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Abstract. A piecewise deterministic Markov process (PDP) is a continuous time Markov pro-
cess consisting of continuous, deterministic trajectories interrupted by random jumps. The tra-
jectories may be controlled with the object of minimizing the expected costs associated with the
process. A method of representing this controlled PDP as a discrete time decision process is pre-
sented, allowing the value function for the problem to be expressed as the fixed point of a dynamic
programming operator. Decisions take the form of trajectory segments. The expected costs may
then be minimized through a dynamic programming algorithm, rather than through the solution of
the Bellman–Hamilton–Jacobi equation, assuming the trajectory segments are numerically tractable.
The technique is applied to the optimal capacity expansion problem, that is, the problem of planning
the construction of new production facilities to meet rising demand.
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1. Introduction. In this paper a technique for minimizing expected costs as-
sociated with piecewise deterministic Markov processes (PDPs) is developed. Such
processes may be described as continuous time Markov processes consisting of con-
tinuous, deterministic trajectories interrupted by random jumps. A comprehensive
definition and theoretical development of these processes can be found in Davis [4].
Many problems in operations research can be naturally expressed in this framework;
hence there is a great deal of interest in optimization problems associated with these
processes.

A PDP is usually defined on a state space E ⊂ �p partitioned into a bound-
ary Eδ and interior Eo, although the state space definition in [4] is somewhat more
general. We let E denote the Borel subsets of E, and we will let P(E) be the space
of probability measures on the measurable space (E, E), endowed with the topology
of weak convergence. Under suitable regularity conditions a PDP can be uniquely
determined by a vector field f : E → �p, an intensity function λ : E → �+, and
stochastic kernels qo : Eo → P(E) and qδ : Eδ → P(E). Between jumps the PDP
x̂(t) obeys dx̂(t)/dt = f(x̂(t)), and jumps occur at rate λ(x) when the process is at
state x, independently of the process history. If a jump occurs at x ∈ Eo, the pro-
cess is transferred immediately to a new state given randomly by probability measure
qo(dx | x). If the process reaches the boundary at x ∈ Eδ, the process is transferred
immediately to a new state given randomly by probability measure qδ(dx | x). We
will always assume that qo(Eo | x) = 1 and qδ(Eo | x) = 1.

A controlled PDP is defined when the quadruple (f, λ, qo, qδ) is allowed to depend
on a control parameter u. In addition, cost is assumed at a rate lo(x, u) when the
process is at x ∈ Eo and control u is applied, and a discrete cost lδ(x, u) is assumed
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when the process reaches the boundary at x ∈ Eδ and control u is applied. A control
policy Φ is equivalent to a specification for each x ∈ E of an open loop continuous
time control function to be applied from x until the next jump (Vermes [11]).

If we define JΦ(x) to be the expected cost under control policy Φ from initial
state x, possibly under geometric discounting, the value function is then defined as

J∗(x) = inf
Φ

JΦ(x),

where the infimum is taken over all admissible control policies. The object is to find,
if it exists, a control policy whose expected cost achieves this infimum.

In the existing literature the value function for this problem is typically given as a
solution to a Bellman–Hamilton–Jacobi (BHJ) equation. In [11] a limiting form of the
BHJ equation is given as a necessary and sufficient optimality condition. In Dempster
and Ye [9] a generalized BHJ equation, expressed in terms of the generalized Clarke
gradient (Clarke [3]), is given as a necessary and sufficient optimality condition. In
Soner [10] a viscosity solution approach to the BHJ equation is proposed, and, more
recently, the viscosity solution to the BHJ equation has been developed in Davis and
Farid [8], which has advantages with respect to the availability of numerical methods
for solution.

In this paper we use an approach similar to that introduced by Davis [5] and
developed in [9] and Davis [6], in which the problem is reformulated in terms of an
imbedded discrete time process, in which a stage consists of the intrajump determin-
istic portion of the process. The principal difference is that in the approach proposed
in this article the problem remains in the discrete time domain up to and including
the solution algorithm. The concept of a continuously applied control parameter will
play no role. Instead, a discrete time decision process is defined in which a decision
consists of the selection of a trajectory segment, in this way constructing the deter-
ministic trajectory in a piecewise fashion. This means that the BHJ equation plays
no role. Ultimately, the value function is calculable as a fixed point of a dynamic
programming operator in discrete time. Here we do not admit direct control over the
cost function and the jump rate, unlike the other models cited in the above litera-
ture, although in principle the methodology could be extended to incorporate the cost
function and the jump rate into the action space.

Apart from the more limited control, this allows a more uniform approach to
the calculation of optimal policies and a weakening of regularity conditions. For the
generalized BHJ equation in [9], conditions are imposed which guarantee that the
value function is Lipschitz, which excludes many problems of practical importance
(see [6]). The viscosity solution approach allows milder assumptions. In [8] the state
space is required to be bounded, and the cost rate and jump rate are assumed to be
bounded and uniformly continuous. In comparison, in this article the state space need
not be bounded, the jump rate is bounded but not necessarily uniformly continuous,
and the cost rate may be lower semicontinuous and need not be bounded. In fact,
conditions are placed only on suitably defined integrals of the cost rate (see section
2). As for the trajectory, in the context of the BHJ equation the vector field f is
generally assumed to be Lipschitz. In the approach presented here there is no explicit
vector field and no other restrictions other than that the path can be constructed in a
piecewise manner from trajectories selected from a compact set. This admits a wider
variety of control structures, including certain types of impulse controls.

