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ABSTRACT
Principal component analysis (PCA) is applied to a variety of blazars to examine X-ray
spectral variability. Data from nine different objects are analysed in two ways: long-term,
which examines variability trends across years or decades, and short-term, which looks at
variability within a single observation. The results are then compared to simulated spectra
in order to identify the physical components that they correspond to. It is found that long-
term variability for all objects is dominated by changes in a single power-law component.
The primary component is responsible for more than 84 per cent of the variability in every
object, while the second component is responsible for at least 3 per cent. Small differences in
the shapes of these components can be used to predict qualities such as the degree to which
spectral parameters are varying relative to one another, and correlations between spectral
hardness and flux. Short-term variability is less clear-cut, with no obvious physical analogue
for some of the PCA results. We discuss the simulation process, and specifically remark on
the consequences of the breakdown of the linearity assumption of PCA and how it manifests
in the real data. We conclude that PCA is a useful tool for analysing variability, but only if its
underlying assumptions and limitations are understood.

Key words: galaxies: active – BL Lacertae objects: general – BL Lacertae objects: individual –
galaxies: nuclei – X-rays: galaxies.

1 IN T RO D U C T I O N

Principal component analysis (PCA) is a model-independent tech-
nique that performs a change of basis on a data set, converting it into
a series of orthogonal eigenvectors that best describe the variability
within that data. These vectors are known as the principal compo-
nents. The number of principal components is the minimum of n − 1
and v, where n is the number of observations in the original data set
and v is the number of variables in each observation. This means that
most of principal components will be unnecessary. The components
are therefore ranked in order of their contribution to the total vari-
ability, which allows us to tell which ones are significant and which
are not. The main benefit of this technique is that it can reduce redun-
dancies within the data by expressing a potentially messy data set
in terms of only a few fundamental trends in a model-independent
way. Given a large enough data set, a series of X-ray spectra in our
case, the physical parameters underlying the data can be reproduced
with a high degree of accuracy. This can reveal processes going on
deep within an active galactic nucleus (AGN) even when spectral
fitting cannot distinguish between two or more models, or provide
a closer look at an object’s variability independent of other factors
(e.g. Kendall 1975).
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PCA is used in many academic fields, and has recently seen sig-
nificant application to X-ray astronomy. Francis & Wills (1999)
provide an introduction to PCA of AGNs, while Grupe et al.
(1999) and Grupe (2004) demonstrate some early uses of PCA
applied to ROSAT data. More recently, PCA has been applied to
XMM–Newton data to examine X-ray spectral variability in de-
tail (for example, Vaughan & Fabian 2004; Miller et al. 2007;
Turner et al. 2007). In addition to AGNs, PCA has been used to
study variability in objects such as X-ray binaries (Malzac et al.
2006; Koljonen et al. 2013). Today, with almost two decades of
high-quality XMM–Newton data available, PCA can be used to re-
veal variability trends within AGNs over long time-scales, as in
Parker et al. (2015)

Parker et al. (2015) applied PCA to a wide range of AGN,
mostly radio-quiet, looking at long-term variability with XMM–
Newton data. They found that most objects displayed variabil-
ity in a power-law continuum, but prominent variations in re-
flection components (in MCG-6-30-15, NGC 4051, 1H0707-
495, NGC 3516, and Mrk 766) and partial covering absorp-
tion (in NGC 4395, NGC 1365, and NGC 4151) were also
common. Their AGNs displayed between three and five prin-
cipal components, with evidence for many qualitatively differ-
ent variability mechanisms. Some other sources can show long-
term changes associated with emission from the distant torus
(e.g. Gallo et al. 2015).
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2000 D. Gallant, L. C. Gallo and M. L. Parker

This work applies a similar analysis to a smaller sample of ob-
jects, specifically blazars, across both long and short time-scales.
Blazars were chosen due to their simple spectra and rapid variabil-
ity, as well as the lack of PCA results for many well-known blazars.
Blazar spectra are dominated by the effects of the jet, which follows
a synchrotron self-Compton shape (Mastichiadis & Kirk 1997), re-
sulting in X-ray spectra that conform closely to a single power-law
model. By applying PCA to objects that are already known to be
spectrally simple, we can better understand the intricacies of this
technique and examine what drives blazar variability.

In Section 2, we describe our sample and data analysis. Section 3
presents the long-term, or multi-epoch, PCA results. These PCAs
use all available observations of an object to describe variability
over the span of years. Section 4 presents the short-term, or single-
observation, results. These PCAs take a longer observation of an
object and divide it into several spectra in order to observe variability
over the span of hours. In Section 5, we discuss PCAs applied
to simulated data in order to compare models to the real results.
Lastly, Sections 6 and 7 summarize our results and present the
conclusions.

2 SAMPLE AND DATA PROCESSING

Objects were selected from among those in Costamante & Ghis-
ellini (2002) with publicly available XMM–Newton data (Jansen
et al. 2001), as well as the well-known object 3C 273. Observa-
tion dates ranged from 2000 May to 2017 May. Only the high-
est signal-to-noise EPIC-pn instrument (Struder et al. 2001) was
used.

