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Abstract 

 

One of the main undesirable processes in Supercritical Water-Cooled Reactors 

(SCWR) is the possible formation of metal ligand complexes from ions present in coolant 

which is very poorly understood both experimentally and theoretically. As pressurized 

and heated solutions are difficult to work with, computational methods have now become 

an important research tool in this respect. A series of ab initio calculations of nickel(II) 

with hydroxide, ammonia, water and chloride have been performed at HF, MP2 and 

B3LYP levels with 6-31+G* basis sets. A thorough examination of geometries, energies 

and vibrational frequencies has been carried out for all species up to and including 

hexacoordinate species. The computational results are compared with experimental data 

where available. 
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Chapter 1: Introduction 

1.1 Supercritical Water-Cooled Reactor 

CANDU Supercritical Water-Cooled Reactors (SCWR) are one of the six 

innovative concepts selected for  Gen IV nuclear reactors based on safety and 

environmental issues which are being developed by Atomic Energy of Canada Limited 

(AECL) [1]. The SCWR can be considered a hybrid between a LWR (Light Water 

Reactor) and a fossil-fuel SCW power plant. The power cycle proposed for SCWR would 

be a direct power cycle using a single phase coolant [2]. The SCWR concept is being 

built for several applications, such as hydrogen production, steam applications such as 

extraction of oil from oil sands, desalination, etc. [3] The SCWR offers many advantages 

such as the elimination of components like steam generators, steam separators, dryers, 

and a low coolant mass inventory resulting in smaller components with much higher 

thermal efficiency (about 45% versus about 33% efficiency for LWRs) [4].  One of the 

primary objectives is to lower unit energy costs via advancements in thermodynamic 

efficiency which is attained by increasing the coolant core mean temperature in excess of 

500 °C, leading to plant thermodynamic efficiencies as high as 50%. Thus, the SCWR 

power cycle would be a direct cycle operating at a pressure of 25 MPa, with core inlet 

and outlet temperatures of about 550 K and as high as 900 K respectively [5].  

Unfortunately, accompanying the increased efficiency, supercritical water at high 

operating temperatures and pressures is very reactive especially in an oxidizing 

environment. Under extreme conditions, the properties of water affected include the 

density, hydrogen bonding, ionization product, dielectric constant, heat capacity, and 
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transport properties. These properties have a large impact on the corrosion properties of 

metal alloys in the construction materials, resulting in anodic dissolution of the alloys. [6] 

In addition, certain aggressive ions (e.g. Cl
-
, Br

-
) can induce passivity breakdown, 

resulting in various forms of localized corrosion, such as pitting attack and stress 

corrosion cracking. [7] The transition metal in the metal alloys could be leached into the 

environment and form aqua ions, which combine with the surrounding anions such as Cl
-
 

and OH
-
. However, there will be no phase separation in the SCWR coolant, and the 

corrosion product formed in the reactor core will be carried out of core with the 

supercritical coolant. Those corrosion products may lead to deposition in the fuel or 

turbines. [8] 

1.2 Nickel 

Nickel is a hard, silvery white metallic element, (relative atomic mass 58.69) 

found in the first transition series group VIIIb of the periodic table. Nickel was first 

isolated in 1751 in impure form by Axel F. Cronstedt, a Swedish chemist. [9] The density 

of nickel is 8.908 g/cm
3
, its melting point is 1453 °C, and its boiling point is 2732 °C. [10] 

Five natural isotopes are known, of which 
58

Ni(68.27%) and 
60

Ni(26.10%) are the most 

abundant. The common oxidation states of nickel are 0 and +2, but other states (+1, +3, 

+4, and +6) are found in a few compounds. However, the +2 oxidization state is the most 

prevalent form in aqueous solution. Nickel(VI) is known in NiO4
2-

, which is a very 

powerful oxidizing agent and will oxidize water. Nickel (IV) is found in NiO2, which is 

also a very strong oxidizing agent. Some nickel(III) species, such as NiO(OH), are also 
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known and are strong oxidizing agents. Besides these species, various oxidization states 

of nickel are found in complex ions. [11] 

Nickel-based alloys are vitally important to modern industry due to their ability to 

withstand a wide variety of severe operating conditions involving corrosive environments, 

high temperatures, high stress, and combinations of these factors. [12] In the nuclear 

industry, nickel-based alloys are chosen and used in gas turbine engines and a spectrum 

of other applications of relevant use. [13] In particular, nickel-based alloys are chosen 

because of their generally higher creep strength compared to austenitic and ferritic-

martenstitic steels for the supercritical water reactor, [14] nickel-base alloys have been 

proposed for Gen IV reactor in-core components. [15]  

The excellent corrosion resistance of nickel-based alloys is largely due to the 

surface protection in aqueous electrolytes or moist air by ultrathin dense oxide/hydroxide 

films. [16] However, the passive film does not afford complete protection of the substrate 

alloys. For instance, tribological contact or aggressive ions can often damage or even 

remove the passive film, and expose the active substrate alloy surface to the corrosion 

environment. [17] In this case, nickel(II) ion could be leached into the environment and 

form aqua complexes with surrounding anions and/or ammonia, which could be 

introduced by pH adjustment. The anions could be introduced through the cooling system 

(i.e. Cl
-
 from river water) or from the addition of water itself (OH

-
 ions). These nickel 

complexes can be transported out of core, and may deposit in the fuel or turbines and 

corroding these areas. Therefore, it is necessary to carry out the investigation of the 

possible complexes nickel will form in SCWR for both scientific research and 



4 

 

engineering practices. As pressurized and heated solutions are difficult to work with, 

computational methods have now become an important research tool. 

 

1.3 Computational Chemistry 

1.3.1 Quantum Mechanics 

Computational chemistry is based on quantum mechanics, which provides a very 

detailed picture of molecules. The postulates and theorems of quantum mechanics form 

the rigorous foundation for the prediction of observable chemical properties from first 

principles. The fundamental postulates of quantum mechanics assert that microscopic 

systems are described by wave functions that completely characterize all of the physical 

properties of the system. [26] 

In the late seventeenth century, Isaac Newton summarized classical mechanics, 

the laws of motion of macroscopic objects. In the early twentieth century, physicists 

found that classical mechanics does not correctly describe the behavior of very small 

particles such as the electrons and nuclei of atoms and molecules. [18] Quantum 

mechanics determines the properties of nanomaterials (objects with at least one 

dimension in the range 1 to 100 nm), and calculation methods to deal with nanomaterials 

are being developed. [18] 

The development of quantum mechanics began in 1900 with Planck’s study of 

blackbody radiation, which is the light emitted by a heated solid that absorbs all light 

falling on it.[18] When physicists used classical mechanics to predict the intensity-
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versus-frequency curve for emitted blackbody radiation, they found a result in complete 

disagreement with the high-frequency portion of the experimental curves. [18] Planck 

assumed the radiation emitters and absorbers in the blackbody to be harmonically 

oscillating electric charges (resonators), and the total energy of those resonators whose 

frequency is ν, consisted of N indivisible “energy elements” which led to curves that 

agreed with the experimental blackbody curves. [18] Thus the energy of each resonator 

was quantized, meaning that only certain discrete values were allowed for resonator 

energy. [18] 

The second application of energy quantization was to the photoelectric effect, in 

which light shining on a metal causes emission of electrons. [18] Physicists found it 

difficult to reconcile their observations with the classical electromagnetic wave theory of 

light. An explanation was suggested in 1905 by Einstein who proposed that the incident 

light be viewed as being comprised of discrete units of energy. [19] The photoelectric 

effect shows that light can exhibit particlelike behavior in addition to the wavelike 

behavior it shows in diffraction experiments. [18] De Broglie proposed that all material 

particles are associated with waves, but that the existence of these waves is likely to be 

observable only in the behavior of extremely light particles. [19] Quantum mechanics is 

required for those microscopic particles as classical mechanics only applies to 

macroscopic particles. 

Microscopic particles have a wave nature. When such a particle is located by 

using radiation of photons of large momentum, the interaction of photon and the electron 

changes the momentum of the electron. [20] Thus both position and velocity of the 
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particle cannot be measured simultaneously. Heisenberg [21] stated the uncertainty 

principle, which can be derived from quantum theory, 

     
 

 
                                                        (1) 

That means to locate an electron to within a region Δx, there will be an uncertainty in the 

momentum Δp of the electron. [22] 

Therefore, a wave equation is needed for quantum systems. Schrödinger [23] 

obtained such an equation which is written as: 

                                                                                                                              (2) 

In the Schrödinger equation, Ψ is used for an unspecified quantum mechanical 

wave function, E is the energy eigenvalue. Ĥ is called the Hamiltonian operator. The 

wave function Ψ is an eigenfunction of the Hamiltonian operator, and the energy E is an 

eigenvalue of the Hamiltonian operator as the result of operating Ĥ on Ψ is simply to give 

Ψ back again, only multiplied by a constant factor, the energy E. The Hamiltonian 

operator is written as: 

                                                               
  

  

  

                                                   (3) 

In this equation, the   
  

  

  

   
  is the kinetic energy part, and V(x) is the potential 

energy part. m is the mass of the particle at position x.  

Equation 2 does not contain time and is called the time-independent Schrödinger 

equation. The wave function obtained from equation 2 is called the stationary-state wave 
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function, and many problems of chemical interest can be described in terms of stationary-

state wave functions. [21] The wave function contains all possible information of a 

system. Also, the one-dimensional, one-particle systems can be extended to three-

dimensional, many-particle systems. For a three-dimensional, one-particle system, the 

Schrödinger equation is: 

                     
  

  
(
   

    
   

    
   

   )                                                       (4) 

The first term of the Hamiltonian operator in equation 4 is called Laplacian 

operator, denoted as ∇2
: 

                                          

                                          ∇  
  

    
  

    
  

                                                                                   (5) 

The Schrödinger equation for many-particle, three-dimensional systems are to 

sum up all the kinetic energy and potential energy components: 

                       [ ∑
  

   

 
   ∇ 

                        ]                                       (6) 

The quantum mechanical description of a hydrogen atom is the starting point for 

computational chemistry, and it can be solved analytically. [24] However, atoms with 

more than one electron cannot be solved exactly as there is a interelectron repulsion term 

in the Schrödinger equation. In order to simplify the problem, the Born-Oppenheimer 

approximation is invoked. [25] As the nuclei of molecular systems are moving much 

more slowly than the electrons, it is convenient to decouple the motions of nuclei, and 

compute electronic energies for fixed nuclear position. [26] Therefore, to calculate the 
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energy of a molecule is to solve the electronic Schrödinger equation and then add the 

electronic energy to the internuclear repulsion to get the total internal energy.[27] A 

deeper consequence of the Born-Oppenheimer approximation is that a molecule has a 

shape. [27] 

1.3.2 Hartree-Fock Theory 

The Hartree-Fock (HF) calculation is the simplest kind of ab initio calculation 

which was first performed on atoms by Hartree in 1928. [28] The fundamental 

assumption of HF theory, that each electron sees all of the others as an average field, 

allows for tremendous progress to be made in carrying out practical molecular orbital 

calculations. [26] The HF method is used to solve Schrödinger equations of atoms and 

molecules and predict their properties such as geometries and vibrational frequencies. 

According to the Pauli Exclusion Principle, the wave function for a HF calculation is one 

or more antisymmetrized products of one-electron spin-orbitals. A convenient way to 

produce an antisymmetrized product is to use Slater determinants: 
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                       (7) 

2N is the number of electrons in the closed shell system as the wave functions are 

represented by N doubly occupied spatial orbitals. α and β are spin orbitals, and 
)!2(

1

N
 

is the normalization constant. The wavefunctions in the Slater determinants are functions 

that are properly antisymmetric with respect to exchange of coordinates of any pair of 
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electrons. Such an exchange would correspond to interchanging two rows of the Slater 

determinant according to property of determinants that their value changes sign if two 

rows are exchanged. [24] If there are two identical spin-orbitals, then there will be two 

identical columns in the Slater determinant according to the property of determinants that 

their value is zero if two columns are identical. [24] It follows from the Schrödinger 

equation that the energy of a system is given by: 

                                                          
∫      

∫     
 .                                                           (8) 

Using Dirac notation it can be written: 

                                        ⟨           | |           ⟩,                                     (9) 

while the Hamiltonian operator for a molecule with 2N electrons and M atomic nuclei 

(the M
th

 nucleus has the charge ZM can be written as: 

                                  ∑    
   

 

 
∇ 

  ∑
  

   
 ∑

 

   
              .                                   (10) 

The Hamiltonian is composed of electron kinetic energy terms, nucleus-electron 

attraction potential energy terms, and electron-electron repulsion potential energy terms. 

From the Born-Oppenheimer approximation, the nucleus-nucleus repulsion potential 

energy terms have been omitted, and these can simply be added to the electronic energy 

as they are constants. The energy can be written as: 

                              ∑     ∑ ∑           
 
   

 
   

 
   .                                           (11) 
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The terms in Eq. 11 have these meanings                

                        ∫  
    ( 

 

 
∇ 

  ∑
  

   
     )                                                   (12) 

                          ∫  
          

 

   
         

                                                      (13)   

                       ∫  
      

     
 

   
                                                              (14) 

Hii is the electronic energy of a single electron moving simply under the attraction 

of a nuclear core, with all the other electrons stripped away. Jij is called a Coulomb 

integral, and it represents the electrostatic repulsion between an electron in Ψi and one in 

Ψj. Kij is called an exchange integral, and it differs only in exchange of electrons.  

The energy calculated from Eq. 9 will be the exact, true energy of the molecule 

only if the wavefunction and the Hamiltonian are exact. The variation principle states that 

the energy calculated from Eq. 9 must be greater than or equal to the true ground-state 

energy of the molecule. [27] The energy associated with the wave function is determined 

from all the coefficients. The Hartree-Fock method follows a SCF (self-consistent field) 

procedure, where the orbital coefficients are first estimated and then iterated to 

convergence.  

 

1.3.3 Basis Sets 

The basis set is the set of mathematical functions (basis functions), linear 

combinations of which yield molecular orbitals. [27] The functions are usually centred on 
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nuclei. Approximating molecular orbitals as linear combinations of basis functions is 

called the LCAO-MO approach. [27] However, the functions are not necessarily 

conventional atomic orbitals, they can be any set of mathematical functions that are 

convenient to manipulate and which in linear combination give useful representations of 

molecular orbitals. Physically, several basis functions describe the electron distribution 

around an atom and combining atomic basis functions yields the electron distribution in 

the molecule as a whole. [27] The electron distribution around an atom can be 

represented in two ways, Slater functions and Gaussian functions. [29] Slater functions 

are used in semiempirical methods, and modern molecular ab initio programs employ 

Gaussian functions.  

