Testing the Pecking Order Theory of Capital Structure in Canadian Firms

by

Qinglan (Atty) LIU

A research project submitted in partial fulfillment of the requirements for the degree of Master of Finance

> August 2013, Halifax, Nova Scotia Copyright Qinglan (Atty) LIU 2013

> > Approved: Dr. Colin Dodds

Faculty Advisor

Approved: Dr. F. Boabang

MFIN Director

Date: August 29, 2013

Acknowledgements

I would like to sincerely thank my supervisor Dr. Colin Dodds for the guidance and the encouragement gave.

I also would like to thanks for Dr. Francis Boabang, who helped me with the choice of topic and his teaching of Corporate Finance from which it gave me the general idea for the topic. And I would like to thank for Professor Yigit Aydede, who gave some advice on the Stata program to process the data.

Importantly, I really appreciate the support and understanding from my parents during this year of studying in MFin program.

Abstract

Testing the Pecking Order Theory of Capital Structure in Canadian Firms

By

Qinglan (Atty) LIU

August 29th, 2013

The purpose of the study is to explore the validity of the Pecking Order Theory in Canadian firms. My model followed the work of Shyam-Sunder and Myers (1999) and Frank and Goyal (2002), and I run the regression on new debt issued and the aggregated deficit of the firm, its components and new debt issued. Dummy variables were included to spot any differential financial pattern in Canadian firms. The sample size was 120. All firms were listed on the Toronto Stock Exchange in 2012.

From the results, it is shown that firms mainly prefer debt after considering the internal sources of fund. The dividend payments and net working capital requirements are not the major concern to raise funds, but rather the investment needs and the cash flows from operations play key roles for external funding. And it is not significantly different across industries.

Contents

Chapter 1 Introduction	1
1.1 Background	1
1.2 Purpose of the Study	2
1.3 Organization of Study	3
Chapter 2 Literature Review	4
2.1 First Proposed Idea	4
2.2 Aggregated Model	5
2.3 Disaggregated Model	6
2.4 Conventional Model	7
Chapter 3 Methodology	8
3.1 Variable Definition	8
3.2 Sample Data Selection	9
3.3 Procedure	
3.3.1 Aggregated Model	
3.3.2 Disaggregated Model	
3.3.3 Dummy Variable Model	
Chapter 4: Analysis of the Results	

4.1 Data Description	12
4.2 Aggregated Model Regression	12
4.3 Disaggregated Model Regression	14
4.4 Dummy Model Regression	16
Chapter 5: Conclusions and Recommendations	
References	20
Appendix A	22

Chapter 1 Introduction

1.1 Background

Capital Structure is one of most important study areas in Corporate Finance. Since the theory was introduced by Modigliani and Miller (1958), there have been many studies that focus on additional factors influencing this structure. For example, Agency theory and the Asymmetric information hypothesis. So far, these studies can be categorized into two major groups: the Pecking Order Theory and the debt cost-benefit tradeoff approach. The weight of empirical research shows that the Pecking Order Theory is more appropriate to explain the capital structure pattern for companies.

The Pecking Order Theory, or Simple Pecking Order was first introduced by Myers (1984) and Myers and Majluf (1984). It explains the hierarchical sources of funds utilized by the company when it faces the need of financing. It holds the idea that because of the external financing cost and the asymmetric information problem, when the firm faces the need of financing, it will first prefer internal sources (i.e. retained earnings), then debt, and the last preference is equity. Specifically, the asymmetric information problem between the external investor and the inside manager causes high uncertainty of the return for the fund supplier, so that the supplier claims a higher return to compensate for the risk they undertake. Meanwhile, because the interest on debt can be fairly easily determined in advance and there is a tax shield and debt typically has a lower volatility than equity, the cost of debt is lower than

equity. Besides, financial institutions will charge transaction costs for helping firms searching for external funds, Emery and Finnerty (1997).

We can refer to tests that have been conducted. However, the results are not without controversy. Frank and Goyal (2003) used data from publicly traded U.S. firms to test the theory, but their results show that firms prefer equity sources. On the other hand, some studies have supported the validity of the theory. For example, Shyam-Sunder and Myers (1999) compared the Pecking Order Theory and alternative tradeoff hypothesis and found supporting evidence for the Pecking Order Theory. Lemmon and Zender (2004) argued that the theory gave a good explanation for the financial policy, and Leary and Roberts (2008) found that approximately 36% of their sample companies follow the pattern of Pecking Order Theory. Besides, recent study added new idea to extend the theory, such as agency cost (Myer, 2003), taxes (Hennessy and Whited, 2005) and managerial optimism (Heaton, 2002).

1.2 Purpose of the Study

To date, the U.S. has been the focus of many of those studies, rather than Canada. As a result, this paper is aimed at examining whether the theory is valid for Canada. If indeed this is the case, it will assist the Canadian investor to predict the firm's funding action and give a useful reference to the manager in making their financing decisions.

In order to test the theory, this paper will randomly select 120 firms listed on the Toronto Stock Exchange. The data were extracted from the financial reports of firms. In order to avoid any extreme specific industry bias, it excluded the financial services industry and the regulated utility firms. Simple OLS regression and multiple OLS regression were run and dummy variables were included in the regression to determine the differences among industries.

1.3 Organization of Study

In this paper, there are five chapters. This current Chapter introduces the background knowledge and purpose of the study, and Chapter 2 provides a literature review and discusses the studies and methodologies that have been used to test the Pecking Order Theory. Chapter 3 explains the methodology this paper adopted and the sample selection. Chapter 4 analyzes and discusses the results. Chapter 5 summarizes the results of this paper, and provides recommendations for future work in this area.

