
Provenance and Authentication of Oracle Sensor Data with Block Chain

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors

By

Gilroy Gordon

A Thesis Submitted to

Saint Mary’s University, Halifax, Nova Scotia

in Partial Fulfillment of the Requirements for

the Degree of MSc. In Computing and Data Analytics

January, 2017, Halifax, Nova Scotia

Copyright Gilroy Gordon, 2017

 Approved: Dr. Dawn Jutla

 Supervisor

Approved: Dr. Stavros Konstantinidis

 Examiner

Approved: Dr. Gord Agnew

 Examiner

Approved: Dr. Srini Simpalli

 External Examiner

Date: January 31, 2017

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors i
 .

Acknowledgement

 First, I would like to acknowledge God, as through Him, all things are possible.

I would also like to express my gratitude to my thesis supervisor, Dr. Dawn Jutla who not

only provided the necessary supervision but also assisted in the procurement of additional

resources to implement and test the items proposed in this thesis. Moreover, these efforts

would not have been possible without the gracious assistance of the Queen Elizabeth II

Diamond Jubilee Scholarship programme.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors ii
 .

Provenance and Authentication of Oracle Sensor Data with Block Chain

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors

by Gilroy Gordon

Abstract

With the significant increase in the dependence of contextual data from

constrained IoT, the blockchain has been proposed as a possible solution to address

growing concerns from organizations. To address this, the Lightweight Blockchain

Authentication for Constrained Sensors (LBACS) scheme was proposed and evaluated

using quantitative and qualitative methods. LBACS was designed with constrained

Wireless Sensor Networks (WSN) in mind and independent of a blockchain

implementation. It asserts the authentication and provenance of constrained IoT on the

blockchain utilizing a multi-signature approach facilitated by symmetric and asymmetric

methods and sufficient considerations for key and certificate registry management. The

metrics, threat assessment and comparison to existing WSN authentication schemes

conducted asserted the pragmatic use of LBACS to provide authentication, blockchain

provenance, integrity, auditable, revocation, weak backward and forward secrecy and

universal forgeability. The research has several implications for the ubiquitous use of IoT

and growing interest in the blockchain.

Keywords: sensors, blockchain, authentication, oracle, provenance

January 31, 2017

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors iii
 .

Table of Contents

Acknowledgement…………………………………………………………..…………………………………………i

Abstract………..………ii

List of Figures…………………………………………………………………………………..….…………………viii

List of Tables……………………………………………………………………………………..……………………….x

Chapter 1: Introduction ... 2

1.1 Thesis Objectives ...2

1.2 Background and Purpose of Study ..2

1.3 Problem Statement ..4

1.4 Research Questions ...5

1.5 Significance of Study ..5

Chapter 2: Literature Review ... 7

2.1 Introduction ..7

2.2 Wireless Sensor Networks ..7

2.2.1 Design Considerations for WSNs. ... 9

2.2.2 Communication and Transmission ... 11

2.3 Securing Wireless Sensor Networks .. 14

2.3.1 Objectives and Threat Model ... 14

2.3.2 Key management and distribution ... 17

2.3.3 Authentication and attestation .. 26

2.4 Blockchain ... 33

2.4.1 Overview .. 33

2.4.2 Consensus .. 35

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors iv
 .

2.4.3 Oracles .. 39

2.4.4 Resource Constraints ... 41

2.5 Conclusion ... 44

Chapter 3: Proposal .. 46

3.1 Security Objectives .. 47

3.2 Notation .. 48

3.3 Overview and Assumptions .. 50

3.4 Key Management ... 53

3.4.1 Pre-Distribution .. 53

3.4.2 Post Deployment .. 58

3.4.3 Session Management ... 61

3.4.4 Revocation .. 62

3.5 Authentication ... 65

3.5.1 Tag Format ... 65

3.5.2 Certificate Registry Storage Considerations... 69

3.5.3 Communication Flows .. 71

Chapter 4: Implementation ... 83

4.1 Objective ... 83

4.2 Aims .. 84

4.3 Configuration ... 84

4.3.1 Constrained Application Protocol .. 85

4.3.2 Keccak-f[1600, c=256, r=1344] ... 87

4.3.3 Secp256k1 Elliptic Curve Digital Signature Algorithm .. 88

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors v
 .