In section 2, we define a discrete time decision process imbedded in the PDP and
obtain conditions under which the resulting transition measure will be continuous
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on the state-action product space. In section 3, we discuss some results for discrete
time decision processes from Bertsekas and Shreve [1] which may be applied to the
problem under consideration here. In addition, with some additional assumptions we
show that the dynamic programming operator is a contraction mapping. In section
4 we show how this may be applied to the capacity expansion problem considered in
Davis et al. [7]. Section 5 contains some concluding remarks and possible extensions
of this work.

2. Reduction of a PDP to a discrete time process. Let E ⊂ �p be a state
space containing a boundary Eδ. Let Eo = E − Eδ be the interior of E. Possibly,
Eδ = ∅, the empty set. We also have the intensity function and stochastic kernels
(λ, qo, qδ) as defined in section 1, all assumed to be Borel measurable mappings.

Then let IT be a time scale interval [0, T ] if T < ∞ and [0,∞) if T = ∞. Let A
be an action space consisting of a family of continuous trajectories α : IT → �p with
α(0) = 0. It will be assumed that A is a compact metric space in which convergence
implies pointwise convergence. We define

B(x, α) = inf{t ∈ IT : x+ α(t) ∈ Eδ},

which is the time taken for the trajectory x+ α(t) to reach the boundary, and let

tf (x, α) = min{B(x, α), T},

adopting the convention that inf ∅ = ∞. For each x ∈ E let Ax ⊂ A be a subset of
trajectories available at state x, which gives the state-action space

Γ = {(x, α) ∈ E ×A : α ∈ Ax}.

We assume that x + α(t) ∈ E when t ≤ tf (x, α) for all (x, α) ∈ Γ. Generally, the
following condition will be satisfied:

(A.1) x+α(t) = x+α(B(x, α))∀ t ≥ B(x, α), t ∈ IT , when (x, α) ∈ Γ and B(x, α) < ∞,

which implies that a trajectory comes to rest upon reaching the boundary. In addition,
(A.1) implies x+α(B(x, α)) ∈ Eδ for all (x, α) ∈ Γ and that the only admissable action
when x ∈ Eδ is α ≡ 0.

We can define iteratively the continuous time process {x̂(t) ∈ E : t ≥ 0} and the
imbedded discrete time decision process {(x̂n, α̂n) ∈ Γ : n ≥ 0} with the associated
event time process {t̂n ≥ 0 : n ≥ 0}. Suppose we have state x̂n ∈ Eo, decision
α̂n ∈ Axn , and time t̂n. The process then follows the trajectory

x̂(t) = x̂n + α̂n(t− t̂n), t ≥ t̂n,(2.1)

until time t̂n + tf (x̂n, α̂n), unless a random jump occurs along the trajectory before
then, say, at time t′ ∈ (t̂n, t̂n + tf (x̂n, α̂n)), in which case (2.1) holds until t′. These
jumps occur at rate λ(x) when the process is in state x ∈ Eo, independently of the
process history. If such a jump occurs at state x′, then the new state x̂n+1 ∈ Eo

is given randomly by the distribution qo(dx | x′), and we set t̂n+1 = t′. If no jump
occurs before t̂n + tf (x̂n, α̂n) then set t̂n+1 = t̂n + tf (x̂n, α̂n). In this case, if the
process has reached the boundary at state x′ ∈ Eδ (i.e., B(x̂n, α̂n) < ∞), then the
new state x̂n+1 ∈ Eo is given randomly by the distribution qδ(dx | x′). Otherwise,
if the end of the trajectory segment α̂n has been reached before the boundary (i.e.,
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B(x̂n, α̂n) = ∞, T < ∞), then set x̂n+1 = x̂n + α̂n(t̂n+1 − t̂n). A new decision
α̂n+1 ∈ Ax̂n+1

is then made. An initial state and decision (x̂0, α̂0) ∈ Γ is specified,

with t̂0 = 0. If x̂0 ∈ Eδ, we will set t̂1 = t̂0 = 0, α̂0 ≡ 0, and x̂1 will be determined by
qδ(dx | x̂0). Then x̂k ∈ Eo for k ≥ 1.

This defines the transition measure Q : Γ → P(E) for the process (x̂n, α̂n), where
Q(K | x, α) is the probability that x̂n+1 ∈ K given that trajectory α̂n = α is selected
at state x̂n = x. Assuming (A.1) holds, this is given explicitly by

Q(K | x, α) =
∫ tf (x,α)

0

qo(K | x+ α(t))λ(x+ α(t)) exp(−Λ(t, x, α)) dt

+ qδ(K | x+ α(B(x, α))) exp(−Λ(B(x, α), x, α))I{B(x, α) < ∞}

+ I{x+ α(T ) ∈ K} exp(−Λ(T, x, α))I{B(x, α) = ∞, T < ∞},(2.2)

where

Λ(t, x, α) =

∫ t

0

λ(x+ α(w)) dw.

