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Abstract

Magnetohydrodynamical Simulations of the Fragmentation of

Molecular Cloud Cores

by Logan Francis

submitted on March 28, 2014:

Multiple star systems are quite common throughout the universe, so it is of in-
terest to know what physical process may promote and prevent the fragmentation
of a collapsing gas cloud that leads to multiple star system formation. Protostars,
condensed objects in which nuclear reactions have yet to begin, are predominantly
formed in Molecular Cloud Cores, dense regions of Molecular clouds composed of
mostly cold molecular hydrogen. The condition for fragmentation is described by the
Jeans Length, the maximm radius a uniform spherical core can have, beyond which
thermal pressure is insufficient to support the core against gravitational collapse.

To simulate the formation of multiple star systems, a model was developed consist-
ing of a sphere of uniform density with an azimuthal density perturbation to stimulate
fragmentation, with some initial amount of rotation and a uniform magnetic field par-
allel to the rotation axis. The parameters tested were the ratios of the initial thermal,
rotational, and magnetic energy to the gravitational potential energy of the sphere,
and the ratio of specific heats, denoted by α, β, ζm and γ respectively. An α-β-ζm-γ
parameter space survey was carried out using the magnetohydrodynamical computer
code ZEUS-3D, augmented with a Fourier transform based gravity solver.

The increase of the energy ratios α, β, and ζm was found to generally provide more
support against the collapse and result in the evolution of the cores to a lower density.
Multiple dense fragments were produced primarily in the hydrodynamica simulations
using adiabatic values of γ. The addition of a magnetic field was found to homogenize
the density distribution, supress fragmentation, and prevent the movement of fluid
perpendicular to field lines, resulting in a smaller collapsed core. Simulations using
near-isothermal values of γ were found to generally collapse to a higher density state
than those with adiabatic values, and to produce a single central condensation rather
than multiple fragments.
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Chapter 1

Introduction

Multiple star systems, consisting of two or more stars revolving around a common

barycentre, are quite common throughout the universe. In the Milky Way, roughly

one third of stars (Lada, 2006) and about two-thirds of G type stars like the sun

(Duquennoy and Mayor, 1991) are in fact thought to be multiple star systems. Given

their prevalence, it is of interest to know what physical processes may promote and

prevent the fragmentation of a collapsing gas cloud that leads to multiple star system

formation. To discuss fragmentation, a general review of star formation is warranted.

1.1 The Hierarchy of Star Forming Structures in

Galaxies

The formation of stars occurs in the interstellar medium (ISM). The ISM contains a

hierarchy of progressively denser structures which allow for the birth of stars, shown in

figure 1.1. The ISM is composed of 70.4% Hydrogen, 28.1% Helium, and 1.5% metals

(which in astronomy, are any elements heavier than Helium) by mass (Ferrière, 2001).

It consists of three gas phases in pressure equilibrium: the hot ionized medium (HIM)

(temperature T ∼ 106 K; occupies a fractional volume of the ISM denoted by its filling

factor of fHIM ∼ 0.7− 0.8 ), a low density ionized gas which fills the majority of the
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1) Interstellar Medium

• Consists of three gases in pressure equilibrium (HIM, CNM, WNM/WIM)

• Embedded Molecular Clouds (MCs) and Giant Molecular Clouds (GMCs)

2) Giant Molecular Cloud

• Dense cloud of mostly neutral molecular hydrogen and the site of most star formation.

• Sizes, masses and temperatures of ∼ 101 − 102 pc, 105 − 106M�, T ∼ 10− 20 K

3) Clump

• A denser region of a molecular cloud from which an entire star cluster forms.

• Sizes, masses and temperatures of ∼ 0.3− 3 pc, 1− 103M�, T ∼ 10 K

4) Core

• A region in a clump which undergoes gravitational collapse to form a star system.

• Sizes, masses and temperatures of ∼ 0.01− 0.1 pc, ∼ 1M�, T ∼ 10 K

5) Protostar

• The pre-nuclear first stage of a star’s evolution.

• Exhibits an accretion disc and collimated outflows of gas known as jets.

Figure 1.1: Hierarchy of star forming structures in the ISM.
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ISM, the cold neutral medium (CNM) (T ∼ 10 − 20 K, fCNM ∼ 0.02 − 0.04) which

consists of mostly dense neutral and molecular gas, and a warm medium (fwarm ∼

0.2) which surrounds the CNM (McKee and Ostriker, 1977). The warm medium

is subdivided into the inner warm neutral medium (WNM) (T ∼ 6000 − 10000 K),

which surrounds the CNM and is composed of mostly neutral gas (fractional ionization

∼ 0.1), and the warm ionized medium (WIM) (T ∼ 8000 K), a region sandwiched

between the WNM and HIM of predominantly ionized gas (fractional ionization∼ 0.7)

(Ferrière, 2001).

Embedded in the ISM are the aptly named molecular clouds (MCs) and giant

molecular clouds (GMCs), which are composed of mostly cold molecular hydrogen.

The gas in MCs and GMCs is self-gravitating, which distinguishes them from being

another gas phase of the ISM (Pudritz, 2001). An example of where a GMC can be

found is in the beautiful eagle nebula, as highlighted in figure 1.2. GMCs such as this

contain most of the self-gravitating gas in the Milky Way, and have a range of sizes

of 10− 100 pc, masses of 105 − 106M�, and temperatures of T ∼ 10− 20 K (Pudritz,

2001).

The process by which GMCs form is complex and not fully understood. A variety

of models describe how they form from the gas of the ISM, including cloud-cloud

agglomeration, Parker instabilities, and ISM turbulence. Cloud-cloud agglomeration

is thought to be caused by the passages of a the spiral arm of a galaxy, which in turn

causes the collision and agglomeration of tenuous clouds into denser GMCs (Kwan

and Valdes, 1983), while a magnetic field aligned with the plane of the Milky Way

could create a Parker instability that produces molecular clouds (Elmegreen, 1982).
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Finally, the effects of turbulence in the ISM could assist in the formation of GMCs, the

details of which are beyond the scope of this thesis but are available in an extensive

review of star formation by McKee and Ostriker (2007).

Another region of star formation may be Bok globules, low temperature (T ∼ 10

K) clouds located outside GMCs with masses of 1–1000 M� and size less than 1 pc

(Carroll and Ostlie, 2007). Bok Globules are thought to be star forming regions; a

radio telescope survey by Launhardt et al. (2000) of 25 Bok Globules found that 40%

contained condensed regions associated with newborn stars.

Figure 1.2: Visible light Hubble Space Telescope image of the eagle nebula. The
giant molecular cloud is within the outlined region (Credit: Radio contour - Leo
Blitz (UCB), image - Jeff Hester & Paul Scowen (ASU)). Since molecular hydrogen
does not have any absorption or emission lines in the visible spectrum, its presence
is identified by radio telescope surveys of tracer molecules (e.g., CO) associated with
it (Carroll and Ostlie, 2007).

Within GMCs are denser clumps, from which an entire star cluster is produced.
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A survey of clumps by Williams et al. (1995) in the Rosette MC found sizes to be

∼ 0.3 − 3 pc, while masses and temperatures are generally 1 − 103M� and ∼ 10 K.

Clumps can form within GMCs in ways very similar to how GMCs form in the ISM,

such as by clump-clump agglomeration and MHD turbulence, or by the fragmentation

of magnetized filamentary clouds (Pudritz, 2001).

At an even smaller scale within clumps are molecular cloud cores, from which a

single or multiple star system forms. Cores have sizes of ∼ 0.01 − 0.1 pc, masses

of ∼ 1M� (Pudritz, 2001), and temperatures of ∼ 10 K (Carroll and Ostlie, 2007).

