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Changes in root-associated fungal communities during fine root decomposition in Abies 

balsamea and Picea rubens  

by  
Logan Gray 

 

Abstract 

Fine roots are ephemeral roots < 2 mm in diameter that are frequently replaced during 
fine root turnover. As fine roots harbour symbiotic and commensal fungi, their trophic 
strategy may shift upon fine root senescence and decomposition. This study examined 
fungal communities in Abies balsamea and Picea rubens fine roots during 
decomposition. Observations of ectomycorrhizae showed that Cenococcum geophilum 
was recalcitrant, showing no appreciable decomposition after 16 months. Hyaline 
ectomycorrhizae were least recalcitrant and were not detected beyond four months. 
Differences between ectomycorrhizal recalcitrance may subsequently affect fine root 
decomposition. Molecular analysis showed: an ectomycorrhizal community becoming 
dominated by Piloderma; an increase in helotialian endophytes; and a relatively limited 
presence of saprotrophs. The most common saprotroph detected increased in concert with 
the endophytes. Increases in endophytic abundance suggests that they may be involved in 
the decomposition of fine roots in forest soils.  

April 26th, 2016  



iii 
 

Table of Contents                                                                                                   Page 

Abstract..........................................................................................................................ii 

Table of Contents..........................................................................................................iii  

List of Figures..............................................................................................................vii 

List of Tables................................................................................................................ix 

Acknowledgements.......................................................................................................xi 

CHAPTER 1: Introduction ...........................................................................................1 

References ..........................................................................................................8 

CHAPTER 2: Decomposition of Ectomycorrhizal Fine Roots of Abies balsamea and 

Picea rubens over a 16 Month Period in The Acadian Forest .....................................14 

Abstract ............................................................................................................14 

Introduction ......................................................................................................14 

Materials and Methods .....................................................................................20 

Field Sites .............................................................................................20 

Seedling Excavation .............................................................................20 

Edaphic Measurements ........................................................................21 

Tea Bag Index ......................................................................................21 

Classification of Ectomycorrhizae .......................................................23 

Statistical Analysis of Mantle Data ......................................................24 

Measurement of Primary Fine Root Loss ............................................24 

  



iv 
 

Results ..............................................................................................................25 

Edaphic Measurements ........................................................................25 

Primary Fine Root Loss .......................................................................25 

Mantle Integrity ....................................................................................26 

Discussion ........................................................................................................26 

Edaphic measurements .........................................................................26 

Morphological observations of ECM ...................................................27 

Melanised mantles – Cenococcum geophilum .....................................27 

Non-melanised mantles with recalcitrant secondary metabolites – 

Russulaceae & Piloderma....................................................................29 

Hyaline ECM – Cortinarius, Hebeloma, and Amanita ........................31 

Conclusion ........................................................................................................32 

Future Research ...................................................................................33 

References ........................................................................................................44 

CHAPTER 3: Molecular Characterisation of Fine Root Associated Fungal Communities 

during the Early Stages of Decomposition in the Acadian Forest ...............................60 

Abstract ............................................................................................................60 

Introduction ......................................................................................................60 

Mycorrhizal Fungi ...............................................................................61 

Endophytic Fungi .................................................................................62 

Saprotrophic Fungi ..............................................................................63 

Pathogenic Fungi .................................................................................64 



v 
 

Fine Root Decomposition .....................................................................65 

Materials and Methods .....................................................................................66 

Sample Collection ................................................................................66 

DNA Extraction ....................................................................................66 

Polymerase Chain Reaction (PCR) ......................................................68 

Molecular Cloning ...............................................................................69 

Colony PCR ..........................................................................................69 

ITS Sequence Analysis ..........................................................................70 

Sample Diversity, Analysis of Similarity, and Similarity Percentages 70 

Results ..............................................................................................................71 

DNA Sequencing and OTU Assignment..............................................71 

Redundancy Analysis, Analysis of Similarity, and Similarity of 

Percentages..........................................................................................71 

Ectomycorrhizal Fungi .........................................................................72 

Endophytic Fungi .................................................................................72 

Saprotrophic Fungi ..............................................................................73 

Discussion ........................................................................................................73 

Ectomycorrhizal fungi ..........................................................................73 

Fungal root endophytes ........................................................................77 

Saprotrophs ..........................................................................................80 

Conclusion ........................................................................................................82 

Future Research ...................................................................................83 

References ........................................................................................................96 



vi 
 

CHAPTER 4: Research Synthesis and Concluding Remarks ..................................117 

References ......................................................................................................121 

APPENDIX 1: Supplemental Materials for Chapter 2............................................122 

APPENDIX 2: Supplemental Materials for Chapter 3............................................139 

  



 
 

List of Figures                                                                                                              Page 
 

CHAPTER 1: Introduction 

Figure 1. Fine roots from Abies balsamea with various root orders highlighted. ...............6 

Figure 2. Melanised extraradical hyphae growing from an ectomycorrhiza formed by 

an unidentified ectomycorrhizal fungus. ..............................................................................7 

 

CHAPTER 2: Decomposition of Ectomycorrhizal Fine Roots of Abies balsamea and 
Picea rubens over a 16 Month Period in The Acadian Forest 

Figure 1. Location of study sites on mainland Nova Scotia: stars = site location; dark 

grey = Kejimkujik National Park; white circle = Halifax. .................................................34 

Figure 2. Topography of site at Annapolis Road: filled triangles = plots; contours in 

meters. ................................................................................................................................35 

Figure 3. Topography of site at McGowan Lake: filled triangles = plots; dotted grey = 

bog; contours in meters. .....................................................................................................36 

Figure 4. Edaphic measurements by plot: a) soil temperature; b) soil pH; error-bars = 

95% confidence intervals. ..................................................................................................37 

Figure 5. Edaphic measurements by plot: a) soil moisture; b) tea bag index; error-bars = 

95% confidence intervals. ..................................................................................................38 

Figure 6. Linear regression of tea bag index against soil moisture. ..................................39 

Figure 7. Primary fine root loss in treatment seedlings of A. balsamea and P. rubens; 

error-bars = SE. ..................................................................................................................40 

Figure 8. Mean mantle ranking for mantle categories over 14 months; error bars 

represent 95% confidence intervals. ..................................................................................41 

Figure 9. (a) Melanised ectomycorrhiza of C. geophilum; (b) non-melanised hyphae of 

an unidentified hyaline ectomycorrhiza. ............................................................................42 

 

 

 

 



viii 
 

CHAPTER 3: Molecular Characterisation of Fine Root Associated Fungal Communities 
during the Early Stages of Decomposition in the Acadian Forest 

Figure 1. Proportion of OTUs made up by the different functional groups of root 
associated fungi up to 16 months post-treatment...............................................................86 

Figure 2. Ectomycorrhizal community (proportion of OTUs) in pre-treatment and 16 
month post-treatment seedlings.........................................................................................87 

Figure 3. Endophytic community (proportion of OTUs) in post-treatment 
seedlings.............................................................................................................................88 

Figure 4. Saprotrophic community (proportion of OTUs) in post-treatment 
seedlings.............................................................................................................................89 

Figure 5. Redundancy analysis (RDA) for treatment seedlings from both A. balsamea 
and P. rubens across all times. Ellipses represent 95% confidence intervals around 
centroid. Results based on 9,999 permutations..................................................................90 
 

APPENDIX 1: Supplemental Materials for CHAPTER 2 

Figure 1. Mean soil temperature for Annapolis Road (AR) and McGowan Lake (ML). 
Error bars represent 95% confidence interval..................................................................123 
Figure 2. Mean soil acidity for Annapolis Road (AR) and McGowan Lake (ML): error-
bars represent 95% confidence intervals..........................................................................124 
Figure 3. Mean soil moisture for Annapolis Road (AR) and McGowan Lake (ML): error-
bars represent 95% confidence intervals..........................................................................125 
Figure 4. 95% family wise confidence levels for pH ~ plot at Annapolis Road (1, 2, 3) 
and McGowan Lake (4, 5, 6)...........................................................................................126 
Figure 5. 95% family wise confidence levels for soil moisture | plot at Annapolis Road 
(1, 2, 3) and McGowan Lake (4, 5, 6)..............................................................................127 
Figure 6. 95% family wise confidence levels for TBI ~ plot at Annapolis Road (1, 2, 3) 
and McGowan Lake (4, 5, 6)...........................................................................................128 
Figure 7. Primary fine root loss in control and treatment seedlings of A. balsamea and P. 
rubens at Annapolis Road (AR) and McGowan Lake (ML): error-bars = SE................129 
Figure 8. Seedling age for A. balsamea and P. rubens at each site: error-bars represent 
95% confidence intervals.................................................................................................130 

APPENDIX 2 – Supplemental Materials for CHAPTER 3 

Figure 1. Proportion of the fungal community made up by the most common 
ectomycorrhizal genera in treatment seedlings................................................................140 
  



ix 
 

List of Tables                                                                                                                Page 

CHAPTER 2: Decomposition of Ectomycorrhizal Fine Roots of Abies balsamea and 
Picea rubens over a 16 Month Period in The Acadian Forest 

Table 1. Summary of edaphic measurements for plots (± SE) for plots at Annapolis Road 
(AR) and McGowan Lake (ML)........................................................................................43 

Table 2. Mantle observations from A. balsamea and P. rubens seedlings at Annapolis 
Road (AR) and McGowan Lake (ML)...............................................................................43 

Table 3. Proportional odds calculated using ordinal-logit model.....................................43 

Table 4. Pair-wise comparison of seedling age of A. balsamea and P. rubens across 
plots....................................................................................................................................43 

CHAPTER 3: Molecular Characterisation of Fine Root Associated Fungal Communities 
during the Early Stages of Decomposition in the Acadian Forest 

Table 1. List of literature supporting categorization of OTUs into functional 
groups.................................................................................................................................91 

Table 2. OTUs from control and treatment seedlings across all time intervals for A. 
balsamea and P. rubens.....................................................................................................93 

Table 3. SIMPER scores for OTU similarity between A. balsamea and P. rubens..........94 

Table 4. SIMPER scores for dissimilarity.........................................................................95 

APPENDIX 1 – Supplemental Materials for CHAPTER 2 

Table 1. Edaphic measurements for Annapolis Road Plot 1...........................................131 

Table 2. Edaphic measurements for Annapolis Road Plot 2...........................................132 

Table 3. Edaphic measurements for Annapolis Road Plot 3...........................................133 

Table 4. Edaphic measurements for McGowan Lake Plot 1...........................................134 

Table 5. Edaphic measurements for McGowan Lake Plot 2...........................................135 

Table 6. Edaphic measurements for McGowan Lake Plot 3...........................................136 

Table 7. Initial and final mass of oven dried green and rooibos teas (without bag) after 
approximately 90 days post burial...................................................................................137 

Table 8. Descriptions of plots.........................................................................................138 



x 
 

APPENDIX 2 – Supplemental Materials for CHAPTER 3 

Table 1. Collection dates and months post treatment for time intervals. Underlined dates 
denote time intervals used for metagenomic analysis, dates with asterisks were used for 
morphological data...........................................................................................................141 

Table 2. OTUs assigned to sequences from primary fine roots of A. balsamea from 
Annapolis Road and McGowan Lake. Numbers in parenthesis indicate abundance of the 
OTU in each sample.........................................................................................................142 

Table 3. OTUs assigned to sequences from primary fine roots of P. rubens from 
Annapolis Road and McGowan Lake at various time intervals. Numbers in parenthesis 
indicate abundance of the OTU in each sample...............................................................143 

Table 4. OTUs assigned to sequences from primary fine roots of A. balsamea and P. 
rubens from Annapolis Road and McGowan Lake at Time Interval 0 (Controls). Number 
in parenthesis indicates the abundance of the OTU in each sample................................144 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

Acknowledgements 

First and foremost I’d like to thank Dr. Kernaghan for the time, resources, and 
effort he put into this research; without his guidance, training, and patience, this would 
not have been possible. I’m also indebted to Dr. Dong and Dr. Campbell for their 
constructive comments and input on my project over these past years as well as to Dr. 
Walker for her expert opinion on my thesis and its contents. I’d like to thank; Michael 
Mayerhofer, for showing me the ropes at ARSL, sharing his considerable knowledge of 
statistics and bioinformatics, and our discussions regarding Vaporwave, desert music, and 
prizza; Laura Johnson and Steph Beland, for letting me hang out with the cool kids; 
Amanda Griffin, for her assistance in gathering Edaphic measurements from my miasmic 
sites, her continuous upkeep of laboratory materials, and refreshing curiosity about 
lichens; Dan Noye, for the use of his 4-wheel drive, time, enthusiasm, and canine side-
kick (“Ruby”) during visits to my sites during a greasy weekend in November; and 
finally, Emily Walker, who has put up with my constant ditch-picking, stump-searching, 
and trespassing to collect fungi on our many hikes and strolls.   



 

1 
 

CHAPTER 1 

Introduction 

Although the above-ground sources of plant litter are more apparent, below-

ground litter production often matches (Raich & Schlesinger 1992; Xia et al. 2015) and 

may surpass (Grier et al. 1981) above-ground sources. Below-ground litter is comprised 

largely of discarded fine roots, which are defined as any roots less than two millimetres in 

diameter (Goebel et al. 2011; Lukac 2012). Fine roots are excised into soil during fine 

root turnover, the annual dieback and growth of fine roots in order to maintain optimal 

water and nutrient absorption (Lukac 2012). Fine root turnover is fastest in the primary 

fine roots (Goebel et al. 2011) which are often colonised by mutualistic and commensal 

fungi (Figure 1). Fine root turnover is estimated to account for one third of global 

terrestrial net primary productivity (Vogt et al. 1986; Jackson et al. 1997) and for 15% of 

total forest biomass production (Hobbie et al. 2006).  

Fine roots comprise a larger portion of soil organic matter (SOM) than other 

forms of plant litter (McClaugherty et al. 1982; Tisdal & Oades 1982; Koide & Malcolm 

2009; Koide 2011; Lukac 2012; Xia et al. 2015). SOM is estimated to represent two to 

three times as much organic matter than terrestrial vegetation (Koide et al. 2009) and 

represents more carbon than biotic and atmospheric pools combined (Lal 2004; Davidson 

& Jannsens 2006). In temperate forests, fine root litter was found to last one-third longer 

(Harmon et al. 2009; Xia et al. 2015) and retain one-third more carbon (Bird & Torn 

2006; Bird et al. 2008) than other forms of litter. The difference in decomposition rate 

between root and above-ground litter is driven by biochemistry (Taylor et al. 1991; 
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Abiven et al. 2005; Bird et al. 2008; Xia et al. 2015). The acid-insoluble-fraction (e.g. 

lignin, tannins, suberins) of fine root litter and leaf litter was found to be 45% and 15%, 

respectively, with the tannin content at 14% and 6%, respectfully. When fine root litter 

enters the soil, early saprotrophic communities digest labile compounds, leaving the 

recalcitrant compounds for successional groups (Eklund & Gyllenberg 1974; Boddy & 

Watkinson 1994; Torres 2005). The speed at which these recalcitrant compounds degrade 

limits how long carbon is sequestered in these soils.  

Many fungi have the enzymatic ability to decompose plant cell wall components, 

a property that makes them essential in decomposition. Fungi release digestive enzymes 

externally which depolymerise organic macromolecules, resulting in monomeric 

compounds that are easily absorbed and used in various metabolic processes (Sinsabaugh 

1992). However, extracellular digestion is inefficient; some of the monomers “leak” into 

the soil environment and become utilised by other organisms. The ability to liberate 

sequestered nutrients makes fungi (and other saprotrophs) integral components of nutrient 

and carbon cycling (Bruns et al. 2013).  

Specialized enzyme production represents a high energy cost, so many 

saprotrophs specialise in digesting particular substrates (Hanson et al. 2008; McGuire et 

al. 2010). Therefore, decomposition can be understood as a property of the saprotrophic 

community and the enzymes they excrete (Marsden & Gray 1986; Saddler 1986; Kirk & 

Farrell 1987). Although many saprotrophic organisms are capable of digesting the 

structural carbohydrates of the plant cell wall, fungi are unique as they are able to entirely 

decompose lignin (de Boer et al. 2005; Hattenschwiller et al. 2005), a recalcitrant 



 

3 
 

structural compound made of non-repeating, phenolic rings (Kirk & Farrell 1987). In the 

plant cell wall, cellulose microfibrils are interspersed with lignin, which acts as a physical 

barrier to microbes without the ability to digest lignin (Blanchette 1991). Fungi create 

multicellular networks of hyphae (mycelium) that infiltrate lignin-containing substrates 

through the secretion of non-specific oxidases. These extracellular enzymes unbind and 

modify lignin (Blanchette 1991; de Boer et al. 2005) and degrade the substrate into 

smaller portions. Such substrate transformation exposes more surface area to bacteria and 

other saprotrophs which can begin to digest the structural carbohydrates.  

Not all fungi are saprotrophic; many fungi enter symbiotic relationships with 

plants through their primary fine roots.  For example, ectomycorrhizal (ECM) fungi are 

symbionts that have evolved mutualistic partnerships with the fine roots of plants, 

especially trees (Fogel & Hunt 1983). Fine root and fungal tissues combine at the cellular 

level to create the mycorrhiza, a hybrid structure which acts as the interface for metabolic 

exchange between the two organisms (Smith & Read 2008). Mycorrhizal relationships 

are a crucial component in optimal tree growth with as much as 30% of photosynthate 

being translocated below-ground into root-associated fungal biomass (Hobbie 2006). The 

extramatrical hyphae of ECM fungi (Figure 2) have a high surface area to volume ratio, 

granting them access to soil nutrients and water that is unachievable by root hairs. In 

return for increased access to these resources, trees translocate sugars to the ECM fungi. 