Observations where the target was significantly off-axis, meaning
the object was not near the centre of the field of view, were excluded.
The data were collected in a variety of window modes and optical
filters. Data in timing mode were not used, due to the uncertain
calibration of this mode. For each observation, the observation data
files (ODFs) were downloaded from the XMM–Newton Science
Archives and processed to create spectra using the Science Analysis
System (SAS) version 15.0.0

EPCHAIN was used to generate event lists from the ODFs, and the
spectra were made using a source region with a radius of 35 arcsec.
Background subtraction was performed using a background region
of radius 50 arcsec located near the source.

Each observation was checked for pile-up, and some showed
significant amounts of it. This was corrected for by extracting the
source spectrum from an annulus with the same outer radius, and an
inner radius of 8 arcsec, which excludes the most highly piled-up
light from the centre of the object. To ensure that this corrective
technique did not influence the results, PCAs of piled-up objects
were performed both with and without the piled-up observations.
Other than showing more noise due to the lower sample size, this
caused no major difference in the shapes or significance of the
principal components.

Some observations displayed high levels of background flaring at
certain times. These observations were filtered through a good time
interval (GTI) that excluded the times when the flaring occurred.
Response matrices and ancillary response files were created using
RMFGEN and ARFGEN, respectively.

Fig. 1 presents representative spectra for each object, unfolded
against a power law with � = 0, where � is the photon index
of the power law. The complete list of observations is shown in
Table 1.

3 LO N G - T E R M ( M U LT I - E P O C H )
VA RI ABI LI TY

This section presents the results of PCA performed on a single
object across many different observations. For objects with more
than four separate observations (of any duration), this PCA was
calculated in order to examine long-term variability. Seven objects
from our sample met this criteria: 3C 273, H1426+428, Mrk 421,
Mrk 501, OJ 287, PG1553+113, and PKS 2155−304.

These observations span a minimum of 4 yr (for H1426+428) to a
maximum of 17 yr (for Mrk 421). The observations were not evenly
spread out in time, with some sources being observed much more
frequently than others. Each observation for a given object corre-
sponded to a single spectrum used in the PCA. This is a departure
from the method of Parker et al. (2015), which divided each ob-
servation into 10 ks parts. Their method captures both elements of
long-term and short-term variability within the same PCA, whereas
this work examines them separately by leaving the observations
whole for the long-term analysis, and splitting them into segments
for the short-term analysis in Section 4. 3C 273 was the most sam-
pled object, with 27 observations over 15 yr. Fig. 2 shows the
spectral variability of this object by comparing all 27 observations
to an average power law fit.

Fig. 3 shows the results of the long-term PCA analysis for each
object. The first three principal components are plotted in decreasing
order of the fraction of the total variability that they are responsi-
ble for, expressed as a percentage in the plot. In every case, the
remaining components showed no discernible shape and were not
significant compared to the first three, and so are not plotted.

The results were very similar for every object, independent of
the number or duration of observations, the time between observa-
tions, or the brightness of the object. In every case, the first prin-
cipal component is uniformly above zero, meaning that all energy
bands varied in a correlated manner. This shape is consistent with
changes in the overall normalization of the spectrum. Changing the
normalization of a given model causes the flux at all energies to
rise or fall by the same amount, which explains the flat shape of
this component. This interpretation of the first principal component
is reinforced by simulations of power law variability presented in
Parker et al. (2015) and in Section 5 of this work.

The second component in each object shows an anticorrelation
between flux changes in the low and high energy bands. This is
consistent with a pivoting of the spectrum brought about by changes
in the photon index of a power-law model.

The third component has an arch-like shape, meaning energy
changes in the low and high energies were correlated with each other
and anticorrelated with changes in the energy band between them.
This shape has no obvious physical explanation, and is probably
a mathematical artefact of the PCA process. This is investigated
further in Section 5.

These three components are consistent with a power-law model
varying in both normalization and �. The primary component is
always due to changes in normalization for our sample. This ac-
counts for most of the variability (>84 per cent) for our objects.
The second component accounts for much less of the variability
(3–15 per cent) and is attributed to pivoting of the power law. For
our sample of blazars, the long-term X-ray variability over years
appears to be dominated by changes in the brightness of the source,
and less so by changes in the shape of the spectrum.

These power-law components are to be expected of blazars,
whose spectra are dominated by the effects of the jet, a highly
variable feature with a prominent power-law shape. Note that this
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Principal component analysis of blazars 2001

Figure 1. Representative spectra for each object, unfolded against a power law with � = 0.

does not guarantee that a lone power law is sufficient to model the
spectrum of any of these objects, only that the power law compo-
nent is responsible for most of the variability. Due to the dominance
of power law shapes in blazar spectra, and the close resemblance
of these principal components to those produced by variations of a
power law model, it is assumed that the vast majority of variability
in blazars in the long term can be explained by changes in a single
power-law component. This does not mean that a more complicated
model could not also work, but merely that a single power law is the
simplest model that adequately explains the variability. Although
these long-term PCAs are not identical, many of the differences
between them can be explained without introducing a more com-
plicated model by changing the way in which � and normalization
are assumed to be varying (see Section 5).

