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Provenance and Authentication of Oracle Sensor Data with Block Chain 

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 

 

by Gilroy Gordon 

Abstract 

 

With the significant increase in the dependence of contextual data from 

constrained IoT, the blockchain has been proposed as a possible solution to address 

growing concerns from organizations. To address this, the Lightweight Blockchain 

Authentication for Constrained Sensors (LBACS) scheme was proposed and evaluated 

using quantitative and qualitative methods. LBACS was designed with constrained 

Wireless Sensor Networks (WSN) in mind and independent of a blockchain 

implementation. It asserts the authentication and provenance of constrained IoT on the 

blockchain utilizing a multi-signature approach facilitated by symmetric and asymmetric 

methods and sufficient considerations for key and certificate registry management. The 

metrics, threat assessment and comparison to existing WSN authentication schemes 

conducted asserted the pragmatic use of LBACS to provide authentication, blockchain 

provenance, integrity, auditable, revocation, weak backward and forward secrecy and 

universal forgeability. The research has several implications for the ubiquitous use of IoT 

and growing interest in the blockchain. 
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January 31, 2017 



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      iii 
    .    

Table of Contents 

Acknowledgement…………………………………………………………..…………………………………………i 

Abstract……………………………………………………………………………………………………………..………ii 

List of Figures…………………………………………………………………………………..….…………………viii 

List of Tables……………………………………………………………………………………..……………………….x 

Chapter 1: Introduction ......................................................................................... 2 

1.1 Thesis Objectives ...................................................................................................2 

1.2 Background and Purpose of Study ..........................................................................2 

1.3 Problem Statement ................................................................................................4 

1.4 Research Questions ...............................................................................................5 

1.5 Significance of Study ..............................................................................................5 

Chapter 2: Literature Review ................................................................................. 7 

2.1 Introduction ..........................................................................................................7 

2.2 Wireless Sensor Networks ......................................................................................7 

2.2.1 Design Considerations for WSNs. ............................................................................... 9 

2.2.2 Communication and Transmission ........................................................................... 11 

2.3 Securing Wireless Sensor Networks ...................................................................... 14 

2.3.1 Objectives and Threat Model ................................................................................... 14 

2.3.2 Key management and distribution ........................................................................... 17 

2.3.3 Authentication and attestation ................................................................................ 26 

2.4 Blockchain ........................................................................................................... 33 

2.4.1 Overview .................................................................................................................. 33 

2.4.2 Consensus ................................................................................................................ 35 



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      iv 
    .    

2.4.3 Oracles ...................................................................................................................... 39 

2.4.4 Resource Constraints ............................................................................................... 41 

2.5 Conclusion ........................................................................................................... 44 

Chapter 3: Proposal ............................................................................................ 46 

3.1 Security Objectives .............................................................................................. 47 

3.2 Notation .............................................................................................................. 48 

3.3 Overview and Assumptions .................................................................................. 50 

3.4 Key Management ................................................................................................. 53 

3.4.1 Pre-Distribution ........................................................................................................ 53 

3.4.2 Post Deployment ...................................................................................................... 58 

3.4.3 Session Management ............................................................................................... 61 

3.4.4 Revocation ................................................................................................................ 62 

3.5 Authentication ..................................................................................................... 65 

3.5.1 Tag Format ............................................................................................................... 65 

3.5.2 Certificate Registry Storage Considerations............................................................. 69 

3.5.3 Communication Flows .............................................................................................. 71 

Chapter 4: Implementation ................................................................................. 83 

4.1 Objective ............................................................................................................. 83 

4.2 Aims .................................................................................................................... 84 

4.3 Configuration ....................................................................................................... 84 

4.3.1 Constrained Application Protocol ............................................................................ 85 

4.3.2 Keccak-f[1600, c=256, r=1344] ................................................................................. 87 

4.3.3 Secp256k1 Elliptic Curve Digital Signature Algorithm .............................................. 88 



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      v 
    .    

4.3.4 Ethereum and Solidity .............................................................................................. 89 

4.4 Apparatus ............................................................................................................ 90 

4.4.1 Devices ..................................................................................................................... 90 

4.4.2 Software and Libraries ............................................................................................. 92 

4.5 Design ................................................................................................................. 94 

4.5.1 Network Overview ................................................................................................... 94 

4.5.2 Technology Stacks .................................................................................................... 95 

4.6 Procedure ............................................................................................................ 97 

4.6.1 Buoy Node Reporter and Light Actuator .................................................................. 98 

4.6.2 Blockchain Network ............................................................................................... 100 

4.6.3 Base Station, Authentication Entity and Certificate Authority .............................. 102 

4.7 Issues and Resolutions ....................................................................................... 103 

Chapter 5: Analysis ........................................................................................... 105 

5.1 Aims .................................................................................................................. 105 

5.2 Threat Analysis .................................................................................................. 106 

5.2.1 Methodology .......................................................................................................... 106 

5.2.2 Sub-components .................................................................................................... 108 

5.2.3 Threat Assessment ................................................................................................. 109 

5.3 LBACS Comparison ............................................................................................. 120 

5.3.1 SPINS ...................................................................................................................... 121 

5.3.2 TinySec ................................................................................................................... 121 

5.3.3 Authentication and Anti-replay Security Protocol ................................................. 122 

5.3.4 DTLS and Lithe ........................................................................................................ 123 



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      vi 
    .    

5.3.5 Implicit Security Authentication Scheme ............................................................... 123 

5.3.6 Short Message Authentication Check .................................................................... 123 

5.4 Results ............................................................................................................... 124 

5.4.1 Storage ................................................................................................................... 124 

5.4.2 Communication Overhead ..................................................................................... 125 

5.4.3 Power Consumption ............................................................................................... 125 

5.4.4 Time ........................................................................................................................ 126 

5.4.5 Functional Test ....................................................................................................... 127 

5.4.6 Hardware Overhead ............................................................................................... 128 

Chapter 6: Conclusion ....................................................................................... 131 

6.1 Discussion .......................................................................................................... 131 

6.2 Future Work ...................................................................................................... 134 

References ............................................................................................................. 136 

Appendix................................................................................................................ 148 

Appendix A .................................................................................................................... 148 

Appendix B .................................................................................................................... 157 

Appendix C .................................................................................................................... 166 

Appendix D .................................................................................................................... 188 

Appendix E .................................................................................................................... 194 

Appendix F .................................................................................................................... 195 

Appendix G .................................................................................................................... 196 

Appendix H .................................................................................................................... 198 



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      vii 
    .    

Appendix I ..................................................................................................................... 200 

Appendix J ..................................................................................................................... 206 

Appendix K .................................................................................................................... 211 

 



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      viii 
    .    

List of Figures 

 

Figure 1: Technical Specification for SmartDust node..................................................... 27 

Figure 2: TinySec and TinyOS packet formats illustrating field size in bytes. ................ 29 

Figure 3: Layout of a packet secured with DTLS. ............................................................ 31 

Figure 4: Blockchain Storage Size as of July 9, 2016. ..................................................... 42 

Figure 5: LBACS Network Overview .............................................................................. 50 

Figure 6: LBACS Pre-Distribution Pairwise Key Allocation ........................................... 53 

Figure 7: Required Key Storage for LBACS Sensor Node .............................................. 55 

Figure 8: LBACS public/private key pre-distribution ...................................................... 57 

Figure 9: LBACS Post Deployment: Addition of a STBS or TAE .................................. 58 

Figure 10: LBACS new Sensor Node Deployment .......................................................... 60 

Figure 11: LBACS Authentication Packet ........................................................................ 65 

Figure 12: LBACS Oracle Sensor publishes data for consumer application .................... 76 

Figure 13: LBACS Oracle Sensor publishes data for consumer application via peer sensor

................................................................................................................................... 78 

Figure 14: COAP Message Format ................................................................................... 86 

Figure 15: LBACS authentication tag size allocations ..................................................... 86 

Figure 16: Keccak relation to sponge construction ........................................................... 87 

Figure 17: Implementation Network Overview Diagram ................................................. 94 

Figure 18 – LBACS Z1 Technology Stack ....................................................................... 95 

Figure 19 - LBACS Raspberry Pi Technology Stack ....................................................... 96 

Figure 20 - LBACS Trusted Authentication Entity Technology Stack ............................ 96 



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      ix 
    .    
Figure 21- LBACS Certificate Authority Technology Stack ........................................... 97 

Figure 22: LBACS Ethereum Genesis Block ................................................................. 100 

Figure 23: Taxonomy of System Vulnerabilities (Hansen & Hansen, 2010) ................. 118 

Figure 24: Power Consumption Comparison with LBACS ............................................ 126 

Figure 25:LBACS Token Generation Time on Z1 ......................................................... 127 

Figure 26: LBACS Authentication Hardware Block Diagram ....................................... 129 

Figure 27: LBACS C Interface for Constrained Devices ............................................... 152 

Figure 28: LBACS C Interface for Resource Competent Devices ................................. 156 

Figure 29: LBACS Solidity ECDSASignature Contract ................................................ 157 

Figure 30: LBACS Solidity Public Key Contract ........................................................... 157 

Figure 31: LBACS Solidity Library Contract ................................................................. 158 

Figure 32: LBACS Solidity Abstract Entity Contract .................................................... 158 

Figure 33: LBACS Solidity Certificate Authority Contract ........................................... 159 

Figure 34: LBACS Solidity Trusted Authentication Entity Contract ............................. 159 

Figure 35: LBACS Solidity Semi-Trusted Base Station Contract .................................. 160 

Figure 36: LBACS Solidity Certificate Registry Contract ............................................. 161 

Figure 37: LBACS Solidity Generic Message Contract ................................................. 162 

Figure 38: LBACS Solidity Authenticated Data Message ............................................. 163 

Figure 39: LBACS Solidity Buoy Data Contract ........................................................... 164 

Figure 40: LBACS Solidity Revocation Message .......................................................... 165 

 

 



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      x 
    .    

List of Tables 

 

Table 1: Comparison of Hardware Constraints ................................................................ 10 

Table 2: Ethereum Benchmarks on Frontier Network for each client .............................. 43 

Table 3: LBACS Notation ................................................................................................ 48 

Table 4: LBACS Intention Bits......................................................................................... 66 

Table 5: LBACS Configuration for Buoy Monitoring Implementation ........................... 85 

Table 6: Software used in implementation ....................................................................... 92 

Table 7: Libraries used in implementation ....................................................................... 93 

Table 8: Risk Evaluation Grid ........................................................................................ 106 

Table 9: Security Objective Key for LBACS Threat Assessment Summary Table ....... 118 

Table 10: LBACS Threat Assessment Summary............................................................ 119 

Table 11: Vulnerabilities prevented by LBACS ............................................................. 120 

Table 12: LBACS Storage Requirements ....................................................................... 125 

Table 13: LBACS Resource Requirements Summary .................................................... 132 

Table 14: LBACS Token Generation Time Observations .............................................. 166 

Table 15: Z1 mote metrics without LBACS ................................................................... 188 

Table 16: Z1 Mote metrics with LBACS ........................................................................ 190 

 

  



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      2 
    .    

Chapter 1:  Introduction 

This thesis aims to address the increasing provenance concerns with constrained IoT 

devices and decentralized blockchain technology. It will focus on provenance as 

identifying the source of data, through integrity, instead of utilizing only submitted 

metadata. Subsequent to providing a background, significance and the specific research 

goals in the Introduction, it will identify possible gaps, design considerations and threats 

within the Literature Review. With the gaps identified, a proposal was also made, 

implemented and analyzed. Finally, it will conclude the results arising from this analysis 

and recommendations for future work.  

1.1 Thesis Objectives 

1) Design an authentication scheme for IoT Blockchain oracles operating in 

constrained wireless sensor networks 

2) Conduct a threat assessment for constrained IoT oracles utilizing the 

authentication scheme to achieve provenance on the blockchain 

3) Identify the resource requirements of constrained oracle sensors  utilizing the 

authentication scheme to achieve provenance on the blockchain 

 

1.2 Background and Purpose of Study 

The increasing interest and applicability of the “Internet of Things” (IoT), a 

paradigm describing interconnected entities (usually smaller devices) over the internet 

with greater autonomy (Tiburski, Amaral, Matos, & Hessel, 2015) has excited much 

research into its numerous applications and associated concerns. With applications in 
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domains such as healthcare, smart buildings, supply chain management and aerospace to 

name a few (Perera, Zaslavsky, Christen, & Georgakopoulos, 2014), the security 

associated with these implementations has become a primary concern. Not only have 

these devices been utilized to collect information in mission critical environments that are 

better supported by wireless sensor networks, but they have been entrusted as actuators 

which should act reliably within the constraints applied by their various negotiation 

algorithms (Yuanyuan Zeng, 2016). Furthermore, although these smart devices have been 

designed to be activity, policy and process-aware (Kortuem, Kawsar, Sundramoorthy, & 

Fitton, 2010), their hardware constraints make them an easier target for security breaches. 

According to the Ponemon’s 2016 Cost of Data Breach Study: Global Analysis 

(Ponemon Institute, 2016) which surveyed 383 companies in 12 countries, the average 

cost per data breach was US $4 Million Dollars. Compounding this with the increased 

deployment of IoT devices, security and reliability remain a primary concern. Moreover, 

the costs to maintain a centralized IoT of secured yet constrained devices has encouraged 

the use of multiple network topologies, transitive trust authorities and most recently 

decentralized paradigms such as the blockchain. It has been argued that the blockchain 

offers a scalable, decentralized peer-to-peer level of trust for IoT and therefore should be 

explored (IBM Corporation, 2015). Current implementations of the blockchain however 

have proven themselves to be too resource-intensive to be managed by constrained IoT 

devices. 

With the increasing dependence on reliable data from constrained IoT devices and 

the advent of the blockchain, this study will seek to exact provenance and integrity of 

wireless sensor data through authentication on the blockchain. Furthermore, it will assess 
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the associated threats and resource requirements of wireless sensor data authenticating on 

the blockchain. 

 

1.3 Problem Statement 

The increased use of contextual data from IoT within decision-making has made 

provenance a growing concern in organizations (Townend et al., 2013). This issue is 

compounded by the constrained nature of these devices, which inhibit their abilities to 

employ stronger cryptographic constructions to enforce the integrity of the provided data. 

Moreover, the network concerns inherited by Wireless Sensor Networks increase the 

likelihood of successful attacks on integrity such as man-in-the-middle and spoofing 

attacks (Chelli, 2015). Furthermore, the costs to maintain a centralized IoT of secured and 

constrained devices has encouraged the exploration of multiple network topologies and 

has stimulated discussions about the use of the blockchain as an alternative approach 

(IBM Corporation, 2015). 

Within the relatively new context of the blockchain, this qualitative and 

quantitative study will explore the possibility of exacting provenance and integrity of 

authenticated, wireless sensor data on the blockchain.  
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1.4 Research Questions 

This study aims to answer the following research questions: 

1. How can the blockchain be used to authenticate wireless oracle sensor data? 

2. What are the resource requirements for wireless oracle sensors authenticating on 

the blockchain? 

3. What threats exist for wireless oracle sensors authenticating on the blockchain? 

 

1.5 Significance of Study 

Provenance and integrity of contextual data being used in decision-making is a 

growing concern for organizations, government or privately owned. With millions of 

deployed IoT devices still operating on constrained computational resources and the high 

costs to maintain their supporting topologies, there is room for additional research to 

address these concerns. 

The importance of this research project is to explore the integration of decentralized 

blockchain technology to reinforce the integrity of constrained sensor data. The research 

will determine how the current resource intensive implementations of the blockchain may 

be integrated with constrained sensors to achieve integrity. It will also explore the 

resource requirements of constrained sensors authenticating with the blockchain and 

compare these to existing security schemes addressing the integrity of sensor data. 

Moreover, the study will evaluate the threats and vulnerabilities of these constrained 

sensor devices authenticating with the blockchain. 
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Achieving provenance through authentication on the blockchain would allow 

greater auditability, security, fault tolerance and cost effective deployments of sensor 

provenance networks. 
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Chapter 2:  Literature Review 

 

2.1 Introduction 

This literature review will aim to provide an overview of the applicability of 

sensors and actuators in IoT while highlighting several design constraints and challenges. 

Furthermore, it will highlight the design goals, threat models, key management, 

distribution, communication and authentication in Wireless Sensor Networks (WSNs). 

Finally, a conceptual overview of the blockchain and oracles will be provided along with 

their current resource requirements and the implications for IoT. 

 

2.2 Wireless Sensor Networks 

Neubert in 1975, identified sensors as devices which transformed physical 

quantities into electrical output signals based on a scale defined by a predictable output-

time, output-input relationship with an acceptable degree of accuracy under a specified 

set of environmental conditions (Schroeder, 2008). This broad definition considers 

devices used for measuring physical quantities such as temperature, movement, humidity, 

pressure, audio, proximity and light (Beigl et. al, 2014). Choosing the correct sensor for a 

respective task depends on the following classifications: detection methods, conversion 

mechanism, sensor materials and applications, performance specifications and stimuli or 

measurand (Schroeder, 2008). When considering the power availability constraints of 

sensors, they are optionally classified as active and self-generating if a fixed power 

source is accessible, or passive and modulating if battery-operated as is the case of some 

Radio Frequency Identification (RFID) tags. 
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Advances in sensor technology has yielded numerous applications such as 

continuous medical monitoring in health care (Alemdar and Ersory, 2010), habitat 

monitoring, weather forecasting, supply chain management, inventory tracking and 

military monitoring (Perera et. al, 2014). Many of these applications have been realized 

through live exchange of sensors feeds with other systems in Wireless Sensor Networks 

(WSNs). A Wireless Sensor Network may be considered as a group of wired and wireless 

network possessing sensor nodes with the ability to perform computations, sense some 

property along with a module capable of wireless functions deployed in a designated field 

(Choi, 2010). A closer look at the types of sensors will highlight the trend to utilize 

micro-sensors as opposed to macro- sensors. Macro-sensors have proved themselves 

viable options in the past especially while monitoring the extraction, exploration and 

refinement processes in the oil and gas industry. However, these wired macro-sensors 

have also proved themselves as costly deployments that are not suited or easily 

maintained for temporary assignments. They usually require large amounts of energy and 

are even more difficult to install in remote and hostile environs as they often include 

proximity requirements to guarantee sufficient monitoring (Adejo, et al, 2013). 

A more pragmatic approach is to deploy multiple micro-sensors and actuators or 

Micro-electro-mechanical systems (MEMs) in a WSN to exact coverage over a specified 

area of interest. Although these deployments offset several of the aforementioned 

concerns with macro-sensors, these advancements are accompanied by their own design 

constraints, which correlate to their size and computing capacity. 
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2.2.1 Design Considerations for WSNs. 

Several design constraints should be taken into consideration when designing 

WSNs, notably: fault tolerance, scalability, hardware constraints, network 

communication, environment, production costs and power consumption (Akyildiz, et al, 

2002). These constraints provide a basis to compare different solutions to issues 

experienced in the development and management of WSNs.  

Fault tolerance is a network’s ability to remain functional despite the failure of 

network devices or nodes. The reliability of the network becomes more debatable with 

the limited power availability of battery operated nodes and harsh or unpredictable 

environments that cause physical damage. For example, smart home WSNs monitoring 

temperature and humidity may require less fault tolerance measures unlike sensors 

deployed in critical military surveillance environments. The latter requires additional 

strategies for fault tolerance due to the probable interference from the volatile 

environment in which they are deployed (Akyildiz, et al, 2002). 

Scalability focuses on the number of sensor nodes deployed or node density in a 

WSN. This could involve approximately 300 nodes for a 5 x 5 m
2
 area in factory machine 

diagnosis or 10 nodes per area in vehicle tracking. WSN schemes should be able to 

facilitate and utilize the node density to tackle constraints experienced by sensors, such as 

multi-hop routing networks for battery-operated nodes aiming to reduce power used for 

radio communication (Akyildiz et al, 2002). 

Moreover, production costs should be kept at a minimum in the design of WSNs. 

Coupling the frequent deployments, density of regions of interest and the application 

needs of WSNs, sensors nodes may develop specific hardware needs and in the case of 
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software-defined sensors networks, software needs which may easily become impractical 

to fund. Juxtaposing these facts with the vulnerability of sensor nodes, which will be 

described later, it is important to ensure that the components of the WSN are minimized 

to lower the cost of replacements also. 

 Despite the advancements in Micro-Electro-Mechanical Systems (MEMs) 

enabling much more powerful System on a Chip (SoC) designs, battery powered micro-

sensor nodes are still very constrained devices. Smart dust mode devices usually possess 

approximately 1J of energy while Wireless Integrated Network Sensors (WINS) powered 

by Lithium coin cells 1cm thick and 2.5cm in diameter operate on 30 A (Akyildiz et al, 

2002). Moreover, Table 1 details additional hardware constraints as a result of the 

required hardware size according to the application specifications. 

 

Table 1: Comparison of Hardware Constraints 

 

Note: Reprinted from Security Challenges in Wireless Sensor Networks, by Singh et al, 

(2016) 
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The use of a wireless medium, which is more open and accessible than wired 

communication, introduces security concerns for WSNs. With communication being 

more likely to be intercepted, replayed or modified, networks must aim to facilitate 

security issues in addition to network congestion, noise and packet collisions (Akyildiz, 

Su, Sankarasubramaniam & Cayirci, 2002). Juxtaposing these factors with battery-

exhausted nodes that may be participating in multi-hop networks, which support specific 

concerns such as Application Specific WSNs (ASWSNs) or utilize other additional 

communication protocols as in Software Defined WSNs (SDWSNs), communication may 

be unreliable. 

 

2.2.2 Communication and Transmission 

Much Machine to Machine (M2M) communication on constrained devices are 

conducted using more lightweight communication protocols such as the Constrained 

Application Protocol (COAP) over the User Datagram Protocol (UDP). COAP, although 

similar to HTTP, is a less complex, stateless web protocol working at the application 

layer over UDP that provides Uniform Resource Identifiers (URI) and content types with 

a lower header overhead (Shelby, Hartke, & Bormann, 2014). IPV6 over Lower Power 

Wireless Personal Area Networks (6LoWPAN) is another protocol targeting constrained 

devices which leverages IEEE 802.15.4 (Gehrmann et al,2015). The protocol focuses on 

header compression, which reduces communication bandwidth, time and ultimately 

power consumption. It achieves this by splitting communication in “contexts” that share 

metadata including IPV6 addresses. For example, an abbreviated context identified by an 

identifier 0x10 may be used to represent a particular session and set of source and or 
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receiver addresses. Nodes may then optimize communication by agreeing on a context 

identifier. Specific adaptations of 6LowPAN have also been proposed to work with 

COAP and COAPs to optimize node communication based on the constraints highlighted 

in the previous section (Raza et al, 2012) 

 WSN nodes may also use the lightweight publish/subscribe transport protocol to 

transmit or listen to message topics as proposed in the OASIS Message Queuing 

Telemetry Transport (MQTT), which at the time of writing is at version 3.1. Designed 

with constrained Machine-to-Machine (M2M) and IoT communication in mind, the 

protocol leverages other protocols at the network layer such as TCP/IP to support 

multicast messages in an agnostic manner. Furthermore, the protocol supports various 

message delivery Quality of Service (QoS), such as the message being delivered at most 

once, duplicated, or once-and-once-only delivery. This allows the devices to perform an 

asynchronous push (publish) of messages without polling with bit-wise compressed 

headers of at least 2 bytes (OASIS MQTT Technical Committee, 2014). 

Additional methods suitable for short range communication in WSNs yet 

operating at lower levels of the OSI stack include Bluetooth (IEEE 802.15.1), Zigbee 

(IEEE 802.15.4), Wi-fi (IEEE 802.11) and ultra-wideband (UWB) (IEEE 802.15.3b) 

(Lee, Su, & Shen , 2007). Bluetooth, usually used in computer peripherals in WPANs, 

uses a frequency band of 2.4GHz with a maximum signal rate of 1Mb/s over 

approximately 10m with a transmit power (TX power) between 0-10dBm. Although 

UWB has a similar range, it’s frequency band spans from 3.1 to 10.6 GHz with a max 

signal rate of 110MB/s and TX power of -41.3 dBm/ MHz making it more suitable for 

indoor high-speed wireless communication. UWB also exceeds Zigbee’s max signal rate 
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of 250 kb/s, but Zigbee’s frequency bands may span from 868 MHz to 2.4 GHz while 

still possessing 10 times UWB’s range with a TX power between 0 and -25 dBm. Wifi, 

the strongest of the four, has the same range as Zigbee with a frequency band of 2.4GHz 

or 5Ghz with signal rates growing up to 54 Mb/s and a TX power between 15 and 20 

dBm. When considering encryption and authentication, Bluetooth protects its data using a 

16-bit Cycle Redundancy Check (CRC), encrypted with the E0 Stream Cipher using a 

shared secret over a piconet or scatternet. The piconet is an adhoc network of no more 

than eight interconnected wireless devices synchronized to a common clock and multi-

hop sequences. With transmissions over bluetooth, the network supports a master slave 

hierarchy until multiple piconets become interconnected to become a scatternet (Lee, Su, 

& Shen, 2007). A bit more secure is UWB which uses a 32 bit CRC after being encrypted 

with Advanced Encryption Standard (AES) in Counter Mode (CTR) and authenticating 

with the Cipher Block Chaining (CBC) Message Authentication Code (MAC) (CCM). 

The Zigbee protocol utilizes the 16-bit CRC similar to bluetooth with the encryption and 

authentication used by UWB. Finally, Wifi shares the CRC of UWB but encrypts with 

the Rivest Cipher 4 (RC4) protocol with Wired Equivalent Privacy (WEP) and AES 

before authenticating with Wifi Protected Access (WPA2). Moreover, Lee, Su, & Shen 

(2007) in their comparative study, sought to evaluate the data code efficiency (sum total 

bytes used in data transmission), protocol complexity (the number of supported MAC 

primitives and Host Controller Interface (HCI) events) and required power consumption. 

As it pertains to data code efficiency, they argued that Bluetooth and Zigbee were more 

efficient for smaller payload transmissions since they had less data fragmentation and 

their maximum payload data were 339, 102 bytes respectively followed by 2044 and 
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2312 for UWB and Wifi at the time of writing. Furthermore, Zigbee’s low support for 

many primitives and events (only 48 as defined in IEEE 802.15.4) made it more suitable 

to be embedded in constrained WSN nodes. Bluetooth for example, supported the most 

primitives such as client service access point (SAP) and Logical Link Adaptation 

Protocol (L2CAP) followed by UWB and WIFI. Again, when power consumption was 

evaluated by comparing the normalized energy consumption (mJ/Mb) of collected TX 

and RX (receiving), Bluetooth and Zigbee were identified as most suitable for power 

consumption in low data rate applications as opposed to UWB and WIFI (Lee et al , 

2007). 

 

2.3 Securing Wireless Sensor Networks 

2.3.1 Objectives and Threat Model 

 In addition to the aforementioned design considerations, specific design goals for 

securing WSNs include secure localization, time synchronization, self organization, data 

freshness, confidentiality, integrity, availability and authentication (Chelli, 2015). With 

sensor nodes possessing the ability to communicate highly sensitive data, it is important 

to ensure that data transmitted remains confidential between the sender and intended 

recipients.  

When considering the threat model, an attack in a particular WSN may be 

considered as goal, performer or layer-oriented (Chelli, 2015). In passive goal-oriented 

attacks, the attack is usually directed to compromising data confidentiality through 

network monitoring and traffic analysis. Poorly encrypted communication and the 

exchange of keys enable the unwanted disclosure and possible re-use of information 
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already sent or the prediction of future exchanges. Unlike passive attacks, the active 

attacker aims to control segments or the whole network. These attacks include but are not 

limited to hello floods and denial of service or sleep (DOS) attacks where victim nodes 

are flooded with requests, which prevent them from accepting requests from legitimate 

nodes. Such attacks ultimately exhaust the node’s battery power due to the excessive 

power consumption associated with processing requests. Furthermore, black hole, sink 

hole, worm hole, selective forwarding and false node attacks may also be used to divert 

or drop transmitted packets in the network (Hu, Perrig, & Johnson, 2006). These attacks 

may be difficult to detect, as a network monitor must deduce whether the packets are 

being lost because the network is being compromised or whether the loss was caused by 

network collisions or environmental conditions.  Moreover, attackers may aim to falsify 

transmitted data using replay, fabrication, spoofing and man-in-the-middle-attacks 

(Chelli, 2015).  

Performer oriented attacks usually describe the origin of the attack, i.e. whether 

they originated from inside the network or not. Attacks from outside the network are 

usually more passive, while inside attacks, including when an attacker garners the trust of 

other nodes are more disruptive and similar to the aforementioned active attacks (Chelli, 

2015).  

Layer-oriented attacks consider the various attacks applicable at different layers 

of the Open Systems Interconnection (OSI) model. At the lowest layer which is the 

physical layer, an attacker may opt to jam the radio channel of the sensor with continuous 

and spurious or high energy radio transmissions, resulting in DOS attacks. Moreover, at 

the link layer, an abstraction responsible for coordinating nodes by regulating the flow of 
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data, attackers may opt to drain node energy through the continuous disruption of packets 

with abused Media Access Controls (MACs). Cryptanalysis at this layer may also deduce 

patterns, even when transmissions are encrypted. However, at the network layer, 

attackers aim to disrupt packet routing with sinkholes, spoofing or routing replay attacks. 

Above this layer, the transport layer may become the victim of hello floods with 

numerous connection requests to constrained nodes. Additionally, at the application 

layer, attackers target applications by compromising executable code to incite malicious 

behavior, such as those executed by captured bots or corrupting data (Chelli, 2015).  

Different approaches have been utilized to target the various security design 

considerations of WSNs. With sensors, especially in military applications or Body Area 

Networks (BAN), often displaced after being deployed, nodes are required to re-establish 

routing and communication or localization. Techniques used to localize nodes include 

symmetric or asymmetric Diffie Hellman key exchanges (Liu et al, 2003), which ensure 

authenticated communication even between vehicles moving between multiple sub-

networks (Hossain & Mahmud , 2007). Furthermore, confidentiality and integrity 

becomes a primary concern especially while handling sensitive data. Modified versions 

of standards such as MPEG-21 or ISO/IEC 21000, that addresses sharing of digital 

content, has been used to embed authentication and confidentiality for Biomedical Sensor 

Networks (Leister et al, 2008) along with protocols such as IPSec and DTLS. Finally, 

additional strategies specific to authentication while also considering availability, 

whether the nodes will be able to use the available resources within the network, and data 

freshness which is concerned with replay attacks, forward and backward secrecy (Chelli, 

2015) will be described further in this review.  
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2.3.2 Key management and distribution 

Authentication is usually established on a shared premise or key. It is important to 

note that the choice of a key management scheme for a WSN is heavily biased towards 

the particular application and deployment concerns related to the WSN. Key distribution 

and management schemes whether they are random or deterministic include varieties of 

pairwise management, random key-chain based key pre-distribution, and network-wise 

key management schemes (Dustin et. al, 2007, Lee and Stinson, 2005). These schemes 

may choose Public Key Infrastructure (PKI) methods or different pre-distribution 

schemes (some of which will be outlined later) to develop a trusted means of 

communication. The latter is less resource intensive for nodes but requires a trusted 

authority (TA), often represented as the base centre or station, which if compromised will 

compromise the security of the entire network (Lee  and Stinson,, 2005). Furthermore, for 

schemes considering the ad-hoc nature of WSNs, a shared key discovery mechanism 

which is deterministic may prove more resource friendly to sensor nodes since key 

derivation may be verified through an algebraic function of pre-defined parameters (Lee 

and Stinson, 2005). Moreover, these schemes may employ various re-keying techniques 

including batch, immediate, delayed and periodic re-keying to reinforce the integrity of 

the network (Hossain & Mahmud 2007). These re-keying strategies reinforce forward and 

backward secrecy, i.e. whether a member of the network has access to future or past 

information respectively, essentially creating a communication session that lasts for the 

duration of the confirmed key. Finally, when considering key recovery, one may consider 

self-healing and stateless key distribution techniques. Unlike self-healing techniques, 
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which allow lost session keys to be recovered by group members, stateless techniques 

allow nodes to acquire updated session keys even if they miss previous key update 

messages. (Liu et al ,2003)  

All pair-wise (using single master key) and All pair-wise (distributed pair-wise 

keys) or fully pair-wise shared key schemes (Feng & Wenpeng ,2010) are two popular 

pair wise key management schemes. Unlike the single master key implementation that 

issues the same master key to all sensor nodes in the network, the distributed pair-wise 

key implementation deploys all nodes in the network with their own key and the keys of 

all network participants (Dustin et. al, 2007). Although the former is less resource 

intensive due to the storage needs of sensor nodes and easier to deploy new nodes, an 

attacker may easily compromise the entire network by only gaining access to one node. 

