

A Study of Sex Role Stereotyping Among Students of Lunenburg County High Schools

Peter F.J. Straubel © 1991

Produced at the Lunenburg County School District Teachers' Center in fulfillment of the requirements for Variable Leave, and with assistance from an NSTU Research Grant November, 1991

National Library

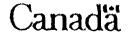
Bibliothèque nationale du Canada

Canadian Theses Service

Ottawa, Canada K1A 0N4

of Canada

Service des thèses canadiennes


The author has granted an irrevocable nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-315-74441-3

M.A. Thesis in partial fulfillment of the requirements for the Masters of Arts in Education Degree

Saint Mary's University

20 February 1992

Signature of Supervisor:

Ber

Dr. Bernard Davis

Signature of the Dean of Education:

7. Roger Barnsley

Table of Contents

Introduction

Abuse of Women-A Social Problem	1
Attitudinal Correlates	7
Cultural Forces	10
Experiential Forces	14
Research Questions	16

Method

The Independent-Demographic Variables	18
The Independent-Psychological Variables	20
The Dependent Variable	25

Results

The Independent-Demographic Variables	26
The Independent-Psychological Variables	29
The Dependent Variable-Sex Role Stereotyping	32

Conclusions	••••	34

Epilogue	 43

Bibliography	 44
brottograpny	

Appendices		50
Appendices	* * * * * * * * * * * * * * * * * * * *	

Abstract

Title: A Study of Sex Role Stereotyping Among Students of Lunenburg County High Schools
Author: Peter F.J. Straubel

Date: 20 February 1992

In this study 862 students from six high schools in Lunenburg County, Nova Scotia were surveyed. The questionnaires were administered by guidance counsellors to a random sampling of grades 10, 11 and 12 students in all six high schools. The survey consisted of 72 questions which measured four attitude scales; Burt's Sex Role Stereotype Scale (SRS), Rubin and Peplau's Just World Scale (JWS), Burt's Adversarial Sexual Beliefs (ASB), and Bardis' Acceptance of Violence Scale (VS). Six of the questions solicited demographic information.

The results of the study showed that males had more conservative scores on the attitude scales than females, i.e. males were more sexist, had a greater belief that the opposite sex was an adversary, and were more accepting of violence. In addition the study confirmed two hypotheses-that students who are more sexist are more inclined to be accepting of violence and that students who are more sexist have a greater tendancy to view the opposite sex as an adversary.

The results of the study also supported previous research by Martha Burt (Burt, 1980) which suggested that attitudes such as sex role stereotyping, adversarial sexual beliefs and acceptance of violence were attitudinal antecedents to female abuse.

1

Table of Contents

Introduction

Abuse of Women-A Social Problem	1
Attitudinal Correlates	7
Cultural Forces	10
Experential Forces	14
Research Questions	16

Method

The Independendent-Demographic Variables	18
The Independent-Psychological Variables	20
The Dependent Variable	25

Results

The Independent-Demographic Variables	26
The Independent-Psychological Variables	29
The Dependent Variable-Sex Role Stereotyping	32

Conclusions	••••••••••••••••	34
Epilogue		43
Bibliography	•••••	44
Appendices		50

Introduction

Abuse of Women-A Social Problem

Educators in Nova Scotia (and elsewhere) are concerned with the high incidence of female abuse that exists among adult and student populations. According to Statistics Canada (Chronicle-Herald,13 Oct. 1990) in 1989 more than 100 women across the country, an average of almost two each week, were killed by men they were still living with or had left. The homicide figures are just the tip of the iceberg. Underneath is a structure that is formed of equally startling statistics.

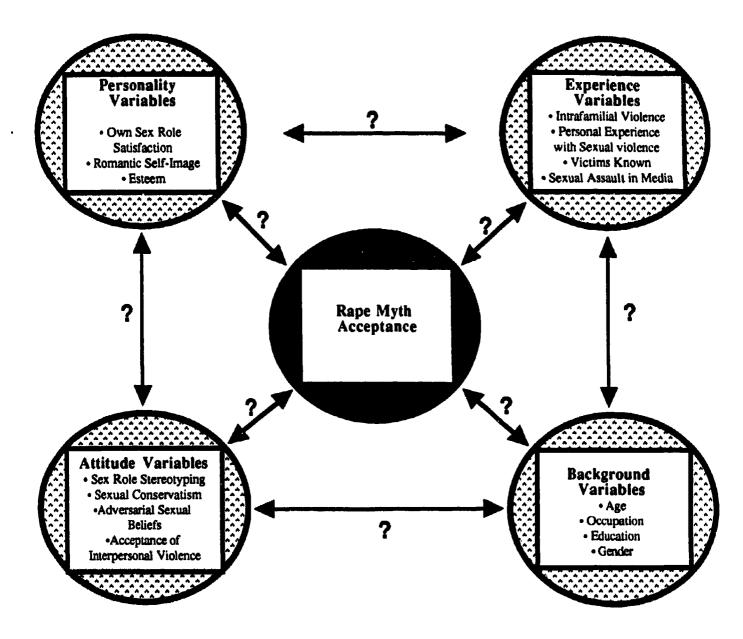
One in 10 Canadian women are abused in their homes and this is considered a conservative estimate (Labatt, 1991). The figure is probably closer to 1 in 4 (Labatt, 1991). The tabulated figures in Nova Scotia for abuse of Women were four times the national average, and the South Shore region of Nova Scotia had some of the highest figures in the province (Labatt, 1991). Bringing these statistics closer to home, a study was conducted for the Nova Scotia Advisory Council on the Status of Women in November, 1990 called *Young Women In Nova Scotia* (Day, 1990), in which 1600 women students of high school age were interviewed. The study reported that 11 percent of young women had been sexually abused by their boyfriends, 18 percent had been physically assaulted, and 32 percent said they had suffered emotional abuse; of those women from the sample who had reported having engaged in sexual intercourse, 19 percent said they had been forced into it by their boyfriends, (Day, 1990).

Most recently on 15 August 1991, the CBC Radio news program, "Mainstreet" reported that the trend for high rates of abuse of women is continuing for 1991. From January to

June 1991 (Paquette,1991), forty women across Canada have been murdered by partners or spouses, including five from Nova Scotia.

It is my opinion that there is the tendancy to hide the causes for abuse of women behind convenient and ready-made social problems such as unemployment, poverty, drug and alcohol abuse, or illiteracy. The act of rationalizing this social problem is to divorce ourselves from the responsibility of doing something about it. Abuse of women is not a result of increasing unemployment or difficult economic times, nor are abusers restricted to lower socio-economic groups. Adverse social conditions increases the likelihood that abuse may occur but it is suggested by the author that social conditions are not the root of the cause for abuse.

I believe that attitudes are what cause men to become abusers; preconceived notions that women are somehow inferior, or deceitful, or "only good for certain things", or that it is Ok for a man to hit his wife or a boyfriend to push his girl against the locker because, after all, he has had a bad day. I am sure that most reasonable people feel that there is no justification for any person to strike a blow against another other than self defence. Why then do husbands, lovers and boyfriends continue to hit, insult, humiliate, manipulate, and even kill those women they are supposed to love?-And while we as individuals have very little direct control over social or economic problems, we do have some control over our attitudes.


Martha Burt a researcher for The Urban Institute, Washington, D.C., conducted a study in 1980 which became a sounding board for researchers of female abuse and family violence. Her study entitiled, "Cultural Myths and Supports for Rape", investigated the factors that can predict an acceptance of the "rape myth". The mind set Burt calls "rape myth" is very dangerous and according to her investigation is becoming more wide spread in the belief systems of lay people and professionals who interact with rape victims and assailants (Burt, 1980,p.217). Examples of rape myths are; "only bad girls get raped", "any healthy woman can resist a rapist if she really wants to", "women ask for it", "women 'cry rape' only when they've been jilted or have something to cover up", "rapists are sex -starved,insane, or both"(Burt, 1980,p. 217). She also goes on to report that rape myth acceptance effects verdicts in mock-jury rape trials (Burt, 1980,p.217). Acceptance of the rape myth can be explained as being the belief held by an individual that somehow the victim of sexual violence, such as rape, is responsible in some measure for the assault. This is a classic case of "blaming the victim".

Burt identified several attitudes and factors that predicted the acceptance of "rape myth". The attitudes are sex role stereotyping, adversarial sexual beliefs, sexual conservatism, and acceptance of interpersonal violence (Burt, 1980). Other factors which predict rape myth are personality characteristics, background characteristics, and personal exposure to rape, rape victims, and rapists (Burt, 1980).

Burt developed a model which included all the variables that potentially affected rape myth acceptance (see Figure 1). All the variables appearing to the left of a given variable were assumed to affect that variable causally. She then used multiple regression techniques and non significant paths between variables were eliminated. The data for Burt's analysis was collected from a random sample of 598 Minnesota adults, aged 18 years and over, during February-April, 1977. The interviewers who conducted the survey were women trained in interview techniques and who worked for the US Census Bureau,in Minnesota.

The Rape Myth Acceptance Variable was measured by a 19 item attitude scale developed by Burt. The Personality Variables consisted of three variables. Own Sex Role Satisfaction (OSRS) was measured by a ten-iten scale developed by Burt. Self Esteem (ESTEEM) was

Figure 1.1 Theoretical Model of Antecedents of Rape Myth Acceptance (Burt, 1980)

measured by using Rosenberg's (1965) Self Esteem Scale, and Romantic Self Image (RSI) was measured by using ten items from a scale developed by (Estep, Burt &Milligan, 1977). Burt chose these three personality variables with the logic that victim rejection occurs because people engage in defensive attribution. So one would expect that the more confident and satisfied the respondents felt about themselves the less rape myth aceptance. Of the personality variables Burt found that none of them produced a direct effect on rape myth acceptance and so were removed from the regression equation.

The Experiental Correlates used by the author were a selection of personal experiences of knowing victims or assailants, of having been a victim and having witnessed intrafamilial violence, and exposure to popular media treatments of sexual assault. To measure Number of Sexual Assault Victims Known (VICKNOWN) two questions were asked by the interviewers; "Have you ever known someone who was forced to engage in sex against their will?", and "How many sexual assault victims have you known?" The actual number of victims known was used as the measure if sexual assault victims known.

Three questions explored the respondents Personal Experience With Sexual Assault (VICSELF); "Have you ever had any one force sex on you against your will?", "Have you ever had anyone attempt to force sex on you, but was unsuccessful?", and "Have you ever had sex with someone only because you were afraid physical force would be used against you if you didn't go along?" If a respondent answered "yes" to the second question, (VICATTEM) was coded 1; otherwise it was coded 0. If a respondent answered yes to either the first or third question, (VICSELF) was coded 1; otherwise it was coded 0.

The Experience With Intrafamilial Violence (VIOLEXP) was measure using a 5-point scale (always, frequently, sometimes, rarely, never) in response to the following questions; "How often did your parents hit you when you were growing up?", "In your family, when

you were growing up, how often did your parents hit each other violently?", "In your marriage, how often does/did the husband hit the wife?".

Exposure to Media Treatments of sexual assault (MEDIA) was measured by asking the respondents about their exposure to television, motion pictures, dramatic, and newspaper treatments of rape or sexual assault. Responses were coded as 1,2,3,4, and 5 or more exposures. The experiential variables proved to be the least consistent and have the least important effect on subsequent variables.

Burt examined the attitudes towards women, or Sex Role Stereotyping (SRS) and three other attitudinal variables; Sexual Conservatism (CONSERV), which refers to the restrictions on the appropriateness of sexual partners, sexual acts, conditions or circumstances under which sex should occur ; Acceptance of Interpersonal Violence (IPVIOL), which refers to the acceptance of the use of force and coercion to gain compliance, especially in sexual relationships; and Adversarial Sexual Beliefs (ADVERS), the expectation that sexual relationships are fundamentally exploitive (Burt, 1980, p.218)

Each of the four attitude variables were measured by scales developed by Burt and were scored on 7-point likert scales (see Method section). When the results were analysed it was discovered that only Sexual Conservatism failed to affect rape myth acceptance significantly. The three other variables were all strong predictors of rape acceptance myth with acceptance of interpersonal violence being the strongest predictor.


The Background Variables used were sex, age, education and occcupational status. Occupational Status was measured using Duncan's (1961) Socioeconomic Status Index. Burt found that the older the respondent the stronger they adhered to conservative attitudes towards sex role stereotyping, adversarial sexual beliefs and sexual conservatism.

Occupational status and education had the opposite effect; the more educated and the higher the occupational status, the more liberal the attitudes on sex role stereotyping, adversarial cexual beliefs, and sexual conservatism. When the samples were split according to gender the results were similar.

Burt's study made two important discoveries. First, significant numbers in her sample believed many rape myths. Second, that their acceptance of violence against women (in this case specifically sexual violence) is strongly connected to deeply held and pervasive attitudes such as sex role stereotyping, distrust of the opposite sex (adversarial sexual beliefs), and acceptance of interpersonal violence.

Thus, Burt's research showed that the inclination to abuse women and the acceptance of abuse of women may be predicted from attitudes such as sex role stereotyping, adversarial sexual beliefs and acceptance of violence. In other words men who have stereotypical views of women, women's roles and behaviours tend to regard women in a less than equitable manner. Closely linked with this is the underlying belief that women are untrustworthy or manipulative, and the tendancy for these men to have a greater acceptance of violence as appropriate behaviour or in some cases, as a substitute for communication.

This research will parallel Burt's work and will attempt to examine the attitudinal correlates, and the experiential and cultural forces which might form the antecedants to female abuse and the acceptance of such abuse.

Attitudinal Correlates

The net effect of those attitudes which support female abuse is to isolate or distance the victim, (Burt, 1980) so that the abuser thinks it is acceptable to commit an abuse. On a cultural level the same attitudes lend themselves to deny or reduce perceived injury or to blame the victims for their own victimization.

The presence of fixed or traditional attitudes regarding how men and women are to behave (sex role stereotyping) plays a very significant although often overlooked part in the process which distances the victim and makes abuse possible or acceptable, (Burt, 1980). The development of a woman's personality and self esteem is also influenced by sex role stereotyping. It was found that masculinity was the best predictor of self-esteem (Long, Vonda, Olsen, 1986) and that adolescent females classified as androgynous or masculine in gender-role-orientation had higher self esteem than adolescents classified as feminine (Mullis, McKinley, 1987). Similarly, women who were classified as feminine had the greatest fear of success, (Sager, 1983) and so tended to remain in submissive roles.

Other studies reported that sex role stereotypical attitudes among teachers, counsellors and administrators influences womens' career choices and aspirations (Hawley, 1982; Betz and Hackett, 1981). At least one study suggested counsellors in general did not understand the importance of sex-fair practices in influencing futures of their student-clients, (Griffin, 1983). The research also suggests that women tended to choose their careers according to a male perception of what women's roles ought to be, (Griggs, et al., 1983; Knight and Sedlacek, 1983).

When you consider the research and the fact that most teachers, counsellors and

7

administrators at the high school level are men (and some, including women, are overtly sexist) it is not surprising, that women students choose their vocations accordingly. This study will use Burt's Sex Role Stereoype Scale and will use her sample as the norm group when measuring sex role stereotyping, (for Burt's study, SRS; M=37.6, SD=10.5).

Adversarial sexual beliefs refers to the belief that a member of the other gender is not to be trusted and is to be considered an adversary. Martha Burt suggested (Burt,1980) that people with such attitudes tend to regard "...sexual relationships as fundamentally exploitive, that each party to them is manipulative, sly, cheating, opaque to the other's understanding and not to be trusted." People who hold such a view of male and female sexuality might view abuse as a likely outcome from such an exploitive relationship (Samios et al., 1985) and would not necessarily view an abusive situation as one which solicits sympathy or support for the victim. Adversarial gender beliefs therefore,would also be expected to vary significantly with the other attitudinal correlates, and for this purpose can also be compared to Burt's sample as a norm group (for Burt's study, ASB; M= 29.0, SD= 8.5).

The idea that the world is just is a relative point of view. Generally, those persons in positions of power, control or influence may tend to view the world as a more just and fair place to live, compared to the perception of those individuals who have very little power, control or influence. It might be argued that people in positions of power believe the world is just and fair in order to justify their priveledge and to maintain the status quo. Research has shown that in populations men overall tended to believe in a just world whereas women tended to view the world as being less fair (Chen and Lin, 1988). These findings were the result of Chen and Lin's work which was a continuation of Burt's 1980 research.

Two researchers (Chen, Lin, 1988) surveyed 266 college students from four Indiana colleges in order to investigate gender differences in attitudes towards rape victims. They

used Burt's Sex Role Stereotype Scale (SRS) to measure attitudes towards sex roles. They developed the Attitudes Towards Rape Victims Scale (ATRVS), a series of questions that measured the respondent's acceptance of rape victims, that is the measure to what extent the respondent thought the victim was an innocent victim and not an architect of their own misfortune. An Attrition Scale was also developed by the authors which measured certain preconceived notions about the cause for rape and who should carry the blame for a sexual assault such as rape. The fourth scale that was used was the Just World Scale (JWS), a scale consisting of twenty-three questions that measures the extent to which a respondent views the world as being fair and just (see Methods section).

The researchers found that there were significant gender differences on the SRS with males more accepting of sex role stereotyping than females (for males, M=32.547; for females, M=37.324).Significant gender differences appeared on the ATRVS and the JWS. It was discovered that females were more accepting of rape victims and that males generally believed that the world was more fair and just than females.

The importance of this finding is that it points out the apparent contradiction that exists in the belief of a "Just World". A truly "Just World" has no victims, therefore if someone is injured then it is by the person's own carelessness. Therefore, it is no surprise (as in Chen and Lin's study) that males in general believe the world is more fair and just and at the same time they are less accepting of the notion that rape victims are in fact victims. On one level those men who were surveyed believed that rape victims are in some part the author of their unfortunate victimization, and yet on another level this seems incompatable with the belief in a "Just World".

The researchers analysed the results of the Attrition Scale and found that 49.6% of the students responding on the Attrition Scale believe that rape victims were "too trusting in

people" as a major cause of rape, while 25% believed that the rape victim's behaviour was another major cause.

The contradiction between fairness and "blaming the victim" is the phenomenon which Burt calls the "Just World Hypothesis" (Burt, 1980). She points out that it becomes harmful when the believer uses it to detach themselves from any responsibility from a specific circumstance such as a rape or an abuse scenerio. Burt suggests the Just World Hypothesis is a type of logic "... in which observers justify misfortune by attributing responsibility or fault to the victim", (Burt, 1980, p.218-9).

A stronger belief in a Just World would be expected from those who would also tend to have more conservative views according to the other attitudinal correlates. The sample from the Chen, Lin study (1988) will serve as a norm group to compare the results for both the SRS and JWS for this study, (for Chen,Lin,: SRS for males M=43.911, for females M=46.363; JWS for males M=89.93 and for females M=92.92).

Cultural Forces

It seems to me that men since the neolithic have demonstrated a greater willingness to exhibit aggressive behaviour. While hunting cults needed this kind of behaviour as a mechanism for survival, it is unnecessary and inapproriate in today's world. Biologists might argue aggressive behaviour by men is in part a result of an abundance of testosterone. The social scientist might add that in part it is the result of role modelling and socialization. For instance some researchers (eg.Covey,1983) believe that a person's social skills or a lack of social skills tends to influence the person's behaviour and the behaviour of others. Socially skilled men used less verbal aggression and physical violence while men who lacked social skills communicated more physically, and verbally more agressively (Covey, 1983).

In my view young people today seem to be more frequently exposed to adult role models who reinforce the doctrine that "might is right" and that conflict is best resolved through force. At the same time our youngsters' portfolios of attitudes are actively being shaped. Young people watch those around them who have lost the ability to articulate opinions through healthy debate resort to intimidation or angry retorts in conversations when they don't get their way. On an international level young people see nations willingly use force of arms to settle problems that could be settled with compromise and communication. The message to our youth from a cultural level is quite clear; aggressiveness and violence is acceptable. Martha Burt articulated this view as well ; "...a cultural matrix that encourages rigid sex roles and imports male dominance, generates rape (abuse)-supportive attitudes and beliefs that act out as psychological releasers or neutralizers allowing potential rapists (abusers) to turn off social prohibitions against injuring or using others", (Burt, 1980).

Acceptance of violence is the belief that it is acceptable to use force or intimidation to get ahead and, that it is an appropriate form of behaviour in a relationship or in a social milieu. Some researchers distinguish between violence and aggression; "While violence is an act which causes damage to a person or property", aggression which is the prelude to violence, "includes overt and covert acts, or assertive, attacking, and intrusive behaviour" (Bardis,1973). Since abuse includes those aggressive behaviour (whether physical or verbal) which cause someone some harm then aggressive behaviour is considered violence by these researchers. Others distinguish between physical and sexual violence as in the case of rape (Burt, 1980), however most researchers agree that all violent acts have in common the desire to be in control or to have power over others. The tendancy to behave violently or the propensity to be accepting of violence as a suitable means of conflict resolution is in part a function of learned behaviour and partly a function of a cultural attitude which supports or is accepting of violence. It has been suggested that underreporting of rape or sexual assault may be due to the acceptance of violence in a given social setting and fear of retaliation, (Lynch, 1985). There is strong evidence to suggest that men who are abusers have probably watched their fathers abuse their mothers and to a certain extent have been taught this behaviour (Stahly, 1985).

New research suggests that there is a link between social skills and physical violence or aggression, (Covey, 1985). In Covey's research there seemed to be a high correlation between social skills and the use of verbal reasoning and conflict resolution. The persons level of social skills was negatively correlated with the tendancy to use verbal or physical aggression. The research also suggested that persons who were exposed to displays of bad social skills tended to learn this behaviour and also accepted it as appropriate behaviour. However some researchers (Stahly, 1985) argue that the tendancy to behave violently does not exclusively come from individual contact with a violent person such as an abusive father but is something that is picked up from intangeable social messages. Stahly points out that,"...battering men tend to come from physically violent families, but violence against women may be indicative of an underlying set of misogynistic attitudes, rather than an example of learned behaviour or low impulse control" (Stahly, 1985). Researchers like Stahly suggest that the acceptance of violence (as an acceptable means of behaviour) is a function of attitude and less a physiological problem or an inability to control impulses. Such attitudes are derived from culture and experience (which will be articulated in the next section) and like the other attitudinal correlates mentioned before, the tendency to accept violence can be measured.

One measure of a person's acceptance of violence (which is often mentioned in the

literature) is the Conflict Tactics Scale (CTS). This scale was developed by Murray A. Strauss (1979) with a view to measuring the variety of techniques members of a family can employ in resolving a conflict and also to measure to what extent they used such tactics. The acceptability of violence would be determined by their choice of conflict resolution tactics and their frequency of use.

The Conflict Tactic Scale measures three modes of dealing with conflict:

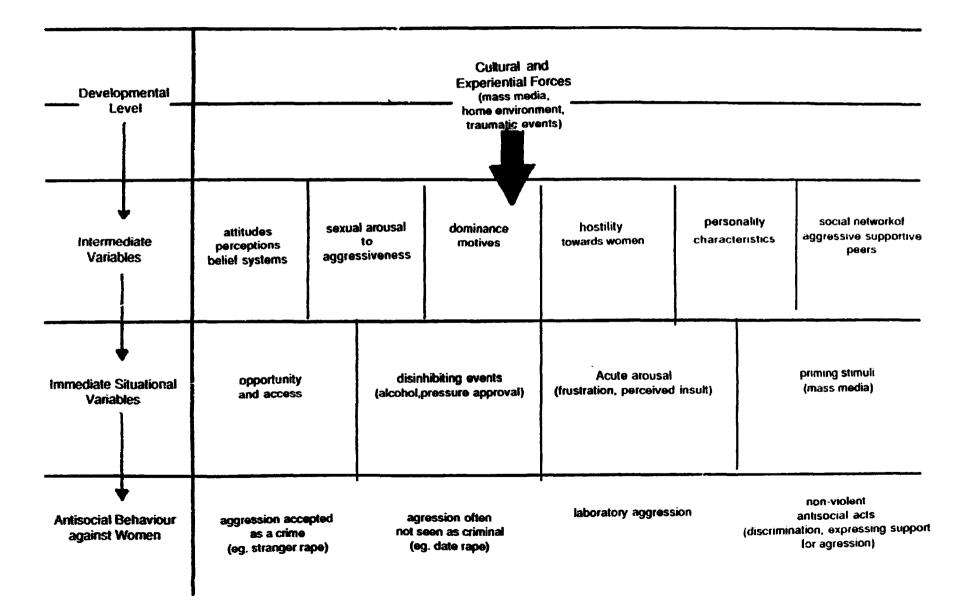
1. The use of rational discussion, argument, and reasoning-an intellectual approach to the dispute, called the "Reasoning Scale".

2. The use of verbal and nonverbal act which symbolically hurt the other, or the use of threats to hurt the other, which, for the purposes of the instrument is called the "Verbal Aggression Scale".