Here, I{S} is the indicator function of set S. Since we assume qo(Eo | x) = 1 and
qδ(Eo | x) = 1, we necessarily have Q(Eo | x, α) = 1 for (x, α) ∈ Γ. Note also that if
x ∈ Eδ, we have α ≡ 0, tf (x, α) = B(x, α) = 0, and Q(K | x, α) = qδ(K | x). It will
be useful to know when the transition measure is continuous with respect to weak
convergence on Γ (with E×A assuming the product topology). We prove below that
Q will be continuous under the following assumptions:

(B.1) qo(dx | x) is continuous on Eo with respect to weak convergence.
(B.2) qδ(dx | x) is continuous on Eδ with respect to weak convergence.
(B.3) λ is continuous on E, λ ≤ Mλ for some Mλ < ∞.
(B.4) The setsB1 = {(x, α) ∈ Γ : B(x, α) < ∞} andB2 = {(x, α) ∈ Γ : B(x, α) = ∞}

are both closed.
(B.5) B(x, α) is continuous on B1.
Remark. If a nontrivial boundary is present, a special condition is typically nec-

essary for the continuity of Q to hold. Generally, some assumption which governs the
behavior of the trajectory near the boundary is required. Informally, these assump-
tions typically require that if a trajectory approaches the boundary, it does so in some
direct manner. In [11] the minimum velocity in the direction normal to the boundary
is bounded away from 0. This condition is weakened in [8] to require only that where
the boundary is approachable it is approachable nontangentially. Assumptions (B.4)
and (B.5) are used here to govern trajectory behavior near the boundary. They will
not be natural to many problems and are not satisfied by the capacity expansion prob-
lem considered in [7]. However, we show in section 4 how a reasonable redefinition of
the problem can force (B.4) and (B.5) to hold.

Theorem 2.1. If assumptions (A.1) and (B.1)–(B.5) hold, then Q(dx | x, α) is
continuous on Γ with respect to weak convergence.

Proof. Let γ = {(xn, αn) : n ≥ 1} be a convergent sequence in Γ with limit
(x0, α0). We then have

lim
n→∞xn + αn(t) = x0 + α0(t) ∀t ∈ IT ,
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and hence by (B.3)

lim
n→∞λ(xn + αn(t)) = λ(x0 + α0(t)) ∀t ∈ IT .(2.3)

By (B.3) λ is bounded, so applying the dominated convergence theorem gives

lim
n→∞Λ(t, xn, αn) = Λ(t, x0, α0) ∀t ∈ IT .(2.4)

Next, recall that if {µn : n ≥ 1} is any sequence of probability measures in P(E), an
equivalent definition of weak convergence of the sequence to a probability measure µ0

is

lim inf
n→∞ µn(K) ≥ µ0(K) ∀ open sets K

(see, for example, Theorem 29.1 in Billingsley [2]), so it suffices to show that

lim inf
n→∞ Q(K | xn, αn) ≥ Q(K | x0, α0) ∀ open sets K ∈ E ,(2.5)

for each convergent sequence γ. Since B1 and B2 are closed, we may assume that
γ ⊂ B1 or γ ⊂ B2. We now examine separately the three following cases.

Case 1: T = ∞, γ ⊂ B2. In this case we have

Q(K | xn, αn) =

∫ ∞

0

qo(K | xn + αn(t))λ(xn + αn(t)) exp(−Λ(t, xn, αn)) dt.

By (B.1), (2.3), and (2.4) we may assert for open K

lim inf
n→∞ qo(K | xn + αn(t))λ(xn + αn(t)) exp(−Λ(t, xn, αn))

≥ qo(K | x0 + α0(t))λ(x0 + α0(t)) exp(−Λ(t, x0, α0));(2.6)

hence (2.5) holds by Fatou’s lemma.
Case 2: T < ∞, γ ⊂ B2. In this case we have

Q(K | xn, αn) =

∫ T

0

qo(K | xn + αn(t))λ(xn + αn(t)) exp(−Λ(t, xn, αn)) dt

+ I{xn + αn(T ) ∈ K} exp(−Λ(T, xn, αn))(2.7)

for all n ≥ 0. Using an argument similar to that used for Case 1, we have

lim inf
n→∞

∫ T

0

qo(K | xn + αn(t))λ(xn + αn(t)) exp(−Λ(t, xn, αn)) dt

≥
∫ T

0

qo(K | x0 + α0(t))λ(x0 + α0(t)) exp(−Λ(t, x0, α0)) dt(2.8)

for all open sets K ∈ E . Then

lim inf
n→∞ I{xn + αn(T ) ∈ K} ≥ I{x0 + α0(T ) ∈ K}

for open K ∈ E , which, when combined with (2.4), (2.7), and (2.8), gives (2.5) for
Case 2.
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Case 3: γ ⊂ B1. In this case we necessarily have tf (xn, αn) = B(xn, αn), n ≥ 0,
so that

Q(K | xn, αn) =

∫ B(xn,αn)

