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ABSTRACT

Recent developments in instrumentation (e.g., in particular the Kepler and CoRoT satellites) provide a new
opportunity to improve the models of stellar pulsations. Surface layers, rotation, and magnetic fields imprint erratic
frequency shifts, trends, and other non-random behavior in the frequency spectra. As our observational uncertainties
become smaller, these are increasingly important and difficult to deal with using standard fitting techniques. To
improve the models, new ways to compare their predictions with observations need to be conceived. In this paper, we
present a completely probabilistic (Bayesian) approach to asteroseismic model fitting. It allows for varying degrees
of prior mode identification, corrections for the discrete nature of the grid, and most importantly implements a
treatment of systematic errors, such as the “surface effects.” It removes the need to apply semi-empirical corrections
to the observations prior to fitting them to the models and results in a consistent set of probabilities with which the
model physics can be probed and compared. As an example, we show a detailed asteroseismic analysis of the Sun.
We find a most probable solar age, including a 35 &= 5 million year pre-main-sequence phase, of 4.591 billion years,
and initial element mass fractions of Xy = 0.72, Yy = 0.264, Z; = 0.016, consistent with recent asteroseismic and
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non-asteroseismic studies.
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1. INTRODUCTION

The success of recent space missions CoRoT and Kepler,
designed for the discovery of exoplanets and the analysis of
stellar pulsation, have produced a large number of high-quality
light curves (Chaplin et al. 2010). With these data sets, obtained
over long time bases of several months, we are able to detect
variability with semi-amplitudes down to a few parts per million.
These observations have now firmly established the existence
of solar-type pulsation in a large number of solar-like and red
giant stars. Moreover, observations of an unprecedented number
of § Scuti stars and other types of pulsators have also revealed
rich mode spectra.

These data are now causing a paradigm shift for many
topics in stellar astrophysics. In particular, the determination of
fundamental stellar parameters, and any inferences regarding the
physics of stellar interiors, have for a long time been restricted
to testing theoretical models using classic observables such as
photometric indices or spectroscopic data. Even though these
methods have become more advanced, for instance by applying
complex Bayesian methods to determine stellar ages (Pont
& Eyer 2004; Jgrgensen & Lindegren 2005) and to evaluate
competing models (Takeda et al. 2007; Bazot et al. 2008), the
value of additional information provided by pulsation modes
is tremendous, as they directly probe the whole star. Already,
the asteroseismic community is successful in extracting general
characteristics of the mode spectra for many different types of
stars (e.g., Mathur et al. 2010; Kallinger et al. 2010c) and also in
devising promising tools for a comparative interpretation of the
observations (e.g., Bedding & Kjeldsen 2010). Average mode
parameters, such as the large and small frequency separations,
and the frequency of maximum power, have been shown
to successfully constrain stellar parameters although certain
correlations remain as a source for uncertainty (see, e.g.,
Kallinger et al. 2010b; Huber et al. 2011; Gai et al. 2011). These

have been incorporated into the current advanced probabilistic
pipelines to investigate stellar model grids (Quirion et al. 2010)
and already been applied to recent observations (Metcalfe et al.
2010). The next step to improving our knowledge about stellar
interiors is to analyze individual pulsation modes in an equally
rigorous way to see where our models agree or disagree.

In the past, x2-minimization techniques (Guenther & Brown
2004), or equivalent Bayesian analyses (e.g., Kallinger et al.
2010a), have been introduced to find the pulsation model that
most closely reproduces the observed frequencies within a
large and dense grid of models. The Bayesian analysis, in this
context, only provides an additional framework for constraining
solutions to models that match our prior knowledge about the
stars’ fundamental parameters. Due to the rich information
provided by the pulsation frequencies, these approaches should
be successful in many cases, which is why they are being
applied also to the most recent Kepler data sets. For instance,
Metcalfe et al. (2010) test various approaches from different
modelers with different methods that actually use the individual
frequencies. However, there are currently (at least) three major
problems when applying these techniques.

Stellar rotation, at all but the slowest rotation speeds, has
been shown to produce rotational splittings which are incom-
patible with the traditional linear approximations. It even per-
turbs the values of the axisymmetric (m = 0) frequencies (e.g.,
see Deupree & Beslin 2010 and references therein). In order to
correctly take this into account, the rotation speed as a func-
tion of stellar depth needs to be known, and extensive compu-
tations would be necessary to do these effects justice. Given
the large variety of possible rotation profile characteristics, this
would greatly expand the dimensionality and size of the pul-
sation model grid. This implies currently insurmountable com-
putational expenses for the types and sizes of grids that are
necessary for a comprehensive asteroseismic analysis of many
stars.
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Figure 1. Echelle diagram of solar p modes taken from Broomhall et al. (2009)
(filled circles) and an appropriate solar model constructed using YREC. The
higher-order model frequencies are increasingly deviating from the observations
due to deficiencies in modeling the upper stellar layers. The systematic errors
of the models are much bigger than the random observational uncertainties.

(A color version of this figure is available in the online journal.)

For stars with a convective envelope, model frequencies at
high radial orders differ from observations due to problems
in modeling the outer layers (see Figure 1). These so-called
surface effects can be compensated by looking at ratios of
frequency differences (Roxburgh 2005) or by “correcting” the
observed frequencies through calibration of the surface effects
seen for the Sun as proposed by Kjeldsen et al. (2008). It is
likely that the surface correction as calibrated for the Sun is not
universally applicable, and evidence for this has been mounting
(e.g., Bedding et al. 2010). Moreover, neglecting (or correcting
for) the surface effects in the observed frequencies is only
reasonable when studying properties of the star for which the
outer layers are unimportant. However, if we want the theoretical
models to more closely reflect reality, we need to include more
and better physics to bring the computed frequencies closer to
the (uncorrected) observed ones.

Furthermore, the fact that static asteroseismic grids can
only have a finite resolution in parameter space is often ne-
glected. If the error bars of the observed frequencies are small
compared to the differences between calculated frequencies
in adjacent grid points, the likelihood of having a model in
the grid that corresponds to the best model one’s code could
deliver decreases rapidly. The problem of finding the “true”
model and the actual uncertainties with respect to the grid be-
comes apparent. Even grids with adaptive resolution have the
same problem in principle, as the decision for further refining
the resolution of a particular region in parameter space must
always depend on a number of discrete grid points. This prob-
lem is much more severe if our aim is to calculate probabili-
ties (or some summary statistics) to compare different model
grids.
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In this paper, we present a new approach to asteroseismic
model grid fitting. Our goal is to find a new way of putting
our model physics to the test that can handle all of the
aforementioned difficulties. Even restricted to models that are
unable to produce all the details of the observations, we want
to know which models are most “correct” (i.e., consistent with
appropriate fundamental parameters and physics), and how well
the solution is constrained. We show how to quantitatively assess
our model grids as a function of the observational uncertainties,
the uncertainties of the calculated frequencies, and our general
prior knowledge about the star and possible shortcomings of our
models.

2. BAYESIAN TREATMENT OF SYSTEMATIC ERRORS
2.1. Basics of Bayesian Inference

Bayes’ theorem, applied to the problem of inference, states
that the probability of a particular hypothesis after obtaining new
data (i.e., the posterior) is proportional to the probability of the
hypothesis prior to obtaining the new data (i.e., the prior) times
the likelihood of obtaining the new data, under the assumption
that the hypothesis is true (i.e., the likelihood function). This
approach to inference is derived from the product and sum
rules of probability theory that have shown to be necessary
and sufficient for consistent, quantitative logical reasoning* (see
Jaynes & Bretthorst 2003).