3. The use of physical force against another person as a means of resolving the conflict, called "Violence Scale".

Variations of the CTS have been developed by Strauss for specific kinds of violence such as, Child Abuse, Wife-beating, Husband-beating. The disadvantage with the CTS is that it requires interviews with open-ended response methods, an almost impossible task when trying to measure a large sample of teenagers. Another difficulty with the CTS is that it requires candid disclosure of very intimate and sensitive details of a persons private life. Such an interview would be unacceptable to most school districts and to most high school students. Therefore another measure of the acceptance of violence had to be substituted for the purposes of this study.

An appropriate instrument was developed by Panos D. Bardis (1972) which consisted of twenty five short questions that can be answered on a 7-point likert scale. The scale called simply the "Violence Scale" (VS) measures to what extent a person finds the use of violence acceptable (violence here refers to words, and actions aimed at property damage and personal injury). Bardis developed and tested this instrument specifically for students in grade ten or above and the questions are not so sensitive in nature as to cause discomfort or a reluctance for disclosure by the respondent.


The test sample that Bardis (1972) used to develop the scale (25 male high school students and 20 female high school students from Toledo Ohio) can serve as a norm group with which to compare the results of this study,(for Bardis VS; for males M= 54.3, for females M= 34.45). It is important to note that Bardis' scale was developed and tested shortly after the "Kent State" shootings. This was a period of American social history where anti-war feelings were at an unprecedented height. Therefore I expect that my sample will produce scores that are considerably higher for the acceptance of violence than those of Bardis' sample. The purpose of comparing these two groups of teenagers (of roughly the same age and culture) by using this scale is to provide a contrast between two totally different social climates- one from a period of time when violence was less acceptable (if only as a reaction to the Viet Nam War), and the other from a period of time where violence seems to be more acceptable. Bardis' scale is a valuable measure of the acceptance of violence even though the two groups which will be compared are from totally different social contexts.

Experiential Forces

As mentioned earlier the acceptance of abuse is an attitude which is derived from cultural forces and through exposure to violence (Covey, 1985). It is a fact that a large number of male abusers have themselves experienced abuse or at least observed it happening as youngsters at home (Stahly, 1985). The media is also a major provider of experiences with

Hypothesized Environmental Influences On Antagonistic Behaviour against women (Malamuth,Neil and Briere, 1986)

Figure 2

violence (Malamouth, Neil, Briere, 1986).

In the opinion of this author, video movies and television programs such as "Terminator", "Total Recall", "Blood Sport", "W.W.F.", etc. have done their part in glamourizing violent behaviour and also providing examples for the young. The result of gratuitous violence in the media is to harden the individuals response to the violence and to reduce empathy for the victim. This opinion is shared by some researchers. In one study (Linz, Donnerstein, Penrod, 1984) male college students after viewing five, "R-rated" films depicting violence against women came to have "fewer negative emotional reactions" to the movies. The subjects perceived them as "significantly less violent", and to consider them (the films) "less degrading" to women.

Current research (Malamuth, Neil, Briere, 1986) reported that sexual violence in the media had an indirect but important effect on violence against women. These researchers conducted a representative review of all forms of media with a view of documenting the frequency and variety of violent acts presented. A distinction was made between sexual violence and non-sexual violence as the researchers conducted their survey. They found that magazines (mainstream magazines that are readily obtained by all age groups as opposed to underground pornographic magazines) had the least amount of sexual violence, accounting for only 5% of the total content. Sexual violence in movies accounted for 15% of the content and in adult books it accounted for 30% of the content.

Malamouth (et al) concluded that there were interesting significant differences between sexual and non-sexual violence in the media. In sexual violent acts, in the vast majority of the cases, women are illustrated as the victims and men the perpetrators. Whereas in non -sexual violence the recipients are most likely to be male. Similarly, the victims of sexual violence tend to give initial resistance to the act but then it is suggested that the victim secretly desires and eventually derives pleasure from the assault. There are usually non -negative consequences for the victim or the perpetrator after the assault. In contrast, the victims of non-sexual violence are depicted abhorring their experience and intent on avoiding victimization in the future.

Malamuth, Neil and Briere incorporated the findings of their research and the work by Martha Burt into the development of a model hypothesizing indirect effects of media sexual violence on violence against women (see Figure 2). Like in Burt's model this one suggests that violence against women is the final result of a complicated interaction between cultural forces, experiential forces and individual forces such as attitudes. They also suggest that these three forces are the antecedents to violent behaviour and when they interact with immediate situational variables they result in a variety of antisocial behaviour against women as articulated in Figure 2.

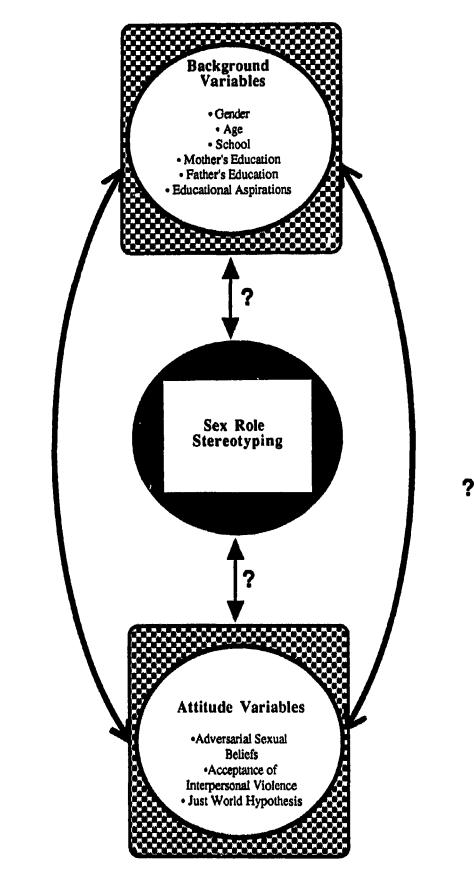
Research Questions

A demographic section will be included in the survey which will use the following background variables; sex, age, school, parents' education and student's educational/vocational aspirations. The research will determine if there are any significant relationships between demographic variables?

Then this research will study several of those originating variables - the antecedents to the abuse of women. Three Independent-Psychological variables will be examined; belief in a just world (JWS), adversarial sexual beliefs (ASB) and, acceptance of violence (VS) with a view to determining if any significant relationships exist between the Psychological

variables themselves, and then between the Demographic variables and the Psychological variables. The sample will be split according to gender where it is expected that significant gender differences will appear on the ASB, JWS and VS scores. The research will attempt to answer one specific research question which pretains to the psychological variables:

1. Do students who have a greater belief in a "Just World" also have more conservative attitudes towards the acceptance of violence, and adversarial sexual beliefs?


This research will then examine the last of the antecedents to abuse of women; sex role stereotyping. This variable will be the dependent variable and it will be compared to the demographic and the psychological variables. It is expected that significant gender differences will occur when the sample is split according to gender. The research will attempt to answer three additional research questions when the dependent variable is examined:

2. Are students of Lunenburg County high schools sexist? ie. Do they score higher on a Sex Role Stereotype Scale (SRS) than Indiana College Students or adults in Minnesota? two norm groups using Burt's SRS (Burt, 1980)

3. Would students who are sexist be more inclined to accept interpersonal violence? ie. Is there a significant and sizeable positive correlation between students' scores on the SRS and their scores on the Acceptance of Violence Scale (VS)?

4. Are students who are more sexist more inclined to view the opposite sex as an adversary? ie. Is there a significant and sizeable positive correlation between students' scores on the Sex Role Stereotype Scale (SRS) and the scores on the Adversarial Sexual Beliefs Scale (ASB) ?

Figure 3 Theoretical Model of Antecedents of Sex Role Stereotyping (Straubel, 1992)

?

Method

A questionnaire was developed which measured responses to six demographic questions and four scales; SRS,VS,ASB, and JWS. The questions from the four scales were randomized to conceal their intent to the respondents (see Appendix A for an example of the instrument).

The questionnaire was distributed to all six high schools in the Lunenburg County school district during March-April 1991. The questionnaires were administered by guidance counsellors to a random sampling of grades 10,11 and 12 students in all six high schools. The total questionnaires sent out were 948, and 862 useable questionnaires were returned for a return rate of 90%.

The responses were reversed where necessary before being entered into a Statview 512 computer program for statistical analysis.

The Independent-Demographic Variables

Research indicated (Burt, 1980) that the strongest relationships with the dependent variables were these demographic variables; age, education, occupation and gender. Since the subjects for this research were of high school age the demographics had to be chosen appropriately, and the following were used; gender, age, school, father's or male guardian's education, mother's or female guardian's education, student's future aspirations.

Gender

The respondent's self reported their gender. This variable was used as a basis for splitting the sample to see whether there was a difference between scores of groups of males and females.(Nmales=439, Nfemales=423)

Age

For this variable the subject had to chose among these five categories; 15 or younger, 16,17,18,19 or older.

School

Respondents had to indicate which school they attended; New Germany Rural High School (NGRHS), Bridgewater High School (BHS), Lunenburg High School (LHS), New Ross Consolidated High School (NRHS), Park View Education Center (PVEC), Chester Municipal High School (CMHS).

Father's or Male Guardian's Education

Students chose one of six statements; did not complete junior high school, completed junior high school only, completed some high school but did not finish, completed high school only, continued his education beyond high school but did not go to university, and, completed a university degree. Mother's or Female Guardian's Education

Students responded to the same six statements as the Father's Male Guardian's Education.

Student's Aspiration

Students were asked to respond to their educational aspirations by selecting one of four statements; quit high school and get a job, finish high school and get a job, finish high school and go to vocational/technical/business school, finish high school and go to university.

The Independent-Psychological Variables

Adversarial Sexual Beliefs

In order to measure the extent to which a subject felt the opposite sex was untrustworthy or exploitive Burt's Adverarial Sexual Beliefs Scale (ASB) was used. This scale was developed by Burt and consisted of nine questions which measured responses to notions that the opposite sex was adversarial. The respondents scored the questions on a 7-point Likert scale ranging from "Disagree Completely" to "Agree Completely". All items use the following scoring scale: 7="Disagree Completely", 6= "Disagree Strongly", 5="Disagree", 4="Undecided", 3="Agree", 2= "Agree Strongly", 1= "Agree Completely". The scales were created by summing the item responses. Theoretical range of scores: 9, most

adversarial view of the other sex, to 63, least adversarial view of the other sex. Thus the lower the score the more the subject views the opposite sex as an adversary.

Adversarial Sexual Beliefs (Cronback's alpha for the norm group= .802)

- 1. A woman will only respect a man who will lay down the law to her.
- 2. Many women are so demanding sexually that a man can't satisfy them.
- 3. A man's got to show the woman who's boss right from the start or he'll end up henpecked.
- 4. Women are usually sweet until they've caught a man, but then they let their true self show.
- 5. A lot of men talk big, but when it comes down to it, they can't perform well sexually.
- 6. In a dating relationship a woman is largely out to take advantage of a man.
- 7. Men are out for only one thing.
- 8. Most women are sly and manipulating when they are out to attract a man.
- 9. A lot of women seem to get pleasure in putting men down.

The Cronback's alpha for this sample was=.69

Acceptance of Violence

The instrument that was used to measure the respondents attitudes towards violence was the Violence Scale by Panos D. Bardis. The scale consisted of 25 questions which measured respondents acceptance of varying degrees of violence as a means of conflict resolution. Violence in this scale means words and especially actions aimed at property damage and personal injury. The respondents scored the questions item by item according to a 7-point Likert scale ranging from "Completely Disagree" to "Agree Completely".All items use the following scoring scale: 1="Disagree Completely", 2="Disagree Strongly", 3="Disagree", 4= "Undecided", 5="Agree", 6="Agree Strongly", 7="Agree Completely". Theoretical range of scores: 25, lowest approval of violence, to 175, highest approval.

Violence Scale (reliability coefficient=.94)

- 1. Every nation should have a war industry
- 2. The death penalty should be part of every penal code.
- 3. University police should use violence against violent student demonstrators.
- 4. War in self defence is perfectly right.
- 5. Parents should encourage their children to use violence in self- defense.
- 6. The majority should use violence against violent minority groups.
- 7. War is often necessary
- 8. Private citizens should be allowed to carry guns.
- 9. The government should sent armed soldiers to control violent university riots.
- 10. The manufacture of weapons is often necessary.
- 11. When a school child misbehaves habitually, the teacher should use physical punishment.
- 12. Prison guards should be allowed to use violence against prisoners when necessary.
- 13. War can be just.

۰.

- 14. Violent crimes should be punished violently.
- 15. Hitting a child when he does something bad on purpose teaches him a good lesson.
- 16. Killing of civilians should be accepted as an unavoidable part of war.
- 17. The police force of a university should carry guns.
- 18. A violent revolution can be perfectly right.
- 19. A child's habitual disobedience should be punished physically.

- 20. A soldier should never hesitate to use violence.
- 21. Capital punishment is oftennecessary.

22. The government should use violence to control violent riots.

23. Punishing a child physically when he deserves it will make him a responsible and mature adult.

- 24. Universities should use violence against students who destroy university property.
- 25. Violence against the enemy should be part of every nation's defense.

The Cronback's alpha for this sample was=.88

The Just World Hypothesis

The Just World Scale (JWS) developed by Rubin and Peplau and used rather extensively by researchers was used to measure respondents belief in a just world. The scale consists of 23 questions which alternate between positive (just) items and negative (unjust) items. The original Rubin and Peplau JWS used a six point scale. For this research a modified version of the JWS scale was used (Chin, Lin, 1988) which consisted of a seven-point Likert scale ranging from "strongly agree" to "strongly disagree" with scores ranging from 1 to 7. Since the score sheet for this research used the same seven point scale for all four tests ranging from "disgaree completely" to "agree completely" some items for the JWS had to be reversed scored.High scores in the JWS imply the lower degree of belief in a "just world". Theoretical range of scores: 23, greatest belief in a "just world" to 161, least belief in a "just world". Items marked (*) are reversed scored. ٠.

Just World Scale

The Cromback's alpha for this sample was=.61

- 1. I feel that many people in the world have a false reputation.
- 2.* In general ,this is a fair world
- 3.* Luck always brings fortune.
- 4. Those who drive carefully and those who do not have the same chance of being hurt in a car accident.
- 5. Many criminals are judged innocent in court.
- 6.* If you study hard you will have good grades.
- 7.* If you take care of your health you are very unlikely to have a heart attack.
- 8. Those candidates who insist on holding on to their principles in an election are usually the losers.
- 9. * Inniocent people are seldom put in jail.
- 10. In a race, many athletes are not caught when they violate regulation.
- 11.* A person will get what he or she deserves.
- 12.* Parents always find good excuses to punish their children.
- 13. Those who do good deeds are usually not known and do not receive just rewards.
- 14.* Although bad persons might have held power in the history of mankind, good persons will eventually

regain control

- 15.* In all occupations those who work hard always get promoted.
- 16. Parents often neglect their childrens' wishes.
- 17. In our court systen it is difficult to find a fair judge.
- 18.* One should blame himself/herself for his/her misfortunes.
- 19.* Criminals always pay for their actions.
- 20. Innocent people are always the victims.
- 21.* The rich should be heavily taxed.
- 22. Most people do not have the motivation to cheat.
- 23. In a disordered world criminals should be severely punished.

The Dependent Variable

Sex Role Stereotype Scale (SRS)

The attitude of the student towards sex role stereotyping was measured using Burt's Sex Role Stereotyping Scale. The scale consisted of nine questions which measured responses to commonly held notions of female sex role behaviours. The respondents scored the questions on a 7-point Likert scale ranging from "disagree completely" to "agree completely". All items use the following scoring scale: 7=disagree completely; 6=disagree strongly; 5=disagree; 4=undecided; 3=agree; 2=agree strongly; 1=agree completely. Items marked (*) are reverse scored. To create the scales, simply sum the item responses after reversing where necessary. Theoretical range of scores: 9, most sexist, to 63, least sexist. The lower the score, the more sexist is the subject.

Sex Role Stereotyping (Cronback's alpha for the norm group= .800)

- 1. A man should fight when the woman he's with is insulted by another man
- 2.*It is acceptable for the woman to pay for the date.
- 3. A woman should be a virgin when she marries.
- 4. There is something wrong with a woman who desn't want to marry and raise a family.
- 5. A wife should never contradict her husband in public.
- 6. It is better for a woman to use her feminine charm to get what she wants rather than ask for it outright.
- 7. It is acceptable for a woman to have a career but, marriage and family should come first.
- 8. It looks worse for a woman to be drunk than a ma. to be drunk.
- 9.*There is nothing wrong with a woman going to a bar alone.

The Cronback's alpha for this sample was= .69

Results

All the variables were compared with each other by correlation, regression and anova analysis using a StatsView 512 computer program. In some cases samples were split according to gender and then analysed again. Correlation matrices of all variables were produced. Then the sample was split according to gender and new matrices were produced. The correlation matrices are recorded in Tables 1, 2, & 3. All other statistical results are tabulated in Annex B.

In order to prevent a "Type-One Error" significant results will be those for $p \le .001$ given the size of the sample. For a sample size N= 862, $p \le .001$ occurs \ldots R = .112. (Significant results are indicated in bold print.)

The Independent-Demographic Variables

The Means (M) and Standard Deviations (SD) for the demographic variables are given below. Descriptive statistics for gender, age and school are given in charts.

Gender

Group	Count
Male	439
Female	423

Age	Male	Female	Total
A-15	54	50	104
A-16	122	131	253
A-17	126	110	236
A-18	95	104	199
A-19 or older	42	28	70
Total	439	423	862

Age

School

School	Count
New Germany Rural High School	80
Bridgewater High School	197
Lunenhurg High School	70
New Ross Consolidated School	46
Park View Education Center	284
Chester Municipal High School	185

for Mother's/Female Guardian's Education; M= 3.843, SD= 1.463.

for Father's/Male Guardian's Education; M= 3.52, SD= 1.739.

for Student's Aspirations; M= 3.421, SD= .736.

Interrelationships among the six Demographic Variables

for Gender and Age, R= .023, F= .438, p= .5084;

Gender and School, R= .01, F= .086, p= .7678;

Table 1

Correlation Matrix-Whole Sample-All Variables

	Gender	Age	School	Mother Ed.	Father Ed.	Student Asp.	JWS	SRS	ASB	VS
Gender	1									
Age	023	1								
School	.01	026	1							
Mother's Education	041	202	063	1						
Father's Education	053	•.195	078	.462	1					
Student's Aspirations	.078	•.267	.01	.273	.30	1				
Just World Scale	.015	013	.094	.017	.003	006	1			
Sex Role Stereotyping	.375	121	.088	.075	.136	.281	.083	1		
Adversarial Sexual Beliefs	.42	101	046	.108	.105	.189	080	.562	1	
Violence Scale	385	.045	035	034	066	•.157	.037	469	472	1

Table 2

Correlation Matrix-Female Sample-All Variables

	Age	School	Mother Ed.	Father Ed.	Student Asp.		SRS	ASB	VS
Age	1								
School	006	1							
Mother's Education	•.213	063	1						
Father's education	-,220	119	.459	1					
Student's Aspirations	307	.036	.332	.319	1				
Just World Scale	074	.115	.003	.043	.054	1			
Sex Role Stereotyping	085	.119	.111	.133	.269	.138	1		
Adversarial Sexual Beliefs	063	057	.157	.112	.158	042	.435	1	
Violence Scale	.090	080	128	152	197	038	449	376	1

Table 3

Correlation Matrix-Male Sample-All Variables

	Age	School	Mother Ed.	Father Ed.	Student Asp.	JWS	SRS	ASB	VS
Age	1								
School	044	1							
Mother's Education	·.193	062	1						
Father's Education	•.175	038	.464	1					
Student's Aspirations	232	013	.231	.295	1				
Just World Scale	.037	.077	.03	028	041	1			
Sex Role Stereotyping	155	.065	.085	.202	.275	.041	1		
Adversarial Sexual Beliefs	-,134	053	.121	.166	.185	136	.522	1	
Violence Scale	003	.007	013	045	093	.109	322	366	1

Gender and Mother's Education, R=.041, F=1.438, p=.2307; Gender and Father's Education, R=.053, F=2.441, p=.1185; Gender and Student's Aspirations, R=.078, F=5.329, p=.0212 (See Tables 4)

for Age and School, R= .026, F= .569, p= .4509; Age and Mother's Education, R= .202, F= 36.436, p= .0001 (the older the student, the less educated is their mother) Age and Father's Education, R= .195, F= 34.003, p= .0001 (the older the student, the less educated is their father) Age and Student's Aspirations, R= .267, F= 65.855, p=.0001 (see Tables 5) (the older the student, the lower their aspirations)

for School and Mother's Education, R= .063, F= 3.373, p= .0666; School and Father's Education, R= .078, F= 5.219, p= .0226; School and Student's Aspirations, R= .01, F= .087, p= .7684 (see Tables 6)

for Mother's Education and Father's Education, R=.462, F=233.952, p=.0001(the more educated the mother, the more educated the father) Mother's Education and Student's Aspirations, R=.273, F=60.112, p=.0001(see Tables 7) (the more educated the mother, the higher the student's aspirations)

for Father's Education and the Student's Aspirations, R=.3, F=84.984, p=.0001(see Tables 8) (the more educated the father, the higher the student's aspiration)

Independent-Psychological Variables

The Means and Standard Deviations for the Psychological Variables are given below. The Means and Standard Deviations of the scores split according to gender follow...

Just World Scale (JWS)

for JWS; M= 99.914, SD= 9.009, JWS for Male Sample; M= 99.786, SD= 9.67, JWS for Female Sample; M=100.047, SD= 8.277.

Adversarial Sexual Beliefs (ASB)

for ASB; M= 43.245, SD= 8.021, ASB for Male Sample; M= 39.938, SD= 7.47, ASB for Female Sample; M= 46.676, SD= 7.085.

Violence Scale (VS)

for VS; M= 86.945, SD= 20.246,

VS for Male Sample; M= 94.588, SD= 19.748,

VS for Female Sample; M = 79.014, SD = 17.543.

The Interrelationships between the Six Demographic and the Three Independent-Psychological Variables

Just World Scale (JWS)

for JWS and Gender, R= .015, F= .181, p= .6705; JWS and Age, R= .013, F= .143, p= .7058; JWS and School, R= .094, F= 7.64, p= .0058; JWS and Mother's Education, R= .017, F= .24, p= .6247; JWS and Father's Education, R= .003, F= .006, p=.9403; JWS and Student's Aspirations, R= .006, F= .003, p= .9998 (see Tables 9)

Adversarial Sexual Beliefs (ASB)

for ASB and Gender, R= .42, F= 184.355, p= .0001; (Males have higher adversarial sexual beliefs than females) ASB and Age, R= .101, F= 8.856, p= .003; ASB and School, R= .046, F= 1.802, p= .1737; ASB and Mother's Education, R= .108, F= 10.159, p= .0015; ASB and Father's Education, R= .105, F= 9.609, p= .002; ASB and Student's Aspirations, R= .189, F= 31.975, p= .0001 (see Tables 10) (the higher the student aspiration, the lower the student's adversarial sexual beliefs,)

Violence Scale (VS)

for VS and Gender, R= .385, F= 149.44, p= .0001; (Males have higher acceptance of violence than females) VS and Age, R= .045, F= 1.712, p= .1911; VS and School, R= .035, F= 1.026, p= .3113; VS and Mother's Education, R= .034, F= .982, p= .3221; VS and Father's Education, R= .066, F= 3.714, p= .0543; VS and Student's Aspirations, R= .157, F= 21.745, p= .0001 (see Tables 11) (the higher the student aspiration, the lower the acceptance of violence)

The Interrelationships of the Independent-Psychological Variables with Themselves

for ASB and JWS, R= .08, F= 5.493, p= .0193;

for ASB and VS, R= .472, F= 246.164, p= .0001;

(the higher the student's adversarial sexual beliefs, the higher the acceptance of violence) for JWS and VS, R = .037, F = 1.21, p = .2716 (see Tables 12)

The Dependent Variable-Sex Role Stereotyping (SRS)

The Means and Standard Deviations for the SRS are given below. Descriptive statistics for the total sample and the sample split according to gender are included.

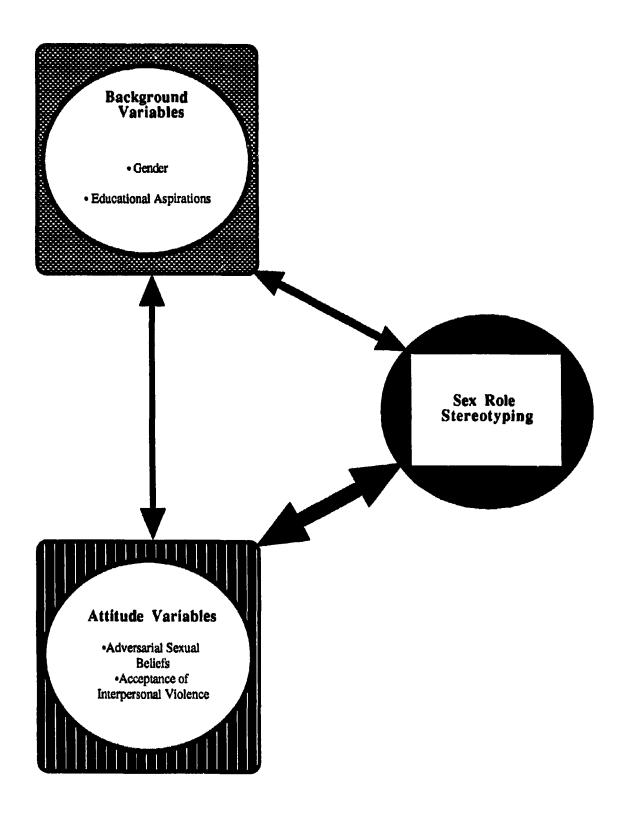
Sex Role Stereotyping (SRS)

for SRS; M= 45.372, SD= 7.671, SRS for Male Sample; M= 42.547, SD= 7.206,

SRS for Female Sample; M = 48.305, SD = 7.016.