0

qo(K | xn + αn(t))λ(xn + αn(t)) exp(−Λ(t, xn, αn)) dt

+ qδ(K | xn + αn(B(xn, αn))) exp(−Λ(B(xn, αn), xn, αn))

for all n ≥ 0. By assumption (B.5) B(xn, αn) →n B(x0, α0). Then, using (2.6), we
have

lim inf
n→∞ qo(K | xn + αn(t))λ(xn + αn(t)) exp(−Λ(t, xn, αn))I{t ≤ B(xn, αn)}

≥ qo(K | x0 + α0(t))λ(x0 + α0(t)) exp(−Λ(t, x0, α0))I{t < B(x0, α0)}

for open K ∈ E , so by Fatou’s lemma

lim inf
n→∞

∫ B(xn,αn)

0

qo(K | xn + αn(t))λ(xn + αn(t)) exp(−Λ(t, xn, αn)) dt

≥
∫ B(x0,α0)

0

qo(K | x0 + α0(t))λ(x0 + α0(t)) exp(−Λ(t, x0, α0)) dt(2.9)

for all open sets K ∈ E . By assumption (A.1) we must have

lim
n→∞xn + αn(B(xn, αn)) = x0 + α0(B(x0, α0)),

and by assumption (B.2)

lim inf
n→∞ qδ(K | xn + αn(B(xn, αn))) ≥ qδ(K | x0 + α0(B(x0, α0)))

for all open sets K ∈ E . We then have

lim
n→∞λ(xn + αn(t))I{t ≤ B(xn, αn)} = λ(x0 + α0(t))I{t ≤ B(x0, α0)},

except possibly at t = B(x0, α0). The sequence {B(xn, αn) : n ≥ 1} is bounded
since B1 is closed. Then with assumption (B.3) the dominated convergence theorem
applies, giving

lim
n→∞Λ(B(xn, αn), xn, αn) = Λ(B(x0, α0), x0, α0),

so that

lim inf
n→∞ qδ(K | xn + αn(B(xn, αn))) exp(−Λ(B(xn, αn), xn, αn))

≥ qδ(K | x0 + α0(B(x0, α0))) exp(−Λ(B(x0, α0), x0, α0))

for all open sets K ∈ E , which with (2.9) gives (2.5) for Case 3, which completes the
proof.

With respect to assumption (B.5), assumption (A.1) is sufficient to guarantee
the lower semicontinuity of B(x, α) on B1, as shown in Lemma 2.2 below, but upper
semicontinuity must be verified separately.

Lemma 2.2. If assumption (A.1) holds, B(x, α) is lower semicontinuous on B1.
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Proof. Suppose that γ = {(xn, αn) : n ≥ 1} is a convergent sequence in B1 with
limit (x0, α0) ∈ B1. We show that

lim inf
n→∞ B(xn, αn) ≥ B(x0, α0)(2.10)

for any such sequence. Suppose there exists an infinite subsequence {(xnk
, αnk

) : k ≥
1} and a β < B(x0, α0) such that B(xnk

, αnk
) ≤ β for all k ≥ 1. Then

lim
k→∞

xnk
+ αnk

(B(x0, α0)) = x0 + α0(B(x0, α0)),(2.11)

and by assumption (A.1) and the fact that B(xnk
, αnk

) ≤ β < B(x0, α0), k ≥ 1, we
must have

lim
k→∞

xnk
+ αnk

(B(x0, α0)) = lim
k→∞

xnk
+ αnk

(β)

= x0 + α0(β).(2.12)

However, (2.11) and (2.12) are contradictory since x0 + α0(B(x0, α0)) ∈ Eδ, but
x0 + α0(β) ∈ Eo; hence any convergent sequence must satisfy (2.10).

Finally, we assume there is a nonnegative expected cost g : Γ → �+ associated
with each stage. This cost may be specified by letting CT be the family of measur-
able functions c : IT → �+. The cost of a stage is then determined by a mapping
ho : Γ → CT which represents the rate at which cost is assumed at a time t after
decision α is made from state x. We may also have a boundary cost hδ(x), x ∈ Eδ,
assumed when the process reaches the boundary at x. Then if W(x,α) is the random
time spent in the stage, the cost assumed in the stage given W(x,α) = w is

H(x,α)(w) =

∫ w

0

ho(t | x, α) dt+ hδ(x+ α(B(x, α)))I{w = B(x, α), B(x, α) < ∞}.

Then g is given by

g(x, α) = E[H(x,α)(W(x,α))](2.13)

=

∫ tf (x,α)

0

ho(t | x, α) exp(−Λ(t, x, α)) dt
+ hδ(x+ α(B(x, α))) exp(−Λ(B(x, α), x, α))I{B(x, α) < ∞}.(2.14)

In the following discussion any regularity condition will be placed on g directly.