Additional comments on each individual PCA are presented in
Appendix A.

4 SHORT-TERM (SI NGLE-OBSERVATI ON)
VARI ABI LI TY

This analysis was performed on observations with at least 40 ks of
good time. These observations were split into 10 ks parts, which
comprised the input spectra for the PCA. The results show X-ray
variability over time-scales as short as a few hours. In many cases,
only one component was significant, whereas there were always
three significant components in the long-term analysis.

There were several observations that showed no discernible shape
in any component, indicating that the object was either constant at
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Table 1. Complete list of observations.

Object Obs ID Revolution Start time Duration GTI
0.3–10 keV

count rate (s−1)
Pile-up

correction?
Window

mode

3C 273 0112770101 370 2001-12-16 15:35:23 6399 3507 64.3 N Small
0112770201 373 2001-12-22 00: 19:58 6399 3471 62.23 N Small
0112770501 655 2003-07-08 10:33:51 8553 5631 62.67 N Small
0112770601 472 2002-07-07 14:25:05 5996 3504 47.91 N Small
0112770701 563 2003-01-05 17:24:04 5630 3503 58.32 N Small
0112770801 554 2002-12-17 22:24:56 5624 3503 69.37 N Small
0112771001 645 2003-06-18 01:07:13 5950 3861 70.72 N Small
0112771101 735 2003-12-14 19:23:21 12849 5928 47.87 N Small
0126700301 94 2000-06-13 23:39:53 73556 45260 42.02 N Small
0126700601 95 2000-06-15 12:58:18 31032 20820 40.46 N Small
0126700701 95 2000-06-15 23:32:02 36346 21030 39.29 N Small
0126700801 96 2000-06-17 23:24:14 73561 42510 45.52 N Small
0136550101 277 2001-06-13 07:14:26 89765 62000 53.65 N Small
0136550501 563 2003-01-05 14:17:24 8951 5965 66.58 N Small
0136550801 835 2004-06-30 13:02:25 62913 13910 40.40 N Small
0136551001 1023 2005-07-10 13:51:19 28111 19330 44.24 N Small
0159960101 655 2003-07-07 17:40:27 58557 40600 63.48 N Small
0414190101 1299 2007-01-12 07:13:55 78566 53710 49.47 N Small
0414190301 1381 2007-06-25 05:08:14 32511 22440 40.83 N Small
0414190401 1465 2007-12-08 20:11:25 35875 24820 81.17 N Small
0414190501 1649 2008-12-09 20:12:31 41015 28420 57.01 N Small
0414190601 1837 2009-12-20 03:42:44 31912 22030 62.46 N Small
0414190701 2015 2010-12-10 01:37:45 36414 25210 46.88 N Small
0414190801 2199 2011-12-12 17:44:21 43915 30380 42.22 N Small
0414191001 2308 2012-07-16 11:59:23 38918 17760 36.70 N Small
0414191101 2856 2015-07-13 21:03:55 72400 49680 31.73 N Small
0414191201 3031 2016-06-26 20:22:08 67200 46030 55.51 N Small

3C 279 0651610101 2035 2011-01-18 16:49:52 126346 86960 49.48 N Small
H1426+428 0111850201 278 2001-06-16 00:49:21 68574 45770 16.83 N Small

0165770101 852 2004-08-04 00:59:26 67866 45860 20.13 N Small
0165770201 853 2004-08-06 00:32:43 68920 47980 20.06 N Small
0212090201 939 2005-01-24 14:44:40 30417 20960 25.13 N Small
0310190101 1012 2005-06-19 07:39:40 47034 32680 36.97 N Small
0310190201 1015 2005-06-25 06:03:28 49505 31140 28.79 N Small
0310190501 1035 2005-08-04 04:52:10 47542 32410 28.47 N Small

Mrk 421 0099280101 84 2000-05-25 03:17:11 66497 21160 216.8 N Small
0099280201 165 2000-11-01 23:47:51 40115 24240 112.5 Y Small
0099280301 171 2000-11-13 22:00:29 49811 25640 279.7 N Small
0136540101 259 2001-05-08 09:09:35 39007 25730 144.5 Y Small
0136540301 532 2002-11-04 00:44:59 23913 13830 23.40 N Full-frame
0136540401 532 2002-11-04 07:41:43 23917 14180 43.51 Y Full-frame
0136540701 537 2002-11-14 00:07:35 71520 37970 97.45 Y Large
0153950601 440 2002-05-04 16:09:17 39727 34330 25.75 Y Large
0153950701 440 2002-05-04 03:51:30 19982 15940 16.55 Y Large
0158970101 637 2003-06-01 11:33:26 47538 24920 103.3 Y Small
0162960101 733 2003-12-10 21:23:14 50755 16470 119.8 Y Small
0411081301 1358 2007-05-10 03:37:41 18913 13960 37.50 Y Full-frame
0411083201 1820 2009-11-16 17:37:59 58070 7526 112.3 Y Large
0560980101 1640 2008-11-22 14:07:29 71318 8479 51.67 Y Large
0560983301 1732 2009-05-25 03:37:32 64173 8468 63.64 Y Large
0656380101 1904 2010-05-03 07:19:29 51169 6619 91.76 Y Large
0656380801 2001 2010-11-12 20:51:05 42669 7628 66.98 Y Large
0658800101 2094 2011-05-19 10:02:48 35074 8941 38.94 Y Large
0658801301 2837 2015-06-05 23:48:35 29000 19270 105.6 Y Small
0658801801 2915 2015-11-08 13:42:37 33600 21200 81.51 Y Small
0658802301 3005 2016-05-06 03:38:20 29400 19540 72.91 Y Small
0791780101 3096 2016-11-03 13:15:45 17500 11210 61.34 N Small
0791780601 3187 2017-05-04 04:01:33 12500 7708 153.7 N Small