In this paper, we stay as close as possible to the general
notation used in Jaynes & Bretthorst (2003) or Gregory (2005).
We start with Bayes’ theorem applied to the problem of
comparing observations with the predictions of a model M.
If the predictions of a model M are governed by a set of n
parameters § = {0y, ..., 6,}, and we define the observations
to be represented by the symbol D (for data), it is commonly
formulated by expressing the posterior probability

P@O|M,)P(D|0, M, )
P(D|M, ) '

The symbol I is equivalent to the prior information about the
problem that is investigated. The first term in the numera-
tor of Equation (1) is the prior probability of a particular set
of parameter values 6, given the model M and our prior in-
formation 7 about the problem. It is independent of any new
data which are supposed to be analyzed. The second term
in the numerator is called the likelihood. It gives the like-
lihood of obtaining the observed data under the assumption
that the predictions of model M are correct, given the par-
ticular choice of its parameter values 6. The denominator in
Equation (1) is called the global likelihood, or evidence, and
is the sum (or integral) of the numerator over the whole pa-
rameter space of model M. It therefore acts as a normalization
constant. Most importantly, if the prior probabilities are ade-
quately normalized, it also represents the likelihood of obtaining
the data given the whole model M, independent of the particular
choice of 8. Thus, it can be used as a likelihood for comparisons
among different alternative models.

More details on the application of Bayes’ theorem, in partic-
ular with respect to data analysis in astronomy, can be found in
Gregory (2005).

P@O|M,D,I)= (1)

4 Strictly speaking, Bayes’ theorem is only one result that derives from these
rules. Consistent use of Bayes’ theorem, in particular the assignment of the
various terms in Equation (1), also requires knowledge of its origin and
consistent application of the product and sum rule. However, for the sake of
brevity we will simply call our approach in this manuscript “Bayesian” rather
than “based on probability theory as extended logic.”
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2.2. Systematic Errors in the Bayesian Framework

One of the strengths of the Bayesian framework is that a
parameter 6,, known to be necessary to describe a model M,
can be marginalized by applying the sum rule. In the case of
continuous parameters, the sum turns into an integral, and by
integrating the full posterior over the parameter range of 6,,, one
obtains the marginal posterior

PO, oo 6ys |M, D, T) = / POy, . 601, 6sM, D, 1) db),.
@)

The marginal posterior retains the overall effects of including
parameter 6, in the model, but is independent of any particular
choice of its value. In other words, 6, is “removed” from the
detailed analysis. This is similar to what is done for calculating
the evidence in the denominator in Equation (1). The only
difference is that the evidence is the marginal likelihood over
all parameters of the model, weighted by the prior.

The reason this is useful is that if the data and the model
are known to show systematic differences, like shifts or trends,
such “systematic errors” can simply be encoded introducing
additional parameters to the model M, so that M is able to
model these effects as well. By subsequently marginalizing over
these “fudge parameters,” one is then able to perform a standard
Bayesian analysis without any need for knowing the exact value
of the systematic error(s). However, even though the exact
value is unknown, the presence of the error is being considered
in the evaluation of the posterior probabilities. Furthermore,
an increasing number of “fudge parameters” comes at a cost
because it potentially decreases the evidence for the model due
to the increase in prior volume. As mentioned in Section 2.1, the
evidence is used as the value for the likelihood of obtaining
the data in Bayesian model comparison. It is therefore possible
to compare models with and without “fudge parameters.”
Improved models that do not need them, but are able to explain
the observations just as well, will be favored.

3. TOWARD A BAYESIAN SOLUTION TO
ASTEROSEISMIC MODEL FITTING

3.1. Review and Problems of the Standard Approach

The general problem of asteroseismic model fitting is to match
observed frequencies f; , to those calculated from models f; p,.
If the nqps observed frequencies have individual uncertainties
0i,0, and the model frequencies have random uncertainties o;
then a y2-statistic can be calculated according to

2 1 & (fi,o - fi,m)2

0=y 3)
Mobs i=1 O.i,o + o-i.m

Searching a large grid of N stellar models M; with fundamental
parameters close to those estimated for the observed star will
produce a minimum in x2 (=best-fit model). In addition,
uncertainties can be estimated from the change in x? as the
distance in parameter space to the best fit increases. Calculated
with adequate stellar evolution and pulsation codes, it should be
possible to infer details about the stellar interior and to obtain
precise fundamental parameters.

In order to consistently encode prior information about the
fundamental parameters and other model properties, and to
make use of all the additional advantages that come with the
Bayesian approach (all of which will become clear in the next
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section), it is much easier to perform the model fitting using
probabilities. Assuming that the random uncertainties o; , and
0;.m are compatible with Normal distributions, one can define
2 2 2
0 =0{,+0/ “4)
This leads to the likelihood for observing the data (= the specific
values of f; ,), given a single observed and calculated frequency

_ 1 ex _ (flo - fi,m)2
= Vzmo ¥ 207 |
5

1

Here, f; o—im stands for the proposition “The observed mode
fi.o corresponds to the calculated mode f; "> Naturally, we
want our models M; to reproduce all observed frequencies. As-
suming that each observed frequency is a statistically indepen-
dent data point, this leads to a product for the likelihood of
obtaining all observed frequency values given that the model is
correct

P(fiol fi.omims ij I)

Nobs

P(DIM;, 1) = [ | P(fiol fromim: Mj, D). (6)

i=1

Here, D stands for the complete set of observed frequencies and
their uncertainties. This can then be incorporated in the usual
framework for Bayesian inference.

Alas, both of the mentioned, straightforward approaches
above suffer from the following problems.

1. The most appropriate model is not necessarily the one that
minimizes Equation (3) or maximizes Equation (6). There
are many possible scenarios where this would be the case
(e.g., due to surface effects, stellar activity, magnetic field
effects, rotational effects). Straightforward application of
the formalism above will then lead to wrong or nonsensical
results in both best fit and derived uncertainties. Even worse,
this would propagate into our assessment of the model
physics that were used to produce the models.

2. In case of such systematic differences, we need to take into
account that for each observed pulsation frequency, multi-
ple model frequencies are possible candidates (not neces-
sarily only the closest one). This is particularly problematic
in cases were no prior mode identification is available.

3. As the observational uncertainties decrease, the contrast in
x2 (and even more so the contrast in probabilities) between
different models increases. If the model that minimizes/
maximizes Equation (3)/Equation (6) is not the correct
model due to missing physics, this increase in fitting
contrast is misleading and unwarranted.

4. In static grids the finite grid resolution increases the risk
of missing the most adequate model that the code could
produce. If there are systematic differences between even
the most adequate mode and the observations, the “contrast
enhancement effect” will be magnified. For the same
reason, adaptive grids run into the same problem and will
miss the correct parameter space region to finer resolve in
the first place.

5 Although the explicit notation seems clumsy at first glance, it is actually
one of the major assets of the Bayesian approach. It visualizes exactly which
propositions we are evaluating, and under which conditions the probabilities
are calculated. Slightly different propositions or conditions can yield vastly
different results. If the notation is explicit, there are no hidden variables or
assumptions.
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As a consequence of all these shortcomings, it is clear that
a method is needed that considers the possibility of systematic
differences. It is also mandatory to consider the finite resolution
of our model grids. Solutions to these problems are presented
in the following sections.

3.2. The Argument for Probabilities

There are obvious benefits to quantifying the best fit and
the uncertainties in terms of probabilities. With probabilities
for each specific model, we automatically obtain probability
distributions for each parameter of the model itself. We can
furthermore consistently compare different grids and see which
set of input physics is more probable, given all our current
information and the data.

However, there are much stronger arguments for a probabilis-
tic approach. Marginalization allows us to consistently treat nui-
sance parameters, while the sum and product rules allow us to
clearly formulate the question we are asking. This question is
“Given the observed frequencies, our knowledge about the star
and model physics, which model(s) best represent the star in
terms of its fundamental parameters and general physical prop-
erties as probed by the pulsation modes?” In reality, this general
question has to be further refined as we encounter more compli-
cated situations such as: “We have model frequencies that could
potentially show negative or positive systematic offsets, or no
such offset at all, when compared to our observations. They
could be influenced by rotation or actually be rotationally split
frequencies themselves. They could be bumped / = 1 modes or
! = 0 modes. Given all of these possibilities, which model is the
most adequate one, and how well is the solution constrained?”
From the viewpoint of probability theory, the only way to treat
such a set of possibilities and get meaningful answers is to use
the sum rule and product rule, as we will show in the next
section.

