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Abstract

The effect of star formation algorithms on the morphology of

isolated galactic disc models

by Maan H Hani

submitted on March 18th, 2013:

Structure is found in the Universe on various scales ranging from galaxies to galaxy

clusters, super clusters. . . This structure is believed to have formed in a bottom-up

hierarchical way. Computational techniques allow us to model structure formation

and improve our understanding of structure formation. Moreover, cosmological sim-

ulations and simulations of galaxy formation and evolution have resolutions orders

of magnitude higher than the scales at which stars form. Therefore, the application

of a convergent flow criterion in galaxy formation simulations is debatable. Two iso-

lated galactic discs (280,000 particles each) and two collapsing clouds (with a NFW

dark matter density profile, 100,000 particles each) were simulated for 1.02Gyr and

4.4Gyr respectively. Each pair of simulations differed in the star formation conditions.

One model allowed star formation in collapsing regions only (negative velocity diver-

gence), while the other had no such condition. Although both models had similar

star formation rates, the two models also showed significant morphological differences.

With the removal of the velocity divergence criterion more stars were formed and a

wider spread in the stellar spatial distribution in the potential well was detected.
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The removal of the divergence criterion also limited the highest allowed gas densities,

and populated the halo with hot diffuse gas due to shock heating and the feedback

processes. More work, particularly simulations that begin from cosmological initial

conditions, is required to better understand the impact of the divergence criterion.
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Chapter 1

Introduction

The understanding of the formation and evolution of the Universe is one of the most

interesting topics of astrophysics. Cosmological structure is observed in the Universe

on various scales ranging from galaxy components to super clusters. Cosmologists try

to model and understand the initial conditions and processes controlling the trans-

formation of linear perturbations into non-linear complex structures that we observe

today in the Universe. With modern advanced observational equipment and com-

putational techniques, cosmologists are a step closer to understanding the formation

and evolution of the Universe.

This variety of densities and structures observed in today’s Universe evolved

from slight inhomogeneities observed in the cosmic microwave background radiation

(CMBR). The CMBR consists of photons scattered at what is referred to as the sur-

face of last scattering. The surface of last scattering is considered to be a sphere

centered at earth where the cosmic microwave background (CMB) photons were last

scattered. The CMBR dates back to the epoch of recombination, when electrons com-

bined with nuclei of hydrogen and helium which caused the opacity of the Universe

to drop allowing the photons to travel unhindered (e.g. Carroll and Ostlie 2007).

To better understand how the homogeneous Universe observed in the CMBR

evolved to what we observe today, we need to trace cosmological evolution and the
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structure of the current Universe. Observations show galaxies consisting of gas, in

the form of the interstellar medium (ISM), as well as stars. Although some of a

galaxy’s mass is visible (luminous), observations show that galaxies appear to have

mass distributions different than those of the visible mass (Freeman 1970, Rubin and

Ford 1970). Rotation curves of spiral galaxies suggest that a remarkable portion of

the mass is unaccounted for. Also, studies of the orbital motion of galaxies in clusters

can give a good estimate of the cluster’s gravitational mass. Comparing the cluster’s

gravitational mass to its luminous mass (galactic and X-ray gas), one can show that

there is still mass that is unaccounted for. This invisible mass is known as dark mat-

ter. Dark matter is thought to be non-self interacting and hence collisionless. It is

gravitationally dominant on scales larger than galactic cores (Blumenthal et al 1984).

Historically, two distinct models for dark matter have been proposed. The most suc-

cessful model is the cold dark matter (CDM) model which considers particles that

move slowly and interact only gravitationally with other particles. The competing

view is the hot dark matter (HDM) model which considers dark matter particles

moving at relativistic speeds, making it hard for particles to clump together and form

structures. Models of structure formation incorporating cold dark matter are favored

(e.g. Carroll and Ostlie 2007). In the CDM model structures form and grow in a

bottom up ‘hierarchical’ way. In this theory, primordial perturbations grow, due to

their self gravity, forming small structures which then collectively combine to form

the large observed structures (Peacock 2007, Lacy and Cole 1993). This scenario is

supported by various high redshift observations in the sense that galaxies at high

redshifts are smaller than those in today’s Universe.
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Studying galaxy formation and evolution is an important part of studying the

evolution of structure. Galactic evolution depends strongly on how fast the gas in

the ISM is converted into stars. As molecular clouds get dense and collapse under

their own gravity, they form dense cores that continue to accrete matter while form-

ing stars. Knowing that galaxy evolution is limited to Gyr timescales, the study of

galaxy evolution in simulated models is a major goal of computational cosmologists.

When modeling galaxies, star formation is an essential process that must be included.

Star formation is a major component of galaxy evolution models both through the

formation of stars and also the so-called feedback processes (heating the ISM from

supernovae and winds). Modeling star formation from first principles is not possi-

ble in simulations of galaxy formation. The lack of understanding of how the physics

controlling star formation can be implemented on large scales poses a major challenge

when modeling star formation in cosmological simulations.

In this thesis, we study the effect different star formation algorithms have on the

morphology of galactic disc models in an attempt to better understand how the small

scale physics governing star formation extends to large scales. This thesis will be a

stepping stone for research on the effect of star formation algorithms on structure

in cosmological simulations. Galactic disc models with different star formation algo-

rithms were simulated. The morphologies of the discs were analyzed and compared

in order to study the effect of the algorithms on the morphology of the disc models.

The structure of this thesis is as follows: In Chapter 2 a summary of theoretical

and observational results is presented to provide additional background. In Chapter

3 the primary computational astrophysics methods, namely n-body and smoothed
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particle hydrodynamics, are introduced. The simulation code is also discussed in de-

tail here. We then follow with an overview of the simulation models in Chapter 4.

In Chapter 5 results are presented along with a discussion of their implications. We

conclude in Chapter 6 with a brief summary and suggest future work.
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Chapter 2

Theory and Observational
Background

2.1 Structure Formation

‘How did the Universe become what we see today? How did this structure form? How

does it evolve?’ These are major questions that have been asked since the earliest days

of astronomy. The field of Cosmology allows astronomers to better understand the

early Universe, its formation, and evolution to the modern universe we observe today.

Modern observations reveal a Universe that is populated with structures varying from

planets, stars, star clusters, galaxies of different types and forms, clusters of galaxies,

and even superclusters of galaxies. . . A variety of observational evidence suggest these

structures evolved from a hot dense nearly uniform early Universe. It is thus necessary

to model the early Universe before trying to understand how structure forms and

evolves.
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2.1.1 Friedmann’s Equation

Einstein’s theory of general relativity plays an essential role in understanding the

evolution of our universe. Consider Einstein’s field equation:

Gµν = −8πG

c4
Tµν (2.1)

G is Newton’s gravitational constant, T is the stress-Energy tensor which evaluates

the effect of a given mass-energy distribution on the nature of space time, and G is

Einstein’s gravity tensor.