4.3.4 Ethereum and Solidity .. 89

4.4 Apparatus .. 90

4.4.1 Devices ... 90

4.4.2 Software and Libraries ... 92

4.5 Design ... 94

4.5.1 Network Overview ... 94

4.5.2 Technology Stacks .. 95

4.6 Procedure .. 97

4.6.1 Buoy Node Reporter and Light Actuator .. 98

4.6.2 Blockchain Network ... 100

4.6.3 Base Station, Authentication Entity and Certificate Authority 102

4.7 Issues and Resolutions ... 103

Chapter 5: Analysis ... 105

5.1 Aims .. 105

5.2 Threat Analysis .. 106

5.2.1 Methodology .. 106

5.2.2 Sub-components .. 108

5.2.3 Threat Assessment ... 109

5.3 LBACS Comparison ... 120

5.3.1 SPINS .. 121

5.3.2 TinySec ... 121

5.3.3 Authentication and Anti-replay Security Protocol ... 122

5.3.4 DTLS and Lithe .. 123

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors vi
 .

5.3.5 Implicit Security Authentication Scheme ... 123

5.3.6 Short Message Authentication Check .. 123

5.4 Results ... 124

5.4.1 Storage ... 124

5.4.2 Communication Overhead ... 125

5.4.3 Power Consumption ... 125

5.4.4 Time .. 126

5.4.5 Functional Test ... 127

5.4.6 Hardware Overhead ... 128

Chapter 6: Conclusion ... 131

6.1 Discussion .. 131

6.2 Future Work .. 134

References ... 136

Appendix.. 148

Appendix A .. 148

Appendix B .. 157

Appendix C .. 166

Appendix D .. 188

Appendix E .. 194

Appendix F .. 195

Appendix G .. 196

Appendix H .. 198

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors vii
 .

Appendix I ... 200

Appendix J ... 206

Appendix K .. 211

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors viii
 .

List of Figures

Figure 1: Technical Specification for SmartDust node... 27

Figure 2: TinySec and TinyOS packet formats illustrating field size in bytes. 29

Figure 3: Layout of a packet secured with DTLS. .. 31

Figure 4: Blockchain Storage Size as of July 9, 2016. ... 42

Figure 5: LBACS Network Overview .. 50

Figure 6: LBACS Pre-Distribution Pairwise Key Allocation ... 53

Figure 7: Required Key Storage for LBACS Sensor Node .. 55

Figure 8: LBACS public/private key pre-distribution .. 57

Figure 9: LBACS Post Deployment: Addition of a STBS or TAE 58

Figure 10: LBACS new Sensor Node Deployment .. 60

Figure 11: LBACS Authentication Packet .. 65

Figure 12: LBACS Oracle Sensor publishes data for consumer application 76

Figure 13: LBACS Oracle Sensor publishes data for consumer application via peer sensor

... 78

Figure 14: COAP Message Format ... 86

Figure 15: LBACS authentication tag size allocations ... 86

Figure 16: Keccak relation to sponge construction ... 87

Figure 17: Implementation Network Overview Diagram ... 94

Figure 18 – LBACS Z1 Technology Stack ... 95

Figure 19 - LBACS Raspberry Pi Technology Stack ... 96

Figure 20 - LBACS Trusted Authentication Entity Technology Stack 96

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors ix
 .
Figure 21- LBACS Certificate Authority Technology Stack ... 97