The random pair-wise key scheme aims to improve the resilience of the single 

master key scheme, yet reduce the load of the distributed pair wise key scheme using a 

random distribution p. The Erdős–Rényi model encouraged the design that for a network 

of N nodes, each node in the network would have the probability of being assigned Np 

other keys (Dustin et. al, 2007). This design made it possible for a node to connect to Np 

other nodes that were in its radio range during the shared-key discovery phase, thus 

supporting larger WSNs, multi-hop network designs while requiring 2Np units of 

memory to store the entire key chain. The closest pair-wise key distribution scheme 

innovated further by utilizing location information to influence key distribution. 

However, this scheme required prior knowledge of an organized deployment of nodes, as 

each node would share pairwise keys with “c” of its closest neighbours. This made it 

possible to reduce the storage needs to 2c+1 units as each node within a region could 
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utilize a Pseudo-Random Function (PRF) to re-generate keys of its peers by only storing 

its peers IDs and a shared key with PRF(PeerId, SharedKey) (Dustin et. al, 2007). 

Alternatively, the ID based one-way function scheme (IOS) was inspired by a star 

topology sub-network of an r-regular graph of nodes. With each node being the center of 

a different star sub-graph, the scheme would distribute pair wise keys and require 

memory for only r+1 neighbours. The scalability and resilience of this design may be 

improved using Multiple IOS, which focuses on a one-to-one correspondence between 

sensor nodes to decrease memory usage by a factor of 1. In this design, a sensor from a 

sub-network A stores the common key for sub-network A in addition to a secret Hash 

(secret key from sub-network B (KB) |  ID of a node in network A(IDAi)) for each node 

in network A. A node from network B may then verify a node from network A, Ai by 

generating the secret key Hash(KB|ADi) (Dustin et. al, 2007). 

Another scheme, Broadcast Session Key negotiation protocol (BROSK), initially 

pre-deploys a single master key to all nodes, which allows the entire network to be 

compromised if one node is compromised. The benefits associated with this scheme lie 

within the low required storage requirements since nodes will only require the nonce 

exchanged in post-deployment shared key discovery to generate the shared session key 

using PRF (master key || nonce of node 1 || nonce of node 2) (Dustin et. al, 2007). 

Unlike BROSK, the lightweight key management scheme leveraging initial trust, 

proposed by Deutre et al, (2004), distributes group authentication keys (gaki) for each 

deployed set of sensor nodes. The scheme relies on a previous trust relationship based on 

the fact that the each deployed set will include a set of possible secret keys (ski) that may 

be used to authenticate future deployed sets. A newly deployed set of nodes will possess 
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an additional generation key (gki) that may be used to self authenticate with previous 

generations. Authentication within a group would derive a session key, KA = PRF(gaki, 

RNA, RNB) where RNA and RNB are randomly exchanged nonce values by sensor 

nodes A and B respectively. A node forms the newly deployed set, C, aiming to 

authenticate with node A from the first deployment, would first generate ski = PRF (gki | 

RNA) before generating KA= PRF (ski, RNA, RNC). Although a node would require 

approximately 4 + 2n units of key storage memory for n deployed sets of nodes, 

resilience remains low as an entire deployed set may be compromised if gaki or ski is 

identified (Dustin et. al, 2007).  

Other schemes utilize more randomized key-chain based key pre-distribution 

solutions. The basic probabilistic key pre-distribution scheme proposed in 2002, in its 

key setup phase, generates a pool of KP keys and associated ids, before distributing k 

randomly chosen keys (without replacement) to each sensor node’s key chain. In the 

shared key discovery phase, the probability that a node is able to communicate with a 

neighbour is dependent upon KP and k, as each node will broadcast the identities in its 

key chain to neighbours, to determine node identities available in each node’s key chain. 

Through the identification of shared identities, neighbouring nodes may utilize the keys 

associated with theses identities to communicate. The cluster key grouping scheme 

proposed by Hwang et. al. in 2004 utilizes a similar approach but splits key chains into 

clusters, each possessing a start key id. This reduces the initial message length to the size 

of the clusters multiplied by the size of the key id list since the start key id may be used to 

determine the remaining cluster keys (Dustin et. al, 2007). 
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In an effort to reduce the required key storage for each sensor node, the pair-wise 

key establishment protocol proposed by Zhu et. al in 2003 utilizes a PRF seeded with the 

unique ID of the sensor node to generate the necessary key IDS and reduce the shared 

key discovery broadcast length to size of one key id. The trade off here lies with the 

computation required for PRF(ID) for each neighbouring node (Dustin et. al, 2007). The 

Q-composite random key pre-distribution scheme goes a bit further to improve resilience, 

reducing the possibility that a node is captured from k/KP to kq/KPq where KP is the key 

pool size, k is key chain size assigned randomly to the node and q is the number of 

common keys shared between two nodes. It achieves this with the use of a secret key 

composed of a hash of all the common keys between two neighbours (Dustin et. al, 

2007). 

Another scheme, which increases key resilience, is the multi-path key 

reinforcement scheme. The scheme is CPU and power resource-intensive however, as it 

requires each sensor node to generate n random key updates that are sent through n 

disjoint secure paths which prompts each receiving node to generate a reinforced link 

key. These progressive updates to keys in post-deployment through indirect or disjoint 

nodes links reduces the possibility of successful traffic sniffing for the updated keys. In 

order to compromise the new key, the attacker would need to identify the n random key 

updates being routed through the n nodes and the PRF that is used to generate the new 

key (Chan et al, 2003). This is similar to the key management scheme proposed by Feng 

& Wenpeng (2010), which adds an additional storage overhead, as nodes will also store 

the path to the base station since the combined key path doubles as a session key.  
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The pair-wise key establishment protocol is similar to the multi-path key 

reinforcement scheme with the exception that it utilizes a “threshold secret sharing” for 

key reinforcement and a more resource intensive key update strategy. The threshold of n-

1 random key part updates are all XOR’d with the current node’s key before being 

transmitted along the disjoint path (Dustin et. al, 2007).  Similarly, the cooperative pair-

wise key establishment protocol limits the shared key node set to a set of “cooperative 

nodes”. Sensor node A will expect each cooperative node to generate a HMAC of 

(cooperative node key | B | IDA). Sensor node A will then utilize this HMAC to generate 

reinforced keys while also sharing the set of cooperative nodes with another sensor node 

B which will repeat the process to generate the same key. Although this practice reduces 

the possibility of compromising keys, it is associated with a high communication and 

power usage cost (Dustin et. al, 2007).   

Another approach is to utilize block design techniques in combinatorial design 

theory to achieve the combinatorial design based key pre-distribution scheme. This 

design aims to allocate pre-defined key chains to nodes where each node will have at 

least one common key with another, thus reducing the key path to 1. Utilizing the number 

of sensor nodes to be deployed n, a prime power p is chosen where 2p+p+1 >= n. The 

prime power is then used to generate p-1 Mutually Orthogonal Latin Squares (MOLS), a 

square matrix where each of the p elements occurs only once in each row and column and 

each row column intersection is distinct. This complete set or order p may be used to 

generate an affine plane (p^2, p, 1) or a projective plane (p^2 + p + 1, p +1, 1) which are 

both symmetric in design. Although, these networks improves a node’s ability to localize 

and reduce the network communication and power consumption used for shared key 
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discovery, they require a storage capacity of n+1 keys for the keychain which becomes 

less feasible with larger WSNs. Furthermore, in an effort to increase scalability, other 

hybrid designs exist which reduces the necessary key storage by increasing the average 

key-path (Camtepe & Yener, 2007). 

Unlike much of the previous schemes, key matrix-based dynamic key generation 

as utilized in the popular Blom’s scheme is a public key cryptography scheme which 

utilizes the product of a public and private key matrix of size N x N, where N is the 

amount of nodes in the network. The approach guarantees that each node, when assigned 

a row (set of public-private key products) in the matrix, will be able to verify another 

node when the node multiplies its private key with the other nodes public key. The 

complexity associated with compromising the network then becomes dependent on the 

attacker’s ability to attain the private key matrix. To increase scalability and reduce this 

risk, the multiple space Blom scheme divides the network into two equal sets which do 

not share a common key. Furthermore, the multi-space pre-distribution scheme improves 

on these schemes by utilizing several predetermined private matrices and assigning each 

node a row in each. The use of public key cryptography in these schemes increases each 

node’s ability to communicate at the cost of excessive computation, power consumption 

and storage needs (Dustin et. al, 2007).  

Another scheme utilizing public key cryptography, is the polynomial based key 

pre-distribution scheme which allows nodes to generate link keys with the assistance of 

partially evaluated polynomials. With each node possessing a polynomial with p-1 

coefficients, nodes are able to generate a link key from the evaluation of their polynomial 

against their neighbour’s polynomial. Although scalability, storage and communication 
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are good, the repetitive evaluation of polynomials increases power consumption and is 

computationally intensive. The localized encryption and authentication protocol however, 

encourages the use of pair-wise keys and distributes an initial key, KI, in the key setup 

phase. A node, SA, with a unique identifier, IDA, will then be responsible for generating 

its master key, KA = Hash(KI, IDA). In the shared key discovery phase, a node, SB, 

broadcasting (IDB, RNB -- random nonce) will receive a response from its neighbour, 

SA, containing (IDA, MAC (KA | RNB | IDA ) ), allowing SB to generate the key Kv = 

Hash(KI + IDA) before both nodes generate the session key Ks = H(Kv). This scheme 

may also be adapted to devise multi-hop pair-wise keys similar to the multi-path key 

reinforcement scheme mentioned earlier. As such it inherits the same benefits and 

disadvantages. 

Moreover, network wise key management schemes, such as master key based 

solutions, where the same key is issued for all nodes, are similar to single master key 

pair-wise schemes. However, multi-tiered security solutions are characterized by varying 

degrees of protection corresponding to the data available at the respective level. One such 

solution (Slijepcevic et. al., 2002) divided into three tiers, utilizes a master key and strong 

encryption algorithms to secure mobile codes being exchanged by sensors at level 1. At 

level 2, sensor groups defined by location are assigned another key specific to the group 

to encrypt location information. Finally, at level 3, application data is secured with a hash 

of the original master key. Although scalable with low storage requirements (for storing 

the master and location key with a PRF), the approach may be easily compromised 

through the capture of one node’s keychain (Dustin et. al, 2007). 
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Time Efficient Stream Loss-tolerant Authentication (TESLA) solutions increase 

their robustness with delayed key disclosure techniques where the key required for a 

future message is computed and disclosed with an earlier message. The computational 

cost associated with this technique has encouraged u-TESLA (Dustin et. al, 2007). 

Although, Hossain. & Mahmud (2007) analyse key distribution management 

schemes for more powerful multi-cast WSNs to be used in a Vehicular Software 

Designed Network comprised of different tiers of Central Managers, Regional Group 

Managers, Control Groups, Base Stations and finally vehicles, the proposal considers a 

key-update scheme for moving nodes. Since vehicles are able to move between multiple 

groups localized by a base station’s range, a vehicle node may request entry into a new 

group by sending a message to the new base station (the id of the base station is being 

transmitted frequently) consisting of the hash of (vehicle’s id | the old group id | new base 

id | old group key), which may be verified by the new base station by sending a 

confirmation request from the old base station. If verified, this new vehicle would receive 

the group key for the new base station. 

 While exploring efficient key management distribution techniques for P2P live 

streaming applications, with a focus on centralized schemes that are hierarchical tree 

(HTS) based distribution networks, Liu X et. al, (2007), highlight the increased key 

distribution performance gain in a single-hop tree delivery key distribution scheme over 

multi-cast mesh networks. Their proposed scheme, Efficient and scalable Key 

Management Distribution Scheme (EKMD) describes a P2P network, where each node 

only shares keys with its immediate neighbour and the base station similar to the 

aforementioned IOS scheme. The scheme’s performance in storage, scalability and 



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      26 
    .    
communication benefits from the single-hop nature of the tree network and manages 

sessions using a PKI model in what they term as the local view. A new node may join the 

network and increase the local view of its neighbours by first authenticating with the base 

station in an attempt to receive a group certificate. This may then be utilized to verify that 

the new node is apart of the group and communicate with peers at the respective level of 

the tree (a binary tree was utilized in the study). Furthermore, in order to revoke keys, the 

base station may transmit the new certificate or key with each of its immediate peers who 

will be responsible for decrypting the new key and subsequently encrypting this key with 

their key before forwarding. This model increases the possibility for a man in the middle 

attack however as each node will have the ability to re-encrypt their own message as the 

new key. 

 

2.3.3 Authentication and attestation 

 While considering “severely” constrained nodes in WSNs as detailed in Figure 1 

below, a set of Secure Protocols for Sensor Networks (SPINS) which consolidated 

previous protocols such as the Secure Network Encryption Protocol (SNEP) and Tesla 

was proposed as a constrained solution to two party data authentication, authenticated 

broadcasts, data freshness and confidentiality (Perrig et al, 2002). 
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Figure 1: Technical Specification for SmartDust node.  

Reprinted from SPINS: Security Protocols for Sensor Networks. Wireless Networks  by 

Perrig, et al, ( 2002) 

The proposal critiques asymmetric algorithms at the time such as RSA which 

requires immense storage, 1024 bits, and computation along with bandwidth, 

approximately 50-1000 bytes/packet as infeasible for the resource constrained devices. 

Furthermore, it focuses primarily on direct communication between base stations and 

nodes (with an extension for node to node communication) and base station broadcasts to 

all nodes in what they coin as a routing forest (multiple base stations surrounded by 

multiple nodes). With a trust model based on the assumption that the base station is 

computationally resourceful and secure, the proposed SNEP, which adds 8 bytes to each 

message, also utilizes a non-transmitted message counter. Furthermore, they achieve 

semantic security (an attacker will be unable to derive information from encrypted plain 

text if multiple encryptions of the same plain text are studied (Goldwasser & Micali, 

1984)) by prepending each counter and DES-CBC (cipher block chaining) encrypted 

message with a random bit string. The counters are stored by the nodes and not 

transmitted to reduce the communication overhead. Furthermore, although the 
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communicating nodes share a master key, a derived key is used to encrypt messages. The 

counter enforces semantic security, data freshness, replay protection. Moreover, to 

accommodate for the high communication overhead of 24 bytes, computationally 

expensive PKI model, extensive bandwidth usage attributed to key disclosure in each 

packet and storage needs of the one-way key-chain, an improvement of TESLA, uTesla 

was proposed. By utilizing loose time synchronization with each node cognizant of the 

upper bound of the time synchronization error, each MAC becomes verifiable with the 

assumption that the generated MAC is a result of the current epoch. (Perrig et al, 2002). 

 Another approach, which addresses authentication at the link layer, is TinySec, a 

lightweight security architecture provided as a part of TinyOS operating system. It 

facilitates replay protection, message integrity and authentication with a MAC, 

confidentiality with encryption and semantic security through the use of initialization 

vectors (IV) (Karlof, Sastry, & Wagner, 2004). The architecture, aimed at supporting 

end-to-end security without crippling the ability of multi-hop networks to drop duplicate 

messages (since dense WSNs reporting to base stations may flood the base station and 

network communication with duplicates), supports two options, namely: authentication 

only (TinySec-Auth) and authentication and encryption (TinySec-AE), with the latter 

possessing the ability to encrypt the transmitted payload. Unlike, Tesla, Karlof et al ( 

2004) argue the use of only the less computationally expensive Skipjack CBC-MAC with 

an encrypted IV instead of the counter mode since the latter is a stream cipher mode 

operation which implies that if the counter is repeated with a repeatable (small) IV, then 

more semantic security will be lost, unlike the block cipher which will only leak the 

difference in block length. It should be noted that block ciphers are not completely 
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impervious to attacks, some of which include the postfix equality check, last word and 

block decryption oracles to name a few (Vaudenay 2002).  Again, because of the resource 

constraints of WSNs, TinySec utilizes a 4-byte MAC. Although shorter, the required 

brute force of  2
31

 attempts to receiving nodes on the network for verification over a 19.2 

kb/s channel would take approximately 20 months to attack (Karlof, Sastry, & Wagner, 

2004). The transmitted packet and associated field sizes described by the architecture is 

illustrated below in Figure 2. 

 

Figure 2: TinySec and TinyOS packet formats illustrating field size in bytes.  

Retrieved from TinySec: A Link Layer Security Architecture for Wireless Sensor 

Networks by Karlof et al, (2004) 

 

Another protocol which aims to provide intrusion prevention, integrity, anti-

replay, and authentication checks is the Authentication and Anti-replay Security Protocol 

(AASP). The protocol utilizes two (2) approaches, namely the Authentication Handshake 
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and the Last MAC Method (Gheorghe et al , 2010). The latter, utilizing a globally shared 

key, requires the communicating nodes to initially accept the first unauthenticated packet 

transferred by each node. Each subsequent message will then be verified with a MAC 

computed from the hash of the previous message and shared key. To tackle the initially 

unauthenticated packet from the last MAC method, the authentication handshake is used 

to present a Diffie-Hellman challenge (Gheorghe et al ,2010). The use of the last MAC 

challenge raises the issue of forward secrecy, however, even though it may assist with 

replay protection. 

With the constrained nature of these devices, utilizing COAP over UDP is a more 

resourceful approach. In order to secure COAP and achieve end-to-end security, 

Datagram Transport Layer Security Protocol (DTLS), the TLS equivalent for COAP, was 

proposed as the main security protocol for COAP as COAPs (COAP with DTLS). The 

protocol was designed to secure application communication for lossy networks where 

handshake messages may not be delivered reliably or in sequence while retaining similar 

traits to TLS (Rescorla & Modadugu, 2012). DTLS achieves this with the use of two 

layers (illustrated in Figure 3), the lower layer consisting of the record protocol and the 

upper layer, which may consist of the ChangeCipherSpec, handshake or alert protocols or 

application data. During the handshake process, the ChangeCipherSpec protocol is 

responsible for signaling to the record protocol layer that subsequent communication will 

use the newly negotiated cipher suite and keys. Furthermore, the alert protocol is used 

when transmitting error messages between peers and finally, the handshake protocol is 

used to negotiate compression methods, cipher suites and security keys. The lower record 

layer, contains a header which consists of the content-type, identifying the upper layer 
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protocol, and the fragment which contains the respective protocol data. With the 

assistance of its headers, the record protocol cryptographically protects the upper layers 

to achieve authenticity, confidentiality and integrity (Raza et. al ,2013). Moreover, to 

accommodate loss-insensitive messaging, explicit sequence numbers are added, to 

prevent anti-replay and facilitate message re-ordering. Furthermore, a re-transmission 

timer is used to resend messages for loss packets and a bitmap set of received records, 

similar to Internet Protocol Security (IPSec), is used to achieve replay detection. With 

UDP datagrams limited to approximately <1500 bytes, DTLS allows fragmentation for 

messages which in theory could become 2
24

-1 bytes (Rescorla & Modadugu, 2012). 

 

 

Figure 3: Layout of a packet secured with DTLS.  

Retrieved from Lithe: Lightweight Secure CoAP for the Internet of Things by Raza, 

Shafagh, Hewage, Hummen, & Voigt (2013) 

Lithe, is another proposed protocol, which compresses the recommended security 

for COAP communication, DTLS using 6LoWPAN Next Header Compression 
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(6LoWPAN-NHC). Raza, et. al. (2013) argues that computation is a less expensive use of 

a node’s power than communication and shows that 6LoWPAN-NHC reduces the 13 

bytes added by the DTLS record protocol and the 12 bytes added by its handshake to 5 

and 3 bytes respectively. By compressing the initial handshake, subsequent transmissions 

will benefit from a reduced communication length since DTLS will encrypt these 

messages. Moreover, they explore the compression of the record and handshake with a 

single encoding (6LoWPAN-NHC-RHS) and the compression of the record protocol 

when the fragment contains application data (6LoWPAN-NHC-R). 

An alternate approach to the previously described cryptographic schemes is the 

Implicit Security Authentication Scheme which utilizes unexpected node behaviour to 

identify malicious nodes (Chen et al ,2010). The approach considers a base station, 

watchdog stations and a fixed set of sensor nodes, which have previously recorded 

behaviour data before being deployed. The behavior recorded comprises of a set of 

vectors, each consisting of time, an event and a set of monitored parameters. These 

monitored parameters may be reported from various levels of the OSI stack such as the 

expected radio transmission range from the physical layer, error control and error rate 

occurrences at the data link layer, number of successful deliveries at the network layer or 

time synchronization activities at the application layer. Computationally competent 

watchdog nodes deployed in WSNs may then monitor current node behaviour and 

simultaneously compare it to previous data for the specific node to develop an 

authentication score from a learned machine model. The approach was inspired by the 

fact that a compromised node, may still be able to authenticate with its set of 

compromised keys (Chen et al,,2010). Although insightful, the approach may not be 
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feasible for many WSNs as harsh sensor environments may produce unpredictable node 

behaviour and the approach does not consider the addition of new nodes or replacements 

to the network to name a few. 

The Short Message Authentication Code Check (SMACK) is a proposed security 

extension for COAP aiming to reduce DOS and battery exhaustion attacks with a 

verifiable 4 -byte HMAC inserted into the already available token field in COAP headers 

(Gehrmann et al 2015). The HMAC consists of a 2-byte request ID and 2-byte validity 

check. The validity check is the output of a HMAC seeded by three keys A, B and C 

where C changes every modulus of the session length. With the assistance of a pre-

computed lookup table of 36 bytes, supporting Galois field sizes of 1 to 16 bytes for the 

MAC calculations used, keys are combined with the message id, request id, version, type, 

token length and code of the COAP header. While A and B are the first and last 16 bits of 

the generated session key, C is taken from Session Key J= PRF(Session Key). Similarly, 

the session key is the result of a PRF(Initial MID, Master Session key) given to all 

network devices. The master key and seed used to generate the master session key is 

maintained by the KDC or base station.  

 

2.4 Blockchain 

2.4.1 Overview 

The blockchain represents a distributed and replicated structure shared, 

contributed to and verified by networked peers. With the exception of the genesis block, 

the starting block of transactions for the chain, each subsequent, time stamped block is 

identifiable by its cryptographic hash that links it to its predecessor and may be used to 
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validate the block using a consensus algorithm (Christidis & Devetsikiotis, 2016). With 

the advent of Bitcoin, the use of this data structure to manage its cryptocurrency has 

garnered widespread acceptance, speculation, and intrigued many researchers and 

professionals alike to identify the applications in different domains. Bitcoin, uses these 

verifiable blocks, each consisting of transactions, as a decentralized yet verifiable, peer 

maintained ledger, allowing each node to verify the status of any account in their network 

by perusing the history of the blockchain. At the time of writing, many alternative 

networks and approaches to interacting with the blockchain have been implemented 

utilizing different consensus and operating mechanisms with some promising domain 

specific concerns. Some of these include Bitcoin, Ethereum, Tendermint, Ripple, 

Hyperledger and Intel Ledger’s Sawtooth to name a few. 

In this decentralized network (no mediation by a middle or single trusted entity), 

each node aims to improve its global view of the network’s state. A typical round in this 

iterative process includes peers, connected nodes (usually persons interested in 

interacting with the respective network), committing signed transactions (changes to the 

current state of the network or payments in terms of bitcoin) to the network. The 

networks utilize public key cryptography to attain authentication and integrity, requiring 

each transaction to be signed by its owner with his/her/its respective private key. This 

transaction is then broadcasted to neighbouring peers who validate the transaction before 

broadcasting the same to their peers. After an agreed time interval, participants group 

acquire transactions into candidate blocks to be verified using the network’s consensus 

algorithm or to be “mined”. Throughout this process, peers typically aim to validate the 

transactions in the respective block and the provided cryptographic hash or link to the 
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previously verified node. If successful, the block is committed to the trusted ledger of 

blocks and the process is repeated (Christidis & Devetsikiotis, 2016).  

The inherent properties of the blockchain around decentralized trust and the 

ability to facilitate the popular cryptocrurrency has attracted much attention in several 

domains. Of the many implementations thus far, is a taxonomy which includes private 

and public networks, (Kosba, Miller, Shi, Wen, & Papamanthou, 2015), Unspent 

Transaction Outputs (UTXO), smart contracts within an account based model as seen in 

Ethereum (Christidis & Devetsikiotis, 2016) and Turing incomplete or quasi-turing 

complete (Popejoy, 2016) languages. Furthermore, distributed ledgers may be 

permissioned (Walport, 2016), privacy-preserving (Kosba, Miller, Shi, Wen, & 

Papamanthou, 2015) or utilize more relaxed consensus models to fit a particular domain 

in a trusted environment. Irrespective of the taxonomy, blockchains are able to provide a 

verifiable and auditable consensus on assets in a distributed and possible untrusted peer-

to-peer (P2P) environment.  

 

2.4.2 Consensus 

As mentioned earlier, each participating node aims to achieve a single global view 

of the network through mining, however with each node possessing so much 

independence, it is possible to develop forks (branches) of the original chain. In the event 

where two nodes identify that their blockchain is different, the most trusted fork, usually 

the longest and most verifiable, is accepted as the main chain and the other discarded. 

This is useful as will be discussed later especially in cases where new nodes connect to 

the network or an existing node may have been dormant or disconnected for some time. 
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In an attempt to avert Sybil attacks, where a single entity with multiple identities may out 

vote the entire network on the legitimacy of an illegitimate block to attain control of the 

network, blockchain implementations such as Bitcoin has made mining computationally 

“expensive”. This implies that it is possible for any node to have their assembled block be 

considered as the next mined block in the network given that they find a random nonce in 

the block’s header that will allow the SHA-256 of the header to include the amount of 

leading zeroes expected by the network’s difficulty level (Christidis & Devetsikiotis, 

2016). This computational expensive process to achieve consensus is considered the 

proof-of-work (PoW) to create a legitimate block and may be easily verified by peer 

nodes since this is a one-way cryptographic hash. Furthermore, the consensus protocol in 

this implementation also declares that whenever forks are identified by peer nodes, the 

longest chain should be accepted as the correct chain as mentioned before, being that it 

would consist of the most blocks or the most PoW. Another crypto-currency, Litecoin 

utilizing blockchain as a backbone is similar to Bitcoin, with the exception of the possible 

hashing algorithms included such as Blake-256 (Henzen, Aumasson, Meier, & Phan, 

2011) and scrypt (Percival,2009). 

 Proof of Stake (PoS) is an alternative consensus protocol that is less 

computationally intensive (leading to a faster network and mining process) but is heavily 

reliant on a node’s overall balance (amount of cryptocurrency owned) or ownership of 

the network. By allowing the node with the greatest stake or balance in the network to 

make the most decisions as the trusted entity, issues such as the speed and storage 

requirements of the network may be reduced. However, this may open the network to 
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other attacks, especially if the malicious node has acquired enough of the currency to 

influence the network. 

 Another approach inheriting traits from PoS and PoW is Delegated Proof of Stake 

(DPoS). In DPoS, participants of the network are considered shareholders with the ability 

to delegate their vote of legitimate blocks to a rotating set of active participants similar to 

how shareholders are represented by board of directors. These directors would then be 

responsible for performing the PoW and communicating the results. With less voting 

members, the network inevitably increases its mining power and overall reduces the 

computational power required by all nodes ("Delegated Proof of Stake", 2016). 

 In distributed networks, byzantine fault tolerance, which may be solved using the 

Practical Byzantine Fault Tolerance algorithm (PBFT), is an important benchmark which 

evaluates how the network handles the byzantine general problem or the loss of a node or 

service in a manner which presents the same issues differently to each observer (AlZain, 

Soh, & Pardede, 2013). This is a critical issue since these decentralized networks aim to 

collaboratively achieve consensus through mining.  Bitcoin aims to addresses this issue 

with the aforementioned PoW, however if legitimate transactions were contained in 

blocks on the shorter, rejected fork, the network would ultimately lose this history or part 

of the ledger. Alternatively, other crypto-ledgers, Juno and Tendermint utilize variants of 

the BFT or consensus such as Raft and Tangaroa respectively. PBFT is more suitable for 

faults where up to one-third of the nodes are faulty (f) and therefore will require a 

minimum of 3f + 1 nodes. Tendermint capitalizes on this by dynamically rotating and 

varying the participants and validators in a round robin manner when more than a third of 

the network is loss. Ripple approaches this issue differently with the use of Unique Node 
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Lists (UNL). Instead of querying the entire network, nodes query there UNL or sub-

network, thereby reducing latency and potentially increasing its tolerance to 5f + 1. 

Similar to UNL, Multichain utilizes a whitelisted set of nodes operating on a consensus 

factor called “mining diversity”. Mining diversity describes with leniency how many 

blocks a node should wait before attempting to mine again. If a node pre-empts this 

factor, their attempt to contribute is rejected (Christidis & Devetsikiotis, 2016). 

 Some blockchain implementations such as Ethereum and Kadena add additional 

properties to their implementations such as the ability to support smart contracts 

(Popejoy, 2016). Smart contracts, a concept introduced by Nick Szabo in 1994 are “a 

computerized transaction protocol that executes the terms of a contract’’ (Szabo, 

1994). Essentially, smart contracts enable parties (nodes or persons) to interact with 

contractual clauses embedded or stored in the respective blockchains (at an address to be 

executed later). This increases visibility and reduces the need for a trusted third party, 

potentially creating Decentralized Autonomous Organizations (DAO). Both 

implementations take different approaches to providing this functionality, for example, 

Ethereum enables a quasi-turing complete language encoded using Recursive Length 

Prefix (RLP) on its Virtual Machine (EVM) (Wood, 2016) while Bitcoin’s scripting 

language and Kadena’s implementation, Juno, utilizing Pact as its language, features a 

turing-incomplete language which they argue is more secure than Ethereuem since it 

presents more limits (Popejoy, 2016).  
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2.4.3 Oracles 

Bitcoin defines oracles as external “servers possessing key pairs which are able to 

sign transactions upon request when a user-provided expression is true” ("Contract - 

Bitcoin Wiki", 2015). Oracles become necessary in this cryptographic consensus, as the 

blockchain is unable to perceive its environment or world events without the inputs of its 

stakeholders or human participants. In order to create a more autonomous operation, 

outside devices or servers are used to submit transactions to the blockchain. Instead of 

being completely independent, bitcoin proposes and utilizes several methods to attest and 

improve the level of trust these oracles contribute. A typical re-enactment of an oracle’s 

contribution may be identified in the pre-sale of crops in an automated green house. A 

sensor or oracle capable of monitoring crop yield may attest the availability of a crop by 

encoding it as a digital asset on the blockchain, thus allowing shoppers to pre-order their 

yield months in advance and monitoring the crop throughout its lifecycle. Oracle 

integrations tie the advancements in automated systems and IoT into the integrity the 

blockchain is able to provide. 

