National Library of Canada
Acquisitions and Bibliographic Senvices Branch

Bibliotheque nalionale du Canada

Direction des acquisitions et des services bibliographiques

395, rue Wellington Ottawa (Ontario)
KIAON4

The author has granted an L'auteur a accordé une 'ence Irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell coples of his/her thesis by any means and In any form or format, making this thesis avallable to Interested persons. irrévocable et non exclusive permettant à la Blbilothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manlère et sous quelque forme que ce solt pour mettre des exemplaires de cette
thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du drolt d'auteur qui protège sa thèse. Ni ia thèse ni des extralts substantiels de celie-cl ne dolvent être imprimés ou autrement reprodults sans son autorisation.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reprnduced without his/her permission.

Name Tops Michare FKEER
Dissentation Abstrocts Intemational is arranged by broad, general subject coliegories. Please salect the one subject which mosi nearly describes the contont of your dissentation, Enter the corresponding four-digit code in the spaces provided.
sumect COOR

Subject Cotegories

THI HUMANITIE AND SOeIAL ScImNEIS

Arehilacture 0729
Cinem J 0.0900
Dence 0378
Fine Art 0357
ermetion Sciencs 0723
doumoliem 0391
Librar Science 0399
Mose Communictions 0708
Music 0413
Speech Communicotion 0459
Theoter 0465
mucht
Ceneol 0515
Adminithation........................... 0514
Aduli and Continuing 0516
Arricultural 0517
Ait 0273
Bilineval and Multicultural 0282
Business 0688
munity Codlice.................. 0275
Curriculum and Instruction 0727
Earty Childhood 0518
Elementary 0524
Finance 0277
Guidance and Counsaling 0519
Guidenee and Counseling 0680
0745
History of............................... 0520
Hons Eeonomics
s 0278
0521
language and literature 027
Mathemoties 0280
0s22
(losophy of 0998
Physicol..

cancuacs, LItEATURE AND

HMCUETICS

THI SCIINCES AND ENGINIIRING

Curn Sents
griculture
General
Agronomy,..................... 02
$\begin{aligned} & \text { Animal Culfure and } \\ & \text { Nutrition........... } \end{aligned}$
Animol Pathology.............. 0476
Food Science and
Technotogy wirio........... 0359
Forestry and Widdite 0478
Flont Culture 0479
Plant Pothology 0480
Plant Physiolagy 0817
Rance Manoge .mant 0777
Range Managemant 0777
Wood Technology 0746
+ogy
Centeral 030
Anatonly 0287
Bo
Cell 0379
Ecoldy -........................ 0329
Entomelogy 0353
Genetics 0369
Limnology 0793
ierev 019
içrobiotogy 0410
Moteculor 0307
Naurokience 031%
Occanogrop
prcanogrophy................. 0410
siology 043
diation 082
derinary Science
ay
A AMH SOMETS
Biogeoxhemistry 0425
Geochemintry 0996

heath and environmental scimes
Enviornmanial Sciences 0768
Chemother
350
How
man Dowe
Inmunology -.................. 0982
Medicine and Surgery 0556
001/ 0347
on
Obstetrics and Gynecology .. 0380
Oectupationa
hyrapy -.................... 0354
1

Contents

Certificate of Examination iii
List of Figures iv
List of Tables vi
Acknowledgments vii
Abstract viii
1 Introduction 1
2 Observations 8
3 Image reduction 18
3.1 Overscan subtraction 18
3.2 Flat fielding 22
3.3 Mosaicking images 25
4 Surface photometry 28
4.1 Object removal 29
4.2 Creation of artificial images 31
4.3 Testing ellipse 33
4.4 Errors incurred by seeing 34
4.5 Enrors incurred by sky subtraction 37
4.6 Computation of isophote intensity 11
5 Transformation to standard magnitudes 5.
5.1 Standard star photometry 51
5.2 Transformation equations 52
5.3 Extinction and K-corrections 5.5
6 Results 58
6.1 Sky measurement 58
6.2 Surface photometry 59
7 Discussion 75
7.1 Isophote position angles 75
7.2 lsophote ellipticities 77
7.3 Surface photometry 78
7.4 de Vaucouleurs parameters 83
8 Summary 86
Glossary 88
Appendix 1: ANNUL/ code listing 94
Curriculum Vitae 112

Certificate of Examination

List of Figures

$1 \quad B$ image of $10276-0255$, the BCG of MKW 2. 10
2 B image of $10246-0304$, the BCG of MKW $2 S$. 11
$3 \quad B$ image of NGC 5920, the BCG of MKW 3S. 12
$4 B$ image of NGC 4073, the BCG of MKW 4. 13
$5 \quad B$ image of NGC 5400, the BCG of MKW 5. 14
6 B image of NGC 6051, the PBCG of AWM 4. 15
$7 \quad B$ image of NGC 6269, the BCG of AWM 5. 16
$8 \quad B$ image of UGC 09799, the BCG of Abell 2052. 17
9 Intensity versus line for an unstable bias 18
10 A raw image with an unstable bias region. 20
11 A two piece cubic spline fit to an overscan region containing three discontinuities. 21
12 Overscan region after a two piece cubic spline subtraction. 21
13 Bias frame, column plot 24
14 Unflattened image, line plot 24
15 Flattened image, line plot 27
16 Mean change in median intensity vs. iteration 27
17 Ellipticity versus semi-major axis, brightest 40% of pixels clipped 35
18 Position angle versus semi-major axis, brightest 40% of pixels clipped 36
19 Seeing effects on isophotal magnitude 38
20 Seeing effects on isophote ellipticity 39
21 Seeing effects on isophote position angle 39
22 Effect of an error in sky subtraction on magnitude 41
23 Effect of a 1\% error in sky subtraction on isophotal magnitude. 41
24 Effect of a 1% error in sky subtraction on isophote ellipticity. 42
25 Effect of a 1% error in sky subtraction on isophotal position angle 42
26 Consequence of an incorrec ${ }^{*}$ ellipticity 48
27 Consequence of an incorrect position angle 48
28 A compatison of ellipse and ANNULI 49
29 Measurement of a de Vaucouleurs profile with ANNULI 50
30 Surface brightness profile of UGC 09799 (Abell 2052) 61
31 Surface brightness profile of NGC 6051 (AWM 4) 62
32 Surface brightness profile of NGC 6269 (AWM 5). 63
33 Surface brightness profile of 10276-0255 (MKW 2) 64
34 Surface brightness profile of 10246 - 0304 (MKW 2S) 65
35 Surface brightness profile of NGC 5920 (MKW 3S) 66
36 Surface brightness profile of NGC 4073 (MKW 4) 67
37 Surface brightness profile of NGC 5400 (MKW 5) 68
38 Position angle versus radius for poor cluster dominant galaxies. 69
39 Position angle versus radius for poor cluster dominant galaxies. 70
40 Ellipticity versus radius for poor cluster dominant galaxies. 71
41 Ellipticity versus radius for poor cluster dominant galaxies. 72
42 Sky correction needed to register the profiles 82
43 de Vaucouleurs parameters 85

List of Tables

1 Poor cluster locations (b1950.0) and magnitudes 7
2 Number of exposures of program objects 9
3 Standard magnitlde transformation coefficientis, B Filier 57
4 Standard magnitude transformation coefficients, R Filiter 57
5 DOMINANT GALAXY colours and EXTYCTION COEFFICIENTS 60
6 SKY BRIGHTNESSES 73
7 de Vaucouleurs Parameters 74

Acknowledgments

It is with pleasure that I express my thanks to the various people who have contributed to this thesis:

To Dr. Michael West: Thank you for your excellent supervision. With your guidance, this has been a very rewarding experience. Your timely words of encouragement. in frustrating periods were very appreciated. Thanks also for the use of your office! I've been told by many people that the most important factor for this degree is the choice of a supervisor. I chose very wisely.

To Dr. Terry Bridges: I couldn't have gotten through this without your observational expertise, which you have so graciously shared. Since January 22, 1996, we have exchanged over 100 email messages!

To Dr. James Schombert: Your assistance with various problems encountered was very appreciated. Thanks also for serving as the external reader and giving helpful and explicit recommendations for improving this thesis.

To Dr. David Clarke: You have been a big influence in my choice of topics to pursue for a Ph.D. Thank you also for being on the examination committee.

To Dr. George Mitchell: Thank you for serving as a member on the examination committee, and for your suggestions for improvement.

To Melvin Blake: My good friend, you are always willing to lend an ear; I very much appreciated our numerous discussions on various topics. Thanks for sharing your impressive knowledge of astronomical topics; you helped me out considerably.

Abstract

Surface Photometry of the Dominant Galaxies in Poor Clusteas

Todd M. Fuller

September 18, 1906 Surface photometry in B and R is presented for seven brightest cluster galaxies (BCGs) in poor clusters. The primary goal was to detect diffuse envelopes around the BCGs to determine if they are genuine cD galaxies, which have a diffuse stellar envelope th.a manifests itself as a break in the brightness profile. The poor cluster BCGs did show breaks in their profiles, but these occurred at brighter magnitudes than in cDs and hence was likely produced by a systematic overestimation of the sky intensity. Based on the de Vaucouleurs parameters the poor cluster BCGs are D galaxies, which lack envelopes. Both poor cluster BCGs and rich cluster eD galaxies show similar isophotal flattening and major axis alignments, and therefore must, share common formation processes independent of cluster richness. However, since the poor cluster BCGs likely do not have envelopes, a rich cluster environment, is necessary for envelope formation.

1 Introduction

The largest galaxies in the Universe were first identified by Matthews, Morgan, and Schmidt (1964). Originally, W. W. Morgan labeled bright elliptical galaxies surrounded by extensive amorphous stellar envelopes " D " galaxies. A subset of these were very much larger and given a special designation: cD , where the " c " stands for supergiant. The primary attributes of these cD galaxies are a large size (3 to 4 times larger than the largest lenticular galaxy in the cluster) and extensive diffuse stellar envelopes of approximately 100 kpc in extent. Some of these galaxies had very extensive envelopes 1 to 2 Mpc in size; for comparison, the Andromeda galaxy, our nearest large neighbour, is only 0.7 Mpc away! The distinction between D and cD galaxies was somewhat ambiguous, however, and the cross over point between the two classification was largely up to the observer's discretion. Galaxy classification was usually done by visual examination of photographic plates, but the eye is a poor detector of faint diffuse envelopes, and furthermore the $(1+z)^{4}$ cosmological dimming factor makes the ability to classify cDs distance dependent. Thus it is not surprising that the same galaxies have been classified differently by different authors (see Dressler, 1984, for a review).

As the study of cD galaxies evolved, so did their definition. In a surface photometry study of 342 elliptical galaxies, Schombert (1987) described brightness profile (i. e., intensity as a function of radius) morphology criteria that quantified the distintions between giant elliptical (gE), D and cD galaxies. In his sample, giant elliptical
galaxies were found to have a power-Iaw slope $\left(I(r) \propto r^{d}\right.$ where I is intensity and r is the radius) of $-1.9 \leq \beta \leq-1.7$, and D galaxy profile slopes were shallower, ranging from -1.7 to -1.2 . cD galaxies showed the same slope ats D galaxies down to a certain surface brightness, but exhibited a characteristic upturn in their profiles, caused by their large envelopes. These envelopes, even though they have a very low surface brightness, may be as much as ten times the luminosity of the underlving galaxy because of their immense size.

The origin of cD galaxies has been the subject of considerable debate. Geller and Peebles (1976) argued that cD galaxies are simply the bright tail of the galaxy luminosity function, while others (Dressler, 1978) have argued that environmental factors are responsible for the creation of cDs. Most of the evidence favours the latter. Many of the cD galaxies are simply too bright to be continuations of the luminosity function for cluster galaxies. Tremaine and Richstone (1977) derived statistical tests, of eluster galaxy luminosities that are independent of the assumed luminosity function, and concluded that the luminosity of the brightest cluster galaxy (BCG) is determined by some special physical process, rather than a statistical sampling of a luminosity func-tion. Also, no cD galaxies are found in the low-density field ($\rho<1$ galaxy Mps^{-1}), even though the luminosity functions for cluster and field galaxies are not significantly different.

With a few exceptions, cD galaxies always occupy a preferred position: the centre of dense clusters where the local density is at a maximum, and may reach 10^{1} times;
the mean galaxy number density. Beers and Geller (1983) showed that galaxies with luminous halos (i. c., D and cD) are located at local surface density maxima of galaxy clusters, and are nearer to these maxima than bright galaxies of other types. This further suggests that cD galaxies are the products of a special environment. The most important piece of evidence that cD galaxies are not simply the brightest galaxies is that between 25 and 50 percent of cD galaxies are multiply nucleated [these are not merely chance projections, see Schneider et al. (1983)]. This is very strong evidence that cDs have undergone special evolutionaiy processes, probably related to merging and galactic cannibalism in dense environments.

There are four popular theories to explain the origin of cD galaxies (see Schombert, 1988, for a discussion). Two of these, the tidal stripping theory (Malumuth and Richstone, 1984) and merger theory (Ostriker and Hausman, 1977), rely on dynamical processes to create a cD . In the stripping theory, tidal interactions strip stars from cluster members and deposit them onto the central galaxy. The merger theory posits that galactic cannibalism, facilitated by dynamical friction, is responsible for the cD's extreme size, and naturally explains the high incidence of multiple nuclei. Both theories, however, are inconsistent in some respects. Energy arguments indicate that material from mergers will be distributed over an area that is much smaller than the observed cluster envelope. The orbital energy and hence orbital velocity for a merging galaxy is similar to the velocity dispersion of the BCG. But, a megaparsec sized envelope requires a much larger velocity dispersion than the typical value of
$300 \mathrm{~km} \mathrm{~s}^{-1}$ for BCGs. This is not a problem with the tidal debris theory, but a comparison between cluster ellipticals and field ellipticals gives little indication that the cluster ellipticals have halos that have been tidally truncated (Oemler, 1092).

The primordial origin theory proposed by Merritt $(1984,1985)$ avoids these problems. This theory assumes that all galaxies initially had large dark matter halos and that these were subsequently removed by the mean cluster tidal field during the initial cluster collapse. However, the central galaxy retains its own primordial envelope because of its fortuitous location at the bottom of the cluster potential well, and furthermore inherits the halo remnants of the other galaxies. van den Bergh (1983) noted morphological similarities between cD galaxies and their parent clusters: they both tend to be flattened, and furthermore have aligned principal axes, which suggests that the cD and the cluster formed simultaneously.

Cooling flows have also been invoked to explain the formation of CD galaxies (Fabian et al., 1984). Hot x-ray gas decreases in pressure from radiative cooling, and subsequently settles to the centre of the cluster potential. As the gas cools and condenses, star formation may begin once densities are high enough. A mass deposition rate of 1 n to $100 M_{\odot} \mathrm{yr}^{-1}$ would build a cD galaxy in a Hubble time (Dressler, 1984). Indeed, cooling flows of between $20 M_{(9)} \mathrm{yr}^{-1}$ and $100 M_{\odot} \mathrm{yr}^{-1}$ have been observed in some of the poor clusters studied in this thesis (McNamara and O'Connell, 1992; Neumann and Böhringer, 1995). Canizares et al. (1993) noted that cooling and accretion of intracluster gas onto the dominant galaxy is a widespread phenomenon in
poor clusters.