Some fungi live commensally in root tissues without apparent detriment to plant health 

(Schulz & Boyle 2005, 2006; Mayerhofer et al. 2013). These fungal endophytes inhabit 

much of the root system but are concentrated in the fine roots (Jumpponen & Trappe 
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1998; Grünig et al. 2008; Wagg et al. 2008). These cryptic fungi are difficult to identify 

and modern molecular techniques will hopefully shed more light on their natural history. 

As expected, relationships that benefit fungi at the expense of plant health also exist. 

Pathogenic fungi use specialized hyphae to penetrate the root epidermis (Perfect & Green 

2001), colonising the root cortex and hydrolyzing plant cells for nutrition (Raajimakers et 

al. 2009).  

 Although these categories are useful conceptually, they are not discrete and could 

be better understood as occurring on a biotrophic-saprotrophic continuum (Shultz & 

Boyle 2005), as some fungi may be triggered by environmental cues to become more 

saprotrophic (Shultz & Boyle 2006). Little is understood regarding how mutualistic and 

commensal fungi respond to tissue senescence; if these fungi have the ability to change 

trophic strategy, the residence time of fine root litter (and SOM) in forest soils could be 

affected. If so, a biotic factor such as fungal succession could be integrated into 

decomposition models which contain mostly abiotic factors (Kirschbaum 1995; Hendrick 

& Pregitzer 1997; Solly et al. 2014). 

There are contrasting reports in the literature as to whether ECM colonisation 

increases or decreases the rate of fine root decomposition (Langley & Hungate 2003; 

Langley et al. 2006; Koide et al. 2011). This is unsurprising as the recalcitrance of ECM 

(Koide & Malcolm 2009; Koide et al. 2011) and their enzymatic capabilities can vary 

significantly (see Chapter 3). These differences may influence the decomposition rate of 

fine root litter. The role of endophytic fungi in fine root decomposition is even less 

understood. The vague definition of what an endophyte is contributes to this confusion 
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(Chapter 3). Additionally, the cryptic nature of many endophytes made them difficult to 

study prior to modern molecular techniques and research into their ecological function 

has started only relatively recently.  

This study was designed to analyse how fungal communities respond to the 

senescence of fine root tissue. The fine root systems of Abies balsamea (balsam fir) and 

Picea rubens (red spruce) were chosen for study as these species comprise large portions 

of coniferous dominated forests in the maritime provinces of Canada. Seedlings of both 

species were killed and their fine root systems were analysed over a 16 month period. 

The second chapter of this thesis examines the relative recalcitrance of some common 

ECM genera as they decompose as well as determining how quickly primary fine roots 

are lost from root systems during fine root decomposition. The third chapter describes the 

molecular results of fungal community succession during fine root senescence and 

decomposition. In the fourth and final chapter, the observations from the previous 

chapters are synthesised to draw conclusions regarding how the fungal response to fine 

root senescence may influence decomposition in forest soils.  
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Figure 1. Fine roots from Abies balsamea with various root orders highlighted.  
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Figure 2. Melanised extraradical hyphae growing from an ectomycorrhiza formed by an 
unidentified ectomycorrhizal fungus.
  



 

8 
 

References 

Aber, J. D., Melillo, J. M., Nadelhoffer, K. J., McClaugherty, C. A., & Pastor, J. (1985). 

Fine root turnover in forest ecosystem in relation to quantity and form of nitrogen 

availability: a comparison of two methods. Oecologia 66:317-321. 

Abiven, S., Recous, S., Reyes, V., & Oliver, R. (2005). Mineralisation of C and N from 

root, stem and leaf residues in soil and role of their biochemical quality. Biology 

and Fertility of Soils 42:119-128.  

Bird, J. A., Kleber, M., & Torn, M. S. (2008). 13 C and 15 N stabilization dynamics in 

soil organic matter fractions during needle and fine root decomposition. Organic 

Geochemistry 39:465-477.  

de Boer, W., Folman, L. B., Summerbell, R. C., & Boddy, L. (2005). Living in a fungal 

world: impact of fungi on soil bacterial niche development. FEMS Microbiology 

Reviews 29:795-811. 

Caldwell, M. M. & Richards, J. H. (1986). On the economy of plant form and function. 

University Press: Cambridge. 

Davidson, E. A. & Jannsens, I. A. (2006). Temperature sensitivity of soil carbon 

decomposition and feedbacks to climate change. Nature Reviews 440:165-173. 

Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C., & 

Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science 

263:185-190. 



 

9 
 

Fernandez, C. W. & Kennedy, P. G. (2015). Moving beyond the black-box: fungal traits, 

community structure, and carbon sequestration in forest soils. New Phytol. 

205:1378-1380. 

Goebel, M., Hobbie, S. E., Bulaj, B., Zadworny, M., Archibald, D. D., Oleksyn, J., Reich, 

P. B., & Eissenstat, D. M. (2011). Decomposition of the finest root branching 

orders: linking belowground dynamics to fine-root function and structure. 

Ecological Monographs 81:89-102. 

Grier, C. C., Vogt, K. A., Keyes, M. R., & Edmonds, R. L. (1981). Biomass distribution 

and above-and below-ground production in young and mature Abies amabilis 

zone ecosystems of the Washington Cascades. Canadian Journal of Forest 

Research 11:155-167. 

Grünig, C. R., Queloz, V., Sieber, T. N., & Holenrieder, O. (2008). Dark septate 

endophytes (DSE) of the Phialocephala fortinii s.l. – Acephala applanata species 

complex in tree roots: classification, population biology and ecology. Botany 

86:1335-1369. 

Heimann, M. & Reichstein, M. (2008). Terrestrial ecosystem carbon dynamics and 

climate feedbacks. Nature 451:289-292. 

Hendrick, R. L. & Pregitzer, K. S. (1992). The demography of fine roots in a northern 

Deciduous forest. Ecology 73:1094-1104. 



 

10 
 

Hobbie, E. A. (2006). Carbon allocation to ectomycorrhizal fungi correlates with 

belowground allocation in culture studies. Ecology 87:563-569. 

Jackson, J. B., Mooney, H. A., & Schulze, E.D. (1997). A global budget for fine root 

biomass, surface area, and nutrient contents. Proc. Natl. Acad. Sci. 94:7362-7366. 

Jumpponen, A. & Trappe, J. M. (1998). Dark septate endophytes: a review of facultative 

biotrophic root-colonizing fungi. New Phytol. 140:295-310. 

Kernaghan, G. (2013). Functional diversity and resource partitioning in fungi associated 

with the fine feeder roots of forest trees. Symbiosis 61:113-123. 

Kirschbaum, M. U. F. (1995). The temperature dependence of soil organic matter 

decomposition, and the effect of global warming on soil organic C storage. Soil 

Biol. Biochem. 27:753-760. 

Koide, R. T. & Malcolm, G. M. (2009). N concentration controls decomposition rates of 

different strains of ectomycorrhizal fungi. Fungal Ecology 2:197-202. 

Koide, R. T., Fernandez, C. W., & Peoples, M. S. (2011). Can ectomycorrhizal 

colonization of Pinus resinosa roots affect their decomposition? New Phytol. 

191:508-514. 

Koide, R. T., Shumway, D. L., Xu, B., & Sharda, J. N. (2007). On temporal partitioning 

of a community of ectomycorrhizal fungi. New Phytol. 174:420-429. 

Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food 

security. Science 304:1623-1627.  



 

11 
 

Lindahl, B. & Tunlid, A. (2015). Ectomycorrhizal fungi – potential organic matter 

decomposers, yet not saprotrophs. New Phytol. 205:1443-1447. 

Lukac, M. (2012). Measuring Roots: An Updated Approch. Springer-Verlag: Berlin-

Heidelberg. 

Mayerhofer, M. S., Kernaghan, G., & Harper, K. A. (2013). The effects of fungal root 

endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119-128. 

McClaugherty, C. A., Aber, J. D., & Melillo, J. M. (1982). The role of fine roots in the 

organic matter and nitrogen budgets of two forested ecosystems. Ecology 

63:1481-1490. 

Nadelhoffer, K. J. & Raich, J. W. (1992). Fine root production estimates and 

belowground carbon allocation in forest ecosystems. Ecology 73:1139-1147. 

Perfect, S. E. & Green, J. R. (2001). Infection structures of biotrophic and hemibiotrophic 

fungal plant pathogens. Molecular Plant Pathology 2:101-108. 

Raajimakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C., & Moënne-Loccoz, Y. 

(2009). The rhizosphere: a playground and battlefield for soilborne pathogens and 

beneficial microorganisms. Plant Soil 321:341-361. 

Raich, J. W., & Schlesinger, W. H. (1992). The global carbon dioxide flux in soil 

respiration and its relationship to vegetation and climate. Tellus B 44:81-99. 

Schulz, B. & Boyle, C. (2005). The endophytic continuum. Mycol. Res. 109:661-686. 



 

12 
 

Schulz, B. & Boyle, C. (2006). What are endophytes? Soil Biology Volume 9: Microbial 

Root Endophytes. Springer-Verlag: Berlin-Heidelberg. 

Smith, S. E., & Read, D. (2008). Mycorrhizal Symbiosis (Third Edition). Academic Press: 

Cambridge. 

Solly, E. F., Schöning, I., Boch, S., Kandeler, E., Marhan, S., Michalzik, B., Müller, J., 

Zscheischler, J., Trumbore, S. E., & Schrumpf, M. (2014). Factors controlling 

decomposition rates of fine root litter in temperate forests and grasslands. Plant 

Soil 383:203-218. 

Sun, T., Mao, Z., & Han, Y. (2013). Slow decomposition of very fine roots and some 

factors controlling the process: a 4-year experiment in four temperate tree species. 

Plant Soil 372:445-458. 

Swift, J. M., Heal, O. W., & Anderson, J. M. (1979). Decomposition in terrestrial 

ecosystems. University of California Press: Oakland. 

Taylor, B. R., Prescott, C. E., Parsons, W. J. F., & Parkinson, D. (1991). Substrate control 

of litter decomposition in four Rocky Mountain coniferous forests. Canadian 

Journal of Botany 69:2242-2250.  

Tisdal, J. M., & Oades, J. M. (1982). Organic matter and water-stable aggregates in soils. 

Journal of Soil Science 33:141-163. 



 

13 
 

Vogt, K. A., Grier, C. C., & Vogt, D. J. (1986). Production, turnover, and nutrient 

dynamics of above and belowground detritus of world forests. Academic Press: 

Cambridge. 

Vogt, K. A., Vogt, D. J., Palmiotto, P. A., Boon, P., O’Hara, J., & Asbjornsen, H. (1996). 

Review of root dynamics in forest ecosystems grouped by climate, climatic forest 

type and species. Plant and Soil 187:159-219. 

Wagg, C., Pautler, M., Massicotte, H. B., & Peterson, R. L. (2008). The co-occurrence of 

ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of 

four members of the Pinaceae. Mycorrhiza 18:103-110. 

Xia, M., Talhelm, A. F., & Pregitzer, K. S. (2015). Fine roots are the dominant source of 

recalcitrant plant litter in sugar maple‐dominated northern Deciduous forests. New 

Phytol. 208:715-726.  



 

14 
 

CHAPTER 2 

Decomposition of Ectomycorrhizal Fine Roots of Abies balsamea and Picea rubens over 

a 16 Month Period in The Acadian Forest 

Abstract 

Fine roots are one of the most important components of carbon and nitrogen cycling in 
temperate forests. Senescent fine root tissues are continuously replaced with new growth 
during the process of fine root turnover. Fine roots are also the site of various types of 
symbiotic relationships with fungi. In particular, the fine roots of coniferous trees have 
well developed relationships with ectomycorrhizal fungi. This study focuses on how 
several common ectomycorrhizae of Abies balsamea and Picea rubens decompose after 
fine root senescence. Ectomycorrhizal fungi were categorized based on mantle 
characteristics. The highly melanised mantles of Cenococcum geophilum decomposed 
little over the 16 month study period, while non-melanised mantles with the presence of 
antifeedant or recalcitrant compounds showed intermediate rates of decomposition. 
Finally, mantles composed of hyaline hyphae decomposed most rapidly and were not 
observed beyond 12 months post treatment.  

Introduction 

Fine roots are the functional interface between tree and soil where water and 

nutrients are absorbed (Lukac 2011). In general, fine roots are ephemeral roots of trees, 

typically ≤ 2mm in diameter (Finer et al. 2011; Goebel et al. 2011). Because of their 

highly important function, trees continuously allocate resources to maintain their fine 

roots. When fine roots become senescent, they abscise, are released into the rhizosphere, 

and replaced by new fine roots (Finér et al. 2011; Lukac 2012) in the process of fine root 

turnover. Specifically, fine root turnover is defined as the ratio of fine root production to 

standing crop of fine roots annually (Dahlman & Kucera 1965; Gill & Jackson 2000). A 

more general definition of fine root turnover describes it as the entire process of fine root 

production, senescence, and decomposition (Joslin et al. 2000) and is the definition used 

in this study. Fine root turnover shows both intra- and inter-specific variation in addition 
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to being influenced by a variety of environmental factors (Keyes & Grier 1981; Vogt et 

al. 1983; Vogt et al. 1987; Finér et al. 1997; Finér & Laine 1998; Joslin et al. 2000; 

Pregitzer et al. 2000; Lahti et al. 2005; Tingey et al. 2005; Hendricks et al. 2006; Cusack 

et al. 2009; Prescott 2010; Fujii & Takeda 2010; Aulen et al. 2012) 

Conservative estimates report fine root turnover accounting for one third of 

annual terrestrial net primary productivity (NPP) (Vogt et al. 1986; Jackson et al. 1997; 

Hobbie 2006; McCormack et al. 2015) with more liberal estimates reaching 75% NPP 

(Keyes & Grier 1981; Vogt et al. 1996; Gill & Jackson 2000). The technological 

difficulties involved in measuring fine root turnover has made accurate measurements 

difficult (Hendricks et al. 2006; Finér et al. 2011). Regardless of these discrepancies, fine 

root turnover is a fundamental component of carbon and nutrient cycling in terrestrial 

ecosystems (Finér et al. 2011), profoundly affecting soil ecology (Tisdal & Oades 1982; 

McClaugherty et al. 1982; Koide & Malcolm 2009; Koide 2011; Lukac 2012) by altering 

carbon and nitrogen availability in forests (Aber et al. 1985).  

During fine root turnover, large amounts of fine root detritus enters the forest 

floor. This fine root litter decomposes more slowly than above-ground litter (Fan & Guo 

2010; Fujii & Takeda 2010; Sun et al. 2013; Xiong et al. 2013) and is a major component 

of SOM (Fujii & Takeda 2010; Kätterer et al. 2011; Xiong et al. 2013) and may sequester 

more carbon than biotic and atmospheric pools combined (Batjes 1996; Lal 2004; 

Davidson & Jannsens 2006; Schmidt et al. 2011). Understanding the dynamics of fine 

root decomposition is crucial to developing better carbon models as litter decomposition 

rates strongly affect how much carbon is sequestered in forest soils (Lal 2004). 
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Regarding chemical composition, Sun, Mao, and Han (2013) categorise fine root 

constituents into three main categories: 1) labile compounds such as fats, oils, waxes, 

polyphenols, and non-structural carbohydrates; 2) structural compounds that are 

hydrolysable in acid such as cellulose and hemicellulose; and 3) structural compounds 

that are not hydrolysable in acid such as lignin, suberin, cutin, and tannins. The authors 

state that the concentration of unhydrolysable structural carbon (i.e. lignin) dictates fine 

root decomposition rates (Sun et al. 2013) which have high ratios of carbon to nitrogen 

(C:N). Studies of above-ground litter decomposition demonstrate that tissues with high 

C:N ratio (meaning low N content) decompose slowly relative to compounds with high N 

content (Melillo et al. 1982; Taylor et al. 1989; Fenn 1991; Cotrufo et al. 1994; Aerts 

1997; Berg 2000). A meta-analysis of fine root decomposition studies found that C:N 

ratio explained approximately 85% of variation in fine root decomposition rates (Silver & 

Miya 2001) , agreeing with several other studies (Berg 1984; Ostertag & Hobbie 1999; 

Trofymow et al. 2002; Lin et al. 2011). Labile compounds that are easily utilised by 

microorganisms (monomeric or dimeric sugars) are also strong indicators of fine root 

decomposition rate (Chen et al. 2002; Fan & Guo 2010; Hobbie et al. 2010; Aulen et al. 

2012; Birouste et al. 2012). Manganese content, root pigmentation, and tissue density 

have also been suggested as playing a role in fine root decomposition (Hobbie et al. 2010; 

Goebel et al. 2011; Aulen et al. 2012; Birouste et al. 2012). Considering the lack of 

consensus, more research is necessary to better understand which factors most strongly 

affect fine root decomposition rate.  
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Ectomycorrhizal (ECM) colonization of fine roots is a potential factor regulating 

fine root decomposition that has only begun to be described. During the colonization 

process, the eponymous ectomycorrhiza is created; this hybrid structure of fine root and 

fungal tissues varies chemically and morphologically between ECM species. In temperate 

and boreal forests, ecologically dominant Pinaceae (Koide et al. 2011) are highly 

colonized by ECM fungi (Allen et al. 1995; Dahlberg 2001) where ECM may account for 

a third of microbial biomass (Fogel & Hunt 1983; Högberg & Högberg 2002) and up to 

84% of fungal biomass in soils (Bååth et al. 2004). Coniferous forests may allocate up to 

22% of their carbon to ectomycorrhizal symbionts (Hobbie 2006). As ECM fungi 

produce a layer of fungal tissue (mantle) ensheathing the fine root, it is logical that these 

fungi may affect fine root decomposition (Langley et al. 2006; Fernandez & Koide 2011; 

Koide et al. 2011). Any factors that control decomposition of ECM fungi may also affect 

decomposition of fine root litter, consequently influencing C and nutrient cycling in 

forests (Koide et al. 2011).  