3. Optimization for lower semicontinuous costs. We give a general defini-
tion (following [1]) of a stochastic discrete time decision process {(x̂n, α̂n) : n ≥ 0},
where x̂n and α̂n are elements of a state space and action space E and A, both as-
sumed to be Borel spaces. Let P(E) and P(A) be the space of all probability measures
on the Borel sets of E and A, respectively, endowed with the topology of weak con-
vergence. For each x ∈ E we assume that there is a set of available actions Ax ⊂ A.
We then have state-action space

Γ = {(x, α) ∈ E ×A : α ∈ Ax},

where E × A is endowed with the product topology (and is also a Borel space). We
assume there is a stochastic kernel Q(dx | x, α) which is a Borel measurable mapping
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from Γ to P(E). Finally, we have a lower semianalytic cost function g : Γ → �+.
Define a policy

Φ = {φ̃n : n ≥ 0}

as a sequence of stochastic kernels φ̃n(dy | x0, α0, . . . , xn−1, αn−1, xn) which are uni-
versally measurable mappings from (×nΓ)× E to P(A) satisfying

φ̃n(Axn | x0, α0, . . . , xn−1, αn−1, xn) = 1,

and let Π be the class of all such policies. For a given policy Φ ∈ Π the process
(x̂n, α̂n) can then be defined iteratively by considering a current state x̂n and the
process history {(x̂k, α̂k) : k = 0, . . . , n− 1}. Decision α̂n is then given randomly by
the distribution φ̃n(dy | x̂0, α̂0, . . . , x̂n−1, α̂n−1, x̂n), and then state x̂n+1 is given ran-
domly by the distribution Q(dx | x̂n, α̂n). We are given an initial state x̂0. Then a cost
of

∑
n g(x̂n, α̂n) is assumed. (We do not consider at this point geometric discounting.)

Define

JΦ(x) = E

[ ∞∑
n=0

g(x̂n, α̂n) | x̂0 = x

]
,

which denotes the expected cost assumed by the process under policy Φ with initial
state x̂0 = x. If φ̃n is parametrized by xn only, then Φ is a Markov policy. Let Π1

be the class of all mappings φ : E → A with φ(x) ∈ Ax for all x ∈ E. We will be
interested primarily in nonrandomized stationary Markov policies, that is, policies for
which there is some φ ∈ Π1 such that for all n ≥ 0, φ̃n(dy | xn) is a point mass at
φ(xn). (In this case we will simply write φ̃n(dy | xn) = φ(xn).)

We then define the problem:
(P) minimize JΦ(x) over all policies Φ ∈ Π for each x ∈ E.
Define the value function

J∗(x) = inf
Φ∈Π

JΦ(x), x ∈ E.

For universally measurable J : E → �+ define the operator T mapping J to TJ : E → �+

by

(TJ)(x) = inf
α∈Ax

(
g(x, α) +

∫
E

J(x′)Q(dx′|x, α)
)

(3.1)

for all x ∈ E. For φ ∈ Π1, define the operator Tφ mapping universally measurable
J : E → �+ to TφJ : E → �+ by

(TφJ)(x) = g(x, φ(x)) +

∫
E

J(x′)Q(dx′ | x, φ(x))

for all x ∈ E. Letting J0 ≡ 0, define the sequence

Jk+1 = TJk, k ≥ 0.(3.2)

(The sequence is well defined, since if J is lower semianalytic, so is TJ . See [1, Section
8.2].)
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It is easy to verify that g ≥ 0 implies that T is monotone in the sense that
TJ2 ≥ TJ1 if J2 ≥ J1. Then J1 ≥ J0, and hence J2 = TJ1 ≥ TJ0 = J1. By extending
this argument we conclude that {Jk} is increasing, so that the limit

J∞ = lim
k→∞

Jk(3.3)

exists.
The model defined in this section is a lower semicontinuous model with positive

cost according to the definition given in [1, Definition 8.7, p. 208] if the following
conditions hold:

(C.1) A is compact.
(C.2) Γ is a closed subset of E ×A.
(C.3) g(x, α) is lower semicontinuous on Γ.
(C.4) The transition measure Q(dx | x, α) is weakly continuous on Γ.
We summarize some results from [1, Proposition 8.6, Corollary 9.4.1, Proposition

9.8, Corollary 9.17.2, Proposition 9.18, pp. 209, 221, 225, 235, 236] in the following
theorem.

Theorem 3.1. Under assumptions (C.1)–(C.4), the following hold.
(i) If J ∈ J is lower semicontinuous, then so is TJ (from proof of Proposition

8.6).
(ii) J∗ is lower semianalytic, and J∗ = TJ∗ (Corollary 9.4.1, Proposition 9.8).
(iii) There exists a Borel measurable nonrandomized stationary Markov policy

Φ∗ such that JΦ∗ = J∗ (Corollary 9.17.2).
(iv) J∗ = J∞, where J∞ is lower semicontinuous (Corollary 9.17.2).
(v) There exists a sequence {φk ∈ Π1 : k ≥ 0}, where φk is universally mea-

surable, such that Tφk
Jk = TJk, k ≥ 0. Each sequence {φk(x)}, x ∈ E, has an

accumulation point. If φ∗ ∈ Π1 is universally measurable and φ∗(x) is an accumula-
tion point of {φk(x)} when J∗(x) < ∞, then Φ∗ = (φ∗, φ∗, . . .) is an optimal policy
(Proposition 9.18).