Mrk 501 0113060401 475 2002-07-14 17:02:39 15769 2945 0.1304 N Small
0652570101 1969 2010-09-08 23:50:27 44912 31160 26.47 N Small
0652570201 1970 2010-09-10 23:42:24 44919 31160 27.39 N Small
0652570301 2047 2011-02-11 14:43:25 40914 28350 28.86 N Small
0652570401 2049 2011-02-15 14:18:29 40715 28220 37.72 N Small
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Table 1 – continued

Object Obs ID Revolution Start time Duration GTI
0.3–10 keV

count rate (s−1)
Pile-up

correction?
Window

mode

OJ 287 0300480201 978 2005-04-12 13:13:21 38913 9918 1.388 N Large
0300480301 1081 2005-11-03 21:16:31 48059 28800 1.073 N Large
0401060201 1271 2006-11-17 00:33:10 47211 41360 0.8658 N Large
0502630201 1533 2008-04-22 17:13:34 55815 48100 0.8675 N Large
0679380701 2170 2011-10-15 08:18:19 23917 20150 2.938 N Large
0761500201 2822 2015-05-07 05:23:25 129200 94890 1.871 N Large

PG
1553+113

0656990101 1952 2010-08-06 12:38:17 21914 15050 15.19 N Small

0727780101 2495 2013-07-24 14:57:49 34500 23120 28.98 N Small
0727780201 2680 2014-07-28 04:00:06 36300 24380 17.25 N Small
0727780301 2882 2015-09-04 18:23:24 29999 19960 10.24 N Small
0727780401 3057 2016-08-17 21:56:06 30000 19960 12.33 N Small
0761100101 2864 2015-07-29 19:57:33 138400 119700 5.569 Y Full-frame
0761100201 2866 2015-08-02 19:40:00 138900 119000 4.575 Y Full-frame
0761100301 2867 2015-08-04 19:32:00 138900 19960 10.24 N Small
0761100401 2869 2015-08-08 19:12:07 138900 117700 4.348 Y Full-frame
0761100701 2873 2015-08-30 18:52:06 90000 62010 8.622 N Small
0761101001 2880 2015-08-30 17:52:29 139000 117200 5.798 Y Full-frame

PKS
2155−304

0080940101 174 2000-11-19 18:38:20 60511 40190 16.75 Y Small

0080940301 174 2000-11-20 12:53:01 61411 40810 58.16 N Small
0124930201 87 2000-05-31 00:30:51 72558 41580 77.13 N Small
0124930301 362 2001-11-30 02:36:09 92617 31260 79.04 Y Small
0124930501 450 2002-05-24 09:31:02 104868 22300 55.68 N Small
0124930601 545 2002-11-29 23:27:28 114675 39790 29.71 N Small
0158960101 724 2003-11-23 00:46:22 27159 18670 27.55 N Small
0158960901 908 2004-11-22 21:35:30 28919 19960 30.90 N Small
0158961001 908 2004-11-23 19:45:55 40419 27960 40.12 N Small
0158961101 993 2005-05-12 12:51:06 28910 19250 69.63 N Small
0158961301 1095 2005-11-30 20:34:03 60415 41900 76.16 N Small
0411780101 1266 2006-11-07 00:22:47 101012 20870 42.28 N Small
0411780201 1349 2007-04-22 04:07:23 67911 43360 74.47 N Small
0411780301 1543 2008-05-12 15:02:34 61216 42600 89.11 N Small
0411780401 1734 2009-05-28 08:08:42 64820 45100 62.32 N Small
0411780501 1902 2010-04-29 20:26:00 74298 47730 31.87 N Small
0411780601 2084 2011-04-26 13:50:40 63818 44400 49.04 N Small
0411780701 2268 2012-04-28 00:48:26 68735 38660 12.56 N Small
0411782101 2449 2013-04-23 22:31:38 76015 48830 27.62 N Small
0727770901 2633 2014-04-25 03:14:56 65000 44500 29.68 N Small

S5
0716+714

0502271401 1427 2007-09-24 16:23:32 73917 50120 4.269 N Small

that time, or varying on time-scales longer than the observation
itself. These are not plotted.