The few studies regarding the ectomycorrhizal effect on fine root decomposition 

give contradictory findings regarding whether fungal colonization increases or decreases 

decomposition rate. Langley, Chapman, and Hungate (2006) found that ECM 

colonization significantly decreased the decomposition rate of fine roots in a Pinus edulis 

plantation. In contrast, Koide, Fernandez, and Peoples (2011) found no significant 

difference in decomposition rate between mycorrhizal and non-mycorrhizal fine roots of 

Pinus edulis. These contrasts are likely caused by the multiple differences in 

environmental and biological factors that likely affect fine root decomposition. As studies 
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on this subject are few (Koide & Malcolm 2009) and as those that exist are contradictory, 

a better characterization of factors driving ECM decomposition is necessary. 

Fungal tissue differs greatly from plant tissue. Fungal cell walls are comprised of 

glucans, glycoproteins, and chitin. Glucans are glucose polymers differentiated by their 

type of glycosidic bond. The main structural component of the fungal cell wall is β-1,3-

glucan (Bowman & Free 2006), making up 50 – 60% by dry weight (Fleet 1991; Kapetyn 

et al. 1999). Glycoproteins are the next most abundant component of the fungal cell wall 

making up 15 – 50% of fungal tissue by dry weight (Fleet 1991; Brown & Catley 1992; 

Bowman et al. 2006). The final component, chitin (β-1,4-linked N-acetylglucosamine) is 

a structural component (Bowman et al. 2006), making up only 1 – 2% of the fungal cell 

wall by dry weight (Klis 1994; Klis et al. 2002).  

There is a general consensus that chitin is resistant to decomposition; however 

there is little evidence to support this claim (Fernandez & Koide 2011) and some studies 

have found that chitin is less recalcitrant than cellulose (Okafor 1966; Trofymow et al. 

1983; Fernandez & Koide 2011). Therefore, it is unlikely that differences in chitin 

concentration between ECM fungi would drive decomposition rate. Similarly, the glucan 

and glycoprotein components of fungal cell walls are unlikely to inhibit decomposition as 

both are N rich and thus likely targeted early by saprotrophic microbes.  

Some studies show that pigmented secondary metabolites like melanins greatly 

increase recalcitrance of fungal tissues (Paris et al. 1993; Butler & Day 1998a). The 

highly melanised ECM fungus Cenococcum geophilum has been found to take 
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significantly longer to decompose than unmelanised ectomycorrhizal species (Koide & 

Malcolm 2009; Fernandez et al. 2013). The inclusion or exclusion of highly melanised 

fungi such as C. geophilum in an analysis may explain why these few studies contrast one 

another. In the study by Koide et al. (2011), the authors examined fungal genera that were 

not melanised (e.g. Amanita, Lactarius, Tylopilus, Russula, and Suillus) whereas the 

study by Langley et al. (2006) (which came to the opposite conclusion) was dominated 

by Geopora, a tomentelloid fungus known for dark, melanised pigmentation 

(Hrynkiewicz et al. 2015). Nevertheless, pigmented metabolites are probably not the only 

factor regulating decomposition as some non-melanised fungi have also shown 

considerable recalcitrance (Koide & Malcolm 2009). Some secondary metabolites that 

have antimicrobial or antifeedant properties likely increase their recalcitrance (Krywolap 

1964; Mandyam & Jumpponen 2005; Rohlfs et al. 2007). 

As both fungal and fine root tissues have innate biochemical traits, fine root 

decomposition may be highly dependent on both. When considering C and nutrient 

cycling in forest soils, plant and fungal tissues need to be considered (Koide & Malcolm 

2009). Due to the lack of knowledge regarding this subject, one of the goals of this study 

was to analyse how some common ECM species of Abies balsamea and Picea rubens 

differ in their rate of decomposition.  
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Materials and Methods 

Field Sites 

Two sites in the Acadian Forest were selected for study (Figure 1), one near 

McGowan Lake, NS (44°26'12"N, 65°3'51"W) (Figure 2) and another near Annapolis 

Road, NS (44°45'6"N, 63°56'36"W) (Figure 3). Sites were located in protected natural 

areas to prevent accidental human disturbance. Each site contained three 10 m2 plots in 

areas with extensive seedling regeneration. Selected plots required a minimum number of 

seedlings of each species and did not vary dramatically in seedling size (Figure 10). 

Descriptions of canopy cover and dominant trees are provided (Appendix 1; Table 8). 

Each plot was separated into a 4 x 4 grid and numbers from 1 to 16 

(corresponding to grid position) were randomly generated. The seedling closest to the 

centre of each determined by each random number was then randomly assigned to a 

group (treatment or control) and time interval (zero through 12). Seedlings in the 

treatment group were severed using secateurs just above the root collar, while seedlings 

in the control group were not disturbed. Information on site, group, species, plot, and 

time interval was inscribed on aluminium tags and attached to seedlings with care not to 

inhibit growth. 

Seedling Excavation 

Treatment began on June 21st, 2013 with subsequent monthly harvests occurring 

until October 21st, 2014. Sampling was halted for four months during winter from 

November 2013 to April 2014. Upon excavation, a soils knife was used to cut seedlings 
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out of the forest floor. Excavated seedlings were placed in polyethylene bags and 

transported on icepacks until storage in a cold room at 4°C. 

Edaphic Measurements 

Soil moisture, temperature, and pH for each plot was measured monthly using a 

Kelway Soil pH and Moisture Reader (KTL Instruments Company Inc.) and a digital 

thermometer. Three measurements for each parameter were taken from randomized 

locations at each plot using the same grid system used for seedling selection. Soil 

samples taken in October 2014 were analysed for potassium-chloride extractable nitrate 

(NO3-N) and ammonium (NH4-N) levels by the Agriculture & Food Laboratory at the 

University of Guelph (Guelph, ON, Canada). 

Tea Bag Index  

Baseline decomposition values for each plot were calculated according to the 

methods listed in Keuskamp et al. (2013). By calculating mass loss in green and rooibos 

tea over a 90 day period, a baseline decomposition rate was calculated for each plot. 

Rooibos and green tea have different concentrations of acid hydrolysable compounds. 

This difference in decomposability allows for the calculation of decomposition rate 

without a time series. Tetrahedron nylon tea bags (mesh size 0.25 mm) containing either 

rooibos or green tea (Lipton, Unilever) were buried pair-wise at each plot in triplicate. 

Tea bags were oven dried at 60°C for 24 hours, weighed (PI-214, Denver Instrument, 

NY), and then buried in the forest floor on June 21st, 2014. Variance in burial depth (3 to 

7 cm) resulted from different soil depths at plots.  
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After 90 days, tea bags were unearthed, cleaned of debris, dried at 60°C in an 

oven for 24 hours, and reweighed. Mass loss for each tea type was used to generate a 

decomposition rate for each plot: 

𝑊(𝑡) = 𝑎𝑒−𝑘1𝑡  + (1 − 𝑎)𝑒−𝑘2𝑡           [equation 1] 

where W (t) is the mass of the substrate after t = 90 days, a = the labile portion of litter, 1 

– a = the recalcitrant portion of the litter, and k1 and k2 are the rate constants for labile 

and recalcitrant fractions, respectively. As the recalcitrant portion of the litter is broken 

down slowly and would only be measureable over long periods of time, the overall 

decomposition rate k is mostly determined by k1. If one assumes that k2 essentially equals 

zero, equation 1 can be simplified: 

𝑊(𝑡) = 𝑎𝑒−𝑘𝑡 + (1 − 𝑎)                      [equation 2] 

where a becomes the labile portion, which is essentially equal to the limit value – the 

maximum amount of loss that can occur (Berg & Meentemeyer 2002). As the 

decomposition rate of green tea is higher than that of rooibos, the labile portion in green 

tea is consumed before the labile portion in rooibos. Using this difference, the 

decomposable fraction of green tea and the decomposition rate k can be calculated using 

a single time period. To solve for k in the simplified equation (equation 2), the 

decomposable portion of rooibos (ar) must be estimated. To do this, the decomposable 

portion as measured in the field (a) is used with the chemically expected decomposable 

portion (H), given by Keuskamp et al. (2013). The deviation between H and a can be 

used to interpret the inhibiting effect that the environmental conditions had on the 
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decomposition of the labile fractions in each tea, which is assumed to be equal for both 

types of tea:  

𝑆 = 1 −
𝑎𝑔
𝐻𝑔

                                   [equation 3] 

where S is the stabilisation factor, ag is the observed portion of green tea that 

decomposed, and Hg is the chemically expected decomposable portion. The observed 

decomposable portion of rooibos (ar) is estimated multiplying the chemically calculated 

decomposable fraction of rooibos (Hr) by the stabilisation factor: 

𝑎𝑟 = 𝐻𝑟(1 − 𝑆)                           [equation 4] 

To summarize, observed decomposition in green tea (ag) is compared to the 

chemically calculated decomposable portion of green tea (Hg) to derive the stabilisation 

factor S. This factor, multiplied by the chemically calculated decomposable portion of 

rooibos (Hr), gives an estimate of the observed decomposition of rooibos (ar). With W 

and a known for both tea types, decomposition rate k can be calculated using the 

simplified equation (equation 2). 

Classification of Ectomycorrhizae 

Primary fine roots were sampled from untreated seedlings as well as seedlings at 

two, four, 11, and 14 months post treatment. These times were chosen as they represent a 

chronology of the study duration but also because fine roots from other time intervals 

were used for genetic analysis (see Chapter 3). Up to 100 primary fine roots (depending 

on the number available) from each seedling were cut into 1 cm long pieces and placed in 

a photographic developer tray inscribed with a 20 piece grid. Distilled water was added to 
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the tray until root fragments were evenly distributed. A random number generator 

(https://www.random.org) was used to generate random numbers from 1 to 20 correlating 

a grid positions. The primary fine root closest to the centre of each grid position was then 

chosen for observation. The state of the fungal mantle was ranked on a scale of 1 to 4 

based on the percentage of mantle present: 1 = < 33%, 2 = 33 - 66%, 3 = 66 - 99%, and 4 

= ~ 100%. Ectomycorrhizae were identified to genera using the Colour Atlas of 

Ectomycorrhizae (Agerer 1987) and the online ectomycorrhizal database Deemy 

(www.deemy.de). Ectomycorrhizal identifications were also corroborated by the DNA 

sequencing conducted for the work in Chapter 3. Data on all ECM were then placed into 

four categories for analysis: 1) Cenococcum; 2) Russulaceae; 3) Piloderma; and 4) 

Hyaline ECM (e.g. Amanita, Cortinarius, and Inocybe).  

Statistical Analysis of Mantle Data 

An ordered logit model was used to compare differences in mantle integrity 

scores between the different classes of ectomycorrhizae. A model was fit for mantle rank 

as a product of ECM category and site using the “ordinal” package (Christensen 2015) in 

R 3.1.3 (R Foundation for Statistical Computing, Vienna, Austria). 

Measurement of Primary Fine Root Loss 

Soil and debris were removed from root systems by running under cold water. 

The three longest secondary fine roots from each seedling were scanned at 600 dpi 

(CanoScan LiDE 700F, Canon Inc.). Scanned images were used to determine secondary 

fine root length (cm) and to count the total number of primary fine roots (NIS Elements 

BR 2.20, Build 239, Nikon Inc.).  

https://www.random.org/
http://www.deemy.de/
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Results 

Edaphic Measurements 

Mean soil temperature was not significantly different between plots with average 

soil temperatures ranging from 10.4 to 11.1°C (Figure 4; Table 1). Soil pH varied most at 

Annapolis Road; the average pH of plot 1 was 5.2 (± 0.1) which was significantly lower 

than plot 3 and all plots at McGowan Lake which were closer to 5.7 (± 0.1) (one-way 

ANOVA; F = 5.6, p << 0.001) (Figure 5; Table 1). Plot 2 at Annapolis Road showed an 

intermediate pH of 5.5 (± 0.1) (Table 1). Soil moisture was significantly different 

between plots (one-way ANOVA; F = 9.7, p << 0.001) with plots 1 (69.2 ± 3.4%) and 3 

(71 ± 3.9%) at Annapolis Road being significantly higher than all plots at McGowan 

Lake (ranging from 46.1 to 53.3 %) with plot 2 showing intermediate levels (Figure 6; 

Table 1). Decomposition rate as calculated by the Tea Bag Index (TBI) was significantly 

different between plots (one-way ANOVA; F = 4.9; p = 0.013) being highest at 

McGowan Lake plot 1 (0.009 ± 0.001) (Figure 7; Table 1). TBI showed a significant 

negative correlation with soil moisture (F = 13.8, p = 0.002, adj. R2 = 0.445 (Figure 8). 

Edaphic measurements over the course of the study are available in the supplemental 

materials (Appendix 1). 

Primary Fine Root Loss 

The ratio of primary fine roots per length of secondary fine root was stable or 

showed a minor increase in control seedlings (Figure 9). Treatment seedlings of P. 

rubens showed a significant loss of primary fine roots (one-way ANOVA; F = 19.9, p = 

0.005, adj. R2 = 0.52) whereas A. balsamea did not (Figure 9). Primary fine root loss did 
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not show significant correlations between any edaphic factors. Plot and seedling species 

had a significant interaction (two-way ANOVA; F = 5.8, p << 0.001) with an interaction 

between tree species and age (p = 0.003) (Figure 10; Table 2).  

Mantle Integrity 

Across all sampling times, the majority of mantles belonged to C. geophilum with 

the next most abundant belonging to the Russulaceae; Piloderma and hyaline hyphae 

were the least abundant, and made up approximately similar percentages of samples 

(Table 3). Using an ordinal model with a logit link, ECM category and site were 

significant predictors of mantle degradation i.e. assigned mantle rank (Table 4). All 

statistical tests for this study used packages developed by the R Core Team (2015) and 

were completed in R 3.2.3 – “Wooden Christmas-Tree” (R Foundation for Statistical 

Computing, Vienna, Austria). 

Discussion 

Edaphic measurements 

 The variation in the soil properties of plots was expected as plots were located in 

considerably different environments (e.g. bog edge vs. deep forest). Annapolis Road plot 

3 and McGowan Road plot 3 were both located near bog and showed the lowest 

decomposition rates. Plot 1 at Annapolis Road was located approximately 100 meters 

down slope from an access road (Figure 2) which may be why soils here were 

significantly more acidic and more saturated. The high decomposition rate on plot 1 at 

McGowan Lake is likely a product its lower soil moisture, higher pH, and relatively high 

proportion of deciduous trees (Appendix 1; Table 8). 
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Morphological observations of ECM 

After measuring ECM decomposition over a 16 month period, the amount of 

mantle degradation appeared to be dependent on mantle category. The highly melanised 

C. geophilum mantles were relatively unchanged 16 months post treatment, while 

mantles in the other categories showed significant degradation. A cumulative link mixed 

model was chosen for the mantle data as the dependent variable (mantle integrity) was 

ordinal and independent variables consisted of both fixed (treatment group and site) and 

random (time interval) effects. In a similar experiment by Fernandez et al. (2013) where 

ECM viability was scored ordinally, a cumulative link mixed model was also used. Based 

on the model, mantles degraded more quickly at McGowan Lake compared to Annapolis 

Road. This is intuitive as Annapolis Road had plots with higher acidity and moisture than 

McGowan Lake. McGowan Lake also contained the plot with the highest decomposition 

value observed. These observations suggest that ECM species and edaphic factors may 

have an effect on ECM decomposition in forest soils. 

Melanised mantles – Cenococcum geophilum 

The recalcitrance observed in C. geophilum may be a result of its high 

concentrations of melanin (Figure 12a). Similar to lignin, melanins are complex 

biopolymers comprised of phenolic and indolic rings (Butler & Day 1998a; Fernandez & 

Koide 2014; Fernandez et al. 2016) and lack the stereo-specific binding sites used by 

hydrolytic enzymes (Butler & Day 1998b). This property requires the production of 

oxidative enzymes by microbes in order for melanins to be degraded (Fernandez et al. 

2016). In addition to inhibiting enzymatic degradation, highly melanised fungal tissues 
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are better protected from cellular lysis (Bloomfield & Alexander 1967; Kuo & Alexander 

1967; Butler & Day 1998a) and are better able to endure extreme variations in moisture 

and temperature than non-melanised species (Mexal & Reid 1973; Zhdanova et al. 1973; 

Sealy et al. 1980; Zhdanova et al. 1980; Rehnstrom & Free 1997; Rosas & Casadevall 

1997; Pigott 2006; Koide et al. 2014). The ability of melanin to absorb large amounts of 

water (Sealy et al. 1980) is probably related to these benefits. Melanin appears to slow 

decomposition in fungal tissues in a way analogous to the way lignin inhibits plant 

decomposition (Fernandez et al. 2016). 