Chapter 2 Literature Review

2.1 First Proposed Idea

Myers (1984) considered two dimensions to establish capital structure. The first part is called the Static Tradeoff Theory, which means that companies pursue the target debt ratio and achieve it over the long-term. The company may change the capital structure in the short period, but it remains stable in the long-run. The second part is called the Pecking Order Theory, which was first proposed by Myers (1984) and Myers and Majluf (1984). Its thesis is that the firm has a hierarchy of ways for raising funds for projects. The first priority is its internal resources, the second is debt, and the last priority is equity. Specifically, there are two reasons to explain for this financial pattern, which are asymmetric information theory and external transaction costs.

On one hand, the information gap between the manager and potential investor engages an adverse selection problem. The high uncertainty makes the investors demand a higher return. For the internal source of funds, there is not this kind of conflict, so that the cost is cheaper than external sources. Meanwhile, because the equity is subject to more serious uncertainty than the debt and the inclusion of tax shield, the cost of debt is lower than the cost of equity. Additionally, due to the asymmetric information, when the firm issues debt, the market may consider it is a positive signal that the company considers its stock share to be undervalued.

On the other hand, floating and other transaction costs to raise external funds may

influence the managers of the firm in their financing decision. So the firm will first prefer the lower cost source of funding. Meanwhile, the past research also stated that the cost of new debt is much cheaper than the new equity cost, Emery and Finnerty (1997).

The Pecking Order Theory has spawned a number of statistics to test validity of the theory.

2.2 Aggregated Model

Shyam-Sunder and Myers (1999) operated tests to discriminate between the Pecking Order Theory and the Trade-off Theory and their results found in favor of the Pecking Order Theory.

In the test in Shyam-Sunder and Myers (1999), the aggregated data process is shown as Equation 2.1 below:

 $DEFt = DIVt + Xt + \Delta Wt + Rt - Ct = \Delta Dt + \Delta Et \cdots (2.1)$

where DEFt is the deficit of fund, which is increased by the capital out flow like dividend payment and Capital Expenditure, but decreased by internal source of fund raised, like Operating cash flow; therefore, DIV_t is dividend payment; Xt is capital expenditure; Δ Wt is change in net working capital; Rt is current portion of long-term debt; Ct is Operating cash flow. Δ Dit is the first difference of long-term debt between successive periods, which is a proxy to reflect the new debt issued. Δ Eit represents the new equity issued.

The important assumption is made that the component of the deficit and the deficit are independent variables. Particularly, before this test, Shyam-Sunder and Myers (1999) held

the idea that equity is seldom issued again after the IPOs, except when the cost of debt is extremely to high, for example the junk debt issued costs or a bankruptcy problem occurs. Besides, to avoid the size effect, the data input are divided by the sale, net asset, or total assets.

Then the Pecking Order Theory can be test by running the regression:

 $\Delta Dit = \alpha + \beta DEFit + \mu it \dots (2.2)$

For the strong form of Pecking order, then $\alpha = 0$, and $\beta = 1$, which means that the required funds needed for the project are raised by debt. Because every one unit of new debt issued is the result of one unit of deficit of the funds, so there is no room for equity.

For the weak form of Pecking order, then $\alpha \neq 0$ but is close to 0, and $\beta \neq 1$ but less than 1, which means that when the firm faces a deficit in funding, it may not totally use debt to fund it. Although the $\beta \neq 1$, it is close to 1, it reflects the major way of fund raising is still debt. In terms of this, the second priority is debt after considering the available internal sources.

The Shyam-Sunder and Myers (1999) study provides supportive evidence to prove the validity of Pecking Order Theory. Other studies for specific countries also support the theory in the weak form. For example, Vasiliou et al (2009) used cross-section data to study the situation in Brazilian firms.

2.3 Disaggregated Model

Alternative model, Disaggregated Model, is prepared by Frank and Goyal (2002), which

is shown as below:

 $\Delta Dit = \alpha + \beta 1 DIVit + \beta 2Xit + \beta 3\Delta Wit - \beta 4Cit + \mu it \dots (2.3)$

Compared with the method used by Shyam-Sunder and Myers (1999), this regression does not have the current portion of long-term debt (Rt). From their initial empirical tests, this component has less influence on the result. Later studies also followed this adjustment to the regression process.

2.4 Conventional Model

Additionally, there is a method called the Conventional Model, which was mentioned by Frank and Goyal (2002). It is a method to regress more factors to discover the relationship between the issuing debt and other independent variables.

One of the formats is presented below,

 $\Delta Dit = \alpha + \beta T \Delta Tit + \beta MTB \Delta MTBit + \beta LS \Delta LSit + \beta P \Delta Pit + \beta DEFDEFit + \mu i \cdots (2.4)$

where T is tangibility of asset, MTB is market-to-book ratio, LS is log sales, and P is profitability. The Δ present the first different procedure. The regression pools the panel data to draw the results. The important part in this model is the use of tangible factor. <u>Harris and Raviv (1991)</u> stated that in the Pecking Order Theory, the fewer tangible assets, the greater asymmetric problem, so they accumulated more debt. However, the result for this were not shown in the Frank and Goyal (2002) paper.

Chapter 3 Methodology

In this paper, it will adopt the methodologies that were used by Shyam-Sunder and Myers (1999) and Frank and Goyal (2002). However, some adjustments were made. The details are discussed in the following section.

3.1 Variable Definition

In order to test the validity of the Pecking Theory and run the regressions, it is required to define the variables first, including deficit of fund (DEF), New debt issued, and the component of DEF (ie. Net Investment, Change in Net Working Capital, Dividend Payment, and Cash Flow after interest and tax). All these data were extracted from the financial statements of the sample firms. The definitions are listed as below.