The Interrelationships Between the Dependent Variable with the Six Demographic Variables

for Sex Role Stereotyping (SRS) and Gender, R= .375, F= 141.152, p= .0001; (Males are more sexist than females) SRS and Age, R= .121, F= 12.856, p= .0004; (the older the student, the more sexist they are) SRS and School, R= .088, F= 6.776, p= .0094; SRS and School, R= .088, F= 6.776, p= .0094; SRS and Mother's Education, R= .075, F= 4.897, p= .0272; SRS and Father's Education, R= .136, F= 16.298, p= .0001; (the more educated the father, the less sexist is the student) SRS and Student's Aspirations, R= .281, F= 73.642, p= .0001 (see Tables 13) (the higher the student aspiration, the less sexist is the student) The Interrelationships Between the Dependent Variable with the Independent-Psychological Variables


for SRS and JWS, R=.083, F=6.016, p=.0144; SRS and ASB, R=.562, F=397.862, p=.0001; (the higher the student's adversarial sexual beliefs, the more sexist is the student.) SRS and VS, R=.469, F=242.785, p=.0001 (see Tables 14) (the higher the student's acceptance of violence, the more sexist is the student.)

Stepwise Multiple Regression on the Dependent Variable-SRS

A stepwise multiple regression analysis was performed on the dependent variable using all other nine variables. No variables were forced in an effort to dtermine the best predictor .or SRS. The results for the best six predictors are given below in chronological order.

- 1. SRS and ASB, R = .562, F = 397.862, R-squared = .316;
- 2. SRS and VS, R = .608, F = 252.003, R-squared = .37;
- 3. SRS and Student Aspirations, R = .629, F = 187.016, R-squared = .395;
- 4. SRS and JWS R = .641, F = 149.669, R-squared = .411;
- 5. SRS and Gender, $R \approx .649$, F = 124.493, R-squared = .421;
- 6. SRS and School, R = .654, F = 106.741, R-squared = .428. (see Tables 15)

Figure 4 Resultant Model of Antecedents of Sex Role Stereotyping (Straubel, 1992)

Conclusions

Independent-Demographic Variables

Significant positive correlations occurred with Mother's Education and Father's Education and (R=.462, F=233.952, p=.0001). This is somewhat irrelevant to this study but confirms the tendancy that parents of similar educational backgrounds form couples and that a parent's cducation level effects a child's educational and vocational aspiration.

When correlation analysis was conducted there were significant positive correlation with Father's/Mother's Education and Student's Aspirations for both female and male samples . These results once again confirm that parents' education has an effect on a child's set of attitudes and their educational aspirations.

Student Aspirations correlated most significantly with Father's Education (R=.30, F= 84.984, p=.0001). Perhaps these results also suggest that for children especially girls the influence a father has on her attitudinal and educational development is quite profound. This may confirm other research (Griggs, et al., 1983; Knight and Sedlacek, 1983) that suggested that women chose their careers according to a male perception of what women's roles ought to be.

The Independent-Psychological Variables

Students in Lunenburg County had slightly higher scores on the JWS than the norm group [Recall: high scores on the JWS imply a lower degree of belief in a "just world"], indicating that the

Lunenburg County students viewed the world as being less fair and just than college students in Indianna (JWS Lunenburg County students: M=99.914; for Indianna college students M=91.43). This finding seemed consistent and reasonable given the economic and social disparity of South Shore Nova Scotia relative to other regions in North America.

The results for the JWS also confirmed the findings of (Chen, Lin, 1988) which showed significant gender diffrences in JWS scores. Lunenburg County male-students believed that the world was fairer than female-students (for males, M= 99.786; for females, M= 100.047).

The scores for the ASB for this sample showed that students of Lunenburg County tended to view members of the opposite sex as adversaries to a slightly lesser extent than adults in Minnesota, (ASB Lunenburg County Students: M=43.245, SD=8.021; for Minnesota sample M=29.0, SD=8.5). [Recall: the lower the score the greater the view that the opposite sex is an adversary.] The results also showed significant gender differences in scores. The scores for the male population were consistently lower than the scores for the female sample indicating that for this sample males had a greater tendency to view the opposite sex as an adversary (for males, M=39.938; for females M=46.676).

In terms of the VS variable, further analysis revealed that students in Lunenburg County had dramatically higher scores than high school students in Ohio (the norm group).[Recall: the higher the score on the VS the more accepting of violence]. (VS for Lunenburg County students; for males M=94.59, for females M=79.01, VS for Ohio students; for males M=54.30, for females M=34.45). This result suggests that Lunenburg County students generally tended to be more accepting of violence than the subjects of the norm group. This result in itself is not significant because Bardis' research was coloured by events in 1972 such as the Kent

State Massacre and the anti-Viet Nam war movement. One would expect that the results for the norm group would be considerably lower than a modern day sample.

Since the 70's, young people have far greater exposure to violence on all levels of their daily experience. The sample for this study for instance had just experienced the Persian Gulf War first hand on prime time television. A war that received a great deal of support from world leaders and general populations. Therefore, it would be reasonable to expect that scores on the VS in general would be considerably higher for this sample than the test sample in 1972. Nevertheless, this result raises two points of considerable importance; 1. the consistency of the pattern that overall the male sample tends to be much more accepting of violence than the female sample, and 2. that the culture of the 1990's is much more accepting of violence than it may have been in the 1970's.

The Independent-Demographic with the Independent-Psychological Variables

Gender

The student's gender was used to split the sample in order to acquire more accurate results for analysis. It was anticipated from the beginning that in terms of the three psychological variables the scores from the scales measuring these variables would differ according to gender. Overall women students had less adversarial attitudes towards the opposite sex and were less accepting of violence than their male counterparts. However male students thought the world was more fair and just than the women. More discussion of these results will be forthcoming as each of the variables will be discussed individually.

In correlation and regression analysis "age" made a significant difference on both ASB and VS scores. This indicated that significant differences in scores occurred because of the

subjects gender, and this is to be expected.

Student's Age

The Age of the student in analysis made no significant difference with respect to the psychological variables. Burt's findings (Burt, 1990), that the older the subject the more conservative the scores on the attitude scales was confirmed by this study in so far as students in Lunenburg County had slightly more liberal scores on the ASB than the norm group-an older population. On the other two scales, JWS and VS Lunenburg County students were considerably more conservative in their views.

School

It is difficult to make any broad conclusion from the results of the scores for this variable when compared to the psychological variables. The size of the numbers of students who were sampled effects the accuracy of the results and so to surmise that one school has a population that is more accepting of violence than another (or some other such comparison) would be an untruth and irrelevant to this study.

Overall the scores for all four tests were similar for each of the school's population with no major inconsistencies. Most importantly the general pattern, that the scores for the female samples tended to be different from the male as expressed above, remained consistent in each of the six school populations that were sampled.

Mother's or Female Guardian's Education/Father's or Male Guardian's Education

Neither Mother's Education nor Father's Education made any significant difference with

any of the psychological variables. This result is a strong indicator that for this sample the level of the parent's education had little effect on the attitudes of the student. Perhaps this result is an argument which helps dispell the commonly held belief that the abuse of women occurs more readily in homes of the poorly educated and lower income groups.

Student's Aspirations

2

In the analysis of this variable one has to be reminded that it was the student's perceived educational aspirations that were used to compare with the other variables. In Burt's study the sample consisted of adults with real occupations and completed levels of education. If one can equate desired educational level with aquired education then this sample confirmed Burt's findings that the higher the educational level the more liberal the attitudes.

Significant correlations occurred with Student Aspirations and both the ASB and VS. The scores for the ASB and VS became progressively more liberal as the aspired level of education increased. When the sample was split according to gender this trend continued with the most dramatic change in "M" (for both the male and female samples and for all three variables) occurring when the student aspired to go to university. In other words the higher the aspired for education, the more liberal were the students in their attitudes.

As before, no significant results occurred in the analysis of the JWS with no consistent pattern apparent.

The Independent-Psychological Variables with Themselves

The results for the JWS indicated that this variable did not make any significant differences on ASB or VS scores- no significant correlations existed. Overall, for this sample the mean scores indicated that women tended to view the world as less fair and just than the males. This finding is not surprising given the reality that the world in general is still dominated and controlled by men and that some women tend to view themselves in submissive roles and as victims. Statistically however no significant differences existed according to gender.

When looking only at the means for the JWS for both male and female samples, the results seem to confirm the findings of (Chen,Lin,1988) who found that men in general tended to view the world as being more fair and just than women yet were less accepting of rape victims. On face value, this research corroborates this tendency in the sense that while the male subjects who had very conservative scores on the attitude scales tended to view the world as being most fair and just. Yet on a purely statistical level (since no strong correlations existed between the JWS and other variables) one can argue that the existence of the "Just World Hypothesis" was not confirmed by this study.

Further analysis showed a significant correlation existed between ASB scores and the VS; indicating that for this sample subjects who had strong adversarial sexual beliefs also had high levels of acceptance of violence. This result was consistent and reasonable to expect.

The Dependent Variable-SRS

The research clearly showed that student's of Lunenburg County high Schools are relatively sexist in their attitudes. The scores for the Lunenburg County sample were about the same as those of Indianna college students; with scores that were more sexist for Lunenburg County male students and slightly less sexist for Lunenburg County female students. The scores for this sample were less sexist that those for adults in Minnesota, and this result was predicatble. [Note: recall that the lower the score on the SRS the more sexist the subject] (SRS Lunenburg County students: M=45.372; for males M=42.547; for females M=48.304), (SRS for Indianna college students: M=45.137; for males M=43.911; for females M=46.363), (SRS for Minnesota adults: M=37.6). This result confirms the already accepted reality that Lunenburg County and the South Shore of Nova Scotia is a culture where sexist attitudes are prevalent.

When the sample was split according to gender, the male population consistently scored lower on the SRS than the female sample. Thereby confirming the research (Chen,Lin,1988)which suggested that in a given population men tend to be more sexist than women.

The Dependent Variable with Independent-Demographic Variables

The most significant result occurred with "Gender" (R=.375, F=141.152, p=.0001). This indicates that scores on the SRS are in part determined by the student's sex. This result is consistent with the research (Chen, Lin, 1988) and also with the scores for the VS and ASB(see above).

The results showed that Age, School, Mother's/Father's Education made no significant difference in SRS scores. Perhaps one important observation would be that attitudes towards sex role stereotyping are not determined by the level of education that the parents may have. Once again dispelling the belief that sexism is more prevalent in lower income and poorly-educated families.

In terms of the Student's Aspiration variable, moderately significant correlations occurred with the SRS, (R= .281, F= 73.642, p= .0001). The scores for the SRS became progressively more liberal as the aspired level of education increased. This pattern continued when the sample was split according to gender with the most dramatic change in "M" (for both samples) occurring when the student aspired to go to university. This result was also consistent with Burt's findings. In other words, the higher the educational goals of the students, the less sexist were their attitudes.

The Dependent Variable with the Independent-Psychological Variables

In correlation analysis (and then confirmed by stepwise and simple regression analysis) there were significant and positive correlations between the SRS and both the ASB and VS for both the male and female samples, (for ASB, R= .562, F= 397.862, p= .0001; for VS, R= .469, F= 242.785, p= .0001). Thus the two original hypotheses-that students who are sexist, 1. are more inclined to be accepting of violence and, 2. tend to view the opposite sex as an adversary, were accepted by this study.

What exactly does the acceptance of these two hypotheses mean in terms of the issue of the abuse of women? The acceptance of the first hypothesis indicates that for this sample a very strong relationship exists between sexism and acceptance of violence. In other words, a person who is highly sexist will probably be most accepting of violence. Similarly, the rather strong correlation between sex role stereotyping and adversarial sexual beliefs indicates that persons who are more sexist also view the opposite sex as an adversary - and so, sexism seems to be strongly associated with a perception that the opposite sex is an enemy. These two results taken together might suggest that a strong relationship exists between the three attitudinal variables. Recall that Martha Burt's research established that

attitudes such as sex role stereotyping, adversarial sexual beliefs and acceptance of violence were the attitudinal antecedents to rape acceptance myth. Therefore, it might be possible to extrapolate from her research and suggest that for the sample in Lunenburg County, sex role stereotyping, adversarial sexual beliefs and acceptance of violence are antecendents to female abuse in general.

Epilogue

The importance of this research is that it attempts to quantify the existence of sexist attitudes in Lunenburg County. The development of certain attitudes in our youth such as, sex role stereotyping, adversarial sexual beliefs, acceptance of violence, have negative consequences for women. These attitudes can be measured and can be directly related to the pattern of cultural and experiential antecedents which can lead to the abuse of women.

This research also alludes to the existence of forces within our culture (and specifically that of Lunenburg County) which seem to be nurturing among males in particular a perception that the world is fair and just and therefore should not be changed. This false perception of reality called the "Just World Hypothesis" exists in Lunenburg County despite the startling statistics of female abuse that emerge from this region.

What this research hopes to provoke among educators is a sense of urgency to lobby and strive to develop educational strategies and programs which address this terrible social problem and perhaps through education, eventually erradicate it.

Annex A

Bibliography

Bardis, Panos, D., Violence: Theory and Quantification. Journal of Political and Military Sociology, 1973, 1.

Betz, Nancy E. & Hackett, Gail, The Relationship of Career-Related Self-Efficacy Expectations to Perceived Career Options In College Men and Women, <u>Journal Of</u> <u>Counseling Psychology</u>. 1981, 28.

Burt, Martha R., Cultural Myths and Supports for Rape, <u>Journal of Personality and Social</u> <u>Psychology</u>. 1980, <u>38</u>, 217-230.

Browning, James and Dutton, Donald, Assessment of Wife Assault With the Conflict Tactics Scale: Using Couple Data to Quantify the Differential Reporting Effect, Journal of Marriage and the Family. 1986, <u>48.</u>

Carducci, Bernardo J., <u>Affective and Attributional Reactions to Sexual Harassment as</u> <u>Determined by Outcome</u>. Paper presented at the annual meeting of the Western Psychological Association, Long Beach, C.A., 1987. Dialog, ERIC, ED 282 118.

Chen, Jeaw-Mei & Lin, Phylis-Lan, American College Students' Attitudes towards Rape Victims and Beliefs in a Just World. <u>Educational Research Document</u>. 1988. Dialog, ERIC, ED 305 290.

Cooper, Pamela J., In or Out of the Pumpkin Shell? Sex Role Differentiation In

<u>Classroom Interaction.</u> Paper presented at the annual meeting of the Speech Communication Association, Boston, M.A., 1987. Dialog, ERIC, ED 291 125.

Covey, Mark-K, <u>Relationship Between Social Skill and Conflict Resolution Tactics</u>. Paper presented at the Annual Convention of the Rocky Mountain Psychological Association, Snowbird, Utah, April, 1983. Dialog, ERIC, ED 235 445.

Day, Dian, Young Women In Nova Scotia; A Study of Attitudes, Behaviour and Aspirations, Nova Scotia Advisory Council on the Status of Women, 1990.

Ellard, John & Lerner, Melvin J., <u>What does the Just World Scale Measure: Dimension or</u> <u>Style?</u> Paper presented at the annual conference of the American Pshychological Association, Anaheim, CA, Aug 1983. Dialog, ERIC, ED 237 858.

Geffner, Robert, et al., <u>Sex Role Stereotyping of Occupations: Have We Come a Long</u> <u>Way?</u> Paper presented at the annual meeting of the Western Psychological Association, Los Angeles, CA, Apr 1984.Dialog, ERIC, ED 246 334.

Geffner, Robert A & McClure, Robert F., <u>Changing Sex Role Attitudes With Education</u>: <u>Can it Be Done?</u> Paper presented at the Annual Conference of the Southwestern Pshychological Association, Dallas, T.X., Apr 1990.Dialog, ERIC, ED 320 053.

Griffin, Barbara, Sex-Fair Counseling Practices: A Descriptive Analysis, EDRS Report, Texas, 1983.Dialog, ERIC, ED 242 997.

Griggs, Shirley A, et al., <u>The Relationship Between Sex Role Attitudes and Counselor</u> <u>Effectiveness</u>, Paper presented at the annual convention of the American Personnel and Guidance Association, Washington, DC, Mar 1983. Dialog, ERIC, ED 235 453.

Hageman, Mary Bowe & Gladding, Samuel T., The Art of Career Exploration: Occupational Sex-Role Stereotyping Among Elementary Children. <u>Elementary School</u> <u>Guidance and Counselling</u> 1983, <u>11</u>, 280-287.

Hawley, Peggy, Work and Sex Role Attitudes in Relation to Education and other characteristics. <u>Vocational Guidance Ouarterly</u>, 1982, <u>31</u>.

Hay, Ellen A., <u>The Use of the Forced Compliance Paradigm in Modifying Sex Role</u> <u>Attitudes and its Relation to Feedback. Sex Role Orientation and Perceptual Differentiation</u>. Paper presented at the annual mid year conference of the American Educational Research Association Research on Women and Education Special Interest Group, Tempe, AZ, Nov 1983.Dialog, ERIC, ED 242 617.

Johnson, Holly, Wife Abuse, Canadian Social Trends. Statistics Canada, Spring 1988.

Johnson, Holly & Chisholm, Peter, Violence in the Family, <u>Canadian Social Trends.</u> <u>Statistics Canada</u>, Autumn, 1987.

JURISTAT, Conjugal Violence Against Women, Service Bulletin, Statistics Canada, May, 1990.

Kapalka, George & Lachenmeyer, J, Sex-Role Flexibility, Locus of Control and Occupational Status, <u>Sex-Roles</u>, 1988, <u>19</u>.

Kearney, Maureen, The Relationship Between Sex Role Orientation and Fear of Success.

Paper presented to the annual meeting of the Eastern Pshychological Association, Baltimore, Aprl, 1988. Dialog, ERIC, ED 221 809.

Knight, G. Diane & Sedlacek, William E., <u>Sex Role Identity and Attitudes Toward Women</u> in <u>Traditional and Non-Traditional Occupations</u>, Eastern Psychological Association, Maryland, 1983.(Research Report, #4-83) Dialog, ERIC, ED 248 335.

Labatt, Mary, Violence Against Women, FWTAO Newsletter, 1990, 2.

Lara-Cantu, Maria Asuncion, A Sex Role Inventory With Scales for Machismo and Self Sacrificing Woman, Journal of Cross Cultural Pshychology. 1989, 20, 386-398.

Larsen, Knud.& Long, Ed, <u>Attitudes Towards Rape</u>. Paper presented at the annual meeting of the Western Pshychological Association, Long Beach, CA, 1987. Dialog, ERIC, ED 278 884.

Linz, Daniel, et al., The Effects of Multiple Exposures to Filmed Violence Against Women, Journal Of Communication. 1984, <u>34.</u>130-147.

Long, Vonda-Olsen, <u>Relationship of Masculinity to Self-Esteem and Sel Acceptance in</u> <u>Male Professionals, College Students, Clients and Perpetrators of Domestic Violence</u> Paper presented at the Annual Convention of the American Association for Counseling and Development, Los Angeles, CA, April, 1986. Dialog, ERIC, ED 275 941.

Lundy, Allan & Rosenberg, Judy A., Androgyny, Masculinity, and Self Esteem. <u>Social</u> <u>Behaviour and Personality</u>, 1987, <u>15</u>, 91-95. Lynch, Sherry-K., <u>Counselling date rape survivors: Implications for College Student</u> <u>Professionals</u>, Paper presented at the Annual Meeting of American College Personnel Association, Boston, MA, March, 1985.Dialog, ERIC, ED 267 319.

Lyons, Deborah and Green, Samuel, Sex Role Development as a Function of College Experience. <u>Sex Roles</u>, 1988, <u>18</u>.

Malamuth, Neil M. & Briere, John, Sexual Violence In the Media: Indirect Effects on Agression Against Women. Journal of Social Issues, 1986, 42, 75-92.

Matteo, Sherri, <u>The Effect of Sex Role Stereotyping on Sport Participation</u>, Paper presented at the annual conference of the American Psychological Association, Toronto, Canada, 1984. Dialog, ERIC, ED 254 797.

Mullis, Ronald & McKinley, Kathleen, <u>Relations between Adolescent Gender Role</u> <u>Orientation. Self -Esteem and Social Conformit.</u> Paper presented at the annual conference of the National Council on Family Relations, Atlanta, GA, November, 1987.Dialog, ERIC, ED 291 051.

Paquette, Diane (reporter), Mainstreet, CBC Radio, 15 August 1988.

Russell, Gordon W, et al., Male Responses to Female Aggression, <u>Social Behaviour and</u> <u>Personality</u> 1988, <u>16</u>, 51-57.

Samios, Mary, et al., <u>Prevalence and Correlates of Courtship Violence</u>, Paper presented at the Annual Meeting of the Eastern Psychological Association, Boston, MA, March, 1985. Dialog, ERIC, ED 259 264.

Scott, Judith & Brantley, John C. Development of and Inventory of Teachers' Attitudes towards Sex Role Stereotyping and Knowledge of Differences. <u>Sex-Roles: A Journal of Research</u>. 1983, <u>9</u>, 341-353.

Sigelman, Carol-K., et al., <u>Violence in College Students' Dating Relationships</u>. Paper presented at the Annual Meeting of the Southeastern Psychological Association, Atlanta, GA, March, 1983. Dialog, ERIC, ED 233 289.

Schumm, Walter, R., et al., Adolescent Perspectives On Family Violence, <u>The Journal of</u> <u>Social Psychology</u>, 1982, <u>117</u>.

Short, Paula M. <u>The Women Professors Of Educational Administration: A Profile and</u> <u>Salient Issues</u>. Paper presented at Annual Meeting of American Educational Research Association, San Francisco, CA, 1989. Dialog, ERIC, ED 306 656.

Stahly, Geraldine-Butts, <u>Attitudes Towards Women as a Function of Subject's Experience</u> with Family Violence, Paper presented at the annual meeting of the Western Psychological Association, San Jose, CA, April, 1985. Dialog, ERIC, ED 260 341.

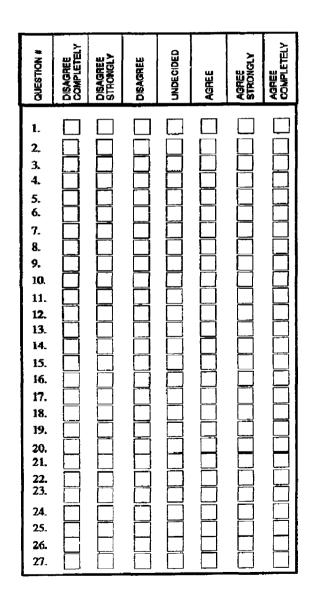
Stets, Jan, E.& Pirog-Good, Maureen A., Control and Dating Violence, <u>New Hampshire</u> <u>University. Durham Family Research Lab.</u>, 1988. Dialog, ERIC, ED 307 540.

Strauss, Murray A., Measuring Intrafamily Conflict and Violence: The Conflict Tactics(CT) Scales. Journal of Marriage and the Family, 1979.

(unsigned article) Two Women Murdered Each Week. <u>Chronicle-Herald</u>, 13 October 1990.

49

Scoring Sheet


1

s

Score every question. For questions 1-6 shade in the space beside the letter which best corresponds to your situation.

1.	AD	BQ				
2.	AC	80	CO	DC	60	
3.	A	BU	Cl	DQ	EQ	60
4.	AC	80	CD	DQ	ED	FQ
5.	AQ	80	CD	DQ	ED	FO
6.	AC	80	CO	DQ		

Questions 7-72 consists of 66 statements. There are no right or wrong answers, just opinions. Read over each statement carefully then decide how you feel about it by shading in the box under one of the following columns: strongly disagree; disagree somewhat; disagree; don't know; agree; agree somewhat; strongly agree.