3.3. Ambiguous Mode Identification

As a first improvement to the general approach of asteroseis-
mic model fitting, we can involve the sum rule to consistently
consider uncertainties (or even ignorance) in our mode identi-
fication. In essence, if there is no unique proposition f; o m,
Equation (6) changes to

Nobs | Mmatch

PDIM;, D =[]1D PUio fromkmlM;, Dt (D

i=1 | k=1
with

P(fi.m fi,on—>k.m|Mj’ ])
= P(fi,on—>k,m|Mjs I)P(fi,0|fi,0|—>k,ma ij ). (8)

Here the sum over the index k£ means that all possible and mu-
tually exclusive assignments np,cn Of one observed mode to
a number of calculated frequencies f; , have to be taken into
account as an “or” proposition.® Note that due to the prod-
uct rule of probability, the terms in each sum now include the
conditional prior probabilities P(fj o—k,ml|M;, I). These have
to be normalized so that > ;™" P(fi osk,m|M;, 1) = 1. The
most conservative assignment is to assign equal probabilities
P(fioskmlMj, I) = 1/nmach to each possible scenario. How-
ever, if more information is available (e.g., a mode could be

6 Hereafter, a possibly ambiguous frequency assignment will always be
denoted as fi ok m-
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identified to be either / = 0 or / = 2 with specific probabilities
for both cases as found by some peak-bagging program), this
can easily be encoded at this stage.

The end result is a product of weighted sums of probabilities,
where the weights are given by the respective prior probabil-
ities.” This product is the correctly normalized likelihood for
obtaining the data, given the proposition that any one of the pro-
posed scenarios is correct. Note that if there is an unambiguous
assignment f; o; m for every observed frequency, each prior
probability P(f;o—im|Mj, I) = 1 and Equation (7) simplifies
to Equation (6). Now that we have included our uncertainties
concerning the assignment of model frequencies and observed
frequencies, we will deal with uncertainties in the validity of the
model frequencies themselves in the next section.

3.4. Treatment of Systematic Errors

As a next step, we now show how to treat the problem of im-
perfect models. As mentioned before, applying standard tech-
niques that rely on minimizing the quadratic differences between
the observations and the models will give incorrect results if
systematic differences exist. The alternative of correcting for
such imperfections prior to modeling is also undesirable if the
correction is not known to be universally applicable.

To treat any systematic deviation from the model frequencies
due to unmodeled physical effects, we simply expand the models
M; by considering an additional systematic error parameter for
each tested frequency. The aim is to construct new values f; A
to compare with the observations according to

Jfia= fim+VA;. )
Here, A; is the absolute value of the systematic error. y = 1
or y = —1 and determines whether the model frequency

is expected to be systematically higher or lower than the
observed frequency. To keep our notation from occupying too
much space, we will implicitly assume the value of y to be
constant throughout the following derivations and attribute this
to our prior information /. A; is an unknown parameter but
as long as its lower and upper boundaries can be roughly
estimated, it can be treated fully consistently in the probabilistic
framework.

In the following, we will again work out an example of
only one observed and calculated frequency. Therefore, for
the derivation the assignment f; o, ; 1S unique. We will then
provide the extension to multiple frequencies and ambiguous
mode identifications.

Using the new parameters, the equivalent to Equation (5) is

P(fi,o» Ai|ﬁ,o»—>i,mv MJA’ I)

= P(Al‘|fi,on—>i,ma Mf" I)P(fi’("Ai’ Jiorsim: MjA’ 1)
= P(Al‘|fi,on—>i,m’ MJA’ I)

exp [_(ﬁyo T VAi)2:|.

20i2

x (10)

1
vV 27‘[0,'

Here the symbol M]?‘ simply denotes the model M; aug-
mented by the new parameter A;. Self-evidently, the prod-
uct rule again requires that we introduce a prior probability

7 A common misconception is that these “priors” are only there to allow us to
incorporate prior information. In reality, they are formally required by the
product rule and ensure that the result of Equation (7) is always properly
normalized.
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P(Ai| fi o>ims M]?‘, I). This can either encode prior information
about the expected behavior of the error or be simply assigned
by considerations of symmetry. Again it is required that the
integral over the prior [ P(A;] fi.orsims Mf, DdA; = 1.

It would now be possible to try to find the A; that maximizes
P(fior Ail fi.osims M2, 1) in Equation (10). However, this is
completely irrelevant for our needs. In case of multiple observed
frequencies it would also quickly lead to a highly dimensional
parameter space that we are not interested in navigating. Instead,
we are interested in finding the probabilities of the models M ]4.
To do this it is necessary to integrate out A;, which we have just
introduced. We obtain the marginal likelihood

P(ﬁ,o'ﬁ,OHi,m, M]A, I)

Aj max
=/ P(fior Ail fiom im» M3 1) dA;. (1)
A

i, min

This integral naturally depends on the shape of the prior prob-
ability distribution for A; and can easily be evaluated nu-
merically.® It represents the likelihood of obtaining the value
of the observed frequency f;, given that M; predicts a fre-
quency f;n, but that there is a possibility of a systematic dif-
ference A;, between A; min and A; nax. Furthermore, it is fun-
damentally constrained and properly weighted by the prior
we assigned. This result is now easily extended to multi-
ple modes and ambiguous mode identifications. Equation (7)
becomes

Nobs [ match

P(DIM} 1) =TT1 D2 P(fuo fromim M2 1) ¢ (12)

i=1 Uk=1

and

P(fi,o’ fi,o>—>k,m|M.4, I)
= P(ﬁ,on—ﬂ(,m|M4’ I)P(fi,o|fi,0|—>k,mv M]A, I)' (13)

In summary, we have to calculate a product of weighted sums
of integrals in the form of Equation (11), where the summation
is performed over every possible assignment f; ok m-

Note that even when we choose to consider systematic
deviations, we usually do not expect them to be significant for all
frequencies. For good models some frequencies should already
match well “right out of the box.” In particular, this is true for all
frequencies in the idealized case where we have (finally) found
a way to correctly model all the effects that previously caused
systematic deviations.

One might think that this is taken care of by setting A; min = 0.
However, unless the prior P(A;| fi.osk.ms M ]4, I) is a é function
at A; = 0, it is much more likely that A; > 0. This means
that a priori a model will be preferred which shows at least
a small deviation from the observations, depending on the
observational uncertainties and the steepness of the prior.
The limiting case, however, the § function, corresponds to a
whole different model which is simply the standard model
without systematic deviations, M;. Thanks to the sum rule,
there is an elegant solution for taking this alternative into
account.

8 For several simple shapes, such as the bera prior introduced in the next
section, analytical solutions also exist.
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For the mutually exclusive logical propositions” M4 and M;
we can calculate

P(fror fromkm M7+ M;, 1)
P(M?%, fio, fiomkmll) + P(M}, fio: fiomkmll)
P(MY|I) + P(M,|I)
P(MA|I)
- P(M_fu)+jP(M,|1)P(ﬁ’°’ﬁ’w'“m'M’A’ )
P(M;|I)
P(M2|1)+ P(M;|I)

P(fios fiomkmlMj, D). (14)

Note that here M? + M; means “M% or M; is true.” This is the
likelihood of observing the frequency value f;,, given that a
systematic deviation either does or does not exist. The principle
of indifference as the most conservative approach for the prior
probabilities obviously demands P(MJ?‘|I) = P(M;|I) = 0.5,
but if more information is available, it can be encoded here.
This result is also easily generalized to the case of multiple
frequencies and ambiguous mode identification.

3.5. The Choice of the Prior for A;

A very important detail to consider when extending the mod-
els with systematic error parameters is their prior probabilities
P(Ai| fi.osk.m) MJ?‘, I). There is a basic choice between two pos-
sibilities. The first is to use uninformative (or ignorance) priors,
or alternatively, maximum entropy priors. Uninformative pri-
ors can be derived from arguments of invariance to specific
transformations, while maximum entropy priors should satisfy
the maximum entropy criterion for a given set of constraints.
The other possibility is to use priors derived from heuristic or
physical arguments.

