanishes when averaged over the orbit (Appendix A). Then, as the
term vs · �v in equation (14) vanishes, substituting equation (15)
into equation (14) gives:

1

2

[
|α|GMh(Rp)

R2
p

rt

Vp

]2

= −	s(rt) − 1

2
v2

s . (16)

With the substitution V 2
c (Rp) = GMh(Rp)/Rp, equation (16) be-

comes

α2

2

GMh(Rp)

R3
p

V 2
c (Rp)

V 2
p

r2
t = −2 	s − v2

s . (17)

If we make the further assumption that the test particle is on a
circular orbit, so that v2

s (rt) = GMs(rt)/rt (as expected for a star in
the disc a spiral galaxy), then equation (17) can be rewritten in its
final form:[

−2
	s(rt)

v2
s (rt)

− 1

]
Ms(rt)

r3
t

= α2

2

[
Vc(Rp)

Vp

]2
Mh(Rp)

R3
p

, (18)

where Rp and Vp are computed from the conservation of energy:

1

2
V 2

p + 	h(Rp) = e (19)

and the conservation of angular momentum:

RpVp = j, (20)

where e is the specific mechanical energy of the satellite, j is the
specific angular momentum and 	h is the gravitational potential of
the host system. Although e and j are not really conserved because
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the satellite is subject to the dynamical-friction drag force (equa-
tion 4), their variations between snapshots are small and the values
used to solve equations (19) and (20) are those measured at the
snapshot just before the pericentric passage, where Ṙ changes sign.

Equation (18) is identical to equation (3), except that the term |α|
is now replaced by:

εts = α2/2

−2	s(r)/vs(r)2 − 1

[
Vc(Rp)

Vp

]2

. (21)

To compute how εts depends on the distance r from the centre
of the satellite, we assume that all galaxies have an exponential
scalelength (Mo, Mao & White 1998):

rd = λRvir/2, (22)

the value of which can neverdecrease. Here, λ is the spin param-
eter measured in the N-body simulation. At the denominator of
equation (22), there is 2 rather than

√
2 because λ is defined as in

Bullock et al. (2001). The exponential profile is truncated at the ra-
dius rt computed with equation (18). All stars outside rt are removed
from the galaxy and re-assigned to the ICL without modifying the
satellite’s profile inside rt. The assumption that all satellite galax-
ies are discs is admittedly extreme but we do not expect that this
assumption significantly affects any of our results.8

Although the ICL is, by definition, intracluster, i.e. it is not associ-
ated with individual galaxies, we can imagine that, in the beginning,
stars stripped from galaxies will form tidal tails, which can still be
associated with the galaxies from which they originated (e.g. the
Magellanic Stream and the Magellanic Clouds). Only later will
phase mixing transform these tails into the extended envelopes of
central galaxies. We thus begin by storing the stars stripped from
individual galaxies in an ICL component that is still associated with
the satellites from which it came. When the satellites merge, we
transfer the stellar mass in this component to the ICL associated
with the outer envelopes of the central galaxy.

Fig. 8 shows the radial dependence of the factor
α2/2/(−2	s/v

2
s − 1), which sets the maximum efficiency of tidal

stripping, for pure DM configuration (black solid curve) and when
a disc is embedded in the subhalo (red curve). The figure shows that
stripping is less efficient for stars in the central parts of a satellite
galaxy. It also shows that εts 
 3 everywhere.

Besides the coefficient in Fig. 8, the multiplicative factor
[Vc(Rp)/Vp]2 < 1 is the only significant difference between the
results of the impulsive approximation (equation 18) and the in-
stantaneous approximation (equation 3).

The dependence of the tidal radius on Rp and Vp was first pro-
posed by Gonzalez-Casado et al. (1994) and confirmed with N-body
simulations by Ghigna et al. (1998). Mamon (2000) considered a
similar model, in which he assumed 	s ∼ −GMs(rt)/rt, and found
a simpler version of equation (21) without the term in Fig. 8 in front
of the square bracket. He obtained the following formula, where Vc

is the circular velocity of the host halo and vc the circular velocity
of the subhalo.

rt ≈ Vp

Vc(Rp)

vc(rt)

Vc(Rp)
Rp (23)

Fig. 9 compares the tidal radii for our impulsive model (equa-
tion 21; solid curves), the model of Mamon (dashed curves) and the

8 The satellite population is dominated by disc morphologies: spirals, S0s
(the spiral arms are no longer visible because all gas has been consumed or
removed) and dSphs (discs that puffed up because of either stellar feedback
or tidal interactions).

Figure 8. Maximum efficiency of tidal stripping in the impulsive approx-
imation as a function of the distance from the centre of the satellite (rvir

is the virial radius of the satellite and α = −3; the real efficiency is the
maximum efficiency times [Vc(Rp)/Vp]2). The black curve shows the radial
dependence of the maximum efficiency for an NFW potential with c = 8.
The red curve shows the effect of embedding in the subhalo a disc of mass
0.04 Mh. These values correspond to the maximum mstars/Mh ratio allowed
by AM and to λ = 0.05, respectively. The horizontal dashed black line
correspond to a circular orbit in the Jacobi limit (|α| = −3).

instantaneous-tide circular-orbit approximation (filled symbols). By
definition, the circular tidal theory is only valid for circular orbits,
whereas the impulsive theory is not valid for circular orbits. Hence,
we expect the tidal radii computed from the circular theory to be
more accurate for orbits with Vp = Vc(Rp) and the tidal radii com-
puted from the impulsive theory to be more accurate for orbits with
Vp � Vc(Rp). However, most satellites have elongated orbits. The
open symbols in Fig. 9 show the mean elongations, measured by
Vp � Vc(Rp), for orbits with different pericentric radii Rp/Rvir, ac-
cording to Ghigna et al. (1998). Smaller pericentric radii correspond
to higher orbital elongations. Comparing the ordinates of the open
symbols to those of the filled ones shows that the circular theory
underestimates the average tidal radius, particularly for satellites
with small pericentric radii, and thus overestimates tidal stripping.
Fig. 9 also shows that the simple theory of Mamon (2000) provides
a good estimate of the tidal radius for satellites with Rp ∼ 0.1Rvir,
although it overestimates the effects of tides for satellites on highly
elongated orbits.

We therefore compute the tidal radius rt for the stellar component
with equation (18), which is more accurate. The implications for
our results of using equation (18) rather than equation (3) will be
discussed in Section 7.1.3.

The best way to test the validity of our model for tidal stripping is
to compare it with idealized (i.e. non-cosmological) numerical sim-
ulations, which follow the dynamics of stars more accurately than
our analytic calculations while retaining full control of the gravi-
tational potential and the orbital configuration. Kazantzidis, Łokas
& Mayer (2013) used idealized simulations to study how tidal stir-
ring can transform a dwarf irregular (a discy dwarf) into a dwarf
spheroidal. They assumed a host with the size of the Milky Way
and explored three orbital configurations: (Ra, Rp) = (125, 25) kpc,
(Ra, Rp) = (125, 50) kpc and (Ra, Rp) = (250, 50) kpc, where Ra and
Rp are the apocentric and the pericentric radii, respectively. In the
simulations with Rp = 50 kpc, tidal stripping was negligible. For
similar orbital configurations, stripping is negligible in our model,
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4180 É. Tollet et al.

Figure 9. Tidal radii of subhaloes for different orbital elongations (mea-
sured by the ratio of pericentre speed to circular velocity at pericentre) and
different pericentric radii (colours correspond to different values of Rp/Rvir).
This figure compare the estimates from circular tidal theory (equation 3 with
α = −3, filled symbols) and from impulsive tidal theory using our full model
(equation 18, solid lines) or the approximate formulation of Mamon (2000)
(equation 23, dashed lines). The lines stop at Vp/Vc(Rp) = 1.35 because
it makes no sense apply the impulsive theory to nearly circular orbits. The
open symbols on the solid and dashed lines show the mean Vp/Vc(Rp) for a
given Rp/Rvir, computed assuming an average apocentre-to-pericentre ratio
of five (Ghigna et al. 1998). As the only purpose of this figure is to com-
pare different approximations, we have assumed that both the host and the
subhalo are described by c = 8 NFW models and we have neglected the
influence of the baryons on tidal radii.

too. In the simulation with Rp = 25 kpc, Kazantzidis et al. found
the same qualitative behaviour that is shown by the models with
stripping in Fig. 7. Quantitatively, the stellar mass of the satellite
decreased by 5–10 per cent at each pericentric passage if the strip-
ping potential corresponds to that of an NFW profile, as it does
in our model. This figure is broadly consistent with our results, in
which a satellite galaxy loses ∼20–25 per cent of its stellar mass
over two pericentric passages on average (Section 6).