COMPLETELY AGREE	
STRONGLY AGREE	
33PDA	
UNDECIDED	
JEROA BIO	
STRONGLY DISAGREE	
DISAGREE VISAGREE	
	お み み え な な な み み む む む む む む む む ひ ひ ひ ひ ひ い ひ い め か か れ む む か か か か ひ ひ ひ ひ い ひ い め か か れ た む ち ち ち ち ち か か い ひ い め か か れ た た す ち ち ち ち ち ち ち ち ち ち ち ち ち ち ち ち ち

- 30. Most people do not have the motivation to cheat.
- 31. A man's got to show a woman who's boss right from the start or he'll end up henpecked.
- 32. A child's habitual disobedience should be punished physically.
- 33. Most women are sly and manipulating when they are out to attract a man.
- 34. Those who drive carefully and those who drive recklessly have the same chance of being hunt in a car accident.
- 35. University police should use violence against violent student demonstrators.
- 36. Many criminals are judged innocent in a court.
- 37. There is nothing wrong with a woman going to a bar by herself.
- 38. A soldier in battle should never hesitate to use violence.
- 39. A lot of men talk big but when it comes right down to it they can't perform well sexually.
- 40. It is acceptable for the woman to pay for the date.
- 41. War in self defence is perfectly right.
- 42. Farents will always find good excuses to punish their children.
- 43. Prison guards should be allowed to use violence against prisoners when necessary.
- 44. A woman will only respect a man who will lay down the law to her.
- 45. Innocent people are always the victims.
- 46. If you take good care of your health you are very unlikely to have a heart attack.
- 47. War can be just.
- 48. Luck always brings fortune.
- 49. Capital punishment is often necessary.
- 50. In a dating relationship a women is largely out to take advantage of a man.
- 51. Parents should encourage their children to use violence in self defence.
- 52. One should blame himself/herself for his/her misfortunes.
- 53. The Government should use violence to control violent riots.
- 54. Women are usually sweet until they've caught a man, but then they let their true self show.
- 55. Violent crimes should be punished violently.
- 56. It is better for a woman to use her feminine charm to get what she wants rather than ask' for it outright.
- 57. The majority should use violence against violent minority groups.
- 50. Although bad persons might have held the power in the history of mankind, good persons will eventually regain control.
- 59. A wile should never contradict her husband in public.
- 60. In general, this is a fair world.
- 61. Hitting a child when he/she does something bad on purpose teaches him/her a good lesson.
- 62. There is something wrong with a woman who cloesn't want to many and raise a tamity.
- 63. War is often necessary.
- 64. Furtishing a child physically when he deserves it will make him a responsible and mature adult.
- 65. The rich should be heavily taxed.
- 66. Private citizens should be allowed to carry guns.
- 67. In our court system, it is difficult to find a fair judge.
- 68. A woman should be a virgin when she marries.
- 59. Men are only out for one thing.
- 70. Universities should use violence against students who destroy university property.
- 71. Killing of civilians should be accepted as an unavoidable part of war.
- 72. It is acceptable for a woman to have a career, but marriage and family should come first.

STUDENT SURVEY

Please enswer all the questions as accurately and honestly as possible. Use the Scoring Sheet to record your responses. Shade in the space baside the latter which applies to your situation.

1. iam,	A) male B) fermula
2. My aga is,	A) 15 or younger
	B) 16 C) 17
	D) 18
	E) 19 or older
3. i attend	A) New Germany Rutal High School B) Bridgewater High School
	C) Lunenburg High School
	D) New Ross Consolidated School E) Park View Education Center
	F} Chester Municipal High School
4. My mother or	A) did not complete junior high school
female guardien	B) completed juniar high school only C) completed some high school but did not finish
	D) completed high school only
	E) continued her uducation beyond high school but did not go to university F) completed a university dagrae
5. My father or	A) did not complete junior high school
maio guardian	B) completed junior high school only
	C) completed some high school but did not linish D) completed high school only
	 E) continued his education beyond high school but did not go to university F) completed a university degree
6 (
6. I want to	A) quithigh school and get a job 8) finish high school and get a job
	C) finish high school and go to vocational/lectinical/business school D) finish high school and go to university
7. Innocent people are solde	
	ny should be part of every nation's defence.
-	• • • •
	the world have a faise reputation
_	is are usually not known and do not receive just rewards.
13. Patents often neglect the	send armed soldiers to control violent university tiots.
	zanti ameto socialis lo consol vivoni energiony inte-
14. The police force of a unit	
	iningis should be heavily punished.
16. If you study hard you will	
	The monitor for is with is insulted by another man
18. Every nation should have	
-	r a wa suusy. a to be drunk than a man to ba drunk.
20. The manufacture of wea	
-	jet pleasure in pritting men down.
22. Criminals always pay for	
	d be part of every legal code.
24. Many women are so den	nanding sexually that a man just can't satisfy them
25. A violent revolution can	• • •
26. In a race, many athletes	are not caught when they violate a regulation
27. In all occupations those	who work hard always get promoted.
28. A person will get what he	YShe deserves.
29. When a school child mis	behaves habitually, the teacher should use physical punishment.

Annex B

•

Table 4

One Factor Anova, Gender vrs. All Variables

One Factor ANOVA X1: Gender Y1: Age

Edunce	DF	Bum Bquares	l'ear Equare	F-test
Éetween grou	03 /	575	şrç	-138
within groups	360	530 158	394	:p = 5064
Totai	, 66 '	1150 753		

Analysis of Variance Table

Ploder II estimate of petween component variance = - 739

One Factor ANOVA X1: Gender Y1: Age

Group	Count:	Mean	Std Dev :	Std. Error:	
Male	439	2 884	1 166	056	
Female	423	2.832	1 126	055	

One Factor ANOVA X1: Gender Y1: Age

Companison	Mean Diff	Fisher PLSD	Scheffe F-test	Dunnett t
Male vs. Female	052	153	439	662

One Factor Anova; Gender vrs. All Variables

One Factor ANOVA X1: Gender Y2' School

Bourse	<u> 25</u>	Sum Squares	Mean Square	F-test
Between gnoups	; ;	154	it4	
within groups	- 560	1598 836		0 = 7575
Teta	86	1799 -		

Analysis of Variance Cable

Model II estimate of between component variance = -2.756

One Factor ANOVA X1: Gender Y2: School

Group:	Count	Mean	Std Dev :	Std Error	
Male	439	3 925	1 734	083	
Female	423	3 96	1 743	085	

One Factor ANOVA X1: Gender Y2: School

Comparison:	tilean Diff	Fisher PLSD	Scheffe F-test:	Dunnett t
Male vs. Female	- 035	232	087	295

One Factor Anova, Gender vrs. All Variables

One Factor ANOVA X1: Gender - Y3: Mother's Ed.

Analysis of Variance Table						
1. jn ja	ŢĒ	Sum Squares	Mean Square	F-test		
2 - 11 11 - 11		3.079	<u>ଓ</u> ୍ଟିୟ	430		
w chin in ups	Bt-U	: 1340 779	14	p = 1307		
-		1647.657				

Model - estimate of petween component variance = 938

One Factor ANOVA X1: Gender V3: Mother's Ed.

jroup	Count	Mean	Std. Dev.:	Std. Error
Male	439	3 902	1 432	068
Femal-	423	3 783	1 494	073

One Factor ANOVA X1: Gender - Y3: Mother's Ed.

Companison	Mean Diff	Fisher PLSD	Scheffe F-test	Dunnett t
Male vs. Female	12	196	1 438	1 199

One Factor Anova, Gender yrs. All Variables

One Factor ANOVA X1: Gender Y4: Fether's Ed.

Bounce	JF.	Sum Squares	Mean Equare	F-rast
Setween and	105 °	7 369	7 369	141
within group:	s 760	1595 T96	3.318	
. Titai	561	2601-165	 i	

Analysis of Variance Table

Model 9 estimate of between component variance = 4 35

One Factor ANOVA X1: Gender Y4: Father's Ed.

Group	Count:	Mean	Std Dev :	Std Error	
Male	439	3.61	1 762	084	
Female	423	3.426	1 711	083	

One Factor ANOVA X1: Gender Y4: Father's Ed.

Comparison	Mean Diff	Fisher PLSD:	Scheffe F-test	Dunnett t
Male vs. Female	185	232	2 441	1 562

One Factor Anova, Gender yrs. All Maniables

One Factor ANOVA X1: Gender Y5: Student aspiration

Founde	<u>05</u>	Sum Equares	Mean Equare	F-rest
Batween Ing	NDS 1	· · ·	: 17.	5 329
within group	s :360	463 265	539	p = 0212
Total	361	466 36		

Analysis of	Vaniarice	Гарие

Model it estimate of between component variance = 2.352

One Factor ANOVA X1: Gender Y5: Student aspiration

Group	Count	Mean	Std. Dev.:	Std. Error
Male	439	3 364	779	037
Female	423	3 48	664	.033

One Factor ANOVA X1: Gender Y5: Student aspiration

Companison	Mean Diff :	Fisher PLSD	Scheffe F-test	Dunnett t
Male vs. Female	- 115	098•	5 329*	2 309

Simple Regression, Gender Vrs. All Variables

DF	R.	R-squared	Ad: A-squared	Eta Ennia
SE I	023	001	- 001	1.46
		Anarysis of Vaniano	e Tapie	
Sounce	<u>DF</u>	Sum Squares	Mean Square	F-test
REGRESSION	1	575	: •:	478
RESIDUAL	660	1130 152	7.4	10 = 5084
TOTAL	861	1130 733	i	

Simple Regression X1: Gender Y1: Age

No Residual Statistics Computed

Simple Regression X1: Gender Y1: Age

Beta Coefficient Table

Parameter.	Value.	Std Err.	Std Value	t-value.	Probability
INTERCEPT	2.936				
SLOPE	052	.078	- 023	.662	5084

Parameter:	95% Lower	95% Upper	90% Lower	90% Upper
MEAN (X,Y)	2.782	2.935	2.794	2.923
SLOPE	- 205	.102	- 18	077

Simple Pegression, Gender Vrs. All Variables

ĴF		H-SQUARED	ed, Alcouarieu	Etal Eriton
36 :	101	1.014E-4	- 301	1738
••	Ъ. Г	Arializats of Mariane		•
<u>Sounce</u> GENGESSNOW			<u>Mean Square</u> 164	<u>F-test</u> (87
REFICUAL	tév	2598 636	13022	·s = 7678
TOTAL	66 '	2599.1		

Simple Regression X1: Gender Y2: School

No Residual Statistics Computed

Simple Regression X1: Gender Y2: School

Beta Coefficient Table

Parameter	Value	Std. Err	Std. Value	t-Value:	Probability.
INTERCEPT	3.89				
SLOPE	.035	118	01	.295	.7678

Parameter	95% Lower	95% Upper	90% Lower.	90% Upper.
MEAN (X,Y)	3.526	4.058	3.844	4.039
SLOPE	- 198	.267	- 16	.23

Simple Regression, Gender Vrs. All Variables

<u>.</u>	2	R-squared	Ad, A-Squared	
10	341	. 002	• • • 	14E2
		Analysis of Maniane	e Tucie	
· · ·		<u>Sum Squares</u>	Mean Square	Fried
-2222.00		3 079	2072	
9 <u>88 :</u>	BEN	340 779	2:4	· · · · · · · · · · · · · · · · · · ·
····	Ē£ '	1 ELT 257		

Simple Regression X1: Gender Y3: Mother's Ed.

No Residual Statistics Computed

Simple Regression X1: Gender Y3: Mother's Ed.

Beta Coefficient Table

Panameter	value	Std. Err.	Std. Value	t-Value.	Probability
INTERCEPT	4 022				
SLOPE	- 12	1	- 041	1.199	2307

Panameter	95% Lower.	95% Upper	90% Lower	90% Upper
HEAN (X,Y)	3.746	3 941	3761	3.925
ELOPE	- 315	.076	- 284	045

Simple Regression, Gender Vrs. All Variables

<u>;</u> F	2	Resquared	Ad; Resoluted	<u>Stal Enron</u>
<u>e</u> :	053	00 <u>7</u>	002	
		Analysis of Variand	ia Tabie	
taanse	Ĵ,Ŧ	Jum Eduaries	Tean Square	F-lest
RESPECTA		7 3 6 9	7 369	2 44 1
₹ <u>€</u> ; , , , , , , , , , , , , , , , , , ,	÷E.C	1595 796	7 1 1	
TITAL		12603 165		

Simple Regression X1: Gender Y4: Father's Ed.

No Residual Statistics Computed

Simple Ragression X1: Gender Y4: Father's Ed.

Beta Coefficient Table

F	Parameter	Value	Std. Ern.	Std Value	t-Value.	Probability
	INTERCEPT	3.795				
	SLOPE	- 185	118	053	1.562	1185

Parameter	95% Lower	95% Upper	90% Lower	90% Upper.
MEAN (X,Y)	3 404	3.636	3.422	3.617
SLOPE	- 417	.047	- 36	01

Simple Regression, Gender Vrs. All variables

DF	â	Resquared	Ad Prequared	Stal Ennal
SE!	078	20 6		
iour:e	ЪF	Analysis of Mariane Sum Squares		ř-test
2832833-CN		2 2 7	• • • •	5.319
FERDUAL	263	463,265		
	<u>.</u>	-16 C - 25		•

Simple Regression X1: Gender Y5: Student aspiration

No Residual Statistics Computed

Simple Regression X1: Gender Y5: Student aspiration

Beta Coefficient Table

Fianameter	Value	Std Err	Std. Value	L-Value	Probability
INTERCEPT	3 249				
SLOPE	115	05	078	2 309	0212

Confidence Intervals Table

Parameter	95% Lower	95% Upper	90% Lower	90% Upper	
PIEAN (X.Y)	3 372	3 47	3 36	3 462	
SLOPE	017	214	033	198	

5

Table 5

.

e (1)

One Factor ANOVA X1: Age Y1: School

Source	OF	Bum Bauaries	Mean Square	F-test
Between an up	5 -1	13. E	7.45	::::::::::::::::::::::::::::::::::::::
within groups	157	ાદલક ાન	5 () ÷	0 = 3642
	ôf: '	1999		

Analysis of Vaniance Table

Model il estimate il petween component variance = 0p2

Group.	Count:	Mean	Std. Dev	Std. Error
A-15	104	4 067	1.679	165
B-16	253	3.964	1 765	111
C-17	236	3 975	1 738	113
D-18	199	3.739	1 767	125
E-19 or older	70	4 143	1.627	194

One Factor ANOVA X1: Age Y1: School

One Factor ANOVA X1: Age V1: School

Comparison	Hean Diff :	Fisher PL30	<u> 3cheffe F-test</u>	Dunnett t
A-15 vs 8-16	103	397	065	508
A-15 vs C-17	093	.401	051	454
A-15 vs. D-18	329	413	611	1 563
A-15 vs. E-19 or older	- 076	.527	02	.261
8-16 vs (-17	- 01	309	001	065

Lantean Ebr.	Mean Diff	Fisher FL30	<u>icroffe Estas</u>	it. Dunnett t.
te but lett	226		يني مور	
And the second second pre-	1.179		JC.	761
	136	:::	496	411
1. The Settler Homes	- 162	-1Ķ-1		7 9 -
Delle vielle i al name	- 104		701	1674

One Factor ANOVA X1: Age V1: School

One Factor ANOVA X1: Age Y2: Mother's Ed.

Source	0F	Eum Equanes	Mean Equane	F-test	
felweer and	bube 4	7 <u>5</u> .74	18 935	4 173	
A trib prive	e 667	° " €€ , 13	I JEI	p = 1001	
- โมเม	ĉić 1	1848 857			

Analysis of Variance Table

Model if estimate of petween component variance = 4.218

One Factor ANOVA X1: Age Y2: Mother's Ed.

Grou <u>¢</u>	Count	Mean:	Std. Dev.:	Std. Error:	
A-15	104	4 288	1 419	139	
B-16	253	4.063	1.402	088	
Ç-17	236	3 852	1.441	094	
D-18	199	3518	1.466	.104	
E-19 or older	70	3 286	1 486	178	

One Factor ANOVA X1: Age Y2: Mother's Ed.

Comparison:	Mean Diff.	Fisher PLSD	Scheffe F-test:	Dunnett t
A-15 vs B-16	225	328	453	1 346
A-15 vs. C-17	437	.332*	1 669	2.584
A-15 vs D-18	771	341*	4918*	4 435
A-15 vs. E-19 on olden	1.003	436*	5.098*	4.516
8-16 vs (-17	212	255	662	1 627

<u>Companison</u>	Mean Diff	Franken Filiatio	<u>inaria Falast</u>	<u>Dunnett t</u>
.8-16 vs 0-18	546	<u>`</u> £ `` *	4 (19 *	4 069
B- Hove E- 14 on Alden	افر ا	76 i •	4	4 102
1-17 /5 1-18		. <u>.</u>	' -i <u>t</u> .	2.4
dultzige Euligion vigen	566	3 <u>8</u> 1+	2.096	2 995
D+18 vs. E+19 on older	232	392	337	1 162

One Factor ANOVA X1: Age Y2: Mother's Ed.

One Factor ANOVA X1: Age Y3: Father's Ed.

Bounde	<u>DF</u>	Sum Equares	Mean Square	F-test
Setween or	pubs 4	111-85		9 559
within grou	ps : 857	2491.98	2.3.5	p = ((0))
Total	361	LECT FE		·····

Analysis of variance fable.

Model ii estimate of between component variance = 5 222

One Factor ANOVA X1: Age Y3: Father's Ed.

Group:	Count:	Mean.	Std. Dev.	Std. Error	
A-15	104	4 298	1 624	159	
B-16	253	3.656	1 71	108	
C-17	236	3 4 1 9	1 718	112	
D-18	199	3.291	1.698	12	
E-19 or older	70	2 857	1 78	213	

One Factor ANOVA X1: Age Y3: Father's Ed.

Comparison:	Mean Diff .:	Fisher PLSD	Scheffe F-test	Dunnett t
A-15 vs B-16	.642	39*	2611+	3 232
A-15 vs. C-17	879	394*	4 791#	4 378
A-15 vs D-18	1 007	405*	5.95+	4 879
A-15 vs. E-19 or older	1.441	.517*	7 469*	5 466
B-16 vs (-17	237	303	588	1 533

Comparison.	Mean Diff .	Fisher PLSD.	<u>Scheffe F-test</u>	<u>Dunnett t</u>	
6-16 vs 0-18	365	317+	1274	2 257	:
B-16 ve E-19 on olden	796	450+	3 009+	7 469	
0-17 vs 0-18	i ¹ 28		192	: 78	
C-17 vs E-19 in olden	561	156 ·	1 468	2 423	
D-18 vs. E-19 ur older	434	465	.04	533	

One Factor ANOVA X1: Age Y3: Father's Ed.

One Factor ANOVA X1: Age Y4: Student aspiration

Analysis of Variance Table

	. F	Bum Bauares	Mean Square	F-tyat
t - twa-c gr	super 4	33 TE 1	8 436	16 TO4
NTT T IT L	63 857	431 385	505	r = 1999
- · .	16 L	466 136		

Mindel - estimate of between component variance # 1.983

Grout	Count	Mean	Std. Dev.:	Std. Error	_
A-15	104	3 74	54	053	
ि 19-16:	253	3 553	686	043	
· · · · · · · · · · · · · · · · · · ·	236	3 407	687	045	
0-18	199	3.256	785	056	
E-19 on older	70	2,986	86	103	

One Factor ANOVA X1: Age Y4: Student aspiration

One Factor ANOVA X1: Age Y4: Student aspiration

Companison	Mean Diff	Fisher PLSD	Scheffe F-test	Dunnett t
A-15 ve 8-16	187	152+	1 277	2 26
A-15 vs. 0-17	.334	164*	3 981*	3.99
4-15 ve D-18	484	169*	7.932*	5 633
A-15 vs. E-19 or older	755	.216*	11 807*	6.672
8-16 vs 1-17	147	126*	13	2 28

One Factor ANOVA X1: Age Y4: Student aspiration

Comparison	Mean Diff	Fisher PLSD	Scheife F-test:	Dunnett t.
8-16 vs D-18	297	132*	4371*	विवाब
8-16 vs. E-19 on older	568	188*	8.754*	5918
C-17 vs 0-18	: 15	:34*	1 212	2 202
C-17 vs. E-19 on older	, 4C.	19•	4743*	4 356
0-18 vs E-19 on olden	271	194*	1 878	2 741

Simple Regression, Age Vrs. All Variables

DF	R	Resouared	Adj R-squared	<u> Sta Error</u>
961	023	001	001	15
		Analysis of Mariand	e Tabie	
Bounce	}¥	jum jauanes	Mean Square	F-lest
REGRESSION	1		11	436
REBEUAL	. 560	1:57:6	25	p = 3084
TOTAL	361	215 426	1	

Simple Regression X1: Age Y1: Gender

No Residual Statistics Computed

.

こうしき ション・ション しんちょう

A LAND SOL P

Simple Regression X1: Age Y1: Gender

Beta Coefficient Table

Parameter.	Value.	Std. Err :	Std. Value.	t-Value	Probability
INTERCEPT	1.519				
SLOPE	01	015	- 023	.662	5084

Parameter:	95% Lower.	95% Upper:	90% Lower:	90% Upper
HEAN (X,Y)	1.457	1.524	1.463	1.519
SLOPE	- 039	.019	034	.015

DF	R.	R-squared.	Adj R-squared.	<u>Sta Error</u>
861	.026	001	- 00 1	1 738
Sounce	ÐF	Analysis of Varianc Sum Squares		F-test
REGRESSION	1;	1716	1718	. 569
RESIDUAL	860	2597 382	7 1 5	p = 4509
TOTAL	861	2599.1		

Simple Regression X1: Age Y2: School

No Residual Statistics Computed

Simple Regression X1: Age Y2: School

Beta Coefficient Table

Parameter	Value:	Std. Err :	Std Value	t-Value.	Probability
INTERCEPT	4.053				
SLOPE	039	.052	026	.754	4509

Confidence Intervals Table

Parameter.	95% Lower	95% Upper	90% Lower:	90% Upper:
MEAN (X,Y)	3.626	4.058	3.845	4.039
SLOPE	14	.062	124	.046

,

Simple Regression: Age vrs. All Variables

DF	R:	R-squared	Adj R-squared	Sta Error
861	202	041	<u>)4</u>	1 434
		Analysis of Varianc	e Cable	
<u>Bounce</u>)F	Sum Squares	Mean Square	F-test
REGRESSION	1	74 945	74.945	36 436
RESIDUAL	360	1766 912	.2.057	p = 0001
TOTAL	861	1843 857		1

Simple Regression X1: Age Y3: Mother's Ed.

No Residual Statistics Computed

Simple Regression X1: Age Y3: Mother's Ed.

Beta Coefficient Table

Parameter:	Value:	Std. Err.	Std. Value:	t-Value.	Probability
INTERCEPT	4.579				
SLOPE	257	.043	- 202	6.036	.0001

Parameter:	95% Lower:	95% Upper.	90% Lower:	90% Upper:
MEAN (X,Y)	3.748	3.939	3.763	3.924
SLOPE	- 341	174	- 328	187

Simple Regression: Age Vrs. All Variables

÷ ;;	2	R-squared.	Adj. R-squared	Std Ennon
- F 1	:95	038	037	: 706
		Analysis of Varianc	e Table	
<u> 1</u>	JF	Sum Squares.	mean Square	F-test.
RESPECTIVE	, 1	99,009	99 009	34 003
PER DE AL	360	2504 155	1	e = 3001
	561	2603 165		1

Simple Regression X1: Age Y4: Father's Ed.

No Residual Statistics Computed

Simple Regression X1: Age Y4: Father's Ed.

Beta Coefficient Table

Panameten	Value.	Std. Err :	Std. Value:	t-Value.	Probability.
INTERCEPT	4.366				
SLOPE	- 296	.051	- 195	5.831	.0001

Parameter	95% Lower	95% Upper	90% Lower:	90% Upper:
MEAN (X.Y)	3 406	3.634	3.424	3.615
SLOPE	396	196	379	212

Simple Regression: Age Vrs. All Variables

Contraction of the local distance

おんていいのです

DF.	R .	R-squared	Ad: R-squared	. Sta Error
861	267	071	.07	.71
sounce	DF	Analysis of Varianci Sum Squares:	e Table Mean Square	f-test
REGRESSION	11	33.156	33.156	65.055
RESIDUAL	860	432 98	503	p = 0001
TOTAL	86 :	466.136	1	1

Simple Regression X1: Age Y5: Student aspiration

No Residual Statistics Computed

Simple Regression X1: Age Y5: Student aspiration

Beta Coefficient Table

Parameter	Value	Std. Ern.	Std. Value:	t-Value.	Probability.
INTERCEPT	3.911				
SLOPE	171	.021	- 267	8.115	.0001

Parameter	95% Lower:	95% Upper:	90% Lower:	90% Upper:
MEAN (X,Y)	3.374	3.469	3.381	3.461
SLOPE	213	•.13	206	136

Table 6

One Factor ANOVA X1: School Y1: Mother's Ed.

Source	DF	Sum Bauares	Mean Square:	F-test
Between groups	15	19.036	2 307	1 766
within groups	: 356	:824 821	2 132	p = 1132
Totai	1561	1643 357		

Analysis of Variance Table

Model = estimate of between component variance = 335

One Factor ANOVA X1: School Y1: Mother's Ed.

Group:	Count:	Mean:	Std. Dev.:	Std. Error:
A-NGRHS	80	3.825	1 24	.139
B-BHS	197	4.102	1.403	.1
C-LHS	70	38	1.566	187
D-NRHS	46	3.696	1.533	.226
E-PVEC	284	3.715	1.534	.091

One Factor ANOVA X1: School Y1: Mother's Ed.