Central to all of the cD formation theories is the role of the cluster environment. Hence it is important to determine what the differences are between the cDs in rich clusters and the BCGs - the candidate cDs - of the poor clusters examined in this thesis. It is widely believed that rich clusters most likely formed from the conglomcration of several small clusters. Merritt (1985) has argued that they are the most likely sites of cD formation, since smaller clusters are more compact and have smaller velocity dispersions ($\sigma_{v} \leq 500 \mathrm{~km} \mathrm{~s}^{-1}$) than do rich clusters ($\sigma_{v} \geq 1000 \mathrm{~km} \mathrm{~s}^{-1}$), and therefore are more condusive to galactic mergers and stripping. This model predicts that the properties of a cD galaxy should only be associated with its initial environment, the poor cluster, and not the rich cluster that forms afterward. Contrary to this, Schombert (1988) found that the luminosity of cD envelopes is related to the cluster richness, in agreement with the stripping models of Malumuth and Richstone (1984). Also, a correlation between cluster x-ray luminosity and cluster richness class have been found (Edge, 1991).

Around the time of their discovery, cD galaxies were known to reside only in rich clusters containing hundreds of galaxies, which lead Morgan, Kayser, and White (1975, MKW) and later Albert, White, and Morgan (1977, AWM) to search for candidate cD galaxies located in clusters poorer then those in the Abell catalogue. They searched the Palomar Observatory Sky Survey and found several clusterings of a few galaxies possibly containing a cD (Table 1). The size of these galaxies on the pho-
tographic plates is, however, very small (less than 0.5 cm) which makes classification quite difficult. Larger images of the galaxies would be needed to determine if these galaxies were true cDs.

Previous surface photometry studies of the AWM and MKW elusters have been mainly photographic. Thuan and Romanishin (1981, TR) did photographic surface photometry on nine of the poor cluster BCGs, and found no evidence for diffuse envelopes which are characteristic of cD galaxies in rich clusters, while Morbey and Morris (1983, MM) found some evidence of diffuse envelopes in their photographic study. Photographic plates, however, suffer from non-linearities at faint light lovels which obviously affect the profiles where we are most interested.

Accurate sky determination is crucial for accurate photometry at faint levels, and it is therefore desirable to have images that cover an area large enough that the BGC ligit does not contaminate the enciice frame. Malumuth and Kirshner (1985, MK) did CCD surface photometry of sume poor cluster F3CGs, but their spatial coverage was poor. A significant improvement in spatial coverage was made in this study, by mosaicking images centred and offset from the dominant galaxy.

Our principal objective for this project was to measure surface brightness profiles accurately using CCD images of poor cluster BCGs to determine definitively if they are indeed genuine cD galaxies. Therefore, we are primarily interested in detecting possible envelopes around the MKW and AWM BCGs.

Table 1: Poor cluster locations (b1950.0) and magnitudes

Cluster	α	δ	Z	M	Dominant galaxy
MKW 1	095822	-024348	0.0207	14.2	NGC 3090
MKW 2	102536	-030224	0.0377	14.4	$10276-0255$
MKW 3	114654	-031100	0.0271	14.9	$11469-0311$
MKW 4	120152.8	+021030	0.0204	13.8	NGC 4073
MKW 5	135800	-023700	0.0249	14.5	NGC 5400
MKW 6	141506	+021600	0.0256	15.3	$14151+0216$
MKW 7	143130	+040000	0.0289	15.0	$14315+0500$
MKW 8	143812	+034000	0.0272	14.7	NGC 5718
MKW 9	153000	+045100	0.0397	15.3	$15300+0451$
MKW 10	113948.9	+103230	0.0205	13.8	NGC 3825
MKW 11	132654	+120000	0.0220	14.7	NGC 5171
MKW 12	140028.4	+093938	0.0190	14.3	NGC 5724
MKW 1S	091730	+011500	0.0172	14.1	$09175+0115$
MKW 2S	102436	-030400	0.0381	15.2	$10246-0304$
MKW 3S	151925.3	+075313	0.0450	15.5	NGC 5920
MKW 4S	120405.3	+282713	0.0283	13.7	NGC 4104
AWM 1	091359.7	+202430	0.0293	14.0	NGC 2804
AWM 2	121306.2	+241538	0.0218	14.3	NGC 4213
AWM 3	142602.2	+260418	0.0150	14.2	NGC 5629
AWM 4	160249	+240403	0.0322	14.9	NGC 6051
AWM 5	165558.4	+275546	0.0345	14.4	NGC 6269
AWM 6	125848	+400700	0.0356	15.0	IC 4062
AWM 7	025113.3	+412237	0.0172	14.6	NGC 1129

2 Observations

Images were acquired by Dr. Terry Bridges from April 25 to April 30, 1995, using the Jacobus Kapteyn Telescope (hereafter JKT) in La Palma, Canary Islands, Spain. The JKT has a 1.0 m diameter parabolic primary mirror with a focal ratio of $f / 4.6$. The telescope can be used in two different Cassegrain optical configurations by interchanging secondary mirrors. The most common configuration, and the one used here, uses a hyperbolic secondary mirror that yields a conventional Cassegrain optical system with a focal ratio of $f / 15.0$.

The TEK4 CCD chip employed has an array of 1124×1124 pixels that are $0.24 \times$ $10^{-4} \mathrm{~m}$ square. The scale is $0^{\prime \prime} .33$ per pixel, so the chip covers a patch of sky $6^{\prime} 2 \times 6.2$ in size. The read noise of the TEK4 chip was $4.7 e^{-}$, and the gain was set to 0.75e- /ADU (electrons per analogue to digital units). The regime of nonlinearity was reached around 60000 ADU. The chip has a negligible amount of dark current, hence dark frame calibration was unnecessary.

For each galaxy, a series of images (usually in two filters, B and R) was taken of three different areas. The halo light from a large galaxy could extend over a the entire CCD chip, and to compute an accurate sky value, the galaxy must not contaminate. the sky measurements. Therefore, it was desired to trace the halo profile continuon ly over a radial distance large enough that the profile slope becomes flat, indicating that, the sky intensity has been reached. To obtain a large enough image, a mosaic was taken: one set of exposures was centred on the galaxy (galaxy frame), and another

Table 2: Number of exposures of program objects

Frame	galaxy				overlap				offset			
Exposure	60s		900s	6008	60s		900s	600s	60 s		900s	$\begin{gathered} 600 \mathrm{~s} \\ R \end{gathered}$
Filter	B	R	B	R	B	R	B	R	B	R	B	
Cluster												
MKW 2	1	1	5	5	1		2	3	1		2	2
MKW 2 S	1	1	5	5		2	3	3			4	4
MKW 3S	1	1	5	5	1	1	3	3	1		2	2
MKW 4	1	1	5	5	1	1	3	3	1		2	2
MKW 5	1		5		1		2				2	
AWM 4	1		5				3				2	
AWM 5	1	1	5	5	1		3	3	1		2	2
Abell 2052	1	1	5	5		1	3	3		1	2	2

set was shifted 4^{\prime} east of the galaxy centre (overlap frame). These frames shared a common overlap region of about 1^{\prime} that was used to bring the galaxy and overlap frames into registration. In order to create a dark sky flatzield, a third set of exposures were taken of an area offset approximately 30^{\prime} away from the galaxy (offset frame). In most cases, five galaxy frames, three overlap frames, and two offset sky frames were obtained (table 2). The galaxy and overlap frames were dithered by $20^{\prime \prime}$, and the offset sky frames were dithered by $30^{\prime \prime}$.

In order to calibrate the surface photometry, photometric standards measured by Landolt (1992), were observed at the beginning, middle, and end of each night. The seeing varied over the course of the observing session; the full width at half maximum (FWHM) of stars ranged from $\approx 1 " 6$ (in B) on the first four nights, then degraded to $\approx 2^{\prime \prime} 1$ on the last two nights. The last night of the seven awarded was cloudy, and no data were obtained.

manth MKW2日

Figure 1: B image of $10276-0255$, the BCG of MKW 2.

Figure 2: B image of 10246 - 0304, the BCG of MKW 2 S .

Figure 3: B image of NGC 5920, the BCG of MKW 3S.

Figure 4: B image of NGC 4073, the BCG of MKW 4.

Figure 5: B image of NGC 5400, the BCG of MKW 5.

Figure 6: B image of NGC 6051, the BCG of AWM 4.

Figure 7: B image of NGC 626s, the BCG of AWM 5.

Figure 8: B image of UGC 09799, the BCG of Abell 2052.

3 Image reduction

3.1 Overscan subtraction

CCD frames are "biased" by adding an electronic pedestal level of several hundred ADU (analogue/digital units). This bias level must be subtracted from each image individually since it varies with many factors such as temperature. The bias level is usually a slight function of position on the chip; normally, a zeroth or first order function (i. e., a constant value or straight line) is fit to the overscan region' of the chip and subtracted from the image. This is ordinarily a very simple process, but. was complicated in this case since some of the images suffered from an unstable bias level (figs. 9, 10), the cause of which is unknown.

Figure 9: Intensity versus line for an unstable bias

[^0]The discontinuities were removed from the overscan region by the following procedure. First, the IRAF task blkavg ${ }^{2}$ was run on the overscan region, which averaged the pixel intensities along a line of the CCD, and produced a one dimensional image having the same number of culumns as the overscan region, but only one line. Next, the locations of the discontinuities were accurately determined, and the task ritid fitted a user specified function, such as a Chebychev polynomial or a cubic spline, to the regions between the discontinuities. The user may also specify the order of the function, or the number of spline pieces for a cubic spline fit. Figure 11 shows a cubic spline fit to an overscan region that has three discontinuities.

A two-piece cubic spline was fit to the overscan for all of the images, because it produced a reasonable fit to overscan regions that had and did not have discontinuities. Other functions could be mad' to fit the overscan regions containing discontinuities well, but did not fit non-defective overscan regions as well as the cubic spline. After the function was fit to the overscan region, a two dimensional image was created from the one dimensional fit by using blkrep. Lastly, this image was subtracted from the original image (Figure 1.2). After this correction was performed, in most cases it was impossible to tell that there had ever been a problem with the image, while in the few remaining cases, it was still difficult to see any residual imperfections.

It is standard practice to take a series of bias frames each night during an observing run, then combine them and subtract the combined bias frame from program frames.

[^1]

Figure 10: A raw image with an unstable bias region.

Figure 11: A two piece cubic spline fit to an overscan region containing three discontinuities.

Figure 12: Overscan region after a two piece cubic spline subtraction.

This is necessary if the CCD chip displays any bias structure. As mentioned above, a zeroth or first order function is normally fit to the overscan region and subtracted, which removes the bias pedestal. The combined bias frame is then subtracted from the program image, which removes any bias structure. In this case, a high order function was fit and subtracted from the program frame, thus romoving any structure in the y direction, so bias frame subtraction was not necessary, since the structure in the , x direction was small and unimportant. Since the bias structure was not consistent from frame to frame, bias frame subtraction was pointless. The bias frames show almosi, no structure (Figure 13): there is only a small, insignificant gradient of less than one $A D U$ across the CCD chip lines, and no noticeable gradient across the columns. For images with a smooth overscan region, bias frame subtraction is not neccossury. Indeed, when the CCD chip is functioning properly, bias frumo subtraction is not usually necessary (T . Bridges, private communication).

3.2 Flat fielding

Twilight flats were obtained in the evening or morning or both of each night, and combined using flatcombine to produce one twilight flat in B and one in R for uach of the six nights. Pixel intensities for the combined image were computed using the: median intensity of the combined images. Each flat was multiplicatively scaled hy the mode of the pixel intensities to compensate for different exposure times, and a zero point offset was computed using the mode of the pixel intensities to compensale:
for different twilight sky brightness levels. Pixel rejection was performed using the ccaclip rejection scheme, which determines what pixels should be excluded, based on the readnoise and gain of the CCD chip.

After an image of a blank part of the sky has been flat fielded, there still may be residual large scale gradients across the image. This can be caused by non uniform illumination of the detector when the flat field exposures are obtained. The difference between a flattened blank sky image and the actual blank sky is called the illumination pattern, and to correct for this difference, blank sky exposures are taken and flattened using the twilight flats. Any objects in these images are removed by a sigma clipping algorithm. Also, since the blank sky exposures were dithered, objects are also removed when they are median combined. Since the purpose of the blank sky images is to reduce the large scale gradients, they are heavily smoothed using a two dimensional moving boxcar algorithm. Next, they are normalized by the mean intensity and divided into the original flat field image which yields the blank sky flat. The production of the blank sky flat is performed by mkskycor, and once created, it is used to flatten all subsequent images.

Figures 14 and 15 show the gradients on a typical image before and after the flat fielding process. The residual gradients in the final images were always 1.0% of the sky or less; when flat fielding is done with both twilight flats and dark sky flats, gradients can be 0.5% or better (Mackie, 1992).

Figure 13: Bias frame, column plot

Figure 14: Unflattened image, line plot

3.3 Mosaicking images

The galaxy centred and overlapping frames were combined by imcombine, using the median pixel intensity. No scaling was done, since the exposures were all of identical time, but a zero point offset was performed to adjust for varying sky brightnesses.

The galaxy and overlap frames were taken such that there were a few stars common to both images. The shifts needed to align images were computed by xregister, and have sub-pixel accuracy. IRAF contains no procedure to mosaic images, but it does have the necessary tools. To mosaic two images, first a blank image was created that was large enough to contain both images. Next, the overlap frame was copied into the blank image, and shifted by the amount computed by xregister. The galaxy frame was then copied into the large image, finishing the process.

After the galaxy and overlap frames were mosaicked, the background sky livels had to be brought to the same level. This was done by computing the median intensity level in the region common to both frames. Image statistics on pixels that fall between a lower and upper threshold can be computed with imstatistics. Specifying these thresholds allows objects (e. g., stars, galaxies or other hot pixels) to be excluded from the computations.

An iterative procedure was developed using imstatistics to determine the median sky intensity for the overlapping region. On the first iteration, imstatistics was run using no lower or upper clipping threshold to compute the median and standard deviation, and for subsequent iterations, the upper and lower clipping thresh-
olds were set at the median intensity $\pm 1 \sigma$ returned from the previous iteration. (A clipping threshold of $\pm 2 \sigma$ was used for comparison, and the results were almost identical.) This procedure was done for ten iterations in total. The data points in Figure 16 show the median intensity change with iteration, averaged over all images. The median value converged quite rapidly in the first few iterations, and after iteration six there was little change. The intensity difference between the regions common to galaxy and overlap images was added to the overlap image using imarith.