Viable C. geophilum may also exhibit greater longevity as it competes well with 

rhizosphere saprotrophs for soil moisture (Koide & Wu 2003) and nutrients (Orwin et al. 

2011), putting these saprotrophs at a disadvantage. This competition reduces the ability of 

soil saprotrophs to decompose C. geophilum (Read & Perez-Moreno 2003; Leake et al. 

2004; Read et al. 2004) as they must allocate resources to finding water and nutrients. 

Given the extent of its exploratory extrametrical hyphae, the dampening effect of C. 

geophilum could be substantial, especially in areas dominated by this species.  

Another potential source for the recalcitrance of C. geophilum is the presence of 

toxic metals in its tissues. In addition to indolic and phenolic monomers, melanins may 

contain peptides, carbohydrates, and hydrocarbons which possess metal binding sites 

(Gadd 1992). The metals Al, Ni, Zn, Fe, Cu, Cd, and Pb have been found in high 

concentrations in melanised fungal tissues (Rizzo et al. 1992; Fogarty & Tobin 1996). 

These toxic concentrations may cause hydrolytic enzymes produced by soil saprotrophs 
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to be less effective. Metals in such concentrations could also be toxic to predatory soil 

invertebrates (Rizzo et al. 1992).  

In summary, C. geophilum mantles did not decompose significantly during the 16 

months of observation. As C. geophilum is an ultra-generalist (Trappe 1962; Kranabeter 

1998; Tedersoo et al. 2003; Dickie & Reich 2005) and is inhabits various horizons of soil 

(Dickie et al. 2002), its necromass may be considerable, especially in forests with 

depressed rates of litter decomposition (Fernandez et al. 2015). As melanised fungal cell 

walls are mineralized more slowly than hyaline fungi (Hurst & Wagner 1969; Malik & 

Haider 1982), C. geophilum may be a large contributor to SOM in forest floors, and may 

play a large role in carbon sequestration (Fernandez et al. 2013; Fernandez et al. 2016). 

Non-melanised mantles with recalcitrant secondary metabolites –  Russulaceae & 

Piloderma  

The Russulaceae is a globally distributed family within the basidiomycota and its 

members are well known for their mycorrhizal associations with various tree species. 

Species of Lactarius and Russula, two genera in the Russulaceae, were the most abundant 

ectomycorrhizal fungi observed after C. geophilum. Piloderma is also a basidiomycete 

and is abundant in boreal forest soils (Arocena et al. 2001; Rosling et al. 2003; Lindahl et 

al. 2007). The ectomycorrhizae and emanating hyphae of Piloderma fallax has a 

characteristic golden-yellow colour caused by the pigment corticrocin (Shreiner et al. 

1998) making this species easily identifiable.  
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Members of Lactarius, Russula, and Piloderma are not known to possess high 

concentrations of melanin; however, many species in these genera are known to produce 

secondary metabolites, some of which could have inhibitory effects on decomposition. A 

secondary metabolite is any product produced by an organism that is not required in its 

primary metabolic pathways. These compounds usually have a low molecular weight and 

are often bioactive in some way (Keller et al. 2005).Various members of the Russulaceae 

have been shown to produce sesquiterpenes (Ayer & Browne 1981; Daniewski et al. 

1993; Daniewski et al. 1995; Clericuzio et al. 1999; Lin & Ji-Kai 2002; Liu 2007), a class 

of terpenes that consist of several isoprene units (Keller et al. 2005). Sesquiterpenes are 

highly bioactive (Kramer & Abraham 2012) and thought to play a role in the chemical 

defence systems of some fungi (Sterner et al. 1985; Daniewski et al. 1993; Luo et al. 

2005). Although the sesquiterpenes presented in the above studies were isolated from 

above-ground sporocarp tissues, these metabolites should also be present in the 

mycorrhizae formed by these species. In a litter-bag experiment by Koide & Malcolm 

(2009), Lactarius chrysorhheus decomposed least among the tested species, even when 

compared to the recalcitrant C. geophilum. This species of Lactarius is known to contain 

the sesquiterpene velutinal (De Bernardi et al. 1993) which gives it a notably acrid taste. 

Sesquiterpenes have also been isolated from Russula species (Andin et al. 1980; Vidari et 

al. 1998; Yoshikawa et al. 2006) and may exhibit properties similar to those found in 

Lactarius.  
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Regarding Piloderma, Arocena et al. (2001) describe species belonging to this 

genus as possessing encrustations of calcium oxalate crystals along their hyphae. The 

calcium oxalate may act as a hydrophobic coating, which could reduce the risk for 

microbial attack by dehydrating the hyphae (Whitney & Arnott 1987). The high calcium 

concentrations needed to form crystals may also inhibit various bacterial enzymes, 

resulting in a decrease in the decomposition rate of these hyphae (Whitney & Arnott 

1988). The crystals may also act as a physical deterrent against predatory invertebrates 

such as collembola (Thompson 1984; Böllmann et al. 2010). In addition to antifeedant 

properties, the sequestration of calcium ions from the environment can lead to decreased 

effectiveness of calcium dependent enzymes produced by some microbes (Whitney & 

Arnott 1987).  

Hyaline ECM – Cortinarius, Hebeloma, and Amanita 

Unlike other categories, ECM with hyaline mantles had a gossamer appearance 

with no apparent pigmentation (Figure 12b). This category showed a rapid decrease over 

time and was no longer observed after the time interval four. As this category is generally 

defined by a lack of characteristics, it is hard to make conclusions about why these 

mantles degraded quickly other than that they did not contain melanin or other apparent 

pigmentation and that most species in these genera are not reported to produce significant 

amounts of antimicrobial secondary metabolites. 

Mantles in this category proved the most difficult to identify due to their lack of 

recognizable features. The genera listed in this category were suggested based on a 

combination of microscopic observation and genetic sequencing data on the primary fine 
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roots used in this study (see Chapter 3). Many mantles in this category exhibited fine 

extramatrical hyphae. These extensions increase fungal surface area exposed to the soil 

environment, potentially increasing access to saprotrophic microbes resulting in elevated 

decomposition rates. Forests dominated by such genera could possibly lose carbon more 

quickly than forests dominated by recalcitrant fungi such as C. geophilum, although this 

is purely speculative. More research into the decomposition of hyaline ectomycorrhizae is 

necessary as some of the genera assigned to this category do contain species that produce 

antifeedant secondary metabolites (e.g. Amanita and Hebeloma). The rapid disappearance 

of these mantles may have been due to their small representation in the data set; hyaline 

mantles made up the smallest group at 3.7% (n = 133) of observed mantles. 

Conclusion 

As made evident by the varying decomposition rates of ectomycorrhizal fungi, the 

dynamics of ectomycorrhizal decomposition warrant further investigation as rates of soil 

organic matter loss of forests to the atmosphere may depend appreciably on dominant 

ectomycorrhizal partners in that system. It is apparent that fungi with highly melanised 

mantles such as C. geophilum are fairly recalcitrant. Much less is known about the rates 

of decomposition of non-melanised and hyaline mantles. As the mean average soil 

temperature of northern forests continues to rise as a result of climate change, increased 

microbial activity may hasten the decomposition of fungal and fine root tissues. A better 

understanding of the dynamics of ectomycorrhizal decomposition is necessary to hone 

the accuracy of carbon models for northern forests. 
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Future Research 

The classification scheme for mantle decomposition used in this study was 

vulnerable to subjectivity. A biochemical method for describing decomposition level is 

desirable over visual approximation. This is a challenge as the ectomycorrhizal 

component of the fine root needs to be quantified separately from the root tissue and from 

saprotrophic fungi. One solution is to use flourescein diacetate, a viability probe used to 

identify living cells. Fernandez et al. (2013) used this method in a study on the 

decomposition of C. geophilum mantles.  Future experiments could focus on the burial of 

ectomycorrhizae of different genera in litter bags in different soil environments (Koide et 

al. 2013). In conjunction with the burial of ectomycorrhizae, bags of green and rooibos 

tea should also be buried to compare baseline decomposition rates between sites. Large 

numbers of tea bags can be used per site as they are inexpensive and increase the ability 

to detect statistically significant differences in decomposition rates between sites with 

different edaphic properties. Future studies looking would benefit from increased 

numbers of sites instead of having fewer sites with several plots. As the edaphic 

properties that affect root litter decomposition vary within a site, having several plots 

within a site may not elucidate how the site as a whole acts. Rather, sites should be 

placed in areas with known traits. For example, sample sites should be chosen to 

represent a range of pH, soil moisture, tree community, and slope position conditions. 

Due to the edaphic and topographic heterogeneity typical of the Acadian Forest, several 

plots within one site separated by hundreds of meters may show considerable variation.   
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Figure 1. Location of study sites on mainland Nova Scotia: stars = site location; dark grey = Kejimkujik National Park; white circle = 
Halifax.
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Figure 2. Topography of site at Annapolis Road: filled triangles = plots; contours in meters.
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Figure 3. Topography of site at McGowan Lake: filled triangles = plots; dotted grey = bog; contours in meters.
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Figure 4. Edaphic measurements by plot: a) soil temperature; b) soil pH; error-bars = 95% confidence intervals. 
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Figure 5. Edaphic measurements by plot: a) soil moisture; b) tea bag index; error-bars = 95% confidence intervals. 
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Figure 6. Linear regression of tea bag index against soil moisture.
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Figure 7. Primary fine root loss in treatment seedlings of A. balsamea and P. rubens; error-bars = SE. 
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Figure 8. Mean mantle ranking for mantle categories over 14 months; error bars represent 95% confidence intervals.
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Figure 9. (a) Melanised ectomycorrhiza of C. geophilum; (b) non-melanised hyphae of an unidentified hyaline ectomycorrhiza.
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Table 1. Summary of edaphic measurements for plots (± SE) for plots at Annapolis 
Road (AR) and McGowan Lake (ML). 
Site Plot Soil pH Soil Temp. (°C) Soil Moisture (%) Tea Bag Index (k) 

AR 
1 5.2 (±0.1) 10.6 (±1.4) 69.2 (±3.4)  7.7e-3 (±3e-4) 
2 5.5 (±0.1) 11.1 (±1.4) 60.5 (±3.8) 8.0e-3 (±1e-3) 
3 5.6 (±0.1) 10.4 (±1.5) 71 (±3.9) 6.3e-3 (±3e-4) 

ML 
1 5.7 (±0.1) 11.1 (±1.2) 46.1 (±2.4) 9.0e-3 (±1e-3) 
2 5.6 (±0.1) 11.1 (±1.2) 53.3 (±3.5) 8.3e-3 (±9e-4) 
3 5.7 (±0.1) 11.1 (±1.2) 48 (±2.5) 6.7e-3 (±3e-4) 

 
Table 2. Mantle observations from A. balsamea and P. rubens seedlings at 
Annapolis Road (AR) and McGowan Lake (ML). 
Category Site A. balsamea P. rubens Total % 

Cenococcum 
AR 907 327 1234 

72.4 
ML 590 763 1353 

Russulaceae 
AR 316 180 496 

19.6 
ML 84 119 203 

Piloderma 
AR 36 6 42 

4.3 
ML 41 72 113 

Hyaline ECM 
AR 54 19 73 

3.7 
ML 28 32 60 

Totals 2056 1518 3574 100 

 
Table 3. Proportional odds calculated using ordinal-logit model.  
Coefficient Estimate (β) SE p-value 
ECM type 
Hyaline - 1.67 0.17 < 0.001 
Piloderma - 1.07 0.16 < 0.001 
Russulaceae - 1.29 0.08 < 0.001 
Site 
McGowan  - 0.21 0.06 < 0.001 

 
Table 4. Pair-wise comparison of seedling age of A. balsamea and P. rubens across plots. 

Pl
ot

 

Plot 
- AR1 AR2 AR3 ML1 ML2 

AR2 0.241 - - - - 
AR3 < 0.001 < 0.001 - - - 
ML1 0.002 0.332 0.114 - - 
ML2 < 0.001 0.114 0.332 1 - 
ML3 0.337 1 < 0.001 0.152 0.034 
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CHAPTER 3  

Molecular Characterisation of Fine Root Associated Fungal Communities during the 

Early Stages of Decomposition in the Acadian Forest 

Abstract 

Fine roots are a nexus for different functional groups of fungi. Due to the varying types 
of relationships between fine root and fungi, the response of fungal communities to host 
death may shed light on which groups are responsible for decomposition. Seedlings of 
Abies balsamea and Picea rubens were killed and left to decompose over a 16 month 
period at two sites in Acadian Forest. Primary fine roots from various time intervals had 
their fungal communities amplified via PCR and sequenced. Most fungal species found in 
control seedlings were ectomycorrhizal. Approximately 3 to 6 months post treatment, 
endophytic fungi increased in abundance relative to ectomycorrhizal species. This 
increase begins to recede with ectomycorrhizal fungi becoming dominant once again. 
Few saprotrophic species were identified, implying that the decomposition of coniferous 
primary fine roots does not start appreciably during the first 16 months after fine root 
senescence in the Acadian forest. 

Introduction 

The fungi represent an extremely diverse branch of life with myriad forms and 

functions. Many species are cryptic, only recently discernible through molecular 

techniques. Because of their evolutionary history, the life cycles of most modern fungi 

involve interactions with plants. Fungi can be grouped into four categories based on these 

relationships: 1) mycorrhizal - mutualistic symbionts involved in beneficial relationships 

with the fine roots of plants; 2) endophytic - often commensal organisms that inhabit 

intercellular regions of plant tissue; 3) saprotrophic – fungi that decompose senescent 

plant materials and recycle sequestered nutrients; and 4) pathogenic - fungi that cause 

observable damage to plant tissues. The first of these categories, the mycorrhizal fungi, 

present a unique plant-fungus relationship. Although fungi belonging to the other 

functional categories may appear throughout the plant, ectomycorrhizae are hybrids of 



 
 

61 
 

plant and fungal tissues only found on fine roots. Fine roots are sites of high metabolic 

activity (Pregitzer et al. 1995; Norby & Jackson 2000; Tierney & Fahey 2002; Baddeley 

& Watson 2005; Majdi et al. 2005; Grünig et al. 2008; Kernaghan 2013) and their 

immediate surroundings (i.e. the rhizosphere) can be inhabited by hyper-diverse fungal 

communities (Fierer et al. 2007; Buee et al 2009; Jumpponen & Jones 2009). 

As with any generalization in biology, there can be notable overlap between these 

groups preventing confident assignment to one group. Although mycorrhizal fungi are 

described as an intricate form of mutualism, some mycorrhizal fungi retain genes for 

enzymes used in lignocellulose degradation, a common trait of saprotrophic and 

pathogenic fungi. Such shifts from mutualism to saprotrophy highlight the spectrum of 

plant-fungal relationships.  

Mycorrhizal Fungi  

The majority of plants form mutualistic relationships with mycorrhizal fungi 

(Smith & Read 1997; Opik et al. 2006). Mycorrhizal fungi enter mutualistic symbioses 

with plants through their fine roots by developing a nutrient exchange structure. 

Photosynthetically fixed carbon compounds are provided by the plant host to the fungal 

symbionts and are the only source of carbon for the primary metabolism of the fungal 

partner. In return for carbon, plant hosts receive increased access to soil nutrients and 

water, boosted defense against pathogens, and protection from heavy metals (Marschner 

& Dell 1994; Schützendübel & Polle 2002; Peterson & Massicotte 2004; Vogel-Mikuš et 

al. 2004; Whipps 2004; Hildebrandt et al. 2007). Although there are several types of 

mycorrhizal fungi, this study examines only ectomycorrhizal fungi. 
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In ectomycorrhizae, a structure known as the Hartig net develops. It is a network 

of branching hyphae that enter the intercellular spaces between the plant cells of the fine 

roots (Smith & Read 1997; Peterson & Massicotte 2004; Brundrett 2007). The surface of 

a colonised fine root is also covered by hyphal cells from the ectomycorrhizal fungus. 

This layer of fungal tissue is known as the mantle and varies greatly between 

ectomycorrhizal fungi. Ectomycorrhizal fungi are predominantly basidiomycetes 

(Peterson & Massicotte 2004), with the Agaricales being especially well represented. 

This being said, ascomycetous ectomycorrhizal species are not uncommon (e.g. C. 

geophilum). Ectomycorrhizal symbioses are found mostly on woody plants whereas other 

types of mycorrhizae are found on herbaceous plants. 

Endophytic Fungi 

The word endophyte means “within the plant”; therefore, any organism living 

inside a plant can technically fall under this broad definition (Schulz & Boyle 2005; 

Schulz & Boyle 2006). Although there is debate on what the term endophyte entails, the 

general consensus is that fungal endophytes live within plant tissues and are detectable 

but do not cause visible detrimental effects (Schulz & Boyle 2005; Schulz & Boyle 2006; 

Mayerhofer et al. 2013a). The first reports of fungal endophytes occurred in the early 20th 

century (Gallaud 1905; Peyronel 1922; Melin 1923). Endophytes can be found in any 

plant tissue, including the root system. Root endophytes are typically ascomycetes, with 

many belonging to the Dermateaceae and Helotiaceae (Kernaghan & Patriquin 2011; 

Kernaghan & Patriquin 2015).  
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Root endophytes differ from mycorrhizal fungi in that they lack structures for 

absorptive nutrient transfer, are not restricted to the fine roots and show lower host 

specificity (Kernaghan 2013). Although root endophytes have been known since the 20th 

century, study of these organisms has improved with the advent of modern microscopy 

and molecular techniques. Much is left to be discovered regarding their life histories, 

functionality, and organismal biochemistry (Jumpponen & Trappe 1998; Upson et al. 