Figure 22: LBACS Ethereum Genesis Block ... 100

Figure 23: Taxonomy of System Vulnerabilities (Hansen & Hansen, 2010) 118

Figure 24: Power Consumption Comparison with LBACS .. 126

Figure 25:LBACS Token Generation Time on Z1 ... 127

Figure 26: LBACS Authentication Hardware Block Diagram 129

Figure 27: LBACS C Interface for Constrained Devices ... 152

Figure 28: LBACS C Interface for Resource Competent Devices 156

Figure 29: LBACS Solidity ECDSASignature Contract .. 157

Figure 30: LBACS Solidity Public Key Contract ... 157

Figure 31: LBACS Solidity Library Contract ... 158

Figure 32: LBACS Solidity Abstract Entity Contract .. 158

Figure 33: LBACS Solidity Certificate Authority Contract ... 159

Figure 34: LBACS Solidity Trusted Authentication Entity Contract 159

Figure 35: LBACS Solidity Semi-Trusted Base Station Contract 160

Figure 36: LBACS Solidity Certificate Registry Contract ... 161

Figure 37: LBACS Solidity Generic Message Contract ... 162

Figure 38: LBACS Solidity Authenticated Data Message ... 163

Figure 39: LBACS Solidity Buoy Data Contract ... 164

Figure 40: LBACS Solidity Revocation Message .. 165

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors x
 .

List of Tables

Table 1: Comparison of Hardware Constraints .. 10

Table 2: Ethereum Benchmarks on Frontier Network for each client 43

Table 3: LBACS Notation .. 48

Table 4: LBACS Intention Bits... 66

Table 5: LBACS Configuration for Buoy Monitoring Implementation 85

Table 6: Software used in implementation ... 92

Table 7: Libraries used in implementation ... 93

Table 8: Risk Evaluation Grid .. 106

Table 9: Security Objective Key for LBACS Threat Assessment Summary Table 118

Table 10: LBACS Threat Assessment Summary.. 119

Table 11: Vulnerabilities prevented by LBACS ... 120

Table 12: LBACS Storage Requirements ... 125

Table 13: LBACS Resource Requirements Summary .. 132

Table 14: LBACS Token Generation Time Observations .. 166

Table 15: Z1 mote metrics without LBACS ... 188

Table 16: Z1 Mote metrics with LBACS .. 190

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 2
 .

Chapter 1: Introduction

This thesis aims to address the increasing provenance concerns with constrained IoT

devices and decentralized blockchain technology. It will focus on provenance as

identifying the source of data, through integrity, instead of utilizing only submitted

metadata. Subsequent to providing a background, significance and the specific research

goals in the Introduction, it will identify possible gaps, design considerations and threats

within the Literature Review. With the gaps identified, a proposal was also made,

implemented and analyzed. Finally, it will conclude the results arising from this analysis

and recommendations for future work.

1.1 Thesis Objectives

1) Design an authentication scheme for IoT Blockchain oracles operating in

constrained wireless sensor networks

2) Conduct a threat assessment for constrained IoT oracles utilizing the

authentication scheme to achieve provenance on the blockchain

3) Identify the resource requirements of constrained oracle sensors utilizing the

authentication scheme to achieve provenance on the blockchain

1.2 Background and Purpose of Study

The increasing interest and applicability of the “Internet of Things” (IoT), a

paradigm describing interconnected entities (usually smaller devices) over the internet

with greater autonomy (Tiburski, Amaral, Matos, & Hessel, 2015) has excited much

research into its numerous applications and associated concerns. With applications in

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 3
 .
domains such as healthcare, smart buildings, supply chain management and aerospace to

name a few (Perera, Zaslavsky, Christen, & Georgakopoulos, 2014), the security

associated with these implementations has become a primary concern. Not only have

these devices been utilized to collect information in mission critical environments that are

better supported by wireless sensor networks, but they have been entrusted as actuators

which should act reliably within the constraints applied by their various negotiation

algorithms (Yuanyuan Zeng, 2016). Furthermore, although these smart devices have been

designed to be activity, policy and process-aware (Kortuem, Kawsar, Sundramoorthy, &

Fitton, 2010), their hardware constraints make them an easier target for security breaches.

According to the Ponemon’s 2016 Cost of Data Breach Study: Global Analysis

(Ponemon Institute, 2016) which surveyed 383 companies in 12 countries, the average

cost per data breach was US $4 Million Dollars. Compounding this with the increased

deployment of IoT devices, security and reliability remain a primary concern. Moreover,

the costs to maintain a centralized IoT of secured yet constrained devices has encouraged

the use of multiple network topologies, transitive trust authorities and most recently

decentralized paradigms such as the blockchain. It has been argued that the blockchain

offers a scalable, decentralized peer-to-peer level of trust for IoT and therefore should be

explored (IBM Corporation, 2015). Current implementations of the blockchain however

have proven themselves to be too resource-intensive to be managed by constrained IoT

devices.