The essence of STO (Slater-type-orbital) is to place on each nucleus one or more 

STOs. [27] Generally, the larger the number of STOs and/or the greater the care taken in 

selecting orbital exponents, the more accurate the final wavefunction and the energy will 

be. The mathematical form of a normalized STO is: 

                                                         
         

      ,                             (15) 

where ζ is an exponent that can be chosen according to a simple set of rules 

developed by Slater that depend on the atomic number. [30] Nnl is the normalization 

constant. r is the distance between the nucleus and the electron. n is the principal 

quantum number for the valence orbital, and the spherical harmonic functions   
       

depend on the angular momentum quantum numbers l and m.  

In ab initio HF theory, STOs suffer from a fairly significant limitation. There is no 

analytical solution available for the general two-electron integral. [26] The requirement 
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that such integrals be solved by numerical methods severely limits their utility in 

molecular systems of any significant size. To speed up molecular integral evaluation, 

Boys [31] proposed in 1950 the use of Gaussian-type functions instead of STOs for the 

atomic orbitals in an LCAO wave function. The Gaussian-type functions can be written 

as: 

                                                        
      

  
      ,                                (16) 

where α is the shielding constant which is an exponent controlling the width of the 

Gaussian type orbital (GTO). In GTO, the radial decay of the STOs are changed from 

    to     
. Gaussian integral evaluation takes much less computer time than Slater 

integral evaluation because the product of two Gaussians on two centres is a Gaussian on 

a third centre. [27] Thus all three- and four- centre two electron repulsion integrals are 

reduced to two-centre integrals. However, there are two obvious problems connected 

with using Gaussian functions as basis functions: one is that they do not have cusps at 

r=0 as s-type hydrogen-like atomic orbitals (AOs) do, the other is that they decay faster at 

larger r than do hydrogen-like AOs. [19] This led to a practice of replacing each STO in a 

basis set by a number of Gaussian functions. When a basis function is defined as a linear 

combination of Gaussians, it is referred to as a contracted basis function, and the 

individual Gaussians from which it is formed are called primitive Gaussians. 

There are many terms used to describe a STO basis set. A minimal basis set 

consists of one STO for each inner-shell and valence-shell AO of each atom. [18] During 

most molecular bonding, it is the valence electrons which principally take part in the 

bonding. In recognition of this fact, a split-valence basis set uses two or more STOs for 
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each valence AO but only one STO for each inner-shell (core) AO.  Upon molecule 

formation, AOs are distorted in shape and have their centres of charge shifted, in 

asymmetric molecule environments orbitals become distorted from their atomic shapes 

(polarization). A polarized basis set is adding basis function STOs whose angular 

quantum numbers are greater than the maximum angular quantum number of the valence 

shell of the ground-state atom, which is denoted by “*”. [18] Anions tend to have their 

orbitals expanded compared to neutral molecules, so diffuse functions need to be 

included. A basis set with diffuse Gaussian functions with fairly small orbital exponents 

is designated by “+”. [22] 

 

1.3.4 Møller–Plesset perturbation theory 

The Hartree-Fock wave function takes into account the interactions between 

electrons only in an average way which does not consider the instantaneous interactions 

between electrons. Møller–Plesset perturbation theory is a post-Hartree-Fock method 

which treats correlated motion of electron pairs better than the Hartree-Fock method. The 

Møller–Plesset treatment of electron correlation is based on perturbation theory, and this 

particular approach was described by Møller and Plesset in 1934 [32] and developed into 

a practical molecular computational method by Binkley and Pople in 1975. [33] There is 

a hierarchy of Møller–Plesset energy levels: MP0, MP1, MP2, etc… which successively 

account more thoroughly for interelectronic repulsion. [27] MP0 would use the electronic 

energy obtained by simply summing the Hartree-Fock one-electron energies, and MP1 is 

just the Hartree-Fock energy. [27] MP2 is the first MP level to go beyond the Hartree-
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Fock treatment, and the MP2 energy is the Hartree-Fock energy plus a correction term 

that represents a lowering of energy brought about by allowing the electrons to avoid one 

another better than in Hartree-Fock treatment: 

                                                                                                                      (17) 

The      is a purely electronic term which represents the perturbation correction, 

and it can be written as: 

     ∑
|⟨  

   
|  |  ⟩|

 

     
      ,                                         (18) 

where    is the ground-state Hartree-Fock wave function,    is the zeroth order MP 

energy,   
   

 is the unperturbed wave function, and   
   

 is the correlated energy. The 

perturbation    is the difference between the true interelectronic repulsions and the 

Hartree-Fock interelectronic potential.  

Calculated properties like geometries and relative energies tend to be better when 

done with Møller–Plesset perturbation theory. [27] The essence of the Møller–Plesset 

method is that the correction term handles electron correlation by promoting electrons 

from occupied to unoccupied MOs, giving electrons more room to move and thus making 

it easier for them to avoid one another, and the decreased interelectronic repulsion results 

in a lower electronic energy. [27] 

MP3 calculations take a lot longer than MP2 calculations, but provide little 

improvement over MP2 molecular properties and so are rarely done. By far, the most 

common MP level used is MP2. [18]  
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1.3.5 Density Functional Theory 

Density functional theory is based on the two Hohenberg-Kohn [34] theorems, 

which state that the ground-state properties of an atom or molecule are determined by its 

electron density function, and that a trial electron density must give energy greater than 

or equal to the true energy. [27] Density functional theory is based on the electron 

probability density or the charge density, and designated by ρ(x, y, z). [27] This electron 

density ρ is measureable by X-ray diffraction or electron diffraction. [35] The electron 

density is a function of position only, that is, no matter how big the molecule may be, the 

electron density remains a function of three variables (while the wavefunction of an n-

electron molecule will have 4n variables). Thus, the density trumps the wavefunction in 

three ways: it is measurable; it is intuitively comprehensible, and it is mathematically 

more tractable. [27] The main advantage of density functional theory is that in about the 

same time needed for a Hartree-Fock calculation one can often obtain results of about the 

same quality as from MP2 calculations. [27]  

The ground state electronic energy Eo is a functional of ρo and is written as: 

                                                                      [  ] ,                                               (19) 

where the square brackets denote a functional relation. The ground state electronic energy 

of the real molecule is the sum of the electron kinetic energies, the nucleus-electron 

attraction potential energies, and the electron-electron repulsion potential energies: 

                                              〈 [  ]〉  〈   [  ]〉  〈   [  ]〉                               (20) 
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The angle brackets indicate that these energy terms are quantum-mechanical 

average values, and each is a functional of the ground-state electron density. For an 

accurate treatment of the electronic kinetic energy term, Kohn and Sham [36] proposed 

the density in terms of one-electron orbitals  . Then the electron density can be written 

as: 

                                                                     ∑ |  |
  

                                                (21) 

The electron-electron repulsion term can be decomposed into Coulomb and 

exchange terms, J[ρ] and K[ρ]. The final DFT energy expression then can be written as: 

                                               [ ]     [ ]   [ ]     [ ] ,                            (22) 

where the exchange correlation functional    [ ] contains the difference between the 

exact kinetic energy and Ts, the exchange part of electron-electron repulsions, K[ρ], and 

correlations to both K[ρ] and J[ρ].  

In the Kohn-Sham case, the HF exchange operators are replaced by the functional 

derivative of the exchange correlation energy.[19] The exact form of    [ ]  is not 

currently known, but a rapidly growing list of approximate exchange correlation 

functionals have appeared in the literature. [19] Generally, most existing exchange 

correlation functionals are split into a pure exchange and correlation contribution, Ex[ρ] 

and Ec[ρ]. The functional used in this research is B3LYP method which is a hybrid 

functional. B3LYP stands for Becke, three-parameter, Lee-Yang-Parr, and it includes 

20% exact exchange and involves three semiempirical parameters that were obtained by 

fits to experimental thermochemical data of small molecules.[37] 
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1.3.6    Conductor-like Screening Model (COSMO) 

All the previous methods of calculations have been done in the gas phase. 

However, the properties of molecules and transition states can differ considerably 

between the gas phase and solution. [38] COSMO is a calculation method for 

determining the electrostatic interaction of a molecule with a solvent which was 

developed by Klamt and Schüürmann.[39] 

The COSMO model is a dielectric model in which the solute molecule is 

embedded in a molecule-shaped cavity surrounded by a dielectric medium with given 

dielectric constant ε.[27] The key algorithms for calculating the properties of a molecule 

in solution is to formulate a solution Hamiltonian operator in which these energy terms 

appear in addition to the in vacuo terms of the electron kinetic energy, electron-nucleus 

attraction , and electron-electron repulsion. [27] The COSMO model uses a conducting 

medium (ε infinite) and introduces the solvent dielectric constant as a correction factor. 

[39] The COSMO method is very fast when used, as is usually the case, with gas phase 

geometries followed by single-point calculations in solvent. The method used in this 

research is a particular implementation of COSMO that allows efficient geometry 

optimization in solution is called C-PCM (conductor polarizable continuum model).  
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1.4 Objectives 

 The primary objective of this research is to perform a comprehensive ab initio 

computational study of nickel(II) complexes with water, chloride, hydroxide and 

ammonia. These series of complexes will be studied up to and including the 

hexacoordinate species. The studies will include geometry optimization and bond length 

and frequency analysis. Single point C-PCM calculations will be performed based on the 

optimized B3LYP/6-31+G* structures. Calculated Raman spectra will be plotted for the 

optimized HF/6-31+G* complexes. Although this research will not include data at high 

temperature and pressure, it will provide a good starting point for the experimental work 

that will be performed at the University of Guelph by the Peter Tremaine group. Even 

with the Raman data being calculated at zero Kelvin and in the gas phase it will still be 

applicable to the high temperature, high pressure experiments because the frequencies 

will not actually deviate that much due to anharmonicity and weaker molecular bonds at 

high temperature.  
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Chapter II: Methods 

All the calculations were performed using the Gaussian 03 software package on 

Atlantic Computational Excellence Network (ACEnet). [40] 

Gaussian is a computational chemistry software program initially released in 1970 

by John Pople and his research group as Gaussian 70 [41], and it has been continuously 

updated since then.  The Gaussian package can do a variety of calculations, like 

molecular mechanics, semi-empirical calculations, ab initio calculations, etc. In this 

research, the Unix/Linux version of Gaussian 03 was used. ACEnet is a consortium of 

Atlantic Canada Universities providing researchers with high performance computing 

resources. [42] ACEnet has six primary clusters in Atlantic Canada, and the specific 

cluster used in this research is located at Memorial University of Newfoundland and is 

named “Placentia”.   

The levels of theory used in this research are Hartree-Fock (HF), second order 

Møller–Plesset perturbation theory (MP2) and B3LYP hybrid density functional theory, 

and the basis set is 6-31+G* which is widely used for studies of transition metal 

containing systems. [120] Geometries were optimized using a stepping stone approach, in 

which the geometries at HF, MP2 and B3LYP levels were optimized sequentially. When 

this approach failed (as one or more ligands dissociated), the problematic level was 

skipped. Default optimization specifications were normally used. After each level, a 

frequency calculation was performed at the same level and the resulting Hessian was 

used in the following optimization (geom=allcheck). The frequencies depend on the 

second derivative of the energy with respect to the nuclear positions. A minimum on the 
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potential energy surface has all the force constants positive. [27] Since a frequency 

calculation involves taking square root of a force constant, and the square root of a 

negative number is an imaginary number, and it is called imaginary frequency. [38] Z-

matrix coordinates constrained to the appropriate symmetry were used as required to 

speed up the optimizations. The calculated potential energy surface stationary points were 

characterized by the vibrational frequencies from the Hessian. All frequencies were real 

for a true minimum. Optimizations were carried out to completion for all levels in the 

sequence even if one or more of the levels proved not to be local minima. The structures 

were visualized with the MOLDEN software package. [43] 

The polarized Raman spectra are plotted using a code created by my supervisor, 

Dr. Cory C. Pye. These spectra were created from the frequency data obtained in the 

output file of the HF/6-31+G* calculation primarily because Raman intensity calculations 

are standard in Hartree-Fock frequency calculations. Conductor-like polarizable 

continuum model (C-PCM) calculations were performed only on the stable, optimized 

B3LYP/6-31+G* structures. These calculations were single-point calculations and are 

completed by inserting SCRF=CPCM in the input line of the calculation along with the 

level of theory and basis set. Water is used as the default solvent. 
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Chapter III: Hydrated Nickel(II) and Nickel(II) Complexes Combines with Water, 

Chloride, Hydroxide and Ammonia 

The ab initio investigation of nickel(II) complexes throughout this thesis involve 

four ligands and the complexes that they make with the nickel(II) ion. These ligands are 

hydroxide (OH
-
), water (H2O), chloride (Cl

-
) and ammonia (NH3). These ligands, and the 

complexes of them, are all important with respect to the development of the Supercritical 

Water-Cooled Reactor (SCWR). The formation of these complexes and their 

transportation throughout the reactor environment may lead to enhanced corrosion and 

deposition of the pipes and valves and, ultimately, a nuclear leakage.  

This chapter includes the computational results and discussion/literature 

comparison of the nickel(II) complexes with water, chloride, hydroxide and ammonia. 

These aqua complexes were studied up to and including the hexa-coordinate species. The 

chloro, hydroxo, and ammine complexes were studied up to hexa-coordinate species with 

and without water molecules. The water molecules were added to investigate how 

hydration affects the stability of the given species. All of the results regarding total 

energies, bond lengths and vibrational frequencies are from the HF, MP2 and B3LYP 

calculations utilizing the 6-31+G* basis set. These calculations are all zero Kelvin, gas-

phase calculations. Molecular geometries are presented for the MP2/6-31+G* and 

B3LYP/6-31+G* calculations. The aqueous C-PCM results are all from single-point 

calculations using the fully optimized B3LYP/6-31+G* calculations. All simulated 

Raman spectra are from the vibrational frequency data calculated from HF/6-31+G* 

because Raman intensities are standard for HF calculations. All structures shown will 
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only be those of the absolute energy minima, unless other local minima were found that 

had noticeably different geometries.  

 

3.1       Water, Hydroxide, Chloride and Ammonia Ligands 

Ab initio calculations were performed on the ligands involved with the nickel(II) 

(with the triplet spin state) complexes for reasons of stability comparison. Table 3A.1, 

found in the supplementary material section, gives the total energies of the ligands with 

the given levels of theory (the basis set will be excluded in all energy tables because only 

results utilizing the 6-31+G* basis set will be reported). Also included in Table 3A.1 is 

the total free energy in solution, calculated using C-PCM and the optimized B3LYP 

geometry. 