2009). Some researchers hypothesize that endophytes live in an antagonistic balance 

where endophytic virulence and host defence responses eventually result in an 

asymptomatic colonisation (Schulz & Boyle 2006). However, the lack of baseline 

knowledge makes it difficult to generalize about endophytic relationships. This is further 

complicated as many pathogenic species of fungi have stages that are considered 

endophytic - a problem arising from the definition of endophyte being based on physical 

rather than functional criteria. These observations need to be taken into consideration 

when classifying fungi as endophytes.  

Saprotrophic Fungi 

Many of the fungi present in the rhizosphere are saprotrophic, meaning that they 

break down the structural components of deceased organisms, releasing sequestered 

nutrients (Dighton 2003). Rhizosphere saprotrophs are different from pathogens in that 

they do not attack living tissue (Kernaghan 2013). These fungi are fundamental members 

of terrestrial ecosystems as they digest the senescent plant tissues consistently being input 

into soil systems. Saprotrophs convert lignocellulose into molecules that other organisms 

may utilise in their own metabolic processes and break down recalcitrant plant 
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compounds by secreting suites of hydrolytic enzymes, absorbing the digested products 

via active transport across their membranes. Extracellular digestion of organic matter is 

less efficient than other forms, and nutrients spill-over into the surrounding soil system 

where they are utilised by other organisms. This fertilization effect makes decomposition 

by saprotrophs essential, both by liberating sequestered nutrients and removing 

necromass (Dighton 2003). 

The classification of a fungus as a saprotroph can also be problematic, 

mycorrhizal and endophytic species may also have the ability to decompose senescent 

plant tissue. This confusion aside, there are some groups of fungi that are well 

characterized as being almost entirely saprotrophic, including members of the 

zygomycete genera Mortierella and Umbelopsis, and the hyphomycete genera 

Cylindrocarpon, Penicillium, Trichoderma, and Fusarium (Kernaghan 2013)  

Pathogenic Fungi 

Fungal root pathogens are infectious organisms causing observable disease in 

plant roots, i.e. killing root cells to extract compounds to nourish themselves. Fungal root 

pathogens can be divided into biotrophic and necrotrophic species depending on their life 

style. Biotrophic pathogens require living cells (and therefore a living host) to obtain 

nutrients, whereas necrotrophic pathogens derive their energy from dead cells (Lewis 

1973; Raajimakers et al. 2009). Biotrophs also exhibit much narrower host ranges than 

necrotrophs (Lewis 1973; Raajimakers et al. 2009). Although the term biotroph is widely 

used, many fungi are technically hemibiotrophic, as they begin as biotrophs but become 

necrotrophic later in their life cycle (Perfect & Green 2001; Oliver & Ipcho 2004).  
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Under certain conditions, a fungal root pathogen will extend its hyphae toward the 

cells of a root and attach itself to the epidermis (Raajimakers et al. 2009). Once on the 

root epidermis, biotrophs produce haustoria (Perfect & Green 2001) whereas necrotrophs 

kill root epidermal cells in advance of their approaching hyphae via production of 

phytotoxins and hydrolytic enzymes (Raajimakers 2009; Kernaghan 2013). Once inside 

the plant, necrotrophs ramify between cells and colonize the root cortex in the process 

(Raajimakers et al. 2009) whereas biotrophs are show less aggressive behaviour. 

Fine Root Decomposition 

Trees dedicate 60-70% of their net primary productivity (NPP) to below-ground 

tissues and metabolic processes (Vogt et al. 1982; Vogt et al. 1995; Fogel & Hunt 1983; 

Finlay & Söderström 1992; Hendrick & Pregitzer 1992; Nadelhoffer & Raich 1992; Ryan 

et al. 1996). Approximately half of this NPP is used to replace fine roots even though 

they only represent ~ 2.5% of terrestrial plant biomass (Jackson et al. 1997). Although 

some of this is allocated for metabolic functions in healthy fine roots, a large part is used 

to replace tissues lost to the continuous process of fine root turnover; the replacement of 

fine roots by trees. Not only does this process require large amounts of carbon from the 

tree, it also inputs large amounts of this carbon into forest floors. This large nutrient input 

is fundamental to carbon and nutrient cycling in forest ecosystems (Gill & Jackson 2000) 

and is described in more detail in Chapter 2. 

As discarded fine root tissues are comprised largely of lignocellulose and can only 

be completely decomposed by saprophytic and pathogenic fungi, the different functional 

groups of root associated fungi may change during decomposition. This change will 
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likely be away from fungi that require a living host (mycorrhizal and endophytic) to those 

that do not depend on living hosts (saprotrophs and pathogens).  However, there is a 

knowledge gap regarding the ways in which fine root associated fungal communities 

actually change during decomposition. Because fine roots represent vast quantities of 

carbon that are continuously entering the soil environment, an understanding of the fungi 

that break them down may provide valuable information regarding carbon and nutrient 

cycling in forests. The goal of this study was to characterise how fungal communities 

responds to fine root senescence in Abies balsamea and Picea rubens, two trees common 

in temperate and boreal forests.  

Materials and Methods 

Sample Collection 

See Chapter 2 for details on site descriptions and harvesting procedures. Fine root 

systems were sampled for each tree species at each site and at each time interval (Table 

1). Fine roots from five time intervals were used for DNA extraction. DNA extraction 

was limited to these time intervals to minimise cost while providing a temporal resolution 

adequate to observe changes in community structure. 

DNA Extraction 

Fine roots were thawed and randomly selected as described for the mantle 

classification in Chapter 2. Primary fine roots, the most distal roots in a root system 

(Goebel et al. 2011), were removed from secondary fine roots under dissecting 

microscope (Nikon model SMZ800, Nikon Inc., Tokyo, Japan) in distilled water with 
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metal tweezers and measured along a piece of dampened filter paper (Whatman No 2, GE 

Healthcare Life Sciences, Mississauga, ON). 

Because the primary fine roots of A. balsamea and P. rubens differ physically 

(shorter and wider in A. balsamea and longer and narrower in P. rubens), a 

predetermined number of fine roots was used for DNA extraction (an equal number of A. 

balsamea and P. rubens fine roots would contain more A. balsamea tissue and more A. 

balsamea ECM DNA). An equivalent length of primary fine roots was taken from each 

species for DNA extraction. Fifty cm of primary fine roots from each species were dried 

at 60°C for 12 hours and weighed using an analytical balance (Denver Instruments PI-

214, Bohemia, NY) resulting in 12.2 mg for A. balsamea and 8.8 mg for P. rubens (a 

ratio of approximately 1 to 1.5). Therefore, 2 cm of primary fine roots were harvested per 

A. balsamea sample and 3 cm per P. rubens sample. This relatively short length of tissue 

was chosen as root systems from later time intervals had a limited number of primary fine 

roots remaining after decomposition. 

Primary fine roots were placed in a 2 ml O-ring tube with 500 mg of silica beads 

(Omni International, Kennesaw, GA) and 600 µl of AP1 buffer (DNeasy Plant Mini Kit, 

Qiagen, Hilden, Germany) then oscillated at 5000 RPM for 10 minutes in a Omni Bead 

Ruptor Homogenizer (Omni International, Kennesaw, GA). DNA extraction then 

followed protocol of the Qiagen DNeasy plant extraction kit (Qiagen, Hilden, Germany). 

All DNA extracts were diluted 1:10 in distilled water and stored at -20°C. 
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Polymerase Chain Reaction (PCR) 

The internal transcribed spacer (ITS) region was amplified from each sample 

using the forward primer ITS1f (3ʹ- TCCGTAGGTGAACCTGCGG-5ʹ) (Gardes & Bruns 

1993) and the reverse primer ITS4 (3ʹ-TCCTCCGCTTATTGATATGC-5ʹ) (White et al. 

1990).  ITS1f anneals in the 18S (SSU) rRNA gene, while ITS4 anneals in the 28S (LSU) 

rRNA gene. This amplifies the ITS1 region, the conserved intercalary 5.8S rRNA gene, 

and the ITS2 region. The ITS1 and ITS2 regions are commonly used as “barcoding” 

regions for fungi and multiple sequence databases are available (Schoch et al. 2012). 

These regions are highly divergent and vary at the species level.  

Reactions were performed on a Veriti 96 Well Thermocycler (Applied 

Biosystems, Foster City, CA) in 25-µl reactions. Each 25-µl reaction contained: 12.5 µl 

GoTaq® Green Master Mix (Promega, Madison, WI), 2.5 µl ITS1f (2.5 µM) and 2.5 µl 

ITS4 (2.5 µM) (White et al. 1990) (IDT, Coralville, IA) and 7.5 µl of DNA. PCR 

amplification parameters were as follows: 94°C for 60 s, followed by 30 cycles of 94°C 

for 60 s, 60°C for 60 s, and 72°C for 120 s, with a final elongation at of 72°C for 10 m. 

Products were run on 1.5% agarose gels with 1X sodium-borate buffer using EZ-vision 

gel dye (Amresco®, Solon, OH) and an EC 105 electrophoresis power supply (E-C 

Apparatus Corporation, USA). Gels were imaged at 365 nm wavelength using an 

AlphaImager HP gel imaging system (ProteinSimple, San Jose, CA). Amplification was 

considered successful when products produced bands of approximately 1000 base pairs. 

Amplicons were stored at -20°C. 
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Molecular Cloning 

Amplicon libraries were purified following the protocol of the QIAquick PCR 

purification kit (Qiagen, Hilden, Germany) and ligated into vector plasmids according to 

pGEM®-T Easy Vector Systems protocol (Promega, Madison, WI). Ligated plasmids 

were transformed into competent NEB 5-alpha E. coli cells (New England Biolabs, 

Ipswich, MA). After the incubation period, competent cells were plated onto lysogeny 

broth medium and incubated at 37°C for 24 hours in a HeraTherm ICS100 incubator 

(Thermo Scientific, Waltham, MA). Twelve isolated colonies from each plate were 

transferred into 30 µl of distilled water using sterile toothpicks.  

Colony PCR 

The ligated fungal ITS was amplified from each E. coli culture using ITS1 and 

ITS4 (Gardes & Bruns 1993). The annealing site of the ITS1 is located downstream of 

the ITS1f site, affording a semi-nested PCR. Each 25-µl reaction contained: 12.5 µl 

GoTaq® Green Master Mix (Promega, Madison, WI), 2.5 µl ITS1 and 2.5 µl ITS4 (IDT, 

Coralville, IA) both at final concentrations of 2.5 µM, and 7.5 µl of DNA extract. PCR 

amplification parameters were the same as those reported above for preliminary-PCR. 

Products were run on gels as described above. Amplification was considered successful if 

products were approximately 1000 base pairs long. PCR products were sequenced using 

an ABI PRISM 3730XL DNA analyzer system using ITS1 and ITS4 primers at the 

McGill University and Genome Québec Innovation Centre. 
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ITS Sequence Analysis 

Forward and reverse ITS sequences were aligned using Sequencher 5.3 (Gene 

Codes Corporation, Ann Arbor, MI) to manually correct base pair discrepancies and 

create consensus sequences. Each consensus was queried in GenBank 

(blast.ncbi.nlm.nih.gov) using BLAST (megablast – exact matches). Operational 

taxonomical unit (OTU) assignment was based on a combination of the highest match 

score and the validity of database entry (voucher samples were favoured over 

environmental samples). When sequence matches on NCBI were ectomycorrhizal, they 

were subsequently queried in the UNITE (unite.ut.ee) database, which specializes in 

ectomycorrhizal fungi (Kõljalg et al. 2005).  

Sample Diversity, Analysis of Similarity, and Similarity Percentages 

All computations of diversity, rank-abundance, and ordinations were completed 

using the “vegan” (Oksanen et al. 2005) and “BiodiversityR” (Kindt & Coe 2005) 

packages in R statistical software (R Core Team 2015). Response of fungal community to 

treatment was analyzed across sites and seedling species. The OTUs detected in each 

sample were categorized into genera as identification to species was not always possible 

(Appendix 2, Table 1). The resulting community table was square-root transformed and 

similarity between samples was quantified according to the Bray-Curtis dissimilarity. 

Analysis of similarities (ANOSIM) was used to determine which predictor variables 

caused significant differences in fungal communities. Similarity percentages (SIMPER) 

analysis was used to determine to what degree OTUs contributed to overall similarity and 
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dissimilarity between each community. ANOSIM and SIMPER tests (Clarke 1993) were 

performed using Primer-E (v. 6) software (Clarke & Gorley 2006). 

Results 

DNA Sequencing and OTU Assignment 

DNA sequencing resulted in 317 unique OTUs; these sequences represented 

species from 33 different fungal genera (Table 3). Identification to genus was not 

possible for 34 sequences; therefore, these were assigned an OTU at the family level as 

further identification was not possible. For the 34 sequences that were only identifiable to 

the family level, 33 came from families within the order Helotiales, with the majority of 

these in the Helotiaceae. 

Redundancy Analysis, Analysis of Similarity, and Similarity of Percentages  

Redundancy analysis (RDA) showed that the main difference in fungal 

communities was driven by seedling species and that the Helotiaceae and Piloderma were 

highly influential (Figure 1). This was supported by analysis of similarity (ANOSIM) 

which showed the variation between fungal communities was being driven mostly by 

seedling species (Global R = 0.201, p = 0.008, permutations = 99,999). Similarity of 

percentages (SIMPER) analysis showed that Helotiaceae sp. accounted for the highest 

percentage of community similarity within A. balsamea while Piloderma was highest in 

P. rubens communities (Table 4).  Regarding dissimilarity between seedling 

communities, Piloderma had the highest contribution to dissimilarity with Helotiaceae 

contributing second most (Table 5).  
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Ectomycorrhizal Fungi 

Overall, ectomycorrhizal fungi were the most abundant functional group and 

made up the largest proportions of OTUs in most of the fungal communities (Figure 2 

and Figure 3). The most common genera were Piloderma, Cenococcum, Russula, 

Cortinarius, and Clavulina, in decreasing abundance (Figure 4). The proportion of ECM 

genera changed over time: Piloderma showed an overall increase in treatment seedlings 

compared to controls and was dominant at every time interval except one; Cenococcum 

showed decreases in proportion compared to controls, but started to return to control 

levels by the final time interval; Russula increased in proportion compared to controls 

especially in the last and second last time intervals; Cortinarius showed a steady decrease 

in proportion compared to its levels in controls; and Clavulina showed an inconsistent 

presence between time intervals, and were not detected at the last time interval (Figure 4). 

Regarding host preference, Piloderma was detected twice as much in P. rubens, 

Cenococcum was more abundant in A. balsamea, and Cortinarius was almost exclusively 

detected in P. rubens (Table 5). Russula and Clavulina had nearly equal abundances in 

both seedling species (Table 5). 

Endophytic Fungi 

Endophytes were detected from the first time interval post treatment through to 

the last time interval (Figure 3). The most abundant endophytic fungi belonged to 

Helotiaceae sp. OTU and Meliniomyces. Both of these showed high host specificity with 

Helotiaceae sp. detected almost exclusively in A. balsamea and Meliniomyces showing 

preference for P. rubens. Regarding other endophytic species, Acremonium, Chloridium, 
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and Oidiodendron were detected only in A. balsamea whereas Rhizoscyphus, 

Hyaloscyphaceae sp., and Herpotrichellaceae sp. were detected only in P. rubens (Table 

5).  

Saprotrophic Fungi 

Saprotrophic fungi were the least common functional group, appearing most at 

mid to late time intervals. One exception to this was Galerina sp. which appeared 

strongly in A. balsamea. Galerina sp. was the most commonly identified saprotroph and 

showed a preference for A. balsamea (Table 5). Picea rubens had a broader range of 

saprotrophic fungi identified including members of Leotia, Cryptococcus, and 

Penicillium (Table 5). 

Discussion 

Ectomycorrhizal fungi 

We found that the proportion of clones representing ECM fungi did not decrease 

as expected during the course of the decomposition experiment, even though the ECM 

mantles clearly became degraded. There are a few reasons why the ECM signal may have 

persisted. First, the presence of ECM DNA in a fine root does not imply a functional, or 

even a living ectomycorrhiza. The extensive internal network of hyphae forming the 

Hartig net within primary fine roots may remain after the exterior mantle has died and 

began to decompose. Decomposition of ectomycorrhizae has been observed to begin in 

the outer mantle cells and progress inward (Downes et al. 1992) resulting in slower 

decomposition of internal fungal tissues. Also, some ECM types produce a large amount 

of extramatrical hyphae for nutrient acquisition (Agerer 2001) which may also persist 
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after the mantle tissue has degraded. For example, some species of Piloderma, which had 

a strong presence at later sampling times, produce extensive mats of extracellular hyphae. 

Sclerotia, resistant masses of compact mycelia used for asexual regeneration in extreme 

environments, may also harbour fungal DNA after the ECM has decomposed. 

Cenococcum geophilum produces large numbers of resistant sclerotia and was well 

represented toward the end of the decomposition experiment. 

The presence of recalcitrant and antifeedant compounds may also explain why 

some species of ECM fungi remained into later stages of the study. Some species of 

Piloderma produce hyphae that are encrusted with calcium oxalate crystals; which may 

deter invertebrates thereby inhibiting decomposition. The genus Russula, the second most 

abundant genus of ECM at the final time interval, contains species that produce 

sesquiterpenes. These volatile organic compounds are thought to play a role in chemical 

defence and likely have antifeedant properties. Finally, pigmentation may also be a factor 

in ECM decomposition. Cenococcum geophilum is highly melanised and was still well 

represented in the cloning data 16 months post treatment. In contrast, members of 

Cortinarius were abundant in control seedlings, but showed a rapid decline in abundance 

post treatment. This may be due to a lack recalcitrant or antifeedant compounds. 