All images were visually inspected after the automated process described above was completed. In some cases, the above procedure was not quite satisfactory, and small adjustments (i. e., \leq two ADUs) were necessary. This occurred in frames where the light from the BCG was quite bright in the region common to the galaxy and overlap frame, and subsequently the median intensity in the overlap region was not accurately determined. For most of the images, the automated process was completely adequate, and it was difficult to determine where the seam was between the mosaicked images. In the worst case, there was less than a 1% difference in intensities across the seam. This was undoubtedly a manifestation of the 1% flat fielding; any stam would be limited by the flatness of the images mosaicked.

Figure 15: Flattened image, line plot

Figure 16: Mean change in median intensity vs. iteration

4 Surface photometry

Surface photometry is the measurement of the brightness profile of an object, usually a galaxy. This is accomplished by fitting elliptical annuli to the object, then summing the pixel intensities inside the annuli. The five parameters needed to completely describe an ellipse are the position angle of the elliptical annulus, the ellipticity (delined as $\frac{a-b}{a}$ where a and b are the ellipse semi-major and semi-minor axes), the x and y coordinates of the ellipse centre, and the length of the semi-major axis.

The STSDAS task ellipse uses an iterative method described by Jedrzojewski (1987). The following brief discussion of the ellipse algorithm was taken from the IRAF help pages; the interested reader is directed there for a complete discussion of the method. The user supplies initial guesses for the five ellipse parameters, the routine samples the image along the supplied elliptical path and produces a one dimensional intensity distribution as a function of the ellipse eccentric anomaly, E. The Fourier harmonics of the distribution are fit by least-squares to the function

$$
\begin{equation*}
y=y_{0}+A_{1} \sin (E)+B_{1} \cos (E)+A_{2} \sin (2 E)+B_{2} \cos (2 E) \tag{1}
\end{equation*}
$$

Next, the five ellipse parameters are adjusted by a correction found from the amplitudes A_{1}, B_{1}, A_{2}, and B_{2}. The parameter with the largest amplitude is varied, n new elliptical path is chosen, and the image is resampled. The task stops after a user specified number oî iterations, or after the solution converged, and the best fitting ellipse is given by the parameters that produced the lowest absolute values of the harmonic amplitude.

The task starts with a user supplied initial semi-major axis, steps outward until a user supplied maximum semi-major axis is reached, then proceeds inward from the initial radius to a user supplied minimum axis. The user may select a linear increment or a geometric increment, in which the semi-major axis grows by a factor of $1+$ stepsize or shrinks by a factor of $1 /(1+$ stepsize $)$. A geometric increment is useful because the outer annuli will have a larger area, which helps to compensate for their diminished brightness.

Errors in intensity and magnitude are computed from the root mean squared scatter in the pixel intensities along the sampled elliptical annulus. The five ellipse parameters errors are computed by combining the residual scatter in the pixel intensities with the internal error in the harmonics.

4.1 Object removal

Surface photometry measurements are complicated by sources of light contamination, such as stars and both cluster and background galaxies. At faint brightnesses, such as in diffuse BCG envelopes, contamination becomes very important. Stellar halos and other cluster members affect the surface brightness profiles at the $0.1-0.5$ magnitude level at 25 mag arcsec $^{-2}$ (Uson et al., 1991; Mackie, 1992). The contamination of course depends on the brightness and density of the offending objects. There is also contamination from the intracluster light, but this light is 0.01% to 0.1% of the sky intensity, hence contamination is dominated by cluster members and foreground stars.

King (1971) investigated the scattered light from bright stars, and fomed that the intensity profile in the high surface brightness region was described by exponential falloff, while an inverse square law fit the wings of the PSF (point spread function). This finding is instrumental in removing the contamination from bright stars, becouse both the core and halo of bright stars can be modeled simply.

There are many possible methods of dealing with cluster members and foreground stars. Objects may be removed from the image or they may be ignored by masking or other rejection schemes. A major benefit of removing oljects from an image, instuad of masking them out, is that a larger amount of data is used. However, the removal of objects is not a simple task. Extreme care must be taken when fitting a function to the object to be subtracted, because if any errors are committed, then object removal can be inferior to simply masking the object.

Mackie (1992) describes one method for removing small galaxies and foreground stars. He took slices of the radial brightness profiles that avoided the corres of the objects, and ignored any slices that showed possible contamination from other ohjects. A best fit r^{-2} halo profile was subtracted out to a radius where the intensity was a factor of ~ 1.2 times the sky intensity. After the object was subtracterl, appropriate: noise was added to the region from which the object was subtracted.

Masking objects is considerably simpler. Objects are identified either manaally or by automatic means, such as the DAOPHOT routine find. Once that is done, a radius is determined where the intensity is close to the sky value, and all pixel
coordinates encircled by this radius are put into a file. The ellipse routine will read and ignore any pixels listed in the mask file. There is only one free parameter: the size of the truncation radius (which is also an issue when objects are subtracted).

Objects may also be removed by iterative $k \sigma$ clipping ruutines, similar to the mothod described in §3.3. Schemes such as this have been used by Schombert (1986) and Uson et al. (1991) to reject objects. Schombert (1986) states that such a procedure, because it uses information from the entire isophotal ellipse, is superior to cleaning algorithms that use only neighbouring pixels.

The surface photometry routit: ellipse will clip up to the brightest 40% of the pixels in an isophotal annulus, and in some situations, pixel clipping can be a very simple yet effective way of removing contaminating objects. This method of pixel rejection may be used alone or in conjunction with pixel masking. For reasons discussed in $\$ 4.6$, ellipse was only used to compute isophote parameters, and a new code that uses an iterative $k \sigma$ rejection scheme was written to compute the isophote intensity. Obviously, it is important to determine how well these rejection schemes work; therefore they were tested on artificial BCGs created using model profiles.

4.2 Creation of artificial images

To create a large artificial galaxy, ellipse was run on the dominant galaxy of AWM 5, since this galaxy fills a large portion of the frame, and bmodel was used to create a galaxy from the measured isophotes. The model galaxy was produced in this manner
(rather than randomly sampling some model luminosity protile) becaus it asily produces a realistic galaxy. It is a more arduous task to create from seratch a galaxy that has realistic features such as twisting isophotes. Also, the production of a luminosity profile similar to a poor cluster dominant galaxy is guranteed.

After the model galaxy was created, stars, galaxies, and noise were added by the artdat routines, which generate artificial stars and galaxies of any size and brightness. A reference image was created by adding noise similar to the noise in real images to the model galaxy. The artificial images were constructed by adding a number of stars and galaxies, such that their density and distribution resembled the real images. To give the cluster galaxies a realistic distribution, a Hubble density law centred on the dominant galaxy was randomly sampled to assign spatial coordinates to the galaxies. The Hubble density law is defined as:

$$
\begin{equation*}
\Sigma(r)=\Sigma_{0}\left(1+\left(\frac{r}{r_{c}}\right)^{2}\right)^{-1} \tag{2}
\end{equation*}
$$

where $\Sigma(r)$ is the projected surface density, r is the distance from the centre of the distribution, and r_{c} is the core radius. The luminosities were assigned by randomly sampling the Schechter luminosity function (Schechter, 1976) over a magnitude range similar to that observed on the real images. A few bright foreground stars and a large number of dim background stars were distributed randomly across the images; their luminosities were chosen from uniform random deviatess scaled to values similar to objects observed in the real images.

4.3 Testing ellipse

Pixel clipping is an attractive mothod of removing light contamination, because of its case of implementation - one merely has to specify to ellipse what percentage of the brightest pixels to clip (the clipping parameter). Since this is such a simple and quick method, its performance on object removal was immediately investigated. Only the effects of pixel clipping on the ellipse parameters will be investigated in this section, because as discussed in $\S 4.6$, a different code was used to compute isophote intensities.

Tests were done using clipping parameters between 0% and 40% (the range allowed by ellipse). Above about 15% clipping, parameters generated by ellipse did not chauge significantly. Figures 17 and 18 show the effect of clipping 40% of the brightest pixels on ellipticity and position angle. The largest allowable clipping parameter was used for these figures to demonstrate the performance of pixel clipping in the extreme case.

Figure 17 plots the ellipticity versus the position angle for the reference image and the artificial image with 40% of the brightest pixels clipped; the agreement is excellent. Figure 18 shows that the agreement between the reference image and the artificial image is also excellent for a 40% clipping parameter. For both the position angles and the ellipticities, there is a slight disagreement in the core regions below ≈ 5 pixels. A stellar FWHM of $1^{\prime \prime} 6$ corresponds to ≈ 5 pixels, and thus within this radius, the effects of seeing dominate: it tends to circularize features, which renders
the measurement of the ellipticity and position angle problematic. 'The effects of seeing are investigated further in $\S 4.4$.

Pixel clipping is a very useful tool in the cluster cores where the deusity of objerets is high, and the ellipse parameters were always more acourate when pixel clipping was used. Even if there are no contaminating objects, however, pixel elipping has little effect on the parameters generated by ellipse -- one would not oxpect the position angle, ellipticity or ellipse centre to change by ignoring the brightost pixels at a given isophote. To make certain that this was indeed the case, an artificial image was created that had very little contamination, therefore making it possible to clip too many pixels. As expected, the ellipticity and position angles of the artificial galaxy isophotes were consistent with the reference isophotes, even whon the maximum number of pixels (40%) were clipped.

4.4 Errors incurred by seeing

To test the effect of seeing on the isophotal magnitudes, ellipticities and position angles, the artificial images were convolved with Gaussian functions of widths $1.2 \leq$ $\sigma \leq 3.2$ pinels, which corresponds to FWHM values of 0.9 to $2^{\prime \prime} 5$ (FWHM $\left.=2.354 \sigma\right)$. Figures 19,20 , and 21 were produced by comparing the reference image and a convolution of the artificial image with a gaussian of $F W H M=1^{\prime \prime} 6$, typical of the olserved stellar FWHM. Figure 19 shows the fairly dramatice effect that seeing has on magnitude: Gaussian smoothing efficiently reduces the core brightness, making the core

boxes: modol galaxy triangles: model galaxy + artificial atara and golaxies

Figure 17: Isophote ellipticity plotted against the semi-major axis for the reference image [the model galaxy (boxes)], and the contaminated image [model galaxy + other stars and galaxies (triangles)]. The brightest 40% of the pixels were clipped.

boxes: model galaxy triangles: model galaxy + artifictal ntars and galaxies

Figure 18: Isophote position angles plotted against the semi-major axis for the reference image [the model galaxy (boxes)], and the contaminated image [model galaxy + other stars and galaxies (triangles)]. The brightest 40% of the pixels were clipped.
of the reference image much brighter than the smoothed image. The large errors, however, are confined to the core; outside the core, seeing has little influence. Other simulations were done of poorer seeing conditions, and as expected the deviations steadily increase as the seeing degrades.

The effects of seeing on surface photometry have been investigated by many authors. In particular, the comprehensive study of Peletier et al. (1990) shows results similar to the ones discussed here. Also, Porter et al. (1991) found that ellipticities of galaxies are unaffected at radii larger than four or five times the FWHM of the seeing disk.

4.5 Errors incurred by sky subtraction

Accurate determination of the background sky intensity is vital for correct surface photometry, especially at the faint light levels of galaxy halos, which are marginally brighter than the sky. The effect that error in sky intensity measurement has on isophotal magnitude is analytically determined as follows. The instrumental magnitude is given by

$$
\begin{equation*}
m=m_{0}-2.5 \log \left(I-I_{b g}\right) \tag{3}
\end{equation*}
$$

where I is a measured intensity, $I_{b g}$ is the sky intensity, and m_{0} is an arbitrary zero point. If an error (ϵ) is committed in the measurement of the sky intensity, the resulting instrumental magnitude will be

$$
\begin{equation*}
m^{\prime}=m_{0}-2.5 \log \left(I-I_{b g}(1+\epsilon)\right) \tag{4}
\end{equation*}
$$

Figure 19: Isophotal magnitudes differences between the reference image and the artificial image convolved with a Gaussian of FWHM $=1.6$, as a function of the semi-major axis.

Figure 20: Isophote ellipticity differences between the reference image and the artificial image convolved with a Gaussian of $F W H M=1!6$, as a function of the semi-major axis.

Figure 21: Isophote position angle differences between the reference image and the artificial image convolved with a Gaussian of $F W H M=1!6$, as a function of the semi-major axis.

Subtracting 4 from 3 yields

$$
\begin{equation*}
\Delta m=m^{\prime}-m=2.5 \log \left(\frac{I-I_{b g}(1+\varepsilon)}{I-I_{b g}}\right) \tag{5}
\end{equation*}
$$

As the intensity approaches the sky value, a small error in sky intensity propagates into a large error in magnitude. Figure 22 shows Equation 4 for three different values of ϵ. The effect of committing an error in sky subtraction was also tested on the artificial image. This image was given a sky intensity of 320 ADU , and 317 ADU were subtracted from the image so that a 1% error was committed (Figure 2\%. As ill Figure 22, the error increases quickly when the isophote intensity approaches the sky intensity.

Since sky subtraction simply involves the subtraction of a constant value from the image, there should be no resulting effect on the fitted ellipse paramoters; figures 24 and 25 prove this to be the case.

4.6 Computation of isophote intensity

As mentioned in $\S 4.1$, ellipse was used to compute the geometric parameters of the isophotes, but new code was written to the compute the isophote intensity. This was necessary because of a stricture of ellipse: for a given ammulus, more than 50% of the pixels must have a defined intensity and lie within the image boundarios, If this limitation is exceeded, the routine terminates. So, for example, if ellipge gets to it semi-major axis that is so large that more than 50% of the points in the amulus are outside of the image, it stops. Since images were mosaicked into is size of $\approx 1600 \times 900$,

Figure 22: The error in sky subtraction is translated from intensity units to magnitude. The solid line, dotted line, and dashed line show error in sky subtraction of $0.5 \%, 1.0 \%$, and 2.0%. The sky intensity is 100 .

Figure 23: A 1% error was committed in sky subtraction and the resulting isophotal intensities were subtracted from the true values. The difference increases dramatically at large radii, where the isophote intensity approaches the sky intensity.

Figure 24: A 1% error was committed in sky subtraction and the resulting isophotal ellipticities were subtracted from the true values. An error in sky has no effect on ellipticity.

Figure 25: A 1% error was committed in sky subtraction and the resulting isophotal position angles were subtracted from the true values. An error in sky has no effect on position angle.
and the dominant galaxy lay in the centre of the left side of the frame, it was therefore impossible to measure isophotes into the right side of the frame. A new code (given the name ANNUL.I) was written to circumvent this limitation.

The routine ellipse has two options for rejecting objects: pixel clipping and masking. Pixel clipping has an arbitrary nature and is rather indiscriminant; the severity of this was not realized until ellipse was compared to the new routine, ANNULI, which uses an iterative sigma clipping algorithm to reject deviant pixels. For each elliptical annulus, ANNULI computes the mean and standard deviation of the pixel intensities. These statistics are then recomputed, ignoring any pixels that have intensities $\pm k \sigma$ away from the mean, where k was set to 2 for all computations. This iterative procedure stopped when either (1) a user specified maximum number of iterations was reached, (2) the mean intensity change between iterations was less than a user specified threshold, or (3) a user specified minimum number of pixels in the sample was reached.