                                             

 

 

                                                

 

 

Figure 3-1: Optimized MP2 and B3LYP geometries for the Ni(II) ion and all ligands 

used in the calculations of nickel(II) complexes. 
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3.2       Aquanickel(II) Complexes, [Ni(H2O)n]
2+

, where n=1-6 

The hydration structure of the Ni(II) ion has been well investigated using various 

experimental and computational methods. Hydrated nickel(II) complexes are known to 

form octahedral geometry species with 6-coordinated water molecules at room 

temperature, as well as tetrahedral complexes with 4-coordinated water molecules at high 

temperature. [79] Hoffmann et al. [59] showed that the structure about Ni
2+

 changes from 

6- to 4- coordinate upon increasing the temperature from 25 °C to 425 °C by XAFS 

measurement. The majority of the studies on hydrated nickel(II) complexes show that 

Ni(II) ion is coordinated by six H2O molecules in the first coordination sphere. The 

[Ni(H2O)6]
2+

 ion has been studied by infrared photodissociation spectroscopy [80], X-ray 

absorption fine structure [81], X-ray absorption near-edge structure [50], molecular 

dynamics method (MD) [45,50,81,82], Monte Carlo method (MC) [51], ab initio 

[44,51,53,55,56,61,83], water exchange [47,57], NMR [46], Raman Spectroscopy 

[68,69], neutron diffraction [58], and X-ray crystallography [48]. The results for the 

monohydrate [44,45,51,60,67,84] and pentahydrate [44,53,80] have also been reported. 

Fewer studies have been completed on the dihydrate, trihydrate and tetrahydrate ions. 

[44] 

3.2.1    Results 

Stable structures were found for all aquanickel(II) complexes up to and including 

the hexaaquanickel(II) ion. The total energies, including the aqueous C-PCM energy, for 

all aqua complexes studied are given in Table 3A.2 in the supplementary materials. The 
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lowest energy optimized MP2 and B3LYP structures of these complexes are given in 

Figure 3-2 along with their respective symmetries.  

          

 

                                   

                                    

 

                  

                       

 

 

Figure 3-2: Optimized MP2 and B3LYP geometries for [Ni(H2O)n]
2+

, where n=1-6. All 

structures are similar with the exception of the dihydrate which is D2d at 

MP2 and D2h at B3LYP. (grey=nickel, red=oxygen, white=hydrogen) 
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The monohydrate has a preferred symmetry dependent on the level of theory. For 

MP2 the most stable geometry is C2v, but the C2v structure has an imaginary frequency at 

B3LYP level. The B3LYP structure was most stable with Cs symmetry. For the 

dihydrate, D2h and D2d structures were tried first, and D2h structure has lowest energy at 

B3LYP level, whereas the D2d structure has lowest structure at MP2 level. The preferred 

structure for triaquanickel was C3 at both levels. The tetrahydrate has Cs symmetry and 

the pentahydrate has C2v symmetry. Finally, the hexahydrate has a preferred Th geometry 

at both levels. 

Plots were constructed of the Ni-O bond lengths and vibrational stretching 

frequencies and are shown in Figure 3-3, Figure 3-4 and Figure 3-5 for HF, MP2 and 

B3LYP respectively. The simulated polarized Raman spectrum for the hexaaquanickel(II) 

species can be found in Figure 3-6. 

 

3.2.2    Discussion/Literature Comparison 

The structure found for the monohydrate complex is consistent with the 

computational study by Bustamante et al. [44]. The Ni-O bond length they found is 1.892 

Å, which is slightly longer than the MP2 and B3LYP results presented here of 1.882 Å 

and 1.861 Å respectively. This difference can be attributed to the fact that Bustamante et 

al. used BPW91 theory with a larger basis set, 6-311+G(d,p). Iuchi et al. [45] found a 

value of about 1.900 Å from MD simulation for the Ni-O distance which is also slightly 

longer than the result from this research. Magnusson and Moriarty [60] found the Ni-O 
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distance to be 1.906 Å using MP2/6-311+G**. No experimental data was found 

regarding the monohydrate complex. 

The bond lengths for the dihydrate are 1.902 Å and 1.876 Å for MP2 (D2d) and 

B3LYP (D2h) respectively. Bustamante et al. [44] reported the 1.867 Å for D2h structure 

which is in agreement with the B3LYP result presented here. Overall the Ni-O bond has 

increased slightly when compared to the monohydrate. No experimental data was found 

to compare these results to. 

The most stable structure for the trihydrate complex proved to be C3 for both 

levels of theory. The Ni-O bond lengths for these structures were found to be 1.942 Å and 

1.928 Å for MP2 and B3LYP respectively. Bustamante [44] found Ni-O bond length of 

about 1.931 Å which is in agreement with the MP2 and B3LYP results. The bond lengths 

are longer when compared to the mono- and dihydrate values. The result can be attributed 

to there being an increased number of ligands which would have the effect of repulsion 

forcing the bonds to be longer. Again, no experimental data was available for 

comparison. 

The tetrahydrate species has Cs symmetry which is most stable. The average Ni-O 

bond lengths are 1.989 Å and 1.986 Å for MP2 and B3LYP respectively. Bustamante et 

al. [44] reported a bond length of 1.990 Å for the C4 geometry. The C4 structure has also 

been tested, and it is stable at both levels, but the energies are slightly higher than the Cs 

structure. Since the symmetry is different, the results from this research cannot be 

compared to those of Ref. [44]. Other than this study, no others were found regarding 

molecular structure of tetrahydrate species.  
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The pentahydrate species that proved to be most stable has C2v symmetry. The 

average Ni-O bond lengths are 2.032 Å and 2.036 Å for MP2 and B3LYP respectively. 

Bustamante et al. [44] reported a bond length of 2.047 Å for the same symmetry which is 

also slightly longer than our results. Mare et al. [53] found the Ni-O distance to be 2.017 

Å – 2.052 Å from different basis sets. These values are in agreement with our results. 

The hexahydrate species is the most reported of the nickel(II) aqua ion in the 

literature. The most stable geometry for this ion has been found to be Th. The Ni-O 

distances that have been found are 2.071 Å and 2.079 Å for MP2 and B3LYP 

respectively. There have been many studies on the hexaaquanickel(II) ion. Bustamante et 

al. [44] reported a bond length of 2.093 Å for the same symmetry. Natália et al. [49] 

performed classical MD and classical MC simulations and reported Ni-O bond lengths of 

2.250 Å and 2.210 Å respectively. Aguilar et al.[51] reported the bond lengths of 2.05 Å 

and 2.092 Å from MC simulation and B3LYP/LANL2DZ calculation respectively. Mare 

et al. [53] performed calculations with various programs and basis sets, and obtained 

values of Ni-O as 2.073 Å (def2-SVP), 2.086 Å (def2-TZVP, def2-aug-TZVP, def2-

QZVP), 2.089 Å (TZVP), 2.092 Å (QZV3P), 2.093 Å (TZV2P) and 2.100 Å (DZVP). 

Varadwaj et al. [55] reported a value of 2.093 Å by RX3LYP/6-311++G(d,p) calculation. 

Rulíšek et al. [56] used B3LYP/6-311++G(d,p) to give a bond length of 2.087 Å. 

Akesson et al. [57] reported an average value of 2.108 Å at the HF-SCF level of theory. 

Fujii et al. [61] found a value of 2.086 Å from B3LYP/6-311+G(d,p) calculation. There 

are some experimental values of 2.002 Å [46], 2.060 Å [47], 2.10 Å [58] and 2.056 Å 

[48] determined in the liquid for the coordination of the Ni
2+ 

ion with six water 

molecules. D’Angelo et al.[50] performed a XANES (X-ray absorption near-edge 
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structure) study on aquanickel(II) and reported a value of 2.03 Å. Inada et al. [52] 

reported a value of 2.05 Å from extended X-ray absorption experiment. Neilson et al. 

[54] found the Ni-O distance to be 2.06 Å by ND experiment. Waizumi et al. [62] 

reported the bond length to be 2.002 Å by XRD method. Magini et al. [63,64] and 

Caminiti et al. [65] also performed XRD experiments and found the value of 2.069 Å, 

2.056 Å - 2.072 Å and 2.05 Å - 2.06 Å respectively in NiCl2 solution. Sandstrom et al. 

[66] performed extended X-ray absorption fine structure study on NiCl2 solutions and 

give a value of 2.07 Å for Ni-O distance. These computational and experimental data are 

all in good agreement with our results. 

Vibrational stretching frequencies were also calculated for this set of hydrated 

nickel(II) complexes as seen in Figure 3-3 to 3-5. One of the reasons for calculating these 

complexes is so that they can be compared to experimental Raman studies that have been 

or will be completed. They can be used to confirm or refute any experimental Raman 

findings that cannot be unambiguously assigned to a specific complex. Solution Raman 

data that could be found regarding these complexes were for hexaaquanickel(II) ion. Fujii 

et al. [61] performed B3LYP/6-311+G(d,p) calculations and reported the totally 

symmetric vibrational frequencies to be 347 cm
-1

, which is in consistent with our results 

of 335 cm
-1

 (HF), 355 cm
-1

 (MP2) and 350 cm
-1

 (B3LYP). Edwards and Knowles [68] 

and Bickley et al. [69] performed Raman spectroscopy in formate solution and malonate 

solution respectively, and their results were 390 cm
-1

 and 395 cm
-1

. The calculated results 

underestimate the values obtained experimentally by 40 cm
-1

- 60 cm
-1

 due to the fact that 

our calculation did not include solvation effects. These underestimations are consistent 
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with similar studies completed previously on scandium chloro complexes [70] and zinc 

chloro complexes [71].  

Some general trends can be drawn from the plots of bond lengths and stretching 

frequencies shown in Figures 3-3 to 3-5. Concerning the bond lengths, as more water 

ligands are added to the nickel, the Ni-O bond lengths show a general increasing trend. 

This is caused by overcrowding of the nickel resulting in the electronic repulsion between 

the water ligands. The opposite trend is seen in the Ni-O vibrational stretching 

frequencies. As the Ni-O bond lengths increase the vibrational stretching frequencies 

decrease. This trend is logical because if a bond is longer it will take less energy to cause 

it to vibrate and therefore have a corresponding frequency that is lower. 
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Figure 3-3: Ni-O bond lengths and vibrational stretching frequencies for [Ni(H2O)6]
2+

, where n=1-6, calculated at the HF/6-

31+G* level. 
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Figure 3-4: Ni-O bond lengths and vibrational stretching frequencies for [Ni(H2O)6]
2+

, where n=1-6, calculated at the MP2/6-

31+G* level. 
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Figure 3-5: Ni-O bond lengths and vibrational stretching frequencies for [Ni(H2O)6]
2+

, where n=1-6, calculated at the 

B3LYP/6-31+G* level. 
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3.3       Aquachloronickel(II)  Complexes, [NiCln(H2O)m]
2-n

, where n=1-4, m=0-(6-n) 

3.3.1    Results 

Nickel chloride complexes are most frequently reported as neutral dichloronickel 

complex, which has been studied comprehensively by electron diffraction [73], ab initio 

methods [72,87], X-ray diffraction [74],  crystal field study [88], Raman[90], Infrared[89], 

and UV-vis-NIR[78]. All these studies showed that the NiCl2 molecule is linear. [85] 

Lemaire et al. [72] investigated NiCln
2-n

 complexes by DFT calculations, and suggested 

that the NiCl3
-
 is the most stable complex. The hydrated nickel chloride is known to form 

diaquadichloro- [74,91], tetraaquadichloro- [61,62,74,77,86], and pentaaquamonochloro- 

[61] species. Light green translucent crystals of NiCl2(H2O)4 (s) can be grown from an 

aqueous solution of NiCl2. [77] In the neutral NiCl2(H2O)4 complex, the nickel(II) ion is 

surrounded by four water molecules and two chloride ions, and two of the water 

molecules are coordinated to nickel approximately in one of the tetrahedral directions; the 

other two are trigonally coordinated.[77] NiCl2(H2O)4 can be either the trans- or cis- 

isomer, where cis-NiCl2(H2O)4 is more stable than trans- NiCl2(H2O)4 without solvation, 

while trans-NiCl2(H2O)4 is more stable than cis-NiCl2(H2O)4 when solvation is included. 

[61] Thermodynamic studies of dehydration have been completed on dichloronickel(II) 

complexes. [91]  

Stable structures were found for all anhydrous chloronickel(II) complexes up to 

and including tetra-coordinate species. These aquanickel complexes were hydrated and 

studied further up to and including hexa-coordinate species. The penta- and 

hexachloronickel were also studied but these structures underwent dissociation of one or 
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more chloride ligands. Therefore, stable structures for those complexes were not found. 

The total energies for the stable geometries, as well as the others that were attempted can 

be found in Table 3A.7 of the supplementary materials section. The geometries of the 

lowest energy structures can be found in Figure 3-6 for the mono- and dichloronickel 

complexes and Figure 3-7 for the tri- and tetrachloronickel complexes.  

The anhydrous monochloronickel complex has C∞v symmetry. The monohydrate 

has Cs symmetry. The dihydrate has stable C2v structure at both levels, but the most stable 

structure is C1. The most stable structure for the trihydrate is C3 at MP2, but the same 

symmetry has an imaginary at B3LYP, and the preferred geometry is C1 at B3LYP. The 

tetrahydrate has a preferred symmetry dependent on the level of theory. The most stable 

structure is C2 for MP2, whereas the most stable structure at B3LYP is C1. The most 

stable pentahydrate has no symmetry at both levels. 
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Figure 3-6: Optimized MP2 and B3LYP geometries for [NiCln(H2O)m]
2-n

, where n=1-2 

and m=0-(6-n). All symmetries marked with “*” indicate B3LYP otherwise all 

MP2 and B3LYP structure are similar. (grey=nickel, red=oxygen, 

white=hydrogen, green=chloride) 
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Figure 3-7: Optimized MP2 and B3LYP geometries for [NiCln(H2O)m]
2-n

, where n=3-4 

and m=0-(6-n).  

The anhydrous dichloronickel complex has D∞h symmetry. The stable structure of 

the monohydrate is C1 at both levels. The dihydrate is stable with C2v symmetry. The 

stable structure of the trihydrate is without symmetry at C1. The tetrahydrate has stable 

cis-C2 and trans-C4h (with lowest energy) structures at both levels. 

D3h 

C2v C2v 

fac-C3v 
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The anhydrous trichloronickel complex did not cause any symmetry problems, 

and at both levels showed a preferred D3h symmetry. The monohydrate has a stable Cs 

structure at HF level, but it showed an imaginary frequency at MP2 and B3LYP levels. 

The C1 symmetry was preferred at both levels. The stable structure of the dihydrate is 

without symmetry at C1 at both levels. The trihydrate complex has lowest structure C3v at 

both levels. The meridional (mer) C1 structure is also stable and competitive in energy.  

The anhydrous tetrachloronickel complex did not cause any symmetry problems 

and at both levels showed a preferred Td symmetry. The stable structure of the 

monohydrate has C2v geometry with two chlorides hydrogen bonded to the hydrogen 

atoms respectively. The stable structure of the dihydrate has C2v symmetry with two 

chlorides hydrogen bonded with two hydrogen atoms from two different water moleules. 