By solving Einstein’s field equation for an isotropic and homogeneous universe,

we can describe the evolution of the universe with a differential equation know as the

Friedmann’s equation. Friedmann’s equation relates the scale factor to the density

and the geometry of the Universe. The equation generally has the following form

(e.g. Carroll and Ostlie 2007):

[(
1

R

dR

dt
)2 − 8

3
πGρ]R2 = −kc2 (2.2)

R is the scale factor of the Universe, ρ is the cumulative density contribution of

matter, radiation and vacuum ρ = ρm + ρr + ρΛ. k is a parameter describing the

geometry of the universe (which can take values of 1, 0, or -1 corresponding to a

closed, flat or open universe respectively). We can define a critical density ρc for

which k = 0 such that:

ρc =
3H2

8πG
(2.3)
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Introducing the critical density and the Hubble constant, H, Friedmann’s equation

can then be rearranged and written in a unit-less form:

H2[1− (Ωm + Ωr + ΩΛ)]R2 = −kc2 (2.4)

where Ω is the dimensionless density defined as Ωn = ρn/ρc. Different combinations

of density and pressure physics lead to different cosmological models that have their

own expansion behaviors versus time.

2.1.2 Einstein de Sitter Model

Einstein and de Sitter contributed to the understanding of the early Universe by

proposing a cosmological model in 1917. This model is known as the Einstein de

Sitter model of the early universe. The Einstein de Sitter model assumes a spatially

flat universe, and that the energy density is dominated by matter. It therefore satisfies

Friedmann’s equation assuming the following values of k, ρm, ρr, and ρΛ:

k = 0, ρm = 1, ρr = ρΛ = 0

From this cosmological model, we can begin to build an understanding of how struc-

ture evolved in the universe1. Note that we do not live in an Einstein de Sitter

Universe, in-fact, we live in a Friedmann-Lemâıtre Universe which can be reduced to

an Einstein de Sitter Universe by ignoring the cosmological constant

1The Einstein de Sitter model is a useful model for theoretical exploration because it predicts
very simple solutions for the evolution of the scale factor with time, namely a(t) ∝ t2/3
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2.1.3 From Perturbation to Structure

Although it was nearly uniform, the early Universe was not perfectly homogeneous; it

was populated with small perturbations. These perturbations can be described sta-

tistically by a Gaussian random field, which theoretical models show could have given

rise to today’s large structures. The early Universe’s inhomogeneities are observed

in the Cosmic Microwave Background Radiation (CMBR) maps. Various studies ex-

amined the growth of such perturbations. White (1993) gives a linear perturbation

theory derivation that shows how slight density perturbations (only in an Einstein de

Sitter Universe) are amplified in proportion to the scale factor, and can grow to be-

come large structures. Perturbations in a Universe other than the Einstein de Sitter

Universe grow at different rates.

Figure 2.1: Simulated WMAP Cosmic Microwave Background (CMB) map showing
the slight inhomogeneity of the early universe represented as small per-
turbations at the last scattering surface (NASA/WMAP Science team,
WMAP # 121238).

Because the first structures to form in this model of structure formation are the

smallest, the leading model in explaining structure formation is the bottom-up hier-

archical structure formation model. This is the natural outcome of the Cold Dark
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Matter (CDM) Model of the Universe. Cold dark matter is a form of matter that

only interacts with baryonic matter gravitationally. CDM has a major contribution

to the total energy density of the Universe which is represented by the term Ωm in

equation 2.4. Because of its slow motion (vDM ∼ small fractions of the speed of light),

CDM can easily accumulate under self gravity. In a CDM Universe smaller densities

assemble together to form larger structures; this is depicted by a ‘merger tree’ (Lacey

and Cole 1993). Baryonic matter is expected to behave similarly. The bottom-up

structure formation model and the hierarchical evolution of structure is illustrated by

Lacey and Cole (1993).

Figure 2.2: A schematic representation of a ‘merger tree’ depicting the growth of a
halo (used with permission of C. Lacey).

Understanding how perturbations or halos form and evolve into more complex

structures is one of the most essential concepts in understanding the evolution of the
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universe. Knowing that structure on large scales is affected by small scale structure,

We will need to know more about both to have a complete understanding of structure

formation.

2.2 Star Formation

Galaxy evolution depends on how fast a galaxy’s interstellar gas is converted into

stars. Therefore, understanding star formation and its effect on the galaxy is a key to

better understanding galaxy evolution. We choose to examine galaxy formation and

evolution to enhance our knowledge of structure formation and evolution in astro-

physical simulations, and therefore understanding how the complex and structured

Universe that we observe today formed from an almost homogeneous Universe.

It may be useful to consider different mechanisms that facilitate star formation

in galaxies according to the scales at which they occur. One can roughly break the

process down into the following three major stages in disc galaxies: (1) The creation

of the galactic arms, (2) the formation of molecular clouds, (3) the collapse of molec-

ular clouds, and formation of dense cores. (1) and (2) are related to the large scale

evolution in the galaxy, and it is worth noting that spiral arms are not needed to have

Giant Molecular Clouds (GMCs) form. Knowing that we are interested in modeling

star formation in large scale simulations, understanding star formation on small scales

(stage 3) is very important.
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2.2.1 Star formation Criteria

Stars form in the densest parts of the interstellar medium (ISM) known as molec-

ular clouds (Larson 2003). Galactic spiral arm segments, containing molecular gas

(Solomon and Sanders 1985, Elmegreen 1985, 1993), contain several Giant Molecu-

lar Clouds (GMCs). GMCs have sizes up to 100pc and masses up to 106M�, which

usually contain smaller scale clumpy structures (Blitz 1993, Blitz and Williams 1999,

Williams et al 2000). In order to understand the collapse of these clumpy structures,

also known as cores and globules, we can consider the forces affecting the collapse.

Those forces can be grouped into the following main categories: (1) gravity, (2) gas

and radiation pressure, (3) magnetic fields, and (4) the collective motion of the cloud

and galactic shear. The first force is the one responsible for the collapse, while the

remaining forces act as sources of support against the collapse. Ignoring rotation,

turbulence, and magnetic fields, one can simplify the collapse of cores and globules

in molecular clouds. This makes it possible to derive a minimum mass criterion for

which cores and globules can collapse under their own gravity.