Trust remains an issue in this model however, especially if the oracle, being used 

by a disbursement bureau, possesses knowledge of the owner’s assets and intends to 

withhold its signature in return for remuneration. Bitcoin has proposed the used of 

encrypted pre-conditions which only require that the oracle receives before hand, the 

hash of the pre-condition and the public key, which may be used in the future to verify a 

correct request. Moreover, the use of trusted hardware as discussed earlier in 

authentication or the use of multi-signature contracts have also been proposed, where a 

majority of oracles may vote on the pre-condition ("Contract - Bitcoin Wiki", 2015). 
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Oraclize is one such service aiming to serve as a “provable-honest oracle” that 

will enable smart contracts to access resources from the internet ("Oraclize API 

Reference", 2016). Since the execution of smart contracts occur on the blockchain or in 

virtual environments, disconnected from world events, Oraclize provides a smart contract 

which acts as a service provider that uses TLSNotary to prove its honesty. Other smart 

contracts may request data (from a HTTPS URL, Wolfram API to name a few) and 

optionally request a cryptographic proof using TLSNotary (Gibson, 2014) which may be 

accessed from a location stored on the InterPlanetary File System (IPFS).  IPFS is a 

distributed P2P file system that provides a content-addressed, block storage model 

combined with a distributed hash table, self-certifying namespace and a block exchange 

that has been incentivized (Benet, 2016). This design enables IPFS to provide a 

decentralized, replicated, self-certified and version file system that allows users to enjoy 

access similar to bittorrent clients or the git version control system. A similar yet pre-

mature service, Orisi, aims to provide multi-signature oracle confirmations utilizing 

Bitmessage as its underlying communication protocol, limiting oracles to also be 

participating blockchain nodes. Bitmessage utilizes a hash of the node’s public key as the 

node’s id (potentially obscuring IP addresses), allowing messages to be easily 

authenticated by verifying the sender’s id. Although messages are transferred similar to 

how blocks are exchanged in bitcoin, DOS attacks are further reduced since each 

message transferred would undergo an additional proof of work, with each participant in 

the network attempting to decode a message to prove that they are the recipient. This 

naturally raises scalability concerns, in which they propose to divide subsequent nodes 

and their communication into streams after a network threshold size has been achieved. 
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Streams of divided nodes would be divided into sub-trees which would then require 

nodes wishing to communicate with nodes in other sub-trees to broadcast up and down 

the tree as necessary (Warren, 2012). 

 

2.4.4 Resource Constraints 

With the increased computing power incorporated into IoT, incorporating the 

blockchain, smart contracts and oracles into the mix holds many possibilities. These 

could automate asset tracking, supply chain management, contract signing, fund 

disbursement with the assistance of sensors, servers and actuators (Christidis & 

Devetsikiotis, 2016). In the aforementioned consensus models, blockchain nodes require 

all or a delegated set of participants in PoW and DPoS respectively to perform 

computationally expensive mining to determine the legitimacy of new blocks, which are 

replicated on each node. This computational and storage constraint that requires a 

significant amount of power and network connectivity has already been identified as an 

issue with the blockchain’s public network amassing over 75,043 MB as of July 9, 2016 

as illustrated in Figure 4 below("Bitcoin Charts - Blockchain.info", 2016).  
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Figure 4: Blockchain Storage Size as of July 9, 2016.  

Retrieved from Blockchain.info ("Bitcoin Charts - Blockchain.info", 2016) 

Ethereum has run similar benchmarks to evaluate its block processing which 

considered their PoW (specific to their quasi-turing complete execution model), 

transaction signature checking, receipt verification, uncle validation and database 

insertion on 1,000,000 blocks on their public frontier network (first public Ethereum 

network). The test was conducted in Ubuntu 14.0.4 LTS on a virtual cloud server with 

4GB RAM, 2 Core processors, 60 GB SSD and 4TB transfer rate (network) to yield the 

results in Table 2 below("Ethereum Benchmarks", 2016). 
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Table 2: Ethereum Benchmarks on Frontier Network for each client 

 

Note. Reprinted from "Ethereum Benchmarks", retrieved from 

https://github.com/ethereum/wiki/wiki/Benchmarks Copyright 2016 Ethereum 

Foundation 

 

Efforts to reduce the storage requirements include the use of Simple Payment 

Verification (SPV) Clients in bitcoin or the Light Ethereum Sub-protocol (LES) in 

Ethereum (not yet implemented at the time of writing). LES considers partially light 

clients which still participate in the consensus and fully light clients which do not 

participate at all. Low capacity nodes processing approximately 512Bytes/min may still 

verify the integrity of the chain by performing a reverse-hash lookup in their respective 

merkle trees ("Light Ethereum Subprotocol (LES)", 2016), however nodes tend to only 

retrieve block headers, similar to the eth/63 fast synchronization algorithm which 

downloads headers then verifies the set by verifying a random block from the newly 

downloaded set (Szilágyi, 2015). SPV clients operate in a similar fashion, however 

implementations such as bitcoinj tend to store the transactions related to the owner’s 

wallet also as an additional step to verify the status of the owner’s account. As a result, 

SPV clients are susceptible to Finney attacks where they may have accepted a double 
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spent transaction because they have trusted a mining node which isn’t broadcasting 

several spent transactions (Hearn, 2016). 

In essence the associated resource constraints of the decentralized trust attained 

through verifiable consensus in a fault tolerant network has made it infeasible to embed 

and reap the rewards of the technology in constrained devices (sensors and actuators). 

With the relatively young age of blockchain technology and the constraints of smaller 

IoT devices still deemed applicable, additional research is required in incorporating these 

devices into blockchain technology. 

 

2.5 Conclusion 

The ubiquitous use of micro-sensors has resulted in many variations as it pertains 

to resource constraints. Furthermore, when considering numerous micro-sensors, it has 

become more pragmatic to employ Wireless Sensor Networks as they are easier to deploy 

and maintain. These networks however require different design considerations, notably: 

fault tolerance, scalability, hardware constraints, network communication, environmental 

considerations, production costs and power consumption. Moreover, the use of a wireless 

medium increases the likelihood of the explored threats to occur such as replay attacks, 

session hijacking and worm-holes. 

     Due to device constraints, authentication and attestation schemes have been designed 

with the communication medium in mind and are often integrated with a particular layer 

of the OSI model. In particular, many sensors have incorporated wireless communication 

protocols such as 802.15.4, IPv6 and 6LoWPAN. While there are many concerns, the 

overlapping concerns of these authentication schemes have aimed to assert identity, 
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integrity, data freshness and replay protection with the assumption that the base station is 

computationally resourceful to enforce security. Moreover, while application specific, 

random or deterministic pairwise key management schemes are less computationally 

intensive than PKI methods for WSNs. These schemes however rely on a trusted 

authority or base station and use various re-keying techniques to reinforce the integrity of 

the network. 

 The literature review therefore highlights several concerns and opportunities. 

Notably, the cost (monetary, communication overhead) associated with key management 

and key updates especially in post deployment and the costs associated with securing 

base stations. In addition, the trust (i.e. to remain uncompromised)  and fault tolerance 

level required for base stations connecting constrained sensors to aggregation networks is 

another area of concern. Moreover, the integrity of data is more likely to be lost while 

propagating the data to different participants in a network topology, resulting in the final 

recipient relying only on the trust of its closest peer. It is also evident that due to the 

design considerations for WSNs, one solution may not fit all and the applicability of the 

constrained authentication schemes may not be secure enough for more resource 

competent nodes. However, although current blockchain implementations are too 

resource intensive for constrained sensors, the blockchain addresses several issues such 

as byzantine fault tolerance, provenance, integrity and auditability. It is therefore an 

opportunity to explore the integration of existing security primitives, authentication 

schemes into a WSN that integrates with the blockchain. 
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Chapter 3:  Proposal 

 

With the increased usage of constrained devices to provide valuable yet critical 

information, it has become necessary to not only securely acquire data but prove its 

source. The Lightweight Blockchain Authentication for Constrained Sensors 

(L.B.A.C.S.) addresses this need for provenance of sensor data within highly distributed 

and semi-trusted environments that utilize blockchain technology as a backbone to 

achieve consensus. Blockchain technology, currently being researched and 

commercialized, possesses attractive attributes for untrusted decentralized environments 

but remains resource intensive as highlighted in the literature review. At the time of 

writing, the author is yet to identify proposals targeting the provenance of constrained 

oracle data on the blockchain, especially when most models addressing WSN concerns 

utilize hierarchical networks which completely trust the base stations that forward 

communication on behalf of the sensor nodes. The aforementioned model is useful for 

aggregation networks but also requires greater security from the base stations involved. 

This proposal will therefore define the scope, assumptions, threat model and security 

objectives while describing how LBACS addresses this issue.  

LBACS is a lightweight authentication scheme for wireless constrained oracle 

sensors communicating with semi-trusted blockchain competent nodes. The scheme, 

operating above the transport layer of the OSI model, enables interoperability with 

existing schemes and blockchain implementations, while providing provenance and 

auditing in fault tolerant networks. Considering the limited power, storage and 

communication abilities of WSN nodes, the scheme proposes lightweight computations 
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to achieve data freshness, semantic security, source repudiation, forward and backward 

secrecy. Specifically, this proposal will include methods for key generation and 

distribution (pre and post deployment) for WSNs interacting with the blockchain, key 

revocation and authentication (peers, groups and multi-hop). Although possible, this 

proposal considers methods enabling encryption, packet routing and confidentiality as out 

of scope due to time constraints of this thesis. 

 

3.1 Security Objectives 

 

The Lightweight Blockchain Authentication for Constrained Sensors (LBACS) aims to 

achieve the following security objectives: 

1. Authentication: A receiver should be able to verify a claim made by the source 

of a message forwarded through n communication links where n  N. (N 

represents the set of natural numbers) 

2. Blockchain Provenance: An interested party, without access to a constrained 

oracle sensor or its network, may prove that data published on the blockchain 

originated from the oracle sensor. 

3. Integrity: The generated authentication tag should attest to the contents of the 

transmitted message. 

4. Replay Protection: The scheme should facilitate the identification and rejection 

of replay attacks. 
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5. Weak Backward Secrecy: Without the permission of the key distribution centre, 

previously used pairwise keys should not be discoverable by an adversary or 

newly deployed members of the network 

6. Weak Forward Secrecy: Future keys will be inaccessible to revoked peer or 

group members. 

7. Universal Forgeability: An adversary, not apart of the network, should not be 

able to generate a correct authentication tag for all messages. 

8. Identity Revocation: Any participating sensor node, semi-trusted base station or 

trusted authentication entity may have their identity revoked by a valid certificate 

authority. 

9. Auditable: Communication between trusted authentication entities, semi-trusted 

base stations and sensors should be available for examination. 

 

3.2 Notation 

The following notation will be used throughout this chapter to abbreviate the 

concepts, terms and identifiers utilized within the LBACS scheme. 

Table 3: LBACS Notation 

Notation Definition 

CA Certificate Authority 

TAE Trusted Authentication Entity 

STBS Semi-Trusted Base Station and Blockchain Node 

BN Blockchain Node 

SN Sensor Node 

KDF Key Derivation Function 

PRNG Pseudo-Random Number Generator 

PKi(A, B) Pairwise key “i” between A and B where: 

“i”  N  

“i” represents the current iteration of the key  

A and B are entities (either TAE, STBS, SN) where 
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Notation Definition 

A  B.  

PKi(A, B) = PKi( B, A)  

RSi(A, B) Random seed “i” shared between A and B where: 

“i”  N  

“i” represents the current iteration of the key  

A and B are entities (either TAE, STBS, SN) where 

A  B.  

RSi(A, B) = RSi( B, A)  

PPK(A) Public/private key pair assigned to A where A is an entity 

from the set of STBS and TAE apart of the system 

(valid/invalid) 

PNKA Private Node Key for A where A is a TAE or Sensor node 

PRNGA Pseudo Random Number Generator being used by A where 

A is a TAE or Sensor node 

No(A) Number of A where A will be defined 

MAC Message Authentication Code 

HMAC Keyed Hash Message Authentication Code 

INTENTION_BIT_SIZE Size in bytes of the intention bit used in the LBACS 

authentication tag 

SESSION_SIZE Size of an LBACS authenticated session 

LBACS_TOKEN_SIZE Size in bytes of the LBACS authentication tag/token 

HMAC_SIZE Size in bytes of either HMAC within the LBACS 

authentication tag 

HMAC_PIECES_COUNT Number of pieces of the generated HMAC before 

truncation (implementation specific) 
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3.3 Overview and Assumptions 

 

 

Figure 5: LBACS Network Overview 

 

Figure 5 above illustrates four types of sub-networks connected by a larger 

blockchain network. In operation, multiple types of each sub-network may co-exist on the 
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same blockchain or form side-chains with other blockchains based on the respective 

blockchain implementation. Each sub-network has access to the blockchain network 

through a Blockchain Client Node (BN1-4) which also acts as Semi-Trusted Base Stations 

(STBS) for sub-networks 2 and 3. 

Sub-network 1 (SbN1) is a critical component of LBACS’ architecture. It is regarded 

as the most trusted and secured sub-network and as a result, possesses the most authority 

in the decentralized group. It consists of the Key Generation and Distribution Centre and 

Trusted Authentication Entities (TAEs) along with the elements necessary to facilitate the 

PKI model to be discussed later such as a Certification Authority (CA) and Registration 

Authority (RA). Primarily this network will be responsible for the following activities: 

1. maintaining a directory of valid public keys of STBS relaying sensor messages 

2. verifying MAC of sensor messages 

3. provenance of sensor data submitted to the blockchain  

4. generation and distribution of symmetric keys to STBS and constrained oracle 

sensors 

5. generation and distribution of private-public keys to STBS (dependent on the PKI 

model) 

On the other hand, sub-network 4 (SbN4) consists of consumer applications and services 

(web applications, servers, other IoT, etc.) that require information provided by oracles. 

This network is typically untrusted and only awaits the non-repudiation of messages 

submitted by STBSs from a member of SbN1.  

 Both Sub-network 2 (SbN2) and Sub-network 3 (SbN3) are networks consisting of 

constrained oracle sensors (SN). However, they have been separated to illustrate the 
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pragmatic use of various topological schemes in various types of WSNs. Specifically, 

SbN2 represents WSNs where each sensor node is able to communicate directly with the 

base station (hub and spoke model) while nodes in SbN3 use routing mechanisms to 

forward or broadcast packets until they arrive at the STBS (daisy-chained model). Sensor 

nodes that are a part of these networks are assumed to be constrained devices with 

resources similar to those identified in Figure 1 on page 27 where it may be impractical to 

involve significant computation for authenticating packets such as the more heavyweight 

computations of PKI models. Finally, these networks consist of more computationally 

resourced base stations, which are responsible for relaying sensor data to the blockchain. 

Due to the limited constraints of the participants of these networks, it is assumed that it is 

also economical to deploy multiple base stations supporting the same WSN. However, 

these base stations may experience the same environmental factors as the sensor nodes 

and with less constraints in an untrusted environment, it is also assumed that these base 

stations may be targets of attack or harsh environmental conditions as discussed earlier in 

the literature review. 
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3.4 Key Management 

3.4.1 Pre-Distribution 

 

Figure 6: LBACS Pre-Distribution Pairwise Key Allocation 
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LBACS utilizes a combination of pairwise symmetric and asymmetric key 

approaches to provide provenance of constrained oracles sensors on the blockchain. Prior 

to deploying base stations and WSN nodes in SbN2, as illustrated in Figure 6 on page 53, 

the KDC issues pairwise keys between these parties to enable each to authenticate 

communicated packets. These pairwise keys are accompanied by a random seed value for 

a PRNG that will provide an expected nonce capable of reducing the communication 

overhead and power consumption when transmitting the MAC as will be discussed 

further. Similarly, the KDC will issue a keyset consisting of a pairwise key and seed 

between Trusted Authentication Entities (TAE) in SbN1 and sensor nodes as these TAEs 

will be responsible for authenticating sensor data published on the blockchain. It should 

be noted that the STBS does not share the same keys shared between the Trusted 

Authentication Entities (TAE) and oracle sensors. This additional storage requirement 

reduces the possibility of man-in-the-middle attacks as a result of a compromised STBS, 

a common risk in WSNs. In P2P or multi-hop networks represented by SbN3, each sensor 

would receive a random set of N pairwise keys and seeds to communicate with N peers 

with a probability of p assignments (where p is rational number). To further optimize a 

node’s ability to communicate with nearby peers, the chosen set of keys would be picked 

randomly from expected nearby nodes or the expected sensor group for multi-cast 

networks. The resulting sensor node in these networks would require storage for the 

keyset of Np peers in addition to the TAE in order to provide provenance on the chain. 

This is similar and reaps the benefits of the earlier discussed probabilistic pairwise key 

distribution scheme proposed by Hwang et. al. in 2004 (Dustin et. al, 2007) but with an 

additional keyset for provenance on the blockchain. As with many scalable networks, it 
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may not be feasible to physically inject the necessary keyset(s) into the participant nodes. 

Instead, the KDC, within a trusted environment, may inject a key setup symmetric key (to 

be discarded after key setup phase) and broadcast the necessary keyset to each node to 

bootstrap mass deployment. Finally, each node would receive an additional key, which 

would allow the node to derive future pairwise keys broadcasted from the STBS using a 

Key Derivation Function (KDF) seeded with the key and other parameters. An example 

of the required key storage for a sensor node, A, with the ability to communicate with 

two additional peers, namely sensor node B and C has been illustrated in Figure 7 below. 

 

Figure 7: Required Key Storage for LBACS Sensor Node 
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In order to facilitate signing and signature verification, STBS and TAE, assumed 

to be computationally competent, would generate their public-private key pair and submit 

to their public keys to a certificate authority for approval as illustrated in Figure 8 below. 

Alternatively, but less secure, if a STBS is not computationally competent to generate its 

key pair, it may be issued from the KDC.  Furthermore, in order to enable a more fault 

tolerant network that is auditable and thus less likely to be compromised, the blockchain 

would be used as the decentralized directory storing a list of valid public keys for 

respective TAE, SBTS and registration or certificate authorities who would be 

responsible for publishing updates to this list. By publishing this directory on the 

blockchain, any STBS, TAE or consumer application in SbN4 would be capable of 

verifying signed transactions in the network and dynamically updating communication 

partners where necessary in the case of sybil or byzantine attacks.  



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      57 
    .    

 

Figure 8: LBACS public/private key pre-distribution 
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3.4.2 Post Deployment 

 

 

Figure 9: LBACS Post Deployment: Addition of a STBS or TAE 
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In order to add a TAE post deployment, the certification authority would update 

the valid TAE registry on the blockchain with the new TAE’s public key. Furthermore, 

the KDC would assign a set of symmetric keysets (pairwise key and seed) derived using 

the KDF (illustrated in the notes section of  

Figure 9 above ) to the TAE. Finally, to update existing WSN nodes, the KDC 

with the assistance of TAEs, publishes the pseudo-id of the new TAE along with a 

random nonce on the blockchain. Subsequent to verifying the signature on the TAE’s 

request, the STBS broadcasts this information to WSN nodes. WSN nodes then derive the 

new pairwise key using KDF (SNjID | PNKSNj | KDF (TAENewID) | Random Nonce | 

PRNG(TAENewID | PNKSNj) ) . A STBS would be added similarly to TAEs but with less 

pairwise keys based on the expected number of WSN nodes the base station would be 

communicating with. The addition of a new TAE or STBS has been simplified in  

Figure 9 above.  
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Figure 10: LBACS new Sensor Node Deployment 

To add a new sensor node to the network, the KDC would first inject the new 

sensors keychain before deploying the node into its sub-network. This deployment would 

be accompanied with an authenticated broadcast to other participants of the new node id 

and random nonce. This would allow other participants to derive keys using the KDF to 

establish communication with this new node. The required key generation and necessary 

broadcasts have been illustrated in Figure 10 above. It should be noted that even though 

any deployed node or an attacker may receive this broadcast message of a new node, the 
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node or attacker will not be able to authenticate with the new node if the new node was 

not assigned the pairwise key generated by the already deployed node.  

 

3.4.3 Session Management 

A session in LBACS between a sensor node, A, and another peer (sensor node, 

TAE or STBS) is characterized by the use of a shared pairwise key and random seed 

derived by the ith iteration of a shared KDF and shared PRNG where i  N. The length of 

a session, SESSION_LENGTH, is defined by the finite amount of requests (each 

characterized by a request ID) that may be made by a single party, 

NO_OF_REQUESTS_IN_SESSION, plus one (1) additional request to that may be used to 

signify a session change, SESSION_CHANGE_REQUEST.  

 

SESSION_LENGTH = NO_OF_REQUESTS_IN_SESSION + SESSION_CHANGE_REQUEST 

 

With each request in a session, sent by a party A, characterized by a request ID, a 

SESSION_CHANGE_REQUEST may be characterized by the last available request ID 

within the session. 

SESSION_CHANGE_REQUEST_ID= SESSION_LENGTH – 1 

OR 

SESSION_CHANGE_REQUEST_ID = NO_OF_REQUESTS_IN_SESSION + 1 

  

After deployment, nodes utilize the first session, i = 1. Nodes may continue to 

communicate within this session until they have exhausted 
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NO_OF_REQUESTS_IN_SESSION or prematurely initiate a new session by transmitting a 

message utilizing the SESSION_CHANGE_REQUEST_ID.  Each participant of the session, 

receiving a message containing the SESSION_CHANGE_REQUEST_ID will then be 

responsible for performing the i+1 update of their pairwise key and random seed to 

continue communication. The i+1 session generation has been illustrated below for two 

peers, A and B. 

 

PKi+1(A, B) = KDF (PRNG (RSi (A, B)) | PKi(A, B) ) 

RSi+1(A, B) = PRNG (RSi(A, B)  ) 

 

It should also be noted that an identifier identifying the current session iteration or past 

pairwise keys and random seeds should not be stored by participants. Not only does this 

improve the key storage requirements of the scheme but reduces the associated risks to 

the scheme’s security objectives such as backward and forward secrecy, replay protection 

and others as discussed in the “Threat Analysis” section of this proposal. 

 

3.4.4 Revocation 

 A certificate authority may revoke an existing TAE at any time by updating the 

revocation list of TAEs on the blockchain. Since all consumer applications and STBS 

check this list while verifying the integrity of a signature, all parties will be able to 

identify the signature of the revoked TAE. The process is similar for a STBS; however, 

additional information will have to be propagated to WSN nodes utilizing this STBS. 

Assuming that a second STBS (STBS2) has access to a WSN where the first STBS 
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(STBS1) is being revoked; STBS2 would communicate an authenticated revocation 

packet, characterized by the use of an intention bit (the intention will prompt the 

constrained device to verify the TAE as will be discussed later) and the associated TAE’s 

MAC, to all sensor nodes in the WSN. Since STBS1 does not share the same pairwise key 

as the TAE and sensor nodes within the WSN, it is unable to fabricate this message even 

if it has access to the published information on the blockchain. 

Since the focus is the provenance of sensor data, sensor revocation not only has to 

be at the sub-network level in the WSNs but also at the base station level and global level 

(blockchain) where other STBS and TAEs may have the ability to authenticate 

transmissions provided by an invalid sensor node. To remove a sensor node, the 

certificate authority may communicate the pseudo-id (for privacy) of the revoked sensor 

nodes on the blockchain in a revocation list or to other TAEs via another trusted medium. 

TAEs would then be responsible for creating the revocation message with their HMAC to 

be published on the blockchain where their STBS will have access. A STBS possessing a 

node identified by this pseudo-id may then forward the authenticated revocation packet to 

the WSN sub-network. In these cases, the use of an additional group key has proven 

useful as discussed earlier in the key management and distribution section of the 

literature review. In particular, polynomial regression techniques has not only proved to 

provide confidentiality (Ozdemir, Peng, & Xiao, 2013) but have also reduced 

communication overhead (Chen & Xie, 2014) in constrained Self-Healing Group Key 

Distribution (SGKD) by only transmitting coefficients of a polynomial that may be 

evaluated by WSN nodes.  
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This revocation strategy is suitable for nodes to update their personal key chains 

by revoking the identified nodes, but may not be suitable when the WSN communicates 

with a group pairwise key. To address this issue of group key revocation, the STBS 

would forward a key update message to N=v+r (where v are valid nodes) individual 

nodes within the network. N messages are required as the STBS is transmitting a message 

M that when applied to a PRNG and KDF utilizing the individually assigned key to the 

specific node, will generate the next group key. The set of revoked nodes (r) are also 

included but their M will result in the generation of an incorrect group key. Assuming the 

compromised nodes are still acting within the scheme key possession constraints i.e. only 

storing one key at a time, the revoked nodes will no longer be able to communicate and 

will lose the last valid group key. 

By including revocation, the network owner is further able to optimize sensor 

node storage at their discretion as a revoked STBS or peer node, may mean freeing the 

storage used to keep the keys for this participant. 
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3.5 Authentication 

3.5.1 Tag Format 

LBACS utilizes a MAC or multi-signature packet comprised of an intention bit, 

request id and ordered Hash Message Authentication Codes (HMACs) illustrated in 

Figure 11 below. Since LBACS operates above the transport layer, the generated MAC 

may then be included in the request, such as the Token field in the COAP header or 

preceding the MQTT message payload. 

 

 

Figure 11: LBACS Authentication Packet 

The intention bit is a flag parameter that describes the intent of the message that is 

being authenticated and may be as small as 2 bits. Depending on the network, the 

following intention bits may be useful as described in Table 4 below. Based on the use of 

intention bits described in Table 4 below it is clear, that the packet size is optimally 

reduced (by removing HMAC2) based on the communication intent in the network. This 

is a desirable trait as WSNs aim to reduce the resource (computational, power, 

communication) overhead in each network activity. By increasing the bit length, the 

intents and expectations of participating nodes may be adjusted to accommodate 

Application Specific or SDWSNs. 

 

 

 

Intention 

 

 

Request Id 

 

 

HMAC1 

 

 

HMAC2 
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Table 4: LBACS Intention Bits 

Bit mask Intention Description 

00 Peer Authentication 

Used by a WSN node when 

authenticating with the base 

station or other immediate peer in 

multi-hop or routed network. 

HMAC1 will be used to 

authenticate this message. 

01 Group Authentication 

Used by a WSN node when 

authenticating with the group or 

during multi-cast. HMAC1 will be 

used to authenticate this message. 

10 Key Revocation 
A forwarded message will utilize 

HMAC1 to verify the node or base 

station which forwarded the 

packet and use HMAC2 to verify 

the TAE since a locally revoked 

sensor node must also be revoked 

globally. 

11 Key Recovery 

 

A Request Id (ReqId) is used (size is implementation or application specific) to 

assist in replay attack detection in each communication session. A constrained node 

receiving an authentication packet with a ReqId that has already been used will 
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immediately be able to halt processing of the authentication packet or message, thus 

saving resources similar to SMACK (Gehrmann et al, 2015). Since communication with 

an oracle is presented as a single global view that is auditable; when a STBS 

communicates with a WSN node (even for sub-network management), the STBS will be 

responsible for publishing this request (at most the ReqId on the blockchain). If a TAE 

attempting to communicate with the same node is unable to authenticate with a sensor 

node because it has utilized a ReqId that is no longer valid, it implies that the STBS may 

not be following the LBACS scheme. This is a precaution to highlight possible issues, 

since the Base Station is not entirely trusted and may be compromised or not working 

effectively (software or hardware issues).  

 This implies that if a STBS is compromised and decides to communicate 

excessively with nodes but not publish these updates to the chain, a subsequent failed 

request from a TAE (because a TAE has utilized a ReqID the oracle has already received 

and thus marks it as invalid) to a sensor node within that sub-network will highlight that 

there is a rogue STBS. This also works in cases where the STBS continues to publish 

ReqId updates to the chain, as network auditors would have the ability to audit suspicious 

activity on the blockchain network. This optimized use of the single ReqId and the 

already involved participation of STBS blockchain nodes, includes some of the desired 

properties of the Implicit Security Authentication Scheme (Chen et al. ,2010) such as 

audited communication and network behavior analysis without the additional overhead of 

pre-behavioural analysis, additional watchdog node deployments and model development 

of participating network nodes.  
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 Each HMAC enables and enforces forward and backward secrecy, replay 

protection, source and destination repudiation, message integrity and authentication. An 

HMAC is generated using HMAC (Pairwise Key | Integrity Parameters) and further 

optimized in size with the use of r concatenated set of h HMAC pieces chosen at 

“random” by the use of a shared PRNG(seed) that was initially shared between peers. 

Integrity parameters include the packet source, destination, request id, intention bit and 

message and therefore allow the generated HMAC to act as a signature for the request. 

Moreover, the use of the “randomly” chosen pieces of the generated HMAC allows 

network participants to utilize longer keys to maintain HMAC integrity while reducing 

the communication overhead. A constrained oracle would then improve the used 

semantic security by using longer keys, eg. 160 or 256 bits in Keccak, and reduce the 

possibility of a hacker guessing the keys used from cipher text attacks (stream or block). 

The attack problem is further compounded since the nodes use a random set of pieces of 

the generated HMAC to reduce their communication overhead. Furthermore, pairwise 

keys are updated each session length (related to the max id possible in request ids) using 

a KDF (PRNG(seed), current Pairwise Key). By updating the pairwise key, an attacker 

compromising the node will be unable to use the current key to effectively assist in key 

attempts for previous messages, thus promoting backward secrecy. Although the 

processes outlined may enable these properties, it does not guarantee these properties as 

the desired use of a HMAC, KDF and PRNG based on specific network constraints and 

applications may be prone to some side-channel attacks. To reduce this possibility and 

localization issues in WSNs, the scheme has refrained from the use of time dependent 

parameters. 
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3.5.2 Certificate Registry Storage Considerations 

Based on the blockchain implementation and network use, storage and search 

issues in large registries for valid or invalidated entities during the verification process 

may become a concern. This concern is then propagated to lighter blockchain clients 

(clients that selectively participate in the mining process or only store a subset of the 

entire block chain). To reduce the storage needs, any request by a verified entity may be 

accompanied by a signature from the certificate authority (also referred to as the 

verification authority). This will enable a more involved certificate authority and is 

similar to the Online Certificate Status Protocol RFC2560 (Myers et. al, 1999). With the 

use of the blockchain however, the expected communication overhead changes from: 

1. Sender sends signature request to verification authority  

2. Verification authority checks verification list  

3. Verification authority signs message if sender is not revoked  

4. Verification authority responds to sender with signed message  

5. Sender appends signature of verification authority to message to identify it as 

verified  

6. Sender sends verified message to recipient  

7. Recipient checks for verification authority's signature and therefore accepts 

message as not from a sender in the revocation list 

to a more optimized approach: 

1. Sender publishes message on blockchain with verification request  

2. Certificate authority (having access to the blockchain) receives verification 

request  
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3. Verification authority checks whether sender is revoked  

4. If sender is valid, verification authority publishes signature for verification 

request.  

5. Recipient ( having access to the blockchain) acknowledges the verification 

authority's signature of the sender's request and therefore accepts message as not 

from a sender in the revocation list 

In the second scenario, the blockchain is utilized as the communication medium and as 

such reduces the number of needed requests to attest to whether the sender is revoked. 

This provides several benefits which include: 

1. Less independent requests for verification 

2. Lighter clients storing a subset or only the most recent updates from the 

blockchain may operate with the same level of verification from the verification 

authority 

3. The revocation list is still verifiable by any blockchain node capable of storing 

and searching it and as a result averts sybil and other related attacks 

4. Multiple verification authorities may be utilized to distribute the search and 

verification cost of the entire revocation list since they have access to the same 

data (requests for verification, verification authority responses) 

5. Light blockchain clients only need to maintain an active view of valid certificate 

authorities  
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3.5.3 Communication Flows 

The communication flows presented in this section will highlight common 

message exchanges, composition of the LBACS authentication tag and the verification of 

the created tag by the intended recipient. These message exchanges will include oracle 

sensors and their peer sensor nodes, Semi-Trusted Base Stations (STBS) and Trusted 

Authentication Entities (TAEs). Moreover, for each scenario, it will be assumed that a 

communication session has already been initiated. As described in the “Session 

Management” section of this proposal, a session may be initiated by sending a message 

with the SESSION_CHANGE_REQUEST_ID, prompting the peer to update their pairwise 

key and random seed to the next valid set. Furthermore, each flow will be described as a 

scenario as an example of a context in which the authenticated exchanges would take 

place. 