The specific form of the prior probabilities of A; are part of
the model that is evaluated, as indicated by the notation.'” They
are not necessarily “prior” as in a sense of “before obtaining
observations,” but conditional probabilities required for the
correct normalization, as demanded by the product rule of
probabilities. They encode specific ways in which we expect
A; to behave, given our grid of frequencies and our information
(which of course can be influenced by previous observations).
For instance, if we expect our best model to minimize the
systematic deviations, the prior should assign larger probability
densities to smaller A;, so that models with smaller deviations
will be more probable. On the other hand, if we expect our best
model to show more erratic deviations, a flat uninformative prior
is abetter choice. After acomplete evaluation of the probabilities
and likelihoods, the Bayesian evidence will indicate whether the
state of information encoded by the priors is supported by the
data or not.

As a first important example of an uninformative prior,
consider a uniform prior

1

P (8il fiomkms M}, 1) = 7————
1, max i, min

= constant. (15)

This means that all values of A; are equally likely. With such a
prior, every model that predicts frequencies at any value between

9 Note that from a logical standpoint even if A = 0, M /.A is still a different
model than M; because the prior is not a § function. Therefore, they are always
mutually exclusive.

10 The prior is described by P(A;| fi.omsk.m> M]é, I) rather than, e.g., P(A;|1).
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Jio + Aimin and f; o + A; max has the same maximum likelihood
(i.e., the same maximum value for Equation (10)).
On the other hand, a Jeffreys prior,

1
P Ai 1,0 7M4’I = ’ 16
(8l fionstm: M3 1) A I0(A max /Ai min) (16)

assigns equal probability per decade and, in terms of the
probability density, favors smaller values of A;. This prior is
obviously not defined for A; = 0, i.e., it requires A; pmin > 0.
This is problematic for, e.g., surface effects that approach zero
at low orders. However, when A; min = 0, one can use a modified
version of this prior given by

1
A F A =
P&l from: M 1) (A + ) In[(Aj max + €) /]’ an

where c is a small constant. For values smaller than c, this prior
acts more or less like a uniform prior, while for higher values it
behaves like the usual Jeffreys prior. This prior is nowadays
often used in “peak-bagging” algorithms (e.g., Gruberbauer
et al. 2009; Benomar et al. 2009; Handberg & Campante 2011).
However, there is no objective criterion for how to set ¢, and
various tests we conducted with our grid fitting code have shown
that the choice of ¢ can have a large impact on the evidence
values.

Consequently, we argue that any priors used for a systematic
error parameter A; = [0, A; max] should be functions that are
clearly defined by the parameter limits, without additional
parameters that have large effects on the evidence. The uniform
prior!! is such a prior, as are priors derived from the beta
distribution (given in units of our problem)

A A\ A\
P(Ai|fi,on—>k,manaI)O( A 1_A .
7, max i, max

(18)
With « = 1 and B8 = 2 this simply leads to a linearly
decreasing probability density

V2

i, max

2
P(Ailfi,o»—ﬂc,m, M]‘Av I) = ( ) (Ai,max —A). (19)

It is the only prior that allows for a linearly decreasing
probability density, is properly normalized, and reaches zero
at A; = A;max- It also leads to an analytical solution for the
integral in Equation (11). Thus, it satisfies all our requirements
for a prior with which to minimize systematic errors.

We have compared the results obtained from Equation (19)
(hereafter the beta prior) with several other plausible choices,
such as an exponential distribution with expectation value
Aimax/2 and a modified Jeffreys prior with ¢ = o} 1, and we
find them to yield comparable results and evidence values. Due
to the clarity of its definition and lack of additional parameters,
we therefore argue that the bera prior is an appropriate choice
for a non-flat prior. We will show how to use it in Section 4 in a
worked example.

Last, priors based on heuristic or physical arguments ob-
viously vary strongly with the specific problem to which the
fitting method is applied. As an example, when modeling sur-
face effects on p-mode frequencies, the prior could be Gaus-
sian, following the heuristic frequency correction proposed by

' 1n fact, the uniform prior is consistent with a beta distribution with

a=p4=1
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Kjeldsen et al. (2008). It would be a function of frequency,
expecting greater deviations toward higher-order modes. The
width of the Gaussian, however, would be again a rather arbi-
trary choice, leading to potentially different evidence values.
Such priors clearly need to have a strong basis either in theory
or prior observations.

3.6. Bumped Modes and Finite Grid Resolution

Equation (12) represents the final likelihood for obtaining
the observed frequencies given our (extended) model M. A, This

model still represents only a single point in a discrete gr1d 12
However, the probability is small that a single model in the grid
corresponds to the “true best model” our code can produce. The
problem becomes worse as the grid resolution is lowered, or as
mode frequencies are changing quickly or unpredictably from
one model to the next (e.g., avoided crossings, magnetic shifts).
The probabilities (or x2-values) we obtain will not be a fair
assessment of the model physics, even at higher grid resolutions.
Even worse, the overall evidence for the grid will be finely tuned
to the positions of all models in the grid. This makes it difficult
to compare different grids with different physics. We will now
show how to improve on this.

In a sequence of models along a single evolutionary track,
except for the first and last models, each model M; has two
neighboring models M;_; and M;,;. In most cases these
adjacent models will contain the same modes, and their changing
values can be traced from M;_; to M; and M ;. Now we declare
the difference between observed and calculated frequency as a
new free parameter:

8fi = fio— fim. (20)

This value is fixed if only a single grid point is considered.
However, we can split the evolutionary tracks into segments in
between grid points, and define

fi,M,;l + fi,M-
8fij- = fio— f’ 2
and equivalently
Jim; + fim,.
8fijo = fio = TS (22)

Adding § f; as a new parameter to the equations derived in the
earlier sections, we change our focus to evaluate probabilities
of model track segments TA centered around the models M jA
To do this, we again use margmahzatlon to integrate out both
A; and éf; to obtain the marginal likelihood. We obtain

P(fiol fromim: T 1)

/‘ i, max /\5f, j+
8fij-

1 min

P(fr00 Ay 8fi| friomims T, 1) dA; dSff;.
(23)
If the priors for A; do not vary greatly from one model to the

next, A; and § f; can be considered to be independent parameters.
It is therefore possible to use the product rule to separate the

12 Note that this is also the case for approaches using an adaptive grid, since
each iteration of an adaptive scheme is based on a discrete grid.
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Figure 2. Example for the definition of §; j_ and &; j. (see the text). Four
radial orders of / = 1 modes from three adjacent models in a high-resolution
grid of solar models are shown. The triangles represent the central model. The
frequencies for the adjacent models along the evolutionary track sequence are
depicted as squares and white circles. Black circles (and error bars) indicate
observed frequencies published in Broomhall et al. (2009). §; ;— and §;, ;4 for
a single mode are represented using arrows. The insert shows an unzoomed
version of the / = 1 and [ = 3 ridge.

conditional probabilities

P(fi,m Ais 8fi|ﬁ',o»—>i,m’ TJ'A, I)
= P(Ai|ﬁ',o»—>i,m’ TjA’ 1)
X P((Sfilfi,owi,m» TJ'A, I)
X P(fiolAi,8fi. fromim: T ). (24)
Furthermore, since we evaluate the complete evolutionary
track segment we can assume a uniform prior probability
Pfil fromims T2, 1) = 1/(8f;i. j+ — 8f;.;—). With these defini-

tions, the integral over §f; can easily be calculated analytically.
The equivalent to Equation (10) becomes

P(ﬁ,oa Ai |fi,o>—>i,ma TJ'A7 I)
= P(Ai|fi.0»—>i,ma T]'Aa 1)
1
X —_—
208fi.j+ — 8fij-)

8fij+ — J/Ai) <5fi.j— - )/Ai)i|
fl ———— ) —ef | ——— | |, 25
% |:er < \/50,‘ ° \/50’,' ( )

where erf is the error function. The remaining integral over
A; again has to be carried out numerically. Figure 2 shows an
example for the definitions introduced above, given three models
in a solar evolutionary track.
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We have now used the free parameter § f; to “trace” each mode
through segments of the evolutionary track, and compare it to
the observed frequencies, retaining the possibility of systematic
differences. Note that our only assumption here is that the mode
frequencies change smoothly between the frequencies given
by the constraining models. In principle, this approach can be
carried out in multiple dimensions (e.g., not only along the
evolutionary track in stellar age but also between tracks in mass).
As before, an extension to multiple frequencies and ambiguous
mode identifications is straightforward.