Mass Criterion

Sir James Jeans (1902) studied the effect of slight fluctuations from the hydrostatic

equilibrium on a stable gravitationally bound system. Such a system, when at equi-

librium, can be described by the virial theorem (equation 2.5)

2K + U = 0 (2.5)
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where K is the kinetic energy and U is the potential energy of the system. Assuming a

spherical cloud of constant density, the gravitational potential energy and the internal

kinetic energy of the cloud are given by:

U ' −3

5

GMc
2

Rc

K =
3

2

MckT

µmH

(2.6)

where Mc and Rc are the mass and radius of the cloud respectively, G is the gravi-

tational constant, µ is the mean molecular weight, mH is the mass of hydrogen, T is

the temperature, and k is Boltzmann’s constant.

For the cloud to collapse, the absolute value of the gravitational potential energy

must exceed twice the kinetic energy of the cloud. Using this collapse criterion, equa-

tion 2.6, and substituting Rc = ( 3Mc

4πρ0
)1/3 where ρ0 is the initial density of the cloud,

one can derive a condition on the minimum mass necessary to initiate a spontaneous

cloud collapse. This criteria is known as the Jeans criterion:

Mc > MJ (2.7)

where MJ is the Jeans mass, and it can be expressed as follows:

MJ ' (
5kT

GµmH

)3/2(
3

4πρ0

)1/2 (2.8)
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This derivation of the Jeans mass neglected any external pressure exerted on the core

or the cloud by the interstellar medium (ISM). The critical mass required to initiate

gravitational collapse in the presence of an external pressure (P0) is given by the

Bonnor-Ebert mass:

MBE =
cBEvT

4

P0
1/2G3/2

(2.9)

where vT =
√

kT
µmH

is the isothermal sound speed, and cBE is a dimensionless constant

given by cBE = 1.18.

Temperature and Density Criteria

Using the equation for the Jean’s mass, one can deduce criteria that minimize the

Jean’s mass and thus play an important role in star formation and the collapse of

clouds. Knowing that the the Jean’s mass (MJ)scales as T 3/2 and ρ0
−1/2, one would

expect stars to form in regions of dense and cool gas. Stars are known to form in

regions where (i.e. Thacker and Couchman 2000, Wurster and Thacker 2013):

1. The gas is dense (density exceeds 0.01cm−3)

2. The gas cool (temperature less than 3× 104K)

3. Baryonic matter is partially self-gravitating (ρgas > 0.4ρDM)

4. The flow is convergent (∇ · ~v < 0)
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2.2.2 Star Formation Rates

The main reason for studying star formation in this thesis is our interest in its effects

on the galaxy’s evolution and morphology. As mentioned before, galactic evolution is

governed by how fast the the galactic gas reservoir is converted into stars. Therefore,

examining the star formation rate (SFR) is a reasonable approach to quantitatively

study star formation, and hence galactic evolution.

Although different disc galaxies seem to exhibit wide variety of star formation

rates, they appear to follow two empirical laws (Li et al 2006). The first law is the star

formation threshold, where efficient star formation occurs for densities higher than a

critical surface density (Martin and Kennicutt 2001). The second law is the Schmidt

law (Schmidt 1959). Introduced by Schmidt in 1959, the Schmidt law implemented a

power law correlation between the SFR surface density and the gas surface density.

The Schmidt law has the following format:

ΣSFR = AΣgas
N (2.10)

where ΣSFR and Σgas are the surface densities of SFR and the gas respectively, A

is a normalization coefficient, and N is the star formation index. Kennicutt (1998)

presented a star formation index N = 1.4±0.15, providing an excellent model of star

formation over several orders of magnitude in SFR and gas surface densities.

The Schmidt law is considered a useful way of modeling the SFR in numerical

simulations of galaxy formation and evolution. Knowing that computational efficiency

is a valuable commodity in computational science, a Lagrangian form of the Schmidt



Chapter 2. Theory and Observational Background 15

law, based upon mass rather than density, can be used as shown in equation 2.11.

This version corresponds to a star formation index N = 1.5 (Thacker and Couchman

2000, Katz 1992) and can be expressed as:

Ṁ∗ = Csfrρg
1/2Mg (2.11)

where Csfr is the star formation rate normalization, and the subscripts g and ∗

correspond to gas and stars respectively.

2.3 Theoretical Considerations Compared to

Observations

Computational astrophysicists must develop models that are consistent with obser-

vations. These observations, are often of a smaller size or scale than the minimum

allowed resolution in the simulations. This is a fact that plays an important role in

simulations of galaxy formation and evolution and has been called ‘The Scale Chal-

lenge’. Simulations of galaxy formation and evolution must take into account studies

of the star forming regions of galaxies, but inevitably, star forming regions fall below

the minimum resolution in such simulations. This is illustrated by Nguyen Luong et

al (2011) (see figure 2.3).

Nguyen Luong et al (2011) investigated star formation in the infrared dark cloud

(IRDC) filament G035.39-00.33 in the W48 molecular cloud complex (Rygl et al 2010).

They used data from the PACS and SPIRE cameras of the Herschel space observatory.



Chapter 2. Theory and Observational Background 16

Figure 2.3: Part of G035.39-00.33 seen at 70µm. The dense cores with mass > 20M�
are indicated by red ellipses, those with mass < 20M� by white ellipses.
The contours indicate SiO emission, and the color map is a plot of the
flux measured.(used with permission of Q. Nguyen Luong.)

The W48 molecular cloud complex is one the regions forming high-mass stars within

3kpc from the sun. The G035.39-00.33 has an effective mass of approximately 9000

M� and an effective radius of 10pc (Simon et al 2006). Nguyen Luong et al found

that among the total of 28 dense cores detected by Herschel, which had a spectral

energy distribution (SED) FWHM of approximately 0.15pc, 13 massive dense cores

(MDCs) are potentially forming high mass stars. Figure 2.3, illustrates the relative

small sizes of MDCs exhibiting star formation activity with respect to the host cloud.
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According to the data presented by Nguyen Luong et al (2011), one may question

whether the collapse of a region is critical when deciding on star formation criteria

in galactic simulations. Since the star forming regions are smaller than 2pc and they

have SED FWHM of approximately 0.15pc, the significance of the collapse condition

(∇ · ~v < 0) in galaxy formation simulations is debatable. Such simulations usually

have resolutions that are orders of magnitude higher than the desired resolution of

the collapsing cores.

Difficulties in modeling star formation in large scale simulations

Large scale models are often motivated by small scale physics. This may not always

be done in the correct fashion. For example, although the concepts of pressure and

temperature in gases are related to the kinetic theory of atomic collisions, we do not

model gases on large scales by considering an ensemble of atoms colliding on small

scales. Instead we rely upon hydrodynamics. This can be extended to modeling

star formation on large scales. However, we do not understand how the small scale

physics manifests on large scales which makes it difficult to model star formation on

large scales. Many theories of the interstellar medium (ISM) have been proposed (ie.