Group.	Count:	Mean:	Std. Dev.	Std. Error:
F-CMHS	185	3 827	1 43	105

Companison:	Mean Diff .	Fisher PLSD	<u>Bonerre F-test</u>	<u>Dunnett t</u>	
A-NGRHS VS. B-BHS	- 277	38	408	1 429	1
A-NGRHS VS C-LHS	025	469	002	۲ .) ק	
A-NGRHS vs. D-NRHS	.129	53	046	479	
A-NGPHS ve E-PVEC	11	363	071	596	
A-NGRHS vs. F-CMHS	- 002	384	2 153E-5	31	

One Factor ANOVA X1: School Y1: Mother's Ed.

One Factor ANOVA X1: School Y1: Mother's Ed.

Comparison:	Mean Diff.:	Fisher PLSD:	Scheffe F-test:	Dunnett_t:
B-BHS vs. C-LHS	.302	399	441	1 484
B-BHS vs. D-NRHS	.406	.469	576	1.698
B-BHS vs. E-PVEC	.387	.266*	1 632	2 857
B-BHS vs. F-CMHS	.274	.293	.674	1.836
C-LHS vs. D-NRHS	.104	.544	028	.377

* Significant at 95%

One Factor ANOVA X1: School Y1: Mother's Ed.

Companison:	Mean Diff ::	Fisher PLSD	Scheffe F-test	Dunnett t
C-LHS vs E-PVEC	085	382	038	437
C-LHS vs. F-CMHS	027	.402	003	132
D-NRHS vs E-PVEC	- 019	456	001	082
D-NRHS vs. F-CMHS	- 131	472	06	546
E-PVEC VS F-CMHS	- 112	271	132	814

One Factor ANOVA X1: School Y2: Father's Ed.

Source	DF	Sum Squares	Mean Square	F-test	
Between grou	105 - 5	60 34	12 068	4.062	1
within groups	: 356	1542,325	2 971	ip = 0012	
Tutai	361	2603 165			

Analysis of variance Table

Model 11 estimate of between component variance = 1.819

One Factor ANOVA X1: School Y2: Father's Ed.

Group:	Count:	Mean:	Std. Dev.:	Std. Error:
A-NGRHS	80	3.225	1.559	.174
B-BHS	197	3.985	1.701	.121
C-LHS	70	3.5	1.7	.203
D-NRHS	46	3.283	1.708	.252
E-PVEC	284	3.447	1.815	.108

One Factor ANOVA X1: School Y2: Father's Ed.

Group:	Count:	Mean:	Std. Dev :	Std. Error:
F-CMHS	185	3 33	1 683	124

Che Factor Anova.School Vrs. All unaccounted for Variables

Linear ein	Mean Diff.	Fisher FL3D	<u>Icherra F-test.</u>	<u>Dunnett t</u>
ing brend	1 - -	34G*	2.2.1	3 3 25
A-1, -2+3 (4) -2+3+4	- 195	eta	19	975
urten in the second	- 158		907	151
यम्भुन्द्रसङ्ख्या हम्द्राहाः सम्भुन्द्रसङ्ख्या	- 122	178	207	្រែរង្
Allegens verstenning	- 105	453	्यः	454

One Factor ANOVA X1: School Y2: Father's Ed.

• Bignificant at 95%

Comparison.	Mean Diff.:	Fisher PLSD:	Scheffe F-test:	Dunnett L:
B-BHS vs C-LHS	485	471*	817	2.021
B-BHS vs. D-NRHS	.702	.554*	1 238	2.488
B-BHS vs E-PVEC	538	.314*	2.263*	3 364
8-8HS vs. F-CMHS	.655	346*	2.756*	3 712
CHLHE VS DHNRHE	.217	642	.088	665

One Factor ANOVA X1: School Y2: Father's Ed.

* Significant at 95%

One Factor ANOVA X1: School Y2: Father's Ed.

Companison	Mean Diff	Fisher PLSD	Scheffe F-test	Dunnett t
C-LHS VS E-PVEC	053	451	011	23
C-LH3 VS F-CMHS	.17	.475	.099	.704
D-NRHS VS E-PVEC	- 165	538	072	601
D-NRHS vs F-CMHS	047	.557	.006	.166
E-PVEC VE F-CMHS	117	32	104	721

Che Factor Anova, School Vrs. All unaccounted for Variables

One Factor ANOVA X1: School Y3: Student aspiration

Sounce	.)F	Sum Squares	Mean Square	F-test:
Between grou	DS 5	11 518	2 304	: 4 338
within groups	: 356	454 617	53	p = 3007
Totai	561	466 136	1	

Analysis of Variance Table

Model II estimate of between component variance = .355

THE PARTY OF A DESCRIPTION OF A DESCRIPR

One Factor ANOVA X1: School Y3: Student aspiration

Group:	Count:	Mean:	Std. Dev.:	Std. Error:	المحمد فتقداك
A-NGRHS	80	3.188	.748	.084	
B-BHS	197	3.553	.702	.05	
C-LHS	70	3.229	802	.096	
D-NRHS	46	3.522	.781	.115	
E-PVEC	284	3 454	.709	.042	

One Factor ANOVA X1: School Y3: Student aspiration

Group:	Count	Mean	Std. Dev.:	Std. Error:
F-CMHS	185	3 378	735	054

One Factor AnevalSchool Vrs. All unaccounted for Variables

Comparison.	Mean Diff .	Fisher PLSD	<u>Boneffa F-test</u>	Donett t
A-NGRHS VS D-BHS	- 366	134	2 867*	3 186
A-NGEHS IS CHUNS	-)4'	134	124	ेंग्र
A-NGRHS VS. D-NEHE	- 334	: 265*	1 229	:2.479
A-NGPHS VS E-PVEC	- 267	រភ្នំ៖	1 672	2 892
A-NGRHS vs F-CMHS	- 191	191	766	1 957

One Factor ANOVA X1: School Y3: Student aspiration

* Significant at 95%

Companison:	Mean Diff.:	Fisher PLSD:	Scheffe F-test:	Dunnett t:
B-BHS vs. C-LHS	.325	199*	2.051	3.202
B-BHS vs. D-NRHS	.032	234	.014	.264
B-BHS vs E-PVEC	099	133	43	1 466
B-BHS vs F-CMHS	.175	.146*	1.099	2 344
C-LHS vs. D-NRHS	- 293	272*	898	2.119

One Factor ANOVA X1: School Y3: Student aspiration

* Significant at 95%

One Factor ANOVA X1: School Y3: Student aspiration

Companison:	Mean Diff	Fisher PLSD	Scheffe F-test	Dunnett t
C-LHS VS E-PVEC	- 226	191+	1 077	2 32
C-LHS vs. F-CMHS	15	201	429	1 465
D-NRHS VS E-PVEC	068	227	068	583
D-NRHS vs. F-CMHS	.143	.236	.285	1 194
E-PVEC vs F-CMHS	076	135	243	1 102

Simple Regression, School and unaccounted for Variables

0F	R	R-squared.	Adj R-squared	<u>3td. Ernon</u>
861	063	004	003	1.4E'
		Analysis of Variand	e "able	
Source	DF	Sum Squares	ifean Square.	F-test
REGRESSION	1	7 204	1204	3 373
PESIDUAL	860	1836 654	2 136	p = 0666
TOTAL	861	1843.857		i 1

Simple Regression X1: School Y1: Mother's Ed.

No Residual Statistics Computed

Simple Regression X1: School Y1: Mother's Ed.

Beta Coefficient Table

Parameter:	Value:	Std. Err.:	Std. Value:	t-Value:	Probability.
INTERCEPT	4.051				
SLOPE	053	.029	- 063	1.837	.0666

Parameter:	95% Lower	95% Upper:	90% Lower	90% Upper:
MEAN (X,Y)	3.746	3.941	3.761	3.925
SLOPE	109	.004	1	005

Simple Regression, School and unaccounted for Variables

OF	R	R-squared	Adj R-squared	Stal Error
261	078	006	005	• "70
		Analysis of Laniane	÷ 730'+	
Bounde		Sum Squares	Mean Equane	P-test
RESPECTION	•	E TO:	15 701	5.219
REE DUAL	560	2557 463	3019	p = 0226
TUTAL	861	12603 165		

Simple Regression X1: School Y2: Father's Ed.

No Residual Statistics Computed

Simple Regression X1: School Y2: Fether's Ed.

Beta Coefficient Table

Parameter:	Value	Std. Err.:	Std. Value	t-Value	Probability
INTERCEPT	3.826				
SLOPE	078	034	- 078	2.284	0226

Parameter.	95% Lower	95% Upper	90% Lower	90% Upper
MEAN (X,Y)	3.404	3.636	3.422	3.617
SLOPE	- 145	011	134	- 022

Simple Regression, School and unaccounted for Variables

	Simple Regress	sion X1: School	Y3: Student aspiration		
UF	<u>R.</u>	R-squared.	Adj R-squared.	<u>Sta. Error</u>	
361	01	1.009E-4	- 001	736	
ta graja)F	Analysis of Vanian Sum Bauanes		F-test	
12002233	3N 1	: 047	<u></u>	: 067	
753 (M.	360	466 089	542	<u> p = 7684</u>	
		466 136			

No Residual Statistics Computed

Simple Regression X1: School Y3: Student aspiration

Beta Coefficient Table

Parameter	value	Std. Ern.	Std. Value:	t-Value:	Probability:
INTERCEPT	3 404				
SLOPE	004	.014	.01	.295	.7684

Panameter	95% Lower	95% Upper:	90% Lower:	90% Upper:
MEAN (X,Y)	3.372	3.47	3.38	3.462
SLOPE	024	.033	02	.028

Table 7

One Factor ANOVA X1: Mother's Ed. Y1: Father's Ed.

Bounce	DF	Sum Squares	Mean Square	Friest	
Between groups	5	566 333	13 267	47.601	
WILDIN INDUDS	÷56	2036 832	2.779	0 = 0001	
Tota-	86	2603 165			

Analysis of Variance Table

Model II estimate of between component variance = 22,177

One Factor ANOVA X1: Mother's Ed. Y1: Father's Ed.

Group:	Count:	Mean:	Std. Dev.:	Std. Error:
A-< junior high	85	2.071	1.486	161
B-junior high	53	2 358	1.469	.202
C-chigh school	206	3 126	1 443	.101
D-high school	211	3.488	1.616	.111
E-vocational	182	4.099	1.622	.12

One Factor ANOVA X1: Mother's Ed. Y1: Father's Ed.

Group	Count:	Mean:	Std. Dev !	Std Error:
F-university	125	4 856	1 522	136

<u>Companison:</u>	Mean Diff.	Fisher FLSD	<u>Scheffe F-test</u>	<u>Durnett t</u>	
A junion , vs B-jur	uor	53	ا م.د. م م	÷ 066	۱ ا
A-Counter vs C+++	uan (-1.056	្រុះព្	5 536 •	5 308	
A-r junion , vs. D-nig	jns ,-'⊣1ô	389*	10.234*	2:53	
Arr junion ivs Ervor	rati -2.028	308+	:20.035+	10.009	ł
A junion , vs F-un	ive2.785	426*	32 994*	12 844	

One Factor ANOVA X1: Mother's Ed. Y1: Father's Ed.

• Significant at 95%

One Factor ANOVA X1: Mother's Ed. Y1: Father's	i Ed	1.
--	------	----

Comparison:	Mean Diff.:	Fisher PLSD:	Scheffe F-test:	Dunnett t:
B-junior high vs. C-≺ high	768	466*	2.088	3.231
B-junior high vs. D-high s	-1.13	.465*	4.544*	4.766
B-junior high vs. E-vocat.	-1 74	473*	10 45*	7.229
B-junior high vs. F-unive	-2.498	496*	19513*	9 878
C-< high sc., vs. D-high s	- 362	2 7*	1 148	2 396

* Significant at 95%

One Factor NOVA X1: Mother's Ed. Y1: Father's Ed.

Comparison:	Mean Diff.:	Fisher PLSD	Scheffe F-test	Dunnett t:
C-< high sc. vs E-vocati .	- 973	308*	7 684*	6 198
C-« high sc vs. F-unive	-1.73	.343*	19 565*	9 891
D-high school vs E-vocat	- 611	306*	3 064*	3914
D-high school vs. F-unive	-1.368	342*	12 345*	7.856
E-vocational vs. F-univer	- 757	352*	357*	4 225

* Significant at 95%

•

One Factor Anova, Mother's Ed. and unaccounted for Variables

One Factor ANOVA X1: Mother's Ed. Y2: Student aspiration

Sounce	DF-	Bum Equanes	Plean Bouane:	F-last
Bei ween gr	oups:5	39 94	 	15 044
within grou	D3 . 355	426 (95	498	p= 0001
Tutai	361	466 136		

Analysis of Variance Table

Model - Lestimate of between component variance = 1,496

One Factor ANOVA X1: Mother's Ed. Y2: Student aspiration

Group:	Count:	Mean:	Std. Dev.:	Std. Errer:
A-< junior high	85	3 094	.868	094
B-junior high	53	3.358	.623	.086
C-< high school	206	3.248	797	056
D-high school	211	3.365	.765	.053
E-vocational	182	3 588	.604	045

One Factor ANOVA X1: Mother's Ed. V2: Student aspiration

Group	Count	Mean:	Std Dev :	<u>Std. Error:</u>
F-university	125	3 808	434	039

The Factor Andva, Mother's Ed., and unaccounted for Variables.

tionic an ison	Mean Diff	Fisher FL3D	<u>Scheiffe Filteat</u>	Dunnett 1
មក សុរថា ខេត្តដឹក្រុណ	or - 164	*	3: -	
al term to the Poly	an - 153	179	569	• <u>қ</u> дп • т
juonta dia Demogr	3 - 271	· 72.*	1 165	1 307
An provide Environ	əti - 144		T H T T H	5 207
jimmi us ys i arts Amustan	a. 1+714	19 5 •	10 358 *	(† 196) 196

One Factor ANOVA X1: Mother's Ed. Y2: Student aspiration

* Eigniff bant at 95%

Companison	Mean Diff	Fisher PLSD	Scheffe F-test:	Dunnett t:
E-junior high vs. C+< high	. 111	213	208	1 021
B-junion high vs. D-trigh s.	- 006	213	.001	.059
B-jursen high val E-vocat	229	216*	868	2.083
$\beta_{\text{-purplet}}$ high vs. F-unive .	- 45	.227*	3 021*	3 886
Churrigh ac i val D-high s	- 117	136	577	1 698

One Factor ANOVA X1: Mother's Ed. Y2: Student aspiration

* Significant at 95%

One Factor ANOVA X1: Mother's Ed. Y2: Student aspiration

Companison	Mean Diff	Fisher PLSD	Scheffe F-test:	Dunnett t
C-r high so ivs E-vocati	- 34	141•	4 495+	4 741
C-s high sc live F-unive	56	.157*	9815*	7 005
Orhigh school vis Ervocat	- 223	14*	1 952	3 124
D-rognischool vs. F-unive	- ㅋㅋ?	156*	6 19*	5.563
E-vocational vel F-univen	- 22	151+	1 442	2 685

Simple Regression, Mother's Ed. and unaccounted for Variables

)F	R.	A-squared.	Adj R-squared	Std. Error
361	462	1.214	.213	1.543
		Analysis of Varianc	e Table	
ounce	JF	Sum Squares:	Mean Square	F-test
REGRESSION	1	556 712	556.712	233,952
REGIOUAL	860	2046 452	2 38	p = 0001
	÷£.1	, 2603, 165	*	

Simple Regression X1: Mother's Ed. Y1: Father's Ed.

No Residual Statistics Computed

Simple Regression X1: Mother's Ed. Y1: Father's Ed.

Beta Coefficient Table

Parameter:	Value.	Std Err.;	Std. Value:	t-Value.	Probability:
INTERCEPT	1.408				
SLOPE	.549	.036	.462	15.296	.0001

Panameter.	95% Lower:	95% Upper:	90% Lower:	90% Upper:
MEAN (X,Y)	3.417	3.623	3,433	3.606
SLOPE	.479	.62	49	.609

Simple Regression, Mother's Ed. and unaccounted for Variables

•	•	•	-	•
OF	R.	R-squared	Ad: R-squared	<u>Stal Ennon</u>
361	273	074	, , , , , , , , , , , , , , , , , , ,	208
		Analysis of Variand	e Tapie	
iounce	DF	Sum Equanes	Mean Equane	F-test
REGREESION	1	54674	74674	69.112
PERIOUAL	6E.0	471 462	502	.p = √
TOTAL	361	466 136		

Simple Regression X1: Mother's Ed. Y2: Student aspiration

No Residual Statistics Computed

Simple Regression X1: Mother's Ed. Y2: Student espiration

Beta Coefficient Table

Parameter:	Value:	Std. Err.:	Std. Value	t-Value:	Probability
INTERCEPT	2.894				
SLOPE	137	.016	.273	8.313	0001

Parameter	95% Lower.	95% Upper	90% Lower	90% Upper
MEAN (X.Y)	3 374	3.468	3.381	3.461
SLOPE	.105	.17	.11	164

Table 8

One Factor Anova, Father's Ed. and Student Aspirations

One Factor ANOVA X1: Father's Ed. Y1: Student aspiration

Bounce	DF-	Sum Squares	Mean Bouanes	F-test
Between anouns	5	43 5 4	5 703	17.627
within groups	. 656	422 622	- 494	p = 0001
Totai	561	466 136		

Analysis of variance Table

Model is estimate of between component variance = 1 642

One Factor ANOVA X1: Father's Ed. Y1: Student aspiration

Group:	Count:	Mean.	Std. Dev :	Std. Error
A-1 junion high	182	3.132	837	062
B-junior high	68	3.25	.72	.087
C-< high school	173	3.301	725	055
D-high school	137	3.489	.729	.062
E-vocational	163	3 564	648	051

One Factor ANOVA X1: Father's Ed. Y1: Student aspiration

Group:	Count:	Mean:	Std Dev	Std Error
F-university	139	3 799	469	04

The Factor Anova, Father's Ed. and Student Aspirations

Mean Diff.	Fisher FLSD	<u>Scheffe F-test.</u>	Dunnett t
ur :-118	- 36	14	1 163
n i- 169	146+	1.023	2.261
3 - 357	156*	:4∛4*	4 494
(· - 4 <u>77</u>	149+		5 108
- 567	:50*	14 19*	. 8.423
	<u>Mean Diff.</u> m := 118 n i = 169 3 = 357 t: = 473 e := 667	n 1-118 - 36 n 1-169 - 146* 3 - 357 - 156* n - 473 - 149*	n 1-118 196 28 n 1-169 146* 1.023 3 - 357 1.56* 1404* n - 473 149* 4.517*

One Factor ANOVA X1: Father's Ed. Y1: Student aspiration

• Formidant at 35%

<u>Companielo</u>	Mean Diff.:	Fisher PLSD	Scheffe F-test:	Dunnett t
Birgunion bigh vs. C-r high	- 051	197	051	503
E-junior high vs. D-high s.	- 239	.205*	1.052	2.293
E-junior high vs. E-vocat	- 314	199*	1 922	3.1
B-junion high vs. F-unive	- 549	.204*	5.566*	5.275
C-r higt se va D-high s	- 158	158*	11	2.345

One Factor ANOVA X1: Father's Ed. Y1: Student aspiration

* Significant at 95%

One Factor ANOVA X1: Father's Ed. Y1: Student aspiration

Comparison	Mean Diff.	Fisher PLSD	Scheffe F-test:	Dunnett t
C-« high sc. vs. E-vocati.	- 264	151 *	2 367•	3 44
C-/ high sc - vs F-unive	- 498	157*	7 743*	6 222
D-high school ve E-vocat	- 075	15	171	925
D-high school vs. F-unive	- 31	166*	2 677*	3.659
E-vocational vs. F-univen	- 234	159+	1 666	2 886

Simple Regression, Father's Ed. and Student Aspirations

<u>DF</u>	R.	R-squared.	Adj R-squared	Sta Ennon
861	.3	1.09	089	707
Source	ŨF	Analysis of Varianci Sum Squares	e Table Mean Souare	F-test
REGRESSION	. 1	41.32	41.32	51984
REDUCAL	360	424 216	493	p = 3001
TOTAL	.861	466 136		1

Simple Regression X1: Father's Ed. Y1: Student aspiration

No Residual Statistics Computed

Simple Regression X1: Father's Ed. Y1: Student aspiration

Beta Coefficient Table

Paname	ter V	value	Std. Err.,	Std. Value	t-Value	Probability
INTERC	EPT	2.974				
SLOPE		.127	.014	.3	9.219	0001

Parameter.	95% Lower:	95% Upper:	90% Lower:	90% Upper
MEAN (X,Y)	3.374	3.468	3.382	3.461
SLOPE	.1	.154	.104	15

Table 9

One Factor ANOVA X1: Gender Y1: JWS

Ecunce	0F	Bum Bauares	Mean Etuane	Fatast
Between group	. 1	14 72 1	, ,	141
Within groups	560	69870 917	81 14F	0 = 6715
Totai	.56 I	69865 647		

Analysis of Variance Table

Model R estimate of between component variance = +5t FDE

One Factor ANOVA X1: Gender Y1: JWS

Group	Count	Mear	Std. Dev.	Std. Error	
Male	439	99 786	9.67	462	
Female	423	100 047	8 277	402	

One Factor ANOVA X1: Gender Y1: JWS

Comparison:	Mean Diff.	Fisher PLSD	Scheffe F-test	Dunnett t
Male vs. Female	- 261	1 205	•	426

One Factor ANOVA X1: Age Y1: JWS

Source	DF	Bum Bauanes	Mean Square	-teet
Between groups	4	207-064	5: 160	637
within groups	857	69618 563	91 305 <u> </u>	p = 6364
Tutai	361			

Analysis of Variance Table

Model il estimate of between component variance = -7 365

r 1

One Factor ANOVA X1: Age Y1: JWS

Group:	Count:	Mean:	Std. Dev.	Std. Error:
A-15	104	100 529	10.015	.982
B-16	253	99.486	8.399	.528
C-17	236	100 496	9.553	.622
D-18	199	99.457	8.527	.604
E-19 or older	70	99 886	9 1 1 2	1.089

One Factor ANOVA X1: Age Y1: JWS

Comparison	Mean Diff	Fisher PLSD:	Scheffe F-test	Dunnett t:
A-15 vs B-16	1 043	2 062	246	993
A-15 vs (-17	033	2 083	2.429E-4	.031
A-15 vs D-18	1 072	2 142	241	982
A-15 vs E-19 on older	643	2.736	.053	.461
8-15 vs (-17	-1 01	1 502	383	1 237

One Factor ANOVA X1: Age Y1: JWS

<u>Mean Diff</u>	Fisher PLSD	Echerre F-test	<u>Dunnett tr</u>	
029	: 677	2 3578-4	34	
'-4	239	-,	128	
1036	1763		- E 197	
Ę.	12-409	96 D	-497	
- 415	_ 4r	e29	141	
	029 1-4 1038 61	029 1.677 4 2.39 1.038 1.703 6.1 12.409	029 1.677 2.8578-4 1-4 2.39 2.17 1.038 1.703 358 61 12.409 162	029 1.677 2.3578-4 034 1-4 2.379 027 328 1.038 1.703 358 1.197 61 12.409 362 4.97

One Factor Anova, School vrs. JWS

One Factor ANOVA X1: School Y1: JWS

Sourre	OF	Sum Equanes:	Mean Square:	F-test
Berween ghoups	s Ī	1111 941	222 388	- <u>-</u> 768
within groups	85 6	66773.706	60 343	ip = 0173
Tatai	361	£9885.647		

Analysis of Variance Taple

Model il estimate of between component variance = 28 409

Group.	Count:	Mean:	Std. Dev.:	Std. Error:
A-NGRHS	80	98.625	7.249	.81
8-8HS	197	99.178	9.571	.682
C-LHS	70	97.871	8.594	1.027
D-NRHS	46	98.717	9.392	1.385
E-PVEC	284	101.218	9 202	.546

One Factor ANOVA X1: School Y1: JWS

One Factor ANOVA X1: School Y1: JWS

Group	Count	Mean:	Std. Dev.:	Std. Error:
е-(мн <u>е</u>	185	100 324	8611	633

One Factor Aneva, School vrs. UWS.