Since the sophisticated algorithms used in ellipse can reliably and accurately compute the isophotal ellipse parameters, even when there is a fair amount of contaminating objects (as shown in §4.3), to code ANNULI to compute the ellipse parameters itself would only have been a duplication of effort. In this sense, ANNULI was not intended as replacement for ellipse; the new routine merely recomputes the isophotal intensities using a more robust method,

At large radii where the isophotes are dim, fitted ellipse parameters can be greatly
influenced by contaminating objects; the ellipse centre tends to wander, as do position angles and ellipticities. Therefore, ANNULI uses the parameters generated by ellipse out to a user specified semi-major axis, and after this threshold is reached the ellipse parameters were held constant. Fixing the ellipse parameters, however, assumes that the galaxy has no morphological changes (i.e., no twisting or flattening isophotes) after the threshold radius, which may not be generally true. To investigate the consequences of fixing the position angle and ellipticity, profiles of the model galaxy were computed using parameters that were fixed at various incorrect values over the entire range of radii - the worst case scenario. In Figure 26, isophotal intensities were computed using three different ellipticities, then subtracted from the reference intensities. An incorrect ellipticity can have quite a large effect at small radii, but in all cases the error decreases with radius. This is a pleasing result: the errors at small radii are grossly overestimated by fixing the parameters, and at large radii where the parameters are indeed fixed; the errors are small. For these tests, the threshold radius was set to zero to fix the parameters. The threshold radius for this galaxy was ≈ 150 pixels, and from Figure 26 one can see the error incurred by fixing the ellipticity was 0.02 magnitudes (at $r \simeq 150$ pixels) for the largest ellipticity used. This error is quite small when compared with errors incurred by sky subtraction (see §4.5.

Figure 27 shows the effect of fixing the position angle. Similar to the effects of fixing the ellipticity, the errors decrease with radius. The errors produced by a fixed,
incorrect position angle are much less severe than those incurred by a fixed, incorrect ellipticity. Surprisingly, even a position angle off by 60° results in an error of only ≈ 0.03 magnitudes. This result does have a simple explanation: an isophote with a position angle twisted from the actual value will pass through areas both closer to the core (hence brighter) and further from the core than the actual isophote, and coinnensation is achieved. The error that an incorrect position angle has on the intensity increases with ellipticity: in a circular galaxy, it makes no difference on position angle. The mean ellipticity of the reference galaxy is 0.28 (for comparison, a chicken's egg is about 0.3).

The effect of an incorrect ellipse centroid has on isophotal magnitude was not investigated, since it is much more unlikely for the isophote centre to move than it is for the position angle or ellipticity to change. The position angles and ellipticities of the poor cluster BCGs frequently varied by significant amounts (§6), but the isophote centres varied at most by two pixels. At large radii where the ellipse parameters were held fixed, an error in the isophote centre would introduce only a small error, since the radial intensity gradient is small. The de Vaucouleurs law (Equation 14) asymptotically approaches zero intensity at large r. The profile can, however, fall off rapidly at the detection threshold.

Once the integrated intensity is known in ADU, it is converted to a magnitude via:

$$
\begin{equation*}
\iota=\mu_{0}-2.5 \log \left(\frac{I}{t A}\right) \tag{6}
\end{equation*}
$$

where μ_{0} is an arbitrary magnitude zero point, t is the integration time of the exposure, and A is a factor to convert the area of a pixel into aresec ${ }^{2}$. To make certain that ANNULI was computing the i nphotal intensities correctly, profiles of the real galaxies were computed and compared with those generated by ellipse. Immediately, a difference was noticed between the two programs that began in the middle of the profile and increased towards dimmer magnitudes, which was caused by pixel clipping. For most of the profiles, adjusting the clipping parameter could affect the profile by 0.5 magnitudes at low surface brightness levels. By adjusting the clipping parameter, the profiles computed by the two different routines could be brought into agreement. This is, admittedly, a major downfall of using indiscriminnut pixel clipping for object rejection. One does not know beforehand what amount of pixel clipping to use to obtain the correct profile! The iterative $k \sigma$ rejection scheme is a much safer approach. Figure 28 compares ellipse and ANNULI to the model galaxy. The two routines break from the model profile around the twenty-first magnitude, and are systematically brighter because of contamination from other oljects, but the computed profiles are always consistent with the model profile within the error bars.

Since the model galaxy used for the artificial images discussed so far was created from a real galaxy, its true profile was not known. As an additional test, a galaxy described by a de Vaucouleurs law (defined in 96.2) was created and measuredi usings ANNULI. The slope of the computed profile was exactly equal to the slope used to
generate the profile, thus ruling out the possibility of systematic errors in the code. Contaminating objects were added to the image, as discussed in §4.2, and the profile was remeasured (Figure 29). All but six points are consistent with the model profile, within the error bars, assuring that the $k \sigma$ scheme is doing a reasonable job of rejecting objocts. Furthermore, masking was also tested. Objects were masked out using very generous areas, to make certain that the halos of the objects were ignored. The profiles from the masked and unmasked images were aimost identical; there were only a few points that showed any differences, these were less than 0.05 magnitudes, and occurred in the faintest parts of the profile, where the errors are largest. This comparison was also done on some program images, and similar results were obtained. Therefore, it can be said with confidence that the $k \sigma$ scheme adequately rejects objects, and that little is to be gained by masking.

Figure 26: Consequence of an incorrect ellipticity. Isophotes were computed usiug an ellipticity of 0.1 (boxes), 0.2 (triangles), 0.3 (stars), and 0.6 (crosses), then subtracterd from isophotes computed using the mean ellipticity of the model galixy, 0.28.

Figure 27: Consequence of an incorrect position angle. Isophotes were computed using a position angle of 10° (triangles), 20° (boxes), and 40° (stars) away from the mean position angle of the model galaxy, then subtracted from the reference isophotes.

Figure 28: Surface brightness (μ) of the model galaxy (boxes) is plotted, along with the profile computed using ellipse (stars) and ANNULI (triangles). Error bars include Poisson shot noise, and a 0.5% error in both flat fielding and sky subtraction.

Figure 29: A de Vaucouleurs profile was created and measured with ANNULI (triangles). Contaminating objects were added to the galaxy, and the profile was remeasured (boxes). Error bars include Poisson shot noise, and a 0.5% error in both flat fielding and sky $\mathrm{s}:$ htraction.

5 Transformation to standard magnitudes

5.1 Standard star photometry

Fourteen Landolt standard stars (Landolt, 1992) were imaged in B and R at varying airmasses over the observing run. These images were pre-processed in the same manner described in §3. Instrumental magnitudes of the standard stars were computed using the aperture photometry routines in DAOPHOT. An aperture is chosen about 4 to 5 times larger than the full width half maximum (FWHM) of the point spread function (PSF). Larger apertures will encompass more of the light in the wings of the PSF, but may also capture light from nearby stars. None of the standard stars suffered from crowding, so the aperture used was 5 times the FWHM of the PSF. The photometry routine sums the pixel intensities inside the chosen annulus, computes the sky value in an area surrounding the annulus, and adjusts the summed intensity accordingly:

$$
\begin{equation*}
I=\sum I_{i}-\pi r_{a}^{2} I_{s k y} \tag{7}
\end{equation*}
$$

where I is the summed intensity, I_{i} are the pixel intensities, πr_{a}^{2} is the annulus area, and $I_{s k y}$ is the sky intensity. The sky intensity is determined from a user specified radius that is, of course, larger than the aperture used to measure the star intensity. An estimation of the amount of light contributed to the sky by the star is made and corrected for. The instrumental magnitude is computed by scaling the intensity by
the integration time, and adjusting to a zero point:

$$
\begin{equation*}
m a g=m a g_{0}-2.5 \log \left(\frac{I}{t}\right) \tag{8}
\end{equation*}
$$

The arbitrary magnitude zero point, $m a g_{0}$ was set to 25 .

5.2 Transformation equations

The transformation from instrumental to standard (apparent) magnitude involves a zero point shift, coefficients that depend on airmass, colour, and a second order coefficient that depends both on airmass and colour:

$$
\begin{align*}
& b=B+b_{1}+b_{2} X_{B}+b_{3}(B-R)+b_{4} X_{H}(B-R) \tag{9}\\
& r=R+r_{1}+b_{2} X_{R}+r_{3}(B-R)+b_{4} X_{B}(B-R) \tag{10}
\end{align*}
$$

where the subscripted letters are the coefficients, lower case letters denoto instrumental magnitudes, upper case letters denote standard magnitudes, and X is the airmass.

Once the instrumental magnitudes for the standard stars have been measured, they are used by the fitparms routine under DAOPHOT to compute the transformation coefficients. fitparms uses an iterative, non-lincar least squares mothod to determine the coefficients, which are listed in Tables 3 and 4 along with some other important statistics that describe the fit. For example, the root mean squared of the residual between the computed and catalogued magnitude is tabulated.

Under photometric observing conditions, the second order coefficient is negligible and usually held fixed at zero. This was done for all nights, even though some were not perfectly photometric; fitting the colour-airmass coefficient did not significantly improve any of the fits. The r_{4} coefficient was also negligible, but holding it fixed made no significant difference in the residuals.

Upon inspection of the coefficients, night 6 coefficients deviate significantly from the others. This night was not photometric and the calibration will be unreliable, so night 6 will be excluded from the following discussion. The B coefficients all agree, within their uncertainties. The R coefficients for nights three and four deviate significantly from nights 1,2 , and 5 ; the cause of this is unknown and puzzling, since the B coefficients for these nights are normal. To improve the fits, stars with large residuals were discarded, but these efforts proved futile. Instead of using night 3 and $4 R$ coefficients, an average over nights 1,2 , and 5 was used. Ultimately, this only affected night 4, since no galaxies were observed in R on night 3.

To quantify the errors involved in using averaged coefficients, galaxy profiles were computed using nightly coefficients and compared with profiles computed using both B coefficients averaged over nights 1 to 5 , and R averaged over nights 1,2 , and 5. The only perceptible differences occurred for galaxies imaged on night 4, and it was very marginal. For night $4, r_{1}=1.232 \pm 0.46, r_{2}=0.116 \pm 0.39$, while the R coefficients averaged over nights 1,2 , and 5 are $r_{1}=1.362 \pm 0.04, r_{2}=$ 0.050 ± 0.03, and hence do not agree within the uncertainties. Substituting these
values into equation 10 , assuming a typical airmass of 1.1 , and ignoring the small colour term, the difference is 0.22 magnitudes. This difference is significant, but is the maximum error that can be committed, and is likely a large overestimation. As shown in §6, profiles from different authors frequently disagree by differences of this amount (and sometimes, considerably more), This is only one source of error, however, and there are many others. Furthermore, an error incurred by using averaged coofficients that are unrepresentative of the true coefficients will show up in the ($B-R$) colour, since there was no problem with the B coefficients. This will be discussed further in §7.

To compute the isophotal standard magnitudes, Equations 9 and 10 are inverted and solved for the standard magnitudes. The implementation of this, however, was not straightforward, because the galaxy images in B were taken on different nights than those in R. Simultaneous B and R photometry on each night for the standard stars produced the coefficients. However, we did not have simultancous B and R photometry of the galaxies, and so coefficients from different nights were used. Tho validity of this procedure rests on the assumption that the coefficients do not vary from night to night, which was discussed above.

To compute the standard magnitudes, an expression relating the instrumental ($b-r$) colour to the standard $(B-R)$ colour was derived from Equations 9 and 10;

$$
\begin{equation*}
(B-R)=\frac{(b-r)-\left(b_{1}-r_{1}\right)-\left(b_{2} X_{B}-r_{2} X_{B}\right)}{1+\left(b_{3}-r_{3}\right)} \tag{11}
\end{equation*}
$$

Once the standard colour was found, it was substituted into Equations 9 and 10 to
obtain the standard magnitude. Note that the b_{3} coefficients are small ($\overline{b_{3}}=-0.045$) and the r_{3} coefficients are negligible. This lends further support to this procedure, since the errors in assuming the transformation coefficients do not change on a nightly basis are multiplied by a small colour coefficient. To demonstrate, consider NGC 5920 which has a $(B-R)$ colour of 1.96 . The difference between the mean b_{3} and the b_{3} value for night 1 is 0.004 . Multiplying this number by the ($B-R$) colour gives a difference in magnitude of 0.007 , which is the error committed in assuming the coefficients do not vary from night to night. It should also be noted that many authors use a colour coefficient averaged over their entire observing session, because this coefficient is dependent only on the optical train and not on atmospheric conditions.

Even though night 6 was not photometric, and there were problems with the R coefficients with nights 3 and 4, the standard calibration is not too important for the purposes of this project. We are mainly concerned with the shape of the BCG profile, not its magnitude. Errors in the standard calibration will shift the profile in brightness, but have almost no effect on the profile shape.

5.3 Extinction and K-corrections

Profiles have been corrected for reddening by foreground dust in the Galaxy using the $E(B-V)$ colour excess values compiled by Burstein and Heiles (1984). O'Donnell (1994) derived $A(\lambda) / A(V)$ extinctions, and expressed their extinction curves in the
form

$$
\begin{equation*}
\frac{A(\lambda)}{A(V)}=a\left(\lambda^{-1}\right)+\frac{b\left(\lambda^{-1}\right)}{R_{v}} \tag{12}
\end{equation*}
$$

where $R_{v} \equiv \frac{A_{v}}{E(B-V)}=3.1$. Using their tabulated values for the B and R filters, $A_{B}=4.1 E(B-V)$ and $A(R)=0.24 E(B-V)$. Table 5 lists the BGC colours and extinctions.
K-corrections compensate for the redshifting of galaxy light, and are therefore dependent on z. McNamara and O^{\prime} Connell (1992) give the following K-corrections: $K^{\prime}(U)=3.4 z, K(B)=5.2 z, K(V)=1.5 z, K(I)=0.2 z$. A smooth line was drawn through those points to obtain a K-correction in the R band of $K^{\prime}(R)=0.6 z$. Since redshift of the MKW and AWM clusters is typically $\simeq 0.02$, the K-corrections are quite small.

Once the extinction and K-correction is known, the observed magnitude is decreased appropriately:

$$
\begin{equation*}
B=B_{o b s}-A_{B}-K_{B} \tag{13}
\end{equation*}
$$

which makes the intrinsic magnitude brighter than the observed.