McKee and Ostriker 1977), yet there is no full understanding of the ISM.
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Chapter 3

Computational Methods

3.1 Nbody

N-Body methods are used to simulate dynamical systems of particles to study the non

linear processes of structure formation (Hockney and Eastwood 1988). The N-Body

method is a Lagrangian method which represents a collisionless fluid as an ensemble

of discreet particles to which certain attributes are assigned. These attributes (such

as mass, density, position, velocity) evolve according to the equations of motion which

are in turn governed by the field equations. The most important of all field equations

(for a gravitational N-Body problem) is Poisson’s equation for a gravitational field,

∇2φ = −4πGρ (3.1)

where φ is the scalar potential, and ρ is the density. Equation 3.1 can be derived from

Gauss’s law of gravity by substituting g = −∇φ into the differential form of Gauss’s

law,

∇ · g = −4πGρ (3.2)

Different particle simulations use different methods of solving the corresponding field

equation which is usually an elliptic partial differential equation.
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Overall, an N-Body method defines a system by its initial conditions (e.g. initial

values), equations of motion that are determined by the field equations, and the

boundary conditions which define the external forces on the system as well as the

volume in space that the particles are allowed to exist in. With these three criteria,

the description of an N-Body system is complete.

3.1.1 Benefits of Lagrangian Methods

In order to model a fluid, we define a fixed coordinate system, and we describe

variables as functions of (r, t). Describing the change of a variable from the point of

view of a fixed point in space is known as the Eulerian reference frame (fixed grid). In

computational simulations, this approach is known to be effective in modeling shocks

and magnetic fields. Modeling several orders of magnitude in resolution proposes a

challenge to the Eulerian approach. On the other hand, describing the change of

variables from the point of view of fluid elements that are considered to be stationary

with respect to the coordinate system is known as the Lagrangian frame of reference.

Lagrangian computational methods have the advantage of resolving several orders of

magnitude because resolution elements move with the flow.

In a Eulerian reference frame, derivatives are the sum of partial time and space

derivatives. On the contrary, in Lagrangian reference frames, properties of a fluid

element are determined as a function of the element’s initial position. Therefore the

location of a fluid element (spatial dependency) is dependent on time. Thus, the

derivatives, in a Lagrangian reference frame, are the convective derivative (all spatial
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and time variables are a function of time). The convective or Lagrangian derivative

can be expressed as:

D

Dt
=

∂

∂t
+ u · ∇ (3.3)

where u = ∂r
∂t

is the velocity of the fluid.

3.1.2 Particle Models

To solve an N-Body problem, there are various types of particle simulation models

that can be used, of which we will mention the following (Hockney and Eastwood

1988):

1. Particle-particle (PP) models: This model considers the forces acting on a sys-

tem from a distance (e.g. Gravity, Coulomb force) by directly calculating forces

through pairwise interaction (N2 interactions are considered). Because of the

intensive computations required, this model is slow for high resolutions.

2. Particle-mesh (PM) model: This model approaches the forces as field quantities

that is then approximated on a mesh (grid). The gravitational potential of the

system is constructed over a grid starting from the density field and by solving

the associated Poisson equation. The resolution of this method is determined

by the spacing of the mesh. This is a low resolution method.

3. Particle-particle-particle-mesh (P3M) model: This model is a combination of

both the PP and the PM methods, and therefore it combines both of their

advantages. It is accurate at representing close encounters (PP method) and
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allows rapid calculations of long-range forces (PM method). This method is

computationally efficient and allows high resolution. A major disadvantage of

this method is its vulnerability to clustering in high density regions, i.e. the

algorithm can slow down significantly.

4. Adaptive P3M (AP3M) model: This model uses an adaptive sub-grids rather

than a static grid, therefore more grid elements are concentrated where a higher

resolution is needed (regions of higher densities). This feature remedies the

slow-down due to clustering in high density regions.

3.2 SPH

The Smoothed Particle Hydrodynamics (SPH) method is a particle method that was

initially introduced to simulate nonaxisymmetric phenomena in astrophysics such as

collisions of gas clouds (Gingold and Monaghan 1977, Lucy 1977). Since its invention,

SPH has become widely applied and it is now applied to diverse astrophysical prob-

lems from radio jet simulations, to simulations of motion near black holes (Monaghan

1992). The main reasons for the popularity of SPH is how easy it is to work with,

the reasonable and accurate results it leads to in difficult situations, and its ability to

handle complex physics in three dimensional problems with ease (Monaghan 1992).

This popularity can also be related to SPH being a Lagrangian method which gives it

several advantages over Eulerian methods such as calculations in high density regions.
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3.2.1 The Heart of SPH

SPH is based on interpolating functions, that allow field quantities to be interpolated

anywhere from a set of points representing the particles (Gingold and Monaghan 1977,

1982, Lucy 1977). Any function A(r) is expressed in terms of its integral interpolant

AI(r) which is given by:

AI(r) =
∫

A(r′)W (r− r′, h)d3r′ (3.4)

where W is an interpolating kernel (see below), and h is the smoothing length; it

determines the size of the smoothing region. The interpolating kernel must mimic a

delta function as h → 0 and must thus have the following properties:

∫
W (r− r′, h)d3r′ = 1

lim
h→0

W (r− r′, h) = δ(r− r′)

(3.5)

Other kernels can be designed (see Natanson 1960, Monaghan 1982). One famous

example would be the kernel based on spline functions (Monaghan and Lattanzio

1985) which is given by:

W (r, h) =
σ

hν



1− 3

2
q2 +

3

4
q3 if 0 ≤ r

h
≤ 1;

1

4
(2− q)3 if 1 ≤ r

h
≤ 2;

0 otherwise.

(3.6)
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where ν is the number of dimensions and σ is a normalization constant with the val-

ues 2
3
, 10

7π
, and 1

π
corresponding to one, two and three dimensions respectively.

Figure 3.1: A schematic drawing depicting the heart of SPH by showing a function
expressed in terms of its interpolating kernel (in 2D) smoothed over its
neighboring particles (Komoroczi et al 2013, used with permission of A.
Komoroczi) .

When using the integral interpolant shown in equation 3.4 in numerical simula-

tions, the integration is approximated by a summation interpolant AS(r) which is

effectively a mass-weighted sum over N neighboring particles and may be expressed

as:

AS(r) =
N∑
b

mb
Ab

ρb

W (r− rb, h) (3.7)

where the summation iterates over all particles labeled by b. A particle n will have

mass mn, position rn, velocity vn, and density ρn. Therefore, any function or field

A(r) can be smoothed and estimated as a weighted summation over particles using

equation 3.7. Derivatives can be calculated using ordinary differentiation as shown
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below.