Possible mechanisms for how cores form from their parent clumps include ambipolar

diffusion, MHD wave damping, and cooling flows. Ambipolar diffusion in astrophysics

is the gradual process by which the support a magnetic field provides a gas against

gravitational collapse is removed. The magnetic field is coupled only with the ionized

particles in the gas, so the motion of the neutral particles which are not directly

influenced by the Lorentz force will cause the magnetic field lines to slip out of denser

regions of the cloud and allow further collapse. MHD waves can provide some support

for a partially ionized gas, but have been shown to be damped at approximately the

scale of cores (Pudritz, 2001). This damping can cause a pressure imbalance that in

turn causes material to flow into and cool a region of lower pressure, increasing its

density and allowing for the formation of a core.

Finally, the smallest scale of interest is the protostar. A protostar is a condensed

object in which nuclear reactions have yet to begin and is the earliest stage of stellar

evolution. Protostars typically exhibit a rotating accretion disc and jets: collimated

streams of supersonic plasma launched from the protostar. Both jets and an accretion
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disc can be seen in the image of the protostar in HH-30 shown in figure 1.3. The jets

provide a way for gas in the accretion disc to shed excess angular momentum that

would normally prevent further collapse. Collapsing ionized gas is launched outward

along magnetic field lines aligned with the rotation axis of the accretion disc, shedding

much of its angular momentum and allowing it to fall inwards on to the protostar

(e.g. Clarke et al., 2008).

Figure 1.3: Visible light Hubble Space Telescope image of the Herbig-Haro object
HH-30 (Credit: C. Burrows (STScI & ESA), the WFPC 2 Investigation Definition
Team, and NASA). A jet is seen emanating from top to bottom, its source is the
protostar hidden by the accretion disc.

1.2 The Physics of Collapse and Fragmentation

of Molecular Cloud Cores

Simple analytical models for the conditions necessary for a spherical core to collapse

were first derived by the astrophysicist James Jeans in 1902 using the virial theorem.



Chapter 1. Introduction 7

The virial theorem (Carroll and Ostlie, 2007)

2〈K〉+ 〈U〉 = 0 (1.1)

represents the equilibrium condition of a system with average internal kinetic (i.e.,

thermal) energy 〈K〉, and an average energy of a central potential 〈U〉. It may be

extended to include the effects of external pressures, magnetic fields, rotation and

more, but Jeans’ original analysis only considered the quantities in equation (1.1).

Simply put, the virial theorem requires that if the core is to collapse, then its kinetic

energy must be less than half its potential energy. For a core modelled as a sphere

of ideal gas of volume V , radius R, uniform density ρ0, mass M , and temperature T ,

the thermal energy and gravitational potential energy are given as:

Eth. =
3MkT

2μmH

, (1.2)

and,

Ugrav. =
3GM2

5R
, (1.3)

respectively, where k is the Boltzmann constant, μ is the mean molecular weight, and

mH is the mass of a hydrogen atom. When substituted into (1.1), the condition for

collapse can be manipulated to produce:

M > MJ , MJ =

(
5kT

GμmH

)3/2 (
3

4πρ0

)1/2

; (1.4)
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R > λJ , λJ =

(
15kT

4πGμmHρ0

)1/2

, (1.5)

where MJ and λJ are known as the Jeans mass and Jeans length respectively. A gas

cloud with a mass or radius larger than the corresponding Jeans mass or length will

collapse under its own gravity. Alternatively, the Jeans length can be derived from

the equations of ideal hydrodynamics using perturbation analysis (McMillan, 2014);

λJ =

(
πc2s
Gρ

)1/2

, (1.6)

where cs is the isothermal (cs = (p/ρ)1/2) or adiabatic (cs = (γp/ρ)1/2) sound speed.

For an isolated core with mass larger than the Jeans mass undergoing an isothermal

collapse, the Jeans quantities depend only upon the density. Hence, as gravitational

collapse proceeds, the density of the cloud will increase, lowering the Jeans mass and

causing the collapse to continue in a runaway fashion.

However, the collapse of the core is only isothermal provided the cloud is optically

thin so that the gravitational potential energy can be radiated away (Carroll and

Ostlie, 2007). As the density of the cloud increases, so does the optical thickness,

causing the collapse to be more adiabatic in nature. A rise in temperature of the

core and increase of the Jeans quantities ensues. When the core becomes hot enough,

thermal pressure will support the core against further gravitational collapse, and a

new virial equilibrium state will be achieved.

During the adiabatic portion of the collapse, the degrees of freedom of the gas

molecule affects how the thermal energy changes as a function of density. Using the
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ideal gas law in the form, p = (γ − 1)e, where p, γ, and e are the pressure, ratio of

specific heats, and internal energy density respectively, the thermal energy can also

be written as:

Eth. = eV =
pM

(γ − 1)ρ0
. (1.7)

With the substitution of the adiabatic relationship between pressure and density,

p ∝ ργ0 , it is then clear that

Eth. ∝ ρ
(γ−1)
0 (1.8)

provided that the core is not accreting a significant amount of mass so that M is

approximately constant. Comparing this to the analogous relationship for Ugrav.:

Ugrav. ∝ ρ
1/3
0 , (1.9)

it can be seen that for γ > 4/3, as is the case for a monatomic (γ = 5/3, e.g. atomic

hydrogen) or diatomic gas (γ = 7/3, e.g. molecular hydrogen), the thermal energy

of the core increases faster with increasing density than the gravitational energy. For

γ less than the critical 4/3, approximating an isothermal (γ = 1) or near isothermal

equation of state, the reverse occurs. This demonstrates why the change of the

character of the equation of state from isothermal to adiabatic arrests the collapse

and allows a new virial equilibrium to be established.

Other non-thermal effects also play a role in the core collapse. The rotation of

a core can provide support against contraction. Consider the case of the spherical

core in solid body rotation at angular speed Ω about an axis through its centre. As



Chapter 1. Introduction 10

the core contracts, the angular speed of its constituent particles will increase as a

consequence of the conservation of angular momentum. The particles will eventually

reach a critical speed, the so-called “centrifugal barrier”, where they can no longer

collapse inward on to the centre of the core. This inhibits collapse perpendicular to

the axis of rotation, but not parallel, resulting in the flattening of the core into a

more oblate and disc-like shape. The amount of rotational energy is given by:

Erot. =
MR2Ω2

5
. (1.10)

Magnetic fields can also support the core against collapse. To demonstrate this,

the virial theorem can be modified to incorporate magnetic energy (Krumholz, 2011):

2〈K〉+ 〈Emag.〉+ 〈U〉 = 0, (1.11)

provided that the field outside the core is negligible in comparison with that within.

The magnetic energy for a spherical cloud permeated by a uniform magnetic field is:

Emag. =
B2V

2μ0

=
B2M

2μ0ρ0
=

2Φ2
B

μ0πR
, (1.12)

where ΦB = πR2B is the magnetic flux passing through the cloud. The magnetic

energy increases with density at the same rate as the gravitational potential energy

(equation 1.3), indicating that magnetic support does not increase as the collapse

proceeds (Krumholz, 2011). The spherical cloud can only be in equilibrium provided

the magnetic fields are strong enough initially, and the process of ambipolar diffusion
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will tend to gradually weaken the magnetic field’s supporting effect.

When equations (1.3) and (1.12) are substituted in (1.11) and thermal support is

assumed to be negligible, a magnetic critical mass analogous to the Jeans mass can

be obtained (see appendix A):

MB =

(
10Φ2

B

3μ0π

)1/2

. (1.13)

A magnetically supported cloud with M > MB is said to be magnetically supercritical

and will collapse; a core with M < MB is said to be magnetically subcritical and

will be stable. Collapsing magnetically subcritical clouds have no hope of becoming

magnetically supercritical without changes in the magnetic field, but may become

stable thanks to thermal pressure.