A more careful examination shows that the agreement is not so
straightforward. If we apply our model of tidal stripping to the
simulations of Kazantzidis et al. (2013), assuming the same stellar
mass and radius as Kazantzidis et al., our model predicts the stellar
mass stripped at the first pericentric passage is ∼1 per cent rather
than the 5 per cent value found by Kazantzidis et al. in the simula-
tion with (Ra, Rp) = (125, 25) kpc. The stellar mass stripped at each
pericentric passage is highly sensitive to both Rp and the radius
of the satellite galaxy. The reason why tidal stripping is not negli-
gible in our model despite being much weaker than suggested by
Kazantzidis et al. is that the stellar component is less concentrated
in our galaxies than in the dwarf of Kazantzidis et al. However, the
comparison should keep in mind that Kazantzidis et al. defined m∗
as the stellar mass within 0.7 kpc, corresponding to 1.7 exponen-
tial radii of the disc of the satellite galaxy. Observationally, disc
galaxies in the central regions (r < 0.1r200) of clusters tend to have
surface-brightness profiles with residuals above an exponential fit
at large radii (they have a type III ‘antitruncated’ profile; Pranger

et al. 2017). Pranger et al. interpreted this observation as a tidal
effect. Instead of truncating discs, tides cause them to be more ex-
tended by pulling their outer regions. A lot of the stellar mass that
Kazantzidis et al. considered as lost because it moved out of the
central 0.7 kpc may still be in the disc at slightly larger radii. Our
condition for stripping is much stronger because it requires gravita-
tional unbinding (equation 14). Thus, it is not surprising that we find
less stripping in our model. The interesting question is what stellar
mass loss Kazantzidis et al. would have found if they had defined
m∗ as the total mass of the stars that are gravitationally bound to
the satellite. We have no access to their simulations to answer this
question.

6 R ESULTS

6.1 Total SMF

In Section 5, we have described two models, the shutdown model
and the starvation model, each in a version without and a version
with tidal stripping. We now compare these four models with the
local galaxy SMFs by Yang et al. (2012) and Bernardi et al. (2013;
Fig. 10).

At m∗ � 3 × 1011 M�, the four models are indistinguishable from
one another and they are all in excellent agreement with the SMF
by Yang et al. (2012). However, at m∗ � 3 × 1011 M�, all models
tend to be above the SMF of Yang et al. The tendency is stronger
for the starvation model without stripping than for the other three
models. This finding may seem surprising because the starvation
model without stripping applies to all haloes and subhaloes, an
AM procedure that should reproduce the SMF of Yang et al., by
construction. The discrepancy arises because, if the stellar mass
returned by this procedure is smaller than the sums of the stellar
masses of the progenitors of a galaxy, it is this sum and not the
value returned by the AM procedure that is used to assign a stellar
mass to this galaxy. If we assign to all galaxies a mass m∗ such
that the SMF of Yang et al. is reproduced, by construction, and we
increase the masses of some of these galaxies (typically, the most
massive ones, which have greatest number of progenitors), logically
our SMF will contain more massive galaxies than the one of Yang
et al. In other words, if all our haloes had a single progenitor, the
blue curve in Fig. 10 would fit the square symbols by construction.
The discrepancy between the blue curve and square symbols is
linked to the merging histories of galaxies. The stellar mass above
which the blue curve begins to differ from the SMF of Yang et al.
(2012) is the one above which dry (dissipationless) mergers become
the dominant growth mechanism and star formation is negligible
(Cattaneo et al. 2011; Bernardi et al. 2011a,b).

By enforcing the AM relation, m∗ = m∗(Mmax) even when m∗ is
larger than the sum of the stellar masses of the progenitors, we effec-
tively allow star formation in massive galaxies, which we know to be
red from observations (Kauffmann et al. 2003; Baldry et al. 2004).
We can deal with this problem by introducing a halo mass limit
Mlim, above which m∗ is simply the sum of the stellar masses of the
progenitors, independently of the AM relation (Section 4). This is
equivalent to assuming that there is a limit mass, above which dry
mergers are the only growth mechanism.

Observations (Kauffmann et al. 2003; Baldry et al. 2004), physi-
cal models (Dekel & Birnboim 2006) and SAMs (Bower et al. 2006;
Cattaneo et al. 2006; Croton et al. 2006) suggest a limit mass of
order 1012 M� (Cattaneo et al. 2006 fitted the colour–magnitude
distribution in the SDSS with Mlim ∼ 1012.4 M�). We were there-
fore surprised to discover that the starvation plus stripping model
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Stellar mass loss from satellites galaxies 4181

Figure 10. SMFs at z = 0 predicted by our four models (curves, colour-coded as in the legends and in Fig. 7) compared with the observations of Yang et al.
(2012; black squares with error bars) and Bernardi et al. (2013; grey circles with error bars). Left: the stellar mass is always the maximum between the stellar
mass from AM and the sum of the stellar masses of the progenitors. Right: when the halo mass is Mmax > Mlim = 1013.3 M�, the stellar mass is the sum of
the masses of the progenitors even when this mass is lower than the value obtained from AM.

fits the Yang et al. (2012) data for Mlim = 1013.3 M� (Fig. 10b,
green curve). Our explanation for this finding is that AM is not
a physical model for the baryonic mass that is able to condense
to the centre in a halo of given mass: m∗ is the net result of star
formation, dry mergers and stripping. Tidal stripping is responsible
for the extended envelopes of giant ellipticals, the masses of which
are underestimated by studies based on magnitudes from the SDSS
pipeline (Bernardi et al. 2017). Had we calibrated the m∗–Mmax

relation on the SMF of Bernardi et al. (2013), which includes the
light from the outer regions and therefore the debris of tidally dis-
rupted satellites, the green curve in Fig. 10(b) would have shifted to
higher masses by an amount comparable to the difference between
the SMFs of Yang et al. (2012) and Bernardi et al. (2013). To bring
the green curve back on the data points of Yang et al. (2012) would
have then required Mlim � 1012.6–1012.7 M� (i.e. the mass limit that
shifts the blue curve on the black squares in our calibration), in
better agreement with previous studies.

6.2 Conditional SMF

The conditional SMF N(m∗|Mh) is defined so that N(m∗|Mh) dm∗ is
the average number of galaxies with mass between m∗ and m∗ + dm∗
in a host halo of mass Mh (we have omitted the dependence on z
because, in this section, we are only interested in the local Universe).
It can be split into the contributions of central and satellite galaxies,
in which case the former integrates to unity (there is only one central
galaxy per halo).

In this section, we compare the four models in Fig. 10(b) to the
conditional SMF measured by Yang et al. (2012). A meaningful
comparison requires: (i) that we apply their same definition of host-
halo mass and (ii) that we apply their same criterion to decide which
galaxies belong to a group or cluster.

We start with point (i). Yang et al. (2012) did not measure Mh

dynamically. They inferred the group mass Mh from the group total
luminosity L by using the AM relation:∫ ∞

L

ngr(L
′) dL′ =

∫ ∞

Mh

ñh(M ′
h) dM ′

h, (24)

Figure 11. HMF assumed by Yang et al. (2012; black dashed curve)
compared to the one that we extract from our N-body simulation (blue
circles). The Yang et al. HMF (HMF) is mapped into our extracted HMF
with a linear transformation log Mh �→ alog Mh + b, where a and b are
fit to our HMF, and the best-fitting HMF is shown as the blue curve. The
blue circles show clearly the resolution of our N-body simulations, which
contains 10243 particles in a comoving volume of (100 Mpc)3.

where ngr and ñh are Yang et al.’s (2012) group luminosity function
and HMF, respectively. The problem is that the HMF ñh that they
computed with Sheth & Tormen’s (2002) formula (the black dashes
in Fig. 11) is different from the HMF nh that we measure in our
N-body simulation (the blue open circles), also because the cos-
mology is not identical. To overcome this problem, we have fitted
a linear transformation that maps ñh into nh (i.e. the black dashes
into the blue solid line). We have applied this transformation to the
intervals of Mh within which Yang et al. (2012) determined the con-
ditional SMF and we have used the transformed intervals to select
host haloes of corresponding mass in our N-body simulation.

For point (ii), we have re-analysed the density profiles of Yang
et al.’s (2012) groups and verified that they are truncated at R180, the
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4182 É. Tollet et al.

radius within which the mean density equals 180 times the mean
density of the Universe. R180/Rvir depends on concentration. We
have computed R180 for all haloes in the N-body simulations and
used this radius to decide which satellite galaxies should be assigned
to a host when computing the conditional SMF.