1. Net Investment (I_i) : explains the funds needed for investment purposes. The proxy data comes from the Investment Activity Cash Flow. The higher the need for investment, this leads to the potential for borrowing. The relationship should be positive.

2. Change in net working capital (ΔW_i): explains the liquidity requirement of the firm, which is the first difference of Net Working Capital (CA-CL). If the firm increases net working capital, then the need for liquidity increases, which means the funding for other investment projects is less, so that new borrowing would have to increase to finance the investment opportunities. The relationship should be positive.

3. Dividend Payment (DIV_i): explains the cash outflow from the firm because of

distribution. The data were extracted from the financial statements of shareholder equity. It is not required that all sample firms selected have dividend payments, because the payment is a proxy to reflect the firm's liquidity situation. Low liquidity may lead to the demand for new borrowing to support the investment needs. Therefore, the relationship with new borrowing is expected to be positive.

4. Cash Flow after interest and tax (C_i): explains the inside fund available to the firm. The proxy is cash flow from operations. If the firm has more Cash Flow available, the need for new borrowing will be less. So the relationship should be negative.

5. New Debt issued (ΔD_i) : explains the new issued debt. The data are for the different amount on the long-term debt account between two successive periods. The data are dependent variable for testing theory by finding the significant level of the relationship.

3.2 Sample Data Selection

Cross-section data for 2012 are used to study the current financial pattern in Canadian firms. They were extracted from the financial reports of publicly traded firms listed on the Toronto Stock Exchange. The firms were selected according to the criteria that the headquarters were located in Canada and they are incorporated in Canada. Additionally, some 'special' firms are excluded for the sample, for example, the financial institutions and regulated utilities firms, because they have their own particular financial pattern. Last but not least, although not all the defined variable data are required, the dependent variable must have a complete data set, so that the firm missing crucial data will be left out of sample.

In order to test the validity of the theory, 120 random samples were collected. The quantity of samples relative to industry is according to the percentage of the industry held in the population pool. The random process utilizes the Excel function, *Randombetween (top, down)*, after considering the criteria issue. After that, 11 industries were sorted, included Mining, Oil & Gas, Energy Service, Clean Tech, Life Sciences, Technology, Real Estate, Communication & Media, Diversified, Forest Products, and Utilities. Furthermore, to avoid the size effect, all data collected were divided by total assets. The detailed data set can be seen in Appendix A.

3.3 Procedure

3.3.1 Aggregated Model

First, I run the regression between the aggregated DEF and the increase of new debt. (Using Equation 2.2 but for convenience renumbered as 3.1)

 $\Delta Di = \alpha + \beta DEFi + \mu i \cdots (3.1)$

where:

DEFi=Ii+AWi+Divi-Ci

 $\Delta D_i = D_t - D_{t-1}$

If the results support the strong form, then $\alpha = 0$, and $\beta = 1$. This means that after the IPOs, the company's total need of funds is debt after considering the insider source (Cash Flow after Tax and Interest).

If the results support the weak form, then $\alpha \neq 0$, but is close to 0, and $\beta \leq 1$ but

close to 1. This reflects the firm does not totally depend on the debt issued.

3.3.2 Disaggregated Model

Secondly, the alternative model is to regress the component of DEF with new debt.

 $\Delta Di = \alpha + \beta 1 Ii + \beta 2 \Delta Wi + \beta 3 DIVi - \beta 4 Ci + \mu i \qquad (3.2)$

where:

I_i: Net Investment

 ΔW_i : Change in Net Working Capital

DIV_i: Dividends Payment

Ci: Cash Flow after interest and taxes

This models helped to confirm the result from aggregated model whether it satisfys the Pecking Order theory. Besides, it can also show the major factors that drive the new debt issue.

If the result supports the strong form, then $\alpha = 0$, and $\beta 1 = \beta 2 = \beta 3 = 1$, and $\beta 4 = -1$.

If the result supports the weak form, then $\alpha \neq 0$, but is close to 0; and $\beta 1, \beta 2, \beta 3 \leq 1$ but close to 1, and $\beta 4 \geq -1$ but close to-1.

3.3.3 Dummy Variable Model

To spot the difference among different industries, this paper includes the dummy variable regression on the aggregated model.

 $\Delta Di = \alpha + \beta DEFi + D1\beta DEFi + D2\beta DEFi + \dots + D10\beta DEFi + \mu i \dots (3.3)$

There are 10 dummy variables for 11 industries. The coefficient for Dn is the difference between the benchmark industry.

Chapter 4: Analysis of the Results

4.1 Data Description

After taking the scale process, the summary of the data are shown as Table 4.1

Variable	0bs	Mean	Std. Dev.	Min	Max
sdd	120	.1955767	2.290446	-2.134235	24.96269
sddiv sdnwc	120 120	.0181198 .0058292	.0304075 .1375909	0 6836797	.1730038 .5600452
sddcf	120	.0716203	.1494342	7278477	.671857
sdni	120	.1023759	.136876	1343936	.8859316
sddef	120	.0547046	.2011806	29739	1.05725

Table 4.1 Summary of the data

where:

sdd means the standardized New Debt issued, which is New Debt issued divided by total assets, or the percentage of total asset. Similarly, sddiv is the standardized New Debt issued Dividend Payment, sdnwc is the standardized change in net working capital, sddcf is the standardized Cash Flow after interest and tax, and sdni is the standardized Net Investment. Table 4.1 lists the number of observation, mean, standard deviation, minimum and maximum value, which is a general description of the data set.