Suppose the state space E contains a measurable set EK such that once the
process enters EK it does not leave and it assumes no further cost. Let JK be the
set of all J : E → �+ with J(x) = 0 for all x ∈ EK . We must then have JΦ ∈ JK

for any policy Φ. Furthermore, suppose there is some r > 0 such that from any state
the probability of subsequently entering EK is at least r for all (x, α) ∈ Γ. Under
these assumptions, it is shown below that T is a contraction mapping on JK ; hence
there is at most one fixed point of T in JK . This can be summarized by the following
assumptions:

(D.1) ∃r > 0 such that Q(EK | x, α) ≥ r for all (x, α) ∈ Γ.
(D.2) Q(EK | x, α) = 1 for all x ∈ EK , α ∈ A.
(D.3) g(x, α) = 0 for all x ∈ EK , α ∈ A.
Theorem 3.2. Suppose (D.1)–(D.3) hold. Then T is a contraction mapping of

universally measurable J ∈ JK to JK with contraction constant 1− r.
Proof. By (D.2), (D.3), and the definition of T , if J(x) = 0 on EK for universally

measurable J , then TJ ∈ JK .
If J1, J2 ∈ JK are universally measurable, then for any φ ∈ Π1 we have

‖TφJ2 − TφJ1‖ = sup
x∈E

∣∣∣∣
∫
E

J2(x
′)Q(dx′ | x, φ(x))−

∫
E

J1(x
′)Q(dx′ | x, φ(x))

∣∣∣∣
≤ sup

x∈E

∫
E

|J2(x
′)− J1(x

′)|Q(dx′ | x, φ(x))
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≤ sup
x∈E

∫
E−EK

|J2(x
′)− J1(x

′)|Q(dx′ | x, φ(x))
≤ sup

x∈E
‖J2 − J1‖(1−Q(EK | x, φ(x)))

≤ ‖J2 − J1‖(1− r)

since |J2(x)− J1(x)| = 0 when x ∈ EK . For ε > 0 we may select φ so that

TφJ1 ≤ TJ1 + ε,

and then

TJ2 − TJ1 ≤ TJ2 − TφJ1 + ε

≤ TφJ2 − TφJ1 + ε

≤ ‖J2 − J1‖(1− r) + ε.

This holds for all ε > 0, so TJ2 − TJ1 ≤ ‖J2 − J1‖(1− r). A similar argument gives
TJ1 − TJ2 ≤ ‖J2 − J1‖(1− r), completing the proof.

The model discussed in this section is directly applicable to the imbedded discrete
time decision process introduced in section 2. Using the notation of that section,
if E and Eo are measurable subsets of �p and if A can be defined as a compact
metric space, then E and A are both Borel spaces; then it remains to verify that Γ is
closed. It must then be verified that the transition measure (2.2) is continuous on Γ,
possibly through Theorem 2.1. Then the cost g must be lower semicontinuous on Γ.
Under these conditions, assumptions (C.1)–(C.4) hold and Theorem 3.1 applies, and
the optimum expected cost may be calculated through the dynamic programming
algorithm (3.2)–(3.3). An optimal policy may be obtained as the limit defined in
Theorem 3.1(v).

With respect to the process of section 2, assumption (D.1) will hold under various
circumstances. Geometric discounting may be introduced by adding to E a kill state
∆ and assuming that the process jumps to ∆ at some fixed rate. If λ is bounded and
B(x, α) is bounded away from 0, then assumption (D.1) will be satisfied. Alternatively,
there may be some target set which the state-action space is constrained to reach in
one stage within some bounded time, barring a jump. If the process remains in this
set with no further costs, then assumption (D.1) will be satisfied.

4. The capacity expansion problem. We now consider the optimal capacity
expansion problem considered by Davis et al. [7]. We suppose that for a certain
commodity there is a demand rate d which increases in time according to a compound
Poisson process with constant rate λ > 0. Suppose there are enough plants to supply
the commodity at rate s. At any time a decision to build a new plant may be made,
which requires a total cost of C. Let y be the amount already invested in the plant
being currently built. If no plant is currently being built, then y = 0. The rate of
investment will then be ẏ ∈ [0, c], where c represents the maximum possible investment
rate. Once a plant is completed, capacity s is increased by L units. We let z = s−d. If
z > 0, then there is overcapacity, and if z < 0, there is undercapacity. Let h : � → �+

represent the rate at which cost is assumed due to overcapacity or undercapacity z
with h(0) = 0.

The problem is to derive a policy, giving the investment rate at any state, which
minimizes the total expected cost under geometric discounting. In [7] a technique
for solving the BHJ equation for this problem is given. It should be noted that an
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optimal solution does not necessarily exist. Examples are given in [7] of a problem
in which for certain values of z it is ε-optimal to build the current plant to within
a small amount β of completion, with the expected cost function improving as β
approaches 0, but not optimal to complete it. This suggests introducing as a control
constraint the requirement that a plant be completed if it is within some fixed amount
of completion. It will be shown below that this constraint forces assumptions (B.4)
and (B.5) to hold. It is also shown in [7] that any optimal policy will specify either
maximum investment rate c or minimum investment rate 0.

We need to specify Eδ, Eo, A,Γ, λ, qo, qδ, g as defined in section 2. The state space
will be

E = [0, C]×�,

Eo = [0, C)×�,

Eδ = E − Eo.