Fig. 12 compares the conditional SMF in our four models with
Yang et al.’s (2012) data after taking points (i) and (ii) into account.
A number of conclusions can be drawn from this comparison.

First, the difference between the blue curve and the green one
(or the red curve and the orange one) is usually smaller than the
difference between the blue curve and the red one. In other words,
the effects of stripping are smaller than the uncertainty from our
ignorance of the stellar mass �m∗ formed after tentry.

Second, all our models predict an excess of massive satellites
in low-mass groups (Mh < 1013.44 M�), though, at m∗ < 1010.5–
1011 M�, data points for satellites tend to lie in the range allowed
by our models (between the blue and the orange curves).

Third, the starvation model with tidal stripping (green curves)
is the one that, despite this problem, is overall in best agreement
with the conditional SMF of Yang et al. (2012) (our N-body sim-
ulation contains very few clusters; therefore, the last two panels
in Fig. 12 are affected by poor statistics). Fig. 12 was plotted for
Mlim = 1013.3 M�, but these conclusions are based on the condi-
tional SMF of satellite galaxies, the masses of which are insensitive
to the value of Mlim.

Fig. 13 compares predictions and observations for the condi-
tional SMFs displayed in Fig. 12 in a more quantitative manner.
For each bin of group mass Mh, we compute the mean stellar
mass of the central galaxy and the mean total mass of all satel-
lite galaxies, and compare these masses to observations by tak-
ing their logarithmic differences. A model in perfect agreement
with the observations would coincide with the black horizontal
line log mmodel

∗ − log mobs
∗ = 0 everywhere. Mlim has been tuned so

that the models with tidal stripping match well the observations at
all stellar masses and group masses, but results for central galax-
ies (dashed curves) at Mh < 1013–1013.5 M� and satellite galaxies
(solid curves) at all masses are insensitive to the value of Mlim. The
solid curves should be interpreted with caution because they are the
result of a sum over all m∗. For instance, the shutdown+stripping
model (orange curve) is above the data at Mh ∼ 1012.5 M� be-
cause of a few massive satellites, while the conditional SMF for
the corresponding model is below most data points in the mass bin
12.29 < log (Mh/M�) < 12.57 (Fig. 12). However, there are two
considerations that we can make from the solid curves in Fig. 13:

(i) Tidal stripping reduces the total stellar mass of satellite galax-
ies by typically 0.1 dex (0.2 dex at most, green versus blue and
orange versus red curves).

(ii) The starvation model with tidal stripping (green curve) and
the shutdown model without tidal stripping (red curve) provide a
comparably good fit to the total stellar mass of satellites in a group.

Therefore, if we were to draw a conclusion based on the total stellar
mass of satellites alone, we should concede that there is a degener-
acy between the gas mass that accretes on to galaxies and the stellar
mass that is stripped from them, and that a model with stellar mass
loss intermediate between the predictions of the shutdown and the
starvation models (between the red and the blue curves) could fit
the observed conditional SMF without the need for any tidal strip-
ping. Nevertheless, tidal stripping is expected to occur on physical
grounds. Furthermore, there is observational evidence outside this
work that the shutdown of star formation in satellite galaxies is not
instantaneous (see the discussion in Section 7.1.2, and references

therein). Hence, it is re-assuring that the most astrophysically plau-
sible model is the one that returns a comparatively best fit to the
data in Figs 10 and 11.

6.3 ICL

As an independent test of our model, we have compared our predic-
tions for the contribution of cD galaxies (inclusive of the ICL) to the
total stellar masses of clusters with the observations of Gonzalez
et al. (2013). Fig. 14 shows that, although there are very few clusters
in our N-body simulations, our starvation plus tidal stripping model
(green circles) matches the observed trend (crosses) for the ratio of
BCG+ICL stellar mass over total stellar mass.

More interesting (but more difficult to compare with observa-
tions) is the contribution of the ICL to the total stellar mass within a
cluster. Fig. 15 shows this contribution when we consider not only
the extended envelops of cD galaxies but all stars stripped from
galaxies over the entire cluster out to Rvir. It shows that stellar mass
fraction in the ICL increases with halo mass.

In Fig. 14, we had shown the BCG+ICL mass fraction within
R500 (the radius of a sphere within which the mean density equals
500 times the critical density of the Universe) for consistency with
Gonzalez et al. (2013). In our cosmology, the virial radius corre-
sponds to �c = 102 at z = 0, but we find that the ratio of the
ICL mass mICL to the total stellar mass m∗ is very similar within
Rvir and R500 for haloes up to ∼1013.5 M�. In clusters, mICL/m∗ is
∼20 per cent smaller within R500 than it is within Rvir. The implica-
tion is that the ICL is more concentrated than the total light of the
cluster.9 Fig. 15 shows that, in clusters, the ICL, defined as the total
stellar mass stripped from galaxies, whether it still forms a tidal
stream around the galaxies themselves or whether it has merged
into the extended envelope of a cD galaxy, may amount to nearly
half of the total stellar mass with Rvir.

In an article that appeared when ours was about to be submit-
ted, Bernardi et al. (2017) argued against the interpretation that
difference between the SMFs of Baldry et al. (2012) and Bernardi
et al. (2013) is due to the ICL. Their claim is that the difference
is entirely due to the different way the photometry is done. The
magnitude provided by the SDSS are based on fitting an exponen-
tial and a de Vaucouleurs surface-brightness profile separately and
retaining the value for the profile that fits better. The PYTHON image-
morphology software PYMORPH fits the surface-brightness profiles of
galaxies much more accurately because it allows for the presence of
both an exponential and a Sérsic component. Bernardi et al. (2017)
correctly argued that the difference is more than semantic because
there is no doubt that a model with five free parameters can fit the
surface-brightness profiles of galaxies more accurately than a model
with two and thus return more accurate photometry.

As a Sérsic-exponential profile provides an excellent fit to the
surface-brightness profiles of luminous red galaxies out to eight ef-
fective radii (about 100 kpc), Bernardi et al. (2017) concluded that
the difference between PYMORPH and SDSS magnitudes cannot be
due to the ICL. This conclusion is based on the fact that they define
the ICL as any residual luminosity above the Sérsic-exponential
fit. This definition is entirely reasonable from an observers

9 Stripped stars are stored first in an ICL component associated with it
parent satellite, when the satellites merge, we transfer the stellar mass in
this component to the ICL associated with the central galaxy. Therefore, we
define mICL within Rvir (respectively R500) as the sum of the mass of the
ICL component from galaxies within Rvir.
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Stellar mass loss from satellites galaxies 4183

Figure 12. Conditional SMF for our different models (thick solid curves, see legends and Fig. 7) compared to the observations of Yang et al. (2012; black
points with error bars). The panels correspond to bins of group mass. Squares and circles show Yang et al.’s decomposition of the data in central and satellite
galaxies. The same decomposition has been applied to the models. In models with stripping (green and orange curves), the tidal radius rt has been computed
with equation (18). The thin green dashed curves show how the green thick curves vary when we introduce a scatter of 0.2 dex in SMHM relation. They
are medians over a hundred realizations. The upper and lower envelopes of the green shaded areas around them correspond to upper and lower quartiles,
respectively. In all panels, Mlim = 1013.3 M� (see Section 6.1).
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4184 É. Tollet et al.

Figure 13. Differences between model predicted total stellar masses and
observed total stellar masses as a function of host halo (group) mass, for
central (dashed curves) and satellite (solid curves) galaxies. Models are
colour-coded as in Figs 7, 10 and 12.

Figure 14. Fractional contribution of cD galaxy inclusive of its ICL to the
total stellar mass of a group or a cluster. Only models with tidal stripping
display an ICL component. Green and orange circles refer to the starvation
model and the shutdown model, respectively. The crosses are the error bars
for the observations of Gonzalez et al. (2013). Model predictions have been
shown as a function of M500 (the total mass enclosed in sphere of radius
R500, within which the average density equals 500 times the critical density
of the Universe) to match the definition of cluster mass used by Gonzalez
et al. (2013).

standpoint. However, the Sérsic-exponential profile is nothing more
than a useful fitting formula. Another functional form with more free
parameters may fit the surface-brightness profile far beyond eight
effective radii, eliminating the need for the ICL altogether. We do
not question the claim by Bernardi et al. (2017) that PYMORPH returns
objectively more accurate magnitudes than the SDSS pipeline. We
enquire about the physical reason why giant ellipticals have ex-
tended light profiles, be they or not above a Sérsic-exponential fit.
Following Gallagher & Ostriker (1972), we pursue the hypothesis
that the extended envelopes of giant ellipticals are the debris of
tidally disrupted galaxies, and define the ICL as the light from stars
that have been tidally stripped from galaxies. This definition is of no
assistance to an observer who wishes to measure the ICL. However,
it is significant that when we compute the ICL mass according to

Figure 15. Fractional contribution of the outer envelopes to the total stellar
masses within R500. This represent the total diffuse light fraction within Rvir.
The model with gas accretion (green) allows for more stripping than the
model in which accretion shuts down immediately when a galaxy becomes
a satellite (orange).

our definition, we recover a lot of the difference between the SMFs
of Baldry et al. (2012) and (Bernardi et al. 2013, see Fig. 10, the
gap between the blue and the green curves).