While the above analysis neglects other physics present (e.g., turbulence) which

may arrest or expedite the collapse, it is sufficient to describe the general mechanism

of the fragmentation of the core which leads to the formation of multiple protostars.

As the collapse proceeds, the Jeans mass may increase or decrease, depending on the

competing increase of cloud temperature and density. Cores are generally not very

uniform, so the mass of smaller regions of the cloud may exceed their local Jeans

mass. Each of these regions will continue to collapse under their own gravity until

an equilibrium state is eventually reached, or may in turn fragment themselves, as

shown in figure 1.4.
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Giant Molecular Cloud

MJ < M
M,MJ

Fragmentation

M ′
J < M3 M ′

J < M2

M ′
J < M2

M ′
J < M3

M ′
J > M
Stable

Collapse

M ′
J �= MJ

M ′
J > MJ M ′

J < MJ < M

M ′
J < M1

M ′
J > M

M ′
J < M1

Figure 1.4: Inhomogeneity in core structure and changing Jean’s mass causes frag-
mentation during collapse. Here, M ′

J is the new Jeans mass of the cloud after it
is altered by the collapse. M1, M2, and M3 are the masses of the fragments which
exceed the Jeans mass (recreated from Prialnik, 2000).
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1.3 Modelling Core Collapse Numerically

1.3.1 Energy Ratios and Model Parameters

It is useful for the purposes of simulation to describe how collapse may be affected by

the initial conditions of the spherical core in terms of ratios of various energies to the

gravitational potential energy. Following the convention of Norman et al. (1980), the

quantities α and β represent the gravitational energy ratios for thermal and rotational

energy. Using the form of Eth. given by equation (1.7) and γ = 5/3 for a monatomic

gas, α is;

α =
Eth.

Ugrav.

=
5

2

(
3

4πρ0M2

)1/3
c2s
G
, (1.14)

where the isothermal sound speed c2s = p/ρo was used. Similarly, β becomes

β =
Erot.

Ugrav.

=
MR2Ω2

5

5R

3GM2
=

1

4π

Ω2

Gρ0
, (1.15)

where the rotation axis points in the θ = 0, φ = 0 direction.

These ratios are commonly used to describe numerical simulations for the collapse

of spherical cores, such as those by Boss (1993), Burkert and Bodenheimer (1993),

and Narita et al. (1984), who investigated the values of α and β which would cause

the fragmentation of the core. This thesis uses a modified version of the uniform

spherical core model of Boss (1993), consisting of a uniform sphere of gas embedded

in an ambient medium, where fragmentation is stimulated by an azimuthal density
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perturbation of the form:

ρ(r) → ρ(r)(1 + A cos(mφ)). (1.16)

The modification made to this model is the addition of a uniform magnetic field,

where, using (1.12), the magnetic energy ratio, ζm, is written as:

ζm =
Emag.

Ugrav.

=
5B2

6Gμ0

(
3

4πρ0M5

)1/3

, (1.17)

with the direction of the field denoted by the angles Bθ and Bφ.

In general, larger values of α, β, and ζm should provide additional support against

gravitational collapse, while changes to γ should alter the evolution of thermal energy

with increasing density, as outlined in §1.2.

1.3.2 Artificial Fragmentation and The Jeans Condition

Many of the simulations of core collapse in the 1980s and 1990s were found to

be flawed by Truelove et al. (1997). An inherent cost of modelling the equations

of ideal (M)HD is the introduction of finite errors to the solution for the problem.

These errors can act as perturbations to regions of the simulated core, causing them

to collapse if the perturbations are larger than the Jeans length. This numerical

means of producing fragments which would otherwise not exist was deemed artificial

fragmentation by Truelove et al. (1997).
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However, the same paper identified a solution to the problem. By ensuring that

the Jeans length is adequately resolved, the finite errors to the solution can be made

small enough that artificial fragmentation does not occur. The level of resolution of

the Jeans length is described by the dimensionless Jeans Number :

Jx = Δx/λj, (1.18)

where Δx is the resolution of a computational zone in the x direction. To ensure that

artificial fragmentation does not occur, the Jeans condition requires only that,

Jx < 0.25. (1.19)

Truelove et al. were able to accomplish this using a method known as adaptive mesh

refinement (AMR) (Berger and Oliger, 1984; Berger and Colella, 1989), which is

used by grid based computer codes that solve the equations of fluid dynamics to

insert dynamically higher resolution grids (i.e., meshes) where they are needed, as

visualized in figure 1.5. In the case of simulations of gravitational collapse, grids of

typically twice the current level of resolution can be inserted in regions where the

Jean’s number reaches Jx = 0.25, automatically reducing Δx and thus, Jx.

Truelove et al. tested existing models of the isothermal collapse of spherical cores

with the addition of AMR, including the Gaussian density profile used by Burkert

and Bodenheimer (1993) and the uniform core model used by Boss (1993). Truelove

et al. more rigorously defined a fragment as the mass contained between a local den-
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Figure 1.5: In a grid based code which uses adaptive mesh refinement, the finer
resolution grids are placed where required within the coarser grid as the simulation
progresses.

sity maximum and the lowest isodensity surface surrounding only that maximum, a

useful definition which is adopted in this thesis (Truelove et al., 1998). For a rotating

Gaussian cloud with an A = 0.1,m = 2 perturbation, two simulations differing only

in the maximum value of Jx allowed were performed. Two fragments were produced

when only Jx < 0.5 was enforced, while a single bar structure was produced when

(1.19) was maintained, demonstrating the existence of artificial fragmentation (Tru-

elove et al., 1997). For a uniform spherical core with α = 0.26, β = 0.16 and an

A = 0.1,m = 2 perturbation, where (1.19) was enforced, the core was observed to

form two elongated fragments connected by a relatively high density bar, after the

density in the simulation has been allowed to increase by 8 decades (Truelove et al.,

1998).
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1.4 Scope of this Thesis

As discussed, the physics of how a molecular cloud core becomes a protostar is com-

plex, involving the effects of gravitation, radiative heating, rotation, magnetic fields,

and turbulence. The focus of this thesis is on developing computer models using the

staggered grid astrophysical MHD code ZEUS-3D (discussed further in §2.1) to ex-

amine how some of these processes affect the fragmentation of molecular cloud cores

and the resulting formation of multiple protostar systems.

The model used for this investigation is the modified perturbed uniform sphere

model of Boss (1993) described in §1.3.1. While this model is simple and does not

include the physics of turbulence or radiative heating, it still provides the opportunity

to study the effects of several parameters. In this work, the parameters α, β, ζm, and

γ used in this model form a parameter space that is explored at a low resolution for

Bθ = 0 and Bφ = 0.resolution studies

The difficulty in performing these core collapse simulations lies in maintaining the

Jeans condition needed to ensure any fragmentation is physical. The AMR technique

discussed in §1.3.2 can be used to this end. A version of the ZEUS-3D code equipped

with AMR, AZEuS, is capable of solving the equations of ideal MHD as described

by Ramsey et al. (2012). AZEuS does not yet implement an algorithm of solving the

self gravity equations in less than O(N2) time, i.e., the computational time for any

simulation requiring gravitation will rise at least as the square of the number of points

in the simulation. This makes increasing the resolution (either locally with AMR, or

over the entire grid) quite impractical.
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As part of this thesis, ZEUS-3D has been augmented with a Fourier transform

based gravity solver which operates in O(N log2 N) time, described in §2.2. Since the

resolution used by ZEUS-3D can not be changed during the simulation, this is not as

desirable as an AMR compatible O(N log2 N) gravity solved implemented in AZEuS.