Then we interpret (y, z) ∈ E as the state at which the current plant has y currently
invested and z = s− d. As in [7], we will suppose that the investment rate is either 0
or c. Hence from a starting point (y, z) the decision will consist of determining how
much to invest in the current plant at rate c. The action space A is then the family
of parametric curves α : [0,∞) → �2 of the form

α(t) =

{
(ct, 0), 0 ≤ t < a/c,
(a, 0), a/c ≤ t,

(4.1)

for a ∈ [0, C]. Thus we have T = ∞. The trajectories in (4.1) are homeomorphic
to the interval [0, C], so that A will subsequently be represented by [0, C]. We let β
be a positive constant less than C. The action space will be constrained so that if
y ∈ (C − β,C], the project must be completed at rate c, and if y ∈ [0, C − β], then
an amount a ≤ C − β − y or a = C − y may be invested. Hence we have state-action
space

Γ = Γ1 ∪ Γ2,

Γ1 = {(y, z, a) ∈ E × [0, C] : y + a = C},
Γ2 = {(y, z, a) ∈ E × [0, C] : y + a ≤ C − β}.

We introduce geometric discounting by adding to E a kill state ∆ to which the process
jumps at a rate η > 0. At this state no further costs are assumed. We can then define
the overall jump intensity as λ(y, z) ≡ λ+ η. If the magnitude of any demand jump
equals in distribution some nonnegative random variable Z, let PZ(· | y, z) be the
probability measure of the random vector equal in distribution to (y, z − Z) ∈ E.
Then

qo(K | y, z) = λ

λ+ η
PZ(K | y, z) + η

λ+ η
I{∆ ∈ K}, (y, z) ∈ Eo,

and

qδ(K | y, z) = I{(0, z + L) ∈ K}, (y, z) ∈ Eδ,

for any K ∈ E , the Borel subsets of E. Then q0 and qδ are continuous on Eo and
Eδ, respectively. We also have B(y, z, a) < ∞ in Γ1 and B(y, z, a) = ∞ in Γ2, which
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are both closed sets. Assumptions (B.1)–(B.4) of Theorem 2.1 are then satisfied.
Furthermore, B(y, z, a) = a/c on Γ1 so that assumption (B.5) of Theorem 2.1 is
satisfied. Since assumption (A.1) also holds, we may conclude that the transition
measure Q defined in (2.2) is continuous on Γ.

For state (y, z) and decision a we can then calculate the immediate stage cost g,

g(y, z, a) =
h(z) + c

λ+ η
(1− exp(−(λ+ η)(a/c)))

for (y, z, a) ∈ Γ1 and

g(y, z, a) =
h(z)

λ+ η
+

c

λ+ η
(1− exp(−(λ+ η)(a/c)))

for (y, z, a) ∈ Γ2. If h(z) is lower semicontinuous, then so is g on Γ. Then assump-
tions (C.1)–(C.4) are satisfied so that Theorem 3.1 applies and algorithm (3.2)–(3.3)
becomes

J0(y, z) ≡ 0,(4.2)

Jk+1(y, z) = inf
a

(
g(y, z, a) +

∫
E

Jk(y
′, z′)Q(dy′, dz′ | y, z, a)

)
(4.3)

for all (y, z) ∈ E, k ≥ 0, where the infimum is taken over a ∈ [0, C − β − y]∪ {C − y}
if y ≤ C − β, and over the singleton {C − y} if y > C − β. Since at any state (C, z)
the process transfers immediately to (0, z+L), we may set Jk(C, z) = Jk(0, z+L) for
all k ≥ 1, z ∈ �. Note that Jk(∆) = 0.

As an example, we will apply this algorithm to a case considered in [7], in which
jumps in demand consist of one unit with probability one. The integral in (4.3)
becomes

∫
E

Jk(y
′, z′)Q(dy′, dz′ | y, z, a) =

∫ a/c

0

Jk(y + ct, z − 1)λ exp(−(λ+ η)t) dt

+ Jk(0, z + L) exp(−(λ+ η)(a/c))

for (y, z, a) ∈ Γ1, and

∫
E

Jk(y
′, z′)Q(dy′, dz′ | y, z, a) =

∫ a/c

0

Jk(y + ct, z − 1)λ exp(−(λ+ η)t) dt

+ Jk(y + a, z − 1)
λ

λ+ η
exp(−(λ+ η)(a/c))

for (y, z, a) ∈ Γ2. Then let

Ja
k+1(y, z) = g(y, z, a) +

∫
E

Jk(y
′, z′)Q(dy′, dz′ | y, z, a)

for all (y, z, a) ∈ Γ, k ≥ 0. If L is an integer, then we may confine attention to a
semigrid on E by constraining z to be an integer. We will discretize the problem
by considering only states {(Ci/n, z) : i = 0, 1, . . . , n} for some large n. Choose
β = C(i∗/n) for some positive integer i∗ < n. Then (4.3) can be calculated for a
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given Jk numerically. To reduce the number of calculations necessary we can evaluate
the discretized version of (4.3) using backwards recursion by setting

Jk+1(C − β, z) = min{J0
k+1(C − β, z), Jβ

k+1(C − β, z)},
Jk+1(C(1− i/n), z) = min{Vwait, Vgo}, i = i∗ + 1, . . . n,

where

Vwait =
h(z) + λJk(C(1− i/n), z − 1)

λ+ η
,(4.4)

Vgo =

(
C

h(z) + c

nc
+ Jk+1(C(1− (i− 1)/n), z)

)
exp(−(λ+ η)C/(nc))