The remaining short-term PCAs can be divided into two groups:
those with one or more components similar to those seen in the
long-term analysis, presented in Fig. 4, and those showing shapes
unique to the short-term analysis, shown in Fig. 5.

The first category includes PCAs that display normalization (flat-
ter, uniformly above zero) and/or � (pivoting) components simi-
lar to those seen in the long term (Fig. 3). There are still some
differences between the two time-scales, however. Some obser-
vations show only one noticeable component, and not both, such
as 3C 273 observation 0414190101, which lacks a clear pivot-
ing component. Others have the pivoting component as more sig-
nificant than the normalization component, with S50716+714 be-
ing the best example. In every case, the third component seen in
the long-term results does not appear with any significance in the
short-term. This is most likely due to lower signal-to-noise in the
short-term.

Overall, these results are indicative of the same sorts of changes
seen over long time-scales, and the long-term results could be seen
as the summation of many years worth of these short-term changes.

The second group exhibits at least one component that differs
from the straightforward normalization and pivoting components
seen elsewhere. For example, the first component of 3C 273 obser-
vation 0126700301 and the second component of Mrk 421 obser-
vation 0136540701 display a broken power-law shape. They have
no variability below some break point (around 2 keV) and then
increasing variability with increasing energy after the break. Some
of the components in this group show an additional upward curve,
displaying an almost exponential shape after the break. The first
components of H1426+428 observation 011850201 and OJ 287 ob-
servation 0761500201 are good examples of this shape. The broken
power-law shapes seen in Fig. 5, but not in the long-term analysis,
would seem to indicate an intrinsic difference between long-term
and short-term flares in blazars. Not being seen in the long-term
PCAs means they are insignificant over long time-scales. It is un-
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2004 D. Gallant, L. C. Gallo and M. L. Parker

Figure 2. Ratio of 27 spectra of 3C 273 spanning from 2001 to 2016 to
an average power-law fit. The fit was created by fitting a single power-law
model to every spectrum at once. This provides a visual example of long-
term variability. This source is highly variable, both in the shape of the
spectrum and the total flux. This is typical of blazars.

clear what, if anything, these components correspond to physically,
and simulations have been unable to replicate the upward-curving
shape. To ensure that these shapes were not influenced by back-
ground effects, some short-term PCAs were performed again with
background subtraction turned off. This did not significantly effect
the results beyond introducing more noise, indicating that these
shapes are part of the source spectrum.

We also note that some objects fall in both groups. For example,
3C 273 sometimes exhibits rapid variability consistent with the
long-term (yearly) variations, while also having epochs where the
PCA spectral shape is unique.

Additional comments on each observation’s PCA are presented
in Appendix B.

5 MO D E L S

The model-independent nature of PCA is useful, but it has its draw-
backs. One weakness is that it is often unclear what the resultant
principal components correspond to physically. Simulations can
help with this. In this section, PCA is performed on a set of fake
spectra generated according to a given model, with each spectrum
varying the model parameters randomly within a certain range. Per-
forming PCA on a known model allows for comparisons to the real
data to be made and can identify how shapes are associated with
physical parameters. As one would expect, simulations of a power
law varying in both normalization and � can closely reproduce the
results of the long-term PCAs presented in Section 3 (Parker et al.
2015). Furthermore, many of the differences between the various
PCAs can be reproduced by changing the ways in which the model
parameters vary in relation to each other.

Fig. 6 shows the results of PCAs performed on three sets of 100
simulated spectra conforming to a power law model varying in both
normalization and �. In the first PCA, � varied randomly by up to
10 per cent, while normalization varied randomly by up to a factor

of four. These amounts were determined through trial and error
for the purposes of reproducing the results as closely as possible
while remaining within reasonable ranges for real objects. As seen
in the long-term PCAs, there are three significant components: a
flat component representing changes in normalization, a pivoting
component representing the changing slope of the power law, and
an arch-shaped third component. These are the archetypal power-
law results that explain most of the shape in the long-term PCAs.

The second simulation puts more emphasis on �, allowing it to
vary by up to 25 per cent. This induces an upward slope on the first
component, which is seen in several of our objects (H1426+428,
Mrk 421, Mrk 501, and PKS 2155−304). If � is allowed to vary by
even larger amounts, the slope induced in the first principal com-
ponent becomes steeper. The final simulation in Fig. 6 varied the
parameters as in the first simulation, except they now varied in a cor-
related manner, rather than independently. Changes were correlated
such that normalization increased or decreased as � increased or
decreased, resulting in a softening of the spectra as their brightness
increased. This induces a negative slope in the first component, as
well as weakening the second component slightly at high energies,
and suppressing the third component entirely. All three of these
effects are seen to some degree in OJ 287.

While simulations can do a good job of reproducing PCA shapes,
each component’s fractional contribution to the total variability is
less easy to simulate. In simulations of a varying power law, the first
component generally accounts for >90 per cent of the variability,
whereas the third component is responsible for only a tiny fraction,
even compared to the results from real data. Because of the presence
of noise in the real data, and the fact that the noise contributes
significantly to the total variability, it is difficult to reproduce the
correct share of the total variability for each component.