However, the Fourier transform algorithm is useful as a bridge to performing such

calculations, since it may eventually be adapted for AZEuS.

In the absence of AMR, it is not possible to maintain the Jeans condition by in-

creasing the resolution dynamically. Instead, the Jeans number in each computational

zone must be calculated at each time step of the simulation, with the maximum of

these Jeans numbers ensured to be less than the value of 0.25 required by the Jeans

condition. A subroutine to perform this task has been added to ZEUS-3D, as de-

scribed in §2.3.

Furthermore, without AMR, the scale that the collapse can be followed to is much

more limited, as the rise in density of the core tends to quickly violate the Jeans

condition. This makes it difficult to model cores with less thermal, magnetic, or rota-

tional support against gravitational collapse. Despite this, fragmentation and other

questions can still be investigated within the Jeans condition compliant (α, β, ζm, γ)

parameter space.

A situation that can be considered is that of a perturbed isothermal core without

a magnetic field and a low value of α. Collapse for this core should proceed in a

runaway fashion, as explained in §1.2. By increasing only the value ζm, this core

should instead collapse to an equilibrium state. With the introduction of rotation,

the core may fragment into two magnetically supercritical cores. In reality, these
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cores might gradually lose magnetic support by the effects of ambipolar diffusion,

and eventually collapse, allowing the formation of a binary system.

For rotating non-isothermal cores, lower values of ζm and α should be needed to

provide support for the collapsing core. The effects of less initial thermal and magnetic

support versus making a collapse more adiabatic in nature on the fragmentation of

the core can be examined as well.

The effect γ may have on fragmentation can also be explored. Since lower values

of γ result in a slower increase of thermal energy with density, the effect of larger

values of γ will likely be the suppression of fragmentation.
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Chapter 2

Numerical Methods

2.1 MHD and ZEUS-3D

ZEUS-3D is a grid based MHD code designed for astrophysical applications. It makes

use of a staggered mesh where scalar quantities are located at the centre of a computa-

tional zone (i.e, one “box” on the defined grid), while components of vector quantities

are found at their respective faces. ZEUS-3D solves the equations of ideal hydrody-

namics in a variety of dimensions (1, 11
2
, 2, 21

2
, 3) and coordinate systems (Cartesian,

cylindrical, spherical), with options to incorporate various physics beyond the basic

hydrodynamics, such as magnetic fields, self-gravity, viscosity, two fluids, and more

(Clarke, 1996, 2010). For the purposes of this work, the equations solved are:

∂ρ

∂t
+∇ · (ρ�v) = 0, continuity, (2.1)

∂�s

∂t
+∇ · (�s�v + (p+ pB)1− �B �B) = −ρ∇φ, momentum, (2.2)

∂eT
∂t

+∇ ·
[
(eT + p− pB)�v + �E × �B

]
= 0, total energy, (2.3)

∂ �B

∂t
= ∇× (�v × �B), induction. (2.4)
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where:

ρ is the matter density;

�v is the velocity;

p is the thermal pressure;

pB is the magnetic pressure =
1

2
B2;

1 is the unit tensor;

�B is the magnetic induction, in units where μ0 = 1;

φ is the gravitational potential, in units where G =
1

4π
;

e is the internal energy density;

eT is the total energy density = e+
1

2
ρv2 +

1

2
B2 + φ.

All simulations in this work use ZEUS-3D in a 3-D mode with a Cartesian geom-

etry, including the extra physics of magnetic fields and self-gravity, and solving the

total energy equation. The total energy equation (2.3) is used because it provides

strict conservation of eT . However, the total energy equation does not guarantee

positive definite e, which affects the calculation of the Jeans number as discussed in

§2.3.
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2.2 Solving Poisson’s Equation for Gravity

Poisson’s equation for gravity (referred to hereafter as “Poisson’s Equation”) is given

by:

∇2φ = 4πGρ, where G =
1

4π
in ZEUS-3D, (2.5)

is an elliptical partial differential equation which can be used to find the gravitational

potential φ associated with a density distribution ρ of an object such as a core in a

molecular cloud. Consider the 1-D case of

∂2

∂x2
φ(x) = ρ(x). (2.6)

This can be solved for φ by performing a Fourier transform on φ and ρ. For some

general function h(t), we have:

ĥ(f) = F [h(t)] =

∫ ∞

−∞
h(t)e2πiftdt, the forward Fourier transform; (2.7)

h(t) = F−1[ĥ(f)] =

∫ ∞

−∞
ĥ(f)e−2πiftdf, the inverse Fourier transform. (2.8)

The function ĥ(f) is said to be in Fourier space, and the exponential terms in the

forward and inverse transforms are respectively known as their kernel and inverse

kernel ; functions which define any integral transform.
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The Fourier transform has the useful property:

F
[
d

dt
h(t)

]
= (−2πif)ĥ(f), (2.9)

which allows Poisson’s equation to be solved by the following method:

1. Take the Fourier transform of Poisson’s equation.

2. Solve the resulting algebraic equation in Fourier space for φ̂

3. Take the inverse Fourier transform of φ̂ to obtain φ.

For this work, a gravity solver based on this method and as described by Press et al.

(1992) has been implemented in ZEUS-3D. In ZEUS-3D, φ and ρ are both discrete,

zone centred quantities, and a discrete Fourier transform (DFT) pair takes the form:

ĥn =
N−1∑
k=0

hke
2πikn/N , the forward DFT; (2.10)

hk =
1

N

N−1∑
n=0

hne
−2πikn/N , the inverse DFT; (2.11)

where N is the number of points in the transform. The DFT is used to solve Poisson’s

equation numerically in a way analogous to the 1-D continuous case. This is easily

generalized to 1, 2, or 3 Cartesian dimensions, using either a multidimensional DFT,

or, as is the case for the ZEUS-3D gravity solver, repeated application of the one

dimensional DFT.

Although simple, the kernel of this type of DFT imposes periodic boundary con-

ditions on the solution for φ obtained. If zero (Dirichlet) boundary conditions are
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desired instead, a sine wave kernel can be used to create a discrete sine transform

(DST):

ĥn =
N−1∑
k=1

hk sin(πkn/N). (2.12)

Interestingly, the DST is its own inverse but for a constant, and is used in a manner

analogous to the DFT to solve Poisson’s equation.

If inhomogeneous boundary conditions are desired, the density distribution is first

modified by the boundaries needed for φ, and φ is then solved for in the same way as

the zero boundary condition case. The details of this modification and the method

used to solve Poisson’s equation are available in appendix B.

While the DFT and DST provide a straightforward way to solve Poisson’s equa-

tion, computing them directly is not efficient. To calculate the DFT requires N

multiplications for each of the N points in the transform, and so the DFT is said

to be an O(N2) algorithm. Similarly, a DST would require at least O(N(N − 1))

calculations. An algorithm known as the Fast Fourier Transform (FFT) (Cooley and

Tukey, 1965; following Danielson and Lanczos, 1942) circumvents this problem by tak-

ing advantage of a degree of freedom one has in the order in which the arithmetical

operations are made, rendering it an O(N log2 N) algorithm. Despite this significant

speed improvement, the result of the FFT is identical to that of the DFT to within

machine round off error, and hence it is the most common algorithm used to perform

the DFT. A similar O(N log2 N) Fast Sine Transform (FST) algorithm also exists;

it and the FFT algorithm used in this work can be found in Press et al. (1992).

The only downside to the use of the FFT or FST algorithms implemented is
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Figure 2.1: Counterclockwise from top: Equatorial slices through a uniform sphere
of the density, gravitation potential computed by the FST, and relative error of the
FST gravitational potential relative to the known solution The error in the solution
(∼ 0.1%) is greatest at the sharp drop in density at the sphere’s surface.

a restriction on the size of the grid used. The number of active zones (zones which

change as the calculation progresses, enclosed by boundary zones), n, in any dimension

any dimension must be 2n for the FFT (periodic boundaries), and 2n− 1 for the FST

(zero or inhomogeneous boundaries).