No stable structures were found for the penta- and hexachloronickel(II) 

complexes. All the geometries attempted showed dissociation of chloride ligands. Since 

stable structures were not found for these complexes, they will not be discussed further. 

Plots of the Ni-O and Ni-Cl bond lengths and vibrational stretching frequencies 

were constructed and can be seen in Figure 3-8, Figure 3-9, and Figure 3-10 for HF, MP2 

and B3LYP respectively. Within the plots, the lines highlighted in red indicate which 

bond lengths and stretching vibrations involve chloride ligands. Simulated polarized 

Raman spectra were also created for the stable HF structures and can be found in Figure 

3A-2 of the supplementary materials section. 
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3.3.2    Discussion/Literature Comparison 

Structural comparisons made between our results and the literature found on these 

complexes will be done primarily through bond length data. Lemaire et al. [72] reported 

from BLYP/6-31G* calculations of NiCln
2-n

 (n=1-4) with the same symmetry as our 

results. The bond lengths reported by Lemaire et al. [72] are 2.11 Å, 2.11 Å, 2.23 Å, and 

2.38 Å respectively (NiCln
2-n

, n=1-4). Our results for NiCl3
-
 and NiCl4

2-
 are 2.24 Å and 

2.40 Å at B3LYP level which are in good agreement with their results, and our results for 

NiCl
+
 and NiCl2 are 2.02 Å and 2.07 Å which are lower than their results about 0.09 Å – 

0.04 Å at B3LYP level. Their study also showed that nickel complexes with more than 

four chlorine atoms are not stable. Hargittai et al. [73] reported the NiCl2 bond distance 

of 2.076 Å by a combined gas-phase electron diffraction and vibrational spectroscopic 

experiment which is in consistent with our result. Ashworth et al. [75] reported the 

experimental value of NiCl2 bond length to be 2.056 Å. Marcus [76] reported the Ni-Cl 

distance of NiCl2 to be 2.07 Å. Waizumi et al. [74] reported the Ni-Cl bond length of 

NiCl2 to be 2.06 Å. All these data are in good agreement with our results. 

A few data have been found for hydrated nickel chloride. Fujii et al. [61] reported 

the Ni-O and Ni-Cl bond lengths for NiCl(H2O)5
+
 to be 2.11-2.13 Å and 2.29 Å 

respectively by B3LYP/6-311+G(d,p) calculations. Fujii et al. [61] also calculated the Ni-

O and Ni-Cl bond lengths for cis-NiCl2(H2O)4 to be 2.108-2.109 Å and 2.347 Å 

respectively. They also reported the geometries for trans-NiCl2(H2O)4, which has higher 

energy than the cis-isomer.  Waizumi et al. [62] and Ptasiewicz-Bak et al. [77] performed 

X-ray diffraction experiments on NiCl2(H2O)4 crystals, and obtained the Ni-O bond 
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lengths to be 2.063 Å and 2.089 Å, and the Ni-Cl bond lengths to be 2.375 Å and 2.400 Å 

respectively. Waizumi et al. [74] reported the Ni-O and Ni-Cl bond lengths of 

NiCl(H2O)5
+
 to be 2.05 Å and 2.36 Å respectively by X-ray diffraction experiments. For 

the NiCl(H2O)5
+
, our results are 2.0887-2.1088 Å (Ni-O) and 2.2507 Å (Ni-Cl) at MP2, 

and 2.1007-2.1366 Å (Ni-O) and 2.2904 Å (Ni-Cl) at B3LYP. For the cis-NiCl2(H2O)4, 

our results are 2.082-2.135 Å (Ni-O) and 2.309 Å at MP2, and 2.104-2.152 Å (Ni-O) and 

2.353 Å at B3LYP. Our results are in good agreement with the computational results, and 

underestimate the Ni-Cl bond lengths by 0.022-0.091 Å when compared with the XRD 

experimental results.  

The plots of Ni-O and Ni-Cl bond lengths and vibrational stretching frequencies 

can be found in Figures 3-8 to 3-10, and some general trends can be seen from the plots. 

As more water molecules are added to the system, the Ni-O and Ni-Cl bond lengths 

increased and the vibrational stretching frequencies decreased respectively. The Ni-O 

bond lengths are uniformly shorter than the Ni-Cl bond length by 0.1-0.3 Å. As the Ni-O 

and Ni-Cl bond lengths increase, the bond becomes weaker and it requires less energy to 

stretch, so that the vibrational frequency becomes lower. The Raman active frequencies 

are important for comparison with experiment. Simulated polarized Raman plots are 

located in Figure 3A-2 in the supplementary materials section. These plots are based on 

Raman intensities calculated at the HF level of theory. Unfortunately no experimental 

Raman data was found to compare these results with.  
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Figure 3-8: Ni-O (red “+”) and Ni-Cl bond lengths and vibrational stretching frequencies for [NiCln(H2O)m]
2-n

, where n=1-4, 

m=0-(6-n), calculated at the HF/6-31+G* level.  
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Figure 3-9: Ni-O (red “+”) and Ni-Cl bond lengths and vibrational stretching frequencies for [NiCln(H2O)m]
2-n

, where n=1-4, 

m=0-(6-n), calculated at the MP2/6-31+G* level.  
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Figure 3-10: Ni-O (red “+”) and Ni-Cl bond lengths and vibrational stretching frequencies for [NiCln(H2O)m]
2-n

, where n=1-4, 

m=0-(6-n), calculated at the B3LYP/6-31+G* level.  
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3.4       Aquahydroxynickel(II) Complexes, [Ni(OH)n(H2O)m]
2-n

, where n=1-4, m=0-

(6-n) 

Nickel radioisotopes are known to form poorly crystalline Ni(OH)2 under highly 

alkaline conditions (pH > 12.5). [97] Nickel hydroxide is widely used as the active 

material for positive electrode in alkaline secondary batteries. [99] Nickel hydroxide has 

a hexagonal layered structure with two polymorphs, α and β. [100] The β-Ni(OH)2 is well 

crystallized, and it possesses a brucite-like structure, whereas the α-Ni(OH)2 is unstable, 

poorly crystallized and consists of a stacking of positively charged Ni(OH)2-x layers, with 

intercalated anions and water molecules in the interlayer space to restore charge 

neutrality. [101] The α-nickel hydroxide is a metastable phase and it changes rapidly to 

the β-form in strong alkali. [100] The nickel hydroxide has been studied comprehensively 

by experiments. Spectroscopic studies on nickel hydroxide have been completed by 

Infrared [94], UV/Vis spectroscopy [95], Extended X-ray absorption fine structure [96], 

diffuse reflectance spectroscopy (DRS) [97], X-ray diffraction [98], inductively coupled 

plasma atomic emission spectroscopy (ICP-AES) [99] and Raman spectroscopy[102,103]. 

There are additional reports on nickel hydroxide, like synthesis of the α- [99,100] and β- 

[99,100,101] forms and solubility under various temperature and pH conditions [104,105]. 

The monohydroxide nickel(I) is used as an additive to increase the discharge capacity of 

Cd electrodes. [94] The NiOH
+
 has been studied by computational methods [60,92-94], 

and the bond lengths, binding energies and infrared spectra have been calculated. For 

Ni(II) ~ 10
-8

 M and pH ~8, higher order hydrolysis complexes like Ni(OH)3
-
, Ni(OH)4

2-
 

have been reported by Baes and Mesmer [106]. Solubility measurements of NiO have 

also shown the existence of tri- and tetrahydroxo nickel complexes, as well as the 
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existence of Ni4(OH)4
+
 in a high pH environment.[104] A computational study of the 

structures for [Ni(OH)(H2O)5]
+
 and [Ni(OH)2(H2O)4] has been completed. [61] The 

structural, energetic and  electronic properties of [Ni(OH)(H2O)5]
+
, [Ni(OH)2(H2O)2], 

[Ni(OH)2(H2O)3], [Ni(OH)2(H2O)4] have also been studied by computational methods. 

[95]  

3.4.1    Results 

Stable structures were found for all hydroxide complexes up to and including the 

hexacoordinate tetrahydroxo species. Calculations were also completed on the penta- and 

hexahydroxo complexes, but these species showed dissociation of one or more hydroxide 

ligand and preferred to exist as ion pairs. Stable structures of these ion pair complexes 

were not found. Total energies, as well as C-PCM energies for all hydroxide complexes 

studied can be found in Table 3A-12 of the supplementary materials section. Optimized 

geometries of the stable complexes are located in Figure 3-11 for the mono- and 

dihydroxo complexes and in Figure 3-12 for the tri- and tetrahydroxo complexes.  

The anhydrous monohydroxo complex did not cause any symmetry problems as 

all levels showed a preferred Cs symmetry with the bent Ni-O-H angle. For the 

monohydrate, Cs structure was tried first, and it is stable but higher in energy than the C1 

species at both levels. The C1 structure looks similar to the Cs structure, but the hydroxide 

ligand is slightly twisted. Two Cs structures were tried for the dihydrate, but they both 

showed imaginary frequencies at both levels. The C1 symmetry is preferred at both levels. 

Various Cs structures were also tried for the trihydrate, and ultimately the only stable 

structure is C1. The preferred tetrahydrate structure is C1, and no stable structures with 
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higher symmetry were found. The most stable pentahydrate has no symmetry at both 

levels.  

                                                                         

                                                                     

                                                   

             

 

Figure 3-11: Optimized MP2 and B3LYP geometries for [Ni(OH)(H2O)n]
+
 and 

[Ni(OH)2(H2O)n]. (grey=nickel, white=hydrogen, red=oxygen)                                                                                                                                                        
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For the anhydrous dihydroxonickel, two C2v structures were tried first, but only 

the “W” shaped structure was stable at both levels, and a C2 structure was proved to be an 

energy minimum. For the monohydrate, the Cs structure was only a minimum at MP2 

level, and the C1 structure was preferred otherwise. The only stable geometry found for 

the dihydrate and trihydrate has C1 symmetry at both levels. The tetrahydrate was stable 

with C1 symmetry with a water molecule in the second hydration sphere. A cis-C1 

structure with all the ligands directly bonded to nickel is also stable but competitive in 

energy. 

The anhydrous trihydroxonickel has stable C3 and C1 structures at both levels, and 

they are competitive in energy. The C3 structure proved to be a minimum. When a single 

water adds to Ni(OH)3
-
, a Cs structure is formed although it is not stable at both levels. 

The only stable structure found for the monohydrate has C1 symmetry with a water 

molecule migrated to the second solvation shell. For the dihydrate, also the only stable 

structure found was C1 with a water molecule in the second hydration sphere and 

hydrogen bonded to the other water molecule which is directly bonded to the central 

nickel and one of the hydroxide. For the trihydrate, a facial (fac) C3v structure with all the 

ligands directly bonded to the central nickel was located, but it is only stable at MP2 level. 

The three water molecules migrated to the second hydration sphere to form new C3v and 

C3 (with lower energy) structure at B3LYP level.  
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Figure 3-12: Optimized MP2 and B3LYP geometries for [Ni(OH)3(H2O)n]
-
 and 

[Ni(OH)4(H2O)n]
2-

. 

 

For the anhydrous tetrahydroxonickel, stable structures found were S4 and C2, 

with C2 being energetically preferred at both levels. The only stable structure found for 

monohydrate was also with C2 symmetry in which the water molecule in the second 

hydration sphere and hydrogen bonded to the hydroxide ligands. The dihydrate was also 

C3 C1 C1 

fac-C3v C3v 

C2 C2 C2 
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only stable at C2 geometry with two water molecules in the second hydrogen sphere and 

hydrogen bonded to the hydroxide ligands.  

Bond length and vibrational stretching frequency data was also tabulated for all 

the stable aquahydroxo complexes and can be found in the supplementary materials 

section. Plots of the bond lengths and vibrational stretching frequencies can be found in 

Figure 3-13, Figure 3-14 and Figure 3-15 for HF, MP2 and B3LYP respectively. 

Simulated polarized Raman spectra can be found in Figure 3A-3 of the supplementary 

materials section. 

3.4.2    Discussion/Literature Comparison 

The geometries that have been found can primarily be confirmed by comparison 

with available data from crystal structures found in literatures, or other computational 

studies that have been completed on similar complexes. The Ni-O-H bond angels are 

always bent in all the aquahydroxo complexes at all levels. 

Previous ab initio calculations can be compared to this work. Our results for the 

Ni-O bond length of Ni(OH)
+
 are 1.734 Å and 1.768 Å for the MP2 and B3LYP levels 

respectively. Magnusson and Moriarty [60] found 1.76 Å for the Ni-O distance which is 

in good agreement with our B3LYP calculations. Trachtman et al. [92] found that the 

Ni(OH)
+
 ion had a Ni-O distance of 1.779 Å which is slightly longer than our results. It 

could be explained by their relatively larger basis set (6-311++G**). Ricca and 

Bauschlicher [93] obtained the Ni-O bond length to be 1.712 Å which is about 0.022-

0.056 Å as they used a different basis set ([8s4p3d] contraction of the (14s9p5d) 

primitive set). Wang et al. [94] reported the Ni-O distance to be 1.764 Å by B3LYP/6-
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311++G(3df,3pd) calculations. Although Wang et al. used a larger basis set, their result is 

consistent with our B3LYP result. No one has examined the partially hydrated structures, 

so only the pentahydrate structures can be compared. Fujii et al. [61] obtained 1.944 Å 

(Ni-OH) and 2.11-2.14 Å (Ni-OH2) for the pentahydrate Ni(OH)
+
 by B3LYP/6-311+G 

calculations. Their results are in agreement with what been found for the Ni-O distances 

to be 1.926 Å (Ni-OH) and 2.090-2.119 Å (Ni-OH2) at MP2 level, and 1.936 Å (Ni-OH) 

and 2.110-2.138 Å (Ni-OH2) at B3LYP level respectively.  

The calculated Ni-O bond distance for Ni(OH)2 is 1.761 Å and 1.730 Å for MP2 

and B3LYP respectively. Wang et al. [94] obtained a C2h structure with the Ni-O distance 

of 1.737 Å using B3LYP/6-311++G(3df,3pd). Our C1 structure is very similar to the C2h 

structure, and the C2h structure was also been tested, but there are imaginary frequencies 

at both levels. These results could also been compared to previous experimental data. 

Pandya et al. [96] examined the EXAFS data of β-Ni(OH)2 and reported the Ni-O bond 

length to be 2.07 Å. Vespa et al. [97] found the Ni-O distance to be 2.06 Å by EXAFS. 