4.2 Aggregated Model Regression

By regressing the standardized new debt issued and the standardized deficit of funds, the results are shown in Table 4.2

Source	SS	df		MS		Number of $obs = 120$
Model Residual	3.42064017 620.870317	1 118		064017 161286		F(1, 118) = 0.65 Prob > F = 0.4217 R-squared = 0.0055 Adj R-squared = -0.0029
Total	624.290957	119	5.24	61425		Root MSE = 2.2938
sdd	Coef.	Std.	Err.	t	P>ItI	[95% Conf. Interval]
sddef _cons	.8427408 .1494749	1.045 .2170		0.81 0.69	0.422 0.492	-1.227042 2.912523 2803674 .5793173

Table 4.2 Results of regression $\Delta Di = \alpha + \beta DEFi + \mu i$ (Equation 3.1)

To avoid the violation of assumption that the residuals are normally distributed, we run the robust standard error regression again and make a comparison. The new results is shown as Table 4.3

Table 4.3 Results of robust standard error regression

Linear regress	sion				Number of obs F(1, 118) Prob > F R-squared Root MSE	
sdd	Coef.	Robust Std. Err.	t	P>ItI	[95% Conf.	Interval]
sddef _cons	.8427408 .1494749	.5866965 .1835371	1.44 0.81	0.154 0.417	319078 2139785	2.00456 .5129284

In comparing the results from the regression above, the coefficient remain the same (0.8427), but the p-value makes a great difference, as it decreased from 0.422 to 0.154 for the coefficient.

Since the coefficient for deficit and new debt is 0.8427, it reflects the weak form of the Pecking Order Theory. The increasing significance of the results are in favor of the result.

To explain the details, the intercept is 0.1495 with the 0.1835 Robust standard error, low t-value and high p-value. The results mean that the intercept is not statically significant from Zero, or closed to Zero. For the coefficient, it is 0.8427 with a 0.5867 Robust standard error, t-value is 1.44 and p-value is 0.154, approximately at the 15% significance level is acceptable.

The regression results illustrated that for every 1 unit of deficit of fund increase, there will be 0.8472 units of new debt issued, at the 15% significance level. Although the coefficient is not exactly equal to 1, it is close to 1. Besides, the intercept is not significant from 0, or nearly Zero. So the result supports for the weak form of the Pecking Order Theory. This result is close to the finding of Shyam-Sunder and Myers (1999).

4.3 Disaggregated Model Regression

To obtain the influence by the individual component on the new debt issued, I run the disaggregated model, and results are shown below as Table 4.4

Table 4.4 Results of Disaggregated Model Regression

Source	SS	df	MS			20
Model Residual	7.02195061 617.269007	4 115	1.75548765 5.36755658		F(4, 115) = 0.: Prob > F = 0.859 R-squared = 0.011 Adi R-squared = -0.022	93 12
Total	624.290957	119	5.2461425		Adj R-squared = -0.02 Root MSE = 2.31	
sdd	Coef.	Std. E	irr. t	P>ItI	[95% Conf. Interval	1]
sddiv sdnwc sdni sddcf _cons	-3.17537 .1632784 1.496004 -1.210929 .1857344	8.1750 1.5867 1.7151 1.6646 .27532	728 0.10 137 0.87 1576 -0.73	0.698 0.918 0.385 0.468 0.501	-19.36855 13.0174 -2.979723 3.3062 -1.901352 4.8933 -4.508332 2.08642 3596321 .73110	28 36 73

 $\Delta Di = \alpha + \beta 1 Ii + \beta 2 \Delta Wi + \beta 3 DIVi - \beta 4 Ci + \mu i$ (Equation 3.2)

Again, I run the robust standard error regression to avoid the violation of the assumption

required for OLS to compare the different results.

Table 4.5	Results	of robust	t standard	l error regression
-----------	---------	-----------	------------	--------------------

Linear regres	sion				Number of obs F(4, 115) Prob > F R-squared Root MSE	
sdd	Coef.	Robust Std. Err.	t	P>ItI	[95% Conf.	Interval]
sddiv sdnwc sdni sddcf _cons	-3.17537 .1632784 1.496004 -1.210929 .1857344	3.930532 .4104786 1.11586 1.109125 .2473217	-0.81 0.40 1.34 -1.09 0.75	0.421 0.692 0.183 0.277 0.454	-10.961 6498006 7143002 -3.407892 3041623	4.610258 .9763574 3.706308 .9860336 .6756312

Comparing with two different regressions, the coefficients remain the same, but the other parts make a great difference, which may reflect the problem of violating the OLS assumption. Since it is a multiple variable regression, the main problem may be due to multi-collinearity. After the robust regression, it is shown that the net investment and cash flow after tax and interest are closer to the hypothesis, and the p-value becomes lower. However, the other factors are much different from the hypothesis.

From the results, it reflects the relationship between new debt and the factor variable. The major factor influencing the new debt issued is from the new investment (coefficient 1.496; 0.18 p-value), and cash flow after interest and tax (coefficient -1.21; 0.277 p-value). On the other hand, the dividend payment and increase of new working capital are not significant for the high p-value and low t-value. This may show that the demands of dividend payment and the working capital requirement are not the major concern for Canadian firm s in seeking externally sourced funds.