Bernardi et al. (2017) have also argued that the ICL should be
centred on the centres of the clusters and should thus affect the mag-
nitudes of central galaxies more than it affects those of satellites,
while their work shows that, for a same luminosity, the difference
between PYMORPH and SDSS magnitudes is about the same for both
central and satellite galaxies. However, this is not a problem if one
adopts our definition of the ICL because tidal stripping is expected
to affect satellite galaxies, too. In fact, satellite galaxies will first
develop long tidal tails and then these tails will coalesce into the
extended envelopes of the central systems. This is how minor merg-
ers have plausibly contributed to the considerable size evolution of
elliptical galaxies from z = 2 to the present (e.g. Naab & Ostriker
2009; van Dokkum et al. 2010; Tal & van Dokkum 2011; Cooper
et al. 2012; Shankar et al. 2013).

7 D I SCUSSI ON

In this section, we discuss the uncertainties that affect our results.
They come from (i) the resolution of the N-body simulation and the
model for orphan galaxies that we have introduced to overcome the
effects of limited resolution; (ii) uncertainties regarding the amount
of star formation a satellite galaxy experiences post accretion on
to the host halo; (iii) uncertainties regarding the amount of stellar
mass loss experienced by satellite galaxies as a consequence of tidal
stripping and heating; (iv) scatter in the SMHM relation; and (v) the
AM method itself. We also discuss the excess of massive satellites
in groups with Mh < 1013.44 M� predicted by all our models.

7.1 Model uncertainties

7.1.1 N-body resolution and orphan galaxies

In Section 3.2, we have treated ghost subhaloes as systems with
well-defined orbits in a static spherical potential. Cosmological
haloes contain substructures that contribute to their gravitational
masses and perturb the orbital motions of subhaloes. Our work
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Stellar mass loss from satellites galaxies 4185

does not consider the contribution of substructures to the gravita-
tional potential of their host because our calculations are based on
exclusive masses (our halo masses do not include the masses of sub-
structures). We made this choice because the NFW model fits the
density profiles of DM haloes more accurately when substructures
are removed. If the mass distribution of substructures followed the
NFW profile of the host halo, their merging time-scales would be
shorter by typically 10 per cent. In reality, it is entirely possible that
the interaction with other substructures may scatter a subhalo on an
orbit with a longer merging time-scale. However, Hayashi, Navarro
& Springel (2007) have shown that the isopotential surfaces inside a
halo are much smoother than the density distribution and relatively
insensitive to the presence of substructure.

The assumption that haloes are spherical is another simplification.
Real haloes are triaxial. At z = 0, the typical minor-to-major axis
ratio of the virial ellipsoid ranges from 0.75 at Mh ∼ 1011 M� to 0.5
at Mh ∼ 3 × 1014 M� (Despali et al. 2017). Triaxiality increases at
small radii but dissipation makes DM haloes substantially rounder at
small radii than suggested by dissipationless simulations (Springel,
White & Hernquist 2004). Furthermore, as expected from Poisson’s
equation, the gravitational potential tends to be much more spheri-
cal than the mass distribution. Indeed, Hayashi et al. (2007) find that
a flattening (minor-to-major axis ratio) of ∼0.4 in the mass distri-
bution corresponds to a flattening of only ∼0.75 for the isopotential
contours the minor-to-major axis ratios of the isopotential contours
are ≈0.75, hence much greater than the corresponding ratios for the
density contours (≈0.4).

In this work, the approximation of a static spherical potential
applies to ghost subhaloes only. At a given stellar mass, the fraction
of satellite galaxies with unresolved (ghost) subhaloes depends on
the resolution of the N-body simulation. If all subhaloes of satellite
galaxies with m∗ > 109 M� were resolved, our results would be
independent of this approximation. Hence, while it is difficult to
estimate, a priori, the errors introduced by treating ghost subhaloes
as systems with well-defined orbits in a static spherical potential, it
is easy to do it, a posteriori, by performing resolution studies.

To test the sensitivity of our results to N-body resolution and
to our modelling of orphan galaxies, we have repeated our entire
analysis on a simulation with the same cosmology, the same volume,
the same initial conditions, but only 5123 particles instead of 10243,
and we allow ourselves to immediately merge orphan galaxies with
the central galaxy of their host halo (i.e. to use the original merger
tree without the addition of ghosts and orphan galaxies). We focus
the comparison on our best-fitting model (starvation plus stripping)
and on the mass range 1013.44 M� < Mh < 1013.73 M�, but the
results for this case also apply to the other models and mass bins.

Fig. 16 compares the conditional SMF for this model and mass
range varying the resolution of the simulation and the treatment of
orphans. With 5123 particles, the conditional SMFs with (solid pur-
ple curve) and without (dashed purple curve) orphans differ at m∗ �
1010 M�. However, with 10243 particles, the resolution is so good
that delaying the mergers of orphans with central galaxies (solid
green curve) or not (dashed green curve) makes little difference
above m∗ = 108.5 M�. The treatment of orphans is a small correc-
tion and therefore a negligible source of uncertainty in relation to
our conclusions.

Above m∗ ∼ 1010 M�, the conditional SMFs for the 5123 simu-
lation without orphans (dashed purple curve) and the 10243 simula-
tion without orphans (dashed green curve) are very similar, suggest-
ing that numerical convergence has been reached. Most interesting,
however, is the agreement of the 5123 and 10243 simulations when
orphans are included, as we see convergence (solid green and purple

Figure 16. Sensitivity of the conditional SMF predicted by the
starvation+stripping model to the resolution of the N-body simulation, de-
graded from 10243 (green) to 5123 particles (purple lines), and to the merger
time of orphan galaxies with the central galaxy: immediately (dashed lines)
or only at the first pericentre following the expected time of orbital decay by
dynamical friction (solid lines). The figure shows the case for haloes with
13.44 < log (Mh/M�) < 13.73. In the mass range probed by the obser-
vations (Yang et al. 2012; black symbols with error bars), the model with
orphan galaxies has converged because the simulations with 5123 and 10243

particles give very similar conditional SMFs.

lines) in the conditional SMF down to 107.7 M�. This proves that
the inclusion of orphans aids in achieving convergence to correct
solution (also see Guo et al. 2011). At m∗ � 3 × 108 M�, the 5123

simulation with orphans is at least as good as the 10243 simulation
without orphans.

7.1.2 Gas accretion on to satellites

Estimating how much gas accretes on to satellite galaxies after
entering a group or cluster environment is less straightforward than
testing for resolution effects, but the simple assumption that star
formation shuts down immediately cannot be correct. Weinmann
et al. (2006) used a version of the Munich SAM in which there was
no accretion on to satellite galaxies (Croton et al. 2006). They found
that the fraction of faint satellites with red colours was overestimated
by a factor of ∼2–3. All SAMs published in those years shared the
same problem (e.g. Fontanot et al. 2009). Indeed, Cattaneo et al.
(2007) ran the GalICS SAM on merger trees from a cosmological
hydrodynamic simulation. GalICS assumed no gas accretion on
satellites and predicted a much higher fraction of quenched galaxies
than the hydrodynamic simulation.