Notably, the third principal component still appears in simulated
PCAs, even though we can be absolutely certain that the model
can be described by only two components. This indicates that the
third principal component does not correspond to any sort of model
parameter, but rather is created as a by product of the PCA process.
One of the assumptions made during PCA is linearity, meaning that
the new basis vectors are a linear combination of the old ones, and
that any correlations among the original data set are linear. However,
this is not entirely true for most spectra, even those conforming to
a simple power-law model. A power law changing its slope, for
example, cannot be described linearly. A linear approximation of a
power law will always undershoot the model at both low and high
energies, and overshoot it in the middle, no matter the slope of the
power law. The PCA process sees this as a problem, and fixes it by
creating a new component with just the right shape to make up for
the places that the linear approximation fails.

Since the second (pivoting) component is the one responsible
for describing the changing shape of the power law, this third
component should be strongest whenever the second component
is strongest (in either direction). Strongest, in this case, refers to the
normalizations of the principal components. If this explanation is
true, a plot of the second component against the third should display
a V-shape.

Fig. 7 shows the normalizations of the second and third com-
ponents plotted against each other for PCA performed on 1000
simulated power law spectra that varied as in the second simula-
tion in Fig. 6. The results show that the third component grows
in strength as the second component increases in either direction,
as expected. This is how the PCA code accounts for its inability
to describe a changing power law using a linear function. It also
explains why the third simulation in Fig. 6 shows a suppressed third
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Principal component analysis of blazars 2005

Figure 3. Long-term PCAs for each of the seven objects that had at least four separate observations at different epochs. All show similar results. The first
component is uniformly above zero and mostly flat, indicating changes in normalization. The second component shows an anticorrelation between low and
high energies, consistent with changes in the photon index of a power law. The third component is shaped like an arch, and has no obvious physical explanation.
Instead, it is likely a mathematical artefact of the PCA process caused by a breakdown of the linearity assumption (see Section 5). Components beyond the
third were not significant in any object. These results indicate that long-term variability in blazars is dominated by changes in a power law model, varying both
in shape and normalization.

component: by varying � and normalization together, we have in-
troduced linear correlation in the data, therefore reducing the need
for a corrective third component. Even though this third component
is not physical, it does appear in real data and thus can still be used
as an indicator of a changing power law. The same cannot be said
for the short-term PCAs, however. None of the short-term PCAs
had a third significant component, due to reduced signal-to-noise.
Non-linearities within the data would certainly have some effect in
the short term, but that effect is too small to detect in our sample.

6 D ISCUSSION

The PCA of blazar X-ray variability over years indicates the varia-
tion arising from changes in a power-law component. The primary
principal component for all sources in our sample indicated that
changes in brightness (normalization) are the dominant factor, re-
sponsible for >84 per cent of the variability in each source. The
secondary effect (component two) was the changes in power law
shape �, which accounted for up to 15 per cent of the variability.
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2006 D. Gallant, L. C. Gallo and M. L. Parker

Figure 4. Short-term PCAs that display components similar to those seen in the long-term analysis, corresponding to changes in the normalization and photon
index of a power law. The results are not as pronounced as they are in the long-term case, which is likely a result of lower signal-to-noise.

All of the sources in our sample showed a significant third com-
ponent in the long term that is not obviously associated with a
physical spectral parameter. In Section 5 we demonstrate that this
arching principal component is not a physical effect at all, but rather
a mathematical artefact of the PCA process caused by a lack of lin-
earity within the data. This mathematical factor becomes much less
prominent if the changes in normalization and photon index are
correlated.

Therefore, taken at face value, the long-term variability in our
sample of blazars can be described by random variations of the
power-law brightness and photon index, or perhaps correlated vari-
ations between the parameters with some time delay.

Although the results for each object were similar, the differences
between the various long-term PCAs can tell us a surprising amount.
In particular, the slope of the first component is stronger in objects
where � varies across a wider range. This slope is angled away
from zero when � and normalization vary independently of each
other, and towards zero when they vary together. This can be used
to distinguish between emission mechanisms in blazars. Blazars are
known to emit in the X-ray through either synchrotron emission, the
inverse Compton effect, or some combination of both according to
their luminosity (Donato 2001), and correlations between � and flux
are indicative of inverse Compton emission (Fatima & Vierdayanti
2017). A decrease in the first principal component with energy can
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Principal component analysis of blazars 2007

Figure 5. Short-term PCAs with shapes unlike those seen in the long-term analysis.

therefore be used as an indicator of Comptonization. OJ 287 is a
good example of this. Its long-term PCA (Fig. 3) can be explained
by correlated variations in � and normalization (compare to the
third panel in Fig. 6, and see the discussion of it in Section 5).
Fatima (2017) remarks that OJ 287 is known to emit via the inverse
Compton process.