We stress that this approach only locates the region of
highest probability given the current grid, and given unspecified
behavior of frequencies in between grid points. It is thus best
used for frequencies whose behavior is difficult to capture, e.g.,
due to mode bumping or for a first general assessment of a very
coarse grid. Given a dense enough grid, regular frequencies
that are expected to change approximately linearly from one
grid point to the next need to be treated using interpolation,
since the integration over the model gaps for individual modes,
independently of all other modes, would allow for highly
unphysical models.

Therefore, in order to obtain a final best model and uncer-
tainties for the model parameters, the regions of substantial
probability should be further refined after the track probabilities
have been calculated. Eventually, the grid is resolved enough so
that well-defined distributions arise. In dense enough grids, this
can easily be accomplished by interpolation of the frequencies
in between grid points without violating the condition of hydro-
static equilibrium. This can also be done during run-time with
arbitrary precision using probabilities, by interpolating between
grid points and using the sum rule to calculate a probability
representative of the original grid resolution using the interpo-
lated models. Naturally, modes that change erratically, should
be excluded from such an interpolation routine and treated as
shown above instead.

3.7. Model Probabilities

So far we have only shown how to calculate the likelihood
for standard pulsation models, models that contain systematic
differences, and also evolutionary track segments. In order
to obtain the probabilities for individual models (or track
segments), we want to use Bayes’ theorem, assign model priors,
and calculate the total evidence for each model grid. The
simplest method to assign model priors in the absence of any
other prior information is to use the principle of equipartition
and assign a uniform prior

P(M;|I) = 1.0/ Ny, (26)

where Ny is the number of models (or, equivalently, Nt would
be the number of track segments) that are analyzed.

Although each model or track only predicts a number of
frequencies, it implicitly represents values or ranges for fun-
damental parameters like T or L, which can be compared to
(and constrained by) different and non-seismic observations.
For instance, assuming our prior photometric and spectroscopic
observations of a pulsating star indicate Teff = Tspec &= Ogpec then
the prior probability density for the model temperature is

_(Tspec - Teff,j)2
202

spec

P(Tesr,j|I) = kexp @7
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This example assumes that the uncertainty in T.g follows a
Gaussian distribution. k is a normalization constant depending
on the absolute lower and upper plausible limits of Teg.

All the different implicit parameters for which prior observa-
tions or other fundamental constraints are available, and hence
prior knowledge exists, then can be used for prior probabili-
ties which combine into an overall prior for model M;. As an
example

P(M;|I) = P(Tesr, ;|1 P(L;| D P([Fe/H]; [I)...,  (28)

if we assume separable priors for simplicity. If probabilities of
track segments are calculated, such a prior could be approx-
imated by a product of separable integrals, which are easily
evaluated analytically. Again, in order to obtain a proper prior
and therefore proper values for the evidence, the integral of the
prior probability over all possible models/tracks in a grid should
be 1.
By calculating, e.g.,

P(MA\I)P(D|\MA, T
P(M3|D, 1) = N( FDP(DIMF, ) (29)
/ Sou P(MPI)P(DIMR,T)

or, e.g., in the case of rapidly changing modes with or without
systematic errors,

P(TA+T;|1)P(DITA + T}, 1)

Yir P(TA+ Ty 1) P(DIT +T;. 1)
(30)

P(TH+T|D, 1) =

we obtain the probability of M* or, respectively, TjA +T; given
our prior knowledge (or lack thereof), our grid, and the set
of observed frequencies. Note that the denominators of these
equations represent the evidence or likelihood for the grid as a
whole. We can therefore use these as likelihoods when we want
to compare different grids with different input physics.

4. APPLICATION TO SURFACE EFFECTS

As mentioned in the introduction, shortcomings in modeling
the outer stellar layers produce systematic deviations in com-
parison to the observations. These deviations seem to be such
that model frequencies tend to be higher than the observed fre-
quencies, and therefore y = —1 (see Equation (9)). Kjeldsen
et al. (2008) have proposed to calibrate a power-law description
of the deviations by measuring the surface effects in the Sun
and then fitting this relation to frequencies of other stars. Their
correction expressed in terms of our definitions has the general

form of .
 { fim
ra~a( ) 31)
rel

where fi.r is some reference frequency, typically the frequency
of maximum power vm.x, and a and b are parameters to be
fitted. From their fits, Kjeldsen et al. determined b = 4.90
in the Sun, which has subsequently been used for other stars
by a number of authors. A comprehensive implementation of
this formalism into a y>2-fitting algorithm was presented in
a recent study by Branddo et al. (2011). However, even in
this more advanced approach, there is still a choice of a and
b required. Moreover, complications for modes of different
spherical degree and also bumped modes arise because they
do not necessarily conform to this relation. The authors propose
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to alleviate these problems by introducing additional model-
dependent parameters that approximately correct for some of
these deviations. While this approach is a great improvement
over applying a fixed surface-effect correction (or no correction
at all), our approach is much more powerful. It allows for a
much greater flexibility and leads to clearly defined probabilistic
results.

4.1. Priors for Surface Effects

As we want to treat systematic errors of more or less
unknown magnitude, the most general approach is to use
the flat uniform prior (Equation (15)). Imposing only minor
additional constraints, as we argued in Section 3.5, the beta
prior (Equation (19)) can also be used to give more weight
to models which minimize these unknown errors. We can use
both priors and compare the Bayesian evidence to tell us which
interpretation of the surface effect is better supported by the data,
given our model and everything we know. Moreover, irrespective
of which prior is chosen, we also always allow for the possibility
of no surface effects at all, as discussed in Section 3.4.

This now gives us enough flexibility to consider a possibly
frequency-dependent behavior of the surface effects. However,
instead of “predicting” the behavior of A; as is done by modeling
the surface deviations through a power law, we will prescribe
the behavior of its upper limit A; n.x. In contrast, the lower
limit should always remain 0, since our ultimate goal is to find
models that correctly describe the surface layers (and therefore
approach A; — 0).

The choice of the largest allowed A« is not unique, but it
should be sensible and used consistently throughout the analysis.
A reasonable strategy is to use sup(Apmsx) = Av, the large
frequency separation of each specific model, as a sensible upper
limit. If the systematic differences between observations and
models are larger than the average distance between modes of
adjacent radial order, we no longer recognize this as a valid
frequency assignment.'? With this upper limit defined, we now
want to model different types of surface effects. If we have no
preference for any frequency-dependent trend (i.e., all we know
is that observed frequencies are lower than model frequencies)
we require that all frequencies have equal Ap,x.

On the other hand we can also use a more specific model,
such as Equation (31), but retain the same flexibility. The surface
effect as shown in Equation (31) depends on two parameters.
The power-law exponent b determines how quickly the surface
effect increases as we move to higher frequencies, whereas a
is simply a scaling factor. We are not interested in the scaling
parameter, since the scaling (i.e., the magnitude of the offset) is
governed by our condition that for each model sup(Apnax) = Av.
It is taken care of by the fact that we are marginalizing over
A; anyway. Since the largest surface effects are expected at
the highest frequency fmaxm in the model, it follows that for a

specific b
fim \"
Amax,i = Av . (32)
fmax,m

Figure 3 shows how these definitions affect the prior probability
density P(A;| fiorsim, Mf, I) as we increase the value of A;
for both the constant and the power-law approach. With all
the Anax.; set, we can then use the priors as discussed above
for all our calculations. Note that we can also easily evaluate
new composite propositions at this stage and compute the

13 This condition may be relaxed at the highest radial orders.
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Figure 3. Behavior of the beta prior for systematic offsets in an echelle diagram. The squares represent model frequencies, while the shaded “trails” indicate the prior
probability density for varying A;. The left panel uses equal Ayax, Whereas the right panel uses a power-law Ap,x with exponent b = 4.9 (see Section 4.1). Note that
the uniform prior is not shown, since it simply assigns a constant probability density.