 

Oracle Sensor Node → Semi-Trusted Base Station → Trusted Authentication Entity  

 

The following scenario describes a sensor node that intends to publish 

information globally or on the blockchain. The LBACS MAC generated by the sensor 

node will be transmitted over a WSN to the STBS, which will verify the request before 

publishing this information on the blockchain. The sensor’s message, forwarded by the 

STBS to the blockchain, will then be verified by the TAE. Consumer applications will 

then be able to attest that the data published originated from the oracle sensor. It should 

be noted that this scenario is applicable whether the oracle sensor node uses a pairwise 
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key or a group key shared with the STBS. This flow has also been illustrated in Figure 12 

on page 76. 

1. The sensor node creates a message to be sent, for e.g. monitored temperature data. 

2. The sensor node prepends the intention bit (00) for peer authentication, the 

request Id (currently shared with this TAE and STBS) of 

REQUEST_ID_SIZE_BITS to the LBACS MAC. 

3. The sensor node then appends the HMAC1 to be verified by the STBS. 

a. PRE-HMAC1 = HMAC (Pairwise (Group) Key for STBS | (Packet source 

= Sensor Node Id | Packet destination = STBS Id | Request id | Intention 

bit = 00 | message = monitored temperature data)) 

b. Divide PRE-HMAC1 in HMAC_PIECES_COUNT of size 

HMAC_PIECE_SIZE 

c. RANDOM_INDEX = PRNG (seed shared with STBS | ith required index) 

mod HMAC_PIECE_SIZE 

d. HMAC1 reduced in size to optimize transmission = Concatenation of 

every RANDOM_INDEX of PRE-HMAC1 pieces. 

e. If the session has ended, update pairwise keys/group key using KDF and 

randomization seed using, new seed = PRNG (current seed). 

4. The sensor node then appends the HMAC2 to be verified by the TAE. The 

HMAC2 is required in this case since the sensor intends to prove the origin of the 

message on the blockchain. Furthermore, the addition of an additional HMAC 

reduces the possibility of a man-in-the-middle (MITM) attack by the STBS. 



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      73 
    .    

a. PRE-HMAC2 = HMAC (Pairwise Key for TAE | (Packet source = Sensor 

Node Id | Packet destination = TAE Pseudo Id | Request id | Intention bit = 

00 | message = monitored temperature data)) 

b. Divide PRE-HMAC2 in HMAC_PIECES_COUNT of size 

HMAC_PIECE_SIZE 

c. RANDOM_INDEX = PRNG (seed shared with STBS | ith required index) 

mod HMAC_PIECE_SIZE 

d. HMAC2 reduced in size to optimize transmission = Concatenation of 

every RANDOM_INDEX of PRE-HMAC2 pieces. 

e. If session has ended update pairwise keys using KDF and randomization 

seed using, new seed = PRNG (current seed). 

5. The sensor node transmits the message and MAC to the STBS  

6. The STBS verifies the HMAC1 by repeating Step 3. If it is invalid, the STBS 

discards the message as not authenticated. 

7. The STBS then removes the HMAC1  

8. The STBS generates a signed message with its private key that may be verified 

with its public key. 

a. Signed message = SIGN (MAC (excluding HMAC1) | Pseudo ID for WSN 

oracle node | message) 

9. The STBS then publishes the signed message, the updated MAC (excluding 

HMAC1), and the pseudo-id for the source WSN oracle sensor on the blockchain.  

a. By removing HMAC1 the STBS reduces the possibility that future 

communication between it and the sensor node may be compromised by a 
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malicious member who has access to the blockchain network and who is 

willing/able to perform the necessary cryptanalysis. Furthermore, this 

reduces the storage requirements for the blockchain network by not 

publishing information that will not be useful. 

10. A TAE that has access to the network through a blockchain node, checks whether 

any transactions within blocks contains requests from a STBS.  

11. The TAE acknowledges that a block contains requests from the STBS and verifies 

that its public key or ID is not in the revocation list available on the blockchain. 

12. If the public key of the STBS is valid (not in the revocation list), the signature of 

the STBS is verified. 

13. If the STBS’ signature is verified, the TAE verifies HMAC2 by attempting to 

derive  HMAC2 utilizing the following steps:  

a. Verify that the Request Id has not already been used. If the request Id has 

already been used, the message is considered as invalid. 

b. Create PRE-HMAC2 = HMAC (Pairwise Key for TAE | (Packet source = 

Sensor Node Id | Packet destination = TAE Pseudo Id | Request id | 

Intention bit = 00 | message = monitored temperature data)) 

c. Divide PRE-HMAC2 in HMAC_PIECES_COUNT of size 

HMAC_PIECE_SIZE 

d. RANDOM_INDEX = PRNG (seed shared with STBS | ith required index) 

mod HMAC_PIECE_SIZE 

e. HMAC2 reduced in size = Concatenation of every RANDOM_INDEX of 

PRE-HMAC2 pieces. 
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f. If the generated HMAC2 matches the HMAC2 submitted by the STBS, the 

message is authenticated. 

g. If the session has ended, update pairwise keys using KDF and 

randomization seed using, new seed = PRNG (current seed). 

14. If both signatures (STBS submitted signature verifiable with its public key and 

HMAC2) are verified, the TAE then submits a signature for the message 

(confirmation signature) published by the STBS on the blockchain.  

15. Consumer applications syncing transactions would receive the confirmation 

signature for the TAE. If they are interested in the data published by this oracle 

sensor (identified by the Pseudo ID) they may consume the data. 
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Figure 12: LBACS Oracle Sensor publishes data for consumer application 



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      77 
    .    

Sensor node(j) → Sensor Node (j+1) → Semi-Trusted Base Station → Trusted 

Authentication Entity  

 

This scenario is similar to the aforementioned scenario with the exception that the 

sensor node is unable to establish direct communication with the STBS such as nodes in 

sub-network 3 in Figure 5. In this case, where a node must route its communication 

through a peer, the node would generate HMAC1 with the pairwise key for its linked node 

(modifying Steps 3 and 5). The linked node, sensor node (j+1), would then be able to 

forward the same request by replacing the HMAC1 with its pairwise key for the STBS. 

The communication and authentication flow for the other steps would be the same. This 

has been illustrated in Figure 13 on page 78. 
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Figure 13: LBACS Oracle Sensor publishes data for consumer application via peer sensor 
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Trusted Authentication Entity → Semi-Trusted Base Station →Sensor Node 

 

The following scenario describes a TAE that wishes to communicate with an 

oracle sensor node with the assistance of a STBS, which has access to both networks 

(WSN and blockchain). The flow will denote how the LBACS MAC generated by the 

TAE is verified by the oracle sensor and ultimately how a message sent by the TAE is 

authenticated by a STBS before being forwarded to a sensor.  

1. The TAE creates a message. For example, the TAE has received a request from 

the certification authority to revoke Nodes 1 and 2 from Sub-network 3. 

2. The TAE prepends the intention bit (10) for key revocation, the request Id 

(currently shared with this oracle sensor and STBS) of 

REQUEST_ID_SIZE_BITS to the LBACS MAC. 

3. The TAE generates HMAC2 to be verified by the oracle sensor 

a. PRE-HMAC2 = HMAC (Pairwise Key for oracle sensor | (Packet source = 

TAE Pseudo Id | Packet destination = Oracle sensor ID | Request id | 

Intention bit = 10 | message = key revocation message)) 

b. Divide PRE-HMAC2 in HMAC_PIECES_COUNT of size 

HMAC_PIECE_SIZE 

c. RANDOM_INDEX = PRNG (seed shared with STBS | ith required index) 

mod HMAC_PIECE_SIZE 
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d. HMAC2 reduced in size to optimize transmission = Concatenation of 

every RANDOM_INDEX of PRE-HMAC2 pieces. 

e. If the session has ended update pairwise keys using KDF and 

randomization seed using, new seed = PRNG (current seed). 

4. The TAE generates a signed message with its private key that may be verified 

with its public key 

a. Signed message = SIGN (MAC | message | Pseudo Id for Sub-network 

with oracle sensor) 

5. A STBS that has access to the network, receives and confirms a new blockchain 

block with additional transactions.  

6. The STBS acknowledges that it contains requests from the TAE and verifies that 

its public key or ID is not in the revocation list available on the blockchain 

7. If the STBS has access to the sub-network identified by the Psudeo Id, the STBS 

injects the HMAC1 

a. PRE-HMAC1 = HMAC (Pairwise Key for oracle sensor | (Packet source = 

TAE Pseudo Id | Packet destination = Oracle Sensor | Request id | 

Intention bit = 10 | message = revocation message)) 

b. Divide PRE-HMAC1 in HMAC_PIECES_COUNT of size 

HMAC_PIECE_SIZE 

c. RANDOM_INDEX = PRNG (seed shared with STBS | ith required index) 

mod HMAC_PIECE_SIZE 

d. HMAC1 reduced in size to optimize transmission = Concatenation of 

every RANDOM_INDEX of PRE-HMAC1 pieces. 
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e. If session has ended update pairwise keys using KDF and randomization 

seed using, new seed = PRNG (current seed). 

8. The STBS transmits the message with the updated MAC to the oracle sensor 

which will be able to verify the HMAC1 and HMAC2 by repeating the procedures 

outlined in Step 7 and 3 respectively. 

 

Semi-Trusted Base Station →Sensor Node 

This would be similar to the aforementioned scenario with the exception that the 

source of the message would be the STBS. This scenario describes a STBS 

communicating with an actuator which is a thermostat, the temperature should be 

changed to 21 ℃.  

1. The STBS creates the message to be sent. 

2. The STBS prepends the intention bit (00) for peer authentication, the request Id 

(currently shared with the oracle sensor) of REQUEST_ID_SIZE_BITS to the 

LBACS MAC. 

3. The STBS then appends HMAC1 to be verified by the oracle sensor. 

a. PRE-HMAC1 = HMAC (Pairwise Key for STBS | (Packet source = STBS 

Id | Packet destination = sensor Id | Request id | Intention bit = 00 | 

message = temperature update request)) 

b. Divide PRE-HMAC1 in HMAC_PIECES_COUNT of size 

HMAC_PIECE_SIZE 
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c. RANDOM_INDEX = PRNG (seed shared with STBS | ith required index) 

mod HMAC_PIECE_SIZE 

d. HMAC1 reduced in size to optimize transmission = Concatenation of 

every RANDOM_INDEX of PRE-HMAC1 pieces. 

e. If session has ended update pairwise keys using KDF and randomization 

seed using, new seed = PRNG (current seed). 

4. The STBS transmits the message and MAC to the oracle sensor which will be 

able to verify HMAC1 by repeating the steps in Step 3 

5. Because the STBS is audited, it signs and publishes the message + request + 

sensor Pseudo Id on the blockchain 

6. A TAE, receiving this updated block, which corresponds with that sensor node 

and STBS may then update their request Id for future communication 
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Chapter 4:  Implementation 

 

To further highlight the feasibility of the Lightweight Blockchain Authentication 

Scheme for Constrained oracle Sensors (LBACS), it was implemented with tests on 

several devices with varying resource constraints.  These devices, including a Zolertia Z1 

mote, Raspberry PI 3 and laptop, assured the provenance of sensor data and 

authentication of peers in the LBACS network. This implementation of LBACS utilized 

the Ethereum blockchain network in addition to the Keccak Sponge Family and the 

secp256k1 elliptic curve to achieve the security objectives and benefits of the LBACS 

scheme outlined in Chapter 3. This section will therefore highlight the aims of the 

implementation, specifications of the apparatus used, particular configuration values 

used, procedure to replicate the implementation along with issues faced and the solutions 

or decisions made. Observations and analysis of results garnered are highlighted in 

Chapter 4. 

 

4.1 Objective 

The overall objective of this first iteration was to implement a buoy monitoring 

system using LBACS to authenticate sensor communication and achieve provenance of 

sensor data. Sensors would be responsible for communicating the accelerometer readings 

from the simulated buoys and TAEs would verify and authenticate the sensor data 

forwarded by the STBSs. Furthermore, with the assistance of the already integrated 

blockchain, consumer applications would be able to attest to the provenance of sensor 

data.  
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4.2 Aims 

The implementation had the following aims: 

1. Implement LBACS for MSP430 Processors 

2. Implement LBACS keychain store for Contiki devices 

3. Implement LBACS for ARMv7 and ARMv8 Processors 

4. Implement LBACS for x86-64 Processors 

5. Implement Node.js add-on for LBACS 

6. Implement a Trusted Authentication Entity (TAE) for x86-64  

7. Implement a Semi Trusted Base Station (STBS) for Raspberry PI 3  

8. Implement a buoy accelerometer sensor on Contiki Z1 motes 

 

4.3 Configuration  

 

LBACS was designed to allow the provenance and authentication of constrained 

sensor data. As described in the literature review, these networks consider a varied 

combination of devices, technologies and strategies to achieve their aims. This section 

will outline the configurable parameters included in LBACS and the rationale for the 

inclusion of each. 

The configurable parameters specific to this implementation have been summarized 

in Table 5 below. It should be noted that capitalized parameters included in Table 5 are 

referenced from the notations listed in Table 3 on page 48. 
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Table 5: LBACS Configuration for Buoy Monitoring Implementation 

Parameter Configuration 

INTENTION_BIT_SIZE 1 byte 

SESSION_SIZE 12 

LBACS_TOKEN_SIZE 8 bytes 

HMAC_SIZE 3 bytes 

HMAC_PIECES_COUNT 3 

HMAC_PIECES_SIZE 32 

PRNG Keccak-f[1600, c=256, r=1344] SHA3 

KDF Keccak-f[1600, c=256, r=1344] SHA3  

Private/Public Key Generation secp256k1 elliptic curve 

Signature generation and verification ECDSA using secp256k1 elliptic curve 

Blockchain Implementation Private Ethereum Blockchain Network 

 

4.3.1 Constrained Application Protocol 

The Constrained Application Protocol (COAP) is a specialized machine-to-

machine (M2M) communication protocol for constrained devices operating within Low 

Power and Lossy Networks (LLNs). The protocol, quite similar to the Hypertext Transfer 

Protocol (HTTP), provides a request-response interaction, Uniform Resource Identifiers 

(URIs), media types, status codes in addition to multicast support and a low overhead 

which is required in these constrained networks (Shelby et. al, 2014). 
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COAP was utilized to provide a uniform communication model between the 

sensors, actuators and the base station within the WSN. This ensured greater 

interoperability and a standard way to parse for the message payload and generated 

LBACS authentication tag. As illustrated in the COAP message format in Figure 14 

below, the 4 bit unsigned Token Length (TLK) specifies a maximum available token size 

of 8 bytes. 

 

 

Figure 14: COAP Message Format 

 

Furthermore, the size allocation for the authentication tag included in the token field has 

been illustrated below in Figure 15. 

Intention 

1 byte 

Request Id 

1 byte 

HMAC1 

3 bytes 

HMAC2 

3 bytes 

Figure 15: LBACS authentication tag size allocations 
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4.3.2 Keccak-f[1600, c=256, r=1344]  

To reduce the required storage and memory needs of the constrained Z1 motes, 

the same KDF and PRNG was used for all peer nodes. Each peer, still maintained their 

independent set of shared random seeds and pairwise keys. The KDF, PRNG and HMAC 

used were all derived from the Keccak family of functions using the Keccak-f[1600, 

c=256, r=1344] permutation. The implementation used has been included in Appendix I. 

The Federal Information Processing Standards (FIPS) Publication 202 of the 

National Institute of Standards and Technology (NIST) published the adopted Keccak 

family of cryptographic permutations in 2015.  The Keccak family of functions are a set 

of cryptographic permutations based on the sponge construction. Each of the seven (7) 

Keccak-f permutations denoted as Keccak-f[b] where b  {25, 50,100,200, 400, 800, 

1600 }are defined as a progression of operations on a three (3) dimensional state a where 

a is a Galois Field of elements ( GF(2) ) (Bertoni, Daemen, Peeters, & Van Assche, 

2011). The relationship between the Keccak-f permutation and its sponge construction 

has been illustrated below in Figure 16 below.  

 

Figure 16: Keccak relation to sponge construction 

 

where 

      r = bitrate 

      c = capacity and c= b – r where b  {25, 50,100,200, 400, 800, 1600} 

      pad10*1 = multi-rate padding  
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As a cryptographic primitive, Keccak-f derives many of the capabilities of the 

sponge and duplex constructions which were instrumental to this implementation. It 

should be noted that while both sponge and duplex constructions accept a variable-input 

length and yield an arbitrary output length based on a bitrate, r, padding rule and fixed-

length permutation, a duplex construction maintains its previous state through each use. 

Moreover, unlike previous primitives, the claims for security strength are not based on 

the output length making it ideal for this constrained implementation. Furthermore, the 

provably secure primitive has undergone much cryptanalysis and performance tests on 

hardware varying in resource constraints. 

 

4.3.3 Secp256k1 Elliptic Curve Digital Signature Algorithm 

LBACS requires that resource competent entities such as the Semi-Trusted Base 

Stations (STBS), Trusted Authentication Entities (TAEs) and the Certificate Authority 

(CA) utilize asymmetric cryptography to enforce digital integrity of transmitted 

messages. This implementation utilized an existing library implementing the Elliptic 

Curve Digital Signature Algorithm (ECDSA) using the recommended Secp256k1 curve 

parameters (Certicom Research, 2010). 

The use of the elliptic curve variant of the digital signature algorithm has garnered 

much attention due to the advantages of Elliptic Curve Cryptography (ECC) when 

compared with the widely used Rivest-Shamir-Adleman (RSA) algorithm. Notably, ECC 

offers the same level of security as RSA using smaller key sizes, less computational 

effort and power consumption. ECC is based on the relative intractability of solving the 

discrete logarithm problem for a random elliptic curve element with a publicly known 
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base point (Khalique, Singh, & Sood, 2010). The Standards for Efficient Cryptography 

(SECP) recommended Koblitz curve parameters for secp256k1 defined by the sextuplet T 

= (p, a, b, G, n, h) are included below (Certicom Research, 2010). 

Here the finite field, Fp, is defined as: 

 

Furthermore, the curve E:            is defined with constants 

 

an uncompressed base point G 

 

an order n and cofactor h 

 

4.3.4 Ethereum and Solidity 

This implementation utilized a private Ethereum blockchain network to record 

sensor data. As mentioned earlier in the literature review, Ethereum is a blockchain 

implementation similar to bitcoin but uses a quasi-turing-complete model on its virtual 

machine. Each execution still requires gas and is verified by a compute-intensive Proof-

of-Work (PoW) consensus algorithm (Wood, 2016). Solidity is one high level language 



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      90 
    .    
that allows developers to interact with the Ethereum blockchain network using smart 

contracts and Externally Owned Accounts (EOA). The implementation used has been 

included in Appendix B. Other languages available to developers include Serpent and 

LLL.  

4.4 Apparatus 

4.4.1 Devices 

Four (4) types of devices were included in the current implementation, notably the 

Zolertia Z1 mote, Raspberry PI 3 a windows PC and Mac OS X laptop. Device 

specifications have been listed below. 

Zolertia Z1 Mote 

 2nd generation MSP430TM 16-bit MCU 

 92KB Flash 

 8KB RAM 

 2.4 GHz IEEE 802.15.4 Transceiver  

 3-axis Digital Accelerometer 

 Low Power Digital Temperature sensor 

 16 Mbit, 100 Cycles Serial Flash  

 USB/2xAA/coin cell power options 

 52-pin expansion connector 

 Contiki Operating System 
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Raspberry PI 3 Model B 

 

Processor 

Broadcom BCM2387 chipset. 1.2GHz Quad-Core 

ARM Cortex-A53 802.11 b/g/n Wireless LAN and 

Bluetooth 4.1 (Bluetooth Classic and LE)  

GPU 

Dual Core VideoCore IV® Multimedia Co-Processor. 

Provides Open GL ES 2.0, hardware-accelerated 

OpenVG, and 1080p30 H.264 high-pro le decode.  

Memory 1GB LPDDR2  

ROM 16GB 

Dimensions 85 x 56 x 17mm  

Power Micro USB socket 5V1, 2.5A  

Operating System Ubuntu 15.10 (GNU/Linux 4.1.18-v7+ armv7l) 

 

Windows PC 

 

Operating System Windows 8 

RAM 8 GB 

ROM 500GB 

Processor Intel(R) Core(TM) i3-3227U CPU @ 1.90 GHZ x64 
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Mac OS X 

 

Operating System OS X El Capitan version 10.11.6 

RAM 8 GB 

ROM 128GB 

Processor 2.7GHz Intel Core i5 x64 

 

4.4.2 Software and Libraries 

Most of the development was completed with a text editor since the primary 

languages in use were C and JavaScript. Additional software was used in simulations, 

testing and management. The versions and source of each software and library used have 

been included in Table 6 and Table 7 below. How each was used will be described later 

in this chapter. 

Table 6: Software used in implementation 

Software Version Acquired From 

Git 2.11.0 https://git-scm.com 

Mocha Test Framework 3.2.0 https://github.com/mochajs/mocha 

Contiki-OS 3.0 http://www.contiki-os.org 

MSP430 tool chain 5.3 http://www.ti.com/tool/msp430-gcc-

opensource 
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Software Version Acquired From 

Cooja Simulator  3.0 http://www.contiki-os.org 

Tunslip6 3.0 http://www.contiki-os.org 

Truffle 2.1.0 https://github.com/ConsenSys/truffle 

Geth 1.4.5 https://geth.ethereum.org 

Docker 1.12.1 https://www.docker.com/ 

Node.js 4.4.7 https://nodejs.org/en/ 

Copper 1.0.0 https://addons.mozilla.org/en-

US/firefox/addon/copper-270430/ 

 

Table 7: Libraries used in implementation 

Libraries Version Acquired From 

web3.js 0.17.0-

beta 

https://github.com/ethereum/web3.js 

node-coap 0.18.0 https://github.com/mcollina/node-coap 

node-ffi 2.1.0 https://github.com/node-ffi/node-ffi 

node-ref 1.3.2 https://github.com/TooTallNate/ref 
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Libraries Version Acquired From 

Elliptic 6.3.2 https://github.com/indutny/elliptic 

SHA3IUF Commit  

772553b 

https://github.com/brainhub/SHA3IUF 

Keccak Code 

Package 

Commit 

e39f89a 

https://github.com/gvanas/KeccakCodePackage 

 

 

4.5 Design 

4.5.1 Network Overview 

Figure 17: Implementation Network Overview Diagram 

Figure 17 above illustrates how each device was connected to recreate the 

LBACS network. Three (3) Z1 motes were a part of the LBACS WSN sub-network. It 

Ethereum 

Blockchain 

Network 

802.15.4 

6LoWPAN 

WSN 

 

Z1 - Buoy Reporter 

Z1 – Light Actuator 

Z1 – Border Router 

Raspberry PI  

Windows PC  

Mac OS X  

USB Serial Connector 
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should be noted that one mote was used as a RPL border router for the WSN, doubling as 

a transceiver for the Raspberry PI (Semi-Trusted Base Station) connected to the Z1’s 

USB-Serial Port. This allowed the STBS on the Raspberry Pi to communicate with the 

sensors in the WSN. Moreover, the Raspberry PI, Mac OSX and Windows PC were able 

to sync communication over the Ethereum blockchain network with the assistance of 

Geth client nodes.  

 

4.5.2 Technology Stacks 

Illustrated below are the various application stacks used on each device. 

 

Z1 – Buoy Reporter 

 

Buoy Reporter Application 

Erbium COAP LBACS LIB 

Contiki OS 

 

 

Figure 18 – LBACS Z1 Technology Stack 
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Raspberry PI – Semi Trusted Base Station 

 Restful COAP + HTTP Semi-Trusted Base Station Server 

 lbacsjs elliptic node-coap web3 

tunslip6 

node-ffi 

Node.js Geth LBACS 

Shared LIB 

Ubuntu 15.10 (GNU/Linux 4.1.18-v7+ armv7l) 

 

Figure 19 - LBACS Raspberry Pi Technology Stack 

 

Windows PC – Trusted Authentication Entity 

Restful HTTP Trusted Authentication Entity Server 

lbacsjs elliptic web3 

node-ffi 

Node.js Geth LBACS 

Shared LIB 

Windows 8 – i3 x64 

Figure 20 - LBACS Trusted Authentication Entity Technology Stack 
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Mac OS X – Certificate Authority 

Restful HTTP Certificate Authority Server 

lbacsjs elliptic web3 

node-ffi 

Node.js 

Geth 

LBACS 

Shared LIB 

Docker 

Mac OS X El Capitan – i5 x64 

Figure 21- LBACS Certificate Authority Technology Stack 

 

 

4.6 Procedure 

 

As seen in Appendix A, similar application programming interfaces were available 

for the pairwise portion of LBACS, however Figure 27 and Figure 28 illustrate a few of 

the variations across device platforms. Variations took into consideration the various 

platform architectures, memory, storage and network constraints for each device 

platform. Furthermore, additional considerations and strategies were implemented to 

facilitate Ethereum blockchain interactions required by the TAE, STBS and CA on their 

respective devices. The work done to implement the aims identified above on each 

platform will be described below. 
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4.6.1 Buoy Node Reporter and Light Actuator 

A lightweight version of LBACS capable of generating and authenticating 

LBACS tags was developed for Contiki-OS. The implementation was abstracted into a 

pluggable Contiki app module after forking the official Contiki-OS repository 

(https://github.com/contiki-os/contiki). Although, the official Keccak implementations 

are provided at https://github.com/gvanas/KeccakCodePackage, a minimal 

implementation of the Keccak-f[1600, c=256, r=1344] SHA3, located at 

https://github.com/brainhub/SHA3IUF,  was chosen and modified (as included in   
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Appendix I) to become more platform independent. This decision was a result of 

the required program data used by the official implementation. When compiled for Z1 

devices, the program data including the buoy functions performed by the Z1 motes 

exceeded the maximum program data size by approximately 94 kb. Furthermore, the 

LBACS implementation on Z1 motes was more static as it relied less on dynamic 

memory allocation. Although this decision increased program data size, it allowed the 

motes to have better networking capabilities and reduced program crashes due to memory 

constraints. Additional work was also done to create bootstrap functions used in the pre-

distribution of pairwise keys and seeds for the keychain. 

The buoy transmitter utilized the Contiki Erbium COAP implementation to 

transmit a JSON message containing the x, y, and z accelerometer readings of the 

transmitter every nine (9) seconds. The communication overhead for the message was 

less than or equal to 24 bytes. Since the generated LBACS token used was 8 bytes, the 

total communication overhead was less than or equal to 32 bytes. Similarly, the buoy 

light actuator used the Contiki Erbium COAP implementation to parse incoming 

messages and LBACS to verify the received token before toggling the light sensors. Both 

applications were tested on actual hardware and simulated with the assistance of the 

Cooja Simulator. 

Finally, one Z1 mote was connected to the Raspberry PI via a USB-Serial 

Connector and tunslip6 and used as a RPL Border Router to allow the Raspberry PI to 

operate as a Semi-Trusted Base Station (STBS) for the IPV6 WSN network of Z1 motes. 
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This was necessary as the Raspberry PI did not have a IEEE 802.15.4 transceiver capable 

of interacting with the WSN. 

 

4.6.2 Blockchain Network 

 The blockchain network was created by running geth Ethereum blockchain clients 

on the Raspberry PI and laptops as illustrated in the Design section of this chapter. This 

private blockchain network was created by initializing each Ethereum client with the 

same genesis block as illustrated in Figure 22 below in addition to running each client 

with the same network id of “2255346”. 

 

Figure 22: LBACS Ethereum Genesis Block 

 

Interactions with the Ethereum blockchain were performed with the assistance of 

compiled solidity contracts. These contracts illustrated in   
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Appendix B were used to store the current state of the LBACS blockchain 

network. With the assistance of various features available in Solidity additional 

constraints and interactions were seamlessly integrated in the autonomous servers. 

Solidity events were used by new entities (Semi-Trusted Base Stations, Trusted 

Authentication Entities and Certificate Authorities) to notify and request approval of 

created public keys in the Certificate Registry. Furthermore, newly published buoy data, 

denoted in  Figure 39 on page 164, requiring authentication by Trusted Authentication 

Entities (TAEs) also utilized events to notify consumers and TAEs respectively.  

Moreover, access modifiers were used to restrict updates to the Certificate Registry, 

denoted in Figure 36 on page 161 , to only approved Certificate Authorities. Also 

included in   
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Appendix B are the contracts used to store and access ECC public keys and 

signatures and various entity types. 

 

4.6.3 Base Station, Authentication Entity and Certificate Authority 

Although different platform specific implementations, the Raspberry PI and both 

laptops shared similar software and ran servers using similar code bases. In order for 

devices to gain access to the private blockchain network, devices utilized Geth (Go 

Ethereum client) enabled with a JSON RPC API to provide access to the private 

Ethereum blockchain network. Furthermore, servers residing on these devices as 

illustrated in the “Technology Stacks” section  were implemented in Node.js to take 

advantage of the well maintained web3.js package used to interact with the Ethereum 

blockchain clients. Although the Raspberry PI could not actively participate in the mining 

process due to memory constraints, the client was still able to achieve the global state of 

the network by syncing with the more resource competent nodes in the network.  

Moreover, since the servers on both devices were implemented in Node.js, a 

Node.js add-on, named lbacsjs, was created to equip the servers with the ability to 

authenticate and generate LBACS tags for each message. The C-implementation of 

LBACS for the respective platform was packaged as a Node.js add-on with the assistance 

of the Node.js foreign function interface package, node-ffi. Tests conducted with the 

mocha testing framework verified LBACS token generation and authentication. The 

lbacsjs, elliptic (used for ECDSA signature generation and verification) and web3.js 

packages were then integrated to realize LBACS. Each server was then able to generate 
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their respective public/private key pairs and request approval in the certificate registry 

from the Certificate Authority.  

With the assistance of the compiled tunslip6 available with Contiki-OS and the 

node-coap package, the Raspberry PI hosting the Semi-Trusted Base Station was able to 

actively participate in the WSN network and forward LBACS authenticated packets to 

and fro as required. 

 

4.7 Issues and Resolutions 

Throughout the implementation, a few challenges were experienced and concerns 

raised. This section will list a few of these challenges in addition to resolutions made to 

realize the current implementation.  

1. The prominent Keccak implementations from the Keccak Code Package for 

multiple platforms being utilized by LBACS as a PRNG, KDF and HMAC had to 

be replaced for a smaller Keccak implementation (SHA3IUF) as LBACS had 

exceeded the max storage for program data on Z1 devices by approximately 94 

kb. This was completed successfullyand verified by the unit tests. 

2. Although within program data storage requirements, the SHA3IUF 

implementation was not platform independent, resulting in the output generated 

by the Z1 devices not to match the output on other platforms. The implementation 

was modified to be more platform independent to realize a uniform KDF, PRNG 

and HMAC construction (also included in Appendix I ). 

3. Although it resulted in a smaller program data size, Z1 motes experienced 

numerous network and memory issues with dynamic memory allocation. As a 
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result, a static implementation and different application programming interface 

was adapted for Contiki LBACS. The static implementation has a predefined 

amount of peers, currently two (2) in this implementation. 