4.4 Dummy Model Regression

To spot any different behavior by industry, I conducted the dummy variable regression, and the dummy is created by the interaction variable to explore the coefficient effect, because the coefficient plays crucial role in this test instead of the intercept. The result are illustrated as Table 4.6

$\Delta Di = \alpha + \beta DEFi + D1\beta DEFi + D2\beta DEFi + \dots + D10\beta DEFi + \mu i$ (Equation 3.3)

Linear regression

Number of	obs	=	118
F(19,	98)	=	9981.78
Prob > F		=	0.0000
R-squared		=	0.0449
Root MSE		=	2.4666

		Robust				
sdd	Coef.	Std. Err.	t	P>ItI	[95% Conf.	Interval]
_Iinds_2	8252601	.994481	-0.83	0.409	-2.798775	1.148255
_Iinds_3	8011243	.9944215	-0.81	0.422	-2.774521	1.172273
_Iinds_4	7603711	.9943028	-0.76	0.446	-2.733533	1,21279
_Iinds_5	7613862	.9942867	-0.77	0.446	-2.734516	1.211743
_Iinds_6	752796	.9951667	-0.76	0.451	-2.727672	1.22208
_Iinds_8	7554645	.9943276	-0.76	0.449	-2.728675	1.217746
_Iinds_9	7404947	.9943323	-0.74	0.458	-2.713715	1.232725
_Iinds_10	7706908	.9943104	-0.78	0.440	-2.743867	1.202486
_Iinds_11	7641992	.9942843	-0.77	0.444	-2.737324	1.208926
sdddef	3.29148	3.709742	0.89	0.377	-4.070381	10.65334
_IindXsddd_2	-2.26635	3.713909	-0.61	0.543	-9.636481	5.103781
_IindXsddd_3	-3.101189	3.713448	-0.84	0.406	-10.47041	4.268027
_IindXsddd_4	-2.96915	3.711045	-0.80	0.426	-10.3336	4.395298
_IindXsddd_5	-3.286277	3.709744	-0.89	0.378	-10.64814	4.07559
_IindXsddd_6	-2.704608	3.732751	-0.72	0.470	-10.11213	4.702915
_IindXsddd_8	-3.043274	3.711477	-0.82	0.414	-10.40858	4.322032
_IindXsddd_9	-2.427008	3.710622	-0.65	0.515	-9.790617	4.936602
_IindXsdd~10	-2.828728	3.711424	-0.76	0.448	-10.19393	4.536473
_IindXsdd~11	-2.85958	3.709742	-0.77	0.443	-10.22144	4.502283
_cons	.7588867	.9942835	0.76	0.447	-1.214237	2.73201

It directly runs the robust dummy variable regression. The coefficient of _Iinds2 is the differential coefficient for the Oil and Gas industry, when compared with the Mining Industry. As the result in the table illustrated, the t-value is too low and the P-value is too high, which means it is not significant differences among industries.

Chapter 5: Conclusions and Recommendations

The purpose of the study is to test whether the Pecking Order Theory is valid in Canadian firms, so that it can assist the firm manager in making its financing decision as well as assist investors estimate the further financing actions of firm. This paper used the first difference of debt as a proxy for new debt issued and the deficit of the fund to run the regression. The sample was picked from the companies listed in 2012 on the Toronto Stock Exchange. 120 firms were chosen according to the random sample selection procedure. Besides, I try to spot any difference across industries by running the dummy variables regression.

According to the statistical results from the previous chapters, it is shown that the Canadian firms follow the weak form of the Pecking Order Theory. This means that firms do not only rely on the debt financing but also equity. However, the results still illustrated that the major source of funding is debt, approximately accounting for 80%.

Besides, the results from the disaggregated model regression gives us a hint that dividends payment and net working capital requirement were not the major needs for the firms to fund, but the major factors is the demand for investment. It means after considering whether there is enough internal funding, the need for raising new debt is driven by the investment decision. Last but not least, after running the dummy variables regression, the results reflected that there were not significant difference across industries.

All in all, the results are in favor the Pecking Order Theory, which is similar to the findings of Shyam-Sunder and Myers (1999). Managers can use the Pecking Order Theory as

a kind of reference to handle the capital structure decision, which means that in short-term when the firm faces the need of financing a project or an investment, it can use debt after considering the internal source of funds. Equity can be used moderately. However, there is no preciseness as to the percentage of debt and equity to be used.

Other questions still exist in this paper. For example, the database is not large enough, and I only used the Cross-section data for one year. There is the potential to use other models to test the order of preference by finding the percentage used by debt or equity, so further study is required to fill the gap.

References

Emery, D. and J. Finnerty (1997). Corporate Financial Management, Prentice-Hall, Englewood Cliffs, NJ.

Frank M.Z. and V.K. Goyal (2003). Testing the Pecking Order Theory of Capital Structure. *Journal of Financial Economics*. Vol. 67. 217 – 248. 2003.

Harris, M. and A. Raviv (1991). The theory of capital structure. Journal of Finance 46, 297–356.

Heaton, J. (2002). Managerial optimism and corporate finance, Financial Management 31, 33-45.

Hennessy, C. and T.Whited (2005). Debt Dynamics, Journal of Finance 60, 1129-1165.

Leary, M. T., & M. R. Roberts (2011). *The pecking order, debt capacity, and information asymmetry*. Rochester: doi:http://dx.doi.org/10.2139/ssrn.555805

Lemmon, M. L., & J. F. Zender, (2010). Debt Capacity and Tests of Capital Structure Theories. *Journal of Financial and Quantitative Analysis*, 45(5), 1161. Retrieved from http://search.proquest.com/docview/848410180?accountid=13908

Lin, Y., S. Hu, & M. Chen (2005). *Testing Pecking Order Prediction from the Viewpoint of Managerial Optimism: Some Empirical Evidence from Taiwan*. Rochester: doi:http://dx.doi.org/10.2139/ssrn.852424

Modigliani. F. and M. Miller (1958). The Cost of Capital. Corporation Finance and the Theory of Investment. *The American Economic Review*. Vol. 48. Issue 3 (Jun.). 261-297.

