
FACTORS AFFECTING THE 

DISTRIBUTION AND ROOST-SITE 

SELECTION OF BATS ON THE ISLAND 

OF NEWFOUNDLAND 

Allysia C. Park 

A Thesis Submitted to 
Saint Mary's University, Halifax, Nova Scotia 
in Partial Fulfillment of the Requirements for 

the Degree of Master of Science in Applied Science 

April, 2010, Halifax, Nova Scotia 

© [Allysia C. Park, 2010] 

Supervisor: Dr. Hugh Broders 

Supervisory Committee: Dr. Colleen Barber 

Dr. Danika van Proosdij 

External Examiner: Dr. Phil Taylor 

Date: April 23, 2010 



1 * 1 
Library arid Archives 
Canada 

Published Heritage 
Branch 

Bibliothgque et 
Archives Canada 

Direction du 
Patrimoine de l'6dition 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-64854-4 
Our file Notre reference 
ISBN: 978-0-494-64854-4 

NOTICE: AVIS: 

The author has granted a non-
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non-
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliothdque et Archives 
Canada de reproduce, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Nnternet, preter, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondares ont ete enleves de 
cette these. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

I + I 

Canada 



FACTORS AFFECTING THE DISTRIBUTION AND ROOST-SITE 
SELECTION OF BATS ON THE ISLAND OF NEWFOUNDLAND 

By Allysia C. Park 

ABSTRACT 

Ecological studies at the periphery of a species' distribution provide an opportunity 
to explore the limits of population viability under unique conditions. Research regarding 
specific factors that limit temperate bat distribution is lacking; therefore, the goal of this 
project was to characterize these factors for resident bats on the island of Newfoundland 
(NL) by species and sex (four bat groups in total). The first objective was to document the 
occurrence of little brown (Myotis lucifugus) and northern long-eared (M. septentrionalis) bats 
throughout NL, and relate their occurrence to stand and landscape factors. All bat groups 
were patchily distributed. Myotis septentrionalis were present in areas further east and north 
than previously documented but were not ubiquitous. Factors influencing distributional-
limits were unique for each bat group, and included number of buildings and forest area in a 
landscape (for M. septentrionalis females and males, respectively); and number of snags and 
average tree diameter in a stand (for M. lucifugus females and males, respectively). The second 
objective was to compare female roost-site selection on NL to that of central areas in their 
North American distribution. Smaller and shorter softwood trees were common on NL, and 
frequently used as roosts. The final objective was to characterize roost-site selection of 
female M. septentrionalis at different reproductive stages (lactation and non-lactation). Sites 
used during the lactation period were within cavities of large diameter trees that maintained 
warm, stable microclimates. 

Keywords: Myotis lucifugus, M. septentrionalis, Newfoundland, peripheral populations, roost-site 
selection, reproductive stage, AIC 
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INTRODUCTION 

Characterizing population dynamics in relation to resource availability and abiotic 

conditions permits inference regarding which factors are imperative to maintain viable 

populations (Holt and Keitt 2005, Bahn et al. 2006). Peripheral populations may contain 

unique, heritable traits that enable them to persist under conditions that individuals of 

conspecific populations might not be able to endure. Subsequently, if isolated, such selective 

pressures may lead to inter-population variation (e.g. morphologically, genetically, etc.) and, 

over time, speciation events (Lesica and Allendorf 1995). Therefore, peripheral populations 

promote evolutionary phenomenon and are important to consider when decisions are made 

for conservation and management purposes. Previous studies have focused on factors 

influencing species' limits (Kirkpatrick and Barton 1997, Case et al. 2005, Holt and Keitt 

2005, Bahn et al. 2006); however, these studies are not common at northern extremes. 

Though knowledge of roosting and foraging behaviours for temperate bats has 

increased significantly, litde is known regarding specific resources and/or factors that limit 

species distribution (Parker et al. 1997, Lausen et al. 2008). Results of previous North 

American studies do however indicate that foraging and roosting conditions are the primary 

parameters that limit distribution (Humphrey 1975, Fenton 2003, Kunz and Lumsden 2003). 

Roosts themselves may be an essential resource that limits species distribution. Bats spend 

over half of their lifetime within roosts (Kunz and Fenton 2003), which provide protection 

from harsh weather conditions and predators (Fenton et al. 1994), and a location for 

thermoregulation, raising young (Hamilton and Barclay 1994, Crampton and Barclay 1998), 

and possibly socialization (Wilkinson 1992b, Jung et al. 2004). Forests provide roosts in 
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cavities, branches and foliage of trees (Kunz and Lumsden 2003). Selection of roosting areas 

by bats are thought to be determined by, among many other things, the presence of suitable 

foraging areas (Geggie and Fenton 1985, Crampton and Barclay 1998), which is based on 

specific foraging strategies of the bat species (Fenton and Bogdanowicz 2002). Forest type is 

thus an important factor to determine roost availability (Thomas 1988, Krusic et al. 1996, 

Crampton and Barclay 1998, Grindal and Brigham 1999, Kalcounis et al. 1999, Hutchinson 

and Lacki 2000, Patriquin and Barclay 2003, Broders and Forbes 2004, Ford et al. 2005, Loeb 

and O'Keefe 2006), and whether suitable foraging sites are present (Geggie and Fenton 1985, 

Furlonger et al. 1987) for forest-dependent bats. 

The province of Newfoundland and Labrador, represents the Northeastern 

distributional limit of two species of North American bats: the northern long-eared bat 

(Myotis septentrionalis) and the little brown bat (M. lucifugus). Specifically, the island of 

Newfoundland (NL) contains biotic and abiotic attributes that are unique relative to other 

areas where these species have been studied previously. Thus, resource availability and the 

severity of abiotic factors on NL provide an excellent opportunity to examine peripheral 

populations of bats. Newfoundland and Labrador forests are softwood dominant and thirty-

five percent of all trees in NL are small, shrub-like or bushy trees that do not exceed a height 

of eight meters (DNR 2008a). The province has a relatively low tree species diversity (20 

species, versus 41 species found in adjacent Maritime Canada; Dept. of Natural Resources, 

DNR 2008a, b, respectively). This low diversity is likely due to the cool and moist climate, 

which slows nutrient cycling and soil drainage. The most dominant species, balsam fir 

(Albies balsamea; 49% of the total forest composition on NL; Singh 1977), thrives in wet 

2 



climates due to precipitation and fog (Campbell and Laroque 2007). The second most 

common species, black spruce (Picea mariana), constitutes approximately one third (34%) of 

the total forest composition (DNR 2008a). Abiotic conditions, such as low average summer 

inland temperatures of 13°C, proximity of the island to the foggiest waters in the world, and 

the high wind, make NL unique. The only previous study of bat biology in NL, recorded a 

low number of bats, and these bats were foraging in lower than typical temperatures 

(<10°C), in comparison to studies conducted in central areas of their range (Grindal 1999). 

The distribution, life history and social structures of bats on the island of 

Newfoundland are unknown. Three species have been recorded, but one (the hoary bat, 

luisiurus cinereus) is believed to be an extralimital record (Maunder 1988). Myotis lucijugus are 

known to exist across NL (van Zyll de Jong 1985), while the documented distribution of M. 

septentrionalis is restricted to the southwest portion (Caceres and Barclay 2000); however, 

systematic research has not been conducted outside of this area. 