∇A(r) =
N∑
b

mb
Ab

ρb

∇W (r− rb, h) (3.8)

SPH does not need a grid to calculate spatial derivatives. In SPH, derivatives of

interpolants can be obtained by ordinary differentiation of the kernel. Therefore, the

equations governing energy and momentum are a set of differential equations that are

easy to derive and manipulate.

3.2.2 The Nearest Neighboring Particle

The basis of SPH is interpolating field quantities from a set of neighboring points

(particles). In simulations, before SPH can be implemented, one needs to decide what

region a function is being smoothed over. In other words, we need to decide what

points (particles) are to be used when interpolating the field quantities. To choose

these points, the Nearest Neighboring Particle (NNP) method is used. The NNP

concept can be interpreted differently leading to different meanings of the smoothing

length h (Hernquist and Katz 1989, Shapiro et al 1996, Liu et al 2003, Di Blasi et al

2011).

In the first approach, known as the ‘gather’ approach, h is considered the radius

of the smoothing kernel of particle t at r. Only particles inside the radius h will be

considered as NNPs oft when implementing SPH. The second approach, known as the

‘scatter’ approach, hb is considered the radius of the smoothing kernel of a particle tb

at rb. Particle tb will be considered as a NNP of t only if |r− rb| < hb. When using

the ‘gather’ approach, equation 3.7 remains unchanged. While when using using the
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‘scatter’ approach, the interpolating kernel W (r− rb, h) in equation 3.7 is expressed

as W (r − rb, hb). Figure 3.2 demonstrates the differences between the ‘gather’ and

‘scatter’ approaches.

Figure 3.2: A schematic drawing depicting the NNP (tb) for particle t using the two
different approaches: the gather approach (left), the scatter approach
(right).

3.3 HYDRA

HYDRA is a SPH AP3M code developed by Couchman, Thomas and Pearce in 1995,

which simulates cosmological hydrodynamics. It is written in FORTRAN77. The

version of HYDRA we will discuss in this section (HYDRA OMP) is the parallel

version developed by Thacker and Couchman (2006). HYDRA OMP is written in

FORTRAN77 and OpenMP. The use of OpenMP API for multi-platform shared-

memory programming allows loop level parallelism (Thacker and Couchman 2006).
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3.3.1 Why Parallel Computing?

Our interest in parallel computing, similar to other computational cosmologists’ inter-

est, branches from two major reasons (Thacker and Couchman 2006): (1) the desire

of higher resolutions, and (2) our interest in completing the simulations in the short-

est time frames1. There are two issues that promote a need for progressively higher

resolution. Firstly, cosmological simulations’ aim is to make statistical predictions,

therefore it is important to have a high simulation volume in order to insure a low

sample variance. Secondly, simulating structure formation and evolution requires high

mass resolution which is solely due to the hierarchical model of structure formation

and growth in a CDM Cosmology.

3.3.2 Structure of the HYDRA code

The Time Integrator

At the heart of HYDRA is a single-step predictor-corrector type integrator (Couch-

man, Thomas and Pearce 1995). This integrator calculates the forces once per step at

a predicted position r′. Using this force along with the force from the step before, the

position and velocities are corrected as described by Couchman, Thomas and Pearce

1Thacker and Couchman (2006) studied the speed-up produced by the parallelization of HYDRA
using a 64 processor SGI Origin 3000, and a 64 processor Hewlett Packard GS1280. Simulating
2 × 2563 particles with a 5123 mesh and 64 parallel execution threads, HYDRA OMP was found
to be 59.8 times faster than HYDRA when running on the SGI Origin 3000, and 56.6 times faster
when using HP GS1280.



Chapter 3. Computational Methods 27

(1995):

rn+1 = rn + vndt + [(1− α)f(r′n) + αf(r′n+1)]dt2/2

vn+1 = vn + [(1− β)f(r′n) + βf(r′n+1)]dt

(3.9)

where

r′n+1 = rn + vndt + f(r′n)dt2/2 (3.10)

This integrator is equivalent to a Leapfrog integrator for velocity-independent forces.

The Gravitational Solver

To use the integrator discussed above, the gravitational forces need to be calculated.

The gravitational forces can be expressed as a sum of two separate terms:

Fgrav = Fshort + Flong (3.11)

where Flong is a long range force that can be determined using a Fourier-based solver

using the Particle-Mesh aspect of the code. On the other hand, Fshort is the short

range force determined by iterating a sum over neighboring particles within a short

range radius, using the Particle-Particle aspect of the code. Flong can be smoothed

over the mesh to increase the accuracy of Fgrav. In case of clustering of particles, the

AP3M method isolates such regions onto a sub-grid preventing a slow-down.
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The SPH Solver

For the SPH, an explicit ‘gather’ smoothing kernel is used. The average of the kernel

W , in equation 3.8, is used to ensure the replacement (equation 3.12) is correct to

O(h). Therefore, the following substitution is made:

∇jW̄ (ri − rj, hj, hi) = −∇iW̄ (ri − rj, hi, hj) + O(∇h) (3.12)

Equation Sets

Knowing that the simulation of structure formation and evolution is an initial value

problem, HYDRA uses a set of initial conditions and then solves the following gravito-

hydrodynamic equations;

(1) the continuity equations which are satisfied by the use or a particle based method,

dρg

dt
+ ρg∇ · vg = 0

dρdm

dt
+ ρdm∇ · vdm = 0

(3.13)

where the subscripts g and dm denote gas and dark matter respectively,

(2) the Euler and acceleration equations,

dvg

dt
=

1

ρg

∇P −∇φ

dvdm

dt
= −∇φ

(3.14)
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(3) the Poisson equation,

∇2φ = 4πG(ρg + ρdm) (3.15)

(4) the entropy conservation equation or the conservation of energy equation,

ds

dt
= 0

du

dt
= −P

ρg

∇ · vg

(3.16)

3.3.3 HYDRA in a nutshell

Finally, as a brief panorama of HYDRA, I present the solution cycle of a single time-

step as summarized in TC06 :

1. Assign mass to the Fourier mesh.

2. Convolve with the Green’s function using the FFT method to get potential.

Difference this to recover mesh forces in each dimension.

3. Apply mesh force and accelerate particles.

4. Decide where it is more computationally efficient to solve via the further use

of Fourier methods as opposed to short-range forces and, if so, place a new

sub-mesh (refinement) there.

5. Accumulate the gas force (and state changes) as well as the short-range gravity

for all positions not in sub-meshes.
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6. Repeat (1)-(5) on all sub meshes until forces on all particles in simulation have

been accumulated.