Myers. S. and N.Majluf (1984). Corporate Financing and Investment Decisions When Firms Have Information that do not Have. *Journal of Financial Economics*. Vol. 13. 187-221.

Myers. S. (1984). The Capital Structure Puzzle. *Journal of Finance*. Vol. 39. No. 3 (Jul). 575-592.

Myers, S., 2003, Financing of corporations, Constantinides, G., M. Harris, and R. Stulz (eds.) Handbook of The Economics of Finance: Corporate Finance Volume 1A, Elsevier North Holland.

Otavio R. de Medeiros and C. E. Daher (2005). *SSRN Working Paper Series*. Testing the Pecking Order Theory of Capital Structure in Brazilian Firms. Retrieved July 29th, from :http://dx.doi.org/10.2139/ssrn.868466

Shyam-Sander. L. and S.C. Myers (1999). Testing Static Tradeoff against Pecking Order Models of Capital Structure. *Journal of Financial Economics*. Vol. 51. 219 – 244.

Vasiliou D., N. Eriotis, & N. Daskalakis (2009). Testing The Pecking Order Theory: The Importance of Methodology. *Qualitative Research in Financial Markets*, 1(2), 85-96. doi:http://dx.doi.org/10.1108/17554170910975900

	Appendix A									
No.	Company	Industry	TA	ND	Div	ΔNWC	CFATI	NI		
	Agnico Eagle									
1	Mines Limited Barrick Gold	Mining	5,255,842	-90,095	174,849	59,465	696,007	376,156		
2	Corporation Cerro Grande Mining	Mining	47,282,000	-592,000	750,000	-2,186,000	5,439,000	6,521,000		
3	Corporation Centerra Gold	Mining	26,808	-455	0	-2,379	626	2,781		
4	lnc. Crocodile Gold	Mining	1,554,131	-3,866	28,187	-209,300	134,720	48,639		
5	Corp Detour Gold	Mining	478,637	25,257	0	-50,351	58,831	159,825		
6	Corporation Eco Oro	Mining	2,353,243	27,230	0	-505,273	-45,248	909,487		
7	Minerals Corp Formation	Mining	47,591	2,365	0	-32,537	-34,639	-4,947		
8	Metals Inc Globex Mining	Mining	179,914	17,548	0	51,414	-5,851	73,405		
9	Enterprises Inc.	Mining	24,094	601,451	0	-430	-837	3,170		
10	Goldcorp Inc. IAMGold	Mining	3,121,200	189	438,000	-826,000	2,097,000	2,296,000		
11	Corporation	Mining	5,376,200	644,500	94,100	-143,000	441,000	1,213,300		
12	lvernia Inc.	Mining	214,911	1,990	0	-1,778	-19,653	-4,761		
13	MDN Inc. Noranda Income	Mining	36,168	-77,191	0	-5,578	2,447	-2,731		
14	Fund Orvana Minerals	Mining	477,629	2,186	0	34,885	64,611	24,632		
15	Corp. Polaris Minerals	Mining	290,277	-2,029	0	4,025	51	1,784		
16	Corporation Premier Gold	Mining	80,153	2,250	0	11,640	-6,101	11,194		
17	Mines Limited Richmont Mines	Mining	480,411	1,546	0	40,698	-5,923	54,856		
18	Inc. Stonegate	Mining	148,244	702	0	-14,415	7,656	36,825		
19	Agricom Ltd St Andrew	Mining	66,263	4,325	0	-14,443	-3,573	14,981		
20	Goldfields Ltd. Teck Resources	Mining	219,748	7,403	0	22,935	54,085	36,599		
21	Limited	Mining	34,617,000	459	496,000	-514,000	2,795,000	2,516,000		

Appendix A

22	Veris Gold Corp. Wallbridge Mining	Mining	348,459	3,769	0	18,414	-13,188	29,476
23	Company Limited Anderson	Mining	48,711	-13,665	0	-406	-1,780	-1,382
24	Energy Ltd. Bonavista Energy	Oil&Gas	343,478	-86,725	0	-23,038	29,839	10,924
25	Corporation Canadian Oil	Oil&Gas	4,062,852	-177,884	224,801	-23,497	382,045	407,481
26	Sands Limited	Oil&Gas	10,171,000	392	654,000	173,000	1,864,000	1,062,000
27	Crew Energy Inc.	Oil&Gas	1,833,802	12,158	0	57,935	213,591	235,611
	Heritage Oil							
28	Corporation	Oil&Gas	3,021	48	2	-568	-181	759
	MEG Energy							
29	Corp	Oil&Gas	8,018,679	764,016	0	180,670	240,824	1,820,520
	NuVista Energy							
30	Ltd.	Oil&Gas	878,174	-269,539	0	17,270	58,521	-118,021
	Penn West							
31	Petroleum Ltd.	Oil&Gas	14,491,000	-538	514,000	283,000	1,193,000	305,000
	Spyglass							
32	Resources Corp.	Oil&Gas	581,521	49,065	0	21,730	64,038	112,241
	Talisman Energy							
33	Inc.	Oil&Gas	21,858,000	-84,000	286,000	895,000	2,716,000	1,466,000
	Badger	Energy						
34	Daylighting Ltd.	Service	225,582	-16,781	11,030	4,193	46,201	53,881
	Bonnett's	Energy						
35	Energy Corp.	Service	96,403	-5,643	0	5,402	25,984	10,698
	Canyon Services	Energy						
36	Group Inc.	Service	406,113	-55	36,916	-10,764	87,912	76,928
	Mullen Group	Energy						
37	Ltd.	Service	1,555,904	-69,921	84,299	22,086	279,854	107,879
	Petrowest	Energy						
38	Corporation	Service	124,743	-12,130	0	-12,095	27,449	17,476
	ZCL Composites	Energy						
39	Inc.	Service	120,526	-1,015	1,590	8,268	9,797	2,810
_	Hydrogenics							
40	Corporation	Clean	42,088	405	0	2,498	-1,063	400
41	SunOpta Inc.	Clean	707,310	34,165	0	32,294	30,977	49,747
42	Tembec Inc.	Clean	1,059,000	53,000	-	-44,000	13,000	25,000
43	Boralex Inc.	Clean	1,229,871	-35,321	0	-125,432	47,396	75,087
A A	Newalta	Clean	1 340 750	0.001	10.010	2 040	116 646	154.000
44	Corporation	Clean	1,318,758	8,061	18,918	-3,019	116,616	154,996