Myotis septentrionalis and M. lucifugus are sympatric throughout much of their 

distribution within North America, ranging from as far south as Wyoming to as far north as 

the Yukon (Fenton and Barclay 1980, Caceres and Barclay 2000). Both species differ in their 

foraging and roosting behaviours. Myotis lucijugus forage in a wide range of site types (LaVal 

et al. 1977), while M. septentrionalis appear to be forest specialists (Broders et al. 2003, 

Henderson and Broders 2008). Although both species forage in forested areas, only M. 

septentrionalis are obligate forest roosters (Caceres and Barclay 2000, Broders and Forbes 

2004, Jung et al. 2004). However, there are rare instances where maternity colonies of M. 

septentrionalis have been found in human-made structures such as barns (Sasse and Perkins 
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1996, Foster and Kurta 1999, Henderson and Broders 2008). Myotis lucifugus typically form 

maternity colonies in buildings (Fenton and Barclay 1980, Anthony et al. 1981, Burnett and 

August 1981, Kalcounis and Hecker 1996, Riskin and Pybus 1998, Zimmerman and Glanz 

2000, Broders and Forbes 2004), though they occasionally roost in natural structures as well 

(Fenton and Barclay 1980, Barclay and Cash 1985, Kalcounis and Hecker 1996). Both 

species display a sexual segregation during the summer such that males and non-reproductive 

females rarely roost with the maternity colony and remain solitary (Thomas 1988, Kunz and 

Lumsden 2003, Broders and Forbes 2004, Jung et al. 2004). For the purposes of this study, I 

therefore assumed that four distinct groups of bats exist in NL: male and female M. 

septentrionalis, and male and female M. lucifugus. 

For the forest-dependent M. septentrionalis, certain characteristics of forest landscapes, 

stands and roost trees are essential for survival, especially for reproductive females, which 

have the greatest energy demands (Racey and Entwisde 2003); however, few studies 

characterize roosting patterns relative to reproductive stage. Females of most temperate bat 

species form maternity colonies that range from a few individuals to groups greater than 100 

(Lewis 1993, Britzke et al. 2003, Garroway and Broders 2008). The presence and increasing 

size of colonies in cavity roosts, has been shown to positively influence roost temperature 

(Lewis 1993, Willis and Brigham 2007). Stable, warm microclimates within roosts promote 

normothermic (normal) body temperatures (Foster and Kurta 1999), offspring development 

during gestation, and milk production during lactation (Hamilton and Barclay 1994, Wilde et 

al. 1999, Kerth et al. 2001b, Jung et al. 2004). During gestation, selecting warm roosts 

reduces the amount of energy required to sustain normothermic body temperature, which 
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increases the amount of energy allocated towards rapid development of the fetus (Wilkinson 

1992a, McLean and Speakman 1999, Kerth et al. 2001a, Kunz and Lumsden 2003). During 

lactation, the most energy intense period for both the mother and her offspring (Racey and 

Swift 1981, Kurta et al. 1989), females allocate the majority of energy reserves not spent on 

foraging towards milk production (Wilde et al. 1999). 

The warmest roosts tend to be located in the tallest and largest diameter trees that are 

close to the canopy (Crampton and Barclay 1998, Kunz and Lumsden 2003). These 

attributes lead to warm, stable microclimates because roosts receive more solar radiation, 

house more individuals, and have greater isolative properties (Foster and Kurta 1999, 

Garroway and Broders 2008). Selecting warm roosts in regions of high latitudes seems 

important to ensure the rapid development of young, especially considering the shorter 

growing season at these latitudes (Racey 1988, Lewis 1993, Vonhof 1996, Cryan et al. 2000, 

Kerth et al. 2001b). Lacking the added stress of reproduction, males and non-reproductive 

females roost alone in cooler areas, and are able to enter torpor throughout the day to 

conserve energy (Barclay 1991, Hamilton and Barclay 1994, Lacki and Schwierjohann 2001, 

Jung et al. 2004, Carter and Feldhamer 2005, Ford et al. 2006). Because of variation in 

energy requirements during different reproductive stages, one can hypothesize that roost-site 

characteristics selected by females also vary to maximize energy efficiency and increase 

fitness. Since the most energy demanding period of reproduction occurs during lactation, I 

can predict that the most discrepant characteristics in roost-site selection arise when 

contrasting roosts used by lactating M. septentrionalis to those of non-lactating females 

(Garroway and Broders 2008). 
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The goal of this study was to characterize distribution-limiting factors of 

Newfoundland bats by species and sex (four bat groups in total), and relate these to areas 

where these species have been previously studied. Specifically, I hypothesized that because 

roosting and foraging requirements of each bat group varies, landscape- and stand-level 

factors that limit the distribution of each bat group on the island of Newfoundland would 

also vary. I also hypothesized that roost-site selection for females is a result of an interaction 

between reproductive condition, weather conditions and roost-site availability. I predicted 

that characteristics of roost-sites on the island of Newfoundland would differ from site 

characteristics used in the interior of their North American distribution. I also predicted that 

the characteristics of roost-sites associated with lactating M. septentrionalis would be 

distinguishable from those that were non-lactating, such that lactating females roost in sites 

with characteristics associated with warmer, more stable microclimates. 

METHODOLOGY 

Distribution of bat groups on the island of Newfoundland 

This study occurred during the summers of 2008 and 2009. From June 02 to August 

13, 2008, bats were sampled at fourteen forested areas across the island of Newfoundland 

(Figure 1). Each area contained at least one trail and one river. Trails were assumed to be a 

critical landscape feature for this study because they provide a linear element for commuting 

bats (Verboom and Huitema 1997, Law and Chidel 2002, Baxter et al. 2006, Downs and 

Racey 2006), and an ideal site for trapping bats using harp traps (Henderson et al. 2008). 
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Research on Price Edward Island (P.E.I.), Canada, found rivers to be a key predictor of M. 

septentrionalis presence (Henderson et al. 2008), and they are also used as commuting corridors 

that provide drinking water and high prey concentrations (Racey and Swift 1985, Grindal et 

al. 1999, Downs and Racey 2006). These fourteen areas were pre-selected with no a priori 

knowledge of the presence of bats. 

50* « 

48*» 

Figure 1: Fourteen areas across the island of Newfoundland sampled for the presence of forest-

dwelling bats during the summer of 2008. 

One to five forested trail locations were sampled within each area, for a total of 35 

sampled locations. These locations' were the sampling units. To ensure that individual 

sampled locations were independent from each other and represented an independent 

statistical datum, all locations were at least 1000 m from one another. It was assumed that 
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the resources available between sample locations separated by this distance were 

independent. To decrease the possibility of recording false absences, each sample location 

had two capture sites that were between 100 and 200 m apart, and each capture site was 

sampled on two nights. Therefore, four trap nights of sampling was conducted for each 

sampling unit (each of two capture sites were sampled for two nights for each location). 

Harp traps (Austbat Research Equipment, Lower Plenty, Victoria, Australia) were deployed 

at least a half hour before sunset and checked every half hour for three hours (Anthony et al. 

1981, Barclay 1982, Hayes 1997, Wickramasinghe et al. 2004). 