4. Although proximity was not an issue in the WSN, many packets were still lost in 

transmission. As a result, the Erbium COAP implementation was modified to 

prevent the device from waiting on a response to each message. The time used to 

wait on responses lost in transmission prevented the Z1 mote from networking 

and carrying out application needs as expected. 

5. More recent versions such as Geth versions 1.4.10 and 1.5.4 had syncing issues 

and did not allow the Raspberry Pi client to sync transactions to the other clients 

on the network. Since modifying the codebase could have several domino 

implications, Geth 1.4.5 was used instead. 

6. The Semi-Trusted Base Station server on the Raspberry PI 3 is often interrupted 

when submitting new transactions to the Ethereum blockchain network with Geth 

1.4.5. This issue has been attributed to the frequent account locks experienced on 

the Geth client which seem to occur in periods of inactivity (not submitting new 

transactions to the blockchain network) or approximately every five (5) minutes. 

This prevents the seamless forwarding of LBACS authenticated sensor messages 

to the blockchain network. A temporary solution was implemented to detect and 

unlock the default account, however, some transactions are still lost in the time 

used to unlock accounts. 
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Chapter 5:  Analysis 

Throughout the implementation, several metrics were recorded alongside various 

tests to assist in the evaluation of the proposed scheme, LBACS. These tests, including 

unit, incremental integration and end-to-end tests, assisted the development and 

verification of the buoy monitoring prototype using LBACS. This chapter will therefore 

describe and detail the results of these metrics and tests in addition to providing a 

qualitative threat assessment of the scheme.  

5.1 Aims 

Specifically, this analysis intends to fulfill the following objectives: 

1. Perform a qualitative threat analysis for LBACS 

2. Identify program data size for LBACS on Contiki Z1 motes 

3. Identify keychain size for LBACS on Contiki Z1 motes 

4. Identify WSN COAP communication overhead between Contiki Z1 motes and 

Raspberry PI 3 Semi-Trusted Base Station  

5. Identify Power consumption for LBACS authentication tag generation and 

verification on Contiki Z1 motes 

6. Identify duration for LBACS authentication tag generation and verification on 

Contiki Z1 motes 

7. Perform end-to-end tests for authenticated data transmission from Z1 mote to 

TAE 

8. Test Replay Packet attacks on LBACS peers 

9. Test MITM fake authentication attacks with LBACS peers 
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5.2 Threat Analysis 

A qualitative threat analysis was performed to evaluate the associated risk of 

various attacks on critical sub-components of the LBACS scheme. The methodology used 

and accompanying assessment has been included below. 

5.2.1 Methodology 

The European Telecommunications Standards Institute (ETSI) published a threat 

assessment methodology in 2003 which utilized a likelihood and impact estimate to rank 

risk (Kheirabadi, Kulkarni, & Shaligram, 2011). Bardeau (2005) expanded on this to 

include the difficulty level and motivation required to observe the threat. The resulting 

risk evaluation grid has been denoted in Table 8 below. 

Table 8: Risk Evaluation Grid 

 

The likelihood describes the availability of theoretical and practical knowledge 

that may be utilized to compromise the scheme. A threat that is considered as likely is 

assigned the highest rank of three (3), implying that all of the required knowledge to 

compromise the scheme is easily available. On the other hand, if some critical 

components of the system are available, the threat is assigned a rank of 2 and considered 
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as possible. With the lowest rank of 1, the required or critical information necessary to 

compromise the scheme is assumed unavailable and therefore considered as unlikely. 

Likelihood may be decomposed further into its technical difficulty and motivation 

required or potential gain of the attacker. Bardeau considered three levels for technical 

difficulty, namely none, solvable and strong, which was defined similar to the proposal 

made by ETSI. None implies that the attack has been successful before, solvable alludes 

to theoretical possibility of the attack while strong describes a scenario where required 

theoretical and practical elements are missing. Similarly, three levels where considered 

for motivation, namely, high, moderate and low. High implies that the expected gain 

from the attack is significant; moderate implies that there may be service disruption only 

or the attacker will only break-even with the expected gain and effort (time, resources 

and cost of the attack). Finally, low implies that the expected gain is minimal. 

The impact of a threat may assist in identifying the severity of the scenario in 

which the scheme becomes compromised and further rationalize the motivation of an 

attacker interesting in crippling the system using the scheme. Again, three ranks are used 

from 1 – 3 (named Low, Medium and High respectively) with the counting order 

determining the severity of impact. Low represented by 1 implies that the network and its 

participants will experience little to no if an attack occurs while high represented by 3 

implies serious consequences and long term outages. 

Based on the aforementioned estimates, risk may then be deduced from the 

product of associated numerical values for likelihood (technical difficulty and 

motivation) and impact. The possible products may also be categorized based on their 

ranges to achieve a single risk evaluation metric. These include minor (1,2,3) which 
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identifies the threat as a low priority; major (4), implying that the threat should be 

addressed in the near future and critical (6,9) threats as threats which should be addressed 

immediately with countermeasures and sufficient risk mitigation strategies. 

The threat analysis will therefore assess the likelihood and impact of various 

attacks on critical sub-components of the scheme and the various affected security 

objectives. 

 

5.2.2 Sub-components 

The network that requires provenance of sensor data may be sub-divided into six (6) 

major components as illustrated in Figure 5 on page 50. These components include: 

 Constrained Oracle Sensor 

 Wireless Sensor Network (WSN) 

 Semi-Trusted Base Station (STBS) 

 Blockchain Network 

 Trusted Authentication Entity (TAE) 

 Consumer Applications 

Although consumer applications will not be actively participating in the provenance 

of data or authentication of participating entities, it should be noted that an adversary may 

utilize consumer applications or servers as entry points to exploit available vulnerabilities 

in the respective blockchain network. An exploited vulnerability in the blockchain 

network as will be discussed later would be an additional threat for the scheme. This 

threat analysis however will focus on the critical components required to establish the 

scheme (sensors, WSN, STBS and the blockchain network) with the exception of Trusted 
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Authentication Entities. It will be assumed that the Trusted Authentication Entity is 

secure and the adversary in question is not motivated to attack the entity directly.  

 

5.2.3 Threat Assessment 

For the purpose of this analysis, a threat may be defined as a possible violation of 

security arousing from an event or capability to cause harm (Shirey, 2000). An adversary, 

A, will then be identified as an entity, individual or program that is a threat to the system 

(Shirey, 2000) utilizing the LBACS scheme. It will be assumed that the adversary may 

have physical access to a subset of sensor devices in a particular sub-network and may or 

may not have physical access to a semi-trusted base stations. Furthermore, it is assumed 

that the adversary is highly motivated to compromise the provenance of data on the 

blockchain. As a result, only the likelihood and impact of each threat will be discussed 

since the adversary has an assumed motivation of high (3) as outlined in the 

aforementioned methodology. The analysis will therefore describe each threat and it’s 

impact on the sub-components involved (with the exception of Trusted Authentication 

Entities) and before assigning a rating denoted in the “Risk Evaluation Grid” in Table 8 

on page 106 Table 8. Furthermore, each threat’s impact on the outlined security 

objectives of the scheme will be discussed along with the scheme’s ability to secure these 

objectives.  

 A highly motivated adversary with physical access to a subset of sensor nodes 

within the WSN is very likely to tamper, capture or attempt to replicate sensor devices. 

Ideally, a sensor node should incorporate a framework to ensure integrity, confidentiality 

of data, keys and computations to minimize the effect of unintended physical access or 
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injected malware. Such capabilities may be included with the assistance of Trusted 

Platform Modules (TPM). A TPM is microcontroller capable of securely storing artifacts 

or platform measurements necessary to ensure the integrity of the device such as keys and 

certifications (Trusted Computing Group, 2015). However, considering a context where a 

constrained sensor has not implemented this framework or the framework has been 

compromised then the attacker would gain access to the set of pairwise keys, shared 

seeds (used to randomize and reduce communication overhead), PRNG and KDF used by 

the sensor to communicate with each pair within the WSN (including semi-trusted base 

stations) and the TAE responsible for authenticating the sensor. In the worst case 

scenario, the adversary may then utilize this key to submit invalid data to the blockchain 

on behalf of this sensor node. The adversary would have then successfully compromised 

authentication, integrity, universal forgeability and auditing for this sensor but not the 

entire network (WSN or blockchain). Since the scheme does not share pairwise keys or 

seeds amongst other participants (sensor nodes, STBS or TAE) the impact of the attack 

would be reduced to communication between the compromised sensor, the semi-trusted 

base station sharing a pairwise key with the sensor and the TAE sharing a pairwise key 

with the sensor. Possessing a sensor’s pairwise keys, shared seeds, PRNG and KDF does 

not allow an attacker to perform replay attacks since each sensor tracks each request’s id 

sent with the authentication tag. Furthermore, since identity revocation may only be 

sanctioned from a TAE, they would be unable to revoke identities since they would 

require the pairwise keys shared between a TAE and other sensor nodes within the WSN 

and subsequently the STBS shared pairwise key for each sensor node. To compromise N 

other sensor nodes, the attacker would need to obtain, N STBS shared pairwise keys to 
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forge HMAC1 of the LBACS authentication tag and N TAE pairwise keys to forge 

HMAC2 of the LBACS tag. LBACS has therefore increased the complexity to spoof 

identity revocation even for a highly motivated attacker. Finally, LBACS encourages the 

dismissal/deletion of pairwise keys and seeds used after each session change, therefore an 

attacker would be unlikely to compromise weak backward secrecy. Although an 

adversary, compromising a sensor node, would then be able to generate the next set of 

keys (Ki-n) that would be used to communicate with a peer in an attempt to compromise 

forward secrecy. If this sensor node has been identified as compromised, LBACS 

facilitates the revocation of network participants, which allows the network to recover 

and ignore future attempts to authenticate by this compromised node. As a result, these 

attacks have been considered as likely (3) but with medium (2) impact to achieve a risk 

rating of critical (6). These attacks become more severe in the case of a compromised 

STBS as the attacker not only has access to all the pairwise keys and seeds used in the 

WSN but has the ability to interact with the blockchain, an attack that will be discussed 

later. Since the STBS is assumed more computationally resourceful (possessing enough 

memory, power, storage to sufficiently implement a framework to reduce the impact of 

physical access), the difficulty considers it as possible (2) with a high (3) impact and 

critical (6) risk rating. 

 LBACS aims to secure constrained devices communicating over a WSN which 

makes it an easier target for traffic analysis and monitoring because of the wireless 

medium. These passive attacks are therefore easier to accomplish and would aim to infer 

from the transmitted tag and data the shared pairwise keys, shared seeds (used to 

randomize and reduce communication overhead), KDF and PRNG. Assuming that the 
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attacker is aware of the use of the LBACS scheme, KDF and PRNG, the problem of 

deducing the pairwise key and shared seed becomes more difficult since they are changed 

each session. Furthermore, the scheme’s use of the HMAC construction coupled with the 

PRNG seed reduction, securely generates a MAC while reducing the available 

information that would assist in compromising backward secrecy or forward secrecy on 

each message exchange. These attacks should still be considered as pragmatic due to the 

possibility of side channel attacks which are implementation specific. As a result, these 

attacks have been assigned a likelihood of possible (2) and an impact of low (1) resulting 

in a minor (2) risk rating. 

 More active WSN threats targeting the physical, link and network layers of the 

OSI model include jamming (constant, random, deceptive or reactive), radio interference, 

network collisions, denial of sleep/service and flooding attacks impede wireless 

communication by inhibiting the transmission and reception of messages on the 

communication channel (Wenyuan et. al, 2006). Furthermore, they result in battery 

exhaustion as the sensor’s receiver must remain in an active mode (instead of periodic 

sleep) which requires more power and ultimately reduces the battery lifetime of the 

sensor. These attacks directly impact identity revocation, since the STBS will be unable 

to forward a revocation message over a flooded channel. However, due to the lightweight 

nature of LBACS, battery exhaustion attempts will be less effective as a sensor will cease 

processing any message containing an invalid authentication tag. These threats have 

therefore been considered possible (2) with a medium (2) impact due to the loss of 

services and a resulting major (4) risk. 
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 Other WSN threats affecting message transmission include sinkhole, black hole, 

wormhole, blackmail, jelly fish, gray hole and selective forwarding attacks. These threats 

aim to drop, selectively forward or change the route of transmitted messages and are 

usually initiated through the fabrication of routing requests advertising shorter routes or 

fake addresses (Bhargava & Goyal, 2014). Implementing LBACS at a lower level of the 

OSI model (link or network layer) would allow the sensor to ignore unauthenticated 

network participants sending fabricated routing requests. However, a compromised node 

still possessing valid keys may still submit authenticated messages to disrupt the 

networks routing operation. Although, LBACS (a lightweight authentication scheme 

securing provenance of sensor data on the blockchain) does not cover routing, it’s 

security objectives are still met during these attacks since it was designed for loss-tolerant 

and time insensitive networks. As illustrated in Figure 11 on page 65, the format for the 

LBACS authentication tag includes a Request ID which is included in the integrity check 

and verification step of the authentication process. As such, a receiving node will be able 

to identify which messages were received thus achieving the objectives of authentication, 

integrity and being auditable. These attacks may also aim to subvert session change 

requests and thus put the communicating peers out of sync. This may be ratified with 

multiple re-transmissions, additional checks (especially for numerous failed 

transmissions) and post deployment strategies that allows peers to recover shared keys 

and random seeds as discussed in the proposal section. This tracked Request Id may also 

assist other techniques utilized to identify and secure networks against these attacks such 

as watchdog, ACK-based, reputation-based and incentive-based schemes (Bhargava & 

Goyal, 2014). The Request ID also assists in replay protection as these attacks may replay 
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valid authentication tags in an attempt to fabricate false routes messages when trying to 

gain entry to the network. Moreover, even if a node has been compromised, the scheme 

should sustain its premise on backward and forward secrecy along with universal 

forgeability as discussed above for threats that possess physical access to devices. These 

threats have therefore been considered possible (2) with a low (1) impact to the scheme’s 

objectives and a resulting minor (2) risk. 

 A Man-in-the-middle (MITM) attack occurs when two legitimate parties 

communicate through an adversary without their knowledge or approval. With the 

adversary’s control of the communication channel they may observe, modify, re-order, 

insert or drop transmitted packets. This attack is also the basis for session hijacking, in 

which the attacker hijacks a legitimate session, often flooding the user’s radio or ignoring 

their messages, in order to masquerade as the user to the other communicating party 

(Bharti & Chaudhary, 2013).  As mentioned in the last paragraph about packet dropping 

threats, the layer of the OSI model at which LBACS is implemented may allow the 

adversary to initiate a more passive (observe, re-order or drop packets) MITM attack. 

However, LBACS prevents the insertion or modification of packets which also includes 

active session hijacking threats where the adversary attempts to masquerade as the 

sensor. In the worst case scenario, the adversary will designate itself as the message 

recipient by compromising routing behavior at the link or network layer, but will still be 

unable to masquerade as the intended recipient without the ability to generate the correct 

authentication tag. Session attacks are usually possible because critical session details are 

communicated over the insecure communication medium, such as the session id in a 

cookie or query parameter (Bharti & Chaudhary, 2013). This attack becomes more likely 
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when this session identifier remains constant. The LBACS session is characterized by 

pairwise key and a seed generated by a shared KDF and PRNG respectively. In addition 

to changing these parameters (pairwise key and shared seed) each session, the 

authentication tag also utilizes a changing Request ID to generate and verify it’s modified 

HMAC (see Communication Flows section for additional information on generation and 

verification). Even if the same message is sent repeatedly be legitimate participants 

within a session, the generated authentication tag changes to maintain authentication or 

the sender, integrity of the message, replay protection, auditing and universal forgeablity. 

The MITM threat has therefore been considered as possible (2) with a low (1) impact to 

the scheme’s objectives and a resulting minor (2) risk, while session hijacking has been 

considered as unlikely (1) with a high (3) impact to the scheme’s objectives and a 

resulting major (3) risk. 

 Although WSN deployments are usually designed with their environment in 

mind, highly volatile environments, as are some cases (military, weather monitoring), 

should always be considered as a threat. These threats would disable the WSN by 

immobilizing nodes, resulting in a loss of service. Unless captured by an adversary, this 

individual threat does not pose a significant risk to the security objectives. As a result, the 

threat has been considered as possible (2) with a low (1) impact to the scheme’s 

objectives and a resulting minor (2) risk. 

 Internal threats such as malicious employees or error prone organization 

procedures are critical threats. Although the likelihood varies based on the maturity of the 

organization’s policies and execution of such policies, issues propagating from these 

policies are likely to reveal much theoretical and practical knowledge of the network’s 
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implementation. These could reveal useful designs and artifacts to an adversary such as 

certificates, keys or key generation procedures. These threats may be considered as likely 

(3) with a high (3) impact to the scheme’s objectives and a resulting critical (3) risk. 

 As discussed in the “Blockchain” section of the literature review, utilizing the 

blockchain provides many security properties such as decentralized autonomy, 

auditability, replication and integrity. A more objective threat analysis of this sub-

component would be more comprehensive and if a specific implementation was 

considered. Since LBACS is independent of a particular blockchain implementation, this 

will be considered as an area of future work and the sub-component would be assessed 

generally as a software implementation and as such would inherit the vulnerabilities 

associated with all software implementations.  

At this time however, it is possible to identify how the failure of this sub-

component may affect the scheme since it formalizes the trust backbone of LBACS. In 

the worst case, the complete failure of a blockchain node would disconnect the sub-

network (the types illustrated in Figure 5 on page 50) that utilizes the blockchain node to 

achieve a global state of the network. If the blockchain node utilized by a Trusted 

Authentication Entity (TAE) fails (and there is no other TAE using another blockchain 

node), the network would be unable to sufficiently prove the source of sensor data, 

ultimately relying only on the authenticated contribution published by the Semi-Trusted 

Base Station (STBS). Furthermore, the network would be unable to revoke participants, 

since revocation is an action sanctioned from the trusted sub-network with the assistance 

of a TAE. In essence, the network could continue to maintain itself until another TAE is 

able to connect to the network (since a blockchain node will first sync with its peers to 
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achieve a global state). The most affected participants would be consumer applications 

requiring complete provenance (not solely relying on the STBS) and revocation. LBACS 

may also utilize the chain of message submissions stored within the blockchain for 

implicit security analysis.  

Although, not a critical component of the scheme, it highlights the loss of some 

auditability achieved through the shared use of the blockchain. Similarly, if a STBS loses 

its ability to interact with the blockchain, it would lose its ability to secure provenance of 

its forwarded sensor data and the ability to receive revocation messages from TAEs. Post 

deployment procedures, such as the deployment of new nodes would also be negatively 

affected. These threats may be considered as possible (2) with a medium (2) impact to the 

scheme’s objectives and a resulting major (4) risk. 

Although the blockchain network may be prone to sybil, byzantine attacks or peer 

nodes who have found it possible to subvert the consensus protocol in their favor, 

LBACS requires that all interactions on the network be digitally signed and verified 

utilizing public/private key pairs. This verification process increases the integrity of the 

global network. Moreover, software vulnerabilities and side channel attacks may expose 

even more implementation vulnerabilities. These vulnerabilities may be classified under 

many taxonomies such as the Comprehensive, Lightweight Application Security Process 

v1.0 (Viega & Secure Software Inc, 2005) 

 the Seven Pernicious Kingdoms (Tsipenyuk, Chess, & McGraw, 2005) or even a simpler 

taxonomy of system vulnerabilities as illustrated in Figure 23 below to name a few. 

These threats may be considered as possible (2) with a medium (2) impact to the 

scheme’s objectives and a resulting major (4) risk. 
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Figure 23: Taxonomy of System Vulnerabilities (Hansen & Hansen, 2010) 

The following tables assign pseudo-identifies for the earlier identified security 

objectives (Table 9) and summarizes the LBACS threat assessment (Table 10) 

respectively. It should be noted that Table 9 above was used to encode the LBACS 

security objectives with identifiers that would be used in Table 10: LBACS Threat 

Assessment Summary on page 119. Table 10, contains the list of vulnerabilities/threats 

including MITM attacks and how they affected each security objective (encoded in the 

table) based on the threat assessment methodology. The table also summarizes the 

likelihood and impact of the threat or vulnerability when using LBACS. 

Table 9: Security Objective Key for LBACS Threat Assessment Summary Table 

Identifier Security Objective 

1 Authentication 

2 Integrity 

3 Replay protection 

4 Forward Secrecy 

5 Backward Secrecy 

6 Universal forgeability 

7 Identity Revocation 

8 Auditable 

ALL All security objectives 
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Table 10: LBACS Threat Assessment Summary 

Component Sensor WSN STBS Blockchain 

Threat Difficulty or Likelihood / Impact / Risk | Objectives 

Device 

Tampering 
3/2/6 1248   2/3/6 1248   

Device 

Capture 
3/2/6 1248   2/3/6 1248   

Jamming 3/1/3 1248   2/3/6 1248   

Node 

Replication 
3/1/3 1248   2/3/6 1248   

Traffic 

Analysis 
  2/1/2 456     

Traffic 

Monitoring 
  2/1/2 456     

Network 

Collisions 

  2/2/4 17   
  

Noise   2/2/4 17     

Denial of 

Service 

  2/2/4 17   
  

Denial of 

Sleep 

  2/2/4 17   
  

Flooding   2/2/4 17     

Sinkhole   2/1/2 37     

Blackhole   2/1/2 37     

Wormhole   2/1/2 37     

Blackmail   2/1/2 37     

Jellyfish   2/1/2 37     

Grayhole   2/1/2 37     

Selective 

forwarding 

  2/1/2 37   
  

Man-in-the-

middle 
2/1/2 1234678   1/3/3 1234678   

Session 

Hijacking 
2/1/2 1234678   1/3/3 1234678   

Natural 

Environment 
2/1/2 7   2/1/2 7   

Replay Attack   1/3/3 1236 

 

 

 

   

Insufficient 

Security 

Policies 

3/3/3 ALL 3/3/3 ALL 3/3/3 ALL 3/3/3 ALL 

Malicious 

Employees 

 

3/3/3 ALL 3/3/3 ALL 3/3/3 ALL 3/3/3 ALL 
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Component Sensor WSN STBS Blockchain 

Threat Difficulty or Likelihood / Impact / Risk | Objectives 

STBS 

Blockchain 

node failure 

      

2/2/4 

1278 

TAE 

Blockchain 

node failure 

      

2/2/4 

1278 

Side Channel 2/2/4 ALL   2/2/4 ALL 2/2/4 ALL 

Software 

Vulnerabilities 
2/2/4 ALL   2/2/4 ALL 

2/2/4 
ALL 

 

5.3 LBACS Comparison 

The following table highlights the vulnerabilities identified in the literature review 

and subsequent threat assessment that LBACS directly protects sensors against. 

Table 11: Vulnerabilities prevented by LBACS 

Vulnerability With LBACS Without LBACS 

Jamming Y N 

Denial of Service Y N 

Denial of Sleep Y N 

Man-in-the-middle Y N 

Session Hijacking Y N 

Replay Attack Y N 

 

As highlighted in the literature review, securing WSNs with lightweight 

authentication schemes has been an active research area. Schemes and protocols such as: 

 Secure Protocols for Sensor Networks (SPINS) (consolidating Secure Network 

Encryption Protocol (SNEP) and the “micro” version of the Timed, Efficient, 

Streaming, Loss-tolerant Authentication Protocol  (Tesla)) 

 Short Message Authentication ChecK (SMACK) for battery exhaustion 

 TinySec 
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 Authentication and Anti-replay Security Protocol (AASP) 

 Datagram Transport Layer Security Protocol (DTLS) with COAP 

 Lithe  

 Implicit Security Authentication Scheme 

 all address authentication and other security concerns in different ways. The remainder 

of this section will be dedicated to comparing the proposed Lightweight Blockchain 

Authentication for Constrained Sensors (LBACS) scheme to these existing schemes. 

5.3.1 SPINS 

Although both SPINS and LBACS facilitate peer and group authentication in a 

WSN, SPINS also provides data confidentiality and data freshness based on loose time 

synchronization. LBACS is time independent however, instead using a PRNG to enforce 

integrity. Moreover, while both utilizes an iterative key chain, SPINS assumes the base 

station is computationally resourceful and secure while LBACS does not as it utilizes a 

Trusted Authentication Entity connected by a fault tolerant and auditable blockchain 

network. Furthermore, both utilize a non-transmitted message counter, preventing replay 

attacks. In addition, SPINS uses a derived key to compute its authentication tag to protect 

its master key, while LBACS reduces the key storage requirements by using a key 

reduction mechanism and PRNG to reduce the transmitted authentication tag and 

information available for differential cryptanalysis. 

5.3.2 TinySec 

Similar to the TinySec architecture included in the TinyOS providing replay 

protection, message integrity and authentication, LBACS also asserts these security 
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objectives. However, by operating at the link-layer, TinySec also provides confidentiality 

and aims to support end-to-end security. Unlike TinySec which does not provide replay 

protection, LBACS includes a request ID to address these concerns. Furthermore, to 

achieve semantic security TinySec utilizes Initialization Vectors (IV) which are added to 

the communication overhead. LBACS however relies on the HMAC reduction, changing 

request ID, PRNG and KDF to reduce the information available for cryptanalysis.  

5.3.3 Authentication and Anti-replay Security Protocol 

Similar to the AASP, LBACS also provides integrity, intrusion detection, anti-

replay and authentication. It should be noted that AASP utilizes two approaches. The first 

approach utilizes an authenticated handshake similar to the diffie hielman exchange for 

new peers which presents an additional communication overhead. LBACS requires an 

authenticated peer message from the KDC, distributed via the blockchain to add a new 

peer to its keychain. This provides greater control and auditability. Interestingly, the 

second approach, the last MAC method, provides authentication by hashing the shared 

key and previous message. This raises concerns in lossy and low power networks (LLNs) 

with high transmission rates as messages may be lost. LBACS enforces integrity by 

including the message in the HMAC but iterates the shared keys and PRNG thus 

facilitating these types of networks. Although this last MAC method assists with replay 

protection, LBACS utilizes a request id that is a part of the session size to accomplish the 

same. 
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5.3.4 DTLS and Lithe 

Unlike AASP, COAP over DTLS (COAPs) and LBACS was designed with LLNs 

in mind, where handshake messages may not be suitable. However, unlike LBACS, 

DTLS provides confidentiality. Similar to LBACS which includes a request ID, DTLS 

uses sequence numbers to facilitate message reordering and replay protection. 

Furthermore, unlike DTLS, LBACS does not accommodate for fragmented messages. 

Although, DTLS has more communication overhead dependent on the chosen HMAC 

size for LBACS, Lithe utilizes 6LoWPAN to further compress DTLS. 

5.3.5 Implicit Security Authentication Scheme 

Similar to the Implicit Security Authentication Scheme which identifies malicious 

node behavior to authenticate nodes, LBACS monitors node behaviour with the 

assistance of the blockchain. However, in LBACS, the monitored parameters need not be 

benchmarked before deployment allow easier to deployment. For example, if a rogue 

base station using LBACS, has managed to spoof an authenticated transmission from a 

trusted authentication entity, this attempt may be discovered when the Trusted 

authentication entity fails to elicit a response from the sensor because of a failed 

authentication attempts. 

5.3.6 Short Message Authentication Check 

Unlike many of the schemes and authentication methods identified in the 

literature review, LBACS is implemented above the network layer of the OSI model. 

Although, this may seem as an additional overhead, the scheme benefits from the well-
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researched and secure design considerations of lower layers of the OSI model while 

providing authentication and the optional additional provenance on the blockchain. 

Another security scheme operating above the transport layer but only considering the 

immediate WSN is SMACK. Although SMACK includes the COAP version, code, token 

length, message type, message id and request id in the integrity check, it does not include 

the payload or the sender and recipients. LBACS, while acting independent of a 

particular protocol above the network layer of the OSI model, also focuses on the 

integrity of the payload, recipient and sender. Another concern with SMACK is the 

ability of an attacker to perform a replay attack by submitted an accepted message from 

the last session (Gehrmann, C., Tiloca, M., & Hoglund, R. 2015). LBACS prevents this 

occurrence as each session change iterates on the shared key and random seed generated 

by the KDF and PRNG respectively. 

 

5.4 Results 

The following metrics and tests results were recorded throughout the investigation. 

5.4.1 Storage 

Since LBACS aims to allow constrained oracles to achieve authentication and 

provenance on larger blockchain networks, storage needs, a common concern for 

constrained devices were recorded. Specifically, the size of the program data and key 

storage requirements were recorded. Key storage requirements were captured at run-time 

using the sizeof function in C programming language used, while program data size was 

identified as the difference of the compiled mote program with and without LBACS. It 

should be noted that program data size for LBACS will be considered with the ability to 
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retrieve and update the keychain stored using the Contiki file system in addition to token 

generation for two peers (Semi-Trusted Base Station and Trusted Authentication Entity). 

Furthermore, the key sizes used were 32 bytes each as seen in Appendix A. These results 

have been highlighted in the table below. 

 

Table 12: LBACS Storage Requirements 

Metric Size (bytes) 

LBACS Keychain (see Figure 7 on page 55) 180 

Z1 Buoy Reporter without LBACS 49,561 

Z1 Buoy Reporter with LBACS 58,997 

LBACS program data 9,436 

 

5.4.2 Communication Overhead 

Independent of the varying message size (no more than 24 bytes from sensors), 

LBACS utilized 8 bytes for its authentication tag as specified in the configuration 

parameters in the Configuration section of the previous Implementation Chapter. 

 

5.4.3 Power Consumption 

Power consumption for LBACS on the Z1 mote was also recorded and compared 

with the same mote not using LBACS. The CPU time recorded over 50 intervals with the 

assistance of the Contiki Energest module was used to calculate power consumption 

using the following formula: 
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Although the CPU time was recorded, the remaining parameter values for the formula 

were acquired from the Z1 data sheet based on the mote’s use. In this instance, 

calculations used a  3.6V (Voltage), 0.5mA (Current) with the frequency of the internal 

clock (RTIMER_SECOND) to be 32768 ticks at a 10 second interval (INTERVAL 

TIME). The average power difference illustrated in Figure 24 below was 0.077  0.01 

mW using a 95% confidence interval. The CPU time for each observation along with 

additional metrics such as low power mode, transmit, listen and clock time have been 

included in Appendix D. 

 

Figure 24: Power Consumption Comparison with LBACS 

5.4.4 Time 

Moreover, the time recorded to generate the LBACS authentication tag for two 

(2) peers (STBS and TAE) on the Z1 mote was recorded with the assistance of the 

Contiki Energest module. As illustrated in Figure 25 below, LBACS token generation on 

the Z1 mote averaged 38 milliseconds (ms) with the exception of session changes which 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 

P
o

w
er

 (
m

W
) 

Interval 

Power Consumption Comparison 

LBACS Without LBACS 



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      127 
    .    
averaged 107 ms due to the combined use of the KDF and PRNG. Time was recorded 

over 388 tag generation attempts which included 35 session changes. The data recorded 

has been included in Appendix C. 

 

Figure 25:LBACS Token Generation Time on Z1 

 

5.4.5 Functional Test 

In addition to unit and incremental testing to assert the correctness of the 

implementation, a complete end-to-end test was performed. In this test, the session size 

was reduced to 12 available requests and up to 400 requests were sent from the Z1 mote 

to the Semi-Trusted Base Station (STBS) and to the Trusted Authentication Entity (TAE) 

via the blockchain. The Firefox Copper COAP Client and a simpler COAP application 

written in Node.js was also used to inject replay and spoof attacks into the WSN which 
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were rejected by network peers. Sampled serial output from the Z1 for request id 8 has 

been included in Appendix F.  