	AEterna Zentaris	Life						
45	Inc.	Sciences Life	67,665	-132	0	-4,658	-30,815	272
46	DiagnoCure Inc.	Sciences Life	11,256	-29	0	-2,117	-2,977	2,626
47	MethylGene Inc. Novadaq	Sciences	39,598	17	0	6,652	-18,316	16,897
	Technologies	Life						
48	Inc.	Sciences	57,587	433	0	30,717	-1,520	6,211
	ProMetic Life	Life	- ,			,	,	- ,
49	Sciences Inc. Sandvine	Sciences	22,991	6	0	12,876	-2,133	719
50	Corporation COM DEV	Technology	136,214	-3,011	0	-7,834	7,160	3,920
51	International Ltd. Davis +	Technology	261,014	1,671	0	-2,499	20,676	223
	Henderson							
52	Corporation	Technology	1,289,390	-6,562	74,042	2,775	163,186	81,321
53	CGI Group Inc. Redknee	Technology	10,453,442	3,275,227	0	602,325	613,262	2,849,034
54	Solutions Inc. Open Text	Technology	58,757	572	0	4,541	6,975	1,624
55	Corporation NexJ Systems	Technology	2,444,293	272,967	0	212,976	266,490	281,539
56	Inc.	Technology Comm &	67,083	428	0	-17,068	-10,660	-962
57	Cineplex Inc.	Media Comm &	1,327,456	18,127	0	58,577	179,327	75,239
58	Bell Aliant Inc.	Media Comm &	3,238,300	300	432,800	-11,300	-700	-418,200
59	Glentel Inc. Rogers	Media	560,201	101,305	11,765	-47,741	82,547	148,583
	Communications	Comm &						
60	Inc.	Media	19,618,000	582,000	820,000	-144,000	3,421,000	2,834,000
	Transcontinental	Comm &						
61	Inc.	Media	2,136,200	45,800	52,800	-106,000	229,000	106,100
	Torstar	Comm &	=					
62	Corporation	Media	1,471,244	174,739	41,054	192,861	90,605	47,733
62	Yellow Media	Comm &	1 756 476		0	226 402	220 522	
63	Limited Imax	Media Comm &	1,756,476	-907,547	0	326,492	238,573	38,585
64	Corporation	Media	421,872	-34,243	0	17,124	73,630	35,519
65	A&W Revenue	Diversified	62,728	-54,245	387	663	5,598	-2,180
			,0		20.		-,000	_,

	Royalties	Industries						
	Income Fund	D(.)						
66	AirBoss of	Diversified	110 001	455	4 204	2 201	10.055	7 202
66	America Corp.	Industries	118,821	-455	4,304	-2,381	10,855	7,292
	Armtec	Discusified						
67	Infrastructure	Diversified	264 700	0 500	0	22.044	27 520	077
67	Inc.	Industries	361,700	8,538	0	-33,941	27,539	877
6.0	Badger	Diversified		46 704	10.050		46.004	
68	Daylighting Ltd.	Industries	225,582	-16,781	12,058	4,193	46,201	53,881
~~	Black Diamond	Diversified						
69	Group Limited	Industries	557,196	10,229	27,684	-16,775	103,515	164,032
	Bonnett's	Diversified						
70	Energy Corp.	Industries	64,969	-5,643	0	5,977	25,984	10,698
	Brampton Brick	Diversified						
71	Limited	Industries	205,346	-11,612	0	-5,812	16,153	5,251
	Calfrac Well	Diversified						
72	Services Ltd.	Industries	1,524,821	-9,866	44,557	-75,669	196,251	259,184
	Canadian Tire							
	Corporation	Diversified						
73	Limited	Industries	13,181,400	5,300	101,700	320,900	743,000	261,500
	CCL Industries	Diversified						
74	Inc.	Industries	1,654,083	-90,673	26,037	-15,562	199,322	103,646
	Chorus Aviation	Diversified						
75	Inc.	Industries	812,307	116,250	74,408	29,068	142,807	165,177
	ClubLink							
	Enterprises	Diversified						
76	Limited	Industries	652,589	12,293	7,910	5,933	34,753	23,284
	Contrans Group	Diversified						
77	Inc	Industries	384,014	-33,255	13,551	-62,643	44,243	6,751
	Dorel Industries	Diversified						
78	Inc.	Industries	2,204,086	30,917	28,577	105,112	107,217	61,164
		Diversified						
79	EnerCare Inc.	Industries	802,046	-2,154	38,605	13,458	96,090	67,390
	FirstService	Diversified						
80	Corporation	Industries	1,317,910	204,658	9,603	186,690	102,991	61,854
	George Weston	Diversified						
81	Limited	Industries	21,804,000	-584,000	319,000	-533,000	1,852,000	916,000
	Glacier Media	Diversified						
82	Inc.	Industries	624,037	-11,533	2,766	1,886	39,843	15,666
	High Liner Foods	Diversified						
83	Incorporated	Industries	631,283	-17,691	6,379	-7,485	78,984	12,724
	Lassonde	Diversified						
84	Industries Inc.	Industries	800,028	-29,851	8,593	13,919	101,500	24,867
85	Leon's Furniture	Diversified	585,592	46	28,047	22,572	47,904	6,725