All bats captured were identified to species, weighed (with a pesola spring scale to the 

nearest 0.05 g), aged, sexed and noted for reproductive condition. The age of bats was 

determined by presence of cartilage in the metacarpal-phalangeal joint of the forth digit in 

their wing (Buchler 1980). Bats were identified as pregnant by carefully palpating the 

abdomen and as lactating via exposed skin around the nipple and/or presence of milk (Racey 

1988). All bats were released at the site of capture after processing. On several occasions, 

only bat feces were found in the trap, which could not lead to a positive species or sex 

identification, therefore only bats processed by hand were considered for analysis. Bats are 

known to be less active when weather conditions are wet and cold, particularly reproductive 

females who have less tolerance for rainfall (Thomas 1988, Mills et al. 1996). Therefore 

there was no sampling on nights with heavy rain. The Saint Mary's Animal Care Committee, 

Parks Canada, and the Department of Environment and Conservation, NL approved 

methods of capturing and handling bats and/or provided permits to do so. 
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Following a thorough review of the literature, a series of three landscape- and two 

stand- level metrics were selected to characterize the resources and conditions important to 

M. septentrionalis and M. lucifugus biology for this study (Table 1). Each of these metrics was 

quantified by analyzing Newfoundland Forest Inventory data (Department of Natural 

Resources [DNR], 1999) and CanVec data (Centre for Topographic Information, NRCan, 

ESS, 2007) using a Geographic Information System (GIS; version 9.1, ESRI, California, 

USA) or by forest measurements taken in the field. For landscape level attributes, a two-

kilometer radius buffer was created (12.6 km2 ) centered on the midpoint between both 

capture sites of each sample location to ensure forest composition varied between sampling 

locations (Henderson et al. 2008). This size buffer was chosen as this was found to be the 

approximate flying distance of female northern long-eared and litde brown bats (Broders et 

al. 2006). In the two-kilometer radius buffer, total forest area was calculated by summing the 

area (km2) of polygons that were forest dominant. Proximity of the nearest river to the 

capture site (in km) was calculated using the measure tool, and number of buildings was 

determined by counting the identified points. 

To characterize stand conditions, a 0.1 hectare (17.8 m) radius plot (Broders and 

Forbes 2004) was used at both capture sites within a sampling location and averaged to 

represent the entire sample unit. Originating at each capture site, a plot was centered at a 

distance and direction determined from a list of random numbers. All plots were contained 

within a distance of 100 m from the capture site to the forest interior. Tree diameter was 

calculated by averaging the diameter at breast height (dbh; in cm) of five random, live trees. 
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Number of snags was determined by counting trees between decay classes four and seven 

(Table 2). 

Weather was also expected to be an important abiotic variable that could significantly 

influence bat distribution for peripheral populations in NL; however, it was difficult to create 

a research design that would account for variability in temperature, precipitation and fog. 

Thus, historical data (temperature, number of days with rain or fog, etc.) were compiled from 

Environment Canada records for the 2008 period during hours sampled for bat group 

presence. This data were used in a descriptive manner to explore the potential impacts of 

weather on bat group presence in the vicinity where bats were captured. Weather data were 

not available for Jipujikuei Kuespem (47°53'N, 55°16'W), Lockston Path (48°22'N, 

53°20'W), and Frenchman's Cove (47°13'N, 55°24'W; the southern-most area sampled). 

Table 1: Landscape and forest level metrics measured at each trail location. 

Variables 
1. Average tree diameter in the 0.1 ha plot 
2. Number of snags per 0.1 ha (Decay class of at least 3; Table 2) 
3. Total forest area within a 2 km buffer 
4. Proximity to the nearest river (km) in a 2 km buffer 
5. Number of buildings within a 2 km buffer 

Table 2: Decay class identification of trees adapted from Daniels et al. (1997). 

Decay Class Description 
1 Live, healthy, no obvious defects 
2 Declining live trees, browning needles 
3 Recendy dead, branches and twigs still present, little decay 
4 Dead, no needles and only primary branches present, bark sloughing and detached 
5 Dead, most branches and bark lost, top broken 

f. Dead, no branches or bark remain, broken boles (height ± 10 m), boles hollow or 
crescent-shaped 

7 Dead, stubs >3m height, heartwood soft, internal decay, outer shell may be hard 
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Analyses were performed on four bat groups; male and female M. septentrionalis, and 

male and female M. lucifugus. Logistic regression (Hosmer and Lemeshow 2000) was used to 

predict which forest parameters within both levels (landscape and stand) were related to the 

probability of presence of each bat group at a sample location. Bat groups present at a 

location were coded as 1, while those not present were coded as 0. Based on the variables 

measured and a review of the relevant literature of roosting and foraging behaviours, a set of 

nine a priori candidate models was created for all bat groups (Table 3). One area with two 

sampling locations (Frenchman's Cove) was not included in the analyses because data to 

record landscape variables were not available. Because only 33 forest plots were analyzed, all 

models were restricted to univariate or bivariate models to control for spurious effects and 

maintain parsimony (Hosmer and Lemeshow 2000, Burnham and Anderson 2002). Since 

logistic regression analysis are particularly sensitive to multicollinearity within models 

(Hosmer and Lemeshow 2000), a correlation matrix was constructed to ensure that no pair 

of the five independent variables contained within the model set were significantly correlated 

(r > 0.7; Perry and Thill 2007). To be conservative, any pair of variables with a correlation 

coefficient between or equal to 0.5 and 0.7 was not included within the same model. 
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Table 3: A. priori candidate logistic regression models for predicting presence of four bat groups 

within forested trails of Newfoundland. 

Model Description 
1 
2 
3 
4 
5 
6 

7 
8 
9 

Tree diameter 
Tree diameter, Number of snags 
Number of snags 
Proximity to river 
Number of buildings 
Total forest area 

Total forest area, Proximity to river 
Proximity to river, Number of snags 
Proximity to river, Number of buildings 

The candidate models were ranked by second order Akaike's Information Criterion 

(AICc) using SYSTAT 12 (SYSTAT software, Inc. 2001) to determine the most 

parsimonious model. AICc differences (A;) were calculated for all models in the set to 

determine the amount of support in comparison to the best model. Akaike weight (HA) was 

then calculated to determine the importance of each model, and its probability of being the 

best in the candidate set to fit the data. Models were ranked according to importance 

weights, and the top three that differentiated locations where each bat group was present 

were used for multimodel inference. 

To identify which parameters in the top three models best differentiated locations 

selected by bat groups, and the direction of its effect, a model-averaging technique was used 

to give the parameter estimates ((3;) and unconditional standard errors (S.E.). Only 

parameters with estimates that were not overlapped by their respective standard errors were 

considered for making inferences. Model averaging reduces bias for obtaining parameter 

estimates when no one model in the candidate set clearly distinguishes itself as the best 



(Burnham and Anderson 2002). To determine magnitude of effect at the biological level, 

odds ratios (with 95% confidence intervals) were calculated as a measure of association for 

the likelihood that each parameter influenced presence of bat groups in a particular location 

(Hosmer and Lemeshow 2000). I predicted that proximity of the nearest river to capture site 

would be positively related to presence for all bat groups and therefore included it in more 

models than any other parameter (four out of nine). 

Roost selection by female, forest-dependent Myotis septentrionalis 

Year 2 (June 09 to August 11, 2009) field activities were conducted at a northerly area 

of NL (River of Ponds: 50°32'N, 57°24"W) where female M. septentrionalis were known to 

occur. Forested trails were sampled in an area managed for logging (approximately 30 km 

from the community of River of Ponds where females were caught in 2008), but trapping 

success was low. After ten unsuccessful trapping nights, sampling efforts were relocated to 

forested trails directly in the community. Sampling area relocation coincided with a shift in 

the reproductive season; therefore, only non-lactating females (four) were captured in the 

first sampling area. Adult, female M. septentrionalis were identified by reproductive condition 

and fitted with a radio-transmitter (0.42 g, model LB-2N Holohil Systems Ltd., Carp, Ont., 

Canada), to track them to roost sites. Females were assigned as lactating or non-lactating 

based on an assessment of reproductive status and not from the timing of the lactation 

period (the last day in which a pregnant bat was caught until the first day a juvenile was 

caught). Transmitters were placed dorsally between the shoulder blades, using surgical 
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cement (Osto-Bond, Montreal Ostomy, Montreal, Quebec, Canada). Bats were retained for 

ten minutes to let the adhesive set, and then released at the capture site. 