Table 1
Parameter Ranges for the Solar Grid
Parameter Range Step Size
Mass 0.95-1.05 0.005
Xo 0.68-0.74 0.01
Zo 0.016-0.022 0.001
Ol 1.8-2.4 0.1

Notes. Masses are given in units of solar masses; oy is the mixing-length
parameter.

probability for a hypothesis that allows for, e.g., a range
b ={4.4,4.65,4.9,...}. This is done in the same way as was
explained earlier (see Equation (14)).

4.2. Detailed Analysis of the Sun

As an example for how to implement the surface-effect
treatment, we will consider the solar / = 0, 1, 2, and 3
p-modes obtained by using BiSON data (Broombhall et al. 2009).
For our models, we used a large and dense solar grid obtained
with YREC (Demarque et al. 2008). The model grid spans
masses from 0.95 M, to 1.05 Mg in steps of 0.005 M, initial
hydrogen mass fractions from 0.68 to 0.74 in steps of 0.01, initial
metal mass fractions from 0.016 to 0.022 in steps of 0.001, and
mixing-length parameters from 1.8 to 2.4 in steps of 0.1. These
parameters are also summarized in Table 1.

Our model tracks begin as completely convective
Lane-Emden spheres (Lane 1869; Chandrasekhar 1957) and
are evolved from the Hayashi track (Hayashi 1961) through the
zero-age main sequence (ZAMS) to 6 Gyr with each track con-
sisting of approximately 2500 models. Only models between 4.0
and 6.0 Gyr are included in the model grid. Constitutive physics
include the OPAL98 (Iglesias & Rogers 1996) and Alexander
& Ferguson (1994) opacity tables using the GS98 mixture
(Grevesse & Sauval 1998), and the Lawrence Livermore 2005
equation of state tables (Rogers 1986; Rogers et al. 1996). Con-
vective energy transport was modeled using the Bohm-Vitense

mixing-length theory (Bohm-Vitense 1958). The atmosphere
model follows the (7—1) relation by Krishna Swamy (1966).
Nuclear reaction cross-sections are from (Bahcall et al. 2001).
The effects of helium and heavy element diffusion (Bahcall
et al. 1995) were included. Note that our atmosphere mod-
els and diffusion effects have been shown to require a larger
value of mixing-length parameter (o, &~ 2.0-2.2) than standard
Eddington atmospheres (o, & 1.7-1.8) (Guenther et al. 1993).

The pulsation spectra were computed using the stellar pul-
sation code of Guenther (1994), which solves the linearized,
non-radial, non-adiabatic pulsation equations using the Henyey
relaxation method. The non-adiabatic solutions include radia-
tive energy gains and losses but do not include the effects of
convection. We estimate the random lo uncertainties of our
model frequencies to be of the order of 0.1 uHz.

We analyzed our grid using adiabatic and non-adiabatic fre-
quencies, and employed three different surface-effect models:

M1: frequency-independent
Ai,max = AV,

M2: frequency-dependent, “canonical” surface effects with
A; max following Equation (32) with b = 4.90, and

M3: same as M2, but with b as a free parameter marginal-
ized fromb =3.0to b = 6.0.

surface effects with

For each frequency evaluated throughout our model grid, ir-
respective of the surface-effect model, we also considered the
possibility of no surface effect, i.e., we consistently calculated
P(M ]4 + M;|D, I). To take into account the discrete nature of
the grid, we interpolated along the evolutionary tracks during
run-time by a factor of 20, thereby increasing the effective “fre-
quency resolution” of the grid to below the random uncertainties
of the model frequencies. All models were evaluated with

(a) a uniform prior for all track segments,

(b) a prior using normal distributions for the constraints
M 1.0000 £+ 0.0002 M, log T = 3.7617 £+ 0.01,
and log(L/Lg) = 0.00 £ 0.01, where YREC uses the
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Table 2
Evidence for the Solar Grid Using the BISON Data Set
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Surface HRD logo(evidence) logo(evidence)
Model Prior (adiabatic) (non-adiabatic)
M1 a —233.4 —229.9
M2 a —189.8 —186.7
M3 a —189.8 —187.2
M1 b —235.5 —231.6
M2 b —190.8 —187.1
M3 b —191.4 —187.9
M1 —236.7 —235.1
M2 —193.5 —190.7
M3 c —192.6 —189.4

Notes. See the text for the definition of models and prior a, b, and c. Results for
models M2a, M2b, and M2¢, which are analyzed in more detail, are indicated
in bold face. Note that small numbers are expected.

following adopted values for Mg = 1.989140.0004-10%¢
(Cohen & Taylor 1986) and Lo = 3.8515 %+ 0.009 -
1033ergs™! (the average of the ERB-Nimbus and SMM/
ARCRIM measurements; Hickey & Alton 1983), and

(¢) same as (b) but with an additional Gaussian constraint
on the age of 4.603 £ 0.0075Gyr, derived from the
estimated age of the solar system found by Bouvier &
Wadhwa (2010) and an average pre-main-sequence phase
of our models of 35 & 5 Myr.

For the A; we consistently used beta priors, as discussed in
the previous section. Our calculations yield the most probable
models and uncertainties for all these approaches, and they also
give the Bayesian evidence for each approach. The results are
summarized in Table 2. We also computed the probabilities
using uniform priors, but found similar results with lower
evidence (several orders of magnitude) values than for the
corresponding beta prior analysis.

The non-adiabatic frequencies consistently produce larger
evidence values than for the respective adiabatic case. This is no
surprise, as the non-adiabatic frequencies are in general better
at reproducing the higher frequencies. Overall, model M2a
shows the largest evidence, followed by M2b and M3a. Note
that M1a, M1b, and Mle, which use frequency-independent
priors for the surface effects, and therefore are extremely
flexible, fail compared to the other models. Also, M3a and
M3b cannot beat their M2 counterparts. These are examples
of how marginalization and the consistent normalization of
probabilities work together to penalize more flexible models
if they cannot generate considerably better results. Model M3c¢
has a greater evidence than M2c, but the most probable stellar
models are the same in both cases, suggesting that these models
fit well, but do not necessarily adhere in detail to the standard
surface correction.

At first glance it might be unsettling that M2a has a slightly
greater evidence than M2b (and significantly greater evidence
than M2c¢). This indicates that there are models in our grid
which reproduce the pulsation spectrum very well but do not
match the solar fundamental parameters. A correctly calibrated
grid would produce higher evidences with a prior restricted
to the true solution. However, regardless of whether or not
we include the fundamental parameter constraints, we are still
finding models that match the oscillations constraints reasonably
well. Furthermore, recall that the evidence is only the likelihood

10

Table 3

Most Probable Models for the Complete BiSON Data Set Model Fitting
Model Mass Age Xo Zy Zs am  Probability

M2a 1.015 4.885+0.006 0.73 0.017 0.0153 2.2 0.54

1.005 4.7134+0.006 0.72 0.017 0.0153 2.2 0.21

M2b 1.000 5.017+£0.006 0.72 0.018 0.0161 2.1 0.68

1.000 4.9834+0.006 0.71 0.019 0.0160 2.2 0.17

M2c 1.000 4.5914+0.005 0.72 0.016 0.0144 2.2 0.95

1.000 4.5624+0.005 0.71 0.017 0.0153 2.3 0.05

Notes. Age is given in billion years and is computed from the pre-main-sequence
birth line. The age from the ZAMS is 35 &£ 5 million years less. Xy and Z are
initial hydrogen and metal mass fractions, Zs is the metal mass fraction in
the envelope. Probabilities are given with respect to the specific surface-effect
model and prior combination.

of obtaining the data, given that the approach is correct.'* We
know that the a prior is misrepresenting our state of information.
The solar prior approach b more correctly encodes what we
know about the Sun, and the age prior ¢ puts even tighter
constraints on the pulsation models. Ignoring this information
(using prior a and setting equal conditional probabilities) is an
interesting and necessary exercise to study the consistency of
the results, and how the different models, approaches, and priors
work. For an actual detailed study of the solar model physics,
however, it is not appropriate. We can nonetheless compare the
results, restricting ourselves to the non-adiabatic frequencies
and the on average best model for each prior, M2. The resulting
parameters are displayed in Table 3.