Table 3: Standard magnitude transformation coefficients, B Filter

night	1	2	3	4	5	6
minimum airmass	1.080	1.118	1.110	1.094	1.101	1.058
maximum airmass	1.564	1.503	1.750	1.552	1.964	1.787
reduced χ	1.005	1.003	0.981	1.001	1.004	1
RMS	0.011	0.014	0.017	0.011	0.015	0.419
const1	1.513	1.554	1.496	1.556	1.514	2.549
error in const1	± 0.026	± 0.035	± 0.018	± 0.044	± 0.027	± 0.661
const2	0.273	0.237	0.262	0.229	0.263	-0.666
error in const2	± 0.021	± 0.027	± 0.014	± 0.038	± 0.021	± 0.519
const3	-0.041	-0.042	-0.041	-0.048	-0.051	0.034
error in const3	± 0.003	± 0.004	± 0.003	± 0.004	± 0.005	± 0.13
const4	0	0	0	0	0	0
error in const4	0	0	0	0	0	0

Table 4: Standard magnitude transformation coefficients, R Filiter

night	1	2	3	4	5	6
minimum airmass	1.080	1.118	1.110	1.094	1.101	1.058
maximum airmass	1.564	1.503	1.750	1.552	1.964	1.787
reduced χ	1.001	0.991	0.705	1.001	1.001	1
RMS	0.022	0.014	0.012	0.025	0.017	0.04
const1	1.364	1.308	1.225	1.232	1.36	0.704
error in const1	± 0.046	± 0.044	± 0.017	± 0.464	± 0.032	± 0.066
const2	0.045	0.069	0.138	0.116	0.035	0.716
error in const2	± 0.034	± 0.032	± 0.013	± 0.391	± 0.025	± 0.05
const3	0.006	0.01	0	0	-0.003	0.007
error in const3	± 0.009	± 0.006	± 0	± 0	± 0.006	± 0.011
const4	0	0	0	0	0	0
err const4	0	0	0	0	0	0

6 Results

6.1 Sky measurement

To measure the sky intensity, a large number of 10×10 boxes were used to sample the frame, staying as far away from the galaxy as possible and avoiding any ohjocts. For each box, the median was computed and subsequently the median of the medians was calculated. For frames that were taken in both B and R, the sky brightness in magnitudes was calculated (table 6) and were very close to the expected values of $\mu_{B, s k y}=21.8$ and $\mu_{R, s k y}=20.4 \mathrm{mag} /$ arcsec 2 for the observing site.

As a check, the sky intensity was also computed using the same method described in §3.3. A large rectangular box containing approximately 100000 pixels or more was chosen along the edge of the frame furthest from the galaxy. In most cases, here were few contaminating objects far from the galaxy. The sky intensities computed by the iterative $\pm k \sigma$ rejection scheme were always within a few tenths of $\Lambda D U s$ of the multiple box measurements.

The large, mosaicked image reaches $\sim 10^{\prime}$ from the galaxy contre, and at a typical redshift of $z=0.02,10^{\prime} \simeq 300 \mathrm{kpc}$ for $\mathrm{H}_{0}=75$. This should allow a local sky determination to better than 0.5% (T . Bridges, private communication).

6.: Surface photometry

The radial brightness profiles of the dominant galaxies obtained using procedures described in $\$ 4.6$ are shown in figures 30 to 37 , along with profiles from three different sources. The profiles of Thuan and Romanishin (1981, TR) and Morbey and Morris (1983, MM) have been corrected as described in $\S 5.3$. Malumuth and Kirshner (1985, MK) used the galactic absorption model of Sandage (1973), which has been superseded by the extinctions compiled by Burstein and Heiles (1984), and therefore Malumuth and Kirshner's profiles have been updated to the new standards.
de Vaucouleurs (1948) found a relation that describes the brightness profiles of elliptical galaxies over a large range in magnitudes:

$$
\begin{equation*}
\log (I(r))=-3.33\left(\left(\frac{r}{r_{e}}\right)^{1 / 4}-1\right)+\log \left(I_{e}\right) \tag{14}
\end{equation*}
$$

where ' e, the effective radius, is the radius that contains one half of the total brightuess, and I_{e}, the effective intensity, is the surface brightness at that radius. The de Vancouleurs (or $r^{1 / 4}$) law, is strictly an empirical relation; it has no dynamical or other theoretical basis. 'The following plots include magnitude as a function of $r^{1 / 4}$, where $r=\sqrt{a b}$ is the geometric mean of the semi-major and semi-minor axes. In this space, the de Vaucouleurs law is a straight line. The best fitting de Vaucouleurs law was $\mathrm{f}^{\text {it }}$ by least-squares and plotted for both the B and R profiles. The effective intensity and radii are extracted from the straight line fit, $\mu=A+B \times r^{1 / 4}$ via:

$$
\begin{equation*}
r_{e}=\left(\frac{3.33 \times 2.5}{B}\right)^{4} \tag{15}
\end{equation*}
$$

Table 5: Dominant galaxy colours and extinction coefficients

Galaxy	Cluster	$(B-V)$	$(V-R)$	($B-B)$	A_{1}
UGC 09799	Abell 2052	$1.11{ }^{\text {a }}$	0.61	$1.72{ }^{\text {1 }}$	0.04
NGC 6051	AWM 4	1.18	0.83	2.01	0.13
NGC 6269	AWM 5	1.20	0.94	2.14	0.20
10276-0255	MKW 2	1.14	0.90	2.04	0.04
10246-0304	MKW 2S.	1.13	0.95	2.08	0.05
NGC 5920	MKW 3S.	1.22	0.74	1.96	0.05
NGC 4073	MKW 4.	1.06	0.90	1.96	0.01
NG(5200	MKW 5...	1.11	0.89	2.00	0.09

$A_{V} t$ ken from Burstein and Heiles (1984).
Colours taken from Schild and Davis (1979) except for:
${ }^{a}$ Smith and Heckman (1989)
${ }^{6}$ Colless et al. (1993)
${ }^{c}$ Thuan and Romanishin (1981)

$$
\begin{equation*}
\mu_{e}=A+2.5 \times 3.33 \tag{16}
\end{equation*}
$$

where μ_{e} is the effective surface magnitude defined in Equation 6. For all plots, the inner 10 points were not used in the fits, since seeing effects here are very influential, and the magnitudes are not reliable.

Abell 2052

Figure 30: Surface brightness profile of UGC 09799 (Abell 2052) in B (stars) and R (triangles). The best fit de Vaucouleurs parameters are given at the top of the graph. Also plotted in B are profiles from these sources: (1) MM (dotted line); (2) MK, V transformed to B (long dash). The MM profile required a downward (faint) shift of 0.7 magnitudes bring it into registration with the other profiles.

Figure 31: Surface brightness profile of NGC 6051 (AWM 4) in B (stars). The best fit de Vaucouleurs parameters are given at the top of the graph. Also plotted in B are profiles from these sources: (1) TR, g transformed to B (short, dash); (2) MK, V transformed to B (long dash).

Figure 32: Surface brightness profile of NGC 6269 (AWM 5) in B (stars) and R (triangles). The best fit de Vaucouleurs parameters are given at the top of the graph. Also plotted in B are the profiles from the following sources: (1) TR, g transformed to B (short dash); (2) MK, V transformed to B (long dash).

MKW 2

Figure 33: Surface brightness profile of $10276-0255$ (MKW 2) in B (stars) and R. (triangles). The best fit de Vaucouleurs parameters are given at the top of the graph. Also plotted in B are profiles from these sources: (1) MM (dotted line); (2) TR, ! transformed to B (short dash); (3) MM, J transformed to B (dot - short dash). The R profile was obtained on night 6 which was not photometric, and hence the zero point is not reliable.

Figure 34: Surface brightness profile of 10246 - 0304 (MKW 2S) in B (stars) and R (triangles). The best fit de Vaucouleurs parameters are given at the top of the graph. Also plotted is the B profile from MM (dotted line).

MKW 3S

Figure 35: Surface brightness profile of NGC 5920 (MKW 3S) in B (stars) and R (triangles). The best fit de Vaucouleurs parameters are given at the toi; of the graph.

MKW 4

Figure 36: Surface brightness profile of NGC 4073 (MKW 4) in B (stars) and R (triangles). The best fit de Vaucouleurs parameters are given at the top of the graph. Also plotted in B are profiles from these sources: (1) MM (dotted line); (2) TR, g transformed to B (short dash).

Figure 37: Surface brightness profile of NGC 5400 (MKW 5) in B (stars). The best fit de Vaucouleurs parameters are given at the top of the graph. Also plotted in B are profiles from these sources: (1) MM (dotted line); (2) TR, r transformed to B (short dash); (3) MK, V transformed to B (long dash). This night was not photometric, and the zero point is unreliable.

Figure 38: Position angle versus radius for poor cluster dominant galaxies. Position angle is measured counterclockwise from north, and lies between -90° and 90°. The position angles from the B and R images have been averaged.

Figure 39: Position angle versus radius for poor cluster dominant galaxies. Position angle is measured counterclockwise from north, and lies between -90° and 90°. The position angles from the B and R images have been averaged.

Figure 40: Ellipticity versus radius for poor cluster dominant galaxies. The ellipticities from the B and R images have been averaged.

Figure 41: Ellipticity versus radius for poor cluster dominant galaxies. The ollipticities from the B and R images have been averaged.

Table 6: Sky brightnesses

frame	filter	mean	sigma	N	mag
Abell 2052	B	402.10	2.23	189	21.75
AWM 4	B	352.91	1.70	173	
AWM 5	B	321.73	1.81	201	22.02
MKW 2	B	420.50	3.00	156	21.58
MF W 2S	B	391.77	2.12	145	21.73
MKW 3S	B	343.63	2.11	140	21.88
MKW 4	B	421.57	1.94	180	21.68
MKW 5	B	503.18	2.12	202	
Abell 2052	R	1862.58	4.72	198	20.00
AWM 5	R	1604.39	4.35	160	20.13
MKW 2	R	2936.56	6.10	213	19.26
MKW 2S	R	1937.44	5.64	140	19.91
MKW 3S	R	1578.89	6.18	152	20.14
MKW 4	R	2154.06	5.94	187	19.84

Table 7: de Vaucouleurs Parameters

Galaxy	Cluster	this study		other mindies	
		$\begin{gathered} \log \left(r_{\epsilon}\right) \\ (\mathrm{kpc}) \end{gathered}$	$\begin{gathered} \mu_{B_{r}} \\ \left(\text { mag } \text { arcsec }^{-2}\right) \\ \hline \end{gathered}$	$\begin{gathered} \log \left(r_{r}\right) \\ (\mathrm{kpe} \cdot) \end{gathered}$	$\begin{gathered} \mu_{1} \mu_{r} \\ \text { (mag arsece 2 } \end{gathered}$
UGC 09799	Abell 2052	$2.01{ }^{\text {E }}$	26.00	1.56	$25.42{ }^{1}$
		$2.01{ }^{\text {f }}$	$26.10^{\prime \prime}$		
NGC 6051	AWM 4	$1.79{ }^{\text {e }}$	25.24	1.44	24.033^{\prime}
NGC 6269	AWM 5	$1.57{ }^{\text {e }}$	24.11	1.54	$23.91{ }^{1}$
		$1.44{ }^{\text {f }}$	$24.24{ }^{\text {a }}$		
10276-0255	MKW 2	$1.45{ }^{\circ}$	24.03	1.43	$24.14^{\prime \prime}$
		$1.35{ }^{\text {f }}$	24.66^{a}	1.35	$24.36{ }^{\text {d }}$
10246-0304	MKW 2S	$1.56{ }^{e}$	25.05	1.12	$23.68{ }^{\text {d }}$
		1.46^{J}	25.14^{n}		
NGC 5920	MKW 3S	$2.05^{\text {a }}$	26.36		
		$1.90{ }^{\text {J }}$	$26.28^{\text {a }}$		
NGC 4073	MKW 4	$1.55{ }^{\text {e }}$	24.32	1.12	23.833 ${ }^{\text {c }}$
		1.42^{f}	$24.30{ }^{4}$	1.42	24.233^{17}
NGC 5400	MKW 5	$1.16{ }^{\prime \prime}$	23.66	1.21	$23.73{ }^{\prime \prime}$
				1.43	$24.622^{\text {d }}$

Note.- $H_{0}=50 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1} ; q_{0}=1 / 2$
${ }^{a} \mu_{R_{e}}$ transformed to B_{e}
${ }^{b}$ Schombert (1987); $\mu_{V_{e}}$ transformed to $\mu_{B_{c}}$
${ }^{c}$ Thuan and Romanishin (1981)
${ }^{d}$ Morbey and Morris (1983); $\mu_{V_{c}}$ transformed to $\mu_{B_{e}}$
${ }^{e} r_{e}$ computed using B profile
$f_{r_{\mathrm{e}}}$ computed using R profile

7 Discussion

7.1 Isophote position angles

Isophotal twisting is one of many probes into the morphology of elliptical galaxies. The most obvious cause of isophotal twisting is a tidal disturbance because of a nearby companion, which can be a common occurrence in galaxy clusters. The symmetric isodensity surfaces would not share common axes in this case, and the galaxy is not in dynamical equilibrium. Isophotal twisting can also indicate that the galaxy is neither oblate nor prolate, but triaxial (i. e., not a figure of rotation), and with this geometry the isodensity surfaces share common principal axes. This model can exist in dynamical equilibrium and in general possesses twisted isophotes. Following the diseussion in Mihalas and Binney (1981), consider isodensity surfaces whose principal axes at small radius are prolate and vary smoothly with increasing radius such that they become oblate at large radius. Unless one of the galaxy's principal axes lie along the line of sight, the isophote will appear to twist, since the major axis of the prolate and oblate isodensity surfaces are not co-linear.

Porter et al. (1991) found that in a sample of brightest ellipticals in 175 Abell clusters, 20% showed isophotal twists greater than 40°. None of the galaxies studied here show compelling evidence for isophotal twisting of a similar degree (Figures 38 and 39). The BCG of AWM 4 appears to twist at radii greater than $60^{\prime \prime}$, but this galaxy has a bright star located nearby which most probably influencer the isophote
parameters. Masking the star made a slight improvement, but unfortumatoly because of its proximity to the galaxy, masking the star and its halo would also result. in masking out much of the galaxy. To treat this galaxy properly, the star would have to be subtracted from the image. Furthermore, the errors become so large where the twisting begins that the position angle is consistent with zero change, At first ghane, the BCG of MKW 5 appears to have some isophotal twist. However, this galaxy is nearly round, which means position angle measurements have little significance. The dominant galaxy of MKW 3S shows a change of abcat 6° from $r=20^{\prime \prime}$ to $r=1011^{\prime \prime}$. However, this evidence is marginal, given that the error bars cover 4°. Even if these isophotal twists are real, they are insignificant compared with the amount of twisting observed in some galaxies.

The major axis position angle of cD galaxies in rich clusters show many interesting alignments. For example, Struble (1990) has found that in Comil-like clusters, the major axis of the BCG is aligned with the long axis of the parent eluster and also with the line joining the two brightest members. Similar aligmments have been observed in poor clusters. Flin et al. (1995) has found that the BCGs of the MKW and AWM poor clusters are aligned with the parent cluster position angle. Fuller (in preparation) will show that the major axis of the MKW and AWM poor cluster BCGs point to nemrly rich clusters. These alignments are important piecos of information, since they must, be explained by any theory of BCG formation. Since both poor and rich cluster BC(Cis show alignments, the processes responsible for their formation must, be indopemdent,
of the cluster richness.