A delayed quenching scenario can be parametrized by two time-
scales: the time tdelay during which a galaxy keeps forming stars
after entering a group or a cluster and the tquench, over which the
star formation rate rapidly decays after tdelay has elapsed. Several
authors have investigated these time-scales. Mahajan, Mamon &
Raychaudhury (2011) split galaxies between infalling, backsplash
and virialized, and combined the fraction of star-forming galaxies
observed in the SDSS with cosmological N-body simulations to
quantify projection effects. Their analysis suggests that quenching
is delayed until galaxies reach the virial radius on their way out of
the cluster after the first pericentric passage. As shown in Fig. B1
in Appendix B, galaxies that are at the virial radius today, on their
way out after their first pericentric passage, and have typical first
apocentres close to the turnaround radius at that time (3–4 virial
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radii at that time), entered the group/cluster environment ∼3 Gyr
ago (Fig. B1 in Appendix B), and passed through the pericentre
∼1.6 Gyr ago. Therefore, according to the modelling of Mahajan
et al., star formation is quenched ∼3 Gyr after cluster entry and
∼1.6 Gyr after the first pericentric passage. Wetzel et al. (2013)
used an N-body simulation to measure the characteristic time, since
tentry of a galaxy at a given R/Rvir, and constrained tdelay and tquench by
measuring the fraction of red galaxies in SDSS groups/clusters as a
function of the distance from the centre. A slow progressive fading
of star formation since tentry would blur the bimodal distribution of
galaxy colour. In contrast, the observations are consistent with a long
delay (tdelay = 2–4 Gyr) followed by rapid quenching (tquench = 0.2–
0.8 Gyr). Haines et al. (2015) performed a similar study to match
the observed distribution of the fraction of star-forming galaxies
with the predictions of times since entry as a function of position in
projected phase space from cosmological N-body simulations. They
conclude that star formation declines exponentially after entering
the virial radius on a time-scale of 1.7 Gyr. A similar analysis by
Oman & Hudson (2016) suggests that star formation in cluster
satellite galaxies is rapidly quenched within ∼1–2 Gyr from the
first pericentric passage. Another recent similar study based on
both SDSS and higher redshift data leads to delay times of 2–5 Gyr
(Fossati et al. 2017).

Further evidence in support of delayed quenching comes from
chemical abundances. When a galaxy ceases to accrete pristine
gas but keeps forming stars, its metal content relative to hydrogen
increases. From the metal abundances of red galaxies with m∗ �
1010.5 M�, Peng et al. (2015) inferred that they must have behaved
as closed boxes for ∼4 Gyr before they eventually run out of gas.
The higher metallicities of satellite galaxies were interpreted as
evidence that this is due to starvation by the environment. While the
complete starvation of gas accretion in Peng et al.’s picture seems to
conflict with SAMs.10 There is consensus that star formation cannot
have been quenched instantaneously at tentry.

In conclusion, while it is not straightforward to determine what
fraction of the gas associated with a subhalo will accrete on to
the satellite galaxy it contains and what fraction will be stripped
(mainly by ram pressure, which is more important than tidal strip-
ping for gas11), and while the precise value will also depend on the
feedback one assumes (Tomozeiu, Mayer & Quinn 2016), there ap-
pears to be observational consensus that star formation is quenched
1–2 Gyr after the first pericentric passage. Therefore, the starvation
model, which prevents further accretion from the environment but
allows star formation to continue until the first pericentric passage,
seems a much more plausible assumption than to assume a complete
shutdown of star formation at the entry time.

7.1.3 Tidal stripping

Tidal stripping is an inevitable dynamical process, but its analytic
modelling is not straightforward and requires simplifying assump-
tions. The most common assumption is instantaneous tides applied

10 The difference is largely due to the assumed star formation efficiencies.
SAMs usually assume shorter star formation time-scales than those of Peng
et al. (2015), at least at low stellar mass. Hence, they need sustained accretion
to keep star formation going for several Gyr.
11 In field galaxies, HI discs are more extended than stellar discs. In satellite
galaxies, it is often the contrary because ram pressure has stripped their
outer parts. Where tidal stripping the dominant phenomenon, the HI disc
would be truncated at the same radius as the stellar disc because tides do
not differentiate between gas and stars.

Figure 17. Conditional SMF for our different models (curves) compared to
the observations of Yang et al. (2012; black data points with error bars). This
figure is identical to the 1013.44 M� < Mh < 1013.73 M� panel of Fig. 12
except for the calculation of tidal stripping (the green and orange curves).
Here, tidal stripping is computed in the circular-orbit instantaneous-tide
approximation, using equation (3) with α = −3.

to satellites are on circular orbits. However, for a fixed pericentric
radius, this assumption gives an upper limit rather than a realistic
estimate for the stellar mass that is tidally stripped from galaxies
because most orbits are highly elongated. The circular-orbit approx-
imation underpredicts the conditional SMF even when it is applied
to the starvation model, which corresponds to the maximum possible
star formation in satellite galaxies (green curve in Fig. 17) because
it results in stellar mass loss of satellite galaxies that can be as large
as 0.5 dex. On the contrary, the difference between the starvation
model without stripping (blue curve) and the observations (horizon-
tal black line) in Fig. 13 shows that the stellar mass that can plausibly
be stripped from galaxies is �0.15–0.2 dex (�0.1–0.15 dex if we
allow for �10 per cent stellar mass loss through stellar evolution
between zentry and z = 0). This upper limit is obtained by comparing
a model without stripping to the observations. It is therefore totally
independent of any physical model of tidal stripping.

Re-assuringly, the more sophisticated model in Section 5.2 pre-
dicts tidal stripping by ∼0.1 dex (∼25 per cent) on average, in agree-
ment with the upper limit above. This value (based on the green
curve in Fig. 13) has been computed assuming the maximum tidal
acceleration but also assuming that the tidal acceleration acts only
for a very short time around the pericentric passage (corresponding
to the part of the orbit shown as a thick solid red line in Fig. 1).
Using the average acceleration for a test particle (equal to half the
maximum acceleration; Appendix A) while retaining the second
assumption will most likely underestimate the tides. However, this
results in an average tidal stripping of 0.07–0.08 dex on average, so
the quantitative difference is small.

The assumption of circular orbits is as incorrect for the DM as it
is for the stars, but we kept using it to compute the DM lost by ghost
subhaloes because DM is stripped all the way down to the centre,
not just at pericentre (Klimentowski et al. 2009), so the impulsive
approximation is not necessarily much more accurate. The question
is the extent to which its inaccuracy affects our conclusions. Tidal
radii have no consequences on the survival times of ghost subhaloes,
which are by Jiang et al.’s (2008) formula. Their only effect on the
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tidal stripping of stars is through the value of Rp. If a ghost subhalo is
stripped too heavily (the most likely outcome of our approximation),
it will suffer less dynamical friction. Less dynamical friction implies
less orbital decay. The pericentric radius will be overestimated and
the tidal stripping of stars will be less efficient than for the correct
value of Rp. Therefore, we can be confident that 0.07–0.08 dex is a
plausible lower limit for the stellar mass lost by galaxies owing to
dynamical friction.

In practice, ghost subhaloes (and thus this calculation) were intro-
duced as a way to beat the resolution limit of our N-body simulation.
A posteriori, our resolution is so good that conditional SMFs are
very similar with or without them (Fig. 16). Thus, any error in our
calculation of the pericentric radii of ghost subhaloes is bound to
have a limited impact on the conclusions of this article.

7.1.4 Scatter in the SMHM relation

Our AM procedure (Section 1.2) assumes that the m∗–Mmax relation
does not contain any scatter. In this section, we discuss how scatter
can affect our conclusions.

Observationally, to determine the scatter in stellar mass at con-
stant halo mass, one needs a method to measure Mh. Yang et al.
(2009) estimated the masses of groups from their luminosities
(Section 6.2) and found a scatter in log m∗ of σlog m∗ � 0.17 dex
in m∗ at constant Mh. More et al. (2009) found a similar re-
sult (σlog m∗ � 0.16 dex) using halo masses from satellite kine-
matics. Leauthaud et al. (2012) performed a more sophisticated
analysis by fitting simultaneously the galaxy SMF, clustering data
(correlation functions) and halo masses from galaxy–galaxy lens-
ing. They found an intrinsic scatter of about 0.2 dex after sub-
tracting errors from photometry, photometric redshifts and spec-
tral energy distribution fitting. Behroozi et al. (2013) used AM
to infer a scatter of 0.22 ± 0.02 dex. Coupon et al. (2015) re-
peated the same analysis with more recent data and confirmed their
results.

Implementing scatter in our models requires a more sophisti-
cated approach than simply applying random errors to the stel-
lar masses determined from the AM relation. If we simply per-
turbed the AM relation, our models would no longer reproduce the
galaxy SMF because of the Eddington bias. We overcome this prob-
lem by splitting the galaxy population into pairs. One galaxy has
logarithmic stellar mass log m∗. The other has logarithmic stel-
lar mass log m∗ + log �m∗, where log �m∗ is a random num-
ber from a Gaussian distribution with standard deviation σlog m∗
and zero mean. Scatter is implemented by swapping the haloes
of the two galaxies. This swapping introduces the requires scat-
ter in the SMHM relation without changing the actual SMF of the
galaxies.

This procedure means that the conditional SMFs computed by
our models are now dependent on the random way in which galaxy
population has been splitted into pairs but we can obtain robust re-
sults by averaging over many different realizations. The thin green
dashed curves in Fig. 12 show the median conditional SMF for the
starvation plus stripping model over a hundred realizations with
σlog m∗ = 0.2, while the green shaded areas show upper and lower
quartiles for the same hundred realizations. The absence of system-
atic differences between the thin and the thick green curves (the
model without scatter) proves that scatter adds noise but will not
bias our conclusion. Thin lines and shaded areas have been shown
for the starvation plus stripping model only not to overcrowd the
figure.