+ λ/(λ+ η)Jk(C(1− i/n), z − 1)(1− exp(−(λ+ η)C/(nc))).(4.5)

Intuitively, when the process is in state (C−β, z) there are only two options available:
completing the project or waiting. So we calculate the expected cost for each option
and set Jk+1(C −β, z) to be the smaller value. Then consider state (C −β−C/n, z).
Again, there are two choices: either proceeding to point (C − β, z) or waiting. Then
Vwait in (4.4) with i = i∗+1 represents the expected cost of waiting. If the choice is to
proceed, the assumption is that the process reaches state (C − β, z) with probability
exp(−(λ + η)C/(nc)) and then assumes the optimal choice there. Otherwise, the
process jumps to point (C − β − C/n, z − 1) or ∆, with probabilities λ/(λ + η) and
η/(λ + η), respectively. For this choice Vgo in (4.5) with i = i∗ + 1 represents the
expected cost. Then set Jk+1(C − β − C/n, z) to be the smaller of these two values.
Continue in this manner, decreasing y by C/n, until Jk+1 is calculated for state (0, z),
and then repeat this algorithm for all values of z. Then Jk+1 is used to calculate Jk+2

in the same manner, continuing in this way until convergence is achieved.
This algorithm was applied to a set of parameters L = 1, C = 1, c = 1, λ = 0.8,

η = 0.05, and h(z) = 1.5|z| on the range 10 ≤ z ≤ 10 with n = 50 and β = 3/50. Note
that to calculate Jk+1(y, z) the values of Jk(y, z−1) and Jk(0, z+1) are required; hence
the range over which Jk can be calculated will decrease by one unit in each direction
of z with each iteration. In [7] this is dealt with by setting appropriate boundary
conditions. We do the same here with the constraint Jk(y,−10) = 250, k ≥ 0. This
quantity is roughly the expected cost when construction continues indefinitely from
state (0,−10). We also assumed that it will be optimal to wait at all states (y, 10).
These constraints allow the calculation of Jk on the entire range of interest.

It was found that the optimal policy could be expressed by the quantities w(z),
z = −10,−9 . . . , 10, where it will be optimal to construct as long as y < 1−w(z). The
quantities found were w(z) = 0 for z = −10, . . . ,−1 ; w(z) = 1 for z = 4, . . . , 10; and
w(0) = 0.06, w(1) = 0.06, w(2) = 0.22, and w(3) = 0.62. Note that 0.06 = β. The
same example calculated in [7] gives w(1) = 0.0158, w(2) = 0.2225, and w(3) = 0.6612.
Also in [7], for z = 0 it was found that the expected cost improved as w(0) → 0, but it
was not optimal to set w(0) = 0. Accordingly, the algorithm proposed here calculated
w(0) = β. Similarly, where w(1) = 0.0158 ≤ β in [7], w(1) by the above algorithm
was found to be β. The other values were the same using both methods. Convergence
was achieved by 50 iterations.

It should be noted that the solution techniques used in [7] require some prior
assumption about the form of the optimal policy. Two classes of policy are considered:
the “invest until complete” (IUC) policy and the “follow realized demand” (FRD)
policy. For an IUC policy there is nonincreasing w(z) ∈ [0, C] such that construction
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takes place when y ≥ 1−w(z). Essentially, a plant is completed once started under this
policy. For an FRD policy there is nondecreasing w(z) ∈ [0, C] such that construction
takes place as long as y < 1−w(z). (The optimal policy calculated in this section is an
FRD policy.) Necessary and sufficient optimality conditions are developed separately
for each class and are then investigated separately. No such distinction has to be
made in the technique presented in this paper.

5. Concluding remarks. The problem of minimum cost piecewise determin-
istic processes under a broad class of controls was considered with the objective of
verifying the existence of an optimal control and with proposing a unified approach to
a numerical solution. The approach is fundamentally different from other discussions
of this problem in the literature in that the control problem is presented as a discrete
time decision process in which a decision consists of the selection of a trajectory seg-
ment from a compact space. The BHJ equation plays no role. If the action space
is numerically tractable, a straightfoward fixed point algorithm based on a dynamic
programming operator can be used to calculate the optimal control.

In the BHJ equation method the velocity field is commonly assumed to be Lipschitz-
continuous. This means that a solution to the BHJ equation could also be constructed
from a sequence of trajectory segments taken from a suitably defined compact space,
making the theory presented here applicable also to control models treated in the lit-
erature cited above (although one would need to establish some smoothness conditions
on an optimal trajectory as a necessary condition). The solution methodology, how-
ever, is more natural for problems in which the trajectory segments are parametrizable
in finite dimensions, although the infinite dimension control could be approximated
with splines. It is important to note that the discrete time decision process also ad-
mits more coarse varieties of control. For example, we may define piecewise linear
control policies, which would have the effect of allowing control to be exerted only at
regular time intervals.

It is anticipated that further work in this area will result in an expansion of
the definition of the action space to include some control over jump rate and cost
function. This would make the range of applicable models similar to that of methods
based on the BHJ equation. It would also be of some value to allow trajectory time
lengths to vary and hence be subject to control. This would significantly expand the
classes of admissible control structures. A more complete treatment of, for example,
impulse-type controls would then be possible.
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