7.2 Isophote ellipticities

Figures 40 and 41 show that there is a common general trend towards increasing ellipticity (flattening) with radius of the BCGs. This trend has been noted previously in studies of rich cluster cD galaxies (Porter et al., 1991), and is not caused by rotation effects. 'The BCGs of MKW 2S and AWM 4 show smoothly increasing ellipticities, while the BCGs of MKW 3S, MKW 4, and AWM 5 have small bumps at radii less than $500^{\prime \prime}$. These bumps cannot be caused by seeing effects, since these will only be important inside 5 times the FWHM (84.4), which very conservatively is $10^{\prime \prime}$. The BCG of MKW 4 also shows a downturn in the ellipticity profile at radii larger than $100^{\prime \prime}$. Of the 175 galaxies studied by Porter et al. (1991), 40% had no change in slope in the ellipticity profile, 50% showed at most one slope change, and in only 9% were there more than two slope changes. Thus, bumpy ellipticity profiles are uncommon. It could be argued that the variations in the ellipticity profiles of the BCGs of MKW 3S and AWM 5 are insignificant, given the errors, but the local minimum at $r=15^{\prime \prime}$ and the local maximum at $r=95^{\prime \prime}$ in the profile of MKW 4 do s rem real.

The two exceptions to the flattening trend are the BCGs of MKW 5 and MKW 2; the latter shows only a marginal increase and has large errors.

Plots were made of position angle versus ellipticity, but no obvious relations were apparent. This is in agreement with Porter et al. (1991), who searched for correlations
among ellipticity, ellipticity gradient, isophote twisting, effective radius, luminosity, etc., but found none.

7.3 Surface photometry

Figures 30 to 37 show the B and R profiles of the poor cluster BCGs. At surface brightnesses of $\mu_{B} \leq 23$, the profiles computed in this study gemeally apree fairly wrll with other published profiles. Exceptions are the R protile of MKW 2 (Figure 33) and the B profile of MKW 5 (Figure 37), which were not obtained mader photometrie: conditions (as mentioned in §5.1) and have an umreliable aero point.

The error bars shown in Figures 30 to 37 were calculated using I'oissom shot nuine, and assuming a 0.5% error in sky subtraction and 1.0% arror in flat. fielding. For comparison, TR believe their profiles are accuate to better than 0.1 math arcsece ${ }^{-2}$ for $\mu<25$ mag $\operatorname{arcsec}^{-2}$ and increases to several tonthis of munnitudes arcsece ${ }^{2}$ at. $\mu=27$ mag $\operatorname{arcsec}^{-2}$. MK claim accuracy that is very similar io 'Ih.

At fainter brightnesses, the agreement is not good and worsens with rulfins; the profiles systematically become brighter tan profiles published by TR, MM and MK. At first glance, the profiles seem to show the same charactoristic break that
 27 mag aresec ${ }^{-2}$, and the profile breaks in this study begin at the 23rd magnitude. David Carter (personal communication) suggested that a lack of agreeme to between our profiles and previous photographic profiles is not unlikely, since photographic:
plates can suffer from problems, such as non-linearity at low brightnesses. Comparison with other CCD work is more useful, but unfortunately the data presented here do not agree with the CCD data of MK either (Figures 30, 31, and 37). A zero point shift can be added to register the profiles of the MKW 5 BCG, but they do not have the same shape. Their CCD photometry agrees well with the previous photographic photometry. MK did not have large spatial coverage, which makes the calculation of the sky brightness difficult. Even though both the photographic studies and the CCD study could possibly have faults, it is much more likely that the discrepancies are the result of some systematic error committed in this study.

Many possible explanations for the discrepancies have been investigated. Contamination from other stars and galaxies could make the profiles seem brighter, but there are two compelling arguments that contamination is not the cause of the problem: 1) masking was tested on three images, and the profiles did not change; 2) the Abell 2052 frame is much more heavily contaminated than the poor cluster frames, and yet the discrepancy is smaller than for many of the poor clusters.

A consistent underestimation of the sky would make the profiles too bright. An error in the actual sky measurement seems unlikely since it was measured with two independent methods that agreed with each other. Also, error in sky measurement is a random, not systematic error, and hence should produce profiles that are sometimes too dim, which was not observed. There may be underlying facturs, however, What could cause the sky to appear too dim. It is possible that a gradient (from a
flat flelding error) in the region common to the galaxy and ovellapping frame could manifest itself in such a way that the sky measurements are systomatically too low. The accuracy of the flat fields was tested on images that contained very few objects, and was always found to be $\leq 1 \%$ of sky. However, it is a very difficult task to assess the flat fielding accuracy on the program images, since the BOC fills a large portion of the frame, and the cluster galaxies also add contamination.

There could also be a systematic error in the intensity registration hetween the galaxy and overlap images, perhaps caused by flat fielding inaceuracies. A method of intensity registration that was not sensitive to flat fielding errors was tested to see if improvements could be made. The image of MKW 2s had two bright stars in the region common to the overlap and galaxy frames. The pixel intensities were summed within a circular radius centred on these two stars on both the images; the intensity offsets were 59 and 47 ADU . Not only are they in disagrement by 8 ADU , they disagree with the result of 39 ADU obtained with the ko seheme. Even if the star measurements had agreed (at, say 47 ADU) this would cause in even brrater underestimation of the sky, and hence the profiles would look even brighter. 'Thus, this method is not useful.

To assess the amount by which the profiles disagreed, varions sky corrections were applied in an attempt to make the profiles match (Figure 42). The maximum correction needed for any profile was 2% (8 ADU for the B filter), which is four times the assumed error in the sky measurement. Whon the profiles were made to mateh
up, it was found that they truncated sooner than in the other studies. This implies that the photographic plates are more sensitive than the CCD chip used here, which does not seem likely. For comparison, TR obtained their data with the Palomar 48 inch Schmidt telescope, MK used 1.3 m and 0.9 m telescopes, and MM used the 4 m CTIO telescope. Thus, telescope size cannot be a factor for the MK and TR data.

There are three profiles that warrant individual attention. The B profile for MKW 2 agrees well with the MM profiles. Schombert (1986) also published a profile for MKW 2 that agreed well with TR but not with MM, and therefore reasoned that MM had used a sky value that was too low. Schombert (1986) found that the data of MM disagreed with his own and that of other authors, and therefore decided to exclude MM's data in his study. Thus, the data of MM should be considered to be of lesser importance than the newer CCD data of MK. It is interesting to note that within the error bars used, the profile for MKW 2 agrees with both the TR and MM data. The profile for MKW 4 shows $\mathrm{a} \simeq 1$ maguitude colour gradient, which is likely erroneous. Such a colour gradient was not observed by McNamara and O'Connell (1992) in their study of colour gradients in cooling flow clusters. Inspection of the B image of MKW 4 reveals a large, diffuse lump on the edge of the galaxy, but there was no trace of this peculiarity in R. The origin of this peculiar feature is unknown. As mentioned in §7.1, the BCG of AWM 4 has a close companion star, and an attempt was made to mask this out. Undoubtedly, the close companion is partly responsible for the profile being too bright, and subsequently the profile slope is too shallow.

Figure 42: Various corrections were applied to the MKW 4 profile to match it, with previous studies. 1% (solid line) and 2% (dotted line) of sky was alded to the original profile (stars). Data from TR, g transformed to B (dashed line) is shown for comparison.

7.4 de Vaucouleurs parameters

The purpose of surface photometry is to reduce two dimensional images to one dimensional profiles, which subsequently can be fit to models to derive luminosity and structure parameters. To this end, all of the profiles have been fitted to a de Vaucouleurs law and the effective radii and surface brightness were computed (Table 7). Although the profiles are of questionable accuracy at low brightnesses, the errors in the profiles are smaller where the profiles are in better agreement, and so here the de Vaucouleurs fits are weighted more heavily. The maximum disagreement in the effective surface brightness is 1.4 magnitude $\operatorname{arcsec}^{-2}$ for MKW $2 s$, and the disagreement for AWM 4 is also high at 1.2 magnitude $\operatorname{arcsec}^{-2}$. All the other effective surface brightnesses agree to better than 0.7 magnitude arcsec ${ }^{-2}$. It should be noted for comparison purposes that the $\mu_{B_{\mathrm{e}}}$ values of MM and J.R disagree by 0.9 magnitude $\operatorname{arcsec}^{-2}$. Also, a deviation from the de Vaucouleurs law does not imply that the surface photometry is incorrect, for there are many elliptical galaxies that do not fit the de Vaucouleurs law very well (Mihalas and Binney, 1981).

Figure 43 shows the effective surface brightness as a function of the effective radius for $\mathrm{cD}, \mathrm{D}, \mathrm{gE}$, and normal elliptical galaxies, along with the BCGs of the MKW and AWM poor clusters. A brightward extrapolation of the relation for normal elliptical galaxies determined by Kormendy (1980) fits the poor cluster BCGs quite well. cD galaxies are distributed over a much greater range of r_{e} and μ_{e} than the poor cluster BCGs, and the gE galaxies have higher μ_{e}. The poor cluster BCGs have a distribution
similar to D galaxies, however the poor cluster BCGs have a smaller dispersion about Kormendy's relation. Thus, based on the de Vaucouleurs parameters, the poor cluster BCGs can be classified as D galaxies (or perhaps a subset of D galaxies); this is consistent with a classifications done by other authors (Thuan and Romanishin, 1981; Schombert, 1986) based on profile shapes.

Figure 43: de Vaucouleurs effective brightness and radius for the various galaxy types. The filled circles are the poor cluster BCGs examined in this study, and the open circles are the data obtained by MK. The five galaxies common to both this study and MK are connected by a line. The filled squares are cDs, the open squares are Ds, and the triangles are gEs from the data given by Schombert (1987). The straight line is the relation for normal ellipticals found by Kormendy (1980). The $(1+z)^{4}$ cosmological dimming correction has been applied.

8 Summary

CCD images of the BCGs in the MKW and AWM poor clusters were taken with the 1.0 m JKT telescope. Some of the images suffered from an unstable bias level, and so a non-standard meth d of bias subtraction was necessary. The images were flattened using twilight and sky flats, and are thought to be accurate to 1%. The galaxy centred and overlap frames were spatially registered, mosaicked, then brought to a common intensity level by computing the intensity in the region common to both images. This format allows tracing the halo out far enough that the true sky level is reached.

Isophote position angles and ellipticities were measured with the STSDAS routine ellipse. Five of the seven poor cluster BCGs show significant isophotal flattening with increasing radius, a common trend among gE, D, and CD galaxics. Three of the BCGs (MKW 3S, 4, and AWM 5) show uncommon structure in the ellipticity profiles (changes in slope). No significant amount of isophotal twisting was observed in any of the galaxies, therefore none are being tidally disrupted or are triaxial systems. Similar to their rich-cluster cousins, the poor cluster BCGs show position angles alignment, effects which suggests that the rich and poor cluster BCGs do share some common formation processes.

New software was developed to measure the isophotal magnitudes, because of a limitation of ellipse. The new algorithm used an iterative $k \sigma$ clipping scheme to remove contaminating objects, and is a significant improvement over the brightest,
pixel clipping scheme used by ellipse. The profiles compared well with other published data at surface brightnesses $\mu_{B} \leq 23 \mathrm{mag}$ arcsec $-{ }^{-2}$, but do not agree woll at dimmer magnitudes. The source of this discrepancy is unclear; a varioty of possibilities have been considered, such as flat fielding problems. The most likely canse of the problem is a systematic underestimation of the sky intensity. Since the profiles at. faint brightnesses are of questionable validity, no conclusion regarding the existence of diffuse halos surrounding the galaxies may be drawn.

A de Vaucouleurs law was fit to the profiles, and the de Vaucouleurs parameters were compared with other published data. There were disagreements of up to $1.4 \mathrm{mag}_{\operatorname{arcsec}}{ }^{-2}$ (MM and TR have disagreed by up to 0.9 mag arcsec ${ }^{-2}$). On n plot of the effective radius versus effective surface brightness, the poor cluster BCGs lie in the same region as D galaxies (which do not have diffuse envelopos), but lie closer to the relation of Kormendy (1980) for normal elliptical galaxies. The classification of the poor cluster BCGs as D galaxies is consistent with classifications based on profile shapes (Thuan and Romanishin, 1981; Schombert, 1986).

Since the poor and rich cluster BCGs do share some similarities (position angle alignments and increasing flattening with radius) there must be formation processes common to both types of clusters that are independent of eluster richness. It seems likely that the poor cluster BCGs do not have diffuse envelopes, based on the de Vancouleur profiles and on previous studies. Hence, it may be reasoned that a rich cluster environment is necessary for the formation of diffuse envelupes.

Glossary

ADU (Analogue Digital Unit) The analogue signal from the CCD pixels are converted to a digital signal by an analogue to digital converter (ADC). The photons incident on the CCD chip cause electrons to accumulate in the pixels. The pixel intensity is measured in ADU and is given by the number of elet ons multiplied by the gain.

BCG (Brightest Cluster Galaxy) The dominant member of a cluster of galaxies. Similar terms include Brightest Cluster Elliptical (BCE) and Brightest Cluster Member (BCM).
bias frame An exposure of zero time. This exposure records any structure in the chip cause by the electronics alone.

CCD (Charge Coupled Detector) A two dimensional grid of light sensitive picture elements (pixels) on a very thin silicon wafer.
cD The largest, most massive galaxies in the Universe. These galaxies are surrounded by very large (up to 2 Mpc), faint envelopes.
dark current Exposing a CCD chip to photons causes currents to run though the chip. However, in the absence of all light, there still may be a small current present (the dark current) which must be removed to obtain accurate intensities.
dithering When taking successive pictures of the same area of the sky, the telescope
is shifted by a few arcseconds and hence objects (stars, galaxies, cte.) do mot occupy the same position on the CCD.
flat fields Every CCD chip has pixel to pixel differences in sensitivity. These may be corrected by exposing the CCD to a miformly illuminated somre (a, g., the twilight sky). This exposure is called the flat field and is divided into the program frames to remove the pixel to pixel sensitivity differences.

FWHM (Full Width at Half Maximum) The width of a Ganssian function at one half of its maximum value.
gain An electronic amplification applied to the CCD chip, measured in electrons per ADU.
overscan region Every CCD chip contains a few consecutive columns along one edge that are not exposed to any light. They record the instrumental bias signature, which varies with time and hence must be corrected on each exposure individually.

PSF (Point Spread Function) The function that describes the image produced by a point source. Diffraction and atmospheric disturbances cause point sources to deviate from their theoretical shape.
read noise The readout electronics introduces an uncertainty (the read noise) in the number of electrons present in each pixel.

References

C. E. Albert, Richard A. White, and W. W. Morgan. 1977. ApJ, 211:309.

Timothy C Beers and Margaret J. Geller. 1983. ApJ, 274:491.
S. P. Boughn and J. R. Kuhn. 1986. ApJ, 309:33.

David Burstein and Carl Heiles. 1984. ApJ, 54:33-79.

Claude R. Canizares, Gordon C. Stewart, and Andrew C. Fabian. 1993. ApJ, 272: 449.