The inconsistent appearance of Clavulina may be explained by the cloning 

technique only being able to capture a “snapshot” of the community; because only 12 

cultures of E. coli were used for sequencing at each time interval, it may have been 

possible that Clavulina did not get included by chance. This being said, the same logic 
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holds true for the other common ECM fungi and they showed consistent appearance at 

each time interval.  

Finally, some ECM fungi may have facultative saprotrophic capabilities, allowing 

them to digest their root cell walls when host carbon is no longer provided. Under normal 

circumstances, some ECM can decompose components of plant litter and transport the 

nutrients back to their host (Courty et al. 2007). Plant litter older than three years is 

usually devoid of cellulose and hemicellulose (Osono & Takeda 2006) but has high 

concentrations of recalcitrant compounds such as lignin. Some ECM fungi produce 

digestive enzymes including cellobiohydrolase, b-glucosidase, xylosidase, and 

glucouronidase, all of which depolymerise organic substrates into glucose. Further, 

certain ECM fungi can produce laccase, enzymes involved in the digestion of lignin 

(Hatakka 1994; Eggert et al. 1996) which could allow for the decomposition of 

recalcitrant plant litter. Lindahl et al. (2007) propose that ECM fungi use their access to 

host sugars to co-metabolise recalcitrant organic matter as it is a source of sequestered N 

(Rineau et al. 2012; Bodecker et al. 2014; Lindahl & Tunlid 2015). It seems therefore that 

certain ECM fungi may have the capacity to decompose their former host in times of 

resource scarcity such as after fine root tip senescence. This may be a partial explanation 

for the abundance of some ECM genera in the late stages of the study. 

Multiple factors are believed to influence saprotrophic behaviour in ECM fungi. 

In laboratory experiments, carbon starved ECM fungi can produce cellulolytic and 

proteolytic enzymes (Courty et al. 2007; Baldrian 2009), a trait that may be useful when 

host carbon is no longer supplied in adequate amounts (Buée et al. 2005; Courty et al. 
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2007) and the ECM fungus needs to seek out alternative carbon sources (Lindahl & 

Tunlid 2015). Members of the genus Piloderma exhibit the ability to acquire carbon in 

the absence of a plant host (Erland et al. 1990). Hagerman et al. (1999) propose that their 

observations of living Piloderma on fine roots two years after a clear-cut event suggests 

saprotrophic activity on dying fine roots. Some species of Piloderma have been shown to 

possess laccase-like genes that are expressed during high nitrogen conditions (Chen et al. 

2003). These saprotrophic abilities may explain why Piloderma was the most abundant 

ECM fungi after 16 months post treatment in our study.  

Hagerman et al. (1999) also found that members of Lactarius formed higher 

proportions of ectomycorrhizae at clear-cut sites than Cortinarius compared to 

proportions found in forest. Some Lactarius have been shown to produce enzymes 

involved in the depolymerisation of lignin (Giltrap 1982) and these could possibly be 

sued to decompose organic matter for carbon and nutrients. In our study Cortinarius 

made up a high proportion of control samples but decreased steadily in post treatment 

samples over time. When a host stops providing carbon, whether it is due to host death or 

fine root turnover, fungi such as Cortinarius may be the first to disappear from the 

community for a number of reasons. First, they may lack or have relatively low 

saprotrophic ability compared to fungi like Piloderma and Lactarius, and be 

outcompeted. Second, their lack of antifeedant/recalcitrant secondary metabolites 

(melanin, calcium oxalate, sesquiterpenes, etc...) may cause them to decompose quickly 

upon death resulting in their tissues being removed quickly from the community. 
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There is debate regarding whether the properties listed above warrant some ECM 

to be classified as facultative saprotrophs (Baldrian 2009). Some researchers propose that 

instead of adhering to concrete functional classifications, it is more accurate to describe 

fungi along a biotrophic-saprotrophic continuum (Koide et al. 2008). Baldrian (2009) 

makes the point that as ECM fungi would still be dependent on their host for substrate, 

they could be described as decomposers but not saprotrophs. This argument seems 

semantic in nature as all saprotrophs can be thought of as dependent on plants as they 

produce the substrates used by saprotrophs to survive. It seems that the differences 

between decomposer and saprotroph are based on independence from a plant host 

(Baldrian 2009). 

In summary, some ECM fungi may have the potential to decompose organic 

matter. Piloderma dominated the ECM community 16 months post-treatment and is 

thought to have saprotrophic ability. In contrast, Cortinarius were almost absent at this 

time. Whether or not the fungi detected in the last time interval are viable is difficult to 

determine; external fungal tissues may have been dead, but Hartig nets may have viable 

due to their internal location. Antifeedants and recalcitrant compounds may also play a 

role. More studies into these traits are needed before conclusions can be reached 

regarding their effect on survivability and decomposition. 

Fungal root endophytes 

The most abundant endophytic fungus in this study, Helotiaceae sp., was 

identifiable only to the family level (Helotiaceae). This endophyte shared 100% ITS1, 

5.8S rRNA, and ITS2 sequence similarity with Helotiaceae sp. VI reported by Kernaghan 
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& Patriquin (2011). In their study of root endophytes in boreal trees (Abies balsamea, 

Picea glauca, and Betula papyrifera) they identified seven Helotialian endophytes which 

were assigned the operational names Helotiaceae I-VII. These endophytes are closely 

related to the Rhizoscyphus ericae aggregate based on a 96-98% similarity between their 

ITS1, 5.8S rRNA, and ITS2 sequences (Kernaghan & Patriquin 2011). Considering that 

geographically separated R. ericae show less than 3.5% sequence variance (Egger & 

Sigler 1993; Hambleton & Currah 1997), Helotiaceae sp. is likely closely related to R. 

ericae. Interestingly, R. ericae was detected in our study although only in P. rubens 

whereas Helotiaceae sp. was almost exclusively found in A. balsamea. Although R. 

ericae is an ericoid mycorrhizal (ERM) fungus known for its presence in the Ericaceae, 

various ERM have been reported in coniferous ECM (Bergero et al. 2000; Vrålstad et al. 

2002; Collier & Bidartondo 2009). 

As Helotiaceae sp. is the dominant endophyte in this study, but only identified to 

the family level, it is hard to make precise conclusions about its functionality. However, 

considering its high degree of similarity to R. ericae, the behaviours reported for R. 

ericae may also be indicative of the ecological function of Helotiaceae sp. Ericoid 

mycorrhizae are formed in plants belonging to the Ericaceae and are common in acidic, 

nutrient poor soils of Northern latitudes (Cairney & Burke 1998). Unlike ECM fungi, 

ERM do not produce mantles or large amounts of exploratory hyphae, instead they only 

extend a few millimetres into the rhizosphere. Because of this, it is believed that the 

major benefit that conferred by R. ericae and other ERM to their host is their ability to 

degrade sources of organic material in the soil and transfer back the resulting products 
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(Smith & Read 1997). In their review of the saprotrophic ability of ECM, Lindahl & 

Tunlid (2015) state that ERM show more saprotrophic ability than ECM. In laboratory 

experiments, R. ericae produces a range of enzymes involved in decomposition including 

cellulases, hemicellulases, polygalacturonase, and polyphenol oxidases (Cairney & Burke 

1998 and references within), which may facilitate the decomposition of plant litter and 

the acquisition of N and P. Rhizoscyphus ericae also tolerates and detoxifies phenolic 

acids and tannin complexes (Leake & Read 1990; Leake & Read 1991), which are 

common in coniferous roots. Cairney & Burke (1998) admit that the enzyme expression 

in R. ericae is variable and that most of the work reported had been completed in a 

laboratory setting. However, their review strongly suggests that R. ericae plays a role in 

decomposing organic matter in mor humus (Green et al. 1993), a humus type typical of 

coniferous forests and are rich in fungi. 

The increase in the proportion of DNA representing Helotiaceae sp. and other 

endophytic fungi post-treatment indicates that host senescence may cause some 

endophytes to increase in abundance relative to their levels in living seedlings. The 

increase could be indicative of endophytes acting as latent saprotrophs, utilising the 

readily accessible labile compounds (i.e. pectin) of their senescent host. However, this 

could also be interpreted as a final effort by the endophytes to produce exploratory tissues 

used to find other hosts. Without more detailed analysis of fine root biochemistry during 

this process, it is difficult to make conclusions regarding the increase in root endophytic 

fungi after plant death. 
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Saprotrophs 

Saprotrophs did not make up large portions of the fungal communities; half of the 

saprotrophic OTUs were singletons. Most saprotrophs observed appeared at later time 

intervals, except for Galerina which appeared relatively early in A. balsamea. Galerina 

was four times more abundant than any other saprotrophic genus and was the dominant 

saprotroph found in A. balsamea. The saprotrophic community of P. rubens was more 

even, being made up of equal parts of Leotia, Cryptococcus, and Penicillium. The 

relatively low abundance of saprotrophs compared to ECM and endophytic fungi implies 

that they are not responsible for the majority of the decomposition that occurs within the 

first 16 months of fine root senescence. This is not surprising considering the relatively 

slow decomposition of organic materials in northern coniferous forests. 

It is interesting that the abundance of Galerina increased concurrently with the 

endophytes. Although Galerina is typified as being a saprotroph, it has been suggested 

that some members of this genus may have biotrophic or endophytic stages in mosses 

(Gulden 2008). OTUs identified as Galerina appeared both in dead and living portions of 

moss tissue signifying that it may be adapted to more than just a saprotrophic niche 

(Heimdal 2012). Whether or not Galerina could have a similar relationship with conifers 

is yet to be tested, but it could explain why this genus was both the most common and the 

earliest saprotroph detected in our study. Alternatively, as many of the plots in this study 

had significant moss cover, Galerina may have been the dominant saprotroph in the soil 

community which resulted in its abundance and early detection. This being said, it is odd 
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that Galerina was almost exclusively isolated from A. balsamea, as host preference is 

more typical of a biotrophic or endophytic relationship than a saprotrophic one.   

The slow onset of saprotrophic fungi relative to other functional groups implies 

that saprotrophic decomposition of fine roots in the Acadian Forest does not occur 

appreciably during the first 16 months after root death. Although this agrees with other 

descriptions of litter decomposition in northern forests, the saprotrophic diversity may be 

underestimated as a result of functional classification. As in endophytes, whether or not 

certain fungi should classified as saprotrophs is not always clear. Because of this, there 

may be more saprotrophic decomposition of fine roots than is made apparent by simply 

characterising changes in the functional groups of the fungal community. Biochemical 

quantification of root constituents and mRNA analyses during fine root decomposition 

may shed light on decomposition in fine roots, as there will always be debate as to which 

species belong to which functional groups. For instance, as with Galerina, there is 

evidence suggesting that Mycena may have endophytic stages (Kernaghan & Patriquin 

2011) and that Geoglossum is also not purely saprotrophic (Ohenoja et al. 2010). While 

the assignment of genera like Penicillium, Mortierella, Cryptococcus, Perenniporia, and 

Leotia to the saprotroph category is fairly well supported, this proves difficult for under-

characterised fungi like Hannaella. Saprotrophy seems to be the default functional group 

to which fungi are assigned in the absence of detailed information. This is understandable 

as many fungi act as decomposers, but it makes detailed ecological conclusions difficult 

and ultimately reflects the amount of work required for a better understanding of the 

fungal ecology involved in fine root decomposition. 
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Conclusion 

The sequence data shows that ECM fungi dominate the fine root communities of 

A. balsamea and P. rubens both before and after treatment with a temporary increase in 

endophytic fungi. Although still dominant, the ECM community changes from a diverse 

assemblage of genera, to mainly Piloderma and Russula. The ECM at the end of the 

study could be: a) dead, but recalcitrant to decomposition because of secondary 

metabolites, melanisation, and antifeedants or b) living and receiving carbon in a 

saprotrophic manner either from their deceased host or from organic matter in the soil. 

The behaviour of ECM after host senescence is critical to better understanding and more 

accurately predicting carbon models for forests dominated by trees involved in ECM 

symbioses. Although this study investigated the changes root systems that were 

completely senescent, only parts of the root system actually become senescent during 

normal fine root turnover and ECM fungi may not behave similarly during both 

processes. The extent of ECM decomposition of fine root material in northern forests 

needs to be further researched. 

Although plagued with semantic and classification issues, endophytes showed an 

initial increase in abundance following host treatment that began to subside in the later 

stages of the study. Whether this surge represents increased production from newly 

available host resources or an effort by the endophytes to find a new host is unknown, but 

warrants further study. As some root endophytes show the ability to produce enzymes 

used in decomposition, their effect on carbon cycling in forests could be significant as 

they are ubiquitous in root tissues (Mayerhofer et al. 2013b). Additionally, the 
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differences observed in endophytic communities between A. balsamea and P. rubens 

warrants further study. First, A. balsamea had almost twice as many endophytic OTUs 

than P. rubens. Secondly, the endophytic communities of A. balsamea were dominated 

by Helotiaceae sp. and Oidiodendron and P. rubens was dominated by Meliniomyces and 

Rhizoscyphus. These fungi are closely related and more information on their preference 

for A. balsamea should prove interesting. However, the problem of classifying fungi by 

functional groups makes it difficult to compare communities between these two seedling 

species with confidence.  

Future Research 

The sample size of sequence data was a major limitation of this study. Although 

cloning represented many hours of work, the data returned are relatively small (319 

OTUs) compared to the amount returned by a next generation sequencing (NGS) 

platform, which can generate hundreds of thousands to millions of OTUs. Although a 

single run on a NGS platform is relatively expensive, analyses that require temporal 

resolution or large amounts of replication quickly become more expensive using 

traditional cloning methods. For future studies, it may be beneficial to do initial 

exploration of fungal communities using an NGS platform and following up with targeted 

cloning of communities during stages of interest. 

Due to the labour intensity of molecular cloning, only controls at the beginning of 

the experiment had their fungal communities analysed. In future studies treatment 

seedlings should be analysed with control seedlings for each time interval. This could 
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capture seasonal fluctuations in fungal communities, allowing seasonal variation to be 

accounted for in future research.  

As was shown by the slow mobility of saprotrophic fungi, decomposition of fine 

roots would benefit from a longer observational period. This may be difficult to achieve 

within the duration of a typical graduate degree. An alternative would be to analyse 

fungal communities of fine roots at sites where host death is both known and staggered 

(i.e. a nursery), allowing for the fungal communities over time to be analysed without 

having to wait for the time to pass. This is often problematic as root systems are sensitive 

to anthropogenic disturbances and the amount of information known about a certain plot 

of forest is usually positively correlated with disturbances to that site. A compromise 

needs to be developed where decomposition of fine roots in a relatively undisturbed 

forest ecosystem can be monitored without traumatic disturbances to the soil ecosystem. 

This may be more achievable in the future as remote sensory technologies 

(minirhizotrons) become more affordable. In lieu of technological advancement, fungal 

communities of fine roots at clear-cuts could be studied in further detail (e.g. Hagerman 

et al. 1999). Additionally, tree nurseries could be studied as harvest date would be known 

and terrain would be less disturbed. Depending on the harvesting schedule of the nursery, 

decomposition at various times could be measured at the same location. Finally, plots of 

forest that have experienced selective harvest may prove the best compromise; these plots 

would have soil communities more typical of undisturbed forest and would not suffer 

disturbances as severe as the forest floor does during clear-cuts.  
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An aspect of the project design worth noting is that all primary roots analysed 

needed to be attached to secondary fine roots of the root system after root systems were 

extracted from the soil. In addition to the many fine roots lost during the extraction 

procedure, primary fine roots that were discarded into the rhizosphere were not able to be 

sampled. Although we speculate the communities are likely similar, any differences 

between communities decomposing intact root systems compared to those only in the 

primary fine roots was not touched upon by this study. Studies looking at the 

communities of fine roots lost during fine root turnover would be desirable but collecting 

these tissues without severely disturbing their environment is currently not achievable. 

Finally, to better understand fungal decomposition of fine roots, the constituents 

of fine roots should be measured over the decomposition process. Levels of labile 

compounds such as sugars and proteins could be identified using biochemical tests or an 

HPLC. The amount of fungal tissue in fine roots may also be quantified using a similar 

method. Although there are many litter decomposition studies in the literature, to the 

knowledge of the author, none combine the quantification and description of 

decomposition of fine roots with changes in their fungal communities. This may shed 

light on whether some groups of fungi are filling saprotrophic niches by decomposing 

certain components of the fine roots, and would further elucidate the process of fine root 

decomposition.



 
 

86 
 

 
Figure 1. Proportion of OTUs made up by the different functional groups of root associated fungi up to 16 months post-treatment.
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Figure 2. Ectomycorrhizal community (proportion of OTUs) in pre-treatment and 16 month post-treatment seedlings.
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Figure 3. Endophytic community (proportion of OTUs) in post-treatment seedlings.
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Figure 4. Saprotrophic community (proportion of OTUs) in post-treatment seedlings.
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Figure 5. Redundancy analysis (RDA) for treatment seedlings from both A. balsamea 
and P. rubens across all times. Ellipses represent 95% confidence intervals around 
centroid. Results based on 9,999 permutations. 
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Table 1. List of literature supporting categorization of OTUs into functional groups (FG). 