All bats were located on each subsequent day until the transmitter fell off or failed, 

using telemetry receivers (HR 2000 Osprey VHF Receiver, H.A.B.I.T. Research Limited, 

Victoria, British Columbia, Canada and R-1000; Communications Specialists Inc., Orange, 

California and R2000, Advanced Telemetry Systems Inc., Minnesota, USA) and 3-element 

yagi antennas (AF Antronics, Urbana, Illinois). Roost sites were georeferenced with a global 

positioning system (GPSMAP 76CSx, Garmin Ltd., Hampshire, UK). The average distance 

that individuals were tracked from their original capture site was calculated using Arc View 

GIS (version 9.3). Emergence counts were conducted at roost trees at dusk to estimate 

colony size (Broders and Forbes 2004). To determine if the number of roost-mates varied 

with reproductive condition, a two-sample Kruskal-Wallis test was performed on the non-

normally distributed data. Ambient temperature (T^ was measured every hour (for 18 days) 

using iButton® (±1 C. Dallas Semiconductor Corp., Dallas, Texas) data loggers located 

centrally within the study areas. Several data loggers were also placed in different roosts 

(range 6 tO 18 days) to measure and make an inference about variables affecting roost 

temperature (Tr) for bats in different stages of reproduction (i.e. lactating versus non-

lactating). 

To characterize differences in roost selection of female M. septentrionalis in NL to 

conspecific populations elsewhere in North America, a literature review was performed using 

the subject of roosts used by M. septentrionalis. Forest variables for each study, such as roost 

tree height and diameter, and the number of roost tree species, were summarized and 
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contrasted to results found for the River of Ponds study area. A series of two stand-, and 

two local- level metrics were also selected from the review to characterize the resources and 

conditions important to M. septentrionalis biology (Table 4). For the characterization of stand 

conditions a 0.1 hectare (17.8 m) radius plot was sampled (Broders and Forbes 2004). Stand 

plots were centered on roost-sites, and both live trees and snags were counted within them. 

Local level attributes of roost trees were measured when no bats were known to be roosting 

in the tree. Roost tree dbh was recorded in cm, and canopy height relative to roost height 

was determined, using a clinometer (model PM-5/1520, Suunto, Finland), by subtracting the 

height of the canopy (calculated from the average height of five random trees (in m)), from 

the height of the roost. Since two areas were sampled for female northern long-eared bat 

presence, variables measured at each scale had to be tested (using a 2-sample t-test for 

normally distributed data), to ensure there were no significant differences, and that data from 

both areas could be lumped. 

Table 4: Stand- and local- level metrics measured at each roost location to differentiate roosts used 

by lactating and non-lactating M. septentrionalis presence in River of Ponds, NL. 

Variables 
1. Number of live trees per 0.1 ha 
2. Number of snags per 0.1 ha (Decay class > 2; Table 2) 
3. Roost tree diameter 
4. Canopy height relative to roost height 

Logistic regression (Hosmer and Lemeshow 2000) was used to predict which forest 

parameters within both levels (local and stand) differentiated roost-sites used by lactating and 
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non-lactating females, as well as parameters that may be restricting the distribution of female 

M. septentrionalis on Newfoundland. Roost trees used by lactating females were coded as 1, 

while those used by non-lactating females were coded as 0. Based on the variables measured 

and a review of the relevant literature of roosting behaviours for female M. septentrionalis, a set 

of nine a priori candidate models were created (Table 5). Because only 36 roosts and their 

respective stand plots were analyzed, all models were restricted to univariate or bivariate 

models (Hosmer and Lemeshow 2000), with the exception of one model containing three 

parameters. The candidate models and respective parameters were then analyzed in the same 

fashion as in 2008 to reveal the best one(s) suited to differentiate lactating M. septentrionalis 

presence from non-lactating females within an area or roost. 

Table 5: A priori candidate logistic regression models for predicting the probability of presence of 

female, lactating Myotis septentrionalis within River of Ponds, NL. 

Model 

1. Roost tree diameter, Canopy relative to roost 

2. Roost tree diameter, Canopy relative to roost, Total number of live trees 

3. Canopy relative to roost, Total number of live trees 

4. Canopy relative to roost 
5. Roost tree diameter 

6. Roost tree diameter, Total number of snags 

7. Total number of live trees 

8. Total number of live trees, Total number of snags 

9. Total number of snags 
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RESULTS 

Distribution of bats on the island of Newfoundland 

Fifty-one bats were captured at ten of the fourteen areas sampled to characterize the 

distribution of bats in 2008. Of these, 43.1% and 56.9% were M. lucijugus, and M. 

septentrionalis, respectively. For both species, females were captured more frequently than 

males (16 of the 22 M. lucijugus and 19 of the 29 M. septentrionalis). The only records for 

pregnant bats occurred on June 22 and July 04, 2008 for M. septentrionalis. The first 

occurrence of a lactating female was on July 07 (M. septentrionalis) at Terra Nova National 

Park (48°36'N, 53°58'W), and all other females of this species caught for the remainder of 

the field season continued showing signs of lactation. No juvenile M. septentrionalis were 

caught. The first occurrence of a lactating M. lucijugus was on July 18, followed by the first 

record of a juvenile bat on July 28. No other M. lucijugus were caught during the lactation 

period. Prior studies have controlled the sampling effort, by not trapping in conditions that 

are unfavourable for bat capture (i.e. heavy rain, strong winds or low temperatures (<10°C); 

Thomas 1988, Mills et al. 1996); however, in this study the average minimum temperature for 

a night when bats were caught was 9.9°C, and the minimum temperature was 4.6°C. 

Both species appeared to be patchily distributed on NL. Myotis septentrionalis was 

found further east and north than previously documented (Figure 2). The most northerly 

area where both males and females were present occurred in River of Ponds (50°32 'N, 

57°24'W). There were no bats captured in the only area that was further north than River of 

Ponds (Port au Choix; 50°42'N, 57°22"W). Myotis septentrionalis was documented in three of 

the six southern-most areas sampled (two areas contained only males, while the third had 
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only females). Lockston Path was the eastern-most location where both sexes of M. 

septentrionalis were captured. Myotis lucifugus were trapped in only five of the fourteen areas 

but as a species were, like M. septentrionalis, also caught as far north as River of Ponds, 

however they were present farther east than M. septentrionalis (Figure 2). Both sexes were 

trapped in Salmonier Nature Park (47°43 N, 53°47 W); however, they were not seen at the 

furthest eastern location, La Manche (47°10'N, 52°53'W). 

M*wr 5m 56* w srw s2°w 

Newfoundland during the summer of 2008. 
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The three best models for differentiating locations where each bat group were and 

were not captured, were ranked along with their respective importance weights (Table 6). 

Because there was high model uncertainty, and importance weights were low, I focused on 

the parameters within the three best models to make inference. The best parameters to 

differentiate sampling locations were ranked according to their statistical effect size 

(parameter estimates ((3;), and standards errors (S.E.); Table 7). For each bat group, there was 

at least one parameter for which [3, ± S.E. did not overlap zero, and these have the most 

support. For female M. septentrionalis, the combined weight of importance for the top three 

models was 55%. In a 2-km radius landscape plot, for every decrease of ten buildings, the 

odds that this group would be present at a sample location increased by 1.22 times (95% CI: 

0.91 to 1.64; Figure 3). For male M. septentrionalis, the combined weight of importance for 

the top three models was 76%. In a 2-km radius landscape, for every 2.0 km2increase of 

available forest, the odds that this group was present at a sample location increased by 2.58 

times (95% CI: 0.93 to 7.15; Figure 3); and for every 0.5 km increase in distance from the 

nearest river, presence was 57% less likely to occur (95% CI: 0.09 to 2.11). 