Companison	Mean Diff.	Flaner FLED	Boneffe F-test	<u>Durrett :</u>
A-NGRHS VS B-BHS	_ 553	 	(4]	46E
A-NGRHE LE JELHE	754	्र २१	057	514
A-NGREE 28 D-NREE	- 192	,3.256	100 t	056
A-NGRHS VS E-PVED	-2 593	2 227+	1 045	2 286
A-NGRH3 vs F-CMHS	-1 699	2.354	401	1417

One Factor ANOVA X1: School Y1: JWS

* Significant at 95%

Companison:	Mean Diff	Fisher PLSD	Scheffe F-test:	Dunnett t.
B-BHS vs C-LHS	1 306	2 448	219	1.047
B-BHS vs D-NRHS	46	2 881	.02	314
B-BHS vs. E-PVEC	-2 041	1 631*	1 206	2 455
B-BHS vs. F-CMHS	-1.147	1.801	.312	1.25
C-LHS VS. D-NRHS	- 846	3 339	049	497

One Factor ANOVA X1: School V1: JWS

* Significant at 95%

One Factor ANOVA X1: School Y1: JWS

Companison:	Mean Diff.:	Fisher PLSD-	Scheffe F-test	Dunnett t
C-LHS VS E-PVEC	-3 347	1 :: 343+	1 566	2 798
C-LHS vs. F-CMHS	-2.453	2 469	.761	1 95
D-NRHS vs E-PVEC	-2 501	2 796	<u>616</u>	1 756
D-NRHS vs. F-CMHS	-1.607	2 899	237	1 088
E-PVEC vs F-CMHS	894	1 662	223	1 056

One Factor Anova, Mother's Ed. vrs. UWS

One Factor ANOVA X1: Mother's Ed. Y1: JWS

Source	DF	Sum Squares	Mean Bauare	Friest
Between group	s · 5	307 757	£1551	757
within groups	356	69577 89	181 183	ip = 5808
Total	36 '	69885 647	:	

Analysis of Variance Table

Model it estimate of between component variance = -3.946

One Fector ANOVA X1: Mother's Ed. Y1: JWS

Group:	Count:	Mean:	Std. Dev.:	Std. Error:
A-≺ junior high	85	99.635	8 746	949
8-junior high	53	9 7.9 25	7,421	1.019
C-4 high school	206	100.301	8 757	.61
D-high school	211	99.976	8.734	.601
E-vocational	182	100.385	9.9	734

One Factor ANOVA X1: Mother's Ed. Y1: JWS

Group.	Count:	Mean:	Std Dev	Std Error:
F-university	125	99 52	9 335	635

One Factor Anova, Mother's Ed. vrs. 2WS

Companison		Mean Diff.	Fisher PLED	<u>Echerfa Entest</u>	Dunnett :
A- junion 7	e ê−junion.	1711	3 397	270	. 34
A-chiption is	tin nign			166	, çox
Arrigunton i ve	C-nigh 4	- 341			. 244
A junion vs	E-vocati	- 7 <u>1</u> 9	1 725	18	533
A-s junion v:	s F-unive	115	1 466		391

One Factor ANOVA X1: Mother's Ed. Y1: JWS

One Factor ANOVA X1: Mother's Ed. Y1: JWS

Comparison:	Mean Diff.	Fisher PLSD	Scheffe F-test	Dunnett t
B-junior high vs. C-< high	-2 376	2 726	586	1 711
B-junior high vs. D-high s	-2.052	2.719	439	1.481
B-junior high vs. E-vocat .	-2 46	2 762	611	1 748
B-junior high vs. F-unive	-1.595	2.901	233	1.08
C-≪high scvs. D-high s.	325	1 733	027	368

One Factor ANOVA X1: Mother's Ed. V1: JWS

Comparison:	Mean Diff :	Fisher PLSD	Scheffe F-test	Dunnett t:
C-< high sc vs. E-vocati	- 084	18	002	091
C-« high sc vs. F-unive	.781	2.006	117	764
D-high school vs. E-vocat	- 408	1 79	04	448
D-high school vs. F-unive	.456	1.997	04	.448
E-vocational vs. F-univer	865	2 056	136	825

One Factor Anova, Father's Ed. vrs. UWS

One Factor ANOVA X1: Father's Ed. Y1: JWS

Analysis	Ŭľ.	vaniance	ឹរស់ទ

•	je	Sum Squares	Mean Square	E-tagt
	Ę	96 <u>25</u>	19.25	236
A 1717 (711.03	25o	69799 297	2, 23	c = 3466
	ir i	. 69365 847		

Model -- estimate of between component variance = -12 456

One Fector ANOVA X1: Father's Ed. Y1: JWS

<u>Shoup</u>	Count	Mean:	Std. Dev.:	Std. Error:
A- jurion high	182	100 121	8.554	.634
B-junior high	68	99.956	9.56	1.159
C- high school	173	99 78	8.502	.646
ù-hlah school	137	99 248	7.708	.659
E-vocational	163	100 025	10 596	.83

One Factor ANOVA X1: Father's Ed. Y1: JWS

Group	Count	Mean:	Std. Dev	Std. Ernen:
R-1101/6-4154	139	100 317	9215	782

One Factor Anova, Father's Ed. vrs. JWS

Comparison.		Mean Diff.	Fisher FLED	Echeffe F-test.	Dunnett t
A- union	vs. 8-junion	165	2.519	. 003	29
A- gaine	ve (niĝn	्रमा	1.382	025	355
A- junion	vs. D-ragh a	.: 873	2005	, 14E	654
A-r ganion	vs Ervocati	096	1911	002	044
i A-+ junion	vs Frankve	- 196	1 997	307	32

One Factor ANOVA X1: Father's Ed. Y1: JWS

One Factor ANOVA X1: Father's Ed. Y1: JWS

Comparison:	Mean Diff .:	Fisher PLSD:	Scheffe F-test:	Dunnett t:
8-junion high vs. Crishigh .	.176	2.537	.004	136
8-junior high vs. D-high s	708	2.629	056	.528
8-junion high vs. E-vocat	- 069	2.559	.001	053
B-junior high vs. F-unive	- 361	2.623	.015	.27
C-chigh sc vs D-high s	532	2.027	053	.515

One Factor ANOVA X1: Father's Ed. Y1: JWS

Comparison:	Mean Diff .:	Fisher PLSD:	Scheffe F-test	Dunnett t
C-< high sc vs E-vocati	- 244	1 935	012	248
Ç-4 high sc vs. F-unive	536	2.019	054	.521
D-high school vs E-vocat	- 776	2 054	11	742
D-high school vs. F-unive	1.068	2.134	193	983
E-vocational vs. F-univer	- 292	2 046	016	28

One Factor Anova, Student's Aspirations, yrs. UWS

One Factor ANOVA X1: Student aspiration Y1: JWS

Eounce	DF	Fum Equanes	Mean Square	F-rest.
Between groups	3 J	c.45		0.3
within groups	856	t 9865_003_	ê - 45 1	0 = 9996
Futa	, 66.1	69885 547		

Analysis of Variance Table

Model II estimate of between component variance = -27.079

One Factor ANOVA X1: Student aspiration Y1: JWS

Group.	Count.	Mean:	Std. Dev	Std. Error:
A-quit his / job	15	99.8	10.178	2.628
B-h s/job	83	99 892	9 047	993
C-h.s./vocational	288	99.948	8.25	486
D-h s /university	476	99 90 1	9 425	432

One Factor ANOVA X1: Student aspiration Y1: JWS

Comparison.	Mean Diff :	Fisher PLSD:	Scheffe F-test	: Dunnett t:
A-quiths vs B-hs/job	- 092	497	4 359E-4	036
A-quit his , vs. C-h.s /v.,	148	- 692	.001	.062
A-quiths vs D-hs/u	- 101	4 6 4 6	001	043
B-his/job vs. C-his/voc	- 056	2.207	.001	.05
8-h s/job vs D-h s/univ	- 01	2 107	2 7188-5	009

ê

One Factor Anova, Student's Aspirations lyrs. JWS

One Factor ANOVA X1: Student aspiration Y1: JWS

Comparison:	Mean Diff.	Fisher FLSD		est. Dunnett t	
C-0 S / VOC VS	0-ns.u (047	: 313	NG 🗋	669	•

DF	R	R-squared	Ad; R-squared	Sta Error
261	015	2.1065-4	- 30	
Sounde	0F	Analysis of Van and Fum Equares	e Table Mean Bisuane	ast
REGRESSION	i	juę.)45	.91
REFECAL	ôf:	215 36	15	ip = 6705
TOTAL	1861	1215 426	1	1

Simple Regression X1: JWS Y1: Gender

No Residual Statistics Computed

Simple Regression X1: JWS V1: Gender

Beta Coefficient Table

Panameter	Value.	Std Err.	Std Value:	t-Value.	Probability
INTERCEPT	1.41				
SLOPE	001	002	.015	426	.6705

Parameter.	95% Lower	95% Upper	90% Lower.	90% Upper:
MEAN (X,Y)	1.457	1.524	1.463	1.519
SLOPE	- 003	.005	- 002	.004

2	÷	A-squared	Ad: G-squared	<u>Eta Error</u>
72 -	212	: £585-4	- 301	
		Analysis of Variand	e fable	
	<u>j</u> f	Sum Squares	Mean Equane	E-test
		Зê	ÊĈ	
12:1.4.	160	50 F46		
-:		1130 733		

Simple Regression X1: JWS Y2: Age

No Residual Statistics Computed

Simple Regression X1: JWS Y2: Age

Beta Coefficient Table

Par ameter	Value	Stu Err	Std Value	t-Value.	Probability
INTERCEPT	3 022				
SLOPE	- 002	004	013	378	7058

Farameter	95% Lower	95% Upper	90% Lower	90% Upper
PEAN (A.Y)	2.782	2.935	2.794	2.923
BLOPE	- 01	.007	- 009	006

<u>DF</u>	2	R-squared.	Ad; R-squared	Etd_Ennon
361	094	209	008	1 77 1
		Analysis of Varianc		_
Bounce	CF	Sum Squares.	Mean Bouare	F-test
REGREESION	1		22 887	7.54
RES DUAL	<u>060</u>	2576.213	2 996	<u> p = 0058</u>
TOTAL	361	2599.1		

Simple Regression X1: JWS Y3: School

No Residual Statistics Computed

Simple Regression X1: JWS Y3: School

Beta Coefficient Table

Parameter	Value.	Std. Err.:	Std. Value.	t-Value:	Probability.
INTERCEPT	2.134				
SLOPE	018	.007	094	2.764	0058

Parameter:	95% Lower	95% Upper	90% Lower:	90% Upper:
MEAN (X,Y)	3.826	4.058	3.845	4.039
SLOPE	005	.031	007	.029

DF	<u>.</u>	R-squared	Ad: R-squared	Eta Error
261	317	<u>2 7846-4</u>		
		Analysis of Variand		
sunce	<u></u>	sun squares	<u>Mean Equane</u>	F-lest
REGREESION	:	<u> </u>	<u> </u>	<u>· 14</u>
REBIDUAL	660	1843 344	2 43	<u> </u>
72742	361	1843 857	•	ь

Simple Regression X1: JWS Y4: Mother's Ed.

No Residual Statistics Computed

Simple Regression X1: JWS Y4: Mother's Ed.

Eeta Coefficient Table

Parameter	Value	Std. Err.	Std. Value.	t-Value.	Probability.	
INTERCEPT	3.573					
SLOPE	003	006	017	.489	.6247	

Parameter	95% Lower.	95% Upper	90% Lower	90% Upper
MEAN (X,Y)	3.746	3.941	3.761	3.926
SLOPE	- 008	014	- 006	012

0F	2	R-squared	Ad: A-squared	Bta Ennon
361	002	6.527E-6	1 - 00 t	1
Boynce	0F	Analysis of Varianc Sum Squares	e Taple Mean Squane	-'-' - '
REGRESSION		017)0é
RESIDUAL	360	2603 148		g = 9403
TOTAL	361	2503 165		1

Simple Regression X1: JWS Y1: Father's Ed.

No Residual Statistics Computed

Simple Regression X1: JWS Y1: Father's Ed.

Beta Coefficient Table

Parameter.	Value	Std. Err.:	Std. Value	t-Value:	Probability
INTERCEPT	3.47				
SLOPE	4.931E-4	.007	.003	.075	.9403

Parameter.	95% Lower:	95% Upper:	90% Lower.	90% Upper:
MEAN (X,Y)	3.403	3,636	3.422	3.617
SLOPE	012	.013	01	.011

1. traf

DF	<u>R.</u>	R-squared	Adj R-squared.	Sta Error
861	1.468E-4	12.154E-6	1- 001	736
Bounde	OF	Analysis of Maniand Bum Bauares	e Table Mean-Bouane	-regt
REGREESION	1	1 (n) 4E-5	00.4E~5	. 3526-5
PERCUAL	06C	, 466 - 36	540	·p = 9966
TOTAL	361	466 136		

Simple Regression X_1 : JWS Y_2 : Student aspiration

No Residual Statistics Computed

Simple Regression X1: JWS Y2: Student aspiration

Beta Coefficient Table

Parameter.	Value.	Std. Err	Std Value	t-Value:	Probability
INTERCEPT	3.422				
SLOPE	-1.199E-5	003	-1 468E-4	.004	9966

Parameter:	95% Lower	95% Upper.	90% Lower.	90% Upper
MEAN (X,Y)	3.372	3.47	3.38	3.462
SLOPE	005	.005	005	005

Table 10

One Factor Anova, Gender vrs. All Variables

One Factor ANOVA X1: Gender Y8: ASB

Bounde)F	Bum Bauares:	Mean Square	P-test
Between group	\$	9779 783	19779 363	: 34 355
within groups	560	45619368	53 046	ip = 0001
"ətə	561	F5399 352		

Analysis of Variance Table

Model 4 estimate of between component variance = 9726-337

One Factor ANOVA X1: Gender Y8: ASB

Group:	Count:	Mean:	Std. Dev.:	Std. Error:
Male	439	39 938	7 47	357
Female	423	46.676	7.085	.344

One Factor ANOVA X1: Gender Y8: ASB

Comparison.	Mean Diff	Fisher PLSD	Scheffe F-test	Dunnett t:
Male vs. Female	-6 738	974*	184 355#	13 578

One Factor ANOVA X1: Age Y1: ASB

Analysis of Vaniance Table

Sounce	DF	Burn Bauares	Mean Equare	F-lest	
Bet ween gr	nups -4	: 730 281	: 182 57	2 862	
within grou	DS 857	54669.07	63.791	p = 0216	
	56 I	5579751		i	

Model II estimate of between component variance = 29 695

iroup:	Count	Mean:	Std. Dev.:	Std. Error:
A-15	104	43 952	7 369	723
8-16	253	43.893	7.984	.502
C-17	236	43 771	8111	528
D-18	199	42.06	7 745	.549
E-19 or older	70	41.443	9 071	1 084

One Factor ANOVA X1: Age Y1: ASB

One Factor ANOVA X1: Age Y1: ASB

Comparison	Mean Diff :	Fisher PLSD:	Scheffe F-test:	Dunnett t
A-15 vs 8-16	059	1.825	001	063
A-15 vs C-17	.181	1 845	009	192
A-15 vs 0-18	1 892	1 397	958	1 957
A-15 vs. E-19 or older	2 509	2 424*	1 032	2 032
8-16 vs C-17	122	1 419	007	159

One Factor Anova, Age vrs. ASB

One Factor ANOVA X1: Age Y1: ASB

Companison:	Mean Diff	Fisher PLED	<u>- Echerfe F-test.</u>	<u>Dunnett t:</u>	
8-16 vs. 0-18	1 533	1 485*	1 467	2 422	
B-16 vs E-19 or older	12.45		1 29	-2272	i
C-17 vs 0-18	11711	* 1 09*	1239	1126	
C-17 vs E-19 on older	2 729	2 134*	1147	2 142	
D-18 vs. E-19 on olden	617	2 179	077	556	,
		التسليقين ويرابية المتنزلين ومجرجهم بالقديب ويريه			

One Factor ANOVA X1: Mother's Ed. Y1: ASB

Analysis of Variance Table

Source	0F	Sum Squares	Mean Square	F-test
Between anoups	815	1423 843	284 769	4516
within groups	556	58975 509	.63.056	p = 0005
Totai	561	55399 352		

Model if estimate of between component variance = 44 343

ANA LARAAN VIIAAV VIIIAANALA PAI III VAR	One Fa	ictor ANOVA	XI	: Mother's Ed	I. Y1: ASB
--	--------	-------------	----	---------------	------------

Group:	Count:	Mean:	Std. Dev.:	Std. Error:
A-< junior high	85	41.729	7 199	781
B-junior high	53	42.151	8.617	1.184
C-+ high school	206	43 675	7.£77	535
D-high school	211	41.844	8.004	.551
E-vocational	182	43.846	8.179	.606

One Factor ANOVA X1: Mother's Ed. Y1: ASB

Group	Count	Mean	Std Dev.	Std Error
F-university	125	45 5 2	8 092	724

One Factor Anova, Mother B Ed. vrs. ASB

One Factor ANOVA X1: Mother's Ed. Y1: ASB

	Mean Diff.	Fisher PL3D.	<u>Ecneffe F-test.</u>	<u>Dunnett t.</u>
va Bryanian.	- 42.2	2 728	. * ô	7,7
ia (− nogni	445	្នាស់ធំ	1 1973 1981 1981	1.3
val ümrigh a	4	a san a sisa	:03	**2
≠ E-votat		: 42°	2117	- <u>:</u> - : : : : : : : : : : : : : : : : : :
i i i i i i i i i i i i i i i i i i i	-: "9:	5.3.+	2 306+	:3 3 75
	va Ki- mignu va Ci-rignua a E-vocat	Mean Diff 43 B-junion - 422 23 C- Ingh 1445 23 C-right - 114 3 E-intat - 2117 23 E-intat - 2117	43 B-junion: 0 - 422 2,728 03 0 - hright (-1, 445) 2,000 03 0 - hright (-1, 145) 2,000 03 0 - hright (-1, 147) 2,000	43 B-jumon.col = 422 2,728 0.16 23 21 0.09 720 23 21 0.09 720 23 21 0.09 720 23 21 2.002 0.03 23 21 2.002 0.03 25 21 0.03 2.002 25 21 2.002 0.03

• Elasoficant at 95%

Companison	Mean Diff.	Fisher PLSD:	Scheffe F-test:	Dunnett t:
B-junior high vs. C+k high	-1.524	2 40 !	.31	1.246
B-junion nigh vs. D-high s	307	2.395	.013	252
B-junior high vs. E-vocat	-1.695	2 433	.374	1.368
B-junion high vs. Franive.	-3.369	2.555*	1.34	2 588
0- high so ival D-high s	1 831	1 527*	1 109	2 354

One Factor ANOVA X1: Mother's Ed. Y1: ASB

* Significant at 95%

One Factor ANOVA X1: Mother's Ed. Y1: ASB

Comparison:	Mean Diff	Fisher PLSD	Scheffe F-test	Dunnett t
C-r high so i va E-vocati	- 171	1 586	009	212
CHV night sc vs. F-unive	-1.845	1 767 •	84	2 05
D-high achool vs. E-vocat	-2 003	1 577+	1 243	2 493
D-nigh school vs. F-unive .	-3 676	1.759*	3 365*	4 102
E-vocational vs. F-univen	-1 674	1811	659	1815

* Bignifficant at 958

One Factor Anova, Father's Ed. vrs. ASB

One Factor ANOVA X1: Father's Ed. Y1: ASB

Analysis of Variance Table

Source:	DF	Sum Squares:	Mean Square:	F-test:
Between groups	5	1723 391	144 678	2.265
within groups	. 3 56	54675 96	63.874	p = 0463
: Total	86	55399 352		

Model () estimate of between component variance = 16(161)

One Factor ANOVA X1: Father's Ed. Y1: ASB

Group.	Count:	Mean:	Std. Dev.:	Std. Error:
A-« junior high	182	41.698	7.855	.582
B-junior high	68	42.515	6.398	.776
C-< high school	173	43.665	8.627	.656
D-high school	137	43.263	7.597	.649
E-vocational	163	43.988	8.044	.63

One Factor ANOVA X1: Father's Ed. Y1: ASB

Group	Count	Meani	Std. Dev.:	Std. Error
F-university	139	44 216	8 355	709

One Factor Anova, Father's Ed. vrs. ASB

Companison.	Mean Diff	Fisher FUSD	Echette Friest	Dunnett t
A-+ junior vs. 8-janior	- 817		•.\.7	· · ·
A gninn vș (nign	-1 967	1 56E •	र क् ट ब	2718
An Junior vs Drhigh s	1 368	,	599	1.731
A- junion vs E-vocati	-2.24	1. <u>+</u> 92.+	י בי י	2.657
And Junion Levis, France	-2518		1 565	2 797

One Factor ANOVA X1: Father's Ed. Y1: ASB

* Significant at 95%

Comparison	Mean Diff.	Fisher PLSD	Scheffe F-test:	Dunnett t:
B-junior high vs. C-s high	-1 15	2 245	.202	1.005
B-junior high vs. D-high s	- 748	2.327	08	.631
B-junior high vs E-vocat	-1 473	2 265	.326	1.277
B-junion high vs. F-unive	-1.701	2 322	.414	1.438
C-< high sc . vs. D-high s	402	1 794	039	.44

One Factor ANOVA X1: Father's Ed. Y1: ASB

One Factor ANOVA X1: Father's Ed. Y1: ASB

Comparison:	Mean Diff.:	Fisher PLSD:	Scheffe F-test:	Dunnett t:
C-< high sc vs. E-vocati	- 323	1 712	027	37
C-« high sc vs. F-unive	551	1.767	073	605
D-high school vs. E-vocat	- 725	1 8 18	122	783
D-high scripplivs, F-unive .	- 953	1.889	196	991
E-vocational vs. F-univer	- 228	1811	012	247

One Factor Anova, Student's Aspirations vrs. ASB

One Factor ANOVA X1: Student aspiration Y1: ASB

Source	DF	Sum Squares	Mean Square:	F-test:
Between groups	13	2053 51	684 503	11.009
within groups	658	53345.842	52 175	p = 0001
Total	861	55399 352		1

Analysis of Variance Fable

Model II estimate of between component variance = 207 443

One Factor ANOVA X1: Student aspiration Y1: ASB

Group.	Count:	Mean:	Std. Dev.:	Std. Error:	
A-quit h.s./job	15	40.133	5.153	1.33	
B-h s/jab	83	39 964	7 533	827	
C-h.s./vocational	288	42.261	8 007	.472	
D-h s /university	476	44 498	7.936	364	

One Factor ANOVA X1: Student aspiration Y1: ASB

Comparison:	Mean Diff .:	Fisher PLSD:	Scheffe F-test	Dunnett t:
A-quiths vs B-h s/job	169	4 342	002	077
A-quit h.s vs. C-h.s./v	-2.148	4.099	353	1.029
A-quiths vs D-hs/u	-4 365	4 059*	1 485	2 111
8-h.s/job vs. C-h.s./voc	-2.317	1.928*	1.855	2.359
B-h s/job vs D-h s/univ	-4 534	1841*	7 79*	4 834

One Factor Anova, Student's Aspirations vrs. ASB

One Factor ANOVA X1: Student aspiration V1: ASB

Comparison:	Hean Diff	Fisher PLED:	Echerfe F-lest	<u>Dunnett t</u>	
C-his voc vs D-his /	42.217	1 1554	4727*	3 766	•

• Significant at 953

5 mple Regression, ASE Vns Demographic Variables

and the state of t

-	3		Has Preduared	Stal Ennon
ŢŢ.	12		76	15.1
		Anan, seg of lantane		
		ium Eduares	Mean Equare	F-test
- <u>-</u>		<u></u>	50 028	164 355
			1.6	p = 3001
		215,425		

Simple Regression X1: ASB Y1: Gender

Nul Pesidual Statistics Computed

Simple Regression X1: ASB Y1: Gender

Beta Coefficient Table

Flanameter	J gillge	Bld Ern	Std Value.	t-Value	Probability
INTERGERT	753				
EL PE	: V26	002	42	13.578	.0001

Franarrieten	95% Lower	95% Upper	90% Lower	90% Upper:
MEAN KING	146	1.521	1.465	1 516
	022	03	023	029

DF	R	R-squared.	Ad: R-squared	<u>Bta Error</u>
361	.:0:		009	1 11
		Analysis of Varian	:+ Table	
Equnce	JF	Burn Bouares	lean Equare	E-test
PEGRESSION		· · · 520	523	e 856
RESOLAL	36J	119206	1301	.p = 003
7,74 <u>,</u>	. 96 .	: 130 733		

Simple Regression X1: ASB Y2: Age

No Residual Statistics Computed

Simple Regression X1: ASB Y2: Age

Beta Coefficient Table

Farameter	Value	Sta Err	Std Value	t-Value	Probability	
INTERCEPT	3.462					
SLOPE	014	005	101	2.976	003	

Panameter	95% Lower	95% Upper	90% Lower	90% Upper
MEAN (X,Y)	2.782	2.935	2.794	2.922
SLOPE	- 024	- 005	- 022	- 006

ĴF	2	R-squared	Adj R-squared	<u>Sta Error</u>
361	046	002	001	
		Analysis of Varianc	e Tapie	
<u>torie</u>		<u>Euro Equaries</u>	iear square	-tast
RESREESSION		<u> </u>	ಕ ಇತ್ರೆ	1.501
28100AL	27.	2593.564	E 016	.p = :198
7:74L		1599 1		

Simple Regression X1: ASB Y3: School

No Residual Statist is Computed

Simple Regression X1: ASB Y3: School

Beta Coefficient Table

	Flanameter	Value	Std. Err.	Std. Value	t-Value	Probability
Ì	INTERCEPT	4.37				
	SLOPE	- 01	.007	046	1 343	.1798

Franameter	95% Lower	95% Upper	90% Lower	90% Upper
HEAN (X,Y)	3.826	4.058	3.845	4.039
SLOPE	- 024	005	- 022	002

DF	R.	⊇-squared	Huj R-squared	Stal Entra
861	108	. 012		1.156
zounse	ĴF	Analysis of Mariano Sum Squares	e Table Tear Équare	-1491
REGRESSION	;	21 527	· · · · · · · · ·	- S - E 3
REFIGUAL	560	1802 731	2 * * 3	
T074L	361	1943 357		

Simple Regression X1: ASB Y4: Mother's Ed.