OTU FG References 
Acremonium END Siegel 1993 

Amanita ECM Mleczko 2004; Hobbie et al. 2001; Bidartondo et al. 
2000; Högberg et al. 1999; Cripps & Miller 1995 

Camarophyllopsis ECM Birkebak 2013 

Cenococcum ECM Mahmood et al. 1999; Harniman & Durall 1996; Godbout 
& Fortin 1983; Trappe 1962 

Chloridium END Harney et al. 1997; Wilcox & Wang 1985; Wilcox et al. 
1974; Hammill 1972 

Clavulina ECM Tedersoo et al. 2013; Tedersoo & Smith 2013; Matheny 
et al. 2009; Tedersoo et al. 2003 

Clavulinopsis SAP Brundrett et al. 1996 

Cortinarius ECM Mleczko 2004; Kuss et al. 2004; Hobbie et al. 2001; 
Högberg et al. 1999; Godbout & Fortin 1983 

Cryptococcus SAP Botha 2011; Botha 2006 
Elaphomyces ECM Tedersoo et al. 2003; Agerer 1999; Miller & Miller 1984 
Galerina SAP Mleczko 2004; Hobbie et al. 2001 
Geoglossum SAP Molina et al. 1992 
Hannaella SAP Landell et al. 2014; Botha 2011 

Hebeloma ECM 
Clemmensen et al. 2006; Mleczko 2004; Jakucs et al. 
1999; Högberg et al. 1999; Brunner et al. 1991; Trappe 
1962 

Helotiaceae sp. END Kernaghan & Patriquin 2011 
Hyphodiscus SAP Ottoson et al. 2015; Tedersoo et al. 2009 

Inocybe ECM Mleczko 2004; Hobbie et al. 2001; Högberg et al. 1999; 
Magyar et al. 1999; Cripps & Miller 1995 

Lactarius ECM Flores et al. 2005; Nuytinck et al. 2004; Eberhardt et al. 
2000; Hobbie et al. 2001; Högberg et al. 1999 

Leotia SAP Molina et al. 1992 
Meliniomyces ECM Twieg et al. 2007; Brand et al. 1992 
Mortierella SAP Kernaghan 2013; Bååth & Söderström 1980 
Mycena SAP Hobbie et al. 2001; Högberg et al. 1999 

Oidiodendron END Rice & Currah 2006; Lacourt et al. 2000; Couture et al. 
1983 

Penicillium SAP Kernaghan 2013; Bååth & Söderström 1980; Siu 1951 
Perenniporia SAP Ben-Younes et al. 2007 

Phialocephala END Menkis et al. 2005; Harney et al. 1997; O’Dell et al. 
1993; Wang & Wilcox 1985 

Piloderma ECM Baxter & Dighton 2001; Dahlberg et al. 1997; Goodman 
& Trofymow 1996; Molina et al. 1992 

Russula ECM Hobbie et al. 2001; Beenken 2001; Högberg et al. 1999; 
Taylor & Alexander 1989; Trappe 1962 
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Rhizoscyphus END Grelet et al. 2010; Zhang & Zhuang 2004; Cairney & 
Burke 1998; Kernan & Finocchio 1983 

Sistotrema ECM Di Marino et al. 2008; Nilsson et al. 2006 
Tomentella ECM Agerer 2006; Jakucs et al. 2005; Kõljalg 1992 
Trechispora ECM Dunham et al. 2007 

Truncocolumella ECM Horton et al. 2005; Massicotte et al. 2000; Eberhardt & 
Luoma 1996; Trappe 1962 

Tylospora ECM Agerer 2006; Eberhardt et al. 1999; Taylor & Alexander 
1991 
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Table 2. OTUs from control and treatment seedlings across all time intervals for A. 
balsamea and P. rubens. 

OTU Abun. A. 
balsamea 

P. 
rubens Prop. (%) Cum.(%) FG 

Piloderma 67 23 44 21.0 21.0 ECM 
Cenococcum 29 20 9 9.1 30.1 ECM 
Russula 28 16 12 8.8 38.9 ECM 
Cortinarius 25 2 23 7.8 46.7 ECM 
Helotiaceae 24 23 1 7.5 54.2 END 
Clavulina 21 10 11 6.6 60.8 ECM 
Galerina 14 12 2 4.4 65.2 SAP 
Lactarius 13 13 0 4.1 69.3 ECM 
Meliniomyces 13 2 11 4.1 73.4 END 
Trechispora 10 2 8 3.1 76.5 ECM 
Hebeloma 7 0 7 2.2 78.7 ECM 
Truncocolumella 6 6 0 1.9 80.6 ECM 
Rhizoscyphus 6 1 5 1.9 82.5 END 
Tomentella 5 0 5 1.6 84.1 ECM 
Amanita 4 4 0 1.3 85.4 ECM 
Sistotrema 4 4 0 1.3 86.7 ECM 
Acremonium 4 4 0 1.3 88.0 END 
Chloridium 4 4 0 1.3 89.3 END 
Hyaloscyphaceae sp. 4 0 4 1.3 90.6 END 
Tylospora 3 0 3 0.9 91.5 ECM 
Oidiodendron 3 3 0 0.9 92.4 END 
Cryptococcus 3 0 3 0.9 93.3 SAP 
Leotia 3 0 3 0.9 94.2 SAP 
Penicillium 3 0 3 0.9 95.1 SAP 
Camarophyllopsis 2 0 2 0.6 95.7 ECM 
Herpotrichellaceae sp. 2 0 2 0.6 96.3 END 
Dermateaceae 2 2 0 0.6 96.9 END 
Elaphomyces 1 1 0 0.3 97.2 ECM 
Inocybe 1 0 1 0.3 97.5 ECM 
Phialocephala 1 1 0 0.3 97.8 END 
Geoglossum 1 1 0 0.3 98.1 SAP 
Hannaella 1 1 0 0.3 98.4 SAP 
Mortierella 1 0 1 0.3 98.7 SAP 
Mycena 1 1 0 0.3 99.0 SAP 
Perenniporia 1 1 0 0.3 99.3 SAP 
Ramariopsis 1 0 1 0.3 99.6 SAP 
Mytilinidaceae 1 1 0 0.3 100.0 END 
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Table 3. SIMPER scores for OTU similarity between A. balsamea and P. rubens. 

A. balsamea 
OTU Avg. abun. Avg. sim Cont. (%) Cum. (%) 
Helotiaceae sp. 0.93 7.34 36.46 36.46 
Piloderma 0.79 3.18 15.8 52.25 
Cenococcum 0.71 3.09 15.35 67.61 
Galerina 0.46 2.29 11.37 78.98 
Russula 0.59 2.12 10.54 89.52 
Lactarius 0.5 1.46 7.27 96.79 
 
P. rubens 
OTU Avg. abun. Avg. sim Cont. (%) Cum. (%) 
Piloderma 1.36 9.22 34.08 34.08 
Russula 0.68 5.52 20.4 54.49 
Cortinarius 0.77 3.76 13.89 68.37 
Meliniomyces 0.49 2.42 8.94 77.31 
Cenococcum 0.46 2.02 7.47 84.78 
Hyaloscyphaceae sp. 0.29 1.87 6.9 91.68 
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Table 4. SIMPER scores for dissimilarity. 

OTU A.balsamea  P.rubens Dissimilarity Cont. (%) Cum. (%) 

Piloderma 0.79 1.36 9.83 12.01 12.01 
Helotiaceae sp. 0.93 0.07 6.83 8.34 20.36 
Cenococcum 0.71 0.46 6.43 7.86 28.22 
Cortinarius 0.14 0.77 5.92 7.23 35.45 
Russula               0.59 0.68 5.60 6.84 42.28 
Clavulina 0.32 0.46 4.76 5.81 48.10 
Meliniomyces 0.10 0.49 4.08 4.99 53.09 
Galerina 0.46 0.10 3.73 4.55 57.64 
Lactarius 0.50 0.00 3.53 4.31 61.95 
Trechispora 0.10 0.34 2.88 3.52 65.47 
Rhizoscyphus 0.07 0.27 2.42 2.96 68.43 
Hyaloscyphaceae sp. 0.00 0.29 2.19 2.67 71.11 
Hebeloma 0.00 0.25 1.98 2.42 73.53 
Chloridium 0.24 0.00 1.86 2.27 75.79 
Acremonium 0.24 0.00 1.78 2.17 77.96 
Tomentella 0.00 0.21 1.48 1.80 79.77 
Amanita 0.20 0.00 1.47 1.79 81.56 
Sistotrema 0.20 0.00 1.47 1.79 83.35 
Penicillium 0.00 0.17 1.26 1.54 84.89 
Cryptococcus 0.00 0.17 1.24 1.52 86.41 
Truncocolumella 0.17 0.00 1.16 1.42 87.82 
Leotia 0.00 0.12 1.04 1.27 89.10 
Herpotrichellaceae sp.  0.00 0.14 1.00 1.22 90.32 
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CHAPTER 4 

Research Synthesis and Concluding Remarks 

 

Although the fine root fungal communities examined in this study contained a 

combination of functional groups, ectomycorrhizal fungi were dominant. The five most 

abundant ectomycorrhizal genera according to the molecular data were Piloderma, 

Cortinarius, Cenococcum, Russula, and Clavulina. According to morphological 

observations, host senescence leads to communities dominated by the highly melanised 

mantles of C. geophilum and hyaline species decrease rapidly, with Piloderma and 

Russulaceae showing intermediate rates of disappearance. These discrepancies may have 

a few explanations. The dominance of C. geophilum mantles in the morphological data is 

likely due to its characteristic high melanin content and its extreme recalcitrance. As 

Piloderma and Russula ectomycorrhiza are difficult to identify compared to those formed 

by C. geophilum, there was surely some degree of identification bias toward C. 

geophilum. The increased abundance of Piloderma and Russula in the molecular data 

may be from tissues produced for saprotrophy; many of these structures could have been 

within the fine roots and would not have been visible during the morphological 

observations. Regarding similarities, Cortinarius was found to decrease in abundance 

after host senescence in both the molecular and morphological (hyaline category) data.   

Endophytes showed an increase in abundance upon host death which began to 

subside at the last time interval (Figure 1). The most abundant endophyte was 

Helotiaceae sp. which showed up almost entirely in A. balsamea. In contrast, P. rubens 
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had approximately half (n = 23) the abundance of endophytes as A. balsamea (n = 39) 

and its endophytic community largely consisted of Meliniomyces and Rhizoscyphus. It 

may be that the increase in endophytic abundance is a result of increased availabilities of 

labile compounds upon fine root senescence. It could also be that endophytic fungi are 

increasing their production of exploratory structures used to abandon their senescent host 

to find a viable one. Given the variability of endophytes and the mixed endophytic 

community, a combination of both these behaviours is likely possible. Endophytes can be 

imagined as existing on a biotroph-saprotroph continuum with some more adapted to a 

semi-saprotrophic lifestyle than others as some have shown the capacity to decompose 

cellulose and hemicelluloses. As plant litter older than three years has been shown to 

have low levels of cellulose and hemicellulose (Osono & Takeda 1998), it may be that 

endophytes are accessing these resources. The abundance of Helotiaceae sp. may be 

because it has increased saprotrophic ability compared to other endophytes. More 

detailed studies centred on examining the endophytic community in fine roots are 

necessary to better understand this complex community of fungi. As morphological 

identification of endophytes is often difficult, future studies will likely need to be 

molecularly based.  

 Saprotrophs were not well represented in this study and appeared in low 

abundances, mostly at mid to late time intervals. The exception to this was Galerina 

which was both the most abundant and the earliest saprotroph detected in treatment 

seedlings. It is possible that some species of Galerina may have endophytic stages in 

coniferous fine roots as species of this genus have been detected in healthy bryophyte 
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tissues (Heimdal 2012; Gulden 2008) and the closely related genus Mycena has been 

found to contain endophytic species (Kernaghan & Patriquin 2011). Furthermore, 

Galerina was found almost entirely in A. balsamea which had a higher endophytic 

abundance compared to P. rubens. If Galerina were classified as an endophyte in this 

study, the saprotrophs would be almost negligible as OTUs of Galerina comprised nearly 

half of this category (Figure 2). Ecologically, the advantage gained by saprotrophic 

endophytes is spatiotemporal; these fungi would have access to senescent tissues before 

externally living saprotrophs. This could potentially lead to faster decomposition of fine 

roots harbouring saprotrophic endophytes compared to those fine roots lacking them.  

Longer studies focusing on the fungal dimension of fine root decomposition are 

needed. As fine root turnover deposits large amounts of carbon into forest soils, better 

understanding of the dynamics of fine root decomposition is crucial to more accurate 

carbon modelling. This is especially important in northern forests as decomposition of 

SOM is characteristically slow (Berg 2000; Berg et al. 2000), as our edaphic 

measurements show (Chapter 2). Future studies should concentrate on measuring the 

labile (sugars, proteins, cellulose, hemicelluloses) and recalcitrant (lignin, suberin, 

waxes) compounds of fine roots and molecular characterisation of the fungal 

communities. This would allow for more confident categorization of endophytes and 

traditional saprophytes into functional niches of the decomposition process. 

In summary, endophytes were found to be less common than ectomycorrhizae, 

but they were far more common than saprotrophs. This may indicate that endophytes play 

a role in early fine root decomposition, before saprotrophic fungi. The dominance of 
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some types of ectomycorrhizal fungi likely also play a role in decomposition, whether 

this be by decreasing decomposition through the presence of recalcitrant compounds or 

by increasing it by their own saprotrophic abilities. The differences between fine root loss 

in A. balsamea and P. rubens has shown that differences in ecologically dominant tree 

species may have a significant effect on the amount or rate that fine root litter enters 

forest soils. Although limited in sample size compared to next generation sequencing, the 

traditional cloning methods used in this study have provided important data regarding the 

fungal communities of the early stages of decomposition in A. balsamea and P. rubens 

fine roots. Some ectomycorrhizal fungi appear to tolerate host death better than others 

and endophytic fungi may play roles in decomposition. Whether these roles are only until 

saprotrophic fungi dominate the fine root litter is unknown.  

As climate change is undoubtedly the most important scientific issue on the 

horizon, it is fundamentally important that the organisms involved in fine root 

decomposition are well understood. A better understanding of how fungi affect fine root 

decomposition of northern forests may increase carbon model accuracy by allowing a 

more accurate calculation of fine root decomposition rate. The baseline data produced by 

this study are an important start in characterising how root associated fungal communities 

are affected by fine root decomposition and how these communities may impact fine root 

decomposition. The results of this research can act as a springboard for future research 

into the roles that endophytic and ectomycorrhizal fungi play in fine root decomposition.   
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Figure 1. Mean soil temperature for Annapolis Road (AR) and McGowan Lake (ML). Error bars represent 95% confidence interval. 
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Figure 2. Mean soil acidity for Annapolis Road (AR) and McGowan Lake (ML): error-bars represent 95% confidence intervals.
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Figure 3. Mean soil moisture for Annapolis Road (AR) and McGowan Lake (ML): error-bars represent 95% confidence intervals.
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Figure 4. 95% family wise confidence levels for pH ~ plot at Annapolis Road (1, 2, 3) 
and McGowan Lake (4, 5, 6).
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Figure 5. 95% family wise confidence levels for soil moisture | plot at Annapolis Road 
(1, 2, 3) and McGowan Lake (4, 5, 6).
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Figure 6. 95% family wise confidence levels for TBI ~ plot at Annapolis Road (1, 2, 3) 
and McGowan Lake (4, 5, 6) 
.
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Figure 7. Primary fine root loss in control and treatment seedlings of A. balsamea and P. rubens at Annapolis Road (AR) and 
McGowan Lake (ML): error-bars = SE.
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Figure 8. Seedling age for A. balsamea and P. rubens at each site: error-bars represent 95% confidence intervals. 
.
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Table 1. Edaphic measurements for Annapolis Road Plot 1. 

Time Interval Soil pH Soil Temp. (°C) Soil Moisture (%) 
Rep. Avg. Rep. Avg. Rep. Avg. 

0 
- 

- 
- 

- 
- 

- - - - 
- - - 

1 
- 

- 
- 

- 
- 

- - - - 
- - - 

2 
- 

- 
- 

- 
- 

- - - - 
- - - 

3 
5.2 

5.2 
11.8 

11.7 
60 

70 4.6 11.7 80 
5.8 11.5 60 

4 
3.9 

4.5 
8.4 

8.2 
90 

80 5.0 7.5 60 
4.5 8.7 85 

5 
5.0 

5.2 
4.0 

3.8 
50 

60 5.1 3.3 70 
5.6 4.1 60 

6 
5.5 

5.2 
5.7 

5.4 
70 

75 5.1 5.6 95 
5.1 5.0 60 

7 
4.2 

5.3 
8.7 

8.1 
70 

80 5.9 6.9 80 
5.9 8.6 90 

8 
6.0 

5.8 
11.6 

11.3 
70 

75 5.8 10.7 60 
5.5 11.6 90 

9 
5.6 

5.4 
15.5 

15.4 
65 

50 5.5 15.0 60 
5.2 16.3 40 

10 
5.2 

5.3 
14.9 

14.7 
55 

70 5.2 14.3 100 
5.4 15.0 60 

11 
5.2 

5.1 
17.8 

17.1 
90 

65 5.0 16.7 80 
5.2 16.8 25 

12 
5.2 

5.1 
10.1 

10.0 
40 

65 5.0 10.0 100 
5.2 9.9 60 
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Table 2. Edaphic measurements for Annapolis Road Plot 2. 