David Carter, 1977. MNRAS, 178:137.

Matthew Colless, D. Burstein, G. Wegner, R. P. Saglia, R. McMahan, R. L. Davies, E. Bertschinger, and G. Baggley. 1993. MNRAS, 262:475.
G. de Vaucouleurs. 1948. Ann. d'Astrophys., 11:247.
A. Dressler. 1978. ApJ, 222:23.
A. Dressler. 1984. ARAA, 22:185.
A. C. Edge. 1991. MNRAS, 250:103.
A. C. Fabian, P. E. J. Nulsen, and C. R. Canizares. 1984. MNRAS, 201:933.
P. Flin, D. Trevese, J. Krywult, and G. Cirimele. In Observational Cosmology; SESTO Meeting, 1995.
M. J. Geller and P. J. E Peebles. 1976. ApJ, 206:939.
R. I. Jedrzejewski. 1987. NMRAS, 226:747.
I. R. King. 1971. PASP, 83:199.
J. Kormendy. 1980. ApJ, 217:406.
A. U. Landolt. 1992. AJ, 104:340.

Glen Mackie. 1992. ApJ, 400:65.

Glen Mackie, N. Visvanathan, and Dave Carter. 1990. ApJ, 73:637.
E. M. Malumuth and D. O. Richstone. 1984. ApJ, 276:413.

Eliot M. Malumuth and Robert P. Kirshner. 1985. ApJ, $291: 8$.
T. A. Matthews, W. W. Morgan, and M. Schmidt. 1964. ApJ, 140:35.

Brian R. McNamara and Robert W. O'Connell. 1992. ApJ, 393:579.
D. Merritt. 1984. ApJ, 276:26.
D. Merritt. 1985. ApJ, 289:18.

Dmitri Mihalas and James Binney. Galactic Astronomy, page 332. W. H. Freman and Company, 1981.

Christopher Morbey and Stephen Morris. 1983. ApJ, 274:502.
W. W. Morgan, Susan Kayser, and Richard A. White. 1975. App, 199:545.
D. M. Neumann and H. Böhringer. 1995. AA, 301:865.

James E. O'Donnell. 1994, ApJ, 422:158.
A. Oemler. The Astronomy and Astrophysics Encyclopedia, page 97. Van Nostrand Reinhold, 1992.
J. P. Ostriker and M. A. Hausman. 1977. ApJL, 217:L:125.

Reynier F. Peletier, Roger L. Davies, Garth D. Illingworth, Lindsey E. Davis, and Michael Cawson. 1990. AJ, 100:1091.

Alain C. Porter, Donald P. Schneider, and John G. Hoessel. 1991. AJ, 101:1561.

Douglas O. Richstone, 1976. ApJ, 204:642.
A. R. Sandage. 1973. ApJ, 183:711.
P. Schechter. 1976. ApJ, 203:297.
R. Schild and Marc Davis. 1979. AJ, 84:311.
D. P. Schneider, J. E. Gunn, and J. G. Hoessel. 1983. ApJ, 268:476.

James M. Schombert. 1986. ApJS, 60:603.

James M. Schombert. 1987. $A p J S$, 64:643.

James M. Schombert. 1988. ApJ, 328:475.

Eric Smith and T. M. Heckman. 1989. ApJS, 69:365.

Mitchell F. Struble. 1990. AJ, 99:743.

Trinh X. Thuan and William Romanishin. 1981. ApJ, 248:439.

Scott D. Tremaine and Douglas O. Richstone. 1977. ApJ, 212:311.

Juan M. Uson, Stephen P. Boughn, and Jeffrey R. Kuhn. 1991. ApJ, 369:446.

Sidney van den Bergh. 1977. PASP, 89:746.

Sidney van den Bergh. 1983. PASP, 95:275.

Appendix: ANNULI code iisting

annulus.c
USE: annulus parmfile ellipse..output image.text ouput_file
AUTHOR: Todd Fuller, Saint Mary's University, fuller@ap.stmarys.ca
all files must be text files!
no column headers, or other extraneous infol
parmfile must contain:
xcenter, ycenter, theta, ellipticity, \#ellipse parameters (float)
minimum a, maximum a, ajump, anwidth, \#annuli pamameters (float)
lsigfac, \#elliminate points lsigfac*sigma < mean (float)
usigfac, \#elliminate points usigfac*sigma > mean (float)
maxiter, miniter, \#termination critera for iterations (integer)
minchange, \# " (float)
linear_flag \#linear increase in a ($0=n 0,1=y e s$) (integer)
xdim, ydim, \#dimensions of image (integer)
a_cutoff \#when to stop using ellipse output (float)
example parmfile:
10.025 .045 .30 .3010 .0
500.55 .01 .01 .0
10105.00
505015.00

C is not really picky about number of spaces between numbers, what is on what line, etc., so you can put each number on it's own line if you like.
ellipse output contains the output from the iraf routine ellipse use tprint or tdump to make a text file from the ellipse output ellipse_output must contain:
a, x, y, theta, ellipticity
image.text is a text file containing the pixel intensities. create this file from an image by using the iraf routine wtextimage do not have wtextimage write a header!!!!
output_file is created by the program, and will be overwritten if it exists without warning.
output_file contains:
a, ainner, aouter, number_of_pixels, integrated_intensity, mean_intensity, standard_deviation, number_of_iterations

Algorithm starts at amin and increases a by ajump if linear == 1 or increases a like this: a $*=$ ($1+\mathrm{ajump}$) if linear $=0$ and stops when amax is reached. The width of the annulus is computed if linear $=0$, or if linear $=1$ the width of the annulus is specified bynwidth. When linear $=0$, the annulus width used is the differenceetween a and $a *(1+a j u m p)$.