To test the gravity solver installed in ZEUS-3D, analytical solutions to Poisson’s

equation for a variety of density distributions are compared with those computed by

FFT and FST. The results for the FST solver with a uniform sphere are shown in

figure 2.1.
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2.3 Monitoring the Jeans Condition

For numerical purposes, the Jeans length in the form given by equation (1.6) is

typically used. Since (1.6) depends on the sound speed, the value of γ affects the

calculation of the Jeans length. For an isothermal (γ = 1) simulation, the relationship

p ∝ ρ, would cause the sound speed to be constant throughout the grid, and the Jeans

length to depend only on density. However, because the simulations performed in this

work only use adiabatic (γ = 4/3, 5/3) or approximately isothermal (γ = 1.001) values

of γ, and because the total energy equation (2.3) is solved, cs can vary from point to

point.

To determine if the Jeans condition is violated by a simulation, the maximum

Jeans numbers are calculated by the following procedure:

1. Calculate the square of the adiabatic sound speed by c2s =
γ(γ − 1)e

ρ
for every

point on the grid.

2. Calculate λJ by equation 1.6

3. Calculate Jx by equation 1.18.

4. Determine the maximum Jx on the grid.

5. Record the maximum Jx, and relevant associated quantities.

6. Advance the simulation another step and repeat.

where it should be noted that only Jx need be calculated for a Cartesian simulation

on a uniformly resolved grid where Δx = Δy = Δz. A side effect of the use of the
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total energy equation is that e, the internal energy density, is not necessarily positive

definite. Since this is non-physical, ZEUS-3D resets these points to the smallest

positive number available on the machine. This renders the sound speeds and in turn

the Jeans numbers at these locations non-physical as well. To prevent these non-

physical Jeans numbers from being reported as the maximum, any Jeans numbers

calculated in step 3 using c2s = 10−10 are set to zero.

Figure 2.2: A ZEUS-3D simulation of a collapsing core where the Jeans condition is
violated at ≈ t = 2.2

By plotting the maximum Jx against the problem time or time step, it is easy to

tell when the Jeans condition (equation 1.19) is violated, as shown in 2.2. Plots of this

type and scripts which analyze the data files are used to ensure that no simulations

which violate the Jeans condition are considered for analysis.
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2.4 Collapsing Core Model Setup

The numerical model for a molecular cloud core used is based on those used by

Boss (1993) and Truelove et al. (1998). All simulations are performed in 3-D using

Cartesian geometry on a grid with an equal number of zones (127) in each direction.

Position on the grid is measured by the perpendicular x, y, and z (referred to in

ZEUS-3D as x1, x2, and x3 respectively) axes, which all range from 0.0 − 1.0. The

equations solved are equations (2.1), (2.2), (2.3), (2.4), and (2.5).

Without any perturbation, the initial setup consists of a sphere of gas of uniform

density ρ0 = 1 and initial radius r0 = 0.25, embedded in an ambient medium with a

uniform density of ρamb = 0.01, in pressure equilibrium. To stimulate fragmentation,

an A = 0.1, m = 2 density perturbation of the form described by (1.16) is applied. A

plot produced by ZEUS-3D of a slice through the middle of the sphere and perpen-

dicular to the rotation axis (z) is shown in figure 2.3 to demonstrate the structure of

the perturbation.

The hydrodynamical boundary conditions used are outflow, that is, any material

which strikes a boundary exits the grid. This could interfere with the calculation

of the gravitational potential, but the space between the sphere and the boundary

ensures that a significant amount of mass can escape only if the core expands greatly.

The gravitational potential boundary conditions used are inhomogeneous, requir-

ing the use of the FST based Poisson solver, which restricts the number of active

zones which span the grid to 2n − 1. These boundaries are calculated analytically as

those of the potential of a uniform sphere, and remain constant throughout the simu-
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Figure 2.3: An equatorial slice of the initial density of the uniform sphere in ZEUS-3D.
The overlaid velocity vectors show the initial rotation of the sphere.

lation. Given that the sphere is initially separated from the boundaries by a distance

equal to its radius, and that the sphere collapses towards the centre and away from

the boundaries, static boundary conditions should not be unrealistic.

The energy ratio α is used to set the initial thermal energy of the sphere. The

ratio β is used to set the initial velocity of all of the points within the sphere, so as

to produce a solid body rotation. The ratio ζm is is used to set the strength of the

uniform magnetic field, which by default is aligned along the rotation axis.

The ratio of specific heats γ used remains constant throughout the simulation,

and is one of 1.001, 4/3, or 5/3. Together with the energy ratios and the alignment

of the magnetic fields, these quantities form the parameter space which is explored

in this work to examine their effects on fragmentation.

Finally, the amount of time during which the simulation is allowed to run is
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described in terms of the free fall time,

tff =

(
3π

32Gρ0

)1/2

. (2.13)

The free-fall time is the time a uniform sphere with no supporting pressure would

take to collapse to a singularity under its own gravity. For the simulations explored,

tff ≈ 2, and the simulations are allowed to evolve until a problem time of t = 8.0,

about 4 free-fall times.
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Chapter 3

Discussion of Simulations

The effect of the energy ratios α, β, and ζm and the ratio of specific heats on

the fragmentation and morphology of collapsing molecular cloud cores discussed in

§1.2 and §1.3.1 was explored by the parameter space survey shown in table 3.1. All

simulations in this survey use 127 active zones in each direction, with the numerical

setup for a perturbed uniform spherical core explained in §2.4. The presence of

fragments is evaluated using the definition of a fragment provided in §1.3.2.

Table 3.1: Parameter space explored at 1273 resolution. All combinations of the
parameters are tested, for a total of 432 simulations.

α β ζm γ
0.2 0.0 0.0 1.001
0.4 0.1 0.5 4/3
0.6 0.2 1.0 5/3
0.8 0.3 2.0
1.0 0.4
1.2 0.5

Figures 3.3 to 3.12 depict the end of all simulations with ζm = 0.0 and with a

ζm chosen to best represent results for a particular γ (otherwise identical simulations

with ζm = 0.5, 1.0, and 2.0 were qualitatively very similar) using α–β planes of the

parameter space. Each image in all of these figures depicts the density in a slice

through the middle of the grid perpendicular or parallel to the axis of rotation (z)

at the end of the simulation (problem time t = 8.0), with the parameters specified.
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Blank spaces in the plots correspond to simulations which violated the Jeans condition

(equation 1.19). All simulations exhibit 180◦ rotational symmetry because of the

m = 2 perturbation mode and the use of a Cartesian grid.

3.1 Hydrodynamical Simulations

Depicted in figures 3.1 to 3.6 are equatorial and rotation axis slices of hydrodynamical

simulations for γ = 5/3, 4/3 and 1.001 respectively.

The prevalent effect of a larger α for all simulations is the evolution of the core to

a state of lower density. An exception is seen for the (α = 0.2−1.2, β = 0.3−0.5, ζm =

0.0, γ = 4/3) region of the parameter space, displayed in the top three rows of figures

3.3 and 3.4. Here, α > 1.0 results in a condensation in the centre of the core. The

general effect of increased β is the widening of the diameter of the end state core

perpendicular to the rotation axis and a transition from an oblate spheroidal to a

disc shaped structure, sometimes exhibiting a bulge.