McEwen [98] found 2.14 Å for the Ni-O bond length from crystallographic analysis. All 

their results are much higher than our calculated data as our calculations are performed 

on single Ni(OH)2 molecule in gas phase, and their experiments used nickel hydroxide 

crystals with the nickel surrounded by six equidistant oxygen atoms. Godelitsas et al. [95] 

reported a computational study containing results for the di-, tri, and tetrahydrate species 

using B3LYP/LANL2DZ calculations. The dihydrate dihydroxo complex that they found 

contained Ni-O bond lengths of 1.874 Å and 1.878 Å (Ni-OH) and 2.076 Å and 2.107 Å 

(Ni-OH2). They also reported the Ni-O distances of the trihydrate to be 1.899-2.033 Å 

(Ni-OH) and 2.077-2.153 Å (Ni-OH2). These results are in agreement with what been 
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found for MP2 as 1.860-1.863 Å (Ni-OH) and 2.104-2.134 Å (Ni-OH2), B3LYP as 

1.837-1.841 Å (Ni-OH) and 1.955-2.213 Å (Ni-OH2) for the dihydrate; MP2 as 1.871-

1.950 Å (Ni-OH) and 2.157-2.191 Å (Ni-OH2), B3LYP as 1.842-1.953 Å (Ni-OH) and 

2.176-2.238 Å for the trihydrate. The structure they reported for the tetrahydrate has two 

water molecules in the second hydration sphere, whereas our structure has only one water 

molecule in the second hydration shell. Fujii et al. [61] found 1.998 Å (Ni-OH) and 2.17-

2.19 Å (Ni-OH2) for the tetrahydrated nickel hydroxide which is slightly longer than our 

results of 1.924-1.957 Å (Ni-OH) and 2.102-2.155 Å (Ni-OH2) at MP2; 1.933-1.968 Å 

(Ni-OH) and 2.104-2.179 Å (Ni-OH2) at B3LYP due to the larger basis set (6-

311+G(d,p)). There were no other literature reports found regarding the remaining nickel 

complexes which have been investigated in this study and therefore nothing could be 

compared with the optimized geometries.  

Plots were constructed of the Ni-O bond lengths and vibrational stretching 

frequencies and can be found in Figures 3-13 to 3-15. Within each of these plots a trend 

can be seen of increasing Ni-O bond length and decreasing Ni-O vibrational stretching 

frequencies with addition of water ligands. The Ni-OH2 and Ni-OH bond lengths 

separated clearly, and the Ni-OH bond lengths are always significantly shorter than that 

of Ni-OH2 due to its stronger attraction to Ni
2+

, and the Ni-OH stretching frequencies are 

always about 200-400 cm
-1

 larger than Ni-OH2 stretching frequencies. 

Raman spectroscopy will be the primary experimental technique used to identify 

these compounds at high temperatures and pressures, based on the Raman active bands 

that have been calculated. This experimental work has not been completed yet and no 
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Raman data was found in the literature related to this set of nickel(II) hydroxide 

complexes. However, predicted polarized Raman spectra have been constructed based on 

intensities calculated at the HF level of theory and can be found in Figure 3A-3 of the 

supplementary materials section.  
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Figure 3-13: Ni-O bond lengths and vibrational stretching frequencies for [Ni(OH)m(H2O)n]
2-m

, where m=1-4, n=0-(6-n), 

calculated at the HF/6-31+G* level. 
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Figure 3-14: Ni-O bond lengths and vibrational stretching frequencies for [Ni(OH)m(H2O)n]
2-m

, where m=1-4, n=0-(6-n), 

calculated at the MP2/6-31+G* level. 
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Figure 3-15: Ni-O bond lengths and vibrational stretching frequencies for [Ni(OH)m(H2O)n]
2-m

, where m=1-4, n=0-(6-n), 

calculated at the B3LYP/6-31+G* level. 
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3.5       Amminenickel(II) Complexes, [Ni(NH3)m(H2O)n]
2+

, where m=1-6, n=0-(6-n) 

A number of studies on amminenickel ions have been carried out by experimental 

or computational methods. Studies on crystal structures of Ni
2+

 complexes show that 

nickel(II) usually favors four-coordinate and six-coordinate complexes. [108] A solubility 

study of nickel(II) ammino complexation also showed that the mono- and diammine 

nickel(II) ions occur at free ammonia concentrations above 2 mmolkg
-1

 and 6.5 mmolkg
-1

 

respectively. [105] The monoamine nickel(II) ion has been studied by computational 

methods [60, 67, 107], and the geometries, electronic structures, and binding energies  

have been reported. The hexaammine complex has been studied comprehensively by ab 

initio calculations and experiments. The experimental studies include 
14

N NMR and 

proton magnetic resonance to determine the exchange rate [111, 113], infrared 

spectroscopy [112, 114, 115], extended X-ray fine absorption structure [46], Raman 

spectroscopy [115, 116], and solubility and stability studies [105]. In addition, ab initio 

investigations involving DFT-RX3LYP calculations on low spin hexaammine complexes 

[55], DFT studies on ammonia adsorption on Nin clusters [107], and HF calculations on 

the reactivity of Ni
2+

 in solutions have been completed [110]. For the hydrated 

amminenickel(II) complexes, only the hexa-coordinated species are reported by 

computational methods in the literature. [55, 108, 110].  Varadwaj et al. [108] performed 

computational studies on [Ni(NH3)n(H2O)6-n]
2+

 complexes, and reported that the 

[Ni(H2O)6]
2+

 is predicted to be the least stable, and the successive replacement of H2O by 

NH3 results in a monotonic increase in the stabilization of the complex. It is reported that 

the stability of nickel(II) ammonia complexes is generally greater than that of water 

complexes according to computational studies which can be explained by the diffuse 
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character of the NH3 lone pair which enhance the dispersion and σ donation contributions. 

[67]  

3.5.1    Results 

The nickel(II) ammine complexes were studied up to and including 

hexacoordinate species with and without water molecules. Stable geometries were found 

for all of the complexes studied. Total molecular energies as well as C-PCM energies of 

all the geometries studied can be found in Table 3A.16 of the supplementary materials 

section. The optimized geometries of the stable structures can be found in Figure 3-16 for 

the mono- and diammine complexes and in Figure 3-17 for the tri-, tetra-, penta- and 

hexaammine complexes.  

The anhydrate monoamine posed no problems at the highest possible symmetry 

C3v. For the monohydrate, two Cs structures were tried, but only the Cs species with the 

oxygen atoms symmetric to the plane was stable (at MP2/6-31+G*). A C1 structure 

(looks like Cs, but the ammine is slightly twisted) is preferred at B3LYP level. Four Cs 

structures were tried for the dihydrate, and the one in which one water molecule in the O-

Ni-N plane and the other bisected by the plane was stable (at MP2/6-31+G*), whereas it 

reduced to C1 symmetry (although still looks similar to Cs) at B3LYP level. C3v, C3, Cs, 

and C1 structures were sequentially attempted for the trihydrate, and only the C1 structure 

is stable at both levels. For the tetrahydrate, a stable Cs structure was located, and the 

pentahydrate also has Cs symmetry. 

The D3d and D3h geometries were tried for the anhydrate diammine complex, and 

the D3h species is only stable at B3LYP level, while the D3d structure has the lowest 
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energy at both levels. For the monohydrate, C2v structures were tried first, but they all 

have imaginary frequencies at both levels. After desymmetrization along the imaginary 

modes, the structure became stable at C2 (B3LYP/6-31+G*) and the global minimum C1 

(both levels). For the dihydrate, the C2v structure was tried first, but it has imaginary 

modes at both levels. The C2 symmetry is only stable at MP2, whereas Cs structure is 

preferred at B3LYP level. The preferred trihydrate structure is C2. For the tetrahydrate, 

high symmetry structures trans C2h and trans C2v were tried first, but the trans C2h 

structure is only stable at MP2 level, and trans C2v shows imaginary frequencies at both 

levels. Two trans C2 structures were also attempted, and the one in which the rotation 

axis along with the O-Ni-O is stable at both levels, whereas the other in which the 

rotation axis only pass the Ni atom is only stable at MP2 level. A cis Cs structure is 

energetically preferred at both levels. The C1 structure is also stable and competitive in 

energy. 

For the anhydrous triammine species, the C3h structure is only stable at MP2 level, 

and C3 structure is energetically preferred at both levels. Cs structure was tried for the 

monohydrate, but it showed imaginary frequencies at both levels. The C1 structure (looks 

similar to Cs) is preferred at both levels. For the dihydrate, only the Cs structure in which 

two ammines are symmetric with plane is stable at both levels. The highest possible 

symmetry C3v was tried for the trihydrate, but it has numerous imaginary frequencies at 

both levels. The fac C3 structure proved to be a minimum. The mer C1 structure is also 

stable at both levels and competitive in energy. 

 



58 

 

 

                          

                

       

                                       

 

Figure 3-16: Optimized MP2 and B3LYP geometries for [Ni(NH3)m(H2O)n]
2+

, where 

m=1-2, n=0-(6-m). “*” indicates MP2 and B3LYP structures with different 

symmetry are similar. (grey=nickel, red=oxygen, white=hydrogen, 

brown=nitrogen)  

C3v Cs C1 

Cs/C1
*
 C1 Cs Cs 

D3d C1 C2 Cs 

C2 cis-Cs trans-C2 
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Figure 3-17: Optimized MP2 and B3LYP geometries for [Ni(NH3)m(H2O)n]
2+

, where 

m=3-6, n=0-(6-m). “*” indicates MP2 and B3LYP structures with different 

symmetry are similar.  

 

C3 C1 Cs 

fac-C3 C2v Cs 

cis-Cs Cs C1 
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The anhydrous tetraammine complex has C2v symmetry. For the monohydrate, 

C2v and C2 were tried and they are both unstable at both levels, whereas a Cs structure is 

proved to be a minimum. The trans dihydrate is stable with C2v and Cs symmetry at both 

levels, although C2h (has imaginary frequencies at both levels) and C2 (revert back to C2v 

after optimization) were attempted, and a cis Cs structure is energetically preferred at 

both levels. 

For the anhydrous pentaammine species, C3h, C3v, C3, Cs, and C1 structures were 

sequentially tried, and only the C1 and Cs structures are stable at B3LYP level, whereas 

only the C1 structure is stable at both levels. The Cs structure is energetically preferred at 

B3LYP level. For the monohydrate, a Cs structure is only stable at MP2 level with the 

lowest energy, and it reduced to C1 symmetry at B3LYP level. Finally, the anhydrous 

hexaammine species has stable C1 symmetry at both levels, and a Cs structure only stable 

at B3LYP and is energetically preferred at this level.  

Bond length and vibrational stretching frequency data were collected and plots 

were constructed which can be seen in Figure 3-18, Figure 3-19 and Figure 3-20 for HF, 

MP2 and B3LYP respectively. Raman intensities were calculated at the HF level and 

therefore simulated polarized Raman plots were able to be created and these can be found 

in the supplementary materials section in Figure 3A-4.  

3.5.2    Discussion/Literature Comparison 

The geometries that have been calculated for Ni(NH3)n
2+

 (where n=1-6) can be 

compared to computational results reported in the literature. Pilme et al. [67] found 2.091 

Å for the Ni-N distance in anhydrous monoamminenickel(II) species by ROB3LYP/6-
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311+G(2d) calculations. Magnusson and Moriarty [60] reported the Ni-N bond length to 

be 2.081 Å based on MP2/6-311+G** calculations. Chen et al. [107] obtained 2.05 Å for 

the Ni-N distance in Ni(NH3)
2+

 using the NRLMOL set of codes developed by Pederson 

et al.  Our results for Ni-N distance are 2.005 Å (MP2) and 2.016 Å (B3LYP) which are 

slightly shorter due to our relatively smaller basis set. Chen et al. [107] also reported the 

Ni-N bond lengths for anhydrous di-, tri-, and tetraammine species which are 2.03 Å, 

2.02-2.04 Å, and 2.06-2.19 Å respectively which are also slightly longer than our results 

of 1.979 Å, 2.014 Å and 2.060 Å for MP2, and 1.997 Å, 2.013 Å and 2.068-2.069 Å for 

B3LYP respectively. It should be noted that the structures which Chen et al. obtained did 

not use symmetry whereas our structures are constrained to the appropriate symmetry, so 

that their geometries are slightly different from ours. Aguilar et al. [51] obtained the Ni-N 

distance of Ni(NH3)6
2+

 to be 2.206 – 2.210 Å based on B3LYP/LANL2DZ calculations 

which are slightly longer than our results of 2.195 – 2.204 Å at B3LYP/6-31+G*, and our 

MP2 results (2.175-2.177 Å) are still lower. The basis set- LANL2DZ does not include 

diffuse or polarization functions. Varadwaj et al. [108] reported the Ni-N bond length to 

be 2.205 Å (mean value) by UX3LYP/6-311++G(d,p) calculations which is in good 

agreement with our result. [108] There were no literature reports found for anhydrous 

pentaammine complex. 

For the aquaamminenickel(II) complexes, Varadwaj et al. [108] calculated the 

structures of [Ni(NH3)n(H2O)6-n]
2+

 (where n=0-6) at UX3LYP/6-311++G(d,p) level. 

Although they did not do the calculations with symmetry, they still obtained the similar 

geometries with ours, and their results are very comparable with our results. Results from 
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Varadwaj et al. [108] are tabulated in Table 3.1 along with the results from this research 

for comparison.  

Table 3.1: Geometry comparison of hexacoordinate aquaammine complexes (B3LYP 

level) with results reported by Varadwaj et al. [108]. All bond lengths (Å) are 

averages where appropriate.  