The program reads the ellipse output anc uses the ellipse center, position angle, and ellipticity to compute the ellipses.
Once a > a_cutoff, the program holds the ellipse center, position angle and ellipticity fixed at the values specified in parmfile. The algorithm looks at each pixel within the specified dimensions, and determines which elliptical annuli the pixel belongs to (note that one pixel may belong to more than one annuli).
Then, these statistics are computed on pixel intensities within the elliptical bins: mean, sigma, N. Then, iteratively, the algorithm retains the pixels that are:
lsigfac*sigma - mean $\leqslant=$ pixel intensity $<=$ usigfac*sigma + mean and discards all others. The iterative process is continued while the iteration number is less than miniter and less than maxiter. Once the minimum number of iterations have been done, the algorithm willtop when reaching maxiter, or when the \%change between the last mean and the current mean intensity is less than minchange.
*/
/*define PRECISION float to use single precision numbers define PRECISION double to use double precision */
\#define PRECISION double
/*this sets a print format string */
/*\#define Pf "l" */
\#define Pf ""
/*this sets a read format string */
\#define Rf "1"
\#include <math.h>
\#include <stdio.h>

```
#include <stdlib.h>
#include <string.h>
#include <values.h>
#define YEP 1
#define NOPE O
/* program will plot ellipses when compiled under Borland C */
/*#define graphics */
/*structure for the elliptical annuli bins */
struct bin_struct
    {
        PRECISION *intens;
        struct bin_struct *next;
    };
/*structure for the ellipse parameters and related data */
struct ell_parm_struct
    {
        PRECISION x, y;
        PRECISION teta;
        PRECISION eps;
        PRECISION A1, B1, C1, D1, E1, F1; /*parameters for the */
        PRECISION A2, B2, C2, D2, E2, F2; /*general ellipse equation*/
        PRECISION a, b, a1, b1;
        PRECISION a2, b2;
        struct bin_struct *head;
        PRECISION sum, sum_sq, mean, sigma, start_sigma;
        long N, startN;
        int last_iter;
    };
/*input parameters */
struct input_parm_struct
    {
        PRECISION Fx, Fy, Fteta, Feps, amin, amax, ajump, anwidth;
        PRECISION lsigfac, usigfac;
        int miniter, maxiter;
        PRECISION minchange;
        int linear;
        int xdim, ydim;
        PRECISION a_cutoff, a_last;
```

```
    int num_annuli;
    };
#ifdef graphics
#include <conio.h>
#include "display.c"
#endif
void compute_coeffs (struct ell_parm_struct *ep);
struct input_parm_struct *get_parms
    (char *filename, struct input_parm_struct *ip);
PRECISION *readimage
    (char *filename, PRECISION * image, struct input_parm_struct *ip);
struct ell_pi.in_struct *get_ellipse
    (char *єllipse_data_file, struct ell_parm_struct *ell_parm,
    struct input_parm_struct *ip);
PRECISIDN ellvall
    (struct ell_parm_struct ep, PRECISION x, PRECISION y);
PRECISION ellval2
    (struct ell_parm_struct ep, PRECISION x, PRECISION y);
void bin_it (struct ell_parm_struct *ell_parm,
    struct input_parm_struct *ip,
    PRECISION * image);
void iterate
    (struct ell_parm_struct *ep, struct input_parm_struct *ip);
void output
    (char *outfile_name, struct ell_parm_struct *ell_parm,
        struct input_parm_struct *ip);
int main (int argc, char *argv[])
{
    struct ell_parm_struct *ell_parm = NULL;
    struct input_parm_struct *ip = NULL;
    PRECISION *image = NULL;
    char *parm_file_name, *ellipse_output_name;
    char *image_data_name, *outfile_name;
    if (argc != 5)
        {
            printf ("useage: annulus parm_file ellipse_output"
                    " imagedata outfile\n");xit (0);
        }
```

```
#ifdef graphics
    Initialize ();
#endif
    parm_file_name = argv[1];
    ellipse_output_name = argv[2];
    image_data_name = argv[3];
    outfile_name = argv[4];
    printf ("\n %s \n", ellipse_output_name);
    /*get the input parameters */
    ip = get_parms (parm_file_name, ip);
    /*read the ellipse output */
    ell_parm = get_ellipse (ellipse_output_name, ell_parm, ip);
    /*read the image data */
    image = readimage (image_data_name, image, ip);
    /*put the pixels into the elliptical bins */
    bin_it (ell_parm, ip, image);
    /*plot the data */
#ifdef graphics
    plot_it (ell_parm, ip, image);
    while (!kbhit ());
    closegraph ();
#endif
    /*calculate the mean intensity in the annuli */
    iterate (ell_parm, ip);
    /*output the results */
    output (outfile.name, ell_parm, ip);
    return (0);
}
/*this procedure calculates the mean, sigma of the pixels within the elliptical annuli, then throws out the pixels that are
```

```
    beyond l/usigfac*sigma from the mean. */
void iterate
        (struct e].l_parm_struct *ep, struct input_parm_struct *ip)
{
    struct bin_struct *prev_ptr, *ptr, *next_ptr;
    PRECISION oldmean, oldsigma, oldsum;
    long oldN;
    int iteration;
    int b;
    /*loop through all annuli */
    for (b = 0; b < ip->num_annuli; b++)
        {
            /*initialize the old statistics */
            oldmean = ep[b].mean;
            oldsigma = ep[b].sigma;
            oldsum = ep[b].sum;
            oldN = ep[b].N;
                /*do the iterations */
                for (iteration = 1; iteration <= ip->maxiter; iteration++)
{
    /*remove all elements from the list that are more than
            u/lsigfac*sigma from the mean */
    prev_ptr = NULL;
    ptr = ep[b].head;
    while (ptr != NULL)
        {
            next_ptr = ptr->next;
            if (((ep[b].mean - ip->lsigfac * ep[b].sigma)
                > *ptr->intens) ||
    ((ep[b].mean + ip->usigfac * ep[b].sigma)
    < *ptr->intens))
{
    /*point is deviant, so delete it
        from the linked list */
    if (ptr != ep[b].head)
        /*not the first element, so prevptr
            has been defined */
        prev_ptr->next = next_ptr;
    else
```

```
        ep[b].head = next_ptr;
    free (ptr);
    /*prev_ptr stays where it is!!! */
}
    else
/*point stays in the list, so update prev_ptr */
prev_ptr = ptr;
        ptr = next_ptr;
    }
    /*all points in the list are now within
    u/lsigfac*sigma of the mean */
    /*now, recompute the statistics */
    ptr = ep[b].head;
    ep[b].N = 0;
    ep[b].sum = 0.0;
    ep[b].sum_sq = 0.0;
    while (ptr != NULL)
        {
            ep[b].sum += *ptr->intens;
            ep[b].sum_sq += *ptr->intens * *ptr->intens;
            ep[b].N++;
            ptr = ptr->next;
        }
    if (op[b].N > 0)
        {
            ep[b],mean = ep[b].sum / (PRECISION) ep[b].N;
            ep[b].sigma = ep[b].sum_sq / (PRECISION) ep[b].N -
ep[b].mean * ep[b].mean;
    if (ep[b].sigma > 0.0)
ep[b].sigma = sqrt (ep[b].sigma);
    else
ep[b].sigma = MINDOUBLE;
    }
olse
    {
            ep[b].mean = MINDDUBLE;
            ep[b].sigma = MINDOUBLE;
        }
/*is the iteration breaking criteria satisfied? */
```

```
    if (ep[b].mean != 0.0)
        {
            if ((iteration > ip->miniter) &&
    (((oldmean - ep[b].mean) / ep[b].mean * 100.0)
        < ip->minchange))
break;
    }
    if (ep[b].mean == oldmean)
        break;
    /*check if sigma is ok */
    if ((ep[b].sigma == MINDOUBLE) || (ep[b].N < 1))
        {
            ep[b].mean = oldmean;
            ep[b].sigma = oldsigma;
            ep[b].sum = oldsum;
            ep[b].N = oldN;
            iteration--;
            break;
        }
    /*output iteration to screen */
    /*printf("%3i %15.6"Pf"f %15.6"Pf"f %10li\n",
            iteration, ep[b].mean, ep[b].sigma, ep[b].N); */
    /*save the statistics */
    oldmean = ep[b].mean;
    oldsigma = ep[b].sigma;
    oldN = ep[b].N;
    oldsum = ep[b].sum;
    ep[b].last_iter = iteration;
} /*for ituration... */
        } /*for b... */
    return;
}
/*this procedure puts the pixels into elliptical bins */
void
bin_it (struct ell..parm_struct *ell_parm,
```

```
struct input_parm_struct *ip,
PRECISION * image)
{
    int i, j;
    int b;
    PRECISION e_outer, e_inner;
    struct bin_struct *ptr;
    /*scan over the image indices */
    for (i = O; i. < ip->xdim; i++)
        {
            for (j=0; j < ip->ydim; j++)
{
    /*scan over the ellipse bins to see which
        bins this pixel belongs to */
    /* check that pixel hasn't been masked */
    if (*(image + j * ip->xdim + i) > -90.0)
        {
            for (b = 0; b < ip->num_annuli; b++)
{
    /*compute the ellipse equations */
    e_inner = ellvall (ell_parm[b],
            (PRECISION) i, (PRECISION) j);
    e_outer = ellval2 (ell_parm[b],
                (PRECISION) i, (PRECISION) j);
    /*check that the pixel is inside the annulus,
        and has not been masked out by -99.0 */
    if ((e_inner >= 0.0) 知 (e_outer <= 0.0))
        {
            /*a hit */
            if ((ptr = calloc (1, sizeof (struct bin_struct)))
                        == NULL)
{
    printf ("\n\nCannot allocate memory. bin_it\n");
    printf ("\n i= %i j= %i\\n",i, j);
    exit (0);
}
#ifdef graphics
    /*plot the point */
```

```
    {
int color;
color = 16 - (int) (fmod ((double) b,
    (double) 16));
putpixel (i, j, color);
    }
#endif
            /*link up the element to the list */
            if (ell_parm[b].head == NULL)
{
    ell_parm[b].head = ptr;
    ptr->next = NULL;
}
    else
{
    ptr->next = ell_parm[b] .head;
    ell_parm[b].head = ptr;
}
    /*set intens to point to the corresponding
            element of image */
            ptr->intens = (image + j * ip->xdim + i);
            /*update the statistical prrameters */
            ell_parm[b].sum += *ptr->intens;
            ell_parm[b].sum_sq += *ptr->intens *
            *ptr->intens;
            ell_parm[b].N++;
            ell_parm[b].startN = ell_parm[b].N;
            ell_parm[b].mean =
ell_parm[b].sum / (PRECISION) ell_parm[b].N;
            ell_parm[b].sigma =
ell_parm[b].sum_sq/(PRECISION) ell_parm[b] .N -
ell_parm[b].mean * ell_parm[b] .mean;
            if (ell_parm[b].sigma > 0.0)
ell_ra\:m[b].sigma = sqrt (ell_parm[b].aigma);
            ell_parm[b].start_sigma = ell_parm[b].sigma;
            } /*end if (in annulus) */
} /*end for b... */
                            } /*end if (pixel masked?) */
```

```
} /*end for j */
    } /*end for i */
    return;
}
/*feed in x,y into the general ellipse eqations
        if the result is greater than zero, the point is inside the ellipse
        other wise outside */
PRECISION
ellval1 (struct ell_parm_struct ep, PRECISION x, PRECISION y)
{
    PRECISION ell1;
    ell1 = ep.A1 * x * x + ep.B1 * x * y +
        ep.C1 * y * y + ep.D1 * x +
        ep.E1 * y + ep.F1;
    return (ell1);
}
PRECISION
ellval2 (struct ell_parm_struct ep, PRECISION x, PRECISION y)
{
    PRECISION ell2;
    ell2 = ep.A2 * x * x + ep.B2 * x * y +
        ep.C2 * y * y + ep.D2 * x +
        ep.E2 * y + ep.F2;
    return (ell2);
}
/*this procedure reads the ellipse output and computes the ellipse
    parameters. When a_cutoff is passed, the fixed x,y,theta,
    ellipticity are used to compute the ellipse parameters */
struct ell_parm_struct *
get_ellipse (char *ellipse_data_file,
            struct ell_parm_struct *ell_parm,
            struct input_parm_struct *ip)
{
    FILE *ellipse_data;
    char string[300];
    char *token;
    int i;
    PRECISION a;
```

```
    /*allocate enough memory for the ellipse parameters array */
    a = ip->amin;
    ip->num_annuli = 0;
    while (a <= ip->amax)
        {
            if (ip->linear == YEP)
a += ip->ajump;
            else
a *= (1.0 + ip->ajump);
            ip->num_annuli++;
        }
    if ((ell_parm = calloc (ip->num_annuli,
            sizeof (struct ell_parm_struct))) == NULL)
        {
            printf ("\n\nCannot allocate memory for ell_parm\n");
            exit (0);
        }
    /*open ellipse data for input */
    if ((ellipse_data = fopen (ellipse_data_file, "r")) == NULL)
        {
            printf ("\n\nCannot open %s\n", ellipse_data_file);
            exit (0);
        }
    i = 0;
    while (fgets (string, 299, ellipse_data) != NULL)
        {
            if (i == ip->num_annuli)
{
    printf ("\n\narray out of bounds: Too many annuli\n");
    exit (0);
}
    token = strtok (string, " ");
        a = atof (token);
        if (a > ip->a_cutoff)
break;
    /*compute a1 and a2 */
    if (ip->linear == NOPE)
ip->anwidth = a * ip->ajump;
```

```
    if (ip->anwidth > 10.0)
ip->anwidth = 10.0;
            ell_parm[i].a = a;
            ell_parm[i].a1 = a - ip->anwidth / 2.0;
            ell_parm[i].a2 = a + ip->anwidth / 2.0;
            token = strtok (NULL, " ");
            ell_parm[i].x = atof (token);
            token = strtok (NULL, " ");
            ell_parm[i].y = atof (token);
            token = strtok (NULL, " ");
            ell_parm[i].teta = atof (token);
            token = strtok (NULL, " ");
            ell_parm[i].eps = atof (token);
            compute_coeffs (&ell_parm[i]);
            i++;
        }
    fclose (ellipse_data);
    /*now, compute the ellipse coefficients using
        the fixed ellipse parameters */
    if (a <= ip->amin)
        a = ip->amin;
    while (i < ip->num_annuli)
        {
            /*compute a1 and a2 */
            if (ip->linear == NOPE)
ip->anwidth = a * ip->ajump;
    ell_parm[i].a = a;
    ell_parm[i].a1 = a - ip->anwidth / 2.0;
    ell_parm[i].a2 = a + ip->anwidth / 2.0;
    ell_parm[i].teta = ip->Fteta;
    ell_parm[i].eps = ip }>\mathrm{ Feps;
    ell_parm[i].x = ip->Fx;
    ell_parm[i].y = ip->Fy;
    compute_coeffs (kell_parm[i]);
```

```
    if (ip->linear == YEP)
a += ip->ajump;
    else
a *= (1.0 + ip->ajump);
            i++;
        }
    return ell_parm;
}
/*this procedure does the computation of the ellipse parameters
    given the x,y,theta,ellipticity,a */
void
compute_coeffs (struct ell_parm_struct *ep)
{
    PRECISION cOs_teta, sin_teta;
    PRECISION a_sq, b_sq;
    PRECISION x, y;
    /*compute b, b1 and b2 */
    ep->b = ep->a * (1.0 - ep->eps);
    ep->b1 = ep->a1 * (1.0 - ep->eps);
    ep->b2 = ep->a2 * (1.0 - ep->eps);
    /*compute the inner ellipse coefficients */
    ep->teta = ep->teta - 90.0;
    ep->teta = ep->teta * M_PI / 180.0;
    cos_teta = cos (ep->teta);
    sin_teta = sin (ep->teta);
    a_sq = ep->a1 * ep->a1;
    b_sq= ep->b1 * ep->b1;
    x = ep->x;
    y = ep->y;
    ep>A1 = (cos_teta * cos_teta / a_sq) +
        (sin_teta * sin_teta / b_sq);
    ep->B1 = 2.0 * sin_teta * cos_teta * (1.0 / a_sq - 1.0 / b_sq);
    ep->C1 = (sin_teta * sin_teta / a_sq) +
        (cos_teta * cos_teta / b_sq);
    ep->D1 = -2.0 * x * ep->A1 - y * ep->B1;
    ep->E1 = -x * ep->B1 - 2.0 * y * ep->C1;
    ep->F1 = x * x * ep->A1 + x * y *ep->B1 + y * y *ep>>C1 - 1.0;
```

```
    /*compute the outer ellipse coefficients */
    a_sq = ep->a2 * ep->a2;
    b_sq = ep->b2 * ep->b2;
    ep->A2 = (cos_teta * cos._teta / a_sq) +
        (sin_teta * sin_teta / b_sq);
    ep->B2 = 2.0 * sin_teta * cos_teta * (1.0 / a_sq - 1.0 / b_sq);
    ep->C2 = (sin_teta * sin_teta / a_sq) +
        (cos_teta * cos_te:a / b_sq);
    ep->D2 = -2.0 * x * ep->A2 - y* ep->B2;
    ep->E2 = -x * ep->B2 - 2.0 * y * ep->C2;
    ep->>F2 = x * x * ep->A2 + x * y * ep->B2 + y * y * ep->C2 - 1.0;
    return;
}
/*read the parameters that the program needs to run from file */
struct input_parm_struct *
get_parms (char *filename,
    struct input_parm_struct *ip)
{
    FILE *fptr;
    if ((ip = calloc (1, sizeof (struct input_parm_struct))) == NULL)
        {
            printf ("\n\nCannot allocate memory for ip\n");
            exit (0);
        }
    fptr = fopen (filename, "r");
    if (fptr == NULL)
        {
            printf ("\n\n Cannot open file %s\n", filename);
            exit (0);
        }
    fscanf (fptr, "%" Rf "f %" Rf "f %" Rf "f %" Rf "f %" Rf "f",
    &ip->Fx, &ip->Fy, &ip->Fteta, &ip->Feps, &ip->amin);
    fscanf (fptr, "%" Rf "f %" Rf "f %" Rf "f %" Rf "f %" Rf "f ",
    &ip->amax, &ip->ajump, &ip->anwidth, &ip->lsigfac,
    kip->usigfac);
    fscanf (fptr, "%d %d %" Rf "f %d ",
    &ip->maxiter, &ip->miniter, &ip->minchange, &ip->linear);
```

```
    fscanf (fptr, "%d %d %" Rf "f ",
    &ip->xdim, &ip->ydim, &ip->a_cutoff);
    fclose (fptr);
    /*
        printf("%"Pf"f %"Pf"f %"Pf"f\n", ip->Fx, ip->Fy, ip->Fteta);
        printf("%"Pf"f %"Pf"f %"Pf"f\n", ip->Feps, ip->amin, ip->amax);
        printf("%"P£"f %"Pf"f %"Pf"f\n", ip->ajump, ip->anwidth,
            ip->lsigfac);
        printf("%"Pf"f %/d %d\n", ip->usigfac, ip->maxiter, ip->miniter);
        printf("%"Pf"f %d %d\n", ip->minchange, ip->linear, ip->xdim);
        printf("%d %"Pf"f\n", ip->ydim, ip->a_cutoff);
        exit(1);
        */
    return ip;
}
/*read the text image data */
PRECISION *
readimage (char *filename, PRECISION * image,
    struct input_parm_struct * ip)
{
    FILE *fptr;
    int i, j;
    PRECISION temp;
    if ((fptr = fopen (filename, "r")) == NULL)
        {
            printf ("\n\nCannot open %s\n", filename);
            exit (0);
        }
    /*allocate memor;; for image array */
    if ((image = calloc (ip->xdim * ip->ydim,
            sizeof (PRECISION))) == NULL)
        {
            printf ("\n\nCannot allocate memory for image array\n");
            exit (0);
        }
    for (j = 0; j < ip->ydim; j++)
        {
            for (i = 0; i < ip->xdim; i++)
```

```
{
    fscanf (fptr, "%" Rf "f ", &temp);
    *(image + j * ip->xdim + i) = temp;
}
        }
    fclose (fptr);
    return (image);
}
/*dump the output to file */
void
output (char *outfile_name, struct ell_parm_struct *ep,
struct input_parm_struct *ip)
{
    int b;
    PRECISION radius;
    FILE *fptr;
    /*open output file */
    if ((fptr = fopen (outfil`_name, "w")) == NULL)
        {
            printf ("\n\nCannot open %s\n", outfile_name);
            exit (0);
        }
    /*loop through the elliptical annuli */
    for (b = 0; b < ip->num_annuli; b++)
        {
            radius = sqrt (ep[b].a * ep[b].b);
            fprintf (fptr, "%9.4" Pf "f " /* a */
            "%`.4" Pf "f " /* b */
            "%;,4" Pf "f " /* radius */
            "%9.4" Pf "f " /* a1 */
            "%9.4" Pf "f " /* a2 */
            "%15.6" Pf "f " /* sum */
            "%15.6" Pf "f " /* mean */
            /*"%15.6"Pf"f " start_sigma */
            "%15.6" Pf "f " /* sigma */
            "%8.3" Pf "f " /* x */
            "%8.3" Pf "f " /* y */
            "%6.2" Pf "f " /* teta */
            "%6.4" Pf "f " /* eps */
```

```
            "%3i " /* last_iter */
            "%10li " /* startN *!
            "%10li " /* N */
            "\n",
            ep[b].a,
            ep[b].b,
            radius,
            ep[b].a1,
            ep[b].a2,
            ep[b].sum,
            ep[b].mean,
                /* ep[b].start_sigma, */
            ep[b].sigma,
            ep[b].x,
            ep[b].y,
            ep[v].teta,
            ep[b].eps,
            ep[b].last_iter,
            ep[b].startN,
            ep[b].N);
        }
    fclose (fptr):
    return;
}
```


Curriculum Vitae
 Todd Michael Fuller
 Sep rember, 1996

Address
Department of Physics and Astronomy The University of Western Ontario London, ON N6A 3K7
tfuller@phobos.astro.uwo.ca

Personal

Date of Birth: December 8, 1968
Place of Birth; Simcoe, Ontario, Canada Citizenship: Canadian

Education

- Ph.D. 2000 The University of Western Ontario Astronomy Advisor: Dr. Hugh M. P. Couchman
- M.Sc. 1996 Saint Mary's University Astronomy Advisor: Dr. Michael West
- B.Sc. 1994 University of Waterloo, Applied physics, Houours Co-operative program, teaching option Advisor: Dr. Gretchen Harris
- B.Ed. 1994 Qucen's University at Kingston, Education, physics and mathematics

Teaching Experience

- 09/94-04/96 conducted introductory undergraduate astronomy laboratories lectured introductory astronomy classes on an incidental basis Saint Mary's University, Halifax
- 09/92-12/92 taught grade twelve advanced and OAC physics J. S. Woodsworth Secondary School, Nepean, Ontario
- 09/91-12/91 assisted teaching grade twelve general physics Thomas A. Stewart Secondary School, Peterborough, Ontario
- 01/91-04/91 tutored students in mathematics and physics at a help centre Mohawk College of Applied Arts and Technology

Publications and Presentations

- "Aligmment effects in the dominant galaxies of the MKW and AWM poor clusters", T. M. Fuller and M. J. West, in preparation
- "Angular Correlation Function of a Cluster of Galaxies", poster paper presented at the CASCA meeting, May 1994, University of Western Ontario

Awards

- Saint Mary's Graduate Student Scholarship, 1994-96
- Special University Scholarhip (University of Western (Outario), 1996

Professional References

- Dr. Hugh M. P. Couchman

The University of Western Ontario
London, ON N6A 3K7
hcouchman@coho.astro.uwo.ca

- Dr. Michael J. West

Saint Mary's University
Halifax, NS B3H 3C3
westosisyphus.stmarys.ca

- Dr. David A. Clarke

Saint Mary's University
Halifax, NS B3H 3C3
dclarke@olympus.stmarys.ca

- Dr. Gretchen L. Harris

University of Waterloo
Waterloo, ON N2L 3G1
glharris@astro.uwaterloo.ca

[^0]: ${ }^{1}$ defined in glossary

[^1]: ${ }^{2}$ IRAF tasks are printed in the typerriter font