The structure of the core at simulation end depends greatly on the ratio of specific

heats, γ. For the γ = 5/3 case, a few different classes of shapes emerge, displayed in

figures 3.1 and 3.2. With no rotation, collapse proceeds to form an oblate spheroid

containing two denser central regions formed from the perturbation, which have larger

densities and smaller separations for lower α. Of these, the α = 0.2 simulation has

a single fragment, the α = 0.4, 0.6 simulations show two condensed fragments, and

those with α > 0.6 have two tenuous fragments. With non-zero β, the basic shape

produced is a rotating disc with embedded higher density structures. Above and
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below the disc is a bulge containing lower density material, the size of which increases

with α. The line α = −β+0.9 roughly divides two regimes of the simulation. Above it,

the simulations result in only an expanding and tenuous core where density increases

only up to a factor of ρ ≈ 4, containing either a single bar shaped fragment (β < 0.4)

or two slightly separated elongated fragments (β ≥ 0.4). On and below the line three

higher density fragments embedded in a bar structure are produced, where one is at

the centre of the core and two others located on the edges.

Figure 3.1: Equatorial slice of density at simulation end for ζm = 0.0 (hydrodynamic)
and γ = 5/3. The x and y axes are horizontal and vertical respectively. The line
α = −β + 0.9 is indicated.
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Figure 3.2: Rotation axis slice of density at simulation end ζm = 0.0 (hydrodynamic)
and γ = 5/3. The z and x axes are horizontal and vertical respectively. The line
α = −β + 0.9 is indicated.

The hydrodynamical simulation results for γ = 4/3 displayed in figures 3.3 and

3.4 are similar to the γ = 5/3 results, with the shape and maximum density of

the collapsing core varying with changes to α and β in the same way. The β = 0

simulations have little difference with the corresponding γ = 5/3 cases, except that

the dense regions are all close enough together to be considered one fragment. Once

again, the line α = −β + 0.9 roughly divides two regimes of rotating simulation
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simulations. Above the line, the same expanding behaviour as the γ = 5/3 case

occurs, and two low density fragments are produced when α ≤ 1.0. When α > 1.0,

a single central fragment is produced instead, the density of which increases with β.

On and below the line, structures containing two higher density fragments connected

by a bar of intermediate density emerge.

Figure 3.3: Equatorial slice of density at simulation end for ζm = 0.0 and γ = 4/3.

For both sets of adiabatic hydrodynamical simulations, the maximum density

is approximately constant across lines of slope
α

β
= 1. This makes sense, since the
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Figure 3.4: Rotation axis slice of density at simulation end ζm = 0.0 and γ = 4/3.

resistance of the cloud to gravitational collapse increases with a larger supply of kinetic

energy, and larger α and β both increase this either through thermal or rotational

motion of the fluid.

The shape of the end state cores for the near-isothermal γ = 1.001 simulations

differs greatly from the adiabatic simulations, but less conclusions can be drawn

because over half of the simulations fail the Jeans condition. All of the available

simulations collapse to form a disc or oblate sphere, flatter than in the adiabatic
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cases. Curiously, simulations in the upper right corners of 3.5 and 3.6 with large α

and β exhibit a low density ‘hole’ in the core, the opposite of what occurred in the

γ = 4/3 case. The relationship between maximum density and β appears to be an

increase in ρ up to a critical value of β, followed by a decrease beyond this point.

However, this is not conclusive because of the lack of lower valued α and β Jeans

compliant simulations. The simulations which evolve to the highest density are those

Figure 3.5: Equatorial slice of density at simulation end for ζm = 0.0 and γ = 1.001.

with α = 0.4, 0.6 and β = 0.4, 0.5, each containing only a single high density region.
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Those with α = 0.8, 1.0 and β = 0.2, 0.3 contain two regions of moderately high

(ρ ≈ 7) density, embedded in an S-shaped structure joining them. These regions

are not considered fragments because lower isodensity surfaces enclose both of them,

rather than each individually.

Figure 3.6: Rotation axis slice of density at simulation end ζm = 0.0 and γ = 1.001.

Evidence of fragmentation is present for some of the hydrodynamical simulations,

however, there are no high density regions of collapsed cores separated by a density

contrast greater than ≈ 4. The best cases for fragmentation for each γ are those with
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the parameters (α = 0.4, β = 0.2, γ = 4/3),(α = 0.4, β = 0.1, γ = 5/3), and (α =

0.4, β = 0.5, γ = 1.001). In general, any non-zero β simulations below the line α =

−β+0.9 for the adiabatic simulations contain multiple fragments. Parameters which

would cause the cloud to produce higher density fragments are likely in the regions

of the parameter space which are Jeans condition non-compliant at this resolution,

particularly those for the near-isothermal γ = 1.001 cases. These regions of the

parameter space might be accessed with a higher resolution survey or the adaptive

mesh refinement discussed in §1.3.2.

3.2 Magnetohydrodynamical Simulations

For the parameter space explored, simulations with the nonzero values of ζm used

were observed to have quite similar end states. Hence, figures 3.7 to 3.12 display only

one α–β parameter space slice for each value of γ. ζm = 0.5 is shown for γ = 5/3, 4/3,

while ζm = 2.0 is shown for γ = 1.001, as these slices contain the most Jeans-condition

compliant simulations.

The primary effect of the addition of a magnetic field aligned with the rotation

axis is the containment of the fluid in rotating cores which would otherwise spread

out perpendicular to the rotation axis. Increases to β result in fluid escaping from

the core only along 4 tenuous arm structures, an example of which can be seen in the

top row of figure 3.7. The number of arms is likely a result of the m = 2 perturbation

mode used, although this has not been confirmed by testing with other perturbation

modes. Adding magnetic fields provides so much support for the adiabatic cores that
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the density increases by only up to a factor of 3.4 for γ = 5/3, and 5.3 for γ = 4/3.

The result of further increasing ζm by a factor of two for any given MHD simulation is

only a decrease in the maximum density of less than 10%, with any structure largely

appearing the same.

Figure 3.7: Equatorial slice of density at simulation end for ζm = 0.5 and γ = 5/3.
The magnetic field is parallel to the rotation axis, which points in the positive z
direction.

Like the hydrodynamical simulations, the value of γ plays an important role in

the shape of the end state of the core, with the adiabatic simulations exhibiting some
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Figure 3.8: Rotation axis slice of density at simulation end for ζm = 0.5 and γ = 5/3.
The magnetic field is parallel to the rotation axis, which points in the positive z
direction.

similarity. The γ = 5/3 simulations shown in figures 3.7 and 3.8 do not evolve to

have much structure in the equatorial plane. Simulations with no rotation form two

fragments which form closer together and increase in density with lower α. Simula-

tions with rotation have only a low density (ρ ∼ 3) S-shaped fragment containing two

higher density regions for α < 0.8. Values of α greater than this result in a nearly

homogeneous core with two denser patches left from the original perturbation. The
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Figure 3.9: Equatorial slice of density at simulation end for ζm = 0.5 and γ = 4/3.
The line α = −1

2
β + 0.65 is indicated.

end state of the simulations along the rotation axis is shown in figure 3.8. For simu-

lations without rotation, shown along the bottom row of figure 3.8, pointed bulges of

low density material form along what would be the rotation axis, increasing in size for

lower values of α. For non-zero β, the shape of the collapsed core is a lenticular disc

containing the densest material, featuring low density “rims” of material extending

downward and upward.
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Figure 3.10: Rotation axis slice of density at simulation end for ζm = 0.5 and γ = 4/3.
The line α = −1

2
β + 0.65 is indicated.