Complex 
Varadwaj et al. [108]

 
Our Results 

Ni-N Ni-O Ni-N Ni-O 

Ni(NH3)(H2O)5
2+ 2.082 2.113 2.075 2.110 

trans-Ni(NH3)2(H2O)4
2+

 2.095 2.157 2.090 2.160 

cis-Ni(NH3)2(H2O)4
2+

 2.100 2.146 2.091 2.150 

fac-Ni(NH3)3(H2O)3
2+

 2.116 2.190 2.106 2.198 

mer-Ni(NH3)3(H2O)3
2+

 2.116 2.201 2.108 2.203 

trans-Ni(NH3)4(H2O)2
2+

 2.151 2.211 2.145 2.221 

cis-Ni(NH3)4(H2O)2
2+

 2.140 2.250 2.129 2.270 

Ni(NH3)5(H2O)
2+

 2.169 2.323 2.162 2.329 

 

Plots were created for the Ni-O and Ni-N bond lengths and vibrational stretching 

frequencies which can be seen in Figures 3-18 to 3-20. These plots showcase the trends in 

the bond lengths and vibrational stretching frequencies as more ligands, either ammonia 

or water, are added to the system. The Ni-N bond lengths are uniformly shorter than the 

Ni-O bond lengths that could be due to the fact that N has a lower electronegativity than 

O and is more polarizable, and hence NH3 forms the stronger bonds to nickel. As more 

water molecules are added to the system, both of the Ni-O and Ni-N distances become 

longer. This could be explained by the mutual repulsion between water and ammonia 

attached to the same metal center will lead to increases in bond distances. The stretching 

frequencies show the opposite trends, the stretching frequencies become lower as more 

ligands are added to the system.  
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Schmidt et al. [115] reported the experimental Raman data for the Ni(NH3)6
2+

 to 

be 370 cm
-1

 for the Ni-N symmetric stretch. Our values are 312 cm
-1

, 334 cm
-1

, and 320 

cm
-1

 at HF, MP2 and B3LYP respectively which underestimate this by 35 - 58 cm
-1

. It is 

known that there are systematic errors in calculated frequencies at HF, MP2 and B3LYP 

levels depending on the system and basis sets. [38] Pye et al. [70] also assumed that this 

underestimation is systematic for the mixed complexes. The polarized Raman data are 

also plotted which can be seen in Figure 3A-4.  
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Figure 3-18: Ni-O and Ni-N (red “+”) bond lengths and vibrational stretching frequencies for [Ni(NH3)m(H2O)n]
2+

, where 

m=1-6, n=0-(6-n), calculated at the HF/6-31+G* level. 
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Figure 3-19: Ni-O and Ni-N (red “+”) bond lengths and vibrational stretching frequencies for [Ni(NH3)m(H2O)n]
2+

, where 

m=1-6, n=0-(6-n), calculated at the MP2/6-31+G* level. 
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Figure 3-20: Ni-O and Ni-N (red “+”) bond lengths and vibrational stretching frequencies for [Ni(NH3)m(H2O)n]
2+

, where 

m=1-6, n=0-(6-n), calculated at the B3LYP/6-31+G* level. 
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3.6       Chlorohydroxonickel(II) Complexes, [NiClm(OH)n(H2O)l]
2-m-n

, where m=1-3, 

n=1-(4-m), l=0-(6-m-n) 

This set of complexes was studied up to and including the overall hexa-coordinate 

species with various combinations of chloride, hydroxide and water. All complexes have 

at least one chloride and one hydroxide ligand. Although it was attempted, no stable 

structures were found for species with a combination of chloride and hydroxide ligands 

greater than four. Many of these complexes tended to form ion pairs. No computational 

or experimental data was found in the literature therefore the discussion will be limited to 

comparison of the optimized structures as well as bond distance and vibrational stretching 

frequency trends. 

3.6.1    Results 

Total energies have been tabulated for all successfully optimized geometries and 

can be seen in Table 3A.5 in the supplementary materials section for this chapter. The 

optimized geometries of stable structures can be seen in Figure 3-21 for chlorohydroxo 

and chlorodihydroxo complexes, Figure 3-22 for chlorotrihydroxo, dichlorohydroxo, 

dichlorodihydroxo, dichlorotrihydroxo and trichlorohydroxo complexes. 

The anhydrous chlorohydroxo complexes posed no problems at the highest 

possible symmetry Cs. Two Cs structures were tried for the monohydrate, but they both 

show imaginary frequencies at all levels, and C1 geometry is preferred. The dihydrate has 

stable Cs and C1 structures at both levels, and C1 is also energetically preferred at both 

levels. For the trihydrate, two Cs structures were also tried first, but the planar one 

showed dissociation of chloride atom, whereas the other showed imaginary frequencies at 
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all levels. A C1 structure with one water molecule in the second solvation shell and 

hydrogen bonded to chloride and the other water molecule is preferred at both levels. The 

tetrahydrate has trans Cs (with lower energy) and cis C1 symmetry with all the ligands 

directly bonded to the central nickel. 

C2v structure was tried first for the anhydrous chlorodihydroxo complex, and it is 

unstable at all levels. The C2 structure is stable at MP2 level but becomes C1 (although 

looks similar to C2) at B3LYP level. For the monohydrate, C2v and C2 structures were 

attempted first, but neither of them were stable. The stable structures found are Cs and C1, 

and the Cs structure is energetically preferred at both levels. For both Cs and C1 

structures, all ligands are directly bonded to nickel at MP2 level, but one of the water 

molecules migrated to the second hydration sphere forming hydrogen bond with the other 

two water molecules at B3LYP level. For the dihydrate, C2v and C2 structures were also 

tried first, and they both show imaginary frequencies at both levels, and C1 structure is 

preferred at both levels. For the trihydrate, C2v, C2, Cs and C1 structures were sequentially 

attempted and only the C1 structure with one water molecule in the second hydration 

sphere and hydrogen bonded to water and hydroxide. 
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Figure 3-21: Optimized MP2 and B3LYP geometries for [NiCl(OH)m(H2O)l]
2-n

, where 

m=1-3, l=0-(5-m). (grey=nickel, red=oxygen, white=hydrogen, 

green=chloride) 

 

The anhydrous chlorotrihydroxo complex has C3 symmetry, although C3v was 

also tested and showed imaginary frequencies at all levels. Various Cs structures were 

Cs 
C1 C1 

C1 trans-Cs C2 

Cs C1 Cs C1 

cis-C1 

C1 
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attempted for the monohydrate, and all of them showed either dissociation or imaginary 

frequencies. A C1 structure with one water molecule in the second hydration shell and 

hydrogen bonded to two hydroxides is stable at both levels. When one more water is 

added, a C1 structure is formed with only all the hydroxides directly bonded to central 

nickel, two water molecules migrated to the second solvation sphere and hydrogen 

bonded to the same hydroxide, whereas the chloride in the third hydration shell and 

hydrogen bonded to the two water molecules. 

Two Cs geometries were tried for the anhydrous dichlorohydroxo complex. The 

planar one is only stable at B3LYP level, whereas the other is only stable at MP2 levels. 

A stable C1 structure is located and is energetically preferred at both levels. Four Cs 

structures were tried for the monohydrate, but they all show imaginary frequencies at 

both levels. The only stable structure been found is C1. The dihydrate (C1) and trihydrate 

(C1) presented a similar result, except the trihydrate has the chloride in the second 

hydration sphere and hydrogen bonded to the three water molecules. 

Two C2v, two C2, four Cs and various C1 structures were attempted for the 

dichlorodihydroxo complex. Both of the C2v structures and the C2 structure with the Cl-

Ni-Cl rotation axis showed dissociation of chloride ions. The C2 structure in which the 

rotation axis only passes the nickel atom is stable at MP2 level. The only stable Cs 

structure (MP2) is the one with the two hydroxides symmetric with the Cl-Ni-Cl plane 

and is energetically preferred at MP2 level. All the C1 structures reverted back to C2 or Cs 

after optimization. For the B3LYP level, all the structures mentioned previously showed 

dissociation of chlorides or imaginary frequencies, so no stable structure was found at 
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this level. The stable structure for the monohydrate has Cs symmetry with two chlorides 

in the second hydration shell and hydrogen bonded to the water and hydroxide. For the 

dihydrate, the highest possible symmetry C2h and C2v were tried first. The C2h structure 

showed dissociation of chlorides, whereas the C2v structure with two chlorides hydrogen 

bonded to water molecules is stable at both levels. 27 different Cs structures were also 

attempted, and only the structures reverted back to C2v are stable whereas others all 

showed dissociations of chlorides or imaginary frequencies. 

The trichloromonohydroxo complex is only stable with C1 symmetry at both 

levels, as all the Cs structures attempted are unstable. The monohydrate also has C1 

symmetry with the water molecule in the second solvation sphere and hydrogen bonded 

to hydroxide and chloride. For the dihydrate, various Cs structures were attempted, and 

only the Cs structure with two hydrogen bonded chlorides is stable at both levels.  
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Figure 3-22: Optimized MP2 and B3LYP geometries for [NiClm(OH)n(H2O)l]
2-m-n

, where 

m=1-3, n=0-(4-m), l=0-(6-m-n). 
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3.6.2    Discussion/Literature Comparison 

No data were found in the literature to compare the stable geometries with. 

However comment on the trends observed within the bond length and vibrational 

stretching plots constructed at each of the three levels of theory could be given. Within 

the bond length figures there is a general trend of increasing Ni-O and Ni-Cl bond 

distance as more water molecules are added to the system. However, when there are ion 

pairs, the trend is reversed. This could be caused by the dissociated chloride anion 

hydrogen bonding to the central complex, thereby stabilizing the structure, resulting in 

shorter bond distances. These trends are found with all three levels of theory. As 

mentioned in previous sections, when the bond lengths increase, the vibrational stretching 

frequencies associated with those bonds decrease. As the bond length trend reverses, the 

vibrational stretching frequency trend also changes. This trend with respect to the 

frequencies is also found with all levels of theory.  

Since the results are going to be primarily used to compare with experimental 

Raman data generated by the colleagues at the University of Guelph, the Raman spectra 

based on the Raman intensities calculated at the HF/6-31+G* level of theory are 

constructed. These plots will be beneficial in the assignment of the experimental Raman 

bands. These plots are located in Figure 3A-5 in the supplementary material section. 
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Figure 3-23: Ni-Cl and Ni-O (red “+”) bond lengths and vibrational stretching frequencies for [NiClm(OH)n(H2O)l]
2-m-n

, where 

m=1-3, n=1-(4-n), and l=0-(6-m-n), calculated at HF/6-31+G* level.  
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Figure 3-24: Ni-Cl and Ni-O (red “+”) bond lengths and vibrational stretching frequencies for [NiClm(OH)n(H2O)l]
2-m-n

, where 

m=1-3, n=1-(4-n), and l=0-(6-m-n), calculated at MP2/6-31+G* level.  

 

 

 



76 

 

 

Figure 3-25: Ni-Cl and Ni-O (red “+”) bond lengths and vibrational stretching frequencies for [NiClm(OH)n(H2O)l]
2-m-n

, where 

m=1-3, n=1-(4-n), and l=0-(6-m-n), calculated at B3LYP/6-31+G* level.  
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3.7       Chloroamminenickel(II) Complexes, [NiClm(NH3)n(H2O)l]
2-n

, where m=1-4, 

n=1-(6-m), l=0-(6-m-n) 

This set of complexes was studied up to and including the hexa-coordinate 

complexes with various combinations of chloride, ammonia and water ligands. Every 

complex has at least one chloride and one ammonia ligand. Stable structures were found 

for all of the other combinations, although a few of them were not stable as completely 

bound structures as they preferred to have hydrogen bonded water or ammonia ligands 

and in a couple cases an ion pair was preferred. Only a couple of experimental studies 

have been completed regarding bond length or vibrational stretching frequency data for 

this set of complexes. Therefore, the discussion of the chloroammine species will be 

restricted to the findings regarding geometries, bond length and vibrational stretching 

frequency trends. 

3.7.1    Results 

Total energies have been collected and tabulated for all optimized geometries 

attempted, and can be found in Table 3A.6 of the supplementary materials section. The 

optimized MP2 and B3LYP geometries for the stable structures can be seen in Figure 3-

26 for all monochloroammine and dichloroammine complexes, Figure 3-27 for all 

trichloroammine and tetrachloroammine complexes.  

The monochloromonoammine complex is stable at the highest possible symmetry 

C3v at both levels. For the monohydrate, four Cs and C1 structures were attempted. The Cs 

structure in which the hydrogen atoms of water are in the symmetric plane with the 

hydrogen from ammine pointing to water is preferred at MP2 level, and C1 structure is 
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preferred at B3LYP. For the dihydrate, various Cs structures were tried, but the only 

stable structure found is C1 at both levels. For the trihydrate, high symmetry structures 

like C3v and C3 were tried first, but they all showed imaginary frequencies at both levels. 

A Cs structure is preferred at MP2 level, and it reduced to C1 (with the ammonia slightly 

twisted) at B3LYP level. The tetrahydrate prefers C1 (trans and cis) symmetry as all the 

Cs structures tested showed imaginary frequencies. The trans C1 structure has lower 

energy. 

For the chlorodiammine complex, C2v and C2 were tried first. The C2v structure 

showed imaginary frequencies at both levels, whereas C2 is only stable at B3LYP level. 

A Cs structure is stable at MP2 level, but C1 is energetically preferred at both levels. The 

monohydrate is only stable with C1 symmetry as all the structures with higher symmetry 

attempted are unstable. For the dihydrate, two C2v structures were attempted, but neither 

of them is stable. A C2 structure is proved to be a minimum. Various Cs structures were 

tried for the trihydrate, and only a fac Cs structure is stable at both levels. The most stable 

structure found for the trihydrate is mer C1. 

For the chlorotriammine complex, C3v and C3 structures are unstable at both 

levels. Desymmetrization along the imaginary modes resulted in a stable Cs structure and 

is energetically preferred at MP2, whereas C1 geometry with slightly lower energy is 

preferred at B3LYP level. The monohydrate has C1 symmetry as all the Cs structures tried 

have imaginary frequencies at both levels. For the dihydrate, a mer Cs structure is only 

stable at B3LYP level, and mer C1 is stable at both levels. A fac C1 structure is 

energetically preferred. 



79 

 

The anhydrous chlorotetraammine complex has C4 symmetry. For the 

monohydrate, trans C2 is only stable at MP2 level, and trans C1 is stable at both levels. A 

cis C1 structure has the lowest energy. For the anhydrous chloropentaammine complex, 

various Cs structures were tested, and only one of them is stable at B3LYP level. A C1 

structure is preferred at MP2 level.  

For the anhydrous dichloroammine complex, two Cs structures were attempted. 

The one with Cl-Ni-Cl symmetry plane is only stable at MP2, whereas the other is only 

stable at B3LYP level. For the monohydrate, various Cs structures were tried, and only 

the one in which the chlorides are symmetric about the O-Ni-N plane is stable at both 

levels. The dihydrate also has Cs symmetry in which nickel, oxygen atoms and nitrogen 

are in the symmetric plane. The trihydrate is only stable with fac C1 and mer C1 (with 

lower energy) symmetry. 

For the dichlorodiammine complex, C2v structure is only stable at MP2 level, and 

C1 is preferred at B3LYP. C2v, C2 and various Cs structures has been tested for the 

monohydrate, but they all showed imaginary frequencies at both levels, and ultimately it 

has C1 symmetry.  For the dihydrate, two all-trans C2h structures were tried first, and the 

one in which the oxygen of water molecules are bisected by the horizontal plane is stable 

at MP2 level. An all-trans Ci structure is stable at both levels. Cl-trans C1 structure is 

energetically preferred at both levels, and NH3-trans C2, all-cis C1 and H2O-trans C2v 

structures are also stable and competitive in energy. 