The degree to which a power-law shape dominates our results
becomes obvious when compared to similar analyses of radio-quiet
objects, such as many of the objects in Parker et al. (2015). Radio-
quiet objects display much more complicated components that can
include prominent features corresponding to emission lines, absorp-
tion edges, blackbodies, and so on. While this makes PCA a useful
tool for identifying model components in radio-quiet objects, it also

means that it is harder to identify what each principal component
corresponds to. In particular, even with just the two parameters of
a power-law model, a third, non-physical component is required to
complete the PCA. In more complex objects with competing spec-
tral models, it may be harder to pick out the useful results from the
mathematical artefacts caused by the non-linearity of the data set.

The short-term PCAs are more complex and interesting when
compared to the long-term results. Long-term variability is simply
the sum of many smaller variations, and yet the same does not
always seem to be true of the PCAs. Most observations show only a
single principal component, perhaps due to limited signal-to-noise.

Many observations show a broken power-law shape, often with
an upward curve at higher energies, which is not seen in any of the
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2008 D. Gallant, L. C. Gallo and M. L. Parker

Figure 6. Results of PCA performed on 100 simulated power law spectra varying in normalization and �. Left: � varied randomly by up to 10 per cent,
normalization varied by up to a factor of four. Middle: � varied by up to 25 per cent, while normalization still varied by up to a factor of four. Right: Same as
in the left-hand panel, except the variation in both parameters were correlated; normalization increased or decreased as � increased or decreased, leading to a
softening of the spectra with brightness.

Figure 7. Normalizations of second and third principal components plot-
ted against each other for PCA of 1000 simulated power-law spectra. The
third component is strongest wherever the second component is strong in
either direction. In other words, wherever a linear approximation would
differ significantly from a power law, the third component accounts for the
difference.

long-term PCAs. This would seem to suggest a variability mecha-
nism that only manifests over short time-scales, and is washed out
by larger changes in the long term, but it is unclear what this sort of
mechanism could be. A future work could investigate this further
using simulations with more complex models that account for fac-
tors such as shock propagations within the jet, or the influence of
the AGN itself on the spectrum beyond just the jet.

Some observations showed no significant components at all, a
sign of no rapid variability. This indicates that even highly variable
objects such as blazars can show moments of steadiness, or display
variability mechanisms that operate on scales greater than hours.

7 C O N C L U S I O N S

PCA was used to analyse the X-ray spectra of nine blazars in order
to identify variability trends across several time-scales. Over long
time-scales, variability was found to be consistent with changes in
a power-law model, as should be expected in a blazar. In addition to
principal components corresponding to change in normalization and

�, a third component was seen in all objects. This component has no
physical explanation, and instead was found to be a relic of the PCA
process created by non-linearities within the data set. Even though
each PCA shares the same broad power-law shape, differences in the
shapes of these components can be used to predict various qualities,
such as the degree to which � is varying and correlations between
spectral hardness and flux.

Over shorter time-scales, the results were more complex. Some
observations contained components similar to those seen in the
long-term PCAs, which over time would add up to produce the long-
term variability seen in each object as one would expect. However,
others showed shapes not seen in the long-term analysis, including
broken power laws and a unique, curved shape with no obvious
physical analogue. Most of the short-term PCAs produced only one
significant component, possibly due to low signal-to-noise. The
smaller number of components and less consistent results mean
that it is harder to draw useful conclusions from single-observation
PCAs at the moment, although there may be interesting physics to
discover in this area if variability really does differ qualitatively in
the short-term.

Principal component analysis is a useful tool that can offer a
new approach with which to analyse a data set. However, even with
objects as simple as blazars, it should not be trusted blindly without
an understanding of its underlying assumptions and limitations.
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APPENDIX A : SPECIFIC LONG-TERM PCAS

This appendix presents the results of each long-term PCA and com-
ments on them individually. As explained in Section 3, each follows
the same pattern of a normalization component, a pivoting compo-
nent, and an arch-shaped non-physical component elaborated on
in Section 5. These components indicate a close fit to a power-
law model, which is expected for blazars. Still, there are smaller
differences between the objects that deserve a closer look.

A1 3C 273

These principal components are the simplest and easiest to explain
of any object sampled. This PCA is an excellent match to simu-
lations of a single power law varying in both normalization and
photon index, corresponding to the first and second components,
respectively. The third component is not physical, but rather a math-
ematical artefact of the PCA process. This is discussed further in
Section 5. A PCA of this object appears in Parker et al. (2015), but
displays a slight curve in the first component. This difference is due
to the difference in methods: in this work, each observation con-
tributed only one spectrum to the long-term PCAs, whereas Parker’s
earlier work splits each observation into smaller sections for every
PCAs. This causes their results to look like a combination of our
short-term and long-term results, explaining the additional shape in
the first component.

A2 H1426+428

As with 3C 273, components corresponding to normalization and
photon index can be seen clearly. Unlike 3C 273, H1426+428 shows
some curvature in both major principal components, with the first
increasing at high energies and the second and third suppressed at
low energies. An increase in the first component can be reproduced
in simulations of a power law model by increasing the degree to
which � varies relative to normalization, as shown in Fig. 6. Larger
variations in � compared to normalization produce a steeper slope
in the first component. A slant in the first component is seen in all
of the objects, with 3C 273 being the flattest, indicating a relatively
stable photon index.