No Residual Statistics Computed

Simple Regression X1: ASB Y4: Mother's Ed.

Beta Coefficient Table

Parameter	Value	Std Ern	Std. Value	t-value.	Probability
INTERCEPT	2.991				
SLOPE	.02	.006	108	3 187	0015

Confidence Intervals Table

Parameter:	95% Lower	95% Upper:	90% Lower	90% Upper
MEAN (X,Y)	3.746	3.941	3 762	3.925
SLOPE	.008	.032	01	03

the set of the set of

-

and the second sec

JF	â	E-squar eq	Hd; =-squared	Bid Ernen
36 !	:05	<u>;;;</u>		· ····
		Avalists of Landade	e Table	
o unde	- F	Funt Squares	Mean Square	<u>F-rest</u>
REGREELION	:	28,784	18 764	9509
HERE AL	te la		2 993	·a = 002

Simple Regression X1: ASB Y5: Father's Ed.

Nic Residual Statistics Computed

Simple Regression X1: ASB Y5: Father's Ed.

Beta Coefficient Table

P	'anameter	vaiue	Std. Enn	Std Value.	t-Value	Probability.
	INTERCEPT	2.534				
	SLOPE	023	007	105	31	.002

Parameter.	95% Lower	95% Upper	90% Lower	90% Upper
HEAN (X,Y)	3.404	3.635	3,423	3.617
SLOPE	008	.037	011	.035

. al 19	2	2-squared	Ad, R-squared	Eta Ennor
	<u>'33</u>		-75	4 4 4 44 5
		Analy Big of Gamane	e Tarie	
	; -	Euro Equares	lean Equare	rest
HERE N	· · · · · · · · · · · · · · · · · · ·	12.71		7 27F
	÷	나라고 그 <u>라</u>		
• • ••				

Simple Regression Xy: ASB Y6: Student aspiration

No Residual Statistics Compared

Simple Regression X1: ASB Y6: Student aspiration

Eeta Queff crest Table

e statetet	- 3 - <i>1</i> -	ita Err	Std Lanue	t-vaiue	Frobability
NTE-011		:	[
	· · · ·	003	189	5.655	0001

Forameter	95% Lower	95% Upper	90% Lower	90% Upper
E-ta - ta	3 373	3 469	3.381	3.462
	j ≎11	023	012	022

Table 11

One Factor Abova, Gender vrs. All Variables

One Factor ANOVA X1: Gender Y9: VS

Exance	្ទុទ	Sum Squares	Mean Square	F-test
Berwaen proubs	.	52248 149	52248 149	0.13.14
Althin ghoups	560	.300678.188	349 626	10 = 0001
- Tatai	đđ '	352926 437		

Analysis of Variance Fable

Model 9 estimate of between component variance = 51898 523

One Factor ANOVA X1: Gender Y9: VS

<u>Group</u>	Count	Mean:	Std. Dev	Std. Error
Male	439	94 588	19.748	943
Female	423	79.014	17.543	.853

One Factor ANOVA X1: Gender Y9: VS

Companison	Mean Diff.:	Fisher PLSD:	Scheffe F-test	Dunnett t
Male vs. Female	15 574	2 501*	149 44*	12 225

* Significant at 95%

One Factor ANOVA X1: Age Y1: VS

Bounde	<u>DF</u>	Sum Equanes	Mean Equane	-lest	
Elet week grou	05 4	1349 526		<u>.</u>	
within groups	557	IE 1576 91.		: <u>:</u> = 511	
Totai	00	352926 437			

Analysis of Variation Table

Model II estimate of between component variance = -18 215

One Factor ANOVA X1: Age V1: VS

Group:	Count:	Mean:	Std. Dev.:	Std. Error:
A-15	104	85.221	19 949	1 956
B-16	253	85 806	22.683	1 426
C-17	236	87 712	18 955	1.234
D-18	199	88.603	19.149	1.357
E-19 or older	70	86 329	18 605	2 224

One Factor ANOVA X1: Age V1: VS

Companison	Mean Diff	Fisher PLSD	Scheffe F-test	Dunnett t
A-15 vs B-16	- 585	4 631	015	248
A-15 vs (-17	-2.491	4 6 7 9	.273	1-045
A-15 vs D-18	-3 382	4811	47 <u>4</u>	1 38
A-15 vs E-19 or older	-1 107	6 147	031	354
8-16 vs (-17	-1 906	3 598	27	1.04

One Factor Anova, Age vrs. VS

One Factor ANOVA X1: Age Y1: VS

Comparison:	Hean Diff .	Fisher FLED:	<u>Scheffe F-test</u>	Dunnett 1.	
8-16 vs 0-18	-2 797	3 767	131	· 457	;
B-16 vs E-19 or older	- 522	5 369			
00-17 VS D-18		3325	.52	457	
1-17 vs En19 on olden	1 183	÷ 1	43		
D-16 vs E-19 or older	2274	5 525	. 163 -	308	

One Factor ANOVA X1: School Y1: VS

Analysis of variance Table

Fource	DF	Sum Equares	Mean Bouane	F-test
det ween group	515	3294 525	658 905	1613
within groups	350	349631913	. 408 448	p = .539
Totas	361	351716 43T	-	ł

Model II estimate of between component variance = 50/091

One Factor ANOVA X1: School Y1: VS

Group.	Count.	Mean.	Std. Dev.:	Std. Error:	
A-NGRHS	80	86.95	18 189	2.034	
8-8H5	197	88.68	18.548	1.322	
C-LHS	70	87 043	17 315	2.07	
D-NRHS	46	90 957	20 167	2.973	
E-PVEC	284	84 437	21 655	1.285	

One Factor ANOVA X1: School Y1: VS

Group	Count:	Mean.	Std. Dev :	Std Error
F-CMHS	185	87 914	21 414	1 574

.

One Factor Anova, School Vrs. VS

<u>lemeariser</u>	Mean Diff	Fisher FLSD	<u>forerfe F-test</u>	<u>Dynnett t</u>	
angeren in Brene	-1 73	5 159	163	646	
Angele in and	1_ 10 <u>3</u>	÷ 463	1 <u>576</u> 5-4		
	- 4 [4] ⁻	- <u>-</u>		1.771	
प्रस्थितनः पृष्ट् <u>इ</u> न्दर्भहतः			193	- वहड	
Lational is and the	- 964	5 306	025	356	

One Factor ANOVA X1: School Y1: VS

One Factor ANOVA X1: School Y1: VS

<u>Companison.</u>	Mean Diff.:	Fisher PLSD:	Scheffe F-te	st: Dunnett t:
8-849 va C-643	1 637	5 52	068	582
E-BHB vs D-NRHB	-2.276	6 496	095	.688
B-BHS VS E-PVEC	4 244	3678*	1 026	2.265
B-BHS VS F-CMHS	767	4.061	.027	.371
D-LHE VS D-NEHS	-3914	7 53	208	1 02

* Significant at 95%

One Factor ANOVA X1: School Y1: VS

Companison	Mean Diff	Fisher PLSD	Scheffe F-test	Dunnett t
C-LHE VE E-PVEC	2 606	5 294	187	966
C-LHS VS F-CMHS	- 871	5 567	619	.307
CHANDHE HE ELOVER	52	5 305 ×	824	2 03
S-MARS VS R-CMAS	3-043	6 536	167	914
ELENZER LA ELEMANA	-7 477	3 748	663	1 821

• Eignificant at 95%

One Factor Anova, Mother's Ed. Vrs. VS.

One Factor ANOVA X1: Mother's Ed. Y1: VS

Source	DF	Sum Sauares	Mean Equare	F-test
Setween groups	5	5545 975	11,9,195	2 733
w thin groups	856	347380 462	405818	.p = 0185
- T. (a:		352926 437	1	;

Analysis of Variance Table

Model il estimate of between component variance = 140.675

One Factor ANOVA X1: Mother's Ed. Y1: VS

Group	Count:	Mean:	Std. Dev.:	Std. Error:
A-< junior high	85	88.153	16.945	1.838
8-junior high	53	86.566	19.394	2.664
C+: high school	206	85.228	20.151	1.404
D-nigh school	211	91.009	19.697	1.356
E-vocational	182	85.709	19 941	1.478

One Factor ANOVA X1: Mother's Ed. Y1: VS

Group	Count	Mean:	Std Dev -	Std. Error
F-university	125	84 056	23 246	2 079

Ine Factor Anova, Mother's Ed. vrs. VS

Companison.		Mean Dath	Praner 2130	Icherte F-lest	Dunnett t
A Junior	vs S-jumon	1 567	5.921	341	45
Δ=: gipige	vs (= high	:1.925	म् अवस्	254	ET TOK
A- junión	vs 2-rognis	-1 357	E 18	्वन	1
A-r junton	ve E-vocati	्रं वतन	<u>स्</u> •्यद	171	474
A-s junior	vs E-unive	4 097	,553	419	1 447

One Factor ANOVA X1: Mother's Ed. Y1: VS

One Factor ANOVA X1: Mother's Ed. Y1: VS

Companison:	Mean Diff.:	Fisher PLSD	Scheffe F-te	st: Dunnett t:
B-junion high vs. C- : high	1.338	6 09	037	.431
B-junion high vs. D-high s.	-4.443	6 076	.412	1.436
B-junior high vs. E-vocat	857	6 172	015	273
B-juniar high vs. Frunive	2.51	6 482	.116	76
C-+ high sc ivs D-high s	-5 781	3 873*	: 717	2 93

* Significant at 95%

One Factor ANOVA X1: Mother's Ed. Y1: VS

Comparison	Mean Diff	Fisher PLSD	Scheffe F-test	Dunnett t
C-< high sc vs E-vocati	- 481	4 023	011	235
C-< high sc., vs. F-unive .	1.172	4.483	053	513
D-high school vs. E-vocat	5 301	4*	1 353	2 601
D-high school vs. F-unive	. 6 953	4 463*	167	3 058
E-vocational vs. F-univer	1 653	a <u>5</u> 4a	1	705

* Significant at 95%

One Factor ANOVA X1: Father's Ed. Y1: VS

Analysis	ţ٢,	vaniance	Fable
----------	-----	----------	-------

Bounce	DF:	Sum Squares:	Mean Equare	Friest	
Between gr	oups:5	1623 773	524 755		
within grou	ps : 356	35:302:664	<u>а () а</u>	s = 356	
Total	. 861	352926 437			

Model II estimate of between component variance = -17,129

One Factor ANOVA X1: Father's Ed. Y1: VS

Group:	Count:	Mean:	Std. Dev.:	Std. Error:
A-« junior high	182	88 51 1	19 899	1.475
B-junior high	68	88.926	19.376	2.35
C-< high school	173	87.468	19 085	1 451
D-high school	137	86 547	21.277	1 818
E-vocational	163	86 098	19618	1 537

One Factor ANOVA X1: Father's Ed. Y1: VS

Group:	Count	Mean:	Std Dev	Std Error:
F-university	139	84 662	22 184	1 882

One Factor Anova, Father's Ed. vrs. VS.

	Companison.		Mean Diff	^s sher PLED	<u>Boneffe F-test</u>	<u>Dunnett t</u>	
	A junior	vs Briganian	- 415	5 852	104	. 44	i
8	A- junion	vs i- rign	1 647	4.222	147	485	
	A grien	vis Dimnigra s	144	ы 496	- 4-	357	
	4- 110100	ve E-wodati	2 413	4 _ 49	244	1 104	
	A- jaraan	vs F-unive	3 649	4 479	569	1 687	

One Factor ANOVA X1: Father's Ed. Y1: VS

One Factor ANOVA X1: Father's Ed. Y1: VS

Comparison:	Mean Diff.:	Fisher PLSD:	Scheffe F-test:	Dunnett t:
B-junion high vs. C-4 high	1 458	5 692	051	503
B-junior high vs. D-high s.	2.379	5.899	125	792
B-junior high vs. E-vocat	2 828	5 741	187	967
B-junior high vs. F-unive	. 4.265	5 885	405	1.422
C-4 high sc. vs D-high s	921	4 548	032	397

One Factor ANOVA X1: Father's Ed. Y1: VS

Comparison:	Mean Diff	Fisher PLSD	Scheffe F-test	Dunnett t
C-< high sc vs E-vocati	1 37	4 341	077	62
C-s high sc vs. F-unive	2.806	4.53	296	1 216
D-high school vs. E-vocat	449	4 609	007	191
D-high school vs. F-unive	1.886	4.787	.12	773
E-vocational vs F-univer	1 436	4 591	075	614

1

One Factor ANOVA X1: Student aspiration Y1: VS

(syn ra)F	Bum Bauares	Mean Square	F-test:	
- a and the state	ucs 3	angn 37	3063 79	7 548	
	:5:	343735 067	400 624	p = 0001	
÷ ′ i		782926 437			

Analysis of Variance Table

Single Lestimate of between component variance = 887,722

One Factor ANOVA X1: Student aspiration Y1: VS

Group.	Count:	Mean:	Std. Dev	Std. Error:
A-quit his / job	15	92.733	25.246	6.518
P-h s/mb	83	93.217	17 356	1 905
C-his /vocational	266	89.42	18.154	1.07
D-his conversity	476	84 172	21 301	976

One Factor ANOVA X1: Student aspiration V1: VS

Comparison	Mean Diff	Fisher PLSD	Scheffe F-test:	Dunnett t:
A-quit he ve B-heljob	- 484	11 023	002	086
Arout his live Chhis./v	3.313	10 405	.13	.625
Arguithe ve D-helly	8 561	10 303	887	1 631
Benisiyati və 10-n ə Zvaq u	3 797	4.895	.773	1.523
Behle ritt vel Denle runiv	0.045	4673*	48110	3 799

🐮 Sign Abanti at 45%

One Factor Anova, Student's Aspirations vrs. VS

One Factor ANOVA X1: Student aspiration Y1: VS

lumparison:	Mean Diff .	Fisher PLED	Echetre Fintes	t Dunnett t	
I-ba voor verD-ba	/9 - 5 248	2.933*	a : 12*	3510	

· Elgnificant at 95%

<u>OF</u>	Ā	R-squared	Adj Prequared	Sta Error
86 :	265			1 <u>F</u>
		Analyes of Variani		
<u>2698 B</u>	<u>;F</u>	Sum Equares	Mean Eduarie	F-test
e e se se h		<u> </u>		, TP 577
-6: <u>.</u>	160			p = 330
		1215 426	· · · · · · · ·	! .

Simple Regression X1: VS V1: Gender

No Residual Statistics Computed

Simple Regression X1: VS Y1: Gender

Beta Coefficient Table

Parameter	Value	Std Err .	Std. Value.	t-Value	Probability
INTERCEPT	2.317				
SLOPE	- 01	001	- 385	12.225	.0001

Parameter	95% Lower	95% Upper:	90% Lower:	90% Upper.
MEAN (X,Y)	1 46	1.522	1.465	1.517
SLOPE	- 011	- 008	-011	- 008

<u>DF</u>	.	R-squared	Ad; R-squared	Sta Ernon
361	045	>02	<u> </u>	<u>' ' 46</u>
		Abalysis of Vanabe	.э ^т т т т т т т т т т т т т т т т т т т	
Sounce	<u> J</u> F	Sum Squares	Mean couare	-1951
REGRESSION	· ·	1146		
REGIOUAL		- <u>1148</u>		<u>0 - 1911</u>
TOTAL	261	30 733		

Simple Regression X1: VS Y2: Age

No Residual Statistics Computed

Simple Regression X1: VS Y2: Age

Beta Coefficient Table

Parameter	Value	Std Enn.	Std Value	t-Value	Probability
INTERCEPT	2.639				
SLOPE	.003	.002	.045	1 308	1911

Parameter:	95% Lower	95% Upper	90% Lower	90% Upper
MEAN (X,Y)	2.762	2.935	2.794	2 923
SLOPE	001	.006	- 001	006

Simple Regression, Vs. Vrs. Demographic Maniables

OF	2	A-squared	Adj 2-squared	Bia Error
<u>361</u>	035		<u>⊺ ,</u> "∔E-E	
		Analysis of Variand	te Table	
tour H	<u>_</u>	tam tauanes	llean Equare	-rest
REGRESSION		7. Jain		1026
REERONAL	360	1580 AM		<u>5 - 3 - 3</u>
	361	2599 1	•	:

Simple Regression X1: VS Y3: School

No Residual Etatistics Computed

Simple Regression X1: VS Y3: School

Beta Coefficient Table

Parameter	Value.	Std. Enn.:	Std. Value.	t-Value.	Probability.
INTERCEPT	4.2				
SLOPE	- 003	003	035	1.013	.7113

Farameter	95% Lower.	95% Upper	90% Lower	90% Upper	
MEAN (X,Y)	3.826	4.058	3.845	4.039	
SLOPE	- 009	.003	- 008	002]

· ·	- 	R-squared	Ad: Prequared	Eta Ernan
	:74	s, e e 		1467
		Analy station analog	ie Tapre	
· · · -	<u></u>	tum topuanes	lean chuar -	est
<u></u> ,			ч. ч.н. 1994 - С. Фа	
	÷. '	1841 755	• · · ·	·····
	24.1	1047 257		

Simple Regression X1: VS - Y4: Mother's Ed.

No Residual Statistics Computed

Simple Regression X1: VS Y4: Mother's Ed.

Beta Coefficient Table

Flanaroeter	v alue	Std Err	Std Value	t-Value.	Frobability
INTERCERT	4 056				
SLOPE	1 002	.002	- 034	991	3221

Confidence Intervals Table

Far ameter	95% Lower	95% Upper	90% Lower	90% Upper
CEAN AND	3 746	3.941	3 761	3 925
	- 007	.002	- 006	002

.

1

JF	2	พิกรัญชัยเลย	Ad. R-squared	Eta Error
<u>36 '</u>	ંદદ	304	003	1736
		Analysis of Variance		
SUUT CH	<u></u>	Sant Squares	Mean square	<u>F-lest</u>
RESPECTION			11.133	3714
	<u> </u>	2591971	ँ ्राम 	a = 054₹
	.it	2603-165		

Simple Regression X1: VS Y5: Father's Ed.

No Residual Statistics Computed

Simple Regression X1: VS Y5: Father's Ed.

Beta Coefficient Table

Parameter	Value.	Std. Err.	Std. Value:	t-Value.	Probability:
INTERCEPT	4 009				
SLOPE	006	003	- 066	1.927	0543

Parameter	95% Lower.	95% Upper.	90% Lower	90% Upper:
MEAN (X,Y)	3.404	3.636	3.422	3.617
SLOPE	-011	1.045E-4	01	001

通信 めいおうかん いんわいた

2

:

DF	.	Preguared	Aus Arsquared	<u>Eta Ennar</u>
561	57	·	::4	
		Analyziz of Variand		
<u>iource</u>	<u></u>	sum squares	llean callane	
FEGREE SICN	, ,	<u>: 195</u>	E	1.15
SEPELUAL	÷e.	454 54	<u></u>	<u></u>
TOTAL	16	466 136		

Simple Regression X1: VS Y6: Student aspiration

No Residual Statistica Computed

Simple Regression X1: VS Y6: Student aspiration

Beta Coefficient Table

Parameter.	Value	Std. Err	Std Value	1-Value	Probability	-
INTERCEPT	3.917					
SLOPE	006	001	- 157	4 663	0001	

Parameter.	95% Lower:	95% Upper	90% Lower	90% Upper
MEAN (X,Y)	3.373	3 47	3,38	3.462
SLOPE	- 008	003	- 008	- 004

Table 12

Simple Regression, ASB Vrs. LWS & VS

DF	2	สี-รัสนุสกรณ	Hd, Resquared	Eta Ennia
361	30	1 00E		336 3
		Analysis of Variance	e Table	
<u>tuante</u>		Bunt Bouares	Mean Eduare	
SEREES IN	· ·		443 82	5 u 43
REFORME	<u> </u>		<u>::::</u> ::::::::::::::::::::::::::::::::	9 = 0193
<u>-</u>				

Simple Regression X₁: ASB = Y₁: JWS

No Residual Statistics Computed

Simple Regression X1: ASB Y1: JWS

Beta Coefficient Table

Parameter.	Value	Std Err.	Std. Value	t-Value	Probability
INTERCEPT	103.784				
SLOPE	- 089	038	- 08	2 344	0193

Parameter	95% Lower	95% Upper.	90% Lower	90% Upper
MEAN (X,Y)	99.313	100.515	99 41	100.418
SLOPE	- 164	- 015	- 152	- 027

Simple Regression, ASE Vrs. UWS & VS

· · ·	÷	Friguaried	Aus Preguarea	<u>Eta Ennin (</u>
· · · · · · · · · · · · · · · · · · ·	170	• • •	4 ,4 A	17.552
		Analysis of Carland	e Tacie	
7 7	ĴF.	Sum Equares	<u>Mean topane</u>	E-test
		76539741	19539-41	
· · · · · · · · · · · · · · · · · · ·	EE.	274रहर स्वर	214 (144	
· ··		751916 437		

Simple Regression X1: ASB Y2: VS

Nio Reel può Etat et de l'umputea

Simple Regression X1: ASB Y2: VS

Beta Coefficient Table

Pariameter	Value	Std Err	Std. Value	t-Value	Frobability
INTERCERT	1 136 436				
SLOPE	, -1 191	076	- 472	15.69	0001

Flan arbeiten	95% Lower	95% Upper	90% Lower	90% Upper.
HEAN A.V.	35 751	68.14	85 944	87.947
ELOPE	-1.34	-1 042	-1 316	-1 066

<u>.</u>	÷	9-squared	Ad: R-squared	<u> StallErnon</u>
<u>961</u>	027	ộ¢ •	2 4405-4	22:44
		Analysis of Marcano	e Table	
t unite		Sun pauares	tean Equare	test
RESPECTION		495 90	455 30	
1011.A_		252430 536	409 505	.0=17.E
- : - AL	26.1	151916 437		

Simple Regression X1: JWS Y1: VS

No Residual Statistics Computed

Simple Regression X1: JWS Y1: VS

Beta Coefficient Table

Panameter	v Dhue	Std Err .	Std Value	t-Value	Probability
INTERCEP	78 529				
SLOPE	084	077	0.37	1.1	.2716

Parameter	95% Lower	95% Upper	90% Lower	90% Upper	_
MEAN (X.Y)	85.592	88.299	85.81	88.081	
SLOPE	- 066	235	042	21	

Table 13

One Factor Anova, Gender vns. Alt Variables

One Factor ANOVA X1: Gender Y7: SRS

Analysis of variance Table

Source	0°	For Equanes	Mean Equane	Furger
fet ween gr	19465 - 1	7127.211	1143 M 1	141152
within grou	ips . 260	43520 452	50 ±05	p + Nut
- Tirat	86 L	53647487		

Moder in estimate of between component variance = 7042,405

One Factor ANOVA X1: Gender Y7: SRS

Group	Countr	Mean	Std_Dev.:	Std Error
Male	439	42 547	7 206	344
Female	423	48 305	7 016	.341

One Factor ANOVA X1: Gender Y7: SRS

Comparison	Mean Diff	Fisher PLSD	Scheffe F-test.	Dunnett t
Male vs. Female	-5 758	95 (+	141 192*	11881

* Significant at 95%

One Factor ANOVA X1: Age Y1: SRS

jource	DF	Bum Bouares	dean Square	-tast
Between groups	- 4	993 55	146 361	4186
within groups	357	49669 933	ET 955	s = 0019
Tutar		51667 463		

Analysis of Variance Fable

Model H estimate of between component variance = 47.616

One Factor ANOVA	X1: Age	Y1: SRS

Group	Count	Mean:	Std. Dev.:	Std. Error	_
A-15	104	46 635	7 664	752	
B-16	253	45.783	7 248	456	
C-17	236	46 123	7 747	504	
D-18	199	44 005	7 476	.53	
E-19 or older	70	43 371	3 69	1 039	

One Factor ANOVA X1: Age V1: SRS

Comparison:	Mean Diff	Fisher PLSD	Scheffe F-test	Dunnett t
A-15 vs 8-16	852	1 741	231	961
A-15 vs. (-17	512	1 759	280	571
A-15 vs D-18	2.63	1 808 *	2 037	2 855
A-15 vs E-19 or older	3 263	231*	1 922	2 773
B-16 ve (-17	- 34	1 352	061	494

* Significant at 95%

One Factor Anova, SRS with Demographic Variables

One Factor ANOVA X1: Age Y1: SRS

Comparison	Mean Diff.	Fisher FLED	Echerfe F-test	<u> </u>
8-16 vs 0-18	1178	1.416*	: 515	_ 454
18-16 vs. E-19 on alden	_ 41 1	n n topp ≠ th	175	2345
(-17 va 1- a		1.⊒∃c.*	2.259	
CHITUS EH19 wolden	175		· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1:55
0-18 vs. E-19 on older	534		्रेन	

+ Significant at 45%

One Factor ANOVA X1: School Y1: SRS

1 <u>.</u>	<u>,</u> E	ium in gras	ivan Equane	E-reșt	_
the second of		1	11255	7.71	_
, 17 - <u>1</u> - 4 - 4			EE 43	s = 3094	_
-	1	50660 460			

Analysis of variance Table

inal in an mark in gerween gimponent variance # 24.063.