7.1.5 Uncertainties in the SMHM relation

Fig. 6 shows that the SMHM relations derived with different
AM/HOD models differ at the level of 0.1–0.2 dex in stellar mass.
One could interpret these differences as a measure of the intrinsic
uncertainty of the SMHM relation from AM. To understand the
implications that such an uncertainty may have for our results, we
begin by discussing the origin of these differences.

The first source of difference is the SMF used to constrain the
SMHM relation. The SMHM relation of Moster et al. (2013) differs
from those of other authors at low masses because they used the SMF
of Li & White (2009), which contains a higher a number density of
galaxies with 109 M� < m∗ < 1010.2 M� than the SMFs of Baldry,
Glazebrook & Driver (2008), Baldry et al. (2012), Leauthaud et al.
(2012), Yang et al. (2012), Papastergis et al. (2012) and Moustakas
et al. (2013).

Secondly, the HMFs assumed by different authors can come ei-
ther from N-body simulations or from the Sheth & Tormen (2002)
formula, which is calibrated on N-body simulations. Even if the
cosmologies assumed by different authors were completely identi-
cal, there would still be an uncertainty of about 10 per cent in the
HMF from the halo finder (Knebe et al. 2013).

Finally, one can use the AM method, as we have done, or one can
assumed a parametric SMHM relation and constrain its parameters
so that it fits the SMF. The results obtained with the two methods will
be very similar but not necessarily identical. One can also consider
or not consider the presence of scatter (Section 7.1.4). Models with
scatter find lower stellar masses for a given halo mass at high masses
to compensate for the Eddington bias.

We argue that these systematic uncertainties are not important for
our conclusions because our analysis focuses on the differences in
stellar mass between field and satellite galaxies. We apply the same
N-body simulation, the same halo finder and the same AM procedure
to both. Therefore, these uncertainties cancel out in the relative
comparison, as would any systematic error in the photometry or the
initial mass function.

The only real question is whether our SMF n∗(m∗, z), which
is constructed from data at different redshifts (Yang et al. 2012 at
z < 0.2, Muzzin et al. 2013 at 0.2 < z < 2.5), is fully consistent with
the conditional SMF of Yang et al. (2012), to which we compare our
results. Fig. 5 shows that, for 109 M� < m∗ < 1011.5 M� the local
SMF assumed for this work (black solid curve) is fully consistent
with both the SMF of Yang et al. (2012; black symbols with error
bars) and the SMF of Muzzin et al. (2013) extrapolated to z = 0.1
(black dashed curve).

7.2 The massive satellite excess in low-mass groups

The most noticeable discrepancy between our models and the ob-
servations of Yang et al. (2012) is the excess of massive satellites
with m∗ � 1011 M� in low-mass groups (Fig. 12). This excess can-
not be due to star formation after zentry or to underestimated strip-
ping because, at Mh � 1013 M� it is present even in the shutdown
model when tidal stripping is computed with the instantaneous-
tide circular-orbit approximation (which largely overestimates the
magnitude of the phenomenon; Section 7.1.1).

There are two possible explanations for this discrepancy. First,
Yang et al. (2012) may have classified as central systems that, in
the N-body simulation, our halo finder classifies as satellites, see
Skibba et al. (2011) and Lange et al. (2017) for a discussion of
this phenomena. Bernardi et al. (2017) have analysed SDSS groups
with a group finder called REDMAPPER, which differ from the one

MNRAS 471, 4170–4193 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/471/4/4170/3980217 by Saint M
ary's U

niversity, H
alifax, C

anada user on 06 D
ecem

ber 2024
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used by Yang et al. (2012). They have remarked that: ‘Many of
the objects which Yang et al. classify as being centrals in groups
less massive than 1014 M� are called satellites by REDMAPPER’.
Second, a satellite with m∗ comparable to the central galaxy in a
small group of often 2–3 objects is very different system from a
satellite in a cluster, whose total mass is much larger than that of
any satellite. The Jiang et al. (2008) formula (combined with our
prescription, which requires one galaxy out of four to complete an
additional orbit after a time tdf has elapsed since entry) may fail
when applied to nearly equal-mass binary systems. If their merging
time is systematically overestimated, this could explain the excess
of massive satellites in low-mass groups.

8 C O N C L U S I O N S

The original goal of this work was to estimate the stellar mass
lost by galaxies in groups and clustering due to tidal stripping
by comparing the distribution of entry masses to observations of
the conditional SMF. As our work progressed, we realized that
this original approach was too simplistic because the distribution
of entry masses (shown by the red curves in Fig. 12, except for
satellites that have merged) is below the data points for most values
of m∗. If we look at the mass variation from zentry to z = 0, then
galaxies have gained stellar mass, not lost it.

The simplest refinement of this analysis is to assume that
�mstrip = mentry + �m∗ − m∗, where mentry is the stellar mass
at zentry, �m∗ is the mass of the stars formed between zentry and
z = 0 and m∗ is the stellar mass at z = 0. The problem is that �m∗
is considerably uncertain. We can obtain an upper limit for �mstrip

by assuming that, in satellite galaxies, stellar mass grows with halo
mass following the same relation that holds for central galaxies. This
assumption maximizes �m∗. If we follow this approach, we find
that the stellar mass loss from satellite galaxies is �0.15–0.2 dex.
However, this would imply that central and satellite galaxies have
similar SFRs. This is inconsistent with observations, which indicate
that satellite galaxies have, on average, lower SFRs than centrals of
the same stellar mass (i.e. Weinmann et al. 2006; Wetzel et al. 2013,
and references therein). Hence, this model clearly has to be regarded
an extreme upper limit for �m∗.

The upper limit for �mstrip includes both the stellar mass lost
due to tidal stripping and the decrease in stellar mass that results
from stellar evolution. A typical satellite galaxy is accreted into its
host halo at a median redshift of zentry ∼ 0.5, which corresponds to
a lookback time of ∼5 Gyr. Assuming passive evolution, a typical
quiescent galaxy will lose between 10 and 20 per cent of its mass
over a period of ∼5 Gyr (e.g. Fioc & Rocca-Volmerange 1997).
Accounting for this passive evolution, gives a more stringent upper
limit �mstrip � 0.1–0.15 dex.

This is an upper limit because of the uncertainty on
�m∗. Since mentry − m∗ < 0 and mentry + �mmax

∗ − m∗ > 0,
it is possible to find a plausible value of �m∗ for which
�mstrip = mentry + �m∗ − m∗ = 0, that is, the analysis above
cannot rule out a model without stripping.

We have compared this indirect result with direct analytic esti-
mates of the stellar masses that galaxies lose due to tidal stripping.
The simplest estimates based on instantaneous tides and circular
orbits are highly inaccurate because most satellites are on highly
elongated orbits. These estimates predict much more stripping that
is allowed by the upper limit derived in this article. More sophis-
ticated estimates assume impulsive stripping on elongated orbits
(satellite galaxies lose stars at each pericentric passage). In this
article, we have improved previous analytic models of impulsive

tides (Spitzer 1958; Gonzalez-Casado et al. 1994; Mamon 2000)
and have used our results (equation 18) to predict stripping by
0.07–0.1 dex on average, which is consistent with our upper limit
�0.1–0.15 dex.

We consider 0.07 dex (17 per cent) to be a reasonable lower limit
for the stellar mass lost by galaxies owing to tidal stripping because:
(i) its calculation is based on the average rather than the maximum
tidal acceleration; (ii) we assumed that the tides acts only for a
very short time interval around the pericentre and (iii) pericen-
tric radii that may be overestimated (in case of ghost subhaloes)
but not underestimated (tides are stronger for closer pericentric
passages).

Our best estimate for the stellar mass lost owing to tidal strip-
ping, ∼0.07–0.1 dex (∼17–25 per cent), is consistent with a picture
in which �m∗ is close to �mmax

∗ , i.e. one in which satellite galaxies
are quenched several Gyr after entering a group or cluster environ-
ment and, in any case, after the first pericentric passage (Mahajan
et al. 2011; Wetzel et al. 2013; Haines et al. 2015; Peng et al. 2015;
Oman & Hudson 2016; Fossati et al. 2017).