For the γ = 4/3 group, simulations with β = 0 are similar in the equatorial

plane to those with γ = 5/3, except that the two higher density regions form close

enough together to be considered one fragment, the same relationship seen in the

hydrodynamical adiabatic rotationless simulations. 3 different classes of shape emerge

for rotating cores. Simulations on the line α = −1
2
β + 0.65 in figure 3.9 have denser

regions in an S-shape containing two (ρ ∼ 4) fragments and separated by a density
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contrast of up to ∼ 2. Simulations below this line produce an S-shaped bar containing

Figure 3.11: Equatorial slice of density at simulation end for ζm = 2.0 and γ = 1.001.

one fragment, while those above have a shape reminiscent of the original perturbation,

but distorted by rotation. In the plane of the rotation axis, the general shape of the

core end state and behaviour with changes to α and β is similar to the γ = 5/3 case.

The near-isothermal MHD simulations displayed in figures 3.11 and 3.12 are much

less affected by changes to β than other sets of simulations. Along columns of in-

creasing β, simulations appear quite similar, apart from an elongation of the central
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condensation and a smoothing out of the distribution of dense material. For simula-

tions with α ≤ 0.6, a flattened disc is formed, while for those with α > 0.6 a bulge of

fluid away from the disc results, which increases in size with larger β.

Figure 3.12: Rotation axis slice of density at simulation end for ζm = 2.0 and γ =
1.001.

In general, significant support against collapse is provided by the magnetic fields,

with all MHD simulations evolving to higher densities than their hydrodynamical

counterparts and exhibiting more homogeneous structure. Less evidence of fragmen-
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tation is also present in the MHD simulations, indicating that magnetic fields also

tend to suppress fragmentation. The strongest cases for fragmentation for the adia-

batic MHD simulations are (α = 0.8, β = 0.1, ζm = 0.5, γ = 5/3) and (α = 0.6, β =

0.1, ζm = 0.5, γ = 4/3), which both contain two fragments of maximum density

ρ ∼ 3.4 and ρ ∼ 5.3 respectively. There are no MHD simulations for γ = 1.001 which

convincingly form multiple fragments, but (α = 0.6, β = 0.5, ζm = 2.0, γ = 1.001)

comes closest with the formation of a single bar shaped fragment with a maximum

density of ρ ∼ 6.
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Chapter 4

Conclusion

In the parameter space explored, the general effect of increasing the α, β, and ζm

parameters was found to be the evolution of the perturbed spherical core to a state

of lower density and larger size, demonstrating the support that increased thermal,

rotational, and magnetic energy provides against gravitational collapse. The general

shape of the collapsed core at simulation end was an oblate spheroid for β = 0 sim-

ulations, and a rotating disc sometimes exhibiting a bulge for β �= 0 simulations.

Increasing α results in a larger and lower density end state of the core, with the size

increase reflected in either the radius of the oblate spheroid for β = 0 simulations, or

the bulge and disc thickness for β �= 0 simulations. Broadly, the effect of increasing

β is an increase in radius of the disc and elongation of any fragments present. The

addition of a rotation axis aligned magnetic field primarily homogenizes the density

distribution of the collapsed core, contains fluid inside the disc (if present) and pre-

vents expansion of the core perpendicular to field lines. Increasing β in simulations

with a magnetic field results in the escape of a small amount of fluid along 4 trailing

arm structures.

The effects of different values of γ are dramatic, and can be generalized into two

cases: the adiabatic γ = 5/3, 4/3 and the near-isothermal γ = 1.001 simulations. The

β �= 0 γ = 5/3 hydrodynamical simulations are prone to producing 3 fragments for
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simulations roughly on and below the line α = −β + 0.9, and 2 fragments for the

β = 0 hydrodynamical simulations. The γ = 4/3 hydrodynamical simulations behave

in essentially the same way, but generally evolve to a higher density and produce

two fragments on and below the α = −β + 0.9 line, rather than three, and a single

fragment for β = 0 simulations. The adiabatic hydrodynamical simulations evolve

to approximately constant maximum densities across lines of
α

β
= 1, indicating the

equivalence of thermal and rotational energy in providing support against the collapse

in this parameter space region. MHD simulations with γ = 5/3 evolve to homogenized

and lower density states than their hydrodynamical counterparts, producing an S-

shaped bar for β �= 0 simulations with α < 0.8 and two tenuous fragments for α/ge0.8.

MHD simulations with γ = 4/3 and β �= 0 are more complicated, evolving to produce

an S-shaped bar containging two fragments on the line α = −1
2
β + 0.65, a single bar

shaped fragment for those below, and only a distortion of the original perturbation

for those above. Near-isothermal simulations are quite different in character from the

adiabtic simulations. In the hydrodynamical β �= 0 case, the cores collapse to form

a much thinner disc than in the adiabatic simulations, containing a single fragment

for some simulations. A general trend could not be extracted because of the large

number of simulations which failed the Jeans condition. the MHD near-isothermal

simulations were much less prone to failing the Jeans condition, but produce only

a single central condensation, indicating that fragmentation does not occur in this

region of the parameter space. The addition of the field also nearly removes the

dependence of the collapsed core morphology on β; simulations varying in β are nearly

the same but for a slight elongation of the central condensation and smoothing of the
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density distribution.

Although some conclusions were reached without the use of AMR, this technique

would be incredibly useful for performing parameter space surveys for lower values of

α and β, particularly in the near-isothermal hydrodynamical cases where the majority

of the simulations failed the Jeans condition. Using AMR, the collapse of molecular

cloud cores could be simulated in a physically realistic way to much higher densities,

allowing further examination of process of multiple star system formation.
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Appendix A

Derivation of the Magnetic Critical
Mass

Following the derivation by Krumholz (2011), the magnetic critical mass for a uniform

sphere penetrated by a uniform magnetic field is derived using the virial theorem

modified to include magnetic energy (1.11), with the kinetic energy contribution

assumed to be negligible:

〈Emag.〉+ 〈U〉 = 0. (A.1)

Substituting Emag. (1.12) and U with equation (1.3) and solving for the critical mag-

netic mass MB:

−3GM2
B

5R
+

2Φ2
B

μ0πR
= 0 (A.2)

M2
B =

(
2Φ2

B

μ0πR

)(
5

3G

)
(A.3)

MB =

(
10Φ2

B

3μ0π

)1/2

(A.4)
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Appendix B

Solving Poisson’s equation in 3
Cartesian Dimensions

The following ways of solving Poisson’s equation in ZEUS-3D are based on a methods

detailed by Press et al. (1992).

Using the Laplacian in Cartesian coordinates, Poisson’s equation is written as:

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= ρ(x, y, z). (B.1)

Replacing the second partial derivatives with 2nd order centred differences:

φj+1,k,l − 2φj,k,l + φj−1,k,l

Δ2
x

+
φj,k+1,l − 2φj,k,l + φj,k−1,l

Δ2
y

+

φj,k,l+1 − 2φj,k,l + φj,k,l−1

Δ2
z

= ρj,k,l,

(B.2)

where

Δx,Δy,Δz, are the dimensions of a zone;

j = 0, 1, . . . , J xj = x0 + jΔx;

k = 0, 1, . . . , K yk = y0 + kΔy;

l = 0, 1, . . . , L zl = z0 + lΔz;

φ(xj, yk, zl) ≡ φj,k,l;
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ρ(xj, yk, zl) ≡ ρj,k,l.

For convenience, multiply (B.2) by (ΔxΔyΔz)
2 to arrive at:

(ΔyΔz)
2(φj+1,k,l − 2φj,k,l + φj−1,k,l) + (ΔxΔz)

2(φj,k+1,l − 2φj,k,l + φj,k−1,l)+

(ΔxΔy)
2(φj,k,l+1 − 2φj,k,l + φj,k,l−1) = (ΔxΔyΔz)

2ρj,k,l.