<u></u>	Court	Mean	Std. Dev	Std. Error
a-1,0749		45 688	7 734	865
t ef ef :	197	44 416	6.972	497
°	- - c _j	44 057	6 75	307
julgal.	45	43 87	7 235	1 567
	284	45-463	7.931	471

One Factor ANOVA X1: School Y1: SRS

One Factor ANOVA X1: School Y1: SRS

	1 Sunt	: lean	Stal Dev	Std Error	
		1			
. · · · · ·	• 4日	46 275	18 12IQ	· 500	:
	• •	-		1 22	

One Factor Andva, SRS with Cemographic Variables

Mean 200	Fignan 2000	ictaria Engel	<u>Conatt t</u>
		7.4	
1 - 1	j 45	74°	
1 · 2	. m.eu		
<u>j</u> .a	- 20 <u>6</u>	· 1	
- 29			
	1 5 7 1 1 5 7 2 1 5 2 1 5		1271 1484 218 147 248 748 147 248 748 148 277 751 214 1445 14 214 1445 14

One Factor ANOVA X1: School Y1: SRS

One Factor ANOVA X1: School Y1: SRS

Comparison	Mear, Diff	Fisher PLSD	Scheffe F-tes	it: Dunnett t
B-BHS VS CHLHB	359	2 083	023	338
6 BHS VS DHNRHS	547	2 451	038	438
E-BHS vs E-PVEC	-1.052	1 388	443	1 488
B-BHS vs. F-CMHS	-2.562	1 532*	2 154	3 282
CHLHS VS D-NRHS	168	2 841	003	13

* Significant at 95%

One Factor ANOVA X1: School Y1: SRS

Companison	Mean Diff	Fisher PL30	Scheffe F-test	Dunnett t
CHEMS VS E-PVEC	-1411	1 447	385	1 787
i Linums val Anchinas	-2 921	21*	1 491	2 73
D-NEHS ve E-EVER	-1 599	2 379	748	1 319
O-MRH3 vs F-011H3	-3 109	1 466*	1 125	2 475
E-PVEC ve F-CHH	-151	1919-	879	2.096

• Significant at 95%

-

A CONTRACT OF A DAMAGE AND A

une Factor Aneval ERS with Deresgraphic Variables

One Factor ANOVA X1: Mother's Ed. Y1: SRS

louno ≜)F	igm iquarae	Maan Equare	
Let week gr	uta E		'n €4"	7.727
with number	63 :EC		24.22	0 = 3044
- · ;	<u>t</u>	T 167 46 T		

Analysis of Variable Table

Moree - estimate of petween component variance # 27 TV2

One Factor ANOVA X1: Mother's Ed. Y1: SRS

Group	Count	Mean	Std Dev	Std. Error	_
A- junior high	85	44 165	7 989	867	
B-lunior high	53	45 472	7 948	1.092	
C-+ high school	206	45 80 1	7 724	538	
D-high school	(21)	43 986	7 083	488	
E-vocational	182	45 841	7 189	533	

One Factor ANOVA X1: Mother's Ed. Y1: SRS

Group	Count	Mean	Std. Dev	Std Error:
E-UNIVersity	1125	147 104	त्र चनन	758
				hh

One Factor Anoval SRS with Certignachic Variables

Longarison	Mean Diff	Feren 200	و به دو دو د	en Diarietti.
HH junion 178 Étilu	uer (+1 327	1017		 4
An ignion de l'ach	ugn –1.5∰	1418		1 + p pi
Am junior i ve Dhray	r ≟ 173	· ; · · ·		• • •
An jupion ve Friza	1999 - 1997 - 1976	- 16F	تتور 1	<u>े</u> ोद
A- junion is F-un	Ne -1 939			

One Factor ANOVA X1: Mother's Ed. Y1: SRS

* Significant at 95%

Companison.	Mean Diff	Fisher PLSD	Scherfe F-Lest	Dunnett t
B-junior high vs. C-c high	- 329	2 303	016	281
B-junior high vs. D-high s.	1 486	2 298	322	1 269
B-junior high vs. E-vocat	- 369	2 334	019	31
B-junior high vs. F-unive	-1 632	2 451	341	1 307
C- high ac ivs D-high s	: 315	1 465*	1 194	2 433

One Factor ANOVA X1: Mother's Ed. Y1: SRS

* Significant at 95%

One Factor ANOVA X1: Mother's Ed. V1: SRS

Comparison:	Mean Diff	Fisher PL30	<u> Echeffa</u> E-test	<u>Eurnett t</u>
C-⊂high sc. vs. E-vocati	- 04	1 521		051
C-s high sc vs. F-unive	-1.303	1 695	455	1:509
D-high school vs. E-vocat	-1 855	1513+	1 154	12:407
D-high school vs. F-unive .	-3116	1 656*	283*	3 626
E-vocational vs. F-univer	-1 253	1 727	±()£	1 428

ι

* Significant at 95%

One Factor Arioval SPS with Demographic Variables

One Factor ANOVA X1: Father's Ed. Y1: SRS

Bounce	€F	Sum Squares	Mean Equane	-ret
ी जनसंख्या । स	urs E	ann 17		7729
within anou	o3 (35c	uge at cal	78.957	ರ = ಅನಿಕಕ
, Tutai	it."	50667,463		

Analysis of Variance Fable

Model is estimate of between component variance = 17.643

Group.	Count	Mean	Std. Dev.	Std. Error:
And junior high	185	43 378	8 379	621
8-junior high	68	43.956	7 251	879
C-4 high school	173	45 127	7 343	558
D-high school	137	45.693	7.444	.636
E-vocational	163	46 153	7 073	554

One Factor ANOVA X1: Father's Ed. Y1: SRS

One Factor ANOVA X1: Father's Ed. Y1: SRS

<u>Group:</u>	Count	Hean	Std Dev	Std Error:
F-university	139	46.964	7871	668

One Factor Abova, SRS with Demographic Variables

Lombantson		Mean, Diff	Fisher 2130	<u>inerie Terest</u>	Dercett t
Ark junion 1. 78	6-5-junior	: Va	1110	11111	• •
A	i na an	j = * 1142	• = : : :	4, 7	·
د بریان <u>ا</u> ندا	u-ragnia		16414		, ()
i Alex junion - Ve	E-vocati	:-2:175	1 <u>6</u> • 7 •	1 40	
i A- Juhon vi	s F-unive	(-1 386	11035*	2421+	

One Factor ANOVA: X1: Father's Ed. Y1: SRS

* Significant at 95%

Companison	Mear. Diff.	Fisher PLSD	Etheffe F-test	Dunnett t
B-junion high vs. C-Chigh	-1 171	2 141	231	1 074
B-junior high vs. D-high s	-1 738	2/319	473	1 537
B-junion high vs. E-vocat	-2 197	2 159*	798	1 998
B-junior high vs. F-unive	-3 008	2 2)3•	1 423	2.668
C-1 high so i vs. D-high s	- 566	1 71 1	୍ରଥ୍ୟ	65

One Factor ANOVA X1: Father's Ed. Y1: SRS

* Significant at 95%

One Factor ANOVA X1: Father's Ed. Y1: SRS

Comparison:	Mean Diff	Fisher PL30	Scheffe F-test	<u>Dupriett t</u>
CHR high so i vs. Er vocati	-1 026	1 533	7/14	1.274
C- high sc vs F-unive	-1 637	1 764+	696	2116
D-high school vs. E-vocat	- 45	1 734	054	521
O-high school vs. F-unive	-1 271	1801	364	1 365
E-vocational vs. E-univer	- 811	1 727	17	922

* Significant at 95%

One Factor ANOVA X1: Student aspiration Y1: SRS

Sounde	DF	Burn Bouares	Mean Square	F-test
fetween groups	. 7	4037 75	1745 927	24 766
WICHE GROUPS	. 556 .	, 46625,683	54 342	a = 0001
Total	, EIE	50663 463		

Analysis of Variance Table

Model II estimate of perween component variance = 430 528

One Factor ANOVA X1: Student aspiration V1: SRS

Group.	Count.	<u>Mean:</u>	Std. Dev.	Std. Error.
A-quit his / job	15	39 4	87	2.246
8-h s/joh	83	41 337	6 586	723
C-h.s /vocational	288	43.892	7.405	.436
D-h s /university	476	47 16	7 437	341

One Factor ANOVA X1: Student aspiration V1: SRS

Companison:	Mean Diff	Fisher PLSD	Scheffe F-test	Dunnett t
A-quiths vs B-hs/job	-1 937	4 06	292	937
A-quit h.s vs. C-h.s./v	-4.492	3 632*	1.765	2 301
A-quiths vs D-hs/u	-7 76	3 795+	5 371 +	4014
B-h s/job vs C-h s./voc	-2 555	1 603*	2 58	2.782
8-h s/job vs Ci-h s /univ	-5 822	1 721+	14696•	6.64

* Significant at 95%

•...

One Factor Aneval SFS with Demographic Variables

One Factor ANOVA X1: Student aspiration Y1: SRS

<u>lomeanison</u>	Hean Diff.	Fisher PUED	Coneffe Fintest	Dunnet: 1
line voi le linne		•	11.75*	5 47 T

* Eignifficiant at 95%

Emple Regression, SRS with Demographic Variables

	-	≓-squared	Ad: R-squared	Sta Ernon
	<u> </u>	<u>'</u> 4'	.1	<u> </u>
	ĩ	Analysis of Variance Burn BeaanAs		f-test
		EC ETE	EC 578	
······			· · ਦ	2 = 101

Simple Regression X1: SRS Y1: Gender

No Pesidual Statistics Computed

Simple Regression X1: SRS Y1: Gender

Beta Coefficient Table

Fran yn letjen	Value	Std Err	Std. Value	t-Value	Probability
NTERICERT	- 38	i			
EUFE	124	002	175	11 381	0001

Far ameter	95% Lower	95% Upper	90% Lower	90% Upper
HEAN IST	146	1.522	1 465	1.517
LOLOPE	02	.029	021	028

<u>DF</u>	<u>.</u>	R-squared	Ad: R-squared	<u>ita Ennor</u>
561		2 ° C	014	1.123
		Analysis of Variance	e Table	
jource	<u>CF</u>	Jum Jouanes	<u>Mean Eduarie</u>	ř-test
- REGRESSION	i	le eE4	16 654	1356
SEFELAL	<u>it:</u>	11114.074		<u>p = 0004</u>
707AL		1:30 733	;	<u>i</u>

Simple Regression X1: SRS Y2: Age

No Residual Statistics Tomputed

Simple Regression X1: SRS Y2: Age

Beta Coefficient Table

Parameter	Value	Std Err.	Std. Value	t-Value.	Probability
INTERCEPT	3.631				
SLOPE	- 018	005	- 121	3,536	.0004

Parameter	95% Lower	95% Upper.	90% Lower	90% Upper
MEAN (X.Y)	2 782	2.935	2.795	2 922
SLOPE	- 028	- 008	- 026	01

Simple Regression, SRS with Demographic Mariables

ĴF	2	A-equared	Hitz Ameduared	Sta Error			
9 <u>6</u> 1	:5e	0,05	с. с. на 	1 77			
Analygis of Maniand+ Fable							
<u>.</u>		Bunk Babar y a	ifean cauaire	i-test			
FESRET SON	•	2010	2019				
FERG.AL	1961 - 1	357378	1 499	p = 0094			
	∃t '	2599 *	1	4			

Simple Regression X1: SRS Y3: School

No Residual Statistics Computed

Simple Regression X1: SR5 Y3: School

Beta Coefficient Table

f	Parameter	Value	Std Err	Std Value	t-Value	Probability
	INTERCEPT	3 033	1			
[SLOPE	.02	008	080	2.603	0094

Fanameten	95% Lower	95% Upper	90% Lower	90% Upper
MEAN (X,Y)	3 626	4.056	3 8 4 5	4 039
5LOPE	005	.035	007	.033

Simple Regression, SRS with Demographic Variables

DF	Q.	squared	Adj A-squared	ita Erran
9£ 1	075	006	005	· 16
		Analysis of Vamano	e Tatie	
100 01 0		Euro Equanes	Mean Equare	Friest
FE3REES.ON		10-44	j	4397
-EBICUAL	360	1977 417	- ,	
TUTAL	361	1843 857		

Simple Regression X1: SRS Y4: Mother's Ed.

No Residual Statistics Computed

Simple Regression X1: SRS Y4: Mother's Ed.

Beta Coefficient Table

Parameter.	Value	Std. Err .	Std Value	t-Value	Probability	
INTERCEPT	3.192					
SLOPE	.014	.006	075	2.213	0272	

Parameter:	95% Lower	95% Upper	90% Lower	90% Upper
MEAN (X,Y)	3.746	3.941	3.761	3 925
SLOPE	.002	.027	004	025

Simple Regression, SRS with Demographic Variables

DF	3	E-squared	Adj =-squared	Sta Error
86 :	:36	019	317	4 - 1947- 4 - 2049
		Analysis of Variand	e Tuple	
Evance	.)F	sum Equares	Mean Equane	F-test
REGREEBION	•	्यहाय ह	8-415	6 296
REELONAL	. 14 5	<u>, 2554 149</u>		p = 1440
		2603 165		

Simple Regression X_1 : SRS Y_5 : Father's Ed.

No Residual Statistic's Computed

Simple Regression X1: SRS Y5: Father's Ed.

Beta Coefficient Table

Farameter	Value	Std. Err.	Std. Value.	t-Value.	Probability
INTERCEPT	2.117				
SLOPE	.031	.008	.136	4.037	.0001

Parameter	95% Lower	95% Upper	90% Lower.	90% Upper.
MEAN (X,Y)	3.404	3.635	3 423	3616
SLOPE	.016	.046	018	.044

Simple Regression, SRS with Demographic Variables

· ·	4	E-squared	Adr. A-Salaarind	Eta Error
<u>16</u>	271		· · ·	
		Analysis of Varianc	e Tarie	
÷satz a	جري	Sum Equanes	Mean Equare	F-tegt
4506533.CN	•	.36 767	3c 767	77 542
	-	424 764	1/4/4	g = 1000
· · · ·		466 136		

Simple Regression X_1 : SRS Y_6 : Student aspiration

No Residual Statistics Limputed

Simple Regression X1: SRS Y6: Student aspiration

Beta Coefficient Table

Farameter	value.	Std. Err.	Std Value.	t-Value	Probability.
INTERCEPT	2.199				
SLOPE	027	003	281	3 581	0001

Fianometer	95% Lower	95% Upper	90% Lower	90% Upper
HEAN (A.F)	3.374	3.468	3.381	3.461
SLOPE	021	.033	.022	032
ستبتبغ متناسق تهده والاكتبا فتتتلف بديها				\ \

Table 14

DF	R	A-souared	Adj R-squared	Sta Error
<u>.</u> 36 ·	083	007	006	9 983
		Analizsis of Mamand	te Table	
<u>Source</u>	<u></u>	Euro Squares	fean Square	F-test
REGREESION		185 FUI	. 485 502	/€ 01€
REFOLAL	- 863	ક્લેવરર ગર્	60 696	·0 = (144
	18	£3885 547		

Simple Regression X1: SRS Y1: JWS

No Residual Statistics Computed

Simple Regression X1: SRS Y1: JWS

Beta Coefficient Table

Parameter.	Value	Std. Err	Std. Value.	t-Value.	Probability.
INTERCEPT	95.473				
SLOPE	.098	.04	.083	2.453	.0144

<u>Parameter</u>	95% Lower:	95% Upper.	90% Lower	90% Upper
MEAN (X,Y)	99.314	100.515	99.41	100.418
SLOPE	02	.176	032	.164

Simple Regression, SRS with JWS, ABS, VS

<u>DF</u>	R	9-squared	Auj Resquared	Eta Ermon	
861	.562	316	716	्र र १९	
		Analysis of Variane	e Table		
Sounce	DF	Sum Bauares	Hean Eduarie	F-last	
REGREESION	· .	17522 873	7522 633	397.861	
RESIGUAL	. 260	37876 519		p = 2004	
TOTAL	96 :	55399 352	•		

Simple Regression X1: SRS Y2: ASB

No Residual Statistics Computed

Simple Regression X1: SRS Y2: ASB

Beta Coefficient Table

Parameter.	Value:	Std. Err.:	Std. Value	L-Value.	Probability
INTERCEPT	16.561				
SLOPE	568	029	562	19 946	0001

Parameter:	95% Lower	95% Upper	90% Lower	90% Upper
MEAN (X,Y)	42.801	43.688	42,873	43.617
SLOPE	53	.646	54	637

Simple Regression, SRS with JWS, ABS, VS

DF	R	Resquared	Adj F-squared	<u>- Std. Ernon</u>
86 :	.469		219	1 • - 383
		Analysis of Varian	ce Table	
source	<u></u>	Sum Squares.	Mean Square	F-test
REGRESSION		77698 904	77698 904	242 785
FEE COUAL	. 560	275227 533	320 032	p = 3001
TOTAL	. EE 1	352926 437		

Simple Regression X1: SRS Y3: VS

No Residual Statistics Computed

Simple Regression X1: SRS Y3: VS

Beta Coefficient Table

Parameter	Value.	Std. Err.;	Std. Value:	t-Value.	Probability:
INTERCEPT	143.135				
SLOPE	-1.236	.079	469	15 582	.0001

Confidence Intervals Table

Parameter.	95% Lower:	95% Upper.	90% Lower:	90% Upper:
MEAN (X,Y)	85.749	88.142	85.942	87.949
SLOPE	-1.394	-1.082	-1.369	-1.108

; .

•

Table 15

Stepwise Regression Y1:SRS 9 X variables

Summary Information

F to Enter	- 4
F to Remove	3 996
Number of Steps	÷ ti
variaties Entered	.6
Variables Fonced	

No Residual Statistics Computed

Stepwise Regression Y1:SRS 9 X variables.

STEP NO. 1 VARIABLE ENTERED: X9: ASB

<u>R:</u>	R-squared:	Adj. R-squa	ared: Std. Error:
562	316	316	6.346

Analysis of Variance Table

Source	DF:	Sum Squares:	Mean Square:	F-test:
REGRESSION	11	16024.87	16024.87	397.862
RESIDUAL	860	34638.593	40.277	
TOTAL	861	50663.463		

STEP NO. 1 Stepwise Regression Y1;SRS 9 X variables

Variables in Equation

Parameter.	Value.	Std. Err .	Std. Value:	<u>F to Remove.</u>
INTERCEPT	22,114			
ASB	538	.027	562	397 862

anameter	Par Corr	F to Enter
bender	186	30.613
Age	078	5.326
School	.138	16.721
Mother's Ed.	.018	.267
Father's Ed	.0+4	7.651

STEP NO. 1 Stepwise Regression Y1:SRS 9 X variables

kaniaples Not	-กอื่อนสปะเท
Jan Jann	2 to Enton

Parameter	Pan John	F to Enter	
Etudent aspinat	1 215	41 535	
	155	21.25	
72	- 26	72 567	

Stepwise Regression Y1:SRS 9 X variables

STEP NO. 2 VARIABLE ENTERED: X8: VS

<u> </u>	R-squared.	Adj. R-squared	Std. Ernor
608	37	368	6 097

Analysis of Variance Table

Source	DF	Sum Squares	Mean Square	<u>F-test</u>
REGRESSION	2	18734.092	9367.046	252 003
PESIDUAL	859	31929 37	37 17	
TOTAL	861	50663 463		

STEP NO. 2 Stepwise Regression Y1:SRS 9 X variables Variables in Equation

Parameter:	Value:	Std Err	Std Value	E to Remove
INTERCEPT	35.87			
VS	- 099	012	- 262	72.887
A58	.42	029	439	203 932

Variables Not in Equation

Parameter:	Par Corr	F to Enter
Gender	129	14 485
Age	083	5.92
School	126	13 758
Mother's Ed	024	497

STEP NO. 2 Stepwise Regression Yy:SRS 9 X variables

variables Not in Equation

-anameter	-3r .)rr	<u> </u>	
Father 5 Ed	093	2 4 15 <u> </u>	
Student aspirat	. 202	36 318	
.w3	162	23 098	

Stepwise Regression Y1:SRS 9 X variables

STEP NO. 3 VARIABLE ENTERED: X6: Student aspiration

<u>R.</u>	<u>R-squared.</u>	<u>Adj. R-squared</u>	Std. Error.
.629	395	393	5 975

Analysis of Variance Table

Source	DF:	Sum Squares	Mean Square.	F-test:
PEGRESSION	3	20030.746	6676.915	187.016
RESIDUAL	858	30632 717	35 702	
TOTAL	861	50663.463		

STEP NO. 3 Stepwise Regression Y1:SRS 9 X variables Variables in Equation

Parameter:	Value	Std. Err	Std. Value	F to Remove
INTERCEPT	30.574			
Student aspirat	1 704	293	1 163	36 319
VS	- 094	011	- 248	67 454
ASB	396	.029	414	186.193

Variables Not in Equation

Parameter	Pan Conn	F to Enter.
Gender	.136	16.077
Age	- 033	348
School	.125	13.663

STEP NO. 3 Stepwise Regression Y1:SRS 9 X variables

i viantablies Not in Es	uation
 *	E es Enton

<u>-arameter</u>	<u>– 3n – 5nn</u>	- to Enter	
Mother B Es	- ्र <u>ड</u>	77g	
Facher 3 Ed	. 337	żć	
.WE	5 C	10 48	

Stepwise Regression Y1:SRS 9 X variables

STEP NO. 4 VARIABLE ENTERED: X7: JWS

<u>P.</u>	R-squared:	Adj. R-squar	ed. Std. Error.
641	411	409	5 899

Analysis of Variance Table

Source	DF	Sum Squares	Mean Square	F-test
PEGRESSION	4	20836 4	5209 1	149 669
PESIOUAL	857	29827 062	34 804	
TOTAL	861	50663 463		

STEP NO. 4 Stepwise Regression Y1:SRS 9 X variables Variables in Equation

Parameter:	Value	Std. Err	Std Value	F to Remove
INTERCEPT	19.457			
Student aspirat.	1 683	279	161	36 354
JWS	108	022	127	23 148
VS	094	011	- 248	69 282
A38	.406	.029	.425	199 652

Variables Not in Eduation

Variables Not in Eduation				
Parameter	Par. Corr.	F to Enter:		
Gender	129	14 4!7		
Age	031	812		

STEP NO. 4 Stepwise Regression Y1:SRS 9 X veriables

v aniables Not	in Equation
San John	E to Enter

Fanameter	Pan John	F to Enter
Echoor	113	- 10 990
Nother E. Ed.	- 034	1003
Patrieris Ea	•	<u>רד. ; '</u>

Stepwise Regression Y1:SRS 9 X variables

STEP NO. 5 VARIABLE ENTERED: X1: Gender

Ê	R-squared:	Adj. Fsquared.	<u>Sld. Error.</u>
649	.421	418	5.854

Analysis of Variance Table

Source	DF	Sum Squares	Mean Square	F-test:
PESPESSION	5	21330.437	4266.087	124.493
DESIGNAL	856	29333 025	34 268	
TOTAL	861	50663 463		

STEP NO. 5 Stepwise Regression V1:SRS 9 X variables Variables in Equation

Panameter:	Value	<u>Std. Err</u>	Std Value	F to Remove
INTERCEPT	17.844			
Gender	1 719	453	112	14 417
Student aspirat	1 705	277	.164	37 879
JW3	103	022	.121	21 467
VS	084	.012	- 221	52.78
<u> </u>	373	03	39	155.62

Variables Not in Equation

Panameter	Par Corr	F to Enter
<u>م ب</u> م	<u>- 033</u>	955

STEP NO. 5 Stepwise Regression Y1:SRS 9 X variables

Variables Not in Equation

- anameter	Fan Conn	Filo Enter	
Echoo:	• • •	10 83	
Mother's Ed	- 023	434	
Father 3 E3	0 <u>5</u> 2	2 327	

Stepwise Regression Y1:SRS 9 X variables

(Last Step) STEP NO. 6 VARIABLE ENTERED: X3: School

R.	R-squared:	Adj. R-squared:	Std. Error.
654	428	424	5.821

Analysis of Variance Table

Source	DF	Sum Squares:	Mean Square:	F-test:
REGRESSION	6	21697.327	3616.221	106.741
PESIDUAL	855	28966 136	33 879	
TOTAL	861	50663 463		

STEP NO. 6 Stepwise Regression Y1:SRS 9 X variables Variables in Equation

Parameter	Value:	Std. Err :	Std Value	F to Remove
INTERCEPT	16.606			
Gender	1 699	45	111	14 246
School	.378	.115	086	10.83
Student aspirat.	1.693	.276	162	37 775
JWS	.097	.022	.113	15.886
VS	082	.011	- 215	50 464
ASB	.379	.03	.396	162.225

STEP NO. 6 Stepwise Regression Y1:SRS 9 X variables

variables Not in Equation				
Parameter	Pan John	Filo Enten		
مړ د	- 031	2/51	_	
Mother's Ed	- 115	205		
Father's Ed		5 263		