For female M. lucifugus, the combined weight of importance for the top three models 

was 78%. In a 0.1-ha stand, for every increase of five snags, the chances that a female M. 

lucifugus would be present at a sample location increased by 1.42 times (95% CI: 0.95 to 2.12; 

Figure 3). For male M. lucifugus, the combined weight of importance for the top three models 

was 52%. In a 0.1-ha stand, for every 2.0 cm decrease in average tree diameter, the odds that 

male M. lucifugus were present in a sample location increased by 1.55 times (95% CI: 0.68 to 

3.56; Figure 3). 
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Proximity to nearest river from the capture site was prominently included in the 

model set, and was identified as an important parameter to determine bat presence in all 

groups except male M. lucijugus. In close examination, the statistical effect size across all 

models in each candidate set was stable (i.e. was similar) for both groups of M. 

septentrionalis, however, biological significance was mosdy weak because standard errors were 

large and overlapped parameter estimates (Table 7). 

Table 6: Ranking of Akaike's Information Criterion (AICc) between the ith and the top ranked 

model (Ai) and Akaike weights (wj) for all a priori models of each bat group, differentiating the 

characteristics of sites where bats were and were not captured. 

Myotis septentrionalis Myotis lucifugus 
Female Male Female Male 

Models Rank Wi Rank Wi Rank Wi Rank Wj 

Number of buildings 1 0.275 5 0.054 7 0.044 4 0.137 
Distance to nearest river, 2 0.149 7 0.034 9 0.017 9 0.041 
Number of buildings 
Distance to nearest river 3 0.123 3 0.098 4 0.055 5 0.131 
Forest area 4 0.104 1 0.428 6 0.046 3 0.144 
Number of snags 5 0.097 6 0.045 1 0.464 2 0.151 
Tree diameter 6 0.095 4 0.057 5 0.047 1 0.229 
Distance to nearest river, 7 0.061 8 0.030 2 0.163 7 0.046 
Number of snags 
Forest area, 8 0.054 2 0.237 8 0.017 8 0.043 
Distance to nearest river 
Tree diameter, 9 0.043 9 0.017 3 0.148 6 0.078 
Number of snags 
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Table 7: Model averaged parameter estimates (|3,) and unconditional standard errors (S.E.) for the 

parameters in the top three models of each bat group, to determine probability of presence of each 

bat group within forested trails of Newfoundland. Note: only those variables whose [3, ± S.E. did not 

overlap zero were used for inference. 

Myotis septentrionalis Myotis lucifugus 
Female Male Female Male 

buildings 
Distance to nearest 

-0.020 (0.015) 

-1.474 (1.522) -1.688 (1.624) -0.860 (1.569) 

Parameters (SE) fr(SE) ft,- (SE) fr(SE) 
Number of 

river 
Forest area - 0.474 (0.260) - 0.101 (0.240) 
Tree diameter - - 0.059 (0.182) -0.220 (0.212) 
Number of snags - - 0.070 (0.041) -0.026 (0.056) 
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Figure 3: Probability curves for parameters that best differentiated locations where each bat group 

were present to where they were not present on the island of Newfoundland. 

Roost selection by female, forest-dependent Myotis septentrionalis 

From June to August 2009, 18 female M. septentrionalis (eight lactating, and ten non-

lactating) were caught and tracked around the community of River of Ponds, NL using radio 

telemetry. The lactation period occurred from July 10 to August 02, during which, two non-

lactating females were caught and tagged. The transmitters remained adhered to the bats for 

an average of 3.3 days (range 0 - 1 1 days). Of those, we did not record any data from four 

because of the inability to locate the bat, or the transmitter falling off the individual during 
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the first night of activation. A bat day was defined as one radio-tracked bat roosting in one 

tree for a single day. 

In total, 18 M. septentrionalis were tracked to 35 roost trees, nine of which were used 

on more than one occasion (with 11 bat days being the greatest frequency of occurrence for 

any roost tree). On average, bats roosted 1,136 m from the capture site (range 71 — 2,375 

m). At least three species of trees were used as roosts, two softwood (Abies balsamea, balsam 

fir (n = 13); Picea mariana, black spruce (n = 1)), and one hardwood species (Betulapapyrifera, 

white birch (n = 10)). The remaining 12 trees were not identified due to their advanced class 

of decay. Three roost trees were used by more than one tracked bat either on the same or 

separate days. Of these roost trees, two contained both non-lactating and lactating bats 

either on separate occasions, or on the same day (a white birch snag and balsam fir snag, 

respectively). Roosts used by both non-lactating and lactating bats were predominately 

found in snags (87% and 92%, respectively; Table 8). Exit counts were estimated for 39 of 

the 60 total bat days. The mean colony size for roost trees that were occupied by non-

lactating bats was 7.6 (range 1 to 28; n = 27), and for lactating was 9.0 (range 1 to 19; n = 

12). The maximum roost group size was 28 individuals in a roost tree used by a tagged non-

lactating bat. There was no evidence that colony size differed between lactating and non-

lactating bats (U = 147, df = 1, p = 0.64). 
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Table 8: Number of snags and live trees of three species used for roosting by lactating and non-

lactating Myotis septentrionalis in River of Ponds, NL, 2009. 

Non-Lactating Lactating 

Tree species Decay class 4-7 Decay class 1-3 Decay class 4-7 Decay class 1-3 

Abies balsamea 7 1 5 0 
Picea mariana 0 1 0 0 
Hetula papyrifera 3 1 5 1 
Unknown 10 - 2 -

Forest Characterization 

Studies used to review characteristics of roost-sites occupied by female M. 

septentrionalis were arranged geographically from areas towards the central portion of the 

North American distribution extending to the periphery (Table 9). Two of the eight studies 

found roosts of similar size (roost tree height of 8.7 m [+0.6] in Arkansas, Perry and Thill, 

2007; roost tree diameter of 21.3 cm in Kentucky, Lacki andSchwierjohann, 2001), to those 

characterized on the island of Newfoundland. The general trend, however, shows that 

compared to River of Ponds, NL, female M. septentrionalis in more interior regions of their 

distribution use roosts in trees that on average, are taller (16.5 versus 11.3 m in River of 

Ponds), larger (37.3 versus 25.8 cm dbh), and in areas that offer greater tree species diversity. 

The a priori models selected to differentiate roosts used by M. septentrionalis during 

lactation and non-lactating in River of Ponds, NL were ranked with their respective 

importance weights (Table 10). The best parameters contained in the top three models were 

ranked according to their parameter estimates ((3̂ , and standards errors (S.E.; Table 11). The 

combined weight of importance for the top three models was 89%. At the local level, for 
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every 2.0 cm increase in roost tree dbh, the odds that a lactating M. septentrionalis roosted in 

that tree increased by 1.23 (95% CI: 1.01 to 1.51). At the stand level, for every increase of 

five trees within a 0.1-ha plot, the odds of lactating M. septentrionalis presence increase by only 

1.05 times (95% CI: 0.97 to 1.14). Concerning statistical effect size and magnitude, roost tree 

diameter appeared to have the strongest biological inferential power (Figure 4). 

Table 9: Roosting ecology review for female Myotis septentrionalis across North America with a 

comparison to that of a periphery population in Newfoundland, Canada. 