Our model predicts that the fraction of stars that contribute the
ICL increase with the mass of the host system. In clusters, stars
tidally stripped from galaxies are predicted to contribute to half of
the total light within R500.
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A P P E N D I X A : TH E O RY O F TI D E S I N T H E
CIRCULAR-ORBIT A PPROX IMATION

In this appendix, we compute the tidal acceleration at that a host
system exerts on a test particle of a satellite. We also compute the
tidal radius rt of the satellite in the approximations that: (i) the satel-
lite is on a circular orbit, so that the gravitational potential is static
in a corotating frame, and (ii) the test particle is instantaneously
stripped as soon as at exceeds the gravitational acceleration that
keeps the particle bound to the satellite. The latter is an approxi-
mation because a net outward acceleration is a necessary but not
sufficient condition for tidal stripping. For it to be sufficient, the
speed

∫
at dt imparted by the acceleration to the particle must be

large enough to unbind it. In Section 5.2, we build on these results
and generalize them to non-circular orbits and non-instantaneous
tides.

Let Mh and Ms be the masses of the host (of centre of mass
H) and the satellite (of centre of mass S). Let H and S be the
respective centres of mass of the halo and subhalo, call O the centre
of mass of the halo+subhalo system and P the position of a particle
in the subhalo. Finally, denote r ≡ −→

SP and R ≡ −→
HS. Because of

assumption (i), H and S rotate around O with angular velocity �,
such that

� =
√

G (Mh + Ms)

R3
. (A1)

In a corotating reference frame, the satellite is subject to two ac-
celerations that cancel one another: the gravitational attraction of
the central system and the centrifugal acceleration. The particle P
is subject to four accelerations: the gravitational attraction of the
satellite, the gravitational attraction of the host, the centrifugal ac-
celeration and the Coriolis acceleration. The sum of the last three
accelerations defines the tidal acceleration at, which can be written

v̇ = at − ∇	s , (A2)

at = −∇	h − � × (� × −→
OP) − 2� × v , (A3)

where v is the velocity of the particle in the corotating frame, 	h

is the gravitational potential of the host and 	s is the gravitational
potential of the satellite. Assumption (ii) applied to equation (A3)
implies that the particle will be tidally stripped when |at| > ∇	s in
equation (A3).

To proceed further, we must make additional assumptions. Here,
we assume that: (iii) P is in the orbital plane of the binary, so that
−� × (� × −→

OP) = �2−→OP and (iv) P turns around S on a circular
orbit with angular velocity �, so that v = 0 in the corotating frame
(as it is the case for the Moon, which corotates in phase locking with
the Earth). The impact of these assumptions on the value of rt will

Figure A1. Equipotential curves for the effective potential 	eff (equa-
tion A4) of a two-body system composed of a host halo and a subhalo,
centred on H and S, respectively (contours). H and S are on circular orbits
around the centre of mass O of the two-body system. The First Lagrangian
Point L1 separates the Roche lobes of the host and the satellite. P is a test
particle within the subhalo. The figure is for a satellite-to-host mass ratio
of Ms/Mh = 0.1. It assumes that both the host halo and the subhalo are
described by an NFW profile with c = 8 and that the subhalo lies at the
virial radius of the host halo, which is used to scale the coordinates (so
that HS = 1). The figure is shown in a reference frame centred in O and
corotating with the two-body system. A circular orbit around S through L1

(larger green dashed circle) lies outside the Roche lobe of the satellite. A
particle on this orbit is tidally stripped. The real value of rt corresponds to
the radius of the smaller red dashed circle, i.e. the largest circle centred on
S to be entirely contained in the Roche lobe of the satellite.

be explored at the end of this appendix with a numerical experiment.
By using (iii) and (iv), equation (A3) becomes v̇ = −∇	eff , where

	eff = 	h + 	s − 1

2
�2 OP

2
. (A4)

Fig. A1 shows the equipotential contours for 	eff in a partic-
ular case used for illustrative purposes. In this particular case,
Ms/Mh = 0.1, HS = Rvir, and both the host and the satellite are
described by an NFW profile with concentration c = 8 (Rvir is the
host virial radius). The equipotential contours show a saddle point
L1 on the segment HS, which is the First Lagrangian Point L1, which
separates the Roche lobes of the host and the satellite. The particle
P is tidally stripped if its orbit spills outside the Roche lobe of the
satellite. In the next five paragraphs, we shall calculate rt ∼ ¯SL1 in
the limit that: (v) Ms 
 Mh, so that O → H, and (vi) SP 
 HS, so
that we can expand at in powers of r/R (Jacobi limit). However, it
is important to understand that, even if ¯SL1 could be computed ex-
actly, it would still provide an approximate estimate for rt because
a circle of radius ¯SL1 and centre S lies outside the Roche lobe of
the satellite. The implication is that the real tidal radius is rt < ¯SL1.

We can write
−→
OP = R + r in the limit that O → H (assumption

v).12 If the mass profile Mh(R) of the host is spherically symmet-
ric (assumption vii), equation (A3) can be rewritten as (Gonzalez-
Casado et al. 1994)

at =
[
−G Mh(|R + r|)

|R + r|3 + G Mh(R)

R3

]
(R + r), (A5)

12 Throughout this appendix, lowercase letters refer to distances from S and
uppercase letters to distances from H.
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where we have used equation (A1) in the limit Ms 
 Mh to
eliminate �2 and we have neglected the Coriolis term because of
assumption (iv).

Expanding at in a Taylor series to first order, we derive

at = G Mh(R)

R3

[
−3 + R

Mh(R)

dMh(R)

dR

]
r

R
cos θ R (A6)

By introducing the slope of the mean-density profile of the host

α = d ln ρ

d ln r
= R

Mh(R)

dMh(R)

dR
− 3 , (A7)

Equation (A6) can be rewritten in the simpler form

at = α
G Mh(R)

R3
r cos θ

R
R

. (A8)

The term α cos θ R in equation (A8) is directed as − cos θ R
(α < 0 because the density decreases with radius). In a system of
polar coordinates (r, θ ) centred on S,(

α cos θ
R
R

)
r

= |α| cos2 θ, (A9)

(
α cos θ

R
R

)
θ

= |α| cos θ sin θ, (A10)

where α appears in absolute value on the right-hand side because
R points from the central system to the satellite (and thus −R
points like r when θ = 0). Equation (A9) shows that the radial
component of at is always positive, while equation (A10) shows that
the azimuthal component has zero average. Therefore, the maximum
acceleration is:

〈at,max〉 = |α|GMh(R)

R3
r. (A11)

And averaging over all θ gives a mean outward acceleration of:

〈at〉 = |α|
2

GMh(R)

R3
r. (A12)

We compute rt by finding the point of the segment HS for which
at = −∇	s = GMs(r)/r2, where Ms(s) is the mass profile of the
satellite, for which we assume spherical symmetry (assumption vii).
Equation (A8) gives (Dekel, Devor & Hetzroni 2003)

G Ms(rt)

r3
t

= |α|G Mh(R)

R3
, (A13)

from which rt can be computed numerically. There is no factor of
two dividing |α| in equation (A13) because this equation is for θ = 0
and not the result of an average ( ̂HSL1 = 0).

The α parameter determines the strength of tidal stripping. The
higher its absolute value, the lower the tidal radius rt. For a DM
halo described by the NFW profile, α decreases from α = −1 at
R = 0 to −2.5 < α < −2.2 at R = R ∼ Rvir (Fig. A2, black curve).
The upper and lower limits for α(Rvir) corresponds to c = 4 and
12, respectively. The limit for R → ∞, α = −3, corresponds to the
classical Jacobi limit for a point mass, whose average density over
a sphere of radius R decreases as R−3. The presence of a luminous
galaxy at the centre of the halo causes the decrease of α to be much
more rapid at first but then much slower because the limit at infinity
has to be the same (Fig. A2, red curve). The value of α in the nearly
flat part of the curve depends not only on c but also on the baryon-
to-DM mass ratio and the baryon scalelength with respect to that
of the DM. Despite these uncertainties, a value −3 < α < −2 was
to be expected, because the flatness of the rotation curves of spiral
galaxies in their outer parts imply α ∼ −2 on the scale of the optical
radius.

Figure A2. The logarithmic slope α of the mean-density profile (equa-
tion A7) as a function of the spherically averaged radial coordinate in units
of the virial radius, for an NFW halo with c = 8 (black solid line) and the
same halo with an additional exponential disc of mass equal to 4 per cent
the total mass of the system (red solid line). Note that m∗/Mh = 0.04 is the
maximum stellar-to-halo mass ratio allowed by AM. The exponential disc is
assumed to have a scalelength λRvir/2 ∼ 0.025Rvir, where Rvir is the halo’s
virial radius.

To test the accuracy of equation (A13) in recovering the correct
value of rt, we have performed a numerical experiment, in which we
start from the pure DM configuration in Fig. A1, we set up a range
of initial conditions (r, v) for the test particle and we integrate their
orbits to find under what conditions the particles escape from the
satellite. The experiment retains the assumptions that the satellite is
on a circular orbit (i), and that the mass distributions of the host and
the satellite are spherically symmetric (vii), but allow us to relax
the other five assumptions (the non-sphericity of discs has a small
effect on the total gravitational potential of DM plus baryons).