Time Interval Soil pH Soil Temp. (°C) Soil Moisture (%) 
Rep. Avg. Rep. Avg. Rep. Avg. 

0 
- 

- 
- 

- 
- 

- - - - 
- - - 

1 
- 

- 
- 

- 
- 

- - - - 
- - - 

2 
- 

- 
- 

- 
- 

- - - - 
- - - 

3 
5.8 

5.9 
11.3 

11.6 
30 

40 5.2 11.8 60 
6.7 11.6 25 

4 
5.4 

5.0 
8.5 

7.8 
35 

55 5.0 7.5 40 
4.5 7.4 100 

5 
5.8 

5.5 
4.0 

4.3 
90 

70 5.3 4.5 80 
5.4 4.3 40 

6 
5.6 

5.2 
5.5 

7.0 
70 

80 4.3 8.4 95 
5.8 7.0 70 

7 
6.0 

6.0 
8.6 

8.6 
70 

60 6.0 8.6 50 
5.9 8.7 60 

8 
6.1 

5.9 
11.0 

11.7 
45 

65 5.5 11.1 70 
6.0 13.0 75 

9 
5.0 

5.1 
16.4 

16.9 
55 

60 5.0 17.6 60 
5.3 16.8 70 

10 
4.7 

5.4 
15.0 

15.5 
45 

50 5.8 15.4 55 
5.7 16.1 50 

11 
4.8 

5.2 
17.8 

17.6 
95 

60 5.1 17.3 40 
5.8 17.8 45 

12 
5.6 

5.4 
10.5 

9.7 
70 

70 5.0 9.3 90 
5.6 9.3 45 
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Table 3. Edaphic measurements for Annapolis Road Plot 3. 

Time Interval Soil pH Soil Temp. (°C) Soil Moisture (%) 
Rep. Avg. Rep. Avg. Rep. Avg. 

0 
- 

- 
- 

- 
- 

- - - - 
- - - 

1 
- 

- 
- 

- 
- 

- - - - 
- - - 

2 
- 

- 
- 

- 
- 

- - - - 
- - - 

3 
6.0 

5.8 
11.5 

11.2 
60 

65 6.1 11.2 60 
5.3 11.1 70 

4 
5.6 

5.5 
8.0 

7.2 
70 

90 5.3 7.3 100 
5.5 6.3 100 

5 
5.3 

5.7 
3.5 

3.5 
80 

75 5.8 3.3 100 
5.9 3.7 50 

6 
5.0 

5.3 
4.3 

5.2 
90 

80 5.7 6.4 70 
5.2 5.0 85 

7 
5.9 

6.1 
7.4 

8.4 
65 

60 6.2 9.5 50 
6.1 8.3 70 

8 
6.0 

6.1 
10.8 

10.6 
50 

60 6.1 10.0 75 
6.1 11.1 50 

9 
5.7 

5.4 
17.2 

16.2 
55 

70 5.2 15.4 60 
5.2 16.0 100 

10 
5.4 

5.6 
15.9 

16.0 
90 

55 5.6 16.4 20 
5.7 15.8 50 

11 
5.7 

5.5 
18.0 

16.4 
45 

80 5.5 15.0 100 
5.4 16.1 100 

12 
5.6 

5.3 
9.6 

9.6 
60 

70 5.2 9.8 60 
5.2 9.5 95 
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Table 4. Edaphic measurements for McGowan Lake Plot 1. 

Time Interval Soil pH Soil Temp. (°C) Soil Moisture (%) 
Rep. Avg. Rep. Avg. Rep. Avg. 

0 
- 

- 
- 

- 
- 

- - - - 
- - - 

1 
- 

- 
- 

- 
- 

- - - - 
- - - 

2 
- 

- 
- 

- 
- 

- - - - 
- - - 

3 
6.2 

5.6 
12.2 

12.7 
45 

45 5.6 13.0 45 
5.0 12.8 50 

4 
- 

- 
10.0 

9.8 
- 

- - 9.5 - 
- 9.8 - 

5 
- 

- 
3.3 

- 
- 

- - 3.5 - 
- 3.4 - 

6 
6.0 

5.7 
5.8 

6.0 
50 

55 5.5 6.3 65 
5.5 5.8 50 

7 
6.0 

5.4 
7.9 

8.1 
65 

55 5.6 8.1 60 
6.1 8.4 40 

8 
6.1 

6.0 
12.1 

12.2 
50 

40 6.0 11.9 40 
5.8 12.6 30 

9 
5.5 

5.4 
18.4 

17.7 
45 

55 5.2 17.2 60 
5.5 17.4 60 

10 
5.6 

5.7 
15.3 

15.4 
50 

40 5.6 15.4 50 
5.8 15.4 30 

11 
6.0 

5.8 
12.3 

12.4 
20 

30 5.3 12.4 40 
6.0 12.5 30 

12 
6.2 

5.8 
10.7 

10.6 
40 

45 5.8 10.9 40 
5.3 10.2 50 
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Table 5. Edaphic measurements for McGowan Lake Plot 2. 

Time Interval Soil pH Soil Temp. (°C) Soil Moisture (%) 
Rep. Avg. Rep. Avg. Rep. Avg. 

0 
- 

- 
- 

- 
- 

- - - - 
- - - 

1 
- 

- 
- 

- 
- 

- - - - 
- - - 

2 
- 

- 
- 

- 
- 

- - - - 
- - - 

3 
5.4 

5.4 
12.9 

12.4 
85 

60 5.2 12.4 45 
5.6 12 50 

4 
- 

- 
9.7 

9.9 
- 

- - 10.1 - 
- 9.8 - 

5 
- 

- 
3.6 

- 
- 

- - 3.4 - 
- 3.7 - 

6 
5.4 

5.5 
6.5 

6.4 
85 

60 5.5 5.9 45 
5.7 6.9 40 

7 
5.8 

5.6 
8.6 

8.8 
80 

65 5.5 8.7 55 
5.5 9 65 

8 
5.5 

6 
13 

12.7 
75 

60 6.5 11.7 50 
6 13.3 60 

9 
5.2 

5.3 
16.8 

17.5 
60 

60 5.6 17.9 40 
5.2 17.8 75 

10 
5.4 

5.7 
14.5 

14.8 
55 

50 5.8 14.7 60 
5.8 15.2 40 

11 
5.9 

5.7 
12 

12.8 
50 

40 5.8 13.8 30 
5.4 12.5 40 

12 
5.3 

5.3 
9.7 

10.3 
25 

30 5.3 10.9 40 
5.4 10.2 30 
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Table 6. Edaphic measurements for McGowan Lake Plot 3. 

Time Interval Soil pH Soil Temp. (°C) Soil Moisture (%) 
Rep. Avg. Rep. Avg. Rep. Avg. 

0 
- 

- 
- 

- 
- 

- - - - 
- - - 

1 
- 

- 
- 

- 
- 

- - - - 
- - - 

2 
- 

- 
- 

- 
- 

- - - - 
- - - 

3 
4.7 

5.3 
12.8 

12.8 
50 

45 5.4 13.1 55 
5.8 12.6 35 

4 
- 

- 
9.8 

9.9 
- 

- - 10.2 - 
- 9.6 - 

5 
- 

- 
3.6 

- 
- 

- - 3.8 - 
- 3.8 - 

6 
6.4 

6.1 
5.7 

5.7 
25 

35 6.0 5.6 50 
6.0 5.8 20 

7 
5.8 

6.0 
7.7 

8.0 
60 

50 6.1 7.8 40 
6.0 8.5 50 

8 
5.5 

5.8 
12.2 

11.6 
50 

45 5.9 11.3 50 
6.0 11.2 40 

9 
5.5 

5.4 
16.8 

17.4 
55 

60 5.2 17.0 60 
5.5 18.5 70 

10 
5.8 

5.7 
15.1 

15.5 
60 

60 5.4 15.6 65 
5.8 15.9 50 

11 
5.7 

5.9 
12.3 

12.8 
45 

40 5.9 13.1 40 
6.0 12.9 40 

12 
5.4 

5.3 
10.6 

10.7 
55 

45 5.5 10.5 30 
5.0 11.1 55 
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Table 7. Initial and final mass of oven dried green and rooibos teas (without bag) after approximately 90 days post burial. 

Site Plot Initialg(g) Finalg(g) Lossg(g) ag Initialr(g) Finalr(g) Lossr(g) ar S k 

Annapolis  
Road 

1 1.631 0.664 0.967 0.593 2.118 1.751 0.367 0.389 0.296 0.008 
1.650 0.676 0.974 0.590 2.141 1.748 0.393 0.387 0.299 0.008 
1.545 0.603 0.942 0.610 2.148 1.809 0.339 0.400 0.276 0.007 

2 1.591 0.701 0.890 0.559 2.144 1.724 0.42 0.367 0.336 0.009 
1.591 0.748 0.843 0.530 2.145 1.809 0.336 0.347 0.371 0.007 

- - - - - - - - - - 

3 1.582 0.705 0.877 0.554 2.149 1.791 0.358 0.363 0.342 0.007 
1.644 0.634 1.010 0.614 2.142 1.845 0.297 0.403 0.270 0.006 
1.633 0.660 0.973 0.596 2.142 1.847 0.295 0.391 0.292 0.006 

McGowan  
Lake 

1 1.585 0.774 0.811 0.512 2.144 1.665 0.479 0.335 0.392 0.01 
1.622 0.808 0.814 0.502 2.141 1.777 0.364 0.329 0.404 0.007 
1.638 0.780 0.858 0.524 2.146 1.702 0.444 0.343 0.378 0.01 

2 1.615 0.716 0.899 0.557 2.144 1.686 0.458 0.365 0.339 0.01 
1.615 0.773 0.842 0.521 2.139 1.763 0.376 0.342 0.381 0.008 
1.595 0.794 0.801 0.502 2.138 1.771 0.367 0.329 0.404 0.007 

3 1.668 0.775 0.893 0.535 2.143 1.807 0.336 0.351 0.364 0.007 
1.584 0.754 0.830 0.524 2.142 1.778 0.364 0.344 0.378 0.007 
1.626 0.524 1.102 0.678 2.143 1.818 0.325 0.444 0.195 0.006 
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Table 8. Descriptions of plots. 

Site Plot Canopy Notes 

Annapolis 
Road 

1 

~ 50%   
Deciduous 

~ 50%   
Coniferous 

Conifers mostly A. balsamea  
Deciduous mostly Acer sp. 
Granite stones (20 to 70 cm) covered ~ 25% of surface 

2 > 75%   
Coniferous 

Conifers mostly P. rubens, some A. balsamea   
Deciduous mostly Betula spp. 

3 
~ 100% 

Coniferous 
Conifers almost entirely A. balsamea with some P. rubens 
Granite stones (30 to 60 cm) covered between 25 and 50% 
of surface 

McGowan 
Lake 

1 

~ 70%   
Deciduous 

~ 30%   
Coniferous 

Conifers mostly A. balsamea 
Deciduous mostly Acer spp. with Betula sp. and Fagus sp. 
present 

2 
> 75%   

Coniferous 
Conifers equal between A. balsamea and P. rubens; lots of 
Pinus sp. 
Deciduous mainly Betula sp. 

3 

~ 50%   
Deciduous 

~ 50%   
Coniferous 

Conifers mostly A. balsamea  
Deciduous mostly Acer with some Quercus sp. 
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Figure 1. Proportion of the fungal community made up by the most common ectomycorrhizal genera in treatment seedlings.
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Table 1. Collection dates and months post treatment for time intervals. Underlined dates 
denote time intervals used for metagenomic analysis, dates with asterisks were used for 
morphological data.  

Collection date (DD-MM-YY) Time interval Months  post treatment 

21-06-13* 0 0 
21-07-13 1 1 
21-08-13* 2 2 
21-09-13 3 3 
21-10-13* 4 4 
21-11-13 5 5 
Overwintering period N/A 6, 7, 8, 9 
21-04-14 6 10 
21-05-14* 7 11 
21-06-14 8 12 
21-07-14 9 13 
21-08-14* 10 14 
21-09-14 11 15 
22-10-14 12 16 



 
 

142 
 

Table 2. OTUs assigned to sequences from primary fine roots of A. balsamea from Annapolis Road and McGowan Lake. Numbers in 
parenthesis indicate abundance of the OTU in each sample. 

Site Time Interval 3 Time Interval 6 Time Interval 9 Time Interval 12 

AR 

Galerina sp. (7) 
Helotiaceae sp. VI (2) 

Meliniomyces variabilis (2) 
Russula fragilis (1) 

Helotiaceae sp. VI (4) 
Piloderma sphaerosporum (3) 

Galerina sp. (2) 
Mycena sp. (1) 

Phialocephala sp. (1) 
Geoglossum sp. (1) 

Helotiaceae sp. VI (4) 
Sistotrema sp. (2) 

Amanita flavoconia (1) 
Amanita sp. (1) 

Hyphodiscus sp. (1) 
Galerina sp. (1) 

Piloderma sp. (4) 
Helotiaceae sp. VI (3) 

Galerina sp. (2) 
Cortinarius sp. (1) 
Hannaella sp. (1) 

ML 

Clavulina cinerea (4) 
Oidiodendron sp. (3) 

Cenococcum geophilum (2) 
Rhizoscyphus ericae (1) 

Hyphodiscus sp. (1) 

Helotiaceae sp. VI (6) 
Trechispora sp. (2) 

Elaphomyces sp. (1) 
Piloderma sphaerosporum (1) 

Cenococcum geophilum (1) 

Russula sp. (4) 
Lactarius deceptivus (3) 

Chloridium sp. (2) 
Lactarius vinaceorufescens (1) 

Helotiaceae sp. VI (1) 
Perenniporia sp. (1) 

Piloderma sp. (7) 
Cenococcum geophilum (2) 

Russula fragilis (1) 
Russula sp. (1) 

Chloridium sp. (1) 
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Table 3. OTUs assigned to sequences from primary fine roots of P. rubens from Annapolis Road and McGowan Lake at various time 
intervals. Numbers in parenthesis indicate abundance of the OTU in each sample. 

Site Time Interval 3 Time Interval 6 Time Interval 9 Time Interval 12 

AR 

Piloderma fallax (6) 
Cenococcum geophilum (2) 

Russula silvestris (2) 
Meliniomyces variabilis (1) 

Meliniomyces variabilis (6) 
Rhizoscyphus ericae (1) 
Hyaloscyphaceae sp. (1) 

Helotiales sp. (1) 
Cortinarius sp. (1) 

Cenococcum geophilum (1) 

Piloderma fallax (2) 
Camarophyllopsis sp. (2) 

Cortinarius  sp. (2) 
Trechispora sp. (2) 

Hyaloscyphaceae sp. (1) 
Russula silvestris (1) 

Cenococcum geophilum (1) 
Piloderma sphaerosporum (1) 

Hebeloma velutipes (6) 
Russula peckii (2) 

Russula fragilis (1) 
Cenococcum geophilum (1) 

Meliniomyces sp. (1) 

ML 

Piloderma sphaerosporum (7) 
Meliniomyces variabilis (3) 

Rhizoscyphus ericae (2) 
 

Trechispora sp. (4) 
Clavulina cinerea (2) 

Russula vesca (2) 
Ramariopsis sp. (1) 

Piloderma sp. (1) 
Hyaloscyphaceae sp. (1) 

Clavulina cinerea (5) 
Cryptococcus terricola (2) 

Galerina sp. (2) 
Russula sp. (1) 

Herpotrichellaceae sp. (1) 
Mortierella sp. (1) 

Piloderma sp. (8) 
Inocybe sp. (1) 

Helotiaceae sp. V (1) 
Hyaloscyphaceae sp. (1) 

Russula fragilis (1) 
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Table 4. OTUs assigned to sequences from primary fine roots of A. balsamea and P. 
rubens from Annapolis Road and McGowan Lake at Time Interval 0 (Controls). Number 
in parenthesis indicates the abundance of the OTU in each sample. 

Site Control – A. balsamea Control – P. rubens 

AR 

Cenococcum geophilum (11) 
Clavulina cinerea (6) 
Russula compacta (6) 

Russula fragilis (2) 
Amanita flavoconia (2) 

Dermateaceae sp. (2) 
Sistotrema sp. (2) 

Helotiaceae sp. III (1) 
Piloderma sphaerosporum (1) 

Cortinarius sp. (17) 
Leotia lubrica (3) 

Piloderma fallax (2) 
Piloderma sphaerosporum (2) 

Penicillium spinulosum (2) 
Cortinarius jughuhnii (2) 

Cryptococcus sp. (1) 
Dermateaceae sp. (1) 

Hebeloma velutipes (1) 
Helotiaceae sp. III (1) 

Meliniomyces variabilis (1) 
Rhizoscyphus ericae (1) 

ML 

Piloderma sp. (7) 
Truncocolumella sp. (6) 

Lactarius tabidus (6) 
Lactarius deceptivus (2) 

Lactarius chrysorrheus (1) 
Cenococcum geophilum (4) 

Helotiaceae sp. VI (2) 
Hyphodiscus sp. (2) 
Cortinarius sp. (1) 
Chloridium sp. (1) 

Mytilinidaceae sp. (1) 

Piloderma sp. (13) 
Tomentella sublilacina (5) 

Cenococcum geophilum (4) 
Clavulina cinerea (4) 

Tylospora sp. (3) 
Russula silvestris (2) 

Trechispora sp. (2) 
Cortinarius armillatus (1) 

Penicillium spinulosum (1) 
Herpotrichellaceae sp. (1) 
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