For the dichlorotriammine complex, high symmetry structures like C3h, C3v and 

C3 were attempted first, but none of them is stable. A Cs structure is stable at MP2 level, 
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and it reduced to C1 at B3LYP. The mer monohydrate has C1 symmetry as all the Cs 

structures tried are unstable. A fac Cs structure has lower energy at B3LYP level, but it 

possesses an imaginary frequency at MP2 level, where a fac C1 structure is preferred. For 

the anhydrous dichlorotetraammine complex, trans-C4h and trans-C2v are energetically 

preferred at B3LYP and MP2 respectively. Other stable structures as trans-C2 (both 

levels), cis-C2v (B3LYP), and cis-C2 (both levels) are also found and competitive in 

energy. 

Two C3v structures were tried for trichloroammine complex, and only the one in 

which hydrogens are in the same direction with the chlorides is stable at B3LYP level. A 

stable Cs structure is located and is energetically preferred at both levels. The 

monohydrate has C1 symmetry as all the Cs structures attempted are unstable. For the 

dihydrate, various Cs structures were attempted, and only the one with a chloride in the 

second hydration sphere and hydrogen bonded to the water molecules is stable at both 

levels. 

For the anhydrous trichlorodiammine complex, D3h, C3h, C3, C2v, C2and Cs 

structures were attempted. The D3h, C3h and C3 structures have imaginary frequencies at 

both levels. The C2v structure in which the hydrogens are in the same directions with 

chlorides is only stable at B3LYP level, whereas the other is only stable at MP2 at is 

preferred at this level. C2 structure reverted back to one of the C2v structures after 

optimization, and Cs structure is energetically preferred at B3LYP. The monohydrate has 

C1 symmetry with one of the chloride in the second solvation shell and hydrogen bonded 

to ammonia and water. For the anhydrous trichlorotriammine complex, fac-C3v structures 
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is only stable at B3LYP level, whereas the fac-C3 structure is stable at both levels, and 

both of them have all the ligands directly bonded to central nickel. Attempts to create a 

mer isomer resulted in one of the chloride migrated to the second hydration sphere and 

hydrogen bonded to three ammonia ligands, forming a stable C1 structures and is 

energetically preferred at both levels. 

                                                     

 

 

 

                                   

 

Figure 3-26: Optimized MP2 and B3LYP geometries for [NiClm(NH3)n(H2O)l]
2-n

, where 

m=1-2, n=0-(6-m), l=0-(6-m-n). All symmetries marked with “*” indicate 

B3LYP otherwise all MP2 and B3LYP structure are similar. (grey=nickel, 

red=oxygen, white=hydrogen, green=chloride) 
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Figure 3-26: (continued) 
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Figure 3-26: (continued) 
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Figure 3-26: (continued) 
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Figure 3-26: (continued) 

For the anhydrous tetrachloroammine complex, two C3v structures were tried first. 

The one in which the hydrogen atoms pointing to the opposite direction with the 

chlorides is only stable at MP2, whereas the other is only stable at B3LYP level. A C3 

structure is also only stable at B3LYP level and competitive in energy. A Cs structure is 

preferred at MP2 level. The monohydrate has C1 symmetry with water and one of the 

chlorides in the second solvation shell. The anhydrous tetrachlorodiammine complex is 

stable with C2v geometry in which one of the chlorides is hydrogen bonded to the 

ammonia ligands.  
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Figure 3-27: Optimized MP2 and B3LYP geometries for [NiClm(NH3)n(H2O)l]
2-n

, where 

m=3-4, n=0-(6-m), l=0-(6-m-n) 

Cs C1 Cs 

Cs C1 

C3v Cs C1 C2v 

C1 [5+1] fac-C3v 
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3.7.2    Discussion/Literature Comparison 

To confirm the geometries that have been investigated, the best way is to compare 

with computational or experimental studies found in the literature. Stromberg et al. [117] 

performed B3LYP/BSI (double ζ valence quality) calculation on anhydrous 

dichloroamminenickel(II) and reported the Ni-Cl and Ni-O bond lengths to be 2.19 Å and 

1.90 Å respectively which is comparable with our results of 2.15 Å and 2.04 Å at B3LYP 

level. Leineweber et al. reported the crystal structure of dichloroamminenickel(II) [118] 

and dichlorodiammine [119] by XRD. The reported Ni-O and Ni-Cl distances for the 

dichloroammine complex are 1.96-1.97 Å and 2.375-2.468 Å, and for dichlorodiammine 

complex are 2.089-2.513 Å. Our results for the dichloroammine complex are 2.05 Å and 

2.11 Å at MP2 level, and 2.06 Å and 2.24 Å at B3LYP which are shorter than their 

results due to our calculations were performed on single molecule in gas phase whereas 

their experiments are for solid layered crystals with more ligands around a single nickel. 

Unfortunately no other studies were found containing the geometries of these mixed 

complexes and therefore there is nothing to compare with any of the remaining 

geometries. 

Plots containing Ni-O, Ni-N and Ni-Cl bond lengths and vibrational stretching 

frequencies (Figure 3-28, Figure 3-29 and Figure 3-30) have been created and are located 

below. Each of these has a trend of increasing bond length, for a given complex, when 

more water molecules are added to the system. The trends become less clear when there 

are more chloride ligands. With more chloride ligands there is a greater tendency for 

water and chloride ligand dissociation and subsequent hydrogen bonding to the central 
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molecule. The effect is usually a small increase in stabilization (decrease in total energy) 

of the central molecule, thereby resulting in slightly shorter bond lengths. The inverse 

relationship between bond distance and stretching frequency is observed. A lot of the 

stretches were mixes of two or more of the Ni-Cl, Ni-N and Ni-O stretches as suggested 

by the overlap of the characteristic symbols.  

Once again, calculated Raman spectra were constructed based on the intensities 

calculated at the HF level. There is no Raman data found in literature, but these will be 

useful for future work to be completed by our colleagues.  
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Figure 3-28: Ni-O (+), Ni-N (x) and Ni-Cl (|) bond lengths and vibrational stretching frequencies for [NiClm(NH3)n(H2O)l]
2-n

, 

where m=1-4, n=1-(6-m), l=0-(6-m-n), calculated at HF/6-31+G* level.  
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Figure 3-29: Ni-O (+), Ni-N (x) and Ni-Cl (|) bond lengths and vibrational stretching frequencies for [NiClm(NH3)n(H2O)l]
2-n

, 

where m=1-4, n=1-(6-m), l=0-(6-m-n), calculated at MP2/6-31+G* level.  
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Figure 3-30: Ni-O (+), Ni-N (x) and Ni-Cl (|) bond lengths and vibrational stretching frequencies for [NiClm(NH3)n(H2O)l]
2-n

, 

where m=1-4, n=1-(6-m), l=0-(6-m-n), calculated at B3LYP/6-31+G* level.  
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3.8       Hydroxoamminenickel(II) Complexes, [Ni(OH)m(NH3)n(H2O)l]
2-m

, where 

m=1-4, n=1-(6-m), l=0-(6-m-n) 

The hydroxoammine complexes were studied up to and including all the 

combinations of hexa-coordinate complexes. Each molecule investigated has at least one 

hydroxide ligand and one ammonia ligand. Structures were found for all combinations of 

ligands with four or less hydroxide ligands. When there are more than four hydroxide 

ligands, there is significant ligand dissociation. Some of the complexes do not have a 

completely bound set of ligands as hydrogen bonding is sometimes more energetically 

preferred. Very few studies were found in the literature that contained hydroxoammine 

complexes. Therefore, the discussion will be restricted to what have been found regarding 

geometries, bond length trends and vibrational stretching frequency trends. 

3.8.1    Results 

The total molecular energies for all optimized structures were tabulated in Table 

3A.7 of the supplementary materials. The stable MP2 and B3LYP structures are in Figure 

3-31 for the monohydroxoammine and dihydroxoammine complexes, and in Figure 3-32 

for the trihydroxoammine and tetrahydroxoammine complexes.  

The most stable monohydroxoammine has Cs symmetry, although other stable Cs 

and C1 structures exist with slightly higher energy. The monohydrate has C1 symmetry as 

all the Cs structures tried are unstable. The dihydrate and trihydrate are similar as they all 

have C1 symmetry at both levels. The tetrahydrate has stable trans C1 (with lower energy) 

and cis C1 structures. 
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Various Cs structures were tried for the anhydrous hydroxodiammine complex, 

but they all have imaginary frequencies at both levels. A C1 structure is preferred. The 

monohydrate is only stable with C1 symmetry. The dihydrate has a stable Cs structure at 

MP2 level, but a C1 structure is energetically preferred at both levels. The trihydrate has 

stable fac-C1 (with lower energy) and mer-C1 structures. 

The anhydrous hydroxotriammine complex has stable Cs structure at both levels, 

and C1 is preferred at B3LYP level. For the monohydrate, the Cs structure has imaginary 

mode A" at both levels. Using tight optimization convergence criterion still resulted in a 

low imaginary mode A" (around -13 cm
-1

) at both levels. A C1 structure (looks similar to 

Cs) is preferred. For the dihydrate, a stable mer Cs and two mer C1 structure has been 

located, but a fac Cs structure with lower energy is preferred.  

The anhydrous hydroxotetraammine complex has Cs symmetry. For the 

monohydrate, all the Cs structures attempted have imaginary frequencies at both levels, 

and cis C1 structure is preferred. A trans C1 structure is also stable and competitive in 

energy. For the anhydrous hydroxopentaammine complex, the Cs structure is only stable 

at B3LYP level, and it reduced to C1 at MP2. 

The anhydrous dihydroxoammine complex is stable with the highest possible 

symmetry Cs. For the monohydrate, the Cs structure is only stable at B3LYP level, and C1 

structure is preferred at both levels. The dihydrate (C1) and trihydrate (C1) presented 

similar results, except the trihydrate has a water molecule in the second hydration sphere 

and hydrogen bonded to water and hydroxide. 
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The anhydrous dihydroxodiammine is stable with its highest possible symmetry 

C2h, C2v, C2, Cs and C1 were sequentially tested for the monohydrate, but only the C1 

structure is stable at both levels with a water molecule in the second solvation shell and 

hydrogen bonded to one of the hydroxide. For the dihydrate, stable structures found were 

one Cs structure, two C2 structures, and four C1 structures. One of the C2 structure in 

which two water molecules hydrogen bonded with only hydroxide ligands is preferred at 

both levels. 

The anhydrous dihydroxotriammine complex is only stable with C1 geometry. 

The monohydrate also has stable C1 symmetry (preferred at MP2) with the water 

molecule in the second hydration sphere and hydrogen bonded to the ammonia and both 

of the two hydroxides. A fac Cs structure is energetically preferred at B3LYP level. The 

anhydrous dihydroxotetraammine complex has stable trans C2, trans C1 (energetically 

preferred at B3LYP), and cis C2 (with lowest energy at MP2). 

For the anhydrous trihydroxoammine complex, two C3v structures were tried first. 

They both possessed numerous imaginary frequencies at both levels, and so are C3 and Cs 

structures. A C1 structure is preferred at both levels. The monohydrate and dihydrate are 

both only stable with C1 symmetry, and in which all the water molecules migrated to the 

second sphere and hydrogen bonded to hydroxides.  

C3h, C3v, C3, Cs and C1 structures were sequentially attempted for the anhydrous 

trihydroxodiammine complex, and only C1 structure with one of the ammonia in the 

second solvation shell and hydrogen bonded to hydroxides. For the monohydrate, the 

added water molecules stayed with one of the ammonia in the second hydration sphere 
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and hydrogen bonded to hydroxides forming a C1 structure. For the trihydroxotriammine 

complexes, stable structures found were C3 [3+3] (energetically preferred at B3LYP) and 

C1 [4+2] (with lowest energy at MP2). 

                      

                                              

                                    

 

Figure 3-31: Optimized MP2 and B3LYP geometries for [Ni(OH)m(NH3)n(H2O)l]
2-n

, 

where m=1-2, n=0-(6-m), l=0-(6-m-n). (grey=nickel, white=hydrogen, 

brown=nitrogen) 
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Figure 3-31: (continued) 
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Figure 3-31: (continued) 
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Figure 3-31: (continued) 
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Figure 3-32: Optimized MP2 and B3LYP geometries for [Ni(OH)m(NH3)n(H2O)l]
2-n

, 

where m=3-4, n=0-(6-m), l=0-(6-m-n) 
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The anhydrate tetrahydroxoammine complex is stable with C1 symmetry with the 

ammonia in the second solvation shell and hydrogen bonded to hydroxides. For the 

monohydrate, only the four hydroxides are directly bonded to central nickel, whereas the 

water and ammonia are in the second hydration shell and hydrogen bonded to hydroxides. 

The anhydrate tetrahydroxodiammine complex has C2 symmetry with both of the 

ammonia hydrogen bonded to the hydroxides.  

3.8.1    Discussion/Literature Comparison 

No structural information was found in the literature for the hydroxoammine 

complexes, therefore there is no data to compare with what have been found in this 

research. However, the trends within the bond length and vibrational frequency plots 

those need is discussed. Plots containing Ni-O and Ni-N bond lengths and vibrational 

stretching frequencies (Figure 3-33, Figure 3-34 and Figure 3-35) have been created and 

are located below. The general trend within all the bond distance plots is that the Ni-O 

and Ni-N bond distances increase as more water molecules are added to the given 

complex. There was no ion pair formation among this set of complexes (i.e. no 

dissociation of hydroxide ligands). An inverse relationship exists between the bond 

distances and the vibrational stretching frequencies associated with those bonds. This is 

evident when looking at both the bond distance and stretching frequency plots side by 

side. As the bond lengths are increasing the vibrational stretching frequencies are 

decreasing to lower wavenumbers. 

Raman intensity plots were created from the data obtained at the HF/6-31+G* 

level of theory. Although no experimental data could be found related to Raman activity 
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for this set of complexes, it is still of importance to our colleagues to have this 

information for comparison with their experimental Raman work in the future. Plots were 

constructed for all the HF energy minimum structures. Having this information will help 

in either assigning or confirming the experimental Raman bands. 
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Figure 3-33: Ni-O (|) and Ni-N (+) bond lengths and vibrational stretching frequencies for [Ni(OH)m(NH3)n(H2O)l]
2-n

, where 

m=1-4, n=1-(6-m), l=0-(6-m-n), calculated at HF/6-31+G* level.  
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Figure 3-34: Ni-O (|) and Ni-N (+) bond lengths and vibrational stretching frequencies for [Ni(OH)m(NH3)n(H2O)l]
2-n

, where 

m=1-4, n=1-(6-m), l=0-(6-m-n), calculated at MP2/6-31+G* level.  
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Figure 3-35: Ni-O (|) and Ni-N (+) bond lengths and vibrational stretching frequencies for [Ni(OH)m(NH3)n(H2O)l]
2-n

, where 

m=1-4, n=1-(6-m), l=0-(6-m-n), calculated at B3LYP/6-31+G* level.  
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3.9       Chlorohydroxoamminenickel(II) Complexes, [NiClm(OH)n(NH3)l(H2O)k]
2-

m-n
, where m=1-3, n=1-(4-m), l=0-(6-m-n), k=0-(6-m-n-l). 