The curved shape of the second component is harder to explain.
A shape similar to this can be produced in simulations of a double
power-law model where two power laws vary together in normal-
ization (Parker et al., 2015) but such a model does not reproduce
the upward slope of the first component. Sambruna et al. (1997)
find a variable warm absorber in the spectrum of this object (and of

PKS 2155−304, which has a very similar PCA) but simulations of
variable absorbers have also been unable to replicate the shapes of
the first two principal components.

A3 Mrk 421

This object’s PCA is unique due to the kink found shortly before
2 keV. Mrk 421 was a highly piled-up source, and it is possible that
this kink is caused by instrumental features. The silicon Kα or Kβ

lines could be responsible.

A4 Mrk 501

In Mrk 501, the first component again increases with energy, in-
dicating large changes in photon index. The most notable feature
is the shape of the second component, which begins rising back
up around 7 keV rather than continuing downward as in the other
pivoting components. The cause of this is unknown.

A5 OJ 287

In OJ 287, the first principal component is decreasing with energy,
rather than increasing. This can be reproduced in simulations by
assuming that the variation in normalization and � is correlated,
rather than varying them independently of one another, as shown in
Fig. 6. This can explain the shape of all three significant components
in this object. Enforcing a correlation between normalization and
� is not without precedent, and in fact seems to be the case for
OJ 287 in particular. Fatima (2017) finds such a correlation, and
remarks that this indicates inverse Compton emission rather than
the synchrotron process.

A6 PG 1553+113

PG 1553+113 shows the most similarity to Mrk 501, especially in
the second component. However, the first component flattens out
at high energies rather than continuing to increase, and the third
component is much flatter, barely showing any shape at all.

A7 PKS 2155−304

This PCA is nearly identical to that of H1426+428. Both objects are
known to have warm absorbers (Sambruna 1997), but no absorption
model has reproduced these principal components as of yet.

APPENDI X B: SPECI FI C SHORT-TERM PCAS

Here, the results of each single-observation PCA are presented in-
dividually. They are not as similar as the long-term ones, falling
into the categories discussed in Section 4.

B1 3C 273

3C 273 had by far the highest number of suitable observations
for this analysis, and the results are wide-ranging. Observations
012670301 and 0159960101 are shaped like a broken power law
varying only in �. Observation 0414190101 looks like a change
in normalization. Observation 0136550101 shows a pivoting and
normalization component, but the pivoting component is more
significant than the other. This only occurs in one other object,
S50716+714. Finally, observations 0126700801 and 0651610101
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2010 D. Gallant, L. C. Gallo and M. L. Parker

show a strange, upward-curving shape not seen in any of the long-
term observations. The cause of this shape is unknown, and simu-
lations have failed to replicate it, but it also appears in short-term
PCAs of 3C 279, H1426+428, and OJ 287. This unique shape could
indicate the existence of a process that drives short-term variability
but has no effect in the long term, but it is hard to conceive of such a
process, especially for objects with as simple a spectrum as blazars.

B2 3C 279

There are not enough XMM–Newton observations of this object
to perform a long-term analysis, but one observation long enough
for short-term analysis does exist. The results are similar to those
for 3C 273 observations 0126700801 and 0651610101, an upward-
curving slope with no obvious explanation.

B3 H1426+428

H1426+428 observation 0111850201 displays the upward curving
shape seen before. There also appears to be some amount of shape
to the second component, but it is of very low significance and
is unlikely to be a real effect. A similar shape is seen in OJ 287
observation 0761500201.

B4 Mrk 421

Unlike most of the other objects, both observations of Mrk 421 show
more than one principal component. Observation 0099280201 has
a normalization and a pivot component, as seen in most of the long-
term observations. Observation 0136540701, on the other hand,
looks like a broken power law. It is worth noting that the third (non-
physical) component seen in the long-term PCAs is not discernible

in observation 0099280201. This is most likely because the second
component is very weak.

B5 OJ 287

The upward-sloping shape is seen again in the first principal compo-
nent of observation 076500201, and, like in H1428+428, the second
component seems to have a slight upward shape to it near the end as
well. As with H1426+428, the second component is not significant
at all, but the same semblance of a shape appearing twice is unlikely
to be a coincidence. It may be an artefact of the PCA process, much
like the third component seen in the long-term analyses.

B6 PKS 2155−304

Observation 0124930301 indicates normalization changing alone,
whereas observation 0124930601 seems to indicate changes in both
normalization and �.

B7 S50716+714

Like 3C 279, there were not enough observations to perform a long-
term PCA on S50716+714. Observation 0502271401, the only one
available for this analysis, shows a pivoting component that is more
significant than its normalization component. This is only seen in
one other case, 3C 273 observation 0136550101. It is unknown why
the pivoting component would suddenly be stronger in these cases.
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