Roost tree Roost tree Number of roost 
Province/ State height (m) dbh (cm) tree species n 

Reference fS.E.1 TS.E.1 (available) 
Perry and Thill (2007) Arkansas 8.7 [0.6] 18.7 [1.0] 5(9) 49 

Carter and Feldhamer Illinois 15.8 [2.0] 37.3 [4.7] 5(23) 19 
(2005) 
Lacki and Kentucky n/a 21.3 12 (13) 57 
Schwierjohann (2001) 
Foster and Kurta Michigan 23.3 [0.2] 65.0 [1.0] 3(14) 32 
(1999) 
Menzel et al. (2002) West Virginia 18.7 [1.5] 29.2 [1.6] 9(14) 12 

Owen et al. (2002) West Virginia 17.8 [0.7] 27.2 [1.0] 11 (16) 43 

Sasse and Perkins New Hampshire 14.8 [1.0] 40.9 [2.8] 9 (13) 47 
(1996) 
Broders and Forbes New Brunswick n / a 43.8 [1.8] 9 (11) 55 
(2004) 
Garroway and Nova Scotia 17.8 42.0 6 44 
Broders (2008) 
Park (2010) M.Sc. 
thesis 

Newfoundland 11.3 [1.0] 25.8 [1.7] 3 (n/a) 36 
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Table 10: Difference in Akaike's Information Criterion (AICc) between the kh and the top ranked 

model (A,), Akaike weights (»,), and sum of Akaike weights (£»,) for all a priori models, 

differentiating characteristics of sites and roosts used by lactating and non-lactating Myotis 

septentrionalis. 

Model A, Wi Hwi 
Roost tree diameter, Canopy relative to roost 0.00 0.534 0.534 
Roost tree diameter, Canopy relative to roost, Total number of live trees 1.54 0.247 0.781 

Canopy relative to roost, Total number of live trees 3.22 0.107 0.888 

Canopy relative to roost 4.03 0.071 0.959 

Roost tree diameter 6.34 0.022 0.981 
Roost tree diameter, Total number of snags 7.48 0.013 0.994 

Total number of live trees 9.49 0.005 0.998 

Total number of live trees, Total number of snags 11.81 0.001 1.000 

Total number of snags 15.38 0.000 1.000 

Table 11: Model averaged parameter estimates (J3,) and unconditional standard errors (S.E.) for the 

three top parameters to differentiate roost-sites used by lactating and non-lactating Myotis septentrionalis 

within roost trees of Newfoundland. Note: only those variables whose |3, + S.E. did not overlap zero 

are used for inference. 

Parameters P/(S.E.) 

Roost tree diameter 0.105 (0.051) 

Total number of live trees 0.010 (0.008) 

Canopy relative to roost 0.051 (0.079) 
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Figure 4: Probability curve for the parameter (roost tree diameter) that best differentiated roost-sites 

used by lactating to those used by non-lactating M. septentrionalis in Newfoundland. 

Roost microclimate 

A clear distinction between regressions of roost microclimate used by lactating and 

non-lactating bats was seen (Figure 5). The average slope of trend lines of ambient and roost 

temperatures were 0.60 for roosts used by lactating bats (n = 2; r2 = 0.68 and 0.88). A slope 

less than one indicated that temperature was more stable and did not fluctuate as much 

inside the roost cavity compared to ambient conditions (range of 11.2 to 23.0°C, and 8.6 to 

26.6°C, respectively). Slope was two times greater for roosts used by non-lactating bats 

(1.35; n = 4; range of r2 = 0.62 to 0.86). A slope greater than one indicated that temperature 

fluctuated more inside the roost cavity than ambient (1.6 to 36.6°C and 4.9 to 27.2°C, 

respectively). The prediction that lactating bats roosted in trees with a small range in 

temperature fluctuation appeared to be true, however not all roosts within large diameter 
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trees maintained these stable microclimates. This was the case for two roosts found in trees 

with a dbh of 23.7 and 34.5 cm that were used by non-lactating bats. The large variation in 

temperature of one roost was most likely attributed to the fact that the roost was not an 

internal cavity, but under a sheet of exfoliating bark; the other roost was composed of a 

cavity that opened from the top of the tree and had a split on one side. Both roosts were 

therefore more exposed to ambient conditions, and fluctuated accordingly. On average 

however, roosts in trees occupied by lactating bats were greater in dbh than roosts in trees of 

non-lactating bats (31.7 cm and 22.7 cm, respectively). 

0 5 10 15 20 25 30 

Ambient Temperature, T A (°C) 

Figure 5: Microclimate of roosts occupied by lactating and non-lactating Myotis septentrionalis in River 

of Ponds, NL. 
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DISCUSSION 

Prior studies have recognized that the distribution of temperate bats can be patchy 

(Dobbs 1983, Amelon and Burhas 2006, Henderson et al. 2008, Lausen 2009). My findings 

were consistent in that Adyotis lucijugus was not ubiquitous and not present in the western-

most areas sampled; M. septentrionalis appeared more restricted, and was absent from the 

southeastern-most areas. There were certain limitations with this study however, in that the 

lack of bat group presence in each sample location may not have been a result of their 

absence, but rather that trapping did not occur often enough, or on the right trails, etc. This 

study provided insight into the factors that account for the distributional pattern of bat 

groups on NL, and how these factors ultimately limit the distribution of bat populations. 

These data show that, as predicted, four bat groups were distinct from each other in terms of 

their roosting and foraging site-selection. The best forest parameters to differentiate 

locations where each bat group was present occurred at both the stand (0.1 hectare) and 

landscape (2.0 kilometer) levels and included the number of snags and tree diameter within a 

stand, and distance to nearest river, number of buildings, and amount of forest in a 

landscape. 

Both sexes of M. lucijugus exhibited relationships with stand-level factors. Maternity 

colonies of M. lucijugus are frequently found in human-made structures throughout their 

range (Fenton and Barclay 1980, Anthony et al. 1981, Burnett and August 1981, Kalcounis 

and Hecker 1996, Riskin and Pybus 1998, Zimmerman and Glanz 2000, Broders and Forbes 

2004). Although I did not track individuals to roosts, I did expect that maternity colonies 

primarily used human-made structures as roosts. Despite sampling locations being close to, 
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or containing buildings within the landscape (average = 34 buildings; range 0 — 102), this 

parameter was not identified as important differentiate presence and absence of female M. 

lucifugus. Instead, the most important parameter was the number of available snags in a stand. 

Although this result was not predicted to be important for this particular bat group, it may 

have been a function of the available forest area in the landscape. Maternity colonies of M. 

lucifugus have been documented in natural structures in previous studies (Fenton and Barclay 

1980, Barclay and Cash 1985, Kalcounis and Hecker 1996), which may be indicative of their 

roosting preference before fabricated structures became available. Therefore, in isolated 

areas such as those on NL, where the percentage of forest area is high and the human 

population is sparse, M. lucifugus females may prefer to roost within forests. This does not 

support the results of the Alaskan study by Parker and others (1997), who suggested that 

maternity colonies of M. lucifugus were more likely to be in human-made structure despite a 

low human population. Certain limitations were apparent in the present study with respect 

to sample size, as female M. lucifugus were only captured in seven of the 33 sampled 

locations. Also, the majority of the forest inventory data used to characterize landscape 

variables were taken from data characterized in 1999. Therefore should any land cover 

changes have occurred since this time, they were not incorporated into this analysis as no 

updates have been made to the data set. Further research could therefore evaluate the roost-

site selection of M. lucifugus maternity colonies in NL in relation to updated landscape, stand, 

and local variables. An increasing number of snags within a stand as an important factor to 

predict presence, support studies on other bat species or groups, which suggest that bats 

might have an affinity to a particular roosting area (Kalcounis and Hecker 1996, O'Donnell 



and Sedgeley 1999, Broders 2003, Carter and Feldhamer 2005). A roosting area allows for a 

network of available trees to be used as roosts (Broders and Forbes 2004). 

Broders and Forbes (2004) determined that in New Brunswick, an increasing number 

of available snags was most important to differentiate roost-site selection of male M. lucifugus. 

In this study, number of snags was initially identified as an important parameter for male M. 

lucifugus presence; however, the relationship carried weak biological significance and was not 

in the predicted direction, as odds of their presence was less likely with an increase in snag 

density. Decreasing average tree diameter in a stand was the most important parameter to 

distinguish locations where males were present, but again was not in the direction predicted. 