7. Update time-step and repeat.

It is worth noting that star and dark matter particles are handled the same way in

HYDRA.
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Chapter 4

Simulation Models

Thus far, we have been discussing the theory and methods used, but we did not

consider the main focus of this research. Everything discussed up to this point can

be applied to many classes of simulations dealing with structure, particularly galaxy,

formation and evolution. It is now timely to more closely focus on the purpose of this

thesis and the simulations carried.

4.1 The Simulations

We are interested in studying the effect of structure formation algorithms on the

morphology and growth of structure. To do so, we started by examining the effects

of different star formation algorithms on the star forming regions and therefore the

morphology of isolated galactic disc models. Based on the debatable effect of the

velocity divergence criterion for star formation, due to the limited resolution (see

section 2.3), we ran four different low resolution simulations of isolated galactic discs

and collapsing clouds. The initial conditions and other details of each simulation are

discussed below (see sections 4.1.1 and 4.1.2).

Each simulation was performed on 32 cores (1 node) of the Cerberus cluster op-

erated by the Institute of Computational Astrophysics (ICA) at Saint Mary’s Uni-
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versity1. Cerberus is a 304-core AMD Opteron processor cluster with an InfiniBand

high-speed interconnect for MPI code. The simulations were run for a total of 369

hours of wall-clock time.

It is worth noting that we will be referring to the simulations which used the

algorithm that limits star formation to collapsing regions only (∇·~v < 0) as model-1,

and the simulation which used the algorithm with no condition on ∇ · ~v as model-2.

A summary of the simulations is available in table 4.1.

4.1.1 Disc Simulations

Two simulations of isolated galactic discs were performed. Both simulations started

with a disc distribution of 280,000 particles (100,000 dark matter particles, 100,000

stars, and 80,000 gas particles). One of the two simulations allowed star formation to

occur only in collapsing regions (∇·~v < 0), while the other had no conditions on ∇·~v.

The simulations were allowed to run for ∼ 1.02 Gyr, which amounts to ∼ 5 rotations.

Running for ∼ 1.02 Gyr allowed the model to reach a less dramatic epoch of cloud

and star formation (Williamson and Thacker 2012). Data outputs were written every

100 iterations. A softening length of 120pc was used which is large relative to the size

of GMCs. Figure 4.1 shows z-projections of the two models at the initial and final

times of the simulations.

1OpenMP API was used to parallelism
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Figure 4.1: Gas particle plots of the two disc models at t = 0Gyr (top), and later
in the simulation at t = 1.02Gyr (bottom). Model-1 (bottom left) shows
some differences in the morphology when compared with model-2 (bottom
right).

4.1.2 Cloud Collapse

Discs have a large sheering rotation. Hence, the ∇ · ~v < 0 condition is exclusive to

small local high density regions. However, collapsing clouds have more complicated

3D velocities and more collapses on small scales which would show more obvious dif-

ferences produced by the removal of the ∇ · ~v < 0 condition. We used the ΛCDM

model which is considered a successful model for the formation of disc galaxies (Blu-
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menthal et al 1984, Cole et al 1994, White and Rees 1978, Benson 2010). In a ΛCDM

model, baryonic matter collapses inside a dark matter halo forming a galactic disc.

Two simulations of isolated collapsing clouds were performed. Each simulations

started with a cloud of 100,000 particles (50,000 dark matter particles, no stars, and

50,000 gas particles); both clouds had a NFW profile (Navarro, Frenk and White

1996, 1997). An NFW profile is one of the most commonly used mass distributions

of dark matter. The dark matter density can be expressed as a function of radius.

ρ(r)

ρcrit

=
δc

r
Rs

(1 + r
Rs

)2
(4.1)

One of the two NFW cloud collapse simulations allowed star formation to occur only

collapsing regions (∇ · ~v < 0), while the other allowed star formation without any

conditions on ∇·~v. The simulations were allowed to run for ∼ 4.4 Gyr. Data outputs

were written every 100 iterations. A softening length of 240pc was used. Note again

that the softening length is large relative to the size of GMCs. Figure 4.2 and 4.3

shows the two models at the initial and final times of the simulations.
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Figure 4.2: Gas particle plots of the two collapsed cloud models at t = 0Gyr (top) and
t = 4.4Gyr, showing z (left) and x (right) projections. Model-1 (middle)
shows evident differences in the morphology when compared with model-
2 (bottom). Note that the disc structure is not visible in these plots as it
is hidden by the particles around the galaxy.
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Figure 4.3: The star distribution in the two collapsed cloud models at t = 4.4Gyr
showing z (left) and x (right) projections. Model-1 (top) shows evident
differences in the morphology when compared with model-2 (bottom).
The presence of a significant stellar population outside the disc plane
could explain the diffuse hot halo in model-2 due to the feedback pro-
cesses. Note the disc structure is evident in the z-y projections. The
square pattern in the bottom panels is a relic of particles reaching the
edge of computational domain.

Simulation Ndm Ngas Tevol [Gyr] IC type ∇ · ~v Softening length [pc]
DModel-1 100,000 80,000 1.02 D on 120
DModel-2 100,000 80,000 1.02 D off 120
CModel-1 50,000 50,000 4.4 CC on 240
CModel-2 50,000 50,000 4.4 CC off 240

Table 4.1: A summary of the conducted simulations.
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4.2 Calibration

A major challenge facing every computational simulation is the calibration of the

output data. Calibration is an essential tool in computational simulations as it helps

validate the accuracy of the simulation and therefore the chosen models. Without

calibration, it is unclear how well results map to physical models. In other words,

calibration creates a reference basis for the results and facilitates comparison to obser-

vations. To make comparison against observational data possible, the star formation

rates as well as various variables that are known to affect the star formation rates

(such as temperature, density) were smoothed then plotted over the galactic disc; this

is made possible by virtue of the SPH nature of the code.

One might näıvely think that the smoothing process will not change the SFR

values. However, the smoothing changes the values of the smoothed quantity into

volume density values; therefore, rather than plotting star formation rates the values

plotted are star formation rate densities. Careful scaling must be followed to ensure

the accuracy of the smoothing process. When plotting the star formation rates onto

the grid, two major scaling issues arise, the resolution and the box size.

4.2.1 Resolution

The resolution of the plot is dictated by the number of cells the values are being

smoothed over, with more cells obviously constituting a higher resolution. Conse-

quently, as the resolution approaches a minimum (one cell), the star formation rate

(SFR, Ψi) calculated for that single sell must equal the total star formation rate of
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the galaxy (Ψtotal) (equation 4.2).

lim
i→1

i∑
n=1

Ψn = Ψtotal (4.2)

i in equation 4.2 corresponds to the number of pixels (or voxels in 3D).

Figure 4.4: The variation in the resolution affects the SFR density, but not the total
SFR. This plot shows that the total star formation rate is independent of
the chosen resolution.