The results obtained without using our prior knowledge of
the Sun for model M2a are spread over several models in
the parameter space that can fit the observations quite well.
However, for the most probable models, the mass and age are
inconsistent with our prior knowledge. These models seem to
produce smaller surface effects and are therefore preferred. For
model M2b the situation is similar. Although the mass is now
fixed to the true solar value, we do not obtain models that are
consistent with the solar age.

For M3c a single combination of physical parameters dom-
inates the results and manages to fit well all the constraints
we impose (mass, luminosity, T, pulsation frequencies, and
age). Loosening the conditions on T and the luminosity does
not significantly change the result. We have also tested slight
variations of up to 20 million years in the age prior and do
not find the result to be affected. In all cases, we recover a
tightly constrained most probable model with Zy = 0.016 and
Zs = 0.0144, and an age of 4.591 £ 0.005 Gyr. We therefore
find a result similar to Houdek & Gough (2011). Given that our
models take 35 &£ 5 Myr to reach the main sequence, our result
is also consistent with meteoritic age determinations of the so-
lar system to within several million years (see, e.g., Bouvier &
Wadhwa 2010). However, we also recover Xy = 0.72, which
leads to an initial helium mass fraction of Yy = 0.264(1). This
is different compared to the value of Yy, = 0.250(1) that was
found by Houdek & Gough, but more consistent with Asplund
et al. (2009).

14 In order to obtain correctly normalized probabilities for the different
approaches themselves, we have to introduce conditional probabilities like,
e.g., P(M2a|l) or P(M2b|I) and use Bayes’ theorem. Only comparing the
evidence amounts to setting these conditional probabilities to be equal for all
tested hypotheses (e.g., P(M2a|l) = P(M2b|[)).



THE ASTROPHYSICAL JOURNAL, 749:109 (13pp), 2012 April 20

[T Ago [ 7T T &vEO T 7]
ALDO vv 80
4000~ ¢ #2090 yv B0 |
¢ 200 g B0
I ¢ 4280 ¢ wvé EO i
¢ ANED ¢ W
3500~ 4 m e ¢ W ¢ ED |
¢ X9 @ ¢y ¢ [EH
L0 D ew ¢@ -
N 3000 @ ¢4 @ o ¢ i
Z NP
> b e e |
£ ) I= o
5 @& O =0 .
5 2500~ A © =3 ¥ -1
g v @
2 LA ®©
= i 4 @® 4 [T
A ® v @
2000 A ® v @
A @ v ®
I A ©® v g 1
1500 | A @ v o
4 @ k4
B A @ \4 o i
A v ®
1000 1o . ® . | . 9 ., (8 | 4
0 20 40 60 80 100

(frequency + 5 uHz) mod 137.25 uHz

Figure 4. Non-adiabatic (shaded symbols) and adiabatic (open symbols)
frequencies of the most probable solar model from evaluating the BiSON
frequencies (black circles + error bars) using approach M2c. Note that
frequencies have been shifted upward by 5 uHz before calculating the x-axis
values in order to prevent the / = 2 modes from wrapping around.

Fitting the observations to the adiabatic frequencies, includ-
ing the age prior, we also recover the exact same model. We also
tested how sensitive the grid is to the prior constraints in order
to estimate the actual impact of the pulsation frequencies on the
probabilities. If we only evaluate the combined priors, ignoring
the frequencies but including the prior on the age, we obtain
Xo=0.71£0.01, Zo = 0.019 £ 0.002, Z; = 0.017 £ 0.002,
age = 4.603 £ 0.008 Gyr, and oy = 2.1 & 0.2. This leads
us to conclude that the frequencies have a decisive impact and
actually select the low-metallicity models, no matter whether
adiabatic or non-adiabatic model frequencies are used.

However, it has to be stressed again that the evidence drops by
almost two orders of magnitude when we introduce the age prior.
This can be understood by the fact that the solution is so well
constrained and at the edge of our current parameter space in Z,
and that many other models can also produce similar pulsation
spectra. It could also suggest that we might not have covered the
true best model parameters yet in our current grid. Therefore,
our next goal will be to extend the grid to lower metallicities, and
also include different abundance mixtures, but this is beyond the
scope of this paper.

Figure 4 compares the BiSON observations with our most
probable model at the correct solar age. Even with non-
adiabatic frequencies, significant surface effects can still be
found. The measured surface effects themselves are shown in
Figure 5, together with least-squares fits following the relation
proposed by Kjeldsen et al. (2008). The magnitude of the
surface deviations depends on whether the non-adiabatic or
the adiabatic frequencies are used for the fit. Nonetheless,
our method manages to identify the same exact model to be
the most probable, even using the same surface-effect model,
thanks to the power of marginalization. However, the non-
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Figure 5. Measured surface effects for non-adiabatic (filled circles) and
adiabatic (open circles) frequencies of the most probable solar model from
evaluating the BiSON frequencies using approach M2c. The uncertainties of
the differences are smaller than the symbols. Least-squares power-law fits (see
Equation (31)) to the surface effects for the adiabatic (solid line) and non-
adiabatic (dashed line) frequencies are also shown.

adiabatic models are vastly preferred in terms of the Bayesian
evidence. This is an example for how the presented approach
can be used to iterate toward improved stellar model physics,
while still recovering meaningful stellar parameters from current
asteroseismic investigations.

We also determined surface-correction power-law exponents
for every spherical degree vialeast-squares fits. For both the non-
adiabatic and adiabatic frequencies the best-fitting exponents are
markedly different from b = 4.9 which was both advocated
by Kjeldsen et al. (2008) and also used as the basis for
our probabilistic surface model M2. This is also the reason
why the M3c models have a greater evidence than their M2c¢
counterparts. The fitted values range from b = 4.23 for non-
adiabatic (I = 0) frequencies to b = 5.13 for adiabatic
(I = 3) frequencies. Moreover, the power-law fits do not
match the deviations very well at intermediate radial orders
near 2400 «Hz. From our point of view, fixing the exponent to
b = 4.9 for a least-squares fit, as for instance done by Brandao
et al. (2011), is therefore a potential problem since it does not
even match the Sun very well, in particular when improved
(e.g., non-adiabatic) physics are implemented. The probabilistic
procedure has no problem with these deviations, even though it
formally assumes an exponent of b = 4.9, since the magnitude
of the surface effects is marginalized for every frequency.

4.3. Asteroseismic Analysis of a Sun-like Star

To investigate the applicability of our method to current aster-
oseismic investigations, we also performed an “asteroseismic”
analysis of a Sun-like star, simulated by artificially “degrading”
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the set of observed BiSON frequencies to a precision and ac-
curacy expected from current space-based missions for average
Sun-like solar-type oscillators. We first multiplied the uncertain-
ties of the BiSON observations by a factor of 20 and then added
corresponding random errors to the frequency values. Further-
more, we did not assume to have detailed prior information on
the fundamental parameters. Instead, we fitted the “degraded”
data set with a completely flat prior to the same grid as before,
again using our surface effect model M2.

Although a different most probable model is identified,
the overall results are comparable to our findings for M2a.
They show a slightly larger spread of the model probabilities
across the grid. Summarizing the uncertainties for the main
parameters by calculating the first and second central moments
of the probability distribution in our grid we approximately
obtain M = 1.015 £ 0.007 My, age = 4.76 £+ 0.10Gyr,
X0 =0.72+£0.01, Zy = 0.017£0.001, Z; = 0.0148 +0.0005,
and oy = 2.3 £0.1.