Prior studies have determined that males are more plastic in roost-site selection (Thomas 

1988, Barclay 1991, Mills et al. 1996, Broders and Forbes 2004, Perry and Thill 2007) and will 

roost in trees that are smaller in diameter than females, which could explain why the odds of 

finding male M. lucifugus in these stand types increased. 

Adyotis septentrionalis have an even greater affinity towards forests as they are 

dependent on them for both roosting and foraging (Caceres and Barclay 2000, Lacki and 

Schwierjohann 2001, Broders et al. 2003, Carter and Feldhamer 2005). Parameters identified 

as important to distinguish locations where this species was found on NL were at the 

landscape level. Locations where male M. septentrionalis were captured were closer, on 

average, to rivers than locations where they were not captured. This supports results of prior 

studies and the prediction that rivers are essential areas to obtain drinking water, exploit 

foraging opportunities, and for commuting through landscapes (Racey and Swift 1985, 

Grindal et al. 1999, Downs and Racey 2006, Henderson et al. 2008). Most importantly, 
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males were found in landscapes that were more forest-dominant than where they were not 

found. A similar relationship was observed in P.E.I, in that forest area was an important 

parameter in landscape buffers to differentiate areas where both male and female M. 

septentrionalis were captured (Henderson et al. 2008). In this study, the probability of female 

M. septentrionalis presence was highest within landscapes that contained fewer buildings. 

These findings reinforce the importance of forests to promote survival and fitness for both 

groups of the forest-dependent bat species. Additionally, these results suggest that M. 

septentrionalis has reached their northeastern distributional-limit on the island of 

Newfoundland because of the landscape structure, or more specifically, the lack of available 

forest in areas on the island of Newfoundland where M. septentrionalis was not found to be 

present. 

Weather may also be a factor that has influenced the peripheral population of M. 

septentrionalis distribution on NL. For areas separated by the presence of both M. septentrionalis 

groups, the average temperatures were lower where neither group was captured (12.1 °C 

compared to 13.0°C), and the number of fog days were greater (30 compared to 17 days). 

Low temperatures increase the amount of energy required to maintain normothermic body 

temperatures; while fog contains moisture that can accumulatc on the fur of bats reducing its 

isolative power, and creates "clutter" in the air that has a negative effect on echolocation 

(Grindal et al. 1992, Buries et al. 2009). Since Newfoundland provides a unique view of 

temperate bat ecology, it is important to compare and contrast this perspective to that of the 

central North American distribution, where most studies occur. Forest-dependent, female 

M. septentrionalis were present in central areas sampled of NL and absent in the more 
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northern, eastern and southern portions. Males however, showed greater flexibility and were 

present in more of the southern areas, which is a common trend seen in other studies 

(Thomas 1988, Barclay 1991, Mills et al. 1996, Broders and Forbes 2004, Perry and Thill 

2007). It is expected that, since males contribute litdc energy to reproductive costs, they be 

less constrained in site selection than females (Thomas 1988, Barclay 1991, Mills et al. 1996). 

Therefore, focusing on specific factors regarding roost-site selection of females may provide 

greater insight as to which factors are essential for survival and dictate distributional limits. 

Throughout the interior of their range, female M. septentrionalis roost in a wide variety 

of tree species that are, on average, tall and large in diameter. In the majority of areas 

previously studied, hardwoods have been an important site for roosting (Sasse and Perkins 

1996, Foster and Kurta 1999, Menzel et al. 2002, Owen et al. 2002, Broders and Forbes 

2004, Carter and Feldhamer 2005, Ford et al. 2006, Garroway and Broders 2008). As studies 

progress to southern areas of the described distribution in North America, softwoods are 

also becoming a more common roosting substrate (Lacki and Schwierjohann 2001, Perry 

and Thill 2007). Interestingly, studies that identified softwoods as common roost-sites for 

female M. septentrionalis, also described average roost tree height and diameter to be on par 

with, or less than these in this study. Furthermore, on the island of Newfoundland 

softwood species (particularly balsam fir; slbies balsamea) were the most common roost tree 

species (58.3% of known roost tree species used, 38.9% of total roost trees). Though 

factors influencing selection of softwoods as roost-sites are unclear, in Newfoundland the 

reason could simply be due to their greater availability. On the west coast and northern 

peninsula of the island, where the study site was based in 2009, balsam fir is the dominant 
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tree species, with black spruce (Picea mariana) present in low-lying bogs and wet-site forests 

(Setterington et al. 2000, Thompson et al. 2003). Both softwood species comprise over 75% 

of the total forest composition on the island (DNR 2008a), which limits the selection of any 

other species of tree (including hardwoods) to be used as roost-sites. Balsam fir is known to 

be a short-lived species, such that "old growth" that has reached canopy height will typically 

only last 20-30 years (Thompson et al. 2003), which lessens the opportunity to grow to a 

large size. The amount of old growth forests has further been reduced in the western region 

of the island since the 1940s because of logging, and infestations of both hemlock looper 

(Lambdina fiscellarid) and spruce budworm (' Choristoneurafumiferand) (Thompson et al. 2003). 

Smaller and shorter roost trees, compared to those available in central areas of female M. 

septentrionalis distribution in North America, are widely available in Newfoundland, and are 

chosen as suitable roost sites that meet the expensive costs of reproduction. 

Energetic requirements of bats are not only differentiated by sex, but also by 

reproductive status. Non-reproductive females, like males, lack the energetic stress of 

producing offspring and can therefore be more flexible in selection of roosting sites 

(Thomas 1988, Barclay 1991, Mills et al. 1996). In this study, roost-tree and -site 

characteristics selected for by lactating M. septentrionalis appeared to coincide with energetic 

demands, relative to those that were non-lactating. Lactating bats selected roost sites with 

specific attributes at the local and stand levels, which included roost tree diameter, canopy 

height relative to the height of the roost in a tree, and the total number of live trees within a 

stand, all of which exhibited a positive relationship with lactating bat presence. 
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Both canopy height relative to roost height and number of trees in a stand did not 

exhibit the relationship predicted, and lacked a strong biological association in differentiating 

lactating northern long-eared presence from non-lactating. Only one other study has been 

performed on roost-site selection of M. septentrionalis in comparison to reproductive status. 

Garroway and Broders (2008) concluded that a shift in resource selection occurred based on 

an inference that, relative to non-lactating females, lactating bats preferred roosts exposed to 

increased solar radiation, and reduced clutter (i.e. roosts were situated high in tall trees that 

were surrounded by a relatively open canopy and a low number of trees in the stand). It 

would be expected that maternity colonies roost high in trees (i.e. close to the canopy) that 

are relatively void of clutter to gain warmth from exposure to sunlight (Vonhof and Barclay 

1996, Betts 1998, Ormsbee and McComb 1998, Veilleux et al. 2009). Roosts that are higher 

in temperature boost development of young during parturition (Racey and Swift 1981, 

Vonhof 1996, Kerth et al. 2001b), which is especially important when the growing season is 

short compared to that at the interior of the species' distribution (Lewis 1993, Kerth et al. 

2001b). Avoiding any conditions that would result in energetically cosdy roosting conditions 

is important to enhance fitness for both females and their offspring, notably at the northern 

extremes of their distributions (Lacki et al. 2009). In this study however, roosts of lactating 

females were located in cluttered stands. 