(B.3)

B.1 Zero and Inhomogeneous Boundary

Conditions

For all simulations in this thesis, inhomogeneous boundary conditions are used. In

3 Cartesian dimensions, the inverse (i.e., including normalization) DST for some

discretized function f is:

fj,k,l =
8

JKL

J−1∑
m=1

K−1∑
n=1

L−1∑
o=1

f̂m,n,oSj,k,l,m,n,o,

Sj,k,l,m,n,o ≡ sin

(
πjm

J

)
sin

(
πkn

K

)
sin

(
πlo

L

)
.

(B.4)



Appendix B. Solving Poisson’s equation in 3 Cartesian Dimensions 53

Substituting the DST for φj,k,l and ρj,k,l into (B.3) and dividing out the normalization:

(ΔyΔz)
2

J−1∑
m=1

K−1∑
n=1

L−1∑
o=1

φm,n,o(Sj+1,k,l,m,n,o − 2Sj,k,l,m,n,o + Sj−1,k,l,m,n,o)+

(ΔxΔz)
2

J−1∑
m=1

K−1∑
n=1

L−1∑
o=1

φm,n,o(Sj,k+1,l,m,n,o − 2Sj,k,l,m,n,o + Sj,k−1,l,m,n,o)+

(ΔxΔy)
2

J−1∑
m=1

K−1∑
n=1

L−1∑
o=1

φm,n,o(Sj,k,l+1,m,n,o − 2Sj,k,l,m,n,o + Sj,k,l−1,m,n,o) =

(ΔxΔyΔz)
2

J−1∑
m=1

K−1∑
n=1

L−1∑
o=1

ρ̂m,n,oSj,k,l,m,n,o.

(B.5)

By virtue of the linear independence of the functions in the sums in (B.5) , a similar

expression which holds for any m, n, or o can be created:

φ̂m,n,o

{
(ΔyΔz)

2 sin

(
πkn

K

)
sin

(
πlo

L

)[
sin

(
π(j + 1)m

J

)
− 2 sin

(
πjm

J

)
+

sin

(
π(j − 1)m

J

)]
+

(ΔxΔz)
2 sin

(
πjm

J

)
sin

(
πlo

L

)[
sin

(
π(k + 1)n

K

)
− 2 sin

(
πkn

K

)
+

sin

(
π(k − 1)n

K

)]
+

(ΔxΔy)
2 sin

(
πjm

J

)
sin

(
πkn

K

)[
sin

(
π(l + 1)o

L

)
− 2 sin

(
πlo

L

)
+

sin

(
π(l − 1)o

L

)]}
=

(ΔxΔyΔz)
2 sin

(
πjm

J

)
sin

(
πkn

K

)
sin

(
πlo

L

)
ρ̂m,n,o,

(B.6)

where common terms in Sj,k,l,m,n,o have been factored out. The terms in square

brackets can be further simplified with the identity sin(A + B) = sin(A) cos(B) +
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cos(A) sin(B), e.g.:

sin

(
π(j + 1)m

J

)
− 2 sin

(
πjm

J

)
+ sin

(
π(j − 1)m

J

)
=

sin

(
πjm

J

)
cos

(πm
J

)
+ cos

(
πjm

J

)
sin

(πm
J

)
− 2 sin

(
πjm

J

)
+

sin

(
πjm

J

)
cos

(
−πm

J

)
+ cos

(
πjm

J

)
sin

(
−πm

J

)
=

2 sin

(
πjm

J

)
cos

(πm
J

)
− 2 sin

(
πjm

J

)
=

2 sin

(
πjm

J

)(
cos

(πm
J

)
− 1

)
.

(B.7)

Performing the simplification in (B.7) for all terms in square brackets and then di-

viding out the sin

(
πjm

J

)
sin

(
πkn

K

)
sin

(
πlo

L

)
factor leads to:

φ̂m,n,o

{
2(ΔyΔz)

2

[(
cos

(πm
J

)
− 1

)]
+ 2(ΔxΔz)

2

[(
cos

(πn
K

)
− 1

)]
+

2(ΔxΔy)
2

[(
cos

(πo
L

)
− 1

)]
+

}
= (ΔxΔyΔz)

2ρ̂m,n,o,

(B.8)

which can be solved for φ̂m,n,o to arrive at the algebra used to calculate the potential

in Fourier space:

φ̂m,n,o = (ΔxΔyΔz)
2ρ̂m,n,o

{
2(ΔyΔz)

2

[(
cos

(πm
J

)
− 1

)]
+

2(ΔxΔz)
2

[(
cos

(πn
K

)
− 1

)]
+ 2(ΔxΔy)

2

[(
cos

(πo
L

)
− 1

)]
+

}−1

.

(B.9)

The Poisson’s equation solver implemented in ZEUS-3D uses repeated application
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of a 1-D FST routine by Press et al. (1992) to compute ρ̂ with:

f̂m,n,o =
8

JKL

J−1∑
j=1

K−1∑
k=1

L−1∑
l=1

fj,k,lSj,k,l,m,n,o, (B.10)

then solves for φ̂ using (B.9), and then computes φ using (B.4) for every non-boundary

point on the grid. This procedure is valid for zero boundary conditions for φ. If inho-

mogeneous boundaries are desired, ρ can be modified to incorporate them. Consider

(B.3) evaluated at j = J − 1:

(ΔyΔz)
2(φJ,k,l − 2φJ−1,k,l + φJ−2,k,l) + (ΔxΔz)

2(φJ−1,k+1,l − 2φJ−1,k,l + φJ−1,k−1,l)+

(ΔxΔy)
2(φJ−1,k,l+1 − 2φJ−1,k,l + φJ−1,k,l−1) = (ΔxΔyΔz)

2ρJ−1,k,l.

(B.11)

If the φJ,k,l boundary term containing the boundary conditions at the J face of the grid

(which would otherwise be zero) is brought over to the right hand side, solving (B.11)

is identical to the case of zero boundary conditions, but for a density distribution

modified by the subtraction of the φJ,k,l boundary from the J − 1 slice of ρj,k,l. Thus,

to include an inhomogeneous J boundary, the replacement:

ρJ−1,k,l → ρJ−1,k,l − φJ,k,l

Δ2
x

, (B.12)

is used. Analogous modifications are made for the 5 other boundary faces of the grid.
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B.2 Periodic Boundary Conditions

Although not used in this thesis, the routines developed in ZEUS-3D are also capable

of solving Poisson’s equation with periodic boundary conditions, which are a common

choice for astrophysical simulations. In 3 Cartesian dimensions, the DFT and its

inverse are respectively:

f̂m,n,o =
J−1∑
j=0

K−1∑
k=0

L−1∑
l=0

fj,k,le
2πijm/Je2πikn/Ke2πilo/L, (B.13)

fj,k,l =
1

JKL

J−1∑
m=0

K−1∑
n=0

L−1∑
o=0

f̂m,n,oe
−2πijm/Je−2πikn/Ke−2πilo/L. (B.14)

When equation (B.14) is substituted into (B.3) and manipulated in a manner similar

to the DST case, the Fourier space algebra used for calculating the potential with

periodic boundary conditions can be found:

φ̂m,n,o = (ΔxΔyΔz)
2ρ̂m,n,o

{
2(ΔyΔz)

2

[(
cos

(
2πm

J

)
− 1

)]
+

2(ΔxΔz)
2

[(
cos

(
2πn

K

)
− 1

)]
+ 2(ΔxΔy)

2

[(
cos

(
2πo

L

)
− 1

)]
+

}−1

.

(B.15)

It should be noted that a divergent point appears for m = n = o = 0, which is set

to zero in ZEUS-3D. Other than this, the process for computing φ̂ is then the same

as the zero boundary condition case, but with equations (B.10), (B.9), and (B.4)

replaced by equations (B.13), (B.15), and (B.14) respectively.
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