However, these results become worse if we systemati-
cally remove lower-order modes which are crucial to “an-
chor” the surface-effect relation. To illustrate, we further de-
graded our data set by only keeping 13 / = 0 modes from
1950 to 3580 uHz, 12 1 = 1 modes from 2020 to 3505 Hz, 10
| = 2 modes between 2080and 3300 wHz, and 8 [ = 3 modes
from 2270 to 3220 uHz. Similar data sets from Kepler and
CoRoT with comparable uncertainties and numbers of modes
have recently been analyzed in the literature. The results for the
model parameters become M = 1.046 + 0.007 My, age =
4.80 £ 0.43Gyr, Xy = 0.72 + 0.01, Zy, = 0.021 £+ 0.01,
Zs = 0.019 £0.001, and oy = 2.3 = 0.1. Although the values
are still within ~ 5% we are almost at the border of our param-
eter space, and higher-mass models systematically outperform
lower-mass models.

We know from investigating the BiSON data using our grid
that we require oy, = 2.2 to fit all solar observables. Therefore,
in an analysis of a Sun-like star, we can constrain the fit to all
models with this value or use a prior based on the marginal
posterior probability for o, as determined from the fit to the
Sun. In this case we obtain M = 1.04 £ 0.01 My, age =
4.41 £ 0.29Gyr, Xo = 0.72 £ 0.01, Zy = 0.020 £ 0.002,
Zs; = 0.018 £ 0.001. This is an improvement, but still not
comparable to the results obtained when using the full data set.

Thanks to the probabilistic method, however, we can also
easily add new observables as further constraints, such as the
frequency of maximum power, which can also be inferred from
a power spectrum analysis and which approximately scales for
Sun-like stars as

_ M/Mo(Teit/ Tegr 0)>
L/Lo

(33)

Vmax max,® s

with v = 3120 &+ 5 uHz (Kallinger et al. 2010b).
Assuming an observed value of vy, obs and calculating vimax mod
for each model according to Equation (33) we can then multiply
the probability for each model with

2
1 (Vmax,obs - Vmax,mod)
exp | — ,
2o, 207

P(Vmax,obs|M47 I) =

(34)

where 0, = /0 2(Umax,obs) + 0> (Vmax,mod)-
With vpaxobs = 3120 & 20 uHz for our simulated Sun-
like star, we then obtain M = 1.02 £+ 0.01 My, age =
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4.39 + 0.28 Gyr, Xo = 0.72 £ 0.01, Zy = 0.019 % 0.002,
and Z; = 0.017 £ 0.002. Finally, if we were able to determine
Vmax.obs tO about solar precision, the results would be M =
1.008 £ 0.006 M, age = 4.39 + 0.30 Gyr, Xy = 0.71 £ 0.01,
Zy = 0.019 £ 0.002, and Z; = 0.017 =+ 0.002. Therefore, if
our observations provide precise additional information such
as Vmax, it can easily be implemented with our method. It then
seems possible to obtain reasonably accurate results for Sun-
like stars, even in the absence of low-order modes and without
a fixed surface-effect correction.

5. CONCLUSIONS

In this paper, we have derived a new, completely probabilistic
framework for asteroseismic grid fitting. We explicitly used
marginalization and the formulation of combined propositions
to allow for the quantitative evaluation of the model grid physics.
While computationally more intensive than the standard x>
evaluation, this approach has several benefits in that it

1. allows for the treatment and analysis of systematic errors
such as the surface effects, therefore removing the need to
apply corrections prior to fitting,

2. easily implements uncertainties in the mode identification,

3. takes into account the fact that grids are discrete representa-
tions of a continuous parameter space, which is especially
important for rapidly varying bumped modes,

4. provides a consistent framework to use prior knowledge
about stellar fundamental parameters or to evaluate addi-
tional observables such as vy,,¢, and

5. produces correctly normalized probabilities and likeli-
hoods, respectively evidences, which can be used to assess
the model grid physics and the calibration of the grids.

While the above was explicitly derived using the example of a
static grid, the probabilistic approach would also be suited for an
adaptive grid approach. The Bayesian evidence could be used as
a formidable criterion to decide whether an adaptive grid needs
to be further refined or not.

We also showed how to apply our method to study the Sun.
The analysis based on our current grid and our prior information
matches well the findings of Houdek & Gough (2011), and in
general fits the up-to-date picture of the Sun. The age of our
best model (measured from the pre-main-sequence birth line) is
consistent with the meteoritic solar age. The solar model arrives
on the ZAMS approximately 35 & 5 Myr after appearing on the
birth line. We found the same best model whether non-adiabatic
or adiabatic frequencies were used. This shows that our method
can adequately deal with different shapes of surface effects,
even when using the same (flexible) surface-effect model. One
requirement, however, is that enough lower-order modes exist
to “anchor” the fit.

To our knowledge, this work is also the first completely
grid-based asteroseismic analysis of the Sun, using all the
information provided by the frequencies and prior knowledge
about the solar fundamental parameters, that results in the need
for initial hydrogen, helium, and metal mass fractions more
consistent with Asplund et al. (2009) than the traditional higher-
metallicity models. At least for our current grid, these values are
required to produce a model that “looks” like the Sun, pulsates
like the Sun, and has the correct solar age. We stress that a formal
x? fit to the Sun’s oscillation frequencies (Guenther & Brown
2004) or even targeted nonlinear inversion of the oscillation
frequencies (Marchenkov et al. 2000) will not necessarily yield
the same model as our approach. With x?2 fits it is difficult
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to provide an unbiased correction for surface effects that at
the same time does not overly weight the deeper penetrating
modes. Some of the deeper penetrating modes are sensitive to
the base of the convection zone where the effects of convective
overshoot and turbulence, introduced by rotation shears, are
not included in the standard models. Inversion methods, where
a standard base model is perturbed to fit the oscillations,
are also distinct because even though the perturbed model
obtained from inversions reveal regions of the standard model
that are inadequate, e.g., the base of the convection zone, the
inversion model is not an actual standard model in the sense that
it is constrained and generated by the model physics.

We know that our best-fit model is inaccurate at the surface
and we suspect that it is inaccurate at the base of the convection
zone (the latter suspicion based on the inadequate model physics
for this region). Regardless, the model is probabilistically the
best model from the current model grid that matches all the
known constraints. We speculate that preferring fits that match
the oscillation frequencies at the expense of the other physical
constraints may be the reason that helioseismologists have been
unable to reconcile the observed solar p-mode frequencies with
frequencies derived from standard models based on the Asplund
mixture and metal abundance (Serenelli et al. 2009; Guzik &
Mussack 2010). We will pursue these matters in a future study
where we include model grids based on the Asplund mixture.

While the purpose of our analysis of the Sun is to test the
details of our model physics, our method can also be used
in general asteroseismic investigations. When applying our
technique to stars other than the Sun, e.g., recent asteroseismic
targets from the Kepler mission, tight prior constraints as in the
solar case are generally not available. However, the probability
formalism can simply assign uninformative (e.g., uniform)
priors for the unknown parameters and still retain all the
remaining benefits like treatment of missing mode identification
and of finite grid resolution.

For current asteroseismology, however, the most important
feature is the flexible treatment of the surface effects that
differs from the usual approach of employing the empirical
correction by Kjeldsen et al. (2008) to the frequencies. Instead
of measuring the empirical correction for the Sun with the help
of a reference model, we use a flexible probabilistic model
that allows us to measure surface effects in any star given our
current asteroseismic grids. We do not rely on the validity of
the solar surface-effect correction and can test new surface-
effect models that deviate from the solar power-law approach.
Correctly treating the impact of the surface effects on the model
probabilities, this also yields correctly propagated uncertainties,
and therefore a less biased (but model-dependent) assessment
of the stellar fundamental parameters.

The results presented in the previous section indicate that
the accuracy of such current asteroseismic analyses is still
an open question and heavily dependent on the number of
unaffected, lower-order modes. If there are not enough lower-
order modes the surface effect will lead to systematic errors
in the fundamental parameter determination. However, even in
such a case, by looking at how the evidence changes as better
physics are included in the models, our method can be used to
iterate toward improved models, hopefully solving the surface-
effect problem eventually.
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