On the island of Newfoundland, lactating M. septentrionalis most importantly, roosted 

in trees that were larger in diameter, relative to non-lactating females. This is further 

supported by trends seen in prior studies that have compared characteristics of roost trees 

used by female M. septentrionalis to that of random trees (Sasse and Perkins 1996), of trees 
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used by males (Perry and Thill 2007), and trees used by colonies to those by solitary females 

(Lacki and Schwierjohann 2001). Insulation and temperature of roost cavities is also largely 

dictated by the size of the tree in which it is located. Large diameter trees provide more 

insulation and are less affected by ambient conditions, enabling them to maintain more 

stable microclimates than trees with smaller diameters (Nicolai 1986, Vonhof and Barclay 

1997). Maternity colonies required to maintain and conserve energy could therefore select 

particular roosts based on roost temperatures (Broders and Forbes 2004). Since a significant 

difference between colony sizes of lactating bats in comparison to non-lactating bats did not 

occur, this study does not support the trend that lactating females will select large diameter 

trees in order to form colonies of a greater size to socially thermoregulate. This study may 

have been constricted however, in that the sample size was not large enough to detect this 

trend. 

Roost microclimate has not been widely studied in the past due to difficulty of access 

to cavities. For studies that have been successful, reproductive bats seem to select roosts 

with more stable microclimates, relative to roosts used by non-reproductive females (Burnett 

and August 1981, Kalcounis and Hecker 1996, Sedgeley 2001). This study also supported 

the prediction that the more energy-demanding lactating period resulted in females selecting 

roosts in trees that maintained stable microclimates, relative to the microclimate of roosts 

used by non-lactating M. septentrionalis. However, not all large diameter trees produced stable 

temperature ranges as predicted; in two instances where this occurred, non-lactating females 

were found roosting in large-diameter trees with unstable temperatures. The two roosts 

were under exfoliated bark and in a split in the top of a tree. A cavity within the trunk of a 
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tree that has a solid enclosure and small entrance, protects the roost from extreme ambient 

fluctuations and prevents temperatures from getting too cold, as well as too warm 

(Kalcounis and Hecker 1996, Sedgeley 2001). If the roost temperature becomes too cold, 

reproductive females run the risk of entering torpor, or expending a lot of energy to 

maintain normothermic conditions, which lowers the survival and growth rate of their 

offspring (Racey and Swift 1981, Thomas 1988, Barclay 1991, Mills et al. 1996). 

Additionally, if roost temperatures are too warm, it will exceed the thermoneutral zone for 

the particular species (Kalcounis and Hecker 1996). It is therefore necessary to consider 

that, along with tree diameter, roost type selected by females is also dependent on 

reproductive condition. 

CONCLUSION 

This study refined the range of M. septentrionalis on the island of Newfoundland and 

revealed factors that influence roost and foraging site selection for peripheral populations of 

temperate bat species. Analyses in this study identified multiple predictors for both species 

that occurred at the stand- (for M. lucifugus) and landscape- level (for M. septentrionalis). These 

predictors are therefore believed to influence the distributional pattern of resident bats on 

NL. Location preference was further differentiated by sex of both species. This implies that 

adequate roosting and foraging sites occur in diverse areas for all four groups of temperate 

bats. 

For the more forest-dependent and energy restricted female M. septentrionalis, roost-

site selection at the periphery of their range was found to differ from that at the interior of 



their North American distribution. However, even at the Northeastern extreme, which 

contains forest features that are less likely to be chosen by M. septentrionalis females at the 

interior of their distribution, the overall trend of roost-site selection is similar. When 

differentiated by reproductive condition, females that were lactating and undergoing 

conditions that required significant energy resources, selected roost cavities that were 

enclosed in large diameter trees and had warmer, more stable microclimates, than those that 

were non-lactating. This suggests that reproductive females are more sensitive to 

distribution-limiting factors within peripheral populations of temperate bats. In future 

research, it would be beneficial to continue the examination of roost microclimate 

differences between lactating and non-lactating females to support my results, and to 

evaluate the relationship between temperature and metabolic rate of M. septentrionalis. 

Investigating torpor use by females, and relating it to roost microclimate would also evaluate 

the benefits or costs associated with utilizing torpor during different stages of reproduction. 

This would permit a stronger inference regarding the benefits of roost microclimate for 

reducing energy costs of reproductive females. 
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DATA OF ROOST TREES USED BY LACTATING FEMALES ON 
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Location, forest measures and presence of lactating (1) or non-lactating (0) female M. 
septentrionalis data for each of the 35 roosts sampled in River of Ponds, NL, in 2009. ID = 
identified roost tree, Long. = longitude in decimal degrees in WGS1984 format, Lat. = 
latitude in decimal degrees in WGS1984 format, Lact. = presence of lactating M. 
septentrionalis, Roost dbh = diameter at breast height (cm) of roost trees, Can. rel. roost = 
canopy height relative to roost height (m), Snags = number of snags in a stand plot, Live 
trees = number of live trees in a stand plot. 

ID Long. Lat. Lact. 
Roost 

dbh (cm) 
Can. rel. 
roost (m) 

Snags 
Live 

trees 
R01T0715N09 -57.332 50.391 0 52.5 13.6 0 163 
R02T0716N09 -57.332 50.398 0 23.7 11.8 20 48 
R03T0717N09 -57.330 50.402 0 11.0 12.2 11 80 
R04T0718N09 -57.331 50.403 0 16.5 14.9 18 143 
R05T0719N09 -57.328 50.400 0 21.1 8.6 27 80 
R06T0720N09 -57.337 50.404 0 8.5 14.6 18 118 
R07T0721N09 -57.330 50.403 0 17.0 6.0 21 166 
R08T0725N09 -57.326 50.399 0 31.5 8.7 7 22 

R09ER0826N09 -57.328 50.399 0 24.4 4.4 15 108 
R10H0328N09 -57.325 50.400 0 19.2 9.6 26 75 

R12ROP1B13L09 -57.318 50.403 1 31.7 22.0 7 46 
R13ROP1B14L09 -57.360 50.543 1 43.0 17.0 9 241 

R14ROPER1315L09 -57.360 50.544 0 14.2 17.4 9 187 
R15ROPER1316L09 -57.355 50.546 1 40.5 7.3 10 139 

R16ROP1B16L09 -57.363 50.551 1 23.0 n/a 19 178 
R17ROPER1316L09 -57.369 50.546 0 19.0 n/a 20 51 

R18ROP1B17L09 -57.340 50.548 0 27.0 15.5 9 143 
R18ROP1B17L09 -57.356 50.546 1 27.0 15.5 9 143 
R19ROP1B18L09 -57.372 50.547 1 21.2 7.7 17 53 

R20ROPER1318L09 -57.342 50.547 0 17.8 n/a 13 76 
R21ROPER1319L09 -57.348 50.546 0 28.5 0.6 4 151 

R22ROP2A23L09 -57.366 50.550 1 41.5 9.9 8 110 
R23ROP2A23L09 -57.383 50.537 1 n/a n/a 23 174 
R24ROP2A24L09 -57.369 50.548 1 34.5 11.2 9 39 
R25ROP2A25L09 -57.382 50.538 1 32.2 -0.1 17 169 
R26ROP2A26L09 -57.376 50.544 1 27.5 14.3 12 123 

R27R2628L09 -57.375 50.544 0 15.7 n/a 22 57 
R28R2629L09 -57.375 50.544 0 24.0 n/a 15 119 

R29ROP1B01A09 -57.383 50.538 1 35.0 16.8 25 236 
R30ROP1B01A09 -57.383 50.538 1 22.7 18.8 19 230 
R31ROP1C05A09 -57.373 50.513 0 34.5 19.1 13 44 



R32ROP1C05A09 -57.373 50.513 0 25.6 n/a 7 58 

R33ROP1C07A09 -57.368 50.518 0 15.7 12.0 13 74 

R34ROP1C08A09 -57.372 50.515 0 14.5 n/a 13 82 

R35ROP1C09A09 -57.372 50.515 0 37.5 n/a 14 71 

R36ROP1C10A09 -57.372 50.515 0 22.4 n/a 14 100 