	Limited Magellan	Industries						
	Aerospace	Diversified						
86	Corporation	Industries	755,807	2,041	0	10,720	35,890	53,937
	Molson Coors	Diversified						
87	Canada Inc.	Industries	16,212,200	1,524,000	237	-1,691,500	983,700	2,635,100
	Mullen Group	Diversified						
88	Ltd.	Industries	1,555,904	-69,921	84,299	22,086	279,854	107,879
	Parkland Fuel	Diversified						
89	Corporation	Industries	903 <i>,</i> 454	-73,651	67,751	-5,435	136,380	51,308
		Diversified						
90	PFB Corporation	Industries	62,865	-5,513	1,624	-6,862	902	6,060
	Richards							
	Packaging	Diversified						
91	Income Fund	Industries	156,259	-1,846	8,439	1,345	13,242	1,291
	Richelieu	Diversified						
92	Hardware Ltd.	Industries	349,869	-297	10,026	33,191	45,622	7,183
	Secure Energy	Diversified					·	
93	Services Inc.	Industries	767,911	3,740	0	-27,553	99,266	191,272
	Strongco	Diversified		·			·	
94	Corporation	Industries	382,803	5,647	0	4,324	8,270	11,461
	·	Diversified						·
95	Tim Hortons Inc.	Industries	2,284,179	42,538	135,329	1,640	559,287	242,208
	TerraVest	Diversified	, ,	,	,	,	,	,
96	Capital Inc.	Industries	77,283	3,678	0	-6,510	11,857	2,728
	Tuckamore		,	- ,	-	-,	<i>y</i>	, -
	Capital							
	Management	Diversified						
97	Inc.	Industries	428,133	11,112	0	14,083	-10,341	-2,964
-	-	Diversified	-,	,	-	,	- / -	y = -
98	Uni-Select Inc.	Industries	1,241,130	-44,576	11,269	-48,012	104,999	44,458
	Vitran	Diversified	_,,	,	,	,		.,
99	Corporation Inc.	Industries	238,497	34,925	0	-6,253	-16,198	14,454
	WestJet Airlines	Diversified		,	-	-)		,
100	Ltd.	Industries	3,746,615	-102,265	37,549	1,246,100	721,634	269,307
200	Wenzel		0)/ 10/020		07,010	_)_ !0)_00	/,00 !	_00,007
	Downhole Tools	Diversified						
101	Ltd.	Industries	78,846	0	0	-7,265	21,756	9,543
	Altus Group	Diversified	,	C C	C C	,,	,	0,010
102	Limited	Industries	418,039	-9,578	13,793	4,740	21,932	4,771
102	CanWel Building		110,000	5,570	10,700	1,7 40	21,332	·,//±
	Materials Group	Diversified						
103	Ltd.	Industries	335,443	36,188	8,027	55,223	-3,825	7,989
103	Data Group Inc.	Diversified	224,629	-3,101	15,278	-4,543	15,378	2,419
-01		2	,0	0,101	_0,_,0	.,5 .5	10,070	-,

	Linguage	Industries						
405	Linamar	Diversified	2 444 044	62.040	20 705	40.000	252 764	264 500
105	Corporation	Industries	2,411,814	62,948	20,705	40,600	352,761	364,589
100	Acadian Timber	Forest	205 225	1 000	0	750	10.005	
106	Corp	Products	285,235	-1,906	0	-753	16,065	144
407	Canfor Pulp	Forest	750.000	111 100	44 400	100 100	07.000	50.000
107	Products Inc.	Products Forest	758,000	-111,400	11,400	-108,100	87,900	59,800
108	Norbord Inc.	Products	1,115,000	168,000	0	304,000	136,000	19,000
	West Fraser	Forest						
109	Timber Co. Ltd.	Products	2,618,000	37,000	24,000	8,000	195,000	119,000
	Brookfield							
	Canada Office							
110	Properties	Real Estate	5,163,600	-351,600	29,000	-379,200	125,600	48,400
	Canlan Ice							
111	Sports Corp.	Real Estate	102,824	-3,132	1,000	-1,769	8,146	4,516
	Cominar Real							
	Estate							
	Investment							
112	Trust	Real Estate	5,617,049	1,625,035		1,168,750	148,109	1,111,111
	Dundee							
	International							
	Real Estate							
	Investment							
113	Trust	Real Estate	1,400,269	65,527	0	81,846	52,320	239,297
	First Capital							
114	Realty Inc.	Real Estate	7,318,792	395,796	159,157	121,909	182,901	446,108
	InnVest Real							
	Estate							
	Investment							
115	Trust	Real Estate	1,418,019	1,813	0	123,089	70,248	10,531
	Retrocom Real							
	Estate							
	Investment							
116	Trust	Real Estate	780,318	45,552	0	27,822	23,111	75,646
	Morguard							
117	Corporation	Real Estate	4,386,182	84,595	7,708	-153,543	121,715	555,758
	Capital Power							
118	Corporation	Utilities	526,000	205,000	91,000	166,000	242,000	466,000
119	Enbridge Inc.	Utilities	47,172,000	1,285,000	20,000	49,000	2,874,000	6,204,000
120	Keyera Corp.	Utilities	2,678,338	125,783	157,095	-25,668	237,979	440,201