Although many requests were successful, due to the Low Power and Lossy Network 

(LLN), some packets were loss in transmission. As a result, the session change request 

was re-transmitted to ensure that the base station would receive this request. The TCP 

dump showing network packets acquired from the Raspberry PI’s slip (USB) connection 

to the router has also been included in Appendix E. Moreover, log output from the STBS 

denoting the LBACS authentication, session change, signature generation and publishing 

of the buoy data has also been included in Appendix G. Similarly, logs from the TAE, 

acknowledging newly published buoy data from the blockchain, verifying the STBS in 

the Certificate Registry, verifying the signature of the STBS and subsequently 

authenticating the sensor mote using LBACS and approving the message on the 

blockchain has been included in Appendix H. It should be noted that logs from the STBS 

and the TAE were retrieved from an asynchronous implementation and therefore will not 

always follow the order in which messages were received especially due to the latency 

from interacting with the blockchain implementation. The Certificate Authority (CA) was 

also implemented with the ability to approve or remove entities (STBS, TAE or CA) 

from the certificate registry using a restful endpoint. 

5.4.6 Hardware Overhead 

The hardware overhead on a constrained device contributed by a LBACS 

implementation is directly dependent on the hardware requirements of the cryptographic 
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constructions (KDF, PRNG, HMAC) and application needs. The hardware requirements 

of LBACS has been modeled using the block diagram in Figure 26 which describes 

LBACS as an integrated circuit.

 

Figure 26: LBACS Authentication Hardware Block Diagram 

The block diagram illustrates an authentication module, similar to the one 

described in the Implementation chapter, for a LBACS Integrated Circuit (IC) that uses a 

HMAC component and three multiplexers to achieve the HMAC reduction as described 

in the proposal. Specifically, the module uses mainly eight (8) bit data paths to accept the 

authentication parameters (intention, request id, node id, peer id random seed) except for 

the pairwise key and message which are thirty-two (32) or four times eight (4 x 8) data 

paths to reduce the required design area for low core micro processor and System on a 

Chip (SoC) designs. Both the intention bits and request id are included in the IC’s output. 

In order to generate the HMAC, LBACS uses the HMAC specified in its configuration 

parameters by the system designer as highlighted in the proposal. The HMAC output, 

illustrated as eight eight bit data paths is fed into three 8-1 multiplexers (MUX1, MUX2 
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and MUX3) which reduce the HMAC output based on the inputted data select lines. In 

this implementation, the data select lines are three constants (C1, C2, C3), and the shared 

PRNG random seed. 

This design was implemented in Very High Speed Integrated Circuit Hardware 

Description Language (VHDL) IEEE1076 in Appendix K. VHDL IEEE1076 provides a 

standard formal notation that assists in the development, synthesis, testing and 

communication of hardware designs ("IEEE Standard VHDL Language Reference 

Manual", 2009). This therefore allows this design to be easily replicated, communicated 

and tested for further research and implementations. 

In this implementation, the Keccak-f permutation was chosen as the variable size, 

output sponge construction allowed it to be used as a suitable PRNG, KDF and HMAC. 

Many contributions have been made to optimize the area, storage and memory 

requirements on low core processors used in constrained devices as proposed in the 

Keccak Implementation Overview (Bertoni et. al, 2011). Variants of these contributions 

have even targeted very constrained RFID devices (Pessl and Hutter, 2013) (Kavun and 

Yalcin, 2010) and Fixed Programmable Gated Array implementations (FPGA) 

(Provelengios et. al, 2012). 
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Chapter 6:  Conclusion 

With the research objectives met, this section will discuss the findings of the 

research project, specifically answer the research questions and highlight possible areas 

for future work.  

 

6.1 Discussion 

The review of existing literature highlighted several concerns and opportunities as 

it pertains to achieving provenance of sensor data on the blockchain. Concerns arising 

from the design considerations and review of existing WSN authentication schemes 

included:  

 Costs (financial and communication overhead) associated with key management  

 Costs to deploy secure base stations 

 Fault tolerance 

 Loss of provenance through network topologies 

 One solution does not fit all 

 Inability to deploy secure cryptographic constructions on constrained sensors to 

communicate with more resource competent nodes. 

Although the blockchain addresses several issues such as byzantine fault tolerance, 

provenance, integrity and auditability, current implementations are too resource intensive 

for constrained devices. 

To address this gap in the research, the Lightweight Blockchain Authentication for 

Constrained Sensors (LBACS) scheme was proposed. With the assistance of a 

lightweight multi-signature authentication tag, symmetric and asymmetric schemes, it 
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allows constrained sensor devices to authenticate with resource competent peers on the 

blockchain through semi-trusted base stations. The integration of the blockchain and the 

use of several cryptographic constructions allows the scheme to observe the various 

design considerations of sensors networks while providing the following security 

objectives:  

1. Authentication 

2. Blockchain Provenance 

3. Integrity 

4. Replay Protection 

5. Weak Backward Secrecy 

6. Weak Forward Secrecy 

7. Universal Forgeability 

8. Identity Revocation 

9. Auditable 

When using the LBACS configuration parameters as described in Table 5 on page 85, 

the resource requirements for a constrained sensor authenticating and providing 

provenance through integrity on the blockchain has been included in Table 3 below. 

Table 13: LBACS Resource Requirements Summary 

Metric Value 

LBACS Keychain (see Figure 7 on page 55) 180 bytes 

LBACS program data 9,436 bytes 

Communication Overhead 8 bytes 

Power Consumption 0.077  0.01 mW 

Token Generation Time (general) 38ms 

Token Generation Time (during session 

change) 
107ms 
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Similarly, the hardware requirements for a sensor device utilizing LBACS or 

implementing LBACS as an independent Integrated Circuit were highlighted and 

illustrated in a block diagram in Figure 26 on page 129 and also in VHDL in Appendix 

K. 

The functional tests conducted attested to the qualitative thread and risk assessment 

conducted as participating nodes successfully rejected replay and spoofed attacks. 

Specifically, LBACS protects nodes from vulnerabilities such as jamming, denial of 

service, denial of sleep, replay, session hijacking and man-in-the-middle attacks. 

Although, routing related attacks may result in packet loss, LBACS incorporates post-

deployment key management methods to allow node and session recovery if necessary. 

Furthermore, when compared to existing authentication schemes such as DTLS, TinySec, 

Lithe, AASP, SPINS and SMACK, LBACS possessed many qualities of the compared 

schemes with the exception of confidentiality. Although similar, LBACS possessed 

several attractive traits such as being time independent when compared to SPINS, 

preventing replay attacks when compared to TinySec, a small communication overhead, 

fault tolerance, maintenance of provenance and the ability to integrate with the 

blockchain.  When compared to a node with no security, LBACS directly provides 

protection against the following vulnerabilities: 

1. Jamming 

2. Denial of Service 

3. Denial of Sleep 

4. Man-in-the-middle 

5. Session Hijacking 
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6. Replay Attack 

Based on the results arising from the quantitative and qualitative study, the 

Lightweight Blockchain Authentication for Constrained Sensors (LBACS) scheme has 

proven to provide a lightweight means for constrained sensors to authenticate and achieve 

provenance of sensor data on the blockchain while providing several other benefits when 

compared to other authentication schemes.  

Although, the use case discussed in this thesis pertained to buoy monitoring, it should 

be noted that the applicability of LBACS extends to all IoT. This includes areas such as 

health, mining, supply chain management, aerospace to name a few. The configuration 

parameters presented by LBACS increases its interoperability as devices with varying 

computational resources may use a different KDF, PRNG, HMAC based on the 

computational resources and needs of the network. This allows devices with hardware 

enhanced modules such as the Texas Instruments CC2538 that has an AES128/256 SHA2 

Hardware Encryption Engine (Gehrmann, Tiloca, & Hoglund, 2015) or mobile phones 

with accelerated GPUs  to utilize cryptographic primitives which are best suited for their 

hardware and the network's needs. Similarly, the more competent blockchain nodes need 

not be constrained to the Elliptic Curve implementation used in the buoy monitoring 

implementation and may use other methods such as variants of RSA algorithm. 

 

6.2 Future Work 

Due to the time constraints of this thesis submission and the applicability and need 

for sensor provenance, there is room for additional scope and work with LBACS. 

Additional tests with other sensors or motes, Fixed Programmable Gated Arrays, 
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blockchain implementations and LBACS configuration parameters may also identify 

additional concerns or opportunities. Furthermore, several concerns such as 

confidentiality, routing and closer integration with layers of the OSI model may be 

explored. Furthermore, existing approaches to provenance which focus more on the 

metadata collected such as the Open Provenance Model may be explored as LBACS only 

asserts the integrity of data transmitted (which may include metadata) but does not 

specify any meta data requirements. 
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Appendix 

Appendix A 

Included are the various LBACS shared library interfaces utilized in C. 

 

/* 

 * @copyright Gilroy Gordon 2016 

 * @overview LBACS C Implementation for Constrained Devices 

 */ 

 

#ifndef LBACS_H_ 

#define LBACS_H_ 

 

#include <stdint.h> 

 

// Intention Bits 

#define LBACS_INTENTION_BIT_SIZE             0x02 //bits 

#define LBACS_INTENTION_PEER_AUTHENTICATION  0x00   //0000 - binary 

#define LBACS_INTENTION_GROUP_AUTHENTICATION 0x01   //0001 - binary 

#define LBACS_INTENTION_KEY_REVOCATION       0x02   //0010 - binary 

#define LBACS_INTENTION_KEY_RECOVERY         0x03   //0011 - binary 

 

 

#define LBACS_SESSION_SIZE 12//0x7F 

#define LBACS_SESSION_CHANGE LBACS_SESSION_SIZE // 127 requests / max for 8 bits 

#define LBACS_MAX_REQUEST_ID (LBACS_SESSION_SIZE-1)//0x7E // 126 requests 

 

#define LBACS_TOKEN_TYPE uint8_t* 

#define LBACS_MAX_TOKEN_SIZE 8 

#define LBACS_HMAC_SIZE 3 

#define LBACS_HMAC_PIECES_COUNT 32 

#define LBACS_HMAC_PIECE_SIZE 8 

 

#define LBACS_MAX_PEERS 2 

#define LBACS_MAX_PAIRWISE_KEY_SIZE 32 

 

#ifndef NULL 

#define NULL 0 

#endif 

 

#ifndef bool 

#define bool uint8_t 

#endif 

 

#ifndef true 

#define true 1 

#endif 
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#ifndef false 

#define false 0 

#endif 

 

/* 

 * @function KDF 

 * @description Key derivation function 

 * @param seed uint8_t - PRNG seed 

 * @param key uint8_t* - key array 

 * @param keysize uint8_t - key array size 

 * @returns uint8_t derived key 

 */ 

typedef uint8_t* (* LBACS_KDF)(const uint8_t seed, 

                               const uint8_t* key_array, 

                               const uint8_t key_array_size); 

 

typedef uint8_t (* LBACS_PRNG)(void **prngStore, const uint64_t seed); 

 

typedef struct BIT_ { 

    uint8_t value : 1; 

    //char value; 

} BIT; 

 

typedef struct LBACS_SESSION_CTX_ { 

    uint8_t my_request_id; 

    uint8_t pairwise_key[LBACS_MAX_PAIRWISE_KEY_SIZE]; 

    uint8_t pairwise_key_size; 

    uint8_t random_seed; 

    BIT received_request_ids[LBACS_SESSION_SIZE]; 

} LBACS_SESSION_CTX; 

 

typedef struct LBACS_KEYCHAIN_NODE_ { 

    uint8_t peer_id; 

     

 

    LBACS_SESSION_CTX session; 

    //------ Functions used 

    /* 

     * @function PRNG 

     * @param seed uint8_t - PRNG seed 

     * @returns uint8_t PRNG number 

     */ 

    LBACS_PRNG prng; 

    void *prngStore; 

 

    //struct LBACS_KEYCHAIN_NODE_ *next; 

    void * next; 

} LBACS_KEYCHAIN_NODE ; 

 

typedef struct LBACS_CTX_ 

{ 

    //------ Node Specific Properties 

    uint8_t node_id; 
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    uint8_t node_private_key[LBACS_MAX_PAIRWISE_KEY_SIZE]; 

 

    uint8_t node_private_key_size; 

 

    uint8_t no_peers; // keychain length 

 

    //------ Peer Related Propeties 

 

    /* 

    - keychain linkedlist 

          > peer Id | pairwise key | random seed 

    */ 

    LBACS_KEYCHAIN_NODE keychain[LBACS_MAX_PEERS]; 

 

    /* 

     * @function KDF 

     * @description Key derivation function 

     * @param seed uint8_t - PRNG seed 

     * @param key uint8_t* - key array 

     * @param keysize uint8_t - key array size 

     * @returns uint8_t derived key 

     */ 

    LBACS_KDF kdf; 

    //uint8_t (*KDF) (uint8_t, uint8_t*, uint8_t); 

} LBACS_CTX; 

 

 

//---------------------------------------- 

// Private Methods 

 

//---------------------------------------- 

// Public Methods 

 

static LBACS_CTX * lbacs_ctx_instance = NULL; 

 

//creates key store context from static variable 

void lbacs_init_context( 

    const uint8_t node_id, 

    const uint8_t* node_private_key, 

    const uint8_t node_private_key_size 

); 

 

void lbacs_clear_context(void); 

 

void lbacs_init_context_with_kdf( 

    const uint8_t node_id, 

    const uint8_t* node_private_key, 

    const uint8_t node_private_key_size, 

    const LBACS_KDF kdf 

); 

 

void lbacs_init_context_with_context(LBACS_CTX *ctx); 

 

//gets lbacs context 

LBACS_CTX * get_lbacs_ctx(); 
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uint8_t lbacs_get_node_id(); 

 

//gets key store context from static variable 

LBACS_KEYCHAIN_NODE * get_lbacs_keychain(); 

 

LBACS_KEYCHAIN_NODE * add_lbacs_peer( 

    const uint8_t peer_id, 

    const uint8_t* pairwise_key, 

    const uint8_t pairwise_key_size, 

    const uint8_t random_seed 

); 

 

LBACS_KEYCHAIN_NODE * add_lbacs_peer_with_prng( 

    const uint8_t peer_id, 

    const uint8_t* pairwise_key, 

    const uint8_t pairwise_key_size, 

    const uint8_t random_seed, 

    const LBACS_PRNG prng, 

    void *prngStore 

); 

 

LBACS_KEYCHAIN_NODE * get_lbacs_peer( 

    const uint8_t peer_id 

); 

 

uint8_t lbacs_remove_peer_by_id( 

    const uint8_t peer_id 

); 

 

//returns token/lbacs mac? 

bool lbacs_authenticate( 

    const uint8_t intention, 

    uint8_t request_id, 

    const uint8_t* message, 

    const uint64_t message_size, 

    const uint8_t* peer_ids, 

    const uint8_t peer_id_size, 

    const LBACS_TOKEN_TYPE token, 

    const uint8_t token_size 

); 

 

LBACS_TOKEN_TYPE lbacs_generate_token( 

    LBACS_TOKEN_TYPE token, 

    const uint8_t intention, 

    uint8_t* request_id, 

    const uint8_t* message, 

    const uint64_t message_size, 

    const uint8_t* peer_ids, 

    const uint8_t peer_id_size, 

    uint8_t from_peer_id, 

    const bool isAuthRequest 

); 

 

uint8_t* lbacs_generate_hmac( 

    const uint8_t intention, 
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Figure 27: LBACS C Interface for Constrained Devices 

 

 

 

 

 

    const uint8_t request_id, 

    const uint8_t* message, 

    const uint64_t message_size, 

    const uint8_t from_peer_id, 

    const uint8_t to_peer_id, 

    LBACS_KEYCHAIN_NODE * peer, 

    uint8_t* hmac_size 

); 

 

bool lbacs_truncate_hmac( 

    uint8_t* hmac, 

    uint8_t* hmac_size, 

    const uint8_t random_seed, 

    const uint8_t expected_size 

); 

 

void lbacs_update_session_after_request(LBACS_KEYCHAIN_NODE * peer); 

void lbacs_init_session( 

    LBACS_SESSION_CTX * session, 

    const uint8_t* pairwise_key, 

    const uint8_t pairwise_key_size, 

    const uint8_t random_seed 

    ); 

 

//----------------- 

// Utility Functions 

LBACS_CTX* loadLBACSContext(void); 

int saveLBACSContext(LBACS_CTX * ctx); 

int removeLBACSContextStore(); 

void print_lbacs_context(const LBACS_CTX * ctx); 

void print_lbacs_peer(const LBACS_KEYCHAIN_NODE * peer); 

//----------- 

// Utility Functions Debug 

 

#endif 
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/* 

 * @copyright Gilroy Gordon 2016 

 * @overview LBACS C Implementation for Resource Competent Devices 
 */ 

 

#ifndef LBACS_H_ 
#define LBACS_H_ 

 

#include <stdint.h> 
 

// Intention Bits 

#define LBACS_INTENTION_BIT_SIZE             0x02 //bits 
#define LBACS_INTENTION_PEER_AUTHENTICATION  0x00   //0000 - binary 

#define LBACS_INTENTION_GROUP_AUTHENTICATION 0x01   //0001 - binary 
#define LBACS_INTENTION_KEY_REVOCATION       0x02   //0010 - binary 

#define LBACS_INTENTION_KEY_RECOVERY         0x03   //0011 - binary 

 

 

#define LBACS_SESSION_SIZE 12//0x7F 

#define LBACS_SESSION_CHANGE LBACS_SESSION_SIZE // 127 requests / max for 8 bits 
#define LBACS_MAX_REQUEST_ID (LBACS_SESSION_SIZE-1)//0x7E // 126 requests 

 

#define LBACS_TOKEN_TYPE uint8_t* 
#define LBACS_MAX_TOKEN_SIZE 8 

#define LBACS_HMAC_SIZE 3 

#define LBACS_HMAC_PIECES_COUNT 32 
#define LBACS_HMAC_PIECE_SIZE 8 

 

#ifndef NULL 
#define NULL 0 

#endif 

 
#ifndef bool 

#define bool uint8_t 

#endif 

 

#ifndef true 

#define true 1 
#endif 

 

#ifndef false 
#define false 0 

#endif 

 
/* 

 * @function KDF 

 * @description Key derivation function 
 * @param seed uint8_t - PRNG seed 

 * @param key uint8_t* - key array 

 * @param keysize uint8_t - key array size 
 * @returns uint8_t derived key 

 */ 

typedef uint8_t* (* LBACS_KDF)(const uint8_t seed, 
                               const uint8_t* key_array, 

                               const uint8_t key_array_size); 

 
typedef uint8_t (* LBACS_PRNG)(void **prngStore, const uint64_t seed); 

 

typedef struct BIT_ { 
    uint8_t value : 1; 

} BIT; 

 
typedef struct LBACS_SESSION_CTX_ { 

    uint8_t my_request_id; 
    uint8_t* pairwise_key; 

    uint8_t pairwise_key_size; 

    uint8_t random_seed; 
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    BIT received_request_ids[LBACS_SESSION_SIZE]; 

} LBACS_SESSION_CTX; 

 
typedef struct LBACS_KEYCHAIN_NODE_ { 

    uint8_t peer_id; 

     
 

    LBACS_SESSION_CTX * session; 

    //------ Functions used 
    /* 

     * @function PRNG 

     * @param seed uint8_t - PRNG seed 
     * @returns uint8_t PRNG number 

     */ 

    LBACS_PRNG prng; 

    void *prngStore; 

 
    struct LBACS_KEYCHAIN_NODE_ *next; 

} LBACS_KEYCHAIN_NODE ; 

 
typedef struct LBACS_CTX_ 

{ 

    //------ Node Specific Properties 
    uint8_t node_id; 

 

    uint8_t* node_private_key; 
 

    uint8_t node_private_key_size; 

 
    uint8_t no_peers; // keychain length 

 

    //------ Peer Related Propeties 

 

    /* 

    - keychain linkedlist 
          > peer Id | pairwise key | random seed 

    */ 

    LBACS_KEYCHAIN_NODE *keychain; 
 

    /* 

     * @function KDF 
     * @description Key derivation function 

     * @param seed uint8_t - PRNG seed 

     * @param key uint8_t* - key array 
     * @param keysize uint8_t - key array size 

     * @returns uint8_t derived key 

     */ 
    LBACS_KDF kdf; 

    //uint8_t (*KDF) (uint8_t, uint8_t*, uint8_t); 

} LBACS_CTX; 
 

 

//---------------------------------------- 
// Private Methods 

 

//---------------------------------------- 
// Public Methods 

 

static LBACS_CTX * lbacs_ctx_instance = NULL; 
 

//creates key store context from static variable 

void lbacs_init_context( 
    const uint8_t node_id, 
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    const uint8_t* node_private_key, 

    const uint8_t node_private_key_size 

); 
 

void lbacs_clear_context(void); 

 
void lbacs_init_context_with_kdf( 

    const uint8_t node_id, 

    const uint8_t* node_private_key, 
    const uint8_t node_private_key_size, 

    const LBACS_KDF kdf 

); 
 

//gets lbacs context 
LBACS_CTX * get_lbacs_ctx(); 

 

uint8_t lbacs_get_node_id(); 

 

//gets key store context from static variable 

LBACS_KEYCHAIN_NODE * get_lbacs_keychain(); 
 

LBACS_KEYCHAIN_NODE * add_lbacs_peer( 

    const uint8_t peer_id, 
    const uint8_t* pairwise_key, 

    const uint8_t pairwise_key_size, 

    const uint8_t random_seed 
); 

 

LBACS_KEYCHAIN_NODE * add_lbacs_peer_with_prng( 
    const uint8_t peer_id, 

    const uint8_t* pairwise_key, 

    const uint8_t pairwise_key_size, 
    const uint8_t random_seed, 

    const LBACS_PRNG prng, 

    void *prngStore 

); 

 

LBACS_KEYCHAIN_NODE * get_lbacs_peer( 
    const uint8_t peer_id 

); 

 
uint8_t lbacs_remove_peer_by_id( 

    const uint8_t peer_id 

); 
 

//returns token/lbacs mac? 

bool lbacs_authenticate( 
    const uint8_t intention, 

    uint8_t request_id, 

    const uint8_t* message, 
    const uint64_t message_size, 

    const uint8_t* peer_ids, 

    const uint8_t peer_id_size, 
    const LBACS_TOKEN_TYPE token, 

    const uint8_t token_size 

); 
 

LBACS_TOKEN_TYPE lbacs_generate_token( 

    LBACS_TOKEN_TYPE token, 
    uint8_t* token_size, 

    const uint8_t intention, 

    uint8_t* request_id, 
    const uint8_t* message, 

    const uint64_t message_size, 
    const uint8_t* peer_ids, 

    const uint8_t peer_id_size, 

    uint8_t from_peer_id, 
    const bool isAuthRequest 
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Figure 28: LBACS C Interface for Resource Competent Devices 

 

 

 

 

 

 

  

); 

 

uint8_t* lbacs_generate_hmac( 
    uint8_t* hmac, 

    uint8_t* hmac_size, 

    const uint8_t intention, 
    const uint8_t request_id, 

    const uint8_t* message, 

    const uint64_t message_size, 
    const uint8_t from_peer_id, 

    const uint8_t to_peer_id, 

    LBACS_KEYCHAIN_NODE * peer 
); 

 
bool lbacs_truncate_hmac( 

    uint8_t* hmac, 

    uint8_t* hmac_size, 

    const uint8_t random_seed, 

    const uint8_t expected_size 

); 
 

void lbacs_update_session_after_request(LBACS_KEYCHAIN_NODE * peer); 

 
void lbacs_init_session( 

    LBACS_SESSION_CTX ** session, 

    const uint8_t* pairwise_key, 
    const uint8_t pairwise_key_size, 

    const uint8_t random_seed 

    ); 
 

//----------------- 

// Utility Functions 
void print_lbacs_context(const LBACS_CTX * ctx); 

void print_lbacs_peer(const LBACS_KEYCHAIN_NODE * peer); 

//----------- 

// Utility Functions Debug 

 

#endif 
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Appendix B 

Included are the various Solidity contracts used by LBACS to interact with the 

Ethereum Blockchain network. 

 

 

Figure 29: LBACS Solidity ECDSASignature Contract 

 

 

 

Figure 30: LBACS Solidity Public Key Contract 

 

pragma solidity ^0.4.0; 

/* 

  @author Gilroy Gordon 

  @copyright Gilroy Gordon 2016. All Rights Reserved. 

*/ 

 

 

contract ECPublicKey { 

    string public pubKey; 

    function ECPublicKey(string _pubKey){ 

        pubKey = _pubKey; 

    } 

} 

pragma solidity ^0.4.0; 

/* 

  @author Gilroy Gordon 

  @copyright Gilroy Gordon 2016. All Rights Reserved. 

*/ 

 

contract ECDSASignature { 

    string public signature; 

    function ECDSASignature(string _signature){ 

        signature = _signature; 

    } 

} 
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Figure 31: LBACS Solidity Library Contract 

 

 

Figure 32: LBACS Solidity Abstract Entity Contract 

 

pragma solidity ^0.4.0; 

/* 

  @author Gilroy Gordon 

  @copyright Gilroy Gordon 2016. All Rights Reserved. 

*/ 

 

import "./../libraries/LBACSLIB.sol"; 

 

contract LBACSEntity { 

    address public publicKey; 

    address public owner; 

    LBACSLIB.EntityType public entityType; 

     

    function LBACSEntity(address pubKey,LBACSLIB.EntityType _entityType){ 

        owner = msg.sender; 

        publicKey = pubKey; 

        entityType = _entityType; 

    } 

} 

pragma solidity ^0.4.0; 

/* 

  @author Gilroy Gordon 

  @copyright Gilroy Gordon 2016. All Rights Reserved. 

*/ 

 

 

library LBACSLIB { 

    enum EntityType { 

        CertificateAuthority, 

        TrustedAuthenticationEntity, 

        SemiTrustedBaseStation, 

        Sensor 

    } 

} 



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      159 
    .    

 

Figure 33: LBACS Solidity Certificate Authority Contract 

 

Figure 34: LBACS Solidity Trusted Authentication Entity Contract 

 

pragma solidity ^0.4.0; 

/* 

  @author Gilroy Gordon 

  @copyright Gilroy Gordon 2016. All Rights Reserved. 

*/ 

 

import "./LBACSEntity.sol"; 

import "./../libraries/LBACSLIB.sol"; 

 

contract LBACSTrustedAuthEntity is LBACSEntity { 

     

    event TAERequiresVerification(address entity); 

     

    function LBACSTrustedAuthEntity(address pubKey) 

        LBACSEntity(pubKey, LBACSLIB.EntityType.TrustedAuthenticationEntity) 

    { 

        TAERequiresVerification(this); 

    } 

} 

pragma solidity ^0.4.0; 

/* 

  @author Gilroy Gordon 

  @copyright Gilroy Gordon 2016. All Rights Reserved. 

*/ 

 

import "./LBACSEntity.sol"; 

import "./../libraries/LBACSLIB.sol"; 

 

contract LBACSCertAuthority is LBACSEntity { 

     

    event CARequiresVerification(address entity); 

     

    function LBACSCertAuthority(address pubKey) 

        LBACSEntity(pubKey, LBACSLIB.EntityType.CertificateAuthority) 

    { 

        CARequiresVerification(this); 

    } 

} 
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Figure 35: LBACS Solidity Semi-Trusted Base Station Contract 

 

pragma solidity ^0.4.0; 

/* 

  @author Gilroy Gordon 

  @copyright Gilroy Gordon 2016. All Rights Reserved. 

*/ 

 

import "./LBACSEntity.sol"; 

import "./../libraries/LBACSLIB.sol"; 

 

contract LBACSBaseStation is LBACSEntity { 

     

    event STBSRequiresVerification(address entity); 

     

    function LBACSBaseStation(address pubKey) 

        LBACSEntity(pubKey, LBACSLIB.EntityType.SemiTrustedBaseStation) 

    { 

        STBSRequiresVerification(this); 

    } 

} 



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      161 
    .    

 

Figure 36: LBACS Solidity Certificate Registry Contract 

 

 

 

 

pragma solidity ^0.4.0; 

/* 

  @author Gilroy Gordon 

  @copyright Gilroy Gordon 2016. All Rights Reserved. 

*/ 

 

contract LBACSCertificateRegistry { 

     

     

    mapping (address => bool) public certAuthorities; 

     

    mapping (address => bool) public baseStations; 

     

    mapping (address => bool) public authEntities; 

     

    modifier isCertificateAuthority(address sender){ 

        if(!certAuthorities[msg.sender])throw; 

        _; 

    } 

     

    function LBACSCertificateRegistry(){ 

        //assign creator as valid cert authority 

        certAuthorities[msg.sender]=true; 

    } 

     

    function approveCertAuthority(address entity, bool approval) 

        isCertificateAuthority(msg.sender) 

    { 

        certAuthorities[entity] =  approval; 

    } 

     

    function approveBaseStation(address entity, bool approval) 

        isCertificateAuthority(msg.sender) 

    { 

        baseStations[entity] =  approval; 

    } 

     

    function approveAuthEntity(address entity, bool approval) 

        isCertificateAuthority(msg.sender) 

    { 

        authEntities[entity] =  approval; 

    } 

     

} 
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Figure 37: LBACS Solidity Generic Message Contract 

pragma solidity ^0.4.0; 

/* 

  @author Gilroy Gordon 

  @copyright Gilroy Gordon 2016. All Rights Reserved. 

*/ 

 

contract LBACSMessage { 

 

    uint8 public fromPeerId; 

    uint8 public toPeerId; 

    uint8 public intention; 

    uint8 public requestId; 

    bytes5 public hmac; 

    address public signature; 

    address public authorEntity; 

     

    function LBACSMessage( 

        uint8 _fromPeerId, 

        uint8 _toPeerId, 

        uint8 _intention, 

        uint8 _requestId, 

        bytes5 _hmac, 

        address _signature, 

        address _authorEntity 

        ){ 

        fromPeerId=_fromPeerId; 

        toPeerId=_toPeerId; 

        intention=_intention; 

        requestId=_requestId; 

        hmac= _hmac; 

        signature= _signature; 

        authorEntity = _authorEntity; 

    } 

   

} 
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Figure 38: LBACS Solidity Authenticated Data Message 

pragma solidity ^0.4.0; 

/* 

  @author Gilroy Gordon 

  @copyright Gilroy Gordon 2016. All Rights Reserved. 

*/ 

 

contract LBACSAuthenticatedData{ 

    //will only be verified by TAEs 

    address public verifiedBy; 

    address public item; 

    address public submittedBy; 

     

    function LBACSAuthenticatedData(address _item, address entity){ 

        item = _item; 

        verifiedBy = entity; 

        submittedBy = msg.sender; 

    } 

     

} 
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Figure 39: LBACS Solidity Buoy Data Contract 

 

 

 

pragma solidity ^0.4.0; 

/* 

  @author Gilroy Gordon 

  @copyright Gilroy Gordon 2016. All Rights Reserved. 

*/ 

 

import "./LBACSMessage.sol"; 

 

 

contract BuoyData is LBACSMessage { 

    int32 public x; 

    int32 public y; 

    int32 public z; 

     

    event BuoyDataPublished(address bouyData, int32 x, int32 y, int32 z); 

     

    function BuoyData( 

        uint8 _fromPeerId, 

        uint8 _toPeerId, 

        uint8 _intention, 

        uint8 _requestId, 

        bytes5 _hmac, 

        address _signature, 

        address _authorEntity, 

        int32 _x, 

        int32 _y, 

        int32 _z 

        ) 

        LBACSMessage( 

        _fromPeerId, 

        _toPeerId, 

        _intention, 

        _requestId, 

        _hmac, 

        _signature, 

        _authorEntity 

        ) 

        { 

            x = _x; 

            y = _y; 

            z = _z; 

            BuoyDataPublished(this,x,y,z); 

        } 

} 
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Figure 40: LBACS Solidity Revocation Message 

 

 

 

 

 

 

 

 

 

 

 

  

pragma solidity ^0.4.0; 

/* 

  @author Gilroy Gordon 

  @copyright Gilroy Gordon 2016. All Rights Reserved. 