We compute the position of L1 by solving equation (A13) for
α(Rvir; c = 8) = −2.4 and compare this result, derived from assump-
tions (v) and (vi), to the real position of L1 in our configuration.
Then, we consider four test particles with the same initial position
(they all start at L1 computed with equation A13), but with different
initial velocities. Three of the four particles start on a circular orbit
with v2

orb = GMs(rt)/rt, where vorb is the orbital speed of P around
S in an inertial frame. One corotates with �, another counter rotates
and the orbital plane of the third one is orthogonal to that of the
binary (the third case allows us to relax assumption iii). The fourth
particle starts with zero speed at the apocentre of a purely radial
orbit. All four are stripped from the satellite in less than an orbital
time (2π/�), the duration of the numerical experiment.

We then progressively lower the value of α until the particles
start so close to S that they are all able to remain within the satellite.
Both α = −2.4 (the value obtained from equation A7) and α = −3
(the classical Jacobi limit) correspond to initial conditions for P in
between the smaller and the larger dashed circle in Fig. A1. The α

below which stripping is prevented depends on the initial condition
for v, but the dependence is not strong. Hence, assumptions (iii) and
(iv) are likely to have a minor effect on the value of rt. Assuming
α = −2.4 overestimates rt even in a pure DM configuration. So does
α = −3, but only slightly. The results of a numerical experiment
in which P is positioned on the inner dashed circle of Fig. A1
are qualitatively similar to those shown in the right-hand panel of
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Figure A3. Orbits of four test particles during one revolution of S around O. All four test particles start at the position P of First Lagrangian Point computed
with equation (A13), as opposed to the true First Lagrangian Point L1, but their initial conditions for v are not the same: a particle corotates with �, another
counter rotates with respect to �, a third one rotates on a plane orthogonal to the orbital plane of the two-body system and the fourth one starts on a purely
radial orbit. The left- and the right-hand panels correspond to α = −2.4, that is, α(Rvir) for c = 8 and α = −3, respectively. In the first case, all the particles on
circular orbits are stripped from the satellite. Only the particle on a radial orbit (green curve) is retained. In the second case, only the counter-rotating particle
(red curve) escapes from the satellite. All others are retained. The units on the x- and the y-axes are host-halo virial radii.

Fig. A3. The only difference is that the red curve makes many more
orbits around S before it escapes from the satellite.

The numerical test in Fig. A3 illustrates the limitations of our
analytic approach because it shows equation (A13) with α = −2.4
from equation (A7) overestimates the real tidal radius (particles
on circular orbits tend to be stripped even if they are at r < rt).
However, the right-hand panel of Fig. A3 shows that rt is approxi-
mately recovered for a higher value of |α| corresponding to α = −3.
In principle, this value could depend on the distance between the
satellite and the central, but Fig. A2 shows that, for r/Rvir > 0.1,
α should be fairly independent of radius, especially in presence of
baryons (red curve).

APPENDIX B: O RBITAL TIMES

Orbital times cannot simply be computed with energy conservation,
because, as the halo increases in mass, its gravitational potential
is not stationary. We have integrated the equation of motion r̈ =
−	′(r) r/r in a non-stationary NFW potential

	(r, t) = −V 2
vir

ln(1 + c r/rvir)

f (c) r/rvir
, (B1)

where f(c) = ln (1 + c) − c/(1 + c) (Cole & Lacey 1996). We
computed orbits by assuming that the potential varies in time as
the median evolution of cosmological haloes. We ran the potential
well growth historie code of van den Bosch et al. (2014) with the
same cosmological parameters as used in our cosmological N-body
simulation, saving the median halo mass and concentration as a
function of redshift and lookback time. Our method is similar to that
of van den Bosch et al. (2016). We considered a variety of initial
apocentres, and both radial orbits, and orbits with initial apocentric
velocity equal to 0.45 times the circular velocity at the apocentric
radius. We measured the time from halo entry (first passage inside
the evolving halo virial radius) to pericentre, to virial radius on the
way out, and to the second apocentre. We fit the initial redshifts to
reach these 3 radii at z = 0.

Fig. B1 displays the lookback times and corresponding redshifts
for a galaxy to reach the pericentre (blue), virial radius on the way

Figure B1. Lookback times and corresponding redshifts for galaxies to be
at different locations at z = 0: pericentre (blue), virial radius on the way
outwards (black) and apocentre (red), for radial orbits (dashed) and orbits
of typical elongations (solid), starting the clock at cluster entry (thick) or at
pericentre (thin).

out (black) and apocentre (red) at z = 0. While the dashed lines
indicate the orbital times for radial orbits, the solid lines represent
orbits of typical apocentre/pericentre ratios of 5 (Ghigna et al. 1998),
where we used an apocentric (tangential) velocity of 0.45 times the
circular velocity at that radius. The z = 0 halo mass is 1014 M�, but
the results vary fairly little with the halo mass (except that the virial
radius is harder to reach on the way out for more massive haloes).
The times to reach the pericentre and the virial radius decrease
for increasing initial apocentric radius (in units of the initial Rvir),
because galaxies starting at large radii travel faster through the halo.
On the other hand, the time to reach the second apocentre increases
for increasing first apocentric radius (in units of the initial virial
radius), because there is more distance to travel outwards (e.g. from
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first pericentre to second apocentre), unless the initial apocentre is
small, where the speed effect overcomes the distance effect.

A P P E N D I X C : FI T T I N G PA R A M E T E R S FO R
T H E SM F A N D T H E SM H M R E L AT I O N

In this appendix, we explain how we use the data points of Yang
et al. (2012) for the local Universe and Muzzin et al. (2013) at
z > 0.2 to construct the SMF n∗(m∗, z) that we use for AM.

We fit the data points in each redshift bin (centred on zi) with a
double-power-law function of the form:

ni(m∗) = 1

Ni

[(
m∗
mi

)αi

+
(

m∗
mi

)βi
]−1

, (C1)

where Ni, mi, αi and β i are free parameters.
After having determined Ni, mi, αi and β i for each zi, we fit

the evolution of N, m0
∗, α and β with z by assuming the linear

dependencies:

log N (z) = n1z + n0

log m0
∗(z) = x1z + x0

α(z) = α1z + α0

β(z) = β1z + β0 (C2)

Table C1 gives the best-fitting values for the fitting parameters n0,
x0, α0, β0 and n1, x1, α1, β1. The quality of the fit is shown on

Table C1. Best-fitting parameters characterizing the SMF
at all redshift smaller than 2.5. The SMF is fitted at a given
z by equation (C1) with four parameters which are assumed
to be linear function of z (see equation C2).

n0 x0 α0 β0

2.39 11.12 0.228 3.07

n1 x1 α1 β1

0.501 4.6 × 10−3 0.133 0.367

Figure C1. Comparison between the fitted stellar mass (m∗)–halo mass
(Mmax) relation (dotted lines) and the original relation used in this work
(solid line) at z = 0, 1 and 2. The only purpose of this fitting is to facilitate
the comparison with future AM work. The best-fitting parameters are given
in Table C2.

Table C2. Best-fitting parameters characterizing the SMHM relation at
all redshift smaller than 2.5. The SMHM relation is fitted at a given z by
equation (C3) with four parameters which are assumed to be linear function
of z/(1 + z) (see equation C4).

m0 y0 γ 0 η0

10.57 11.69 3.04 0.417

m1 y1 γ 1 η1

−0.085 0.685 −1.16 0.607

Fig. 5. The parameters in Table C1 specify the SMF that we use for
the AM.

To ease the comparison with future work, we apply the same
fitting procedure to the SMHM relation. Following Moster et al.
(2013), we obtain a good fit to the relation from AM (Fig. C1) for
a double-power-law function of the form

m∗(mh, z) = M(z)

[(
mh

m0
h(z)

)−γ (z)

+
(

mh

m0
h(z)

)−η(z)
]−1

, (C3)

where:

log M(z) = m1
z

1 + z
+ m0,

log m0
h(z) = y1

z

1 + z
+ y0,

γ (z) = γ1
z

1 + z
+ γ0,

η(z) = η1
z

1 + z
+ η0. (C4)

Table C2 gives the best-fitting value for the fit parameters m0, y0,
γ 0, η0 and m1, y1, γ 1, η1. We stress that the fitting formula in
equation (C3) and the parameters in Table C2 are used nowhere in
our analysis. They have been inserted purely to ease comparison
with our work.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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