Since the total star formation rate is a property of the galaxy, it is evident that it

should be independent of the resolution used. Figure 4.4 demonstrates the consistency

of equation 4.3.

npix∑
i=1

Ψi = Ψtotal (4.3)

The smoothing as well as the scaling is dependent on the extent of the grid. It

is expected that the extent of the grid, so long it is larger than the disc, should not

have any effect on the total star formation rate. This is demonstrated in figure 4.5.
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Figure 4.5: The variation in the grid size affects the SFR density, but not the total
star formation rate in case of a grid size larger than the size of the galactic
disc. This plot shows that the the total star formation rate is independent
of the chosen grid size. The diameter of the disc is ∼ 25kpc.

4.2.2 Total SFR

An essential aspect of calibration is the comparison against observational data. A

galactic disc similar to the Milky Way would be expected to have a total star for-

mation rate ranging from 0.68 to 1.45M�/yr (Robitaille and Whitney 2010). The

disc simulations showed a total star formation rate converging to ∼ 1.25 − 3M�/yr

after an initial high peak that is a product of the initial conditions (Williamson and

Thacker 2012).
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Chapter 5

Results and Discussion

5.1 Disc Simulations

5.1.1 Evolution of the SFR

Being interested in star formation, the first quantity we use to compare the two

simulations is the disc’s star formation rate. The star formation rates as well as a

global star formation rate are calculated in HYDRA at each iteration. The total star

formation rate (Ψtotal) of each disc was then plotted as a function of time (figure 5.1).

It is worth noting that the global maxima in figure 5.1 are exaggerated as a product

of the initial conditions used1.

Figure 5.1 shows a peak in the total star formation rate for both models at the

beginning of the simulation. Model-2 peaks to a higher total SFR than model-1 at

the beginning of the simulation then decreases and falls below the the total SFR of

model-1. This sudden decrease in the total SFR of model-2 is related to the feedback

processes in the disc as mentioned before.

The ∇ · ~v < 0 condition in model-1 limits star formation to fewer regions (only

collapsing regions). Therefore, model-1 is expected to have a lower total SFR as less

1There is a brief increase in the SFR due to cooling allowing the disc that is in hydrostatic
equilibrium to collapse down before feedback can respond



Chapter 5. Results and Discussion 41

Figure 5.1: A comparison of the total SFR in both models. The two models seem to
converge similar star formation rates as the simulation proceeds.

regions contribute to star formation. However, when comparing the total SFRs, both

models seem to be similar. Model-2 exhibited more star formation at the beginning

of the simulation and then converged to similar total SFR values as model-1 (Ψtotal ∼

1.25− 3M�/yr).

5.1.2 Filling Factors and Morphology

We first define some helpful terms. The filling factor is a count of the number of grid

cells with a quantity value larger than a certain chosen minimum. The filling factor

gives a direct representation of how a quantity changes as a function of a value. It

is worth noting that the filling factor is a very poor measure of morphology as two

systems with different overall appearances can still have the same filling factor. The

filling ratio is the filling factor divided by the total number of cells in the grid.
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Because of our interest in studying the effect of star formation algorithms on

the morphology of galactic disc models, we compare the filling factor of different

quantities (such as density, SFR) in both models. The two major quantities that

we were interested in are the density, which directly describes the morphology of the

disc, and the SFR which quantitatively describes the star forming regions. The filling

factors for the two models was calculated at different times in the simulations for

various minimum cut-off values.

Gas Density Filling Factor

The density filling factor summarizes some important information concerning the

morphology of the disc reflecting whether there are some high density regions sur-

rounded by less dense structures, or, for example, the whole galaxy is made of high

density structures with few dense regions. We examined the density filling factor at

different times in the simulations. The results are summarized in figure 5.2.

Early in the simulation, for t ' 0.06Gyr, both models had similar fill factors for

all minimum cut-offs. This is expected because the two models started with the same

initial conditions and star formation has had little chance to influence the overall

evolution. Later in the simulation, at t ' 0.95Gyr, model-1 shows more dense re-

gions than model-2 (model-1 had higher filling factors for higher density cut-offs).

Therefore, removing the conditions on ∇ · ~v places more feedback in high density

regions, reducing the density and therefore limiting highest allowed densities. Such

feedback can be studied by examining the temperature of the gas which directly in-

fluences its density. Model-2 shows more hot gas in the disc than model-1. Figure 5.3
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demonstrates the difference in the temperature of the gas between the two models.

Figure 5.2: A plot of the density filling factor vs. the cut-off for which the filling
factor is being evaluated. The density filling factor was evaluated at
t ' 0.06Gyr (top), and t ' 0.95Gyr (bottom). Allowing star formation
with no conditions on ∇ · ~v limits the highest allowed densities in the
galactic disc.
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Figure 5.3: A plot of the temperature smoothed over a 1024 × 1024 grid. Model-
2 (bottom) shows more hot gas in the disc than model-1 (top) which
explains the presence of denser gas in model-1

SFR filling factor

Similar to the density filling factor, the SFR filling factor carries some important

information about the star forming regions. It reflects whether the galaxy is having

star-bursts in certain regions only or whether star formation is spread over the galaxy

across a wider variety of environments. We examined the SFR filling factor at differ-

ent times in the simulations, and the results are summarized in figure 5.4.
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Figure 5.4: Evaluating the SFR filling factor at t ' 0.06Gyr (top), and t ' 0.95Gyr
(bottom) shows that allowing star formation with no conditions on ∇ · ~v
limits the highest allowed SFR.

Early in the simulation, for t ' 0.06Gyr, model-2 had higher fill factors for all

minimum cutoffs, which is expected because we had fewer conditions on star forma-

tion. This reflects that the algorithm found more star forming regions in model-2.

Later in the simulation, at t ' 0.95Gyr, model-1 seemed to have more regions with
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higher SFRs than model-2 (note that the two SFR curves cross-over). Therefore,

allowing stars to form without any conditions on ∇ · ~v limits the maximum allowed

star formation rates which could be connected to various feedback processes. It is

worth remembering that since the amount of gas is finite, starting with a high SFR

will lead to a lower SFR as more gas is converted into stars. Therefore, model-1 will

have a higher total SFR later during the simulation.

5.2 Cloud Simulations

The disc simulations showed slight differences between the two models. Because the

discs have a large sheering rotation, the ∇ · ~v < 0 condition is exclusive to small

local regions of high density. It is possible that the two different approaches applied

to galaxy formation simulations could produce results far more different than those

of the two disc simulations because the velocities (i.e. their 3D nature) are more

complex. With more collapsing regions we expect to see more differences.