*/ 

 

contract LBACSRevocationMessage { 

    address public entity; 

    address public submittedBy; 

    /* 

     * Shoud be Certificate Authority* 

    */ 

    address public revokedBy; 

     

    function LBACSRevocationMessage( 

        address _entity, 

        address _revokedBy 

        ){ 

        revokedBy = _revokedBy; 

        entity = _entity; 

        submittedBy = msg.sender; 

         

    } 

} 
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Appendix C 

Table 14: LBACS Token Generation Time Observations 

Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

1,313 1276 37 

2,449 2411 38 

3,601 3563 38 

4,753 4715 38 

5,973 5867 106 

7,057 7019 38 

8,209 8171 38 

9,361 9323 38 

10,513 10475 38 

11,665 11627 38 

12,817 12779 38 

13,969 13931 38 

15,121 15083 38 

16,273 16235 38 

17,425 17387 38 

18,645 18539 106 

19,729 19691 38 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

20,881 20843 38 

22,033 21995 38 

23,185 23147 38 

24,337 24299 38 

25,489 25451 38 

28,116 28078 38 

28,166 28128 38 

28,945 28907 38 

30,097 30059 38 

31,317 31211 106 

32,401 32363 38 

33,553 33515 38 

34,705 34667 38 

35,857 35819 38 

37,009 36971 38 

38,161 38123 38 

39,313 39275 38 

40,465 40427 38 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

41,617 41579 38 

42,769 42731 38 

43,989 43883 106 

45,073 45035 38 

46,225 46187 38 

47,377 47339 38 

48,529 48491 38 

49,681 49643 38 

50,833 50795 38 

51,985 51947 38 

53,137 53099 38 

54,289 54251 38 

55,441 55403 38 

56,662 56555 107 

57,745 57707 38 

58,897 58859 38 

60,049 60011 38 

61,201 61163 38 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

62,353 62315 38 

63,505 63467 38 

64,657 64619 38 

65,809 65771 38 

66,961 66923 38 

68,113 68075 38 

69,334 69227 107 

70,417 70379 38 

71,569 71531 38 

72,721 72683 38 

73,873 73835 38 

75,025 74987 38 

76,177 76139 38 

77,329 77291 38 

78,481 78443 38 

79,633 79595 38 

80,785 80747 38 

82,006 81899 107 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

83,089 83051 38 

84,241 84203 38 

85,393 85355 38 

86,545 86507 38 

87,697 87659 38 

88,849 88811 38 

90,001 89963 38 

91,153 91115 38 

92,305 92267 38 

93,457 93419 38 

94,678 94571 107 

95,761 95723 38 

96,913 96875 38 

98,065 98027 38 

99,217 99179 38 

100,369 100331 38 

101,521 101483 38 

102,673 102635 38 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

103,825 103787 38 

104,977 104939 38 

106,129 106091 38 

107,350 107243 107 

108,433 108395 38 

109,585 109547 38 

110,737 110699 38 

111,889 111851 38 

113,041 113003 38 

114,193 114155 38 

115,345 115307 38 

116,497 116459 38 

117,649 117611 38 

118,801 118763 38 

120,022 119915 107 

121,105 121067 38 

122,257 122219 38 

123,409 123371 38 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

124,561 124523 38 

125,713 125675 38 

126,865 126827 38 

128,017 127979 38 

129,169 129131 38 

130,321 130283 38 

131,473 131435 38 

132,694 132587 107 

133,777 133739 38 

134,929 134891 38 

136,081 136043 38 

137,233 137195 38 

138,385 138347 38 

139,537 139499 38 

140,689 140651 38 

141,841 141803 38 

142,993 142955 38 

144,145 144107 38 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

145,366 145259 107 

146,449 146411 38 

147,601 147563 38 

148,753 148715 38 

149,905 149867 38 

151,057 151019 38 

152,209 152171 38 

153,361 153323 38 

154,513 154475 38 

155,665 155627 38 

156,817 156779 38 

158,038 157931 107 

159,121 159083 38 

160,273 160235 38 

161,425 161387 38 

162,577 162539 38 

163,729 163691 38 

164,881 164843 38 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

166,033 165995 38 

167,185 167147 38 

168,337 168299 38 

169,489 169451 38 

170,710 170603 107 

171,793 171755 38 

172,945 172907 38 

174,097 174059 38 

175,249 175211 38 

176,401 176363 38 

177,553 177515 38 

178,705 178667 38 

179,857 179819 38 

181,009 180971 38 

182,161 182123 38 

183,382 183275 107 

184,465 184427 38 

185,617 185579 38 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

186,769 186731 38 

187,921 187883 38 

189,073 189035 38 

190,225 190187 38 

191,377 191339 38 

192,529 192491 38 

193,681 193643 38 

194,833 194795 38 

196,054 195947 107 

197,137 197099 38 

198,289 198251 38 

199,441 199403 38 

200,593 200555 38 

201,745 201707 38 

202,897 202859 38 

204,049 204011 38 

205,201 205163 38 

206,353 206315 38 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

207,505 207467 38 

208,726 208619 107 

209,809 209771 38 

210,961 210923 38 

212,113 212075 38 

213,265 213227 38 

214,417 214379 38 

215,569 215531 38 

216,721 216683 38 

217,873 217835 38 

219,025 218987 38 

220,177 220139 38 

221,398 221291 107 

222,481 222443 38 

223,633 223595 38 

224,785 224747 38 

225,937 225899 38 

227,089 227051 38 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

228,241 228203 38 

229,393 229355 38 

230,545 230507 38 

231,697 231659 38 

232,849 232811 38 

234,070 233963 107 

235,153 235115 38 

236,305 236267 38 

237,457 237419 38 

238,609 238571 38 

239,761 239723 38 

240,913 240875 38 

242,065 242027 38 

243,217 243179 38 

244,369 244331 38 

245,521 245483 38 

246,742 246635 107 

247,825 247787 38 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

248,977 248939 38 

250,129 250091 38 

251,281 251243 38 

252,433 252395 38 

253,585 253547 38 

254,737 254699 38 

255,889 255851 38 

257,041 257003 38 

258,193 258155 38 

259,414 259307 107 

260,497 260459 38 

261,649 261611 38 

262,801 262763 38 

263,953 263915 38 

265,105 265067 38 

266,257 266219 38 

267,409 267371 38 

268,561 268523 38 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

269,713 269675 38 

270,865 270827 38 

272,086 271979 107 

273,169 273131 38 

274,321 274283 38 

275,473 275435 38 

276,625 276587 38 

277,777 277739 38 

278,929 278891 38 

280,081 280043 38 

281,233 281195 38 

282,385 282347 38 

283,537 283499 38 

284,758 284651 107 

285,841 285803 38 

286,993 286955 38 

288,145 288107 38 

289,297 289259 38 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

290,449 290411 38 

291,601 291563 38 

292,753 292715 38 

293,905 293867 38 

295,057 295019 38 

296,209 296171 38 

297,430 297323 107 

298,513 298475 38 

299,665 299627 38 

300,817 300779 38 

301,969 301931 38 

303,121 303083 38 

304,273 304235 38 

305,425 305387 38 

306,577 306539 38 

307,729 307691 38 

308,881 308843 38 

310,102 309995 107 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

311,185 311147 38 

312,337 312299 38 

313,489 313451 38 

314,641 314603 38 

315,793 315755 38 

316,945 316907 38 

318,097 318059 38 

319,249 319211 38 

320,401 320363 38 

321,553 321515 38 

322,774 322667 107 

323,857 323819 38 

325,009 324971 38 

326,161 326123 38 

327,313 327275 38 

328,465 328427 38 

329,617 329579 38 

330,769 330731 38 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

331,921 331883 38 

333,073 333035 38 

334,225 334187 38 

335,446 335339 107 

336,529 336491 38 

337,681 337643 38 

338,833 338795 38 

339,985 339947 38 

341,137 341099 38 

342,289 342251 38 

343,441 343403 38 

344,593 344555 38 

345,745 345707 38 

346,897 346859 38 

348,118 348011 107 

349,201 349163 38 

350,353 350315 38 

351,505 351467 38 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

352,657 352619 38 

353,809 353771 38 

354,961 354923 38 

356,113 356075 38 

357,265 357227 38 

358,417 358379 38 

359,569 359531 38 

360,790 360683 107 

361,873 361835 38 

363,025 362987 38 

364,177 364139 38 

365,329 365291 38 

366,481 366443 38 

367,633 367595 38 

368,785 368747 38 

369,937 369899 38 

371,089 371051 38 

372,241 372203 38 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

373,462 373355 107 

374,545 374507 38 

375,697 375659 38 

376,849 376811 38 

378,001 377963 38 

379,153 379115 38 

380,305 380267 38 

381,457 381419 38 

382,609 382571 38 

383,761 383723 38 

384,913 384875 38 

386,134 386027 107 

387,217 387179 38 

388,369 388331 38 

389,521 389483 38 

390,673 390635 38 

391,825 391787 38 

392,977 392939 38 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

394,129 394091 38 

395,281 395243 38 

396,433 396395 38 

397,585 397547 38 

398,806 398699 107 

399,889 399851 38 

401,041 401003 38 

402,193 402155 38 

403,345 403307 38 

404,497 404459 38 

405,649 405611 38 

406,801 406763 38 

407,953 407915 38 

409,105 409067 38 

410,257 410219 38 

411,478 411371 107 

412,561 412523 38 

413,713 413675 38 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

414,865 414827 38 

416,017 415979 38 

417,169 417131 38 

418,321 418283 38 

419,473 419435 38 

420,625 420587 38 

421,777 421739 38 

422,929 422891 38 

424,150 424043 107 

425,233 425195 38 

426,385 426347 38 

427,537 427499 38 

428,689 428651 38 

429,841 429803 38 

430,993 430955 38 

432,145 432107 38 

433,297 433259 38 

434,449 434411 38 
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Clock Time After (ms) Clock Time Before (ms) 
Difference 

(ms) 

435,601 435563 38 

436,822 436715 107 

437,905 437867 38 

439,057 439019 38 

440,209 440171 38 

441,361 441323 38 

442,513 442475 38 

443,665 443627 38 

444,817 444779 38 

445,969 445931 38 
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Appendix D 

Table 15: Z1 mote metrics without LBACS 

observation clock_time cpu lpm transmit listen Power (mW) 

0 1384 2192 325508 69 137 0.012041016 

1 2664 4247 323435 283 327398 0.023329468 

2 3944 3742 323935 275 327402 0.02055542 

3 5224 3786 323892 284 327394 0.020797119 

4 6504 3214 324464 116 327563 0.017655029 

5 7784 3629 324050 116 327564 0.019934692 

6 9064 3581 324097 283 327393 0.019671021 

7 10344 3225 324453 116 327563 0.017715454 

8 11627 4059 324459 233 328285 0.022296753 

9 12904 3250 323589 116 326721 0.017852783 

10 14184 3394 324285 219 327460 0.018643799 

11 15464 3363 324315 116 327562 0.018473511 

12 16744 3214 324464 116 327562 0.017655029 

13 18024 3912 323767 288 327390 0.021489258 

14 19304 3226 324452 116 327561 0.017720947 

15 20584 3210 324469 116 327562 0.017633057 

16 21864 3219 324460 116 327562 0.017682495 

17 23147 4202 324319 232 328287 0.023082275 
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observation clock_time cpu lpm transmit listen Power (mW) 

18 24424 3253 323584 116 326719 0.017869263 

19 25704 3220 324459 116 327562 0.017687988 

20 26984 3401 324278 219 327460 0.018682251 

21 28264 3214 324464 117 327561 0.017655029 

22 29544 3492 324187 224 327454 0.019182129 

23 30824 3362 324316 116 327562 0.018468018 

24 32104 3216 324462 117 327561 0.017666016 

25 33384 3710 323969 181 327497 0.020379639 

26 34667 4064 324455 233 328285 0.022324219 

27 35944 3279 323560 116 326722 0.018012085 

28 37224 3221 324457 116 327562 0.017693481 

29 38504 3371 324308 116 327563 0.018517456 

30 39784 3497 324181 224 327454 0.019209595 

31 41064 3238 324440 116 327561 0.017786865 

32 42344 3247 324432 116 327562 0.017836304 

33 43624 3234 324445 116 327562 0.017764893 

34 44904 3243 324436 116 327562 0.017814331 

35 46187 4225 324296 232 328287 0.023208618 

36 47464 3277 323560 116 326720 0.018001099 
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observation clock_time cpu lpm transmit listen Power (mW) 

37 48744 3244 324435 116 327561 0.017819824 

38 50024 3247 324432 116 327562 0.017836304 

39 51304 3234 324445 116 327562 0.017764893 

40 52584 3663 324016 181 327497 0.02012146 

41 53864 3383 324296 116 327563 0.018583374 

42 55144 3237 324441 116 327561 0.017781372 

43 56424 3516 324163 224 327454 0.019313965 

44 57707 4088 324430 233 328284 0.022456055 

45 58984 3276 323563 116 326722 0.017995605 

46 60264 3243 324436 116 327561 0.017814331 

47 61544 3383 324296 116 327562 0.018583374 

48 62824 3236 324442 116 327561 0.017775879 

 

Table 16: Z1 Mote metrics with LBACS 

observation clock_time cpu lpm transmit listen Power (mW) 

0 1384 21419 306275 68 137 0.117658081 

1 2664 13760 313922 284 327398 0.075585938 

2 3944 31606 296072 739 326935 0.173616943 

3 5224 13104 314575 219 327460 0.071982422 

4 6504 18938 308739 180 327496 0.104029541 



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      191 
    .    
observation clock_time cpu lpm transmit listen Power (mW) 

5 7784 13098 314581 116 327564 0.071949463 

6 9064 13073 314604 283 327394 0.071812134 

7 10344 12717 314961 117 327562 0.069856567 

8 11664 29093 308928 232 337788 0.159812622 

9 12904 12719 304616 117 317219 0.069867554 

10 14184 12608 315071 0 327679 0.069257813 

11 15464 19127 308553 219 327459 0.105067749 

12 16744 31274 296404 573 327102 0.171793213 

13 18024 12714 314964 116 327562 0.069840088 

14 19304 12737 314942 116 327562 0.069966431 

15 20584 18799 308879 116 327562 0.103265991 

16 21864 12716 314963 117 327562 0.069851074 

17 23184 23197 314825 234 337788 0.127424927 

18 24424 18848 298487 117 317219 0.103535156 

19 25704 12714 314965 116 327562 0.069840088 

20 26984 12980 314699 224 327455 0.07130127 

21 28264 12705 314973 117 327562 0.069790649 

22 29544 37149 290530 464 327213 0.204065552 

23 30824 12849 314830 116 327563 0.070581665 
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observation clock_time cpu lpm transmit listen Power (mW) 

24 32104 12707 314971 117 327562 0.069801636 

25 33384 12707 314972 116 327563 0.069801636 

26 34704 29397 308625 337 337685 0.161482544 

27 35944 12755 304580 116 317219 0.070065308 

28 37224 12984 314694 224 327453 0.071323242 

29 38504 19029 308649 117 327562 0.104529419 

30 39784 12705 314973 116 327562 0.069790649 

31 41064 12719 314960 117 327562 0.069867554 

32 42344 30924 296755 349 327328 0.169870605 

33 43624 18923 308756 117 327562 0.103947144 

34 44904 12726 314953 117 327562 0.069906006 

35 46224 23214 314808 234 337788 0.127518311 

36 47464 18959 298376 117 317219 0.104144897 

37 48744 12724 314955 116 327563 0.06989502 

38 50024 12726 314953 117 327562 0.069906006 

39 51304 12722 314957 116 327562 0.069884033 

40 52584 18971 308708 116 327562 0.104210815 

41 53864 12871 314808 116 327562 0.070702515 

42 55144 31290 296388 572 327103 0.171881104 
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observation clock_time cpu lpm transmit listen Power (mW) 

43 56424 12727 314951 117 327562 0.069911499 

44 57744 29337 308685 233 337788 0.161152954 

45 58984 12738 304597 117 317219 0.069971924 

46 60264 12727 314952 117 327562 0.069911499 

47 61544 19157 308522 116 327562 0.105232544 

48 62824 12716 314962 117 327562 0.069851074 
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Appendix E 

The TCP dump showing network packets (between Zolertia Z1 mote and 

Raspeberry PI Semi-Trusted Base Station) acquired from the Raspberry PI’s slip (USB) 

connection to the router has also been included below. 

 

 

 

  

13:37:00.923576 IP6 133:33:1033:1033:c30c::66.51 > 133:33:1033:1033:1633:1633:1633:1633.5683: UDP, length 45 
 0x0000:  6000 0000 0035 1115 0133 0033 1033 1033  `....5...3.3.3.3 

 0x0010:  c30c 0000 0000 0066 0133 0033 1033 1033  .......f.3.3.3.3 

 0x0020:  1633 1633 1633 1633 0033 1633 0035 ae78  .3.3.3.3.3.3.5.x 
 0x0030:  4802 0008 0308 4eb4 978e 8f48 b361 7069  H.....N....H.api 

 0x0040:  0462 756f 79ff 7b22 7822 3a2d 372c 2279  .buoy.{"x":-7,"y 

 0x0050:  223a 352c 227a 223a 2d32 3530 7d         ":5,"z":-250} 
13:37:02.145325 IP6 133:33:1033:1033:c30c::66 > 133:33:1033:1033:1633:1633:1633:1633: ICMP6, destination 

unreachable, unreachable port, 133:33:1033:1033:c30c::66 udp port 51, length 97 

 0x0000:  6000 0000 0061 3a3f 0133 0033 1033 1033  `....a:?.3.3.3.3 
 0x0010:  c30c 0000 0000 0066 0133 0033 1033 1033  .......f.3.3.3.3 

 0x0020:  1633 1633 1633 1633 0104 2d5b 0000 0000  .3.3.3.3..-[.... 

 0x0030:  6000 0000 0031 113f 0133 0033 1033 1033  `....1.?.3.3.3.3 
 0x0040:  1633 1633 1633 1633 0133 0033 1033 1033  .3.3.3.3.3.3.3.3 

 0x0050:  c30c 0000 0000 0066 1633 0033 0031 6e67  .......f.3.3.1ng 

 0x0060:  6845 0008 0308 4eb4 978e 8f48 ff43 6f6e  hE....N....H.Con 
 0x0070:  6669 726d 6564 2042 756f 7920 4461 7461  firmed.Buoy.Data 

 0x0080:  2052 6563 6569 7665 64                   .Received 
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Appendix F 

LBACS sensor output for Z1 mote has been included below. 

 

 

  

Message : {"x":-6,"y":6,"z":-251} 
--Requesting api/buoy-- 

 

LBACS Context is not NULL. No of peers : 2. Size : 180 
LBACS Generating Token. Is Auth Request N from peer 102 with peer count 2 

Checking if peer 50 is LBACS Peer 

Found Peer With Id 50 
About to update next request id 7 

Updating next request id to 8. Session Request Id 8 

Allocating memory to token 
Assigned 16 bytes to token 

Intention bit assigned 3 

Getting first peer 
Intention(3) requestId(8) from_peer_id(102) to_peer_id(50) message( 

7b2278223a2d362c2279223a362c227a223a2d3235317d) pairwise_key(328ce2e8574) 

Hex Hash : cbbe604358eacaf065e6e4c627b5203194bc39d159cff9c82833a370f37d27 
Truncation | hmac_size L 32 

here 1 = expected size : 3 | random_seed : 91 | hmac_size : 32 

reducedBy : 0 
reducedBy : 19 

reducedBy : 6 

Checking LBACS Session update for peer id : 50  
Peer(50) Session does not need to be updated :  

Assigning c @ token[2] to hmac1 generated using from_peer_id(102) to peer_id(50) with request_id(8) 

Assigning 39 @ token[3] to hmac1 generated using from_peer_id(102) to peer_id(50) with request_id(8) 
Assigning ea @ token[4] to hmac1 generated using from_peer_id(102) to peer_id(50) with request_id(8) 

Generated and assgned hmac1 

Checking if peer 51 is LBACS Peer 
Skipping LBACS Peer With Id 50 to get to end of keychain 

Found Peer With Id 51 

Intention(3) requestId(8) from_peer_id(102) to_peer_id(51) message( 
7b2278223a2d362c2279223a362c227a223a2d3235317d) pairwise_key(776f6e646572) 

Hex Hash : 7597e694e7eec8271ab259134a824cf4e9dd7bc44ba85890663ac7cb688f0 

Truncation | hmac_size L 32 
here 1 = expected size : 3 | random_seed : 12 | hmac_size : 32 

reducedBy : 0 

reducedBy : 12 
reducedBy : 24 

Checking LBACS Session update for peer id : 51  
Peer(51) Session does not need to be updated :  

Assigning 75 @ token[5] to hmac2 using  from_peer_id(102) to peer_id(51) with request_id(8)  

Assigning 13 @ token[6] to hmac2 using  from_peer_id(102) to peer_id(51) with request_id(8)  
Assigning 90 @ token[7] to hmac2 using  from_peer_id(102) to peer_id(51) with request_id(8)  

Generated and assgned hmac2 

Current Token in Hex :  3 -  8 -  c -  39 -  ea -  75 -  13 -  90 -  
Token Address : 0x30b4 

Setting token 

Token Set (8) bytes. Token Hex : 38c39ea751390 
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Appendix G 

Output from Semi-Trusted Base Station running on Raspberry PI. 

 

Received Request :  { method: 'POST', 
  coapCode: '0.02', 

  url: '/api/buoy', 

  rsinfo:  
   { address: '133:33:1033:1033:c30c::66', 

     family: 'IPv6', 

     port: 51, 
     size: 45 }, 

  options:  

   [ { name: 'Uri-Path', value: <Buffer 61 70 69> }, 
     { name: 'Uri-Path', value: <Buffer 62 75 6f 79> } ], 

  payload: '{"x":-7,"y":5,"z":-250}', 

  token: '\u0003\bN����H', 

  headers: {} } 

[34mdebug: [39mRouting Request [POST] -api/buoy 
[34mdebug: [39mraw data {"x":-7,"y":5,"z":-250} 

[34mdebug: [39mraw data after {"x":-7,"y":5,"z":-250} 

[34mdebug: [39mtoken undefined 
[34mdebug: [39mtoken hex 03084eb4978e8f48 

[34mdebug: [39mhexToBytes 03084eb4978e8f48 

[34mdebug: [39mhexToBytes start 03084eb4978e8f48 
[34mdebug: [39mhexToBytes end [ '3', '8', '4E', 'B4', '97', '8E', '8F', '48' ] 

[34mdebug: [39mProcessing message id : 03084eb4978e8f48-102-50-{"x":-7,"y":5,"z":-250} 

bytesToHex start [ '3', '8', '4E', 'B4', '97', '8E', '8F', '48' ] 
bytesToHex end 03084eb4978e8f48 

[34mdebug: [39mauth { message: '{"x":-7,"y":5,"z":-250}', 

  intention: 3, 
  requestId: 8, 

  token: [ 3, 8, 78, 180, 151, 142, 143, 72 ], 

  hmac: '03084eb4978e8f48', 
  peerIds: [ 50 ], 

  fromPeerId: 102, 

  toPeerId: 51, 
  x: -7, 

  y: 5, 
  z: -250, 

  status: 'Pending' } 

hexToBytes start 03084eb497 
hexToBytes end [ '3', '8', '4E', 'B4', '97' ] 

Authenticating request id 8 fom 2 peers 

Checking if peer with id 102 exists 
Checking if peer 102 is LBACS Peer 

Found Peer With Id 102 

checking for replay attacks 
Request id is a valid request id 

Checking if peer with id 50 exists 

Skipping id 50 since this is node id 
LBACS Generating Token. Is Auth Request Y from peer 102 with peer count 1 

Generating token from Peer (102) to Peer Ids : [ 50 ,] 

Checking if peer 102 is LBACS Peer 
Found Peer With Id 102 

Allocating memory to token 

Assigned 8 bytes to token 
Intention bit assigned 3 

Getting first peer 

Intention(3) requestId(8) from_peer_id(102) to_peer_id(50) message( 
7b2278223a2d372c2279223a352c227a223a2d3235307d) pairwise_key(6d617276656c) 

Hex Hash : 4ed89757de7d23f25de8222da494e48d8b45392168d932084ec652d49b2784e 

Truncation | hmac_size L 32 



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      197 
    .    

 

 

  

here 1 = expected size : 3 | random_seed : 9 | hmac_size : 32 

reducedBy : 0 

reducedBy : 17 
reducedBy : 2 

Checking LBACS Session update for peer id : 102  

Peer(102) Session does not need to be updated :  
Assigning 4e @ token[2] to hmac1 generated using from_peer_id(102) to peer_id(50) with request_id(8) 

Assigning b4 @ token[3] to hmac1 generated using from_peer_id(102) to peer_id(50) with request_id(8) 

Assigning 97 @ token[4] to hmac1 generated using from_peer_id(102) to peer_id(50) with request_id(8) 
Generated and assgned hmac1 

Current Token in Hex :  3 -  8 -  4e -  b4 -  97 -  0 -  0 -  0 -  

Token Address : 0x2b55c40 
Marking request id  8 as received for peer 102 

Checking LBACS Session update for peer id : 102  
Peer(102) Session does not need to be updated :  

authentication successful 

[34mdebug: [39mPairwise Auth Successful 

[34mdebug: [39mretrieved entity { publicKey: 

'04f1412dad768cbf62374430e463ad11485bf3bb0a3cae9a580564edb4541ef64c9388134e5e726d6d747d98d8c2dd99413dece0d

99d40601246053f0b882ed6f5', 
  pubKey: '0x698806fdc850b0316aae21d2d6c1fe14859fa6fc', 

  address: '0x57a2bb7f4781102460f98776672a8383328814bc', 

  entityType: 2 } 
bytesToHex start [ 3, 8, 142, 143, 72 ] 

bytesToHex end 030814214372 

pairwise signature included, complete params { intention: 3, 
  message: '{"x":-7,"y":5,"z":-250}', 

  toPeerId: 51, 

  peerIds: [ 50 ], 
  fromPeerId: 102, 

  hmac: '030814214372', 

  requestId: 8, 
  hmacBytes: '030814214372' } 

data message to be signed {"intention":3,"requestId":8,"fromPeerId":102,"toPeerId":51,"message":"{\"x\":-7,\"y\":5,\"z\":-

250}","hmac":"030814214372"} 

Current Gas Cost :  4712377 

new 

signature(30450220651d689508acbec0c52d23e1d697f63af0f067b653ca4b5efa745f77467b0baf022100dd86e00fb1a5ede289e0d
8ca8a0336bf8e5339a84ed35441facd3eb89572922f) created at address 0xe0eae27e64dab0e7e5730781cfcf2a2892f7dea4 

signature with address result { requestId: 8, 

  hmac: '030814214372', 
  hmacBytes: '030814214372', 

  signature: 

'30450220651d689508acbec0c52d23e1d697f63af0f067b653ca4b5efa745f77467b0baf022100dd86e00fb1a5ede289e0d8ca8a033
6bf8e5339a84ed35441facd3eb89572922f', 

  signatureAddress: '0xe0eae27e64dab0e7e5730781cfcf2a2892f7dea4' } 

[34mdebug: [39mbuoyData created at  0x2251e2e51123db527e0fb3a92e63b501308fd4b1 
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Output from Trusted Authentication Entity running on Mac OS X has been 

included below. 

 

rr { address: '0x2251e2e51123db527e0fb3a92e63b501308fd4b1', 
  blockHash: '0x0d12f060042e491783f363c475de7baa33465e5128d6f5d2e37b0ba361d58be6', 

  blockNumber: 3884, 

  data: 
'0x0000000000000000000000002251e2e51123db527e0fb3a92e63b501308fd4b1fffffffffffffffffffffffffffffffffffffffffffffffffffff

ffffffffff80000000000000000000000000000000000000000000000000000000000000007ffffffffffffffffffffffffffffffffffffffffffff

ffffffffffffffffff04', 
  logIndex: 0, 

  topics: [ '0x250749d98ef32bb38fd1f63d529c2947cecd0039e0a06285800b7abfd66dab08' ], 

  transactionHash: '0x6d3bcde971d9e1126b9581079c138bb3ff667a950c070b7ece5309bc86bf1aa3', 
  transactionIndex: 0 } 

BuoyDataPublishedListener logs [ { address: '0x2251e2e51123db527e0fb3a92e63b501308fd4b1', 

    blockHash: '0x0d12f060042e491783f363c475de7baa33465e5128d6f5d2e37b0ba361d58be6', 
    blockNumber: 3884, 

    logIndex: 0, 

    transactionHash: '0x6d3bcde971d9e1126b9581079c138bb3ff667a950c070b7ece5309bc86bf1aa3', 
    transactionIndex: 0, 

    event: 'BuoyDataPublished', 

    args:  
     { bouyData: '0x2251e2e51123db527e0fb3a92e63b501308fd4b1', 

       x: [Object], 

       y: [Object], 
       z: [Object] } } ] 

Processing buoy data at 0x2251e2e51123db527e0fb3a92e63b501308fd4b1 

Processing message id : 0x2251e2e51123db527e0fb3a92e63b501308fd4b1 
Current Gas Cost :  4712377 

Current Gas Cost :  4712377 

saved event { logIndex: 0, 
  transactionIndex: 0, 

  transactionHash: '0x6d3bcde971d9e1126b9581079c138bb3ff667a950c070b7ece5309bc86bf1aa3', 

  blockHash: '0x0d12f060042e491783f363c475de7baa33465e5128d6f5d2e37b0ba361d58be6', 
  blockNumber: 3884, 

  address: '0x2251e2e51123db527e0fb3a92e63b501308fd4b1', 

  type: null, 
  event: 'BuoyDataPublished', 

  args:  

   { bouyData: '0x2251e2e51123db527e0fb3a92e63b501308fd4b1', 
     x: { s: -1, e: 0, c: [Object] }, 

     y: { s: 1, e: 0, c: [Object] }, 
     z: { s: -1, e: 2, c: [Object] } }, 

  id: 104, 

  createdAt: '2016-12-14T17:38:32.652Z', 
  updatedAt: '2016-12-14T17:38:32.652Z' } 

Current Gas Cost :  4712377 

retrieved 

signature(30450220651d689508acbec0c52d23e1d697f63af0f067b653ca4b5efa745f77467b0baf022100dd86e00fb1a5ede289e

0d8ca8a0336bf8e5339a84ed35441facd3eb89572922f) at address 0xe0eae27e64dab0e7e5730781cfcf2a2892f7dea4 

LBACSAuthService:: Authenticating: { signature: 
'30450220651d689508acbec0c52d23e1d697f63af0f067b653ca4b5efa745f77467b0baf022100dd86e00fb1a5ede289e0d8ca8a0

336bf8e5339a84ed35441facd3eb89572922f', 

  entityAddress: '0x57a2bb7f4781102460f98776672a8383328814bc', 
  intention: 3, 

  requestId: 8, 

  hmac: '0x03088e8f48', 
  fromPeerId: 102, 
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  toPeerId: 51, 

  message: '{"x":-7,"y":5,"z":-250}' } 

Current Gas Cost :  4712377 
Verifying BaseStation in Registry On Chain using :  0x57a2bb7f4781102460f98776672a8383328814bc 

Current Gas Cost :  4712377 

BaseStation(0x57a2bb7f4781102460f98776672a8383328814bc) approval :  true 
Retrieveing public key of entity :  0x57a2bb7f4781102460f98776672a8383328814bc 

Retrieved public key address(0x698806fdc850b0316aae21d2d6c1fe14859fa6fc) of 

entity(0x57a2bb7f4781102460f98776672a8383328814bc) 
retrieved public 

key(04f1412dad768cbf62374430e463ad11485bf3bb0a3cae9a580564edb4541ef64c9388134e5e726d6d747d98d8c2dd99413dec

e0d99d40601246053f0b882ed6f5) at address 0x698806fdc850b0316aae21d2d6c1fe14859fa6fc 
 

LBACSAuthService:: Received public key: 
04f1412dad768cbf62374430e463ad11485bf3bb0a3cae9a580564edb4541ef64c9388134e5e726d6d747d98d8c2dd99413dece0d

99d40601246053f0b882ed6f5 

data message to be signed {"intention":3,"requestId":8,"fromPeerId":102,"toPeerId":51,"message":"{\"x\":-7,\"y\":5,\"z\":-

250}","hmac":"0x03088e8f48"} 

attempting to verify message with public key 

04f1412dad768cbf62374430e463ad11485bf3bb0a3cae9a580564edb4541ef64c9388134e5e726d6d747d98d8c2dd99413dece0d
99d40601246053f0b882ed6f5 

attempting to verify message with signature 

30450220651d689508acbec0c52d23e1d697f63af0f067b653ca4b5efa745f77467b0baf022100dd86e00fb1a5ede289e0d8ca8a03
36bf8e5339a84ed35441facd3eb89572922f 

key from public key <Key priv: null pub: <EC Point x: 

f1412dad768cbf62374430e463ad11485bf3bb0a3cae9a580564edb4541ef64c y: 
9388134e5e726d6d747d98d8c2dd99413dece0d99d40601246053f0b882ed6f5> > 

verifyMessage result true 

LBACSAuthService:: Verified signaure: 
04f1412dad768cbf62374430e463ad11485bf3bb0a3cae9a580564edb4541ef64c9388134e5e726d6d747d98d8c2dd99413dece0d

99d40601246053f0b882ed6f5 

hexToBytes start 03088e8f48 
hexToBytes end [ '3', '8', '8E', '8F', '48' ] 

Authenticating pairwise params { message: '{"x":-7,"y":5,"z":-250}', 

  intention: 3, 

  requestId: 8, 

  token: [ '3', '8', '8E', '8F', '48' ], 

  peerIds: [ 51 ], 
  fromPeerId: 102 } 

LBACSAuthService:: Authenticated Pair Message: 

04f1412dad768cbf62374430e463ad11485bf3bb0a3cae9a580564edb4541ef64c9388134e5e726d6d747d98d8c2dd99413dece0d
99d40601246053f0b882ed6f5 

Retrieved Author Entity and Created Signature for Approved Message : 

304602210080cdd5f683c7367b757b28c5888d6e8d0c3dfd56f875f59607da1d373f39521c022100e7a42b4eb0d7df8a7246ebba0
831f5e14541435fe60d13ee5d6cf65ff01dc745 

Current Gas Cost :  4712377 

 
new 

signature(30450220487aaddc02bba75ab9e9de67b0b6e7e572c42e76e26c14fc8c07f79cfd3c4095022100f6938673ad84b64d13d

594c2d9eabde9b06e4721911e4250bf69669dbcc8f6d6) created at address 0x94b6bb02a1e4ecfab77679212cf43525c54e16cd 
 

 

Approved message published at : 0x9c4579aafbeec156d739904cbcec58d81650e8e5 
Approved message on chain for buoydata : 0x2251e2e51123db527e0fb3a92e63b501308fd4b1 
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 The modified SHA3IUF implementation used as the KDF, PRNG and HMAC has 

been included below. 