This set of complexes was studied up to and including the overall hexa-coordinate 

species with various combinations of chloride, hydroxide, ammonia and water. All 

complexes have at least one chloride, one hydroxide, and one ammonia ligand. Many of 

these complexes tended to form ion pairs. No stable structures were found for anhydrous 

trihydroxochlorodiammine complex as all the possible geometries attempted resulted in 

dissociation of chloride ligand. No experimental or computational studies were found in 

the literature therefore the discussion will be limited to our findings regarding 

geometries, bond length and vibrational stretching frequency trends. 

3.9.1    Results 

Total energies have been tabulated for all successfully optimized geometries and 

can be seen in Table 3A.8 in the supplementary materials section. The optimized 

geometries of stable structures can be seen in Figure 3-36 for chlorohydroxoammine 

complexes, and Figure 3-37 for dichlorohydroxoammine and trichlorohydroxoammine 

complexes.  

For the anhydrous chlorohydroxoammine complex, four Cs structures were 

attempted and only two of them are stable at both levels, and one is energetically 

preferred at MP2 level, whereas the other is preferred at B3LYP level. The monohydrate 

and dihydrate are both stable with C1 symmetry as all the Cs structures attempted are all 

unstable. For the trihydrate, both fac and mer (with lower energy) isomers are stable with 

C1 symmetry. 
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The anhydrous chlorohydroxodiammine complex has C1 symmetry. The 

monohydrate is stable with C1 symmetry with all the ligands directly bonded to central 

nickel(II) at MP2 level, but the water molecule dissociated and hydrogen bonded to 

hydroxide ligand at B3LYP level. For the dihydrate, depending on the trans-cis isomers, 

five stable C1 structures and a Cs structure were located, and two of which has water 

molecules involved in the formation of hydrogen bonds, and one of them is energetically 

preferred at both levels. 

The anhydrous chlorohydroxotriammine complex is only stable with C1 

symmetry. For the monohydrate, a fac C1 structure with all the ligands directly bonded to 

nickel is most stable at MP2 level, and a C1 structure with the water molecule in the 

second hydration sphere is energetically preferred at B3LYP level. Various Cs structures 

were tried for chlorohydroxotetraammine complex, and only one of the trans Cs is stable 

at B3LYP level, and a trans C1 structure is stable at both levels. A cis Cs structure is 

energetically preferred at both levels. 

Stable structures as Cs and C1 were located for anhydrous 

chlorodihydroxoammine complex, and Cs has lower energy at B3LYP level whereas C1 is 

energetically preferred at MP2. The monohydrate has a stable Cs structure at MP2 level, 

but C1 structure with water molecule in the second solvation shell and hydrogen bonded 

to hydroxide ligands has lower energy at both levels. The dihydrate was similar except 

the Cs structure is stable at both levels and the C1 structure (looks similar to Cs) with the 

chloride ligand hydrogen bonded to hydroxide and ammonia ligands instead of water 

molecule.  
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The anhydrous chlorodihydroxodiammine complex has stable C2 (MP2) and C1 

(both levels with lower energy) structures and both of them have the chloride ligand in 

the second hydration sphere and hydrogen bonded to the ammonia ligands. The 

monohydrate has C1 symmetry in which the water molecule is not coordinated to the 

central Ni
2+

 but is involved in the formation of hydrogen bond with coordinated 

hydroxide ligand. The anhydrous chlorodihydroxotriammine complex also have C1 

symmetry with the chloride and one of the ammonia ligands involved in the formation of 

hydrogen bonds with hydroxide and ammonia ligands.  

Various geometries as C3v, C3, Cs and C1 were tried for chlorotrihydroxoammine 

complex, but only one of the C1 structure with ammonia ligand in the second hydration 

sphere and hydrogen bonded to the hydroxide ligands is stable at MP2 level. All the 

structures attempted showed dissociation of either ammonia or chloride ligand at B3LYP 

level, so no stable structures were found at this level. For the monohydrate, all the Cs and 

C1 structures tried also showed dissociation of chloride or ammonia ligand at both levels, 

so no stable structure was found for this complex. Also, no stable structures were located 

for chlorotrihydroxodiammine complex. 

The anhydrous dichlorohydroxoammine complex is only stable with C1 

symmetry. The monohydrate is stable with its highest symmetry Cs. Attempt to add a 

second water result in the formation of hydrogen bonds of water with chloride ligands 

and a C1 structure is formed. 
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Figure 3-36: Optimized MP2 and B3LYP geometries for [NiCl(OH)n(NH3)l(H2O)k]
1-n

, 

where n=1-3, l=1-(5-n), k=0-(5-n-l). (grey=nickel, brown=nitrogen, 

green=chloride, white=hydrogen) 
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Figure 3-36: (continued) 
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Figure 3-36: (continued) 
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The dichlorohydroxodiammine complex has Cs symmetry. The monohydrate is 

only stable with C1 symmetry with one of the chloride ligand in the second solvation 

shell forming hydrogen bond with water and ammonia ligands. The anhydrous 

dichlorohydroxotriammine complex has stable Cs (MP2 with all ligands directly bonded 

to nickel) and C1 (both levels with lower energy and with the chloride hydrogen bonded 

with ammonia ligands). 

Various Cs structures were attempted for dichlorodihydroxoammine complex, but 

only the one in which both of chloride ligands hydrogen bonded to hydroxide and 

ammonia is stable. The monohydrate has C1 symmetry and also has both of the chloride 

ligands involved in the formation of hydrogen bonds with ammonia and water. The 

dichlorodihydroxodiammine complexes is stable with C2 symmetry in which the two 

chloride ligands are involved in the formation of hydrogen bonds with ammonia ligands. 

The trichlorohydroxoammina complex is only stable with C1 symmetry with the 

ammonia ligand hydrogen bonded to hydroxide. Attempt to add a single water result in 

two chloride ligands dissociated and hydrogen bonded to water and ammonia 

respectively. The anhydrous trichlorohydroxodiammine complex has Cs symmetry with 

two chloride ligands in the second hydration sphere and hydrogen bonded to hydroxide 

and ammonia ligands. 
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Figure 3-37: Optimized MP2 and B3LYP geometries for [NiClm(OH)n(NH3)l(H2O)k]
2-m-

n
, where m=2-3, n=1-(4-m), l=0-(6-m-n), k=0-(6-m-n-l). 
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3.9.2    Discussion/Literature Comparison 

The structures that have been investigated in this research could be compared with 

those in the literature to see if the calculated geometries are viable, however, no studies 

on this set of complexes were found in the literature. Thus only the trends of the bond 

lengths and vibrational stretching frequencies for each group of complexes could be 

discussed. Generally there is a trend that with more water molecules been added, the Ni-

O, Ni-N and Ni-Cl bond lengths increase and stretching frequencies decrease. However, 

water, chloride or ammonia dissociated and involved in the formation of hydrogen bonds 

result in the shorter bond distances between those ligands which still directly bonded to 

nickel(II) and the central nickel(II), and in these cases the trends become less clear.  

In most cases, no experimental or prior computational data exist for nickel 

complexes with more than two ligand types. However, favourable comparisons can be 

made for nickel complexes with one or two ligand types. Therefore, it is assumed that the 

more complicated nickel complexes have the same relative errors as the simpler nickel 

complexes.  

The plots of Raman spectra which can be found in supplementary materials 

section were also constructed based on the Raman intensities for future experimental 

comparison by our colleagues at the University of Guelph.  
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Figure 3-38: Ni-O (+), Ni-Cl (|) and Ni-N (x) bond lengths and vibrational stretching frequencies for 

[NiClm(OH)n(NH3)l(H2O)k]
2-m-n

, where m=1-3, n=1-(4-m), l=0-(6-m-n), k=0-(6-m-n-l), calculated at HF/6-

31+G* level.  
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Figure 3-39: Ni-O (+), Ni-Cl (|) and Ni-N (x) bond lengths and vibrational stretching frequencies for 

[NiClm(OH)n(NH3)l(H2O)k]
2-m-n

, where m=1-3, n=1-(4-m), l=0-(6-m-n), k=0-(6-m-n-l), calculated at MP2/6-

31+G* level.  
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Figure 3-40: Ni-O (+), Ni-Cl (|) and Ni-N (x) bond lengths and vibrational stretching frequencies for 

[NiClm(OH)n(NH3)l(H2O)k]
2-m-n

, where m=1-3, n=1-(4-m), l=0-(6-m-n), k=0-(6-m-n-l), calculated at B3LYP/6-

31+G* level.  

 



117 

 

Chapter 4: Conclusion and Future Work 

4.1 Conclusions 

The present study was performed on possible nickel(II) complexes with all the 

combinations of chloride, hydroxide, water and ammonia ligands which may exist in 

CANDU Gen IV Supercritical Water-Cooled Reactors as corrosion products by ab initio 

computational chemistry methods. The geometries, total energies (with and without 

solvation effects), and vibrational stretching frequencies were obtained for all the stable 

complexes based on our calculations. Among most of the molecules with neutral or 

negative charge, chloride, ammonia or water ligands tend to be involved in the formation 

of hydrogen bonds instead of directly bonded to central nickel(II) ion based on our 

calculations. Although the Raman experimental results from the colleagues at the 

University of Guelph are still needed to compare with in order to predict the most likely 

corrosion products (as this study is performed on all the possible nickel complexes at zero 

Kelvin in the gas phase), the lists could also been narrowed down to a certain extent 

based on the calculation results and comparison with experimental data. Therefore, each 

set of complexes will be gone through and a list of what might be the best candidates will 

be provided. 

4.1.1    Aquanickel(II) 

Stable structures were found for all of the species up to and including the hexa-

coordinate complex. The calculated structures are in good agreements with structural data 

and other calculation results. As discussed in Chapter three, the most possible complex to 
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exist in SCWR would be the hexaaquanickel(II) which has been reported in experimental 

literature.  

4.1.2    Chloronickel(II)  

Nickel(II) complexes with water and chloride ligands (from river water for the 

coolant system) were found up to and including the hexacoordinate species, and those 

complexes with more than four chloride ligands showed dissociation of chloride ions. In 

order to form deposition, it is needed to keep electronically neutral, so that the neutral 

complexes NiCl2 and with water ligands up to and including hexacoordinate species are 

preferred. The hydrated tetrachloronickel(II) complexes tend to formed ion pairs 

indicating relatively instability. Other complexes with positive or negative charges in this 

set are also possible to exist in SCWR, and they need other cations or anions to form 

deposits. 

4.1.3    Hydroxonickel(II) 

This set of complexes are similar as the chloronickel(II) species in this case. 

Therefore, the most possible complexes to exist in SCWR would be the neutral Ni(OH)2 

and with one, two or three molecules. The tetrahydratedihydroxonickel(II), 

Ni(OH)2(H2O)4, has one of the water molecules involved in the formation of hydrogen 

bond which indicate instability according to the calculations. The hydrated trihydroxo- 

and tetrahydroxonickel(II) complexes also have water molecules in the second hydration 

sphere. Thus, for the nickel(II) complexes which may exist in SCWR environment, the 

suggested complexes could be the monohydroxonickel(II) and its hydrated complexes. 

However, based on the calculations one of the water molecules migrated to the second 
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hydration sphere and hydrogen bonded to hydroxide within the trihydrate 

chlorohydroxonickel(II) indicating the instability.  

4.1.4    Amminenickel(II)  

This set of complexes are similar with hydrated nickel(II) complexes as in which 

all the ligands are directly bonded to central nickel(II) and with the same charge (2+). 

Furthermore, other computational studies reported that in this set of complexes, it 

becomes more stable when the water molecules are replaced by ammonia ligands. [108] 

The most possible complex to exist in SCWR would be the hexaamminenickel(II) which 

has been experimentally studied comprehensively. The hexaamminenickel(II) could also 

combine with other anions such as Cl
-
 to form neutral complex which has been reported 

in literature. [112] 

 4.1.5   Chlorohydroxonickel(II) 

This set of complexes contain both chloride and hydroxide ligands and have 

studied up to and including the hexacoordinate species. The charges of this set of 

complexes are range from 0 to (-2). Therefore, the most probable complexes would be 

neutral NiCl(OH) and with water molecules up to hexacoordinate. Those complexes with 

negative charges of this set of complexes tend to form ion pairs which also suggested that 

they are unstable.  

4.1.6    Chloroamminenickel(II) 

This set of complexes contains neutral ammonia ligands and chloride ligands with 

a single negative charge, and stable structures were found up to and including the 
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hexacoordinate species. The neutral complexes in this set would be NiCl2 with different 

combinations of water and ammonia ligands up to hexacoordinate species. Based on the 

calculations and comparison with experimental studies, the most possible complexes to 

exist in SCWR would be diaquadichlorodiamminenickel(II), 

dichlorotetraamminenickel(II), and dichlorodiamminenickel(II). The 

dichloromonoamminenickel(II) and its hydrated complexes are also possible to be the 

candidates in SCWR. When more chloride ligands are added to the central nickel(II), 

they tend to form ion pairs which suggest that they may be less stable. 

4.1.7    Hydroxoamminenickel(II) 

This set of complexes are similar with chloroamminenickel(II) to certain degrees. 

The neutral complexes would be Ni(OH)2 with different combinations of water and 

ammonia ligands. As the nickel(II) complexes tend to form tetrahedral and octahedral 

species, the possible complexes to exist in SCWR would be Ni(OH)2(NH3)2, 

Ni(OH)2(NH3)2(H2O) (H2O in the second hydration shell), Ni(OH)2(NH3)2(H2O)2 (both 

of H2O in the second hydration shell) and Ni(OH)2(NH3)4. Nickel(II) complexes with 

more than two hydroxide ligands tend to have water or ammonia ligands involved in the 

formation of hydrogen bonds. The monohydroxidenickel complex with ammonia and 

water could also exist if combine with other anions. 

4.1.8    Chlorohydroxoamminenickel(II) 

The complexes in this set contain at least one chloride, one hydroxide and one 

ammine ligands with 0, -1, or -2 charges, like the aquachlorohydroxocomplexes. The 

neutral complexes would be NiCl(OH) combine with different number of ammonia and 
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water ligands. As more hydroxide or chloride ligands been added, they tend to form ion 

pairs which suggest instability.  

4.2 Future Work 

Ab initio calculations were carried out on nickel(II) complexes with chloride, 

hydroxide, ammonia and water in this work. As the SCWR construction materials also 

contain other transition metal alloys, ions such as iron and chromium may be leached into 

environment and form complexes with those anions and molecules as well. Therefore ab 

initio investigations on iron(II) and chromium(II) complexes could be included in future 

work. 
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