5.2.1 GSFR

The disc simulations started with an exaggerated peak in the total SFR. That peak

is a product of the initial conditions. The clouds on the other hand, have a total SFR

with various local maxima and minima and significantly higher dispersion in values.

The total SFR of the clouds was plotted as a function of time as shown in figure 5.5.

The total SFRs of the two models are surprisingly similar. This leads to an interest

in the number of stars formed in each cloud. The number of stars formed amounts
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to an integral over the SFR (Ψ). The cumulative star count after every iteration was

calculated and plotted as a function of time. Figure 5.6 demonstrates the cumulative

star count at each iteration. Although both models had similar star formation rates,

model-2 has significantly more stars forming.

Figure 5.5: A comparison of the total star formation rates of the two models. Both
models have similar star formation rates and high dispersion.

It is worth noting that removing the ∇·~v condition caused some major differences

in the stellar distribution between the two models (figure 4.3). Model-2 has a wider

spread in the stellar distribution, as stars are not concentrated in the disc and the disc

plane. This feature can be related to the fact that removing the velocity divergence

criterion allowed stars to form in any dense and cool region. Therefore, as the clouds

collapse, and fragmentation proceeds, more dense regions are formed allowing star

formation in the halo as well, and hence the spread in the stellar population in

model-2.
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Figure 5.6: A comparison of the two models star count. Although both models share
a similar total SFR, model-2 has a higher star count and therefore more
star formation.

5.2.2 Phase Plots And Morphology

Temperature-Density (T-ρ) Phase Plots

T-ρ phase plots present a useful way of examining the state of the gas present and

help us interpret the morphology of a cloud. The temperature and density are both

values that are made available to us via the SPH method. Plotting temperature

as a function of density, one is able to study distinct regions of the plot and draw

some essential conclusions about the state of the gas in the simulation (Thacker and

Couchman 2001). The following are 5 main regions in a T-ρ phase plot:

1. Hot low density gas: This is mainly gas in the halo that has been shock heated,

or gas that has been heated and ejected into the halo by feedback.

2. Cold low density gas: This is the gas in the halo that has not been shock heated,

or alternatively has been able to cool.
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3. Cold high density gas: This is gas in collapsed clouds usually present in the

disc.

4. Medium temp high density gas: This is gas in the disc that has yet to collapse

into clouds, or cold gas that has been heated via feedback and is still in the

process of cooling.

5. Hot high density gas: This is gas in the clouds that is being actively heated by

the feedback processes.

Moreover, T-ρ phase plots facilitate tracking gas cycles in a galaxy where gas cycles

between high density cold gas, to high density hot gas, then to lower density hot gas

and eventually cooling down. In figure 5.7 we give the T-ρ phase plots for the two

simulations at t = 4.4Gyr.

Model-2 lacks high density gas compared to model-1; this is evident in the trun-

cation of the phase plot of model-2 at lower densities than that of model-1. Because

no conditions on ∇ ·~v are considered, the overall star formation rate in dense regions

is higher. Therefore, dense gas regions form more stars causing the lack of dense gas.

On the other hand, knowing that we are simulating a collapsing cloud, both models

have shock heated gas (hot low density gas). Model-2 has more hot diffuse gas which

is possibly caused by the ejection of gas into the halo due to feedback processes. Also,

knowing that the stellar population in model-2 is not exclusive to the disc (see figure

4.3), the gas in the halo is more easily heated. Therefore, we detect the presence of

more hot diffuse gas which is represented by a higher density of points in the T-ρ

phase plots of model-2. Furthermore, model-1 lacks hot gas of medium density which
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is expected with feedback processes limited to collapsing regions (∇ · ~v < 0).

Figure 5.7: A temperature-density (T-ρ) phase plot of the two models. Model-1 (top)
and model-2 (bottom) show significant differences.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The purpose of this thesis is to study the effects of different star formation algorithms

on the morphology and star formation rates of galactic disc models. We ran two pairs

of simulations using HYDRA OMP, the parallel cosmological hydrodynamic code

(Thacker and Couchman 2006), for a total of 369 hours of wall-clock time. Each pair

of simulations differed in the star formation conditions used. Model-1, limited star

formation to collapsing regions only (∇ · ~v < 0), while model-2 had no conditions on

∇ · ~v. The simulations of the two discs were allowed to run for ∼ 1.02Gyr, and those

of the collapsing clouds (NFW profile) were allowed to run for ∼ 4.4Gyr.

Disc Simulation

Removing the conditions on ∇ · ~v caused more star formation which was reflected

by the higher peak in the total SFR (figure 5.1). On the other hand, removing that

condition reduced the highest allowed densities and SFRs which is depicted in the

filling factor plots (see figures 5.2 and 5.4). Although they had different total SFRs

at the beginning of the simulations, both models converged to similar total SFRs.
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Cloud Simulation

The two cloud models show surprisingly similar total star formation rates (figure 5.5),

but are morphologically distinct (see figures 4.2 and 4.3). Removing the condition on

∇ · ~v caused more star formation (figure 5.6), as well as a reduction in the highest

allowed gas densities (figure 5.7). Model-2 has gas of lower density when compared

to model-1. Moreover, removing the ∇·~v condition produced a lack of dense gas, and

an abundance of hot diffuse gas, and hot medium density gas. Therefore, removing

the ∇ · ~v condition caused the formation of a larger halo populated with hot diffuse

gas ejected from collapsing regions (see section 5.2.2). Moreover, removing the ∇ · ~v

condition lead to a spread in the stellar distribution to the halo (figure 4.3) which

could be considered a major reason for the hot diffuse halo.

6.2 Future Work

The research, so far, has shown how changing the star formation algorithm can cause

some major changes in the morphology of the system. Although some conclusions

can be drawn from this research, significant work is still required to give quantitative

conclusions in a cosmological context.

Additional low resolution analysis of distribution functions (mass and SFR) as

well as volume and areal filling factors (ρ, SFR, and ∇ · ~v) is required. Studying

the mass distribution function, and the SFR distribution function by mass of the

discs and the collapsing clouds will have some important input on the differences in

the morphology between the models. On the other hand, we have yet to examine
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the cloud simulations’ filling factors. It would be interesting to study the areal and

volume filling factors of the cloud simulations which will highlight major differences

between the two models (similar to the disc areal filling factor analysis). Moreover,

it is important to consider calculating the filling factor of ∇ · ~v. By examining the

divergence filling factor as well as the SFR and density filling factors, one can come

to some conclusions on whether the conditions on ∇·~v are the dominating conditions

when forming stars in galaxy formation simulations. Completing the data analysis of

the low resolution simulations would make it possible to start the next stage of this

analysis and examining high resolution simulations of galaxy formation with cosmo-

logical initial conditions.
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