 

  /* ------------------------------------------------------------------------- 
 * Works when compiled for either 32-bit or 64-bit targets, optimized for  

 * 64 bit. 

 * 
 * Canonical implementation of Init/Update/Finalize for SHA-3 byte input.  

 * 

 * SHA3-256, SHA3-384, SHA-512 are implemented. SHA-224 can easily be added. 
 * 

 * Based on code from http://keccak.noekeon.org/ . 

 * 
 * I place the code that I wrote into public domain, free to use.  

 * 

 * I would appreciate if you give credits to this work if you used it to  
 * write or test * your code. 

 * 

 * Aug 2015. Andrey Jivsov. crypto@brainhub.org 
 * Oct 2016  Modified by Gilroy Gordon. gilroygordon@gmail.com 

 * ---------------------------------------------------------------------- */ 

 
#ifndef KECCAK_SHA_3_H_ 

#define KECCAK_SHA_3_H_ 

 
#include <stdint.h> 

 

 
#define SHA3_ASSERT( x ) 

#if defined(_MSC_VER) 

#define SHA3_TRACE( format, ...) 
#define SHA3_TRACE_BUF( format, buf, l, ...) 

#else 

#define SHA3_TRACE(format, args...) 
#define SHA3_TRACE_BUF(format, buf, l, args...) 

#endif 

 
#define SHA3_USE_KECCAK 1 

/*  

 * Define SHA3_USE_KECCAK to run "pure" Keccak, as opposed to SHA3. 
 * The tests that this macro enables use the input and output from [Keccak] 

 * (see the reference below). The used test vectors aren't correct for SHA3,  
 * however, they are helpful to verify the implementation. 

 * SHA3_USE_KECCAK only changes one line of code in Finalize. 

 */ 
 

#if defined(_MSC_VER) 

#define SHA3_CONST(x) x 

#else 

#define SHA3_CONST(x) x##L 

#endif 
 

/* The following state definition should normally be in a separate  

 * header file  
 */ 

 

/* 'Words' here refers to uint64_t */ 
#define SHA3_KECCAK_SPONGE_WORDS \ 



Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors                      201 
    .    

 

 (((1600)/8/*bits to byte*/)/sizeof(uint64_t)) 

typedef struct sha3_context_ { 

    uint64_t saved;             /* the portion of the input message that we 
                                 * didn't consume yet */ 

    union {                     /* Keccak's state */ 

        uint64_t s[SHA3_KECCAK_SPONGE_WORDS]; 
        uint8_t sb[SHA3_KECCAK_SPONGE_WORDS * 8]; 

    }; 

    uint32_t byteIndex;         /* 0..7--the next byte after the set one 
                                 * (starts from 0; 0--none are buffered) */ 

    uint32_t wordIndex;         /* 0..24--the next word to integrate input 

                                 * (starts from 0) */ 
    uint32_t capacityWords;     /* the double size of the hash output in 

                                 * words (e.g. 16 for Keccak 512) */ 
} sha3_context; 

 

#ifndef SHA3_ROTL64 

#define SHA3_ROTL64(x, y) \ 

 (((x) << (y)) | ((x) >> ((sizeof(uint64_t)*8) - (y)))) 

#endif 
 

static const uint64_t keccakf_rndc[24] = { 

    SHA3_CONST(0x0000000000000001UL), SHA3_CONST(0x0000000000008082UL), 
    SHA3_CONST(0x800000000000808aUL), SHA3_CONST(0x8000000080008000UL), 

    SHA3_CONST(0x000000000000808bUL), SHA3_CONST(0x0000000080000001UL), 

    SHA3_CONST(0x8000000080008081UL), SHA3_CONST(0x8000000000008009UL), 
    SHA3_CONST(0x000000000000008aUL), SHA3_CONST(0x0000000000000088UL), 

    SHA3_CONST(0x0000000080008009UL), SHA3_CONST(0x000000008000000aUL), 

    SHA3_CONST(0x000000008000808bUL), SHA3_CONST(0x800000000000008bUL), 
    SHA3_CONST(0x8000000000008089UL), SHA3_CONST(0x8000000000008003UL), 

    SHA3_CONST(0x8000000000008002UL), SHA3_CONST(0x8000000000000080UL), 

    SHA3_CONST(0x000000000000800aUL), SHA3_CONST(0x800000008000000aUL), 
    SHA3_CONST(0x8000000080008081UL), SHA3_CONST(0x8000000000008080UL), 

    SHA3_CONST(0x0000000080000001UL), SHA3_CONST(0x8000000080008008UL) 

}; 

 

static const uint32_t keccakf_rotc[24] = { 

    1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14, 27, 41, 56, 8, 25, 43, 62, 
    18, 39, 61, 20, 44 

}; 

 
static const uint32_t keccakf_piln[24] = { 

    10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4, 15, 23, 19, 13, 12, 2, 20, 

    14, 22, 9, 6, 1 
}; 

 

/* For Init or Reset call these: */ 
void sha3_Init256(void *priv); 

 

void sha3_Update(void *priv, void const *bufIn, size_t len); 
 

/* This is simply the 'update' with the padding block. 

 * The padding block is 0x01 || 0x00* || 0x80. First 0x01 and last 0x80  
 * bytes are always present, but they can be the same byte. 

 */ 

void const * sha3_Finalize(void *priv); 
 

#endif 

 
#ifndef SHA3_USE_KECCAK 

#define SHA3_USE_KECCAK 1 

#endif 
 

 
/* generally called after SHA3_KECCAK_SPONGE_WORDS-ctx->capacityWords words  
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 * are XORed into the state s  

 */ 

static void 
keccakf(uint64_t s[25]) 

{ 

    int i, j, round; 
    uint64_t t, bc[5]; 

#define KECCAK_ROUNDS 24 

 
    for(round = 0; round < KECCAK_ROUNDS; round++) { 

 

        /* Theta */ 
        for(i = 0; i < 5; i++) 

            bc[i] = s[i] ^ s[i + 5] ^ s[i + 10] ^ s[i + 15] ^ s[i + 20]; 

 

        for(i = 0; i < 5; i++) { 

            t = bc[(i + 4) % 5] ^ SHA3_ROTL64(bc[(i + 1) % 5], 1); 
            for(j = 0; j < 25; j += 5) 

                s[j + i] ^= t; 

        } 
 

        /* Rho Pi */ 

        t = s[1]; 
        for(i = 0; i < 24; i++) { 

            j = keccakf_piln[i]; 

            bc[0] = s[j]; 
            s[j] = SHA3_ROTL64(t, keccakf_rotc[i]); 

            t = bc[0]; 

        } 
 

        /* Chi */ 

        for(j = 0; j < 25; j += 5) { 

            for(i = 0; i < 5; i++) 

                bc[i] = s[j + i]; 

            for(i = 0; i < 5; i++) 
                s[j + i] ^= (~bc[(i + 1) % 5]) & bc[(i + 2) % 5]; 

        } 

 
        /* Iota */ 

        s[0] ^= keccakf_rndc[round]; 

    } 
} 

 

/* *************************** Public Inteface ************************ */ 
 

/* For Init or Reset call these: */ 

void 
sha3_Init256(void *priv) 

{ 

    sha3_context *ctx = (sha3_context *) priv; 
    memset(ctx, 0, sizeof(*ctx)); 

    ctx->capacityWords = 2 * 256 / (8 * sizeof(uint64_t)); 

} 
 

 

 
void 

sha3_Update(void *priv, void const *bufIn, size_t len) 

{ 
    sha3_context *ctx = (sha3_context *) priv; 

 

    /* 0...7 -- how much is needed to have a word */ 
    uint32_t old_tail = (8 - ctx->byteIndex) & 7; 
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    size_t words; 

    uint32_t tail; 
    size_t i; 

 

    const uint8_t *buf = bufIn; 
 

    SHA3_TRACE_BUF("called to update with:", buf, len); 

 
    SHA3_ASSERT(ctx->byteIndex < 8); 

    SHA3_ASSERT(ctx->wordIndex < sizeof(ctx->s) / sizeof(ctx->s[0])); 

 
    if(len < old_tail) {        /* have no complete word or haven't started  

                                 * the word yet */ 
        SHA3_TRACE("because %d<%d, store it and return", (uint32_t)len, 

                (uint32_t)old_tail); 

        /* endian-independent code follows: */ 

        while (len--) 

            ctx->saved |= (uint64_t) (*(buf++)) << ((ctx->byteIndex++) * 8); 

        SHA3_ASSERT(ctx->byteIndex < 8); 
        return; 

    } 

 
    if(old_tail) {              /* will have one word to process */ 

        SHA3_TRACE("completing one word with %d bytes", (uint32_t)old_tail); 

        /* endian-independent code follows: */ 
        len -= old_tail; 

        while (old_tail--) 

            ctx->saved |= (uint64_t) (*(buf++)) << ((ctx->byteIndex++) * 8); 
 

        /* now ready to add saved to the sponge */ 

        ctx->s[ctx->wordIndex] ^= ctx->saved; 
        SHA3_ASSERT(ctx->byteIndex == 8); 

        ctx->byteIndex = 0; 

        ctx->saved = 0; 

        if(++ctx->wordIndex == 

                (SHA3_KECCAK_SPONGE_WORDS - ctx->capacityWords)) { 

            keccakf(ctx->s); 
            ctx->wordIndex = 0; 

        } 

    } 
 

    /* now work in full words directly from input */ 

 
    SHA3_ASSERT(ctx->byteIndex == 0); 

 

    words = len / sizeof(uint64_t); 
    tail = len - words * sizeof(uint64_t); 

 

    SHA3_TRACE("have %d full words to process", (uint32_t)words); 
 

    for(i = 0; i < words; i++, buf += sizeof(uint64_t)) { 

        const uint64_t t = (uint64_t) (buf[0]) | 
                ((uint64_t) (buf[1]) << 8 * 1) | 

                ((uint64_t) (buf[2]) << 8 * 2) | 

                ((uint64_t) (buf[3]) << 8 * 3) | 
                ((uint64_t) (buf[4]) << 8 * 4) | 

                ((uint64_t) (buf[5]) << 8 * 5) | 

                ((uint64_t) (buf[6]) << 8 * 6) | 
                ((uint64_t) (buf[7]) << 8 * 7); 

#if defined(__x86_64__ ) || defined(__i386__) 

        SHA3_ASSERT(memcmp(&t, buf, 8) == 0); 
#endif 

        ctx->s[ctx->wordIndex] ^= t; 
        if(++ctx->wordIndex == 

                (SHA3_KECCAK_SPONGE_WORDS - ctx->capacityWords)) { 
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            keccakf(ctx->s); 

            ctx->wordIndex = 0; 

        } 
    } 

 

    SHA3_TRACE("have %d bytes left to process, save them", (uint32_t)tail); 
 

    /* finally, save the partial word */ 

    SHA3_ASSERT(ctx->byteIndex == 0 && tail < 8); 
    while (tail--) { 

        SHA3_TRACE("Store byte %02x '%c'", *buf, *buf); 

        ctx->saved |= (uint64_t) (*(buf++)) << ((ctx->byteIndex++) * 8); 
    } 

    SHA3_ASSERT(ctx->byteIndex < 8); 
    SHA3_TRACE("Have saved=0x%016" PRIx64 " at the end", ctx->saved); 

} 

 

/* This is simply the 'update' with the padding block. 

 * The padding block is 0x01 || 0x00* || 0x80. First 0x01 and last 0x80  

 * bytes are always present, but they can be the same byte. 
 */ 

void const * 

sha3_Finalize(void *priv) 
{ 

    sha3_context *ctx = (sha3_context *) priv; 

 
    SHA3_TRACE("called with %d bytes in the buffer", ctx->byteIndex); 

 

    /* Append 2-bit suffix 01, per SHA-3 spec. Instead of 1 for padding we 
     * use 1<<2 below. The 0x02 below corresponds to the suffix 01. 

     * Overall, we feed 0, then 1, and finally 1 to start padding. Without 

     * M || 01, we would simply use 1 to start padding. */ 
 

#ifndef SHA3_USE_KECCAK 

    /* SHA3 version */ 

    ctx->s[ctx->wordIndex] ^= 

            (ctx->saved ^ ((uint64_t) ((uint64_t) (0x02 | (1 << 2)) << 

                            ((ctx->byteIndex) * 8)))); 
#else 

    /* For testing the "pure" Keccak version */ 

    ctx->s[ctx->wordIndex] ^= 
            (ctx->saved ^ ((uint64_t) ((uint64_t) 1 << (ctx->byteIndex * 

                                    8)))); 

#endif 
 

    ctx->s[SHA3_KECCAK_SPONGE_WORDS - ctx->capacityWords - 1] ^= 

            SHA3_CONST(0x8000000000000000UL); 
    keccakf(ctx->s); 

 

    /* Return first bytes of the ctx->s. This conversion is not needed for 
     * little-endian platforms e.g. wrap with #if !defined(__BYTE_ORDER__) 

     * || !defined(__ORDER_LITTLE_ENDIAN__) || \ 

     * __BYTE_ORDER__!=__ORDER_LITTLE_ENDIAN__ ... the conversion below ... 
     * #endif */ 

    { 

        uint32_t i; 
        for(i = 0; i < SHA3_KECCAK_SPONGE_WORDS; i++) { 

            const uint32_t t1 = (uint32_t) ctx->s[i]; 

            const uint32_t t2 = (uint32_t) ((ctx->s[i] >> 16) >> 16); 
            ctx->sb[i * 8 + 0] = (uint8_t) (t1); 

            ctx->sb[i * 8 + 1] = (uint8_t) (t1 >> 8); 

            ctx->sb[i * 8 + 2] = (uint8_t) (t1 >> 16); 
            ctx->sb[i * 8 + 3] = (uint8_t) (t1 >> 24); 
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            ctx->sb[i * 8 + 4] = (uint8_t) (t2); 

            ctx->sb[i * 8 + 5] = (uint8_t) (t2 >> 8); 

            ctx->sb[i * 8 + 6] = (uint8_t) (t2 >> 16); 
            ctx->sb[i * 8 + 7] = (uint8_t) (t2 >> 24); 

        } 

    } 
 

    SHA3_TRACE_BUF("Hash: (first 32 bytes)", ctx->sb, 256 / 8); 

 
    return (ctx->sb); 

} 
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 A section of the LBACS authentication service implemented in nodeJS utilizing 

the custom pairwise implementation of LBACS, blockchain and elliptic curve library has 

been included below. 

 

/* 
  @author Gilroy Gordon 

  @copyright Gilroy Gordon 2016. All Rights Reserved. 

*/ 
 

function LBACSAuthService(props) { 

    props = props || {}; 
    var _self = this; 

 

    _self.pairwiseContext = null; 
    _self.pkiContext = new PKIService(); 

 

    _self.getNodeId = function() { 
        return lbacsConfig.nodeId; 

    }; 

 
 

    /** 

     * Verify Signature Authenticity and Authenticate  
     * Pairwise Message from EthereumContract 

     */ 

    _self.authenticateLBACSMessage = function(params, callback) { 
        callback = typeof callback === 'function' ? callback : function() {}; 

        params = params || {}; 

        params.getMessageFromJSON = typeof params.getMessageFromJSON == 'function' ? 
            params.getMessageFromJSON : function(m) { 

                return JSON.stringify(m.message) 

            }; 
        logger.debug(LBACSAuthService.name + ":: Authenticating LBACS Message:", params); 

        params.Contract 

            .at(params.messageAddress) 
            .toJSON(myEthConfig.getDefaults(), function(err, _messageJSON) { 

                if (err) { 

                    logger.debug("Retrieved from json error", err); 
                } 

                logger.debug("Retrived message json", _messageJSON); 

 
                LBACSChainUtility.retrieveSignature(_messageJSON.signature, function(signatureErr, signature) { 

                    if (signatureErr) { 
                        return callback(signatureErr); 

                    } 

                    params.message = params.getMessageFromJSON(_messageJSON); 

                    _self.authenticate({ 

                        intention: _messageJSON.intention, 

                        message: params.message, 
                        peerIds: [_messageJSON.toPeerId], 

                        toPeerId: _messageJSON.toPeerId, 

                        fromPeerId: _messageJSON.fromPeerId, 
                        entityAddress: _messageJSON.authorEntity, 

                        signature: signature, 

                        requestId: _messageJSON.requestId, 
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                        hmac: _messageJSON.hmac.replace("0x", "") 

                    }, callback); 

                }); 
 

            }); 

 
 

    }; 

 
    /** 

     * Verify Signature Authenticity using ECDSA and Authenticate Pairwise Message with LBACS 

     */ 
    _self.authenticate = function(params, callback) { 

        callback = typeof callback === 'function' ? callback : function() {}; 
        params = params || {}; 

        logger.debug(LBACSAuthService.name + ":: Authenticating:", params); 

        //check valid public key 

        LBACSChainUtility.retrieveAndVerifyPublicKeyOfEntity( 

            params.entityAddress, 

            function(err, publicKey) { 
                if (err) { 

                    return callback(err); 

                } 
 

                logger.debug(LBACSAuthService.name + ":: Received public key:", publicKey); 

                //verify signature 
 

                if (_self.pkiContext.verifyMessage( 

                        LBACSChainUtility.buildDataMessageToBeSigned(params), 
                        params.signature, 

                        publicKey 

                    )) { 
                    logger.debug(LBACSAuthService.name + ":: Verified signaure:", publicKey); 

                    //pairwise authentication with sensor 

                    var pairwiseAuthParams = { 

                        message: params.message, 

                        intention: params.intention, 

                        requestId: params.requestId, 
                        token: hexToBytes(params.hmac, true), 

                        peerIds: [params.toPeerId], 

                        fromPeerId: params.fromPeerId 
                    }; 

                    logger.debug("Authenticating pairwise params", pairwiseAuthParams); 

                    if (_self.pairwiseContext.authenticate(pairwiseAuthParams)) { 
                        logger.debug(LBACSAuthService.name + ":: Authenticated Pair Message:", publicKey); 

                        return callback(null, true); 

                    } else { 
                        return callback(new Error('Peer Authentication Failure')); 

                    } 

                } else { 
                    return callback(new Error('Signature Could not be verified')); 

                } 

            }) 
    }; 

 

    /** 
     * Authenticate Pairwise Message with LBACS 

     */ 

 
    _self.authenticatePairwiseMessage = function(params) { 

        params = params || {}; 
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        return _self.pairwiseContext.authenticate({ 

            message: params.message, 

            intention: params.intention, 
            requestId: params.requestId, 

            token: hexToBytes(params.hmac, true), 

            peerIds: Array.isArray(params.peerIds) ? params.peerIds : [params.toPeerId], 
            fromPeerId: params.fromPeerId 

        }); 

 
    }; 

 

    /** 
     * Sign Message with ECDSA 

     */ 
 

    _self.signMessage = function(params) { 

        params = params || {}; 

        params.message = params.message || ''; 

        if (typeof params.message == 'function') { 

            params.message = params.message(); 
        } 

        if (typeof params.message === 'object') { 

            params.message = JSON.stringify(params.message); 
        } 

 

        var pairwiseResult = _self.signMessageForPairwiseAuth(params); 
        if (pairwiseResult) { 

            params.requestId = pairwiseResult.requestId; 

            pairwiseResult.hmac = params.hmac = bytesToHex(pairwiseResult.token.slice(0, 5)); 
            pairwiseResult.hmacBytes = pairwiseResult.token.slice(0, 5); 

            logger.debug("pairwise signature successful, complete params", params); 

            var messageToBeSigned = LBACSChainUtility.buildDataMessageToBeSigned(params); 
            pairwiseResult.signature = _self.pkiContext.signMessage(messageToBeSigned); 

            return pairwiseResult; 

        } 

        return null; 

    }; 

 
 

    /** 

     * Sign Message with ECDSA and create signature on Ethereum blockchain 
     */ 

    _self.signMessageAndCreateSignatureOnChain = function(params, callback) { 

        callback = noop(callback); 
        var result = _self.signMessage(params); 

        if (!result) { 

            return callback(new Error("Unable to sign message"), result); 
        } 

        LBACSChainUtility.createSignature(result.signature, function(err, signatureAddress) { 

            if (err) { 
                return callback(err, result); 

            } 

            result.signatureAddress = signatureAddress; 
            return callback(null, result); 

        }); 

    }; 
 

    /** 

     * Sign Message with ECDSA and create signature on Ethereum blockchain 
     */ 
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    _self.forwardSignedMessageAndCreateSignatureOnChain = function(params, callback) { 

        callback = noop(callback); 

        params = params || {}; 
        params.message = params.message || ''; 

        if (typeof params.message == 'function') { 

            params.message = params.message(); 
        } 

        if (typeof params.message === 'object') { 

            params.message = JSON.stringify(params.message); 
        } 

 

        params.hmac = bytesToHex(params.hmac); 
        params.hmacBytes = params.hmac; 

 
        var pairwiseResult = { 

            requestId: params.requestId, 

            hmac: params.hmac, 

            hmacBytes: params.hmacBytes 

 

        }; 
        if (pairwiseResult) { 

            logger.debug("pairwise signature included, complete params", params); 

            var messageToBeSigned = LBACSChainUtility.buildDataMessageToBeSigned(params); 
            pairwiseResult.signature = _self.pkiContext.signMessage(messageToBeSigned); 

        } 

        LBACSChainUtility.createSignature(pairwiseResult.signature, function(err, signatureAddress) { 
            if (err) { 

                return callback(err, pairwiseResult); 

            } 
            pairwiseResult.signatureAddress = signatureAddress; 

            return callback(null, pairwiseResult); 

        }); 
 

    }; 

 

 

    /** 

     * Sign Message using LBACS 
     */ 

    _self.signMessageForPairwiseAuth = function(params) { 

        logger.debug("signMessageForPairwiseAuth params", params); 
        params = params || {}; 

        params.message = params.message || ''; 

        var result = _self.pairwiseContext.generateToken({ 
            intention: params.intention || 0, 

            message: params.message, 

            peerIds: params.peerIds, 
            fromPeerId: params.fromPeerId || 0 

        }); 

        return result; 
    }; 

 

 
    /** 

     * Approve/Sign Authenticated Data and Publish on Blockchain 

     */ 
    _self.approveMessage = function(params, callback) { 

        params = params || {}; 

        callback = noop(callback); 
 

        _self.getMyAuthorEntity(null, function(err, authorEntity) { 
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            if (err) { 

                logger.error("Unable to approve message. Did not retrieve author entity", err); 

                return callback(err); 
            } 

            var signature = _self.pkiContext.signMessage(params.messageAddress); 

 
            logger.debug("Retrieved Author Entity and Created Signature for Approved Message : " + signature); 

 

            LBACSChainUtility.createSignature(signature, function(err, signatureAddress) { 
                if (err) { 

                    logger.error("Unable to publish approved message on chain, signature not created", err); 

                    return callback(err); 
                } 

                LBACSAuthenticatedData.new(params.messageAddress, authorEntity.address, signatureAddress, { 
                    from: myEthConfig.defaults.ownerAddress, 

                    gas: myEthConfig.getLatestGasCost() 

                }).then(function(_approvedMessage) { 

                    logger.debug("Approved message published at : " + _approvedMessage.address); 

                    callback(null, _approvedMessage); 

 
                }).catch(function(err) { 

                    logger.error("Unable to publish approved message on chain", err); 

                    callback(err); 
                }); 

            }); 

 
        }); 

 

    }; 
 

 

 
    _self._init = function(props) { 

        props = props || {}; 

        //load and save private key if its first time 

        _self.pkiContext.savePrivateKey(); 

        //create pairwise context from lbacsjs 

        _self.pairwiseContext = new LBACSContext({ 
            nodeId: lbacsConfig.nodeId, 

            nodePrivateKey: lbacsConfig.nodePrivateKey, 

            initializeContext: true, 
            peers: lbacsConfig.peers 

        }); 

 
    } 

 

    _self._init(props); 
 

 

} 
 

module.exports = LBACSAuthService; 
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IEEE1076 Very High Speed Integrated Circuit Hardware Definition Language 

implementation of LBACS integrated circuit components. 

 

-- Mock implementation of a HMAC 

entity hmacMock is  

 port ( 

  intention, requestId : in BIT_VECTOR(7 downto 0); 

     nodeId, peerId : in BIT_VECTOR(7 downto 0); 

     pairwiseKey, message : in BIT_VECTOR(31 downto 0); 

  hmac : out BIT_VECTOR(255 downto 0) 

 ); 

end hmacMock; 

 

architecture rtl of hmacMock is  

  

begin 

 process(pairwiseKey) 

 begin 

        for i in 0 to 8 loop 

             for j in 0 to 31 loop 

           hmac (i*j) <= pairwiseKey(j) xor message(j); 

          end loop; 

     end loop; 

 end process; 

end rtl; 

 

-- Mock implementation of a HMAC ends 

 

-- LBACS truncation module - Series of Multiplexers 

entity lbacsTruncation is  

 port ( 

     randomSeed : in BIT_VECTOR(7 downto 0); 

     hmacIn : in BIT_VECTOR(255 downto 0); 

  hmacOut : out BIT_VECTOR(23 downto 0) 

 ); 

end lbacsTruncation; 

 

architecture rtl of lbacsTruncation is  

begin 

 process(hmacIn) 

     variable randomSeedInt : integer ; 

     variable tempInt : integer; 

 begin 

  randomSeedInt := 0; 

  if (randomSeed(7)='1') then  

      randomSeedInt := randomSeedInt + 128; 

  end if;  

  if (randomSeed(6)='1') then  

      randomSeedInt := randomSeedInt + 64; 

  end if; 

  if (randomSeed(5)='1') then  

      randomSeedInt := randomSeedInt + 32; 

  end if; 

     if (randomSeed(4)='1') then  
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      randomSeedInt := randomSeedInt + 16; 

  end if; 

     if (randomSeed(3)='1') then  

      randomSeedInt := randomSeedInt + 8; 

  end if; 

     if (randomSeed(2)='1') then  

      randomSeedInt := randomSeedInt + 4; 

  end if; 

     if (randomSeed(1)='1') then  

      randomSeedInt := randomSeedInt + 2; 

  end if; 

     if (randomSeed(0)='1') then  

      randomSeedInt := randomSeedInt + 1; 

  end if; 

      

     tempInt := (41 * randomSeedInt) mod 32; 

     hmacOut(7 downto 0) <= hmacIn(tempInt+7 downto tempInt); 

      

     tempInt := (2*41 * randomSeedInt) mod 32; 

     hmacOut(15 downto 8) <= hmacIn(tempInt+7 downto tempInt); 

      

     tempInt := (4*41 * randomSeedInt) mod 32; 

     hmacOut(23 downto 16) <= hmacIn(tempInt+7 downto tempInt); 

    end process; 

end rtl; 

-- LBACS truncation module ends 

-- LBACS Integrated Circuit begins 

entity lbacs is 

  port ( 

   intentionIn, requestIdIn : in BIT_VECTOR(7 downto 0); 

   nodeId, peerIdA, peerIdB : in BIT_VECTOR(7 downto 0); 

   pairwiseKeyA, pairwiseKeyB, message : in BIT_VECTOR(31 downto 0); 

   randomSeedA, randomSeedB : in BIT_VECTOR(7 downto 0); 

   intentionOut, requestIdOut : out BIT_VECTOR(7 downto 0); 

   hmac1, hmac2 : out BIT_VECTOR(23 downto 0) 

   ); 

end lbacs; 

architecture rtl of lbacs is 

 signal tempHMAC1 : BIT_VECTOR(255 downto 0); 

 signal tempHMAC2 : BIT_VECTOR(255 downto 0); 

begin 

 intentionOut <= intentionIn; 

 requestIdOut <= requestIdIn; 

  

 ENTHMAC1 : entity work.hmacMock port map( 

  intentionIn, requestIdIn , nodeId, peerIdA, pairwiseKeyA,message,tempHMAC1 

  ); 

 HMAC1TRUN : entity work.lbacsTruncation port map( 

  randomSeedA, tempHMAC1, hmac1 

  ); 

  

 ENTHMAC2 : entity work.hmacMock port map( 

  intentionIn, requestIdIn , nodeId, peerIdB, pairwiseKeyB,message,tempHMAC2 

  ); 

 HMAC2TRUN : entity work.lbacsTruncation port map( 

  randomSeedB, tempHMAC2, hmac2 

  ); 

end rtl; 

-- End LBACS module 