With the increasing dependence on reliable data from constrained IoT devices and

the advent of the blockchain, this study will seek to exact provenance and integrity of

wireless sensor data through authentication on the blockchain. Furthermore, it will assess

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 4
 .
the associated threats and resource requirements of wireless sensor data authenticating on

the blockchain.

1.3 Problem Statement

The increased use of contextual data from IoT within decision-making has made

provenance a growing concern in organizations (Townend et al., 2013). This issue is

compounded by the constrained nature of these devices, which inhibit their abilities to

employ stronger cryptographic constructions to enforce the integrity of the provided data.

Moreover, the network concerns inherited by Wireless Sensor Networks increase the

likelihood of successful attacks on integrity such as man-in-the-middle and spoofing

attacks (Chelli, 2015). Furthermore, the costs to maintain a centralized IoT of secured and

constrained devices has encouraged the exploration of multiple network topologies and

has stimulated discussions about the use of the blockchain as an alternative approach

(IBM Corporation, 2015).

Within the relatively new context of the blockchain, this qualitative and

quantitative study will explore the possibility of exacting provenance and integrity of

authenticated, wireless sensor data on the blockchain.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 5
 .
1.4 Research Questions

This study aims to answer the following research questions:

1. How can the blockchain be used to authenticate wireless oracle sensor data?

2. What are the resource requirements for wireless oracle sensors authenticating on

the blockchain?

3. What threats exist for wireless oracle sensors authenticating on the blockchain?

1.5 Significance of Study

Provenance and integrity of contextual data being used in decision-making is a

growing concern for organizations, government or privately owned. With millions of

deployed IoT devices still operating on constrained computational resources and the high

costs to maintain their supporting topologies, there is room for additional research to

address these concerns.

The importance of this research project is to explore the integration of decentralized

blockchain technology to reinforce the integrity of constrained sensor data. The research

will determine how the current resource intensive implementations of the blockchain may

be integrated with constrained sensors to achieve integrity. It will also explore the

resource requirements of constrained sensors authenticating with the blockchain and

compare these to existing security schemes addressing the integrity of sensor data.

Moreover, the study will evaluate the threats and vulnerabilities of these constrained

sensor devices authenticating with the blockchain.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 6
 .

Achieving provenance through authentication on the blockchain would allow

greater auditability, security, fault tolerance and cost effective deployments of sensor

provenance networks.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 7
 .

Chapter 2: Literature Review

2.1 Introduction

This literature review will aim to provide an overview of the applicability of

sensors and actuators in IoT while highlighting several design constraints and challenges.

Furthermore, it will highlight the design goals, threat models, key management,

distribution, communication and authentication in Wireless Sensor Networks (WSNs).

Finally, a conceptual overview of the blockchain and oracles will be provided along with

their current resource requirements and the implications for IoT.

2.2 Wireless Sensor Networks

Neubert in 1975, identified sensors as devices which transformed physical

quantities into electrical output signals based on a scale defined by a predictable output-

time, output-input relationship with an acceptable degree of accuracy under a specified

set of environmental conditions (Schroeder, 2008). This broad definition considers

devices used for measuring physical quantities such as temperature, movement, humidity,

pressure, audio, proximity and light (Beigl et. al, 2014). Choosing the correct sensor for a

respective task depends on the following classifications: detection methods, conversion

mechanism, sensor materials and applications, performance specifications and stimuli or

measurand (Schroeder, 2008). When considering the power availability constraints of

sensors, they are optionally classified as active and self-generating if a fixed power

source is accessible, or passive and modulating if battery-operated as is the case of some

Radio Frequency Identification (RFID) tags.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 8
 .

Advances in sensor technology has yielded numerous applications such as

continuous medical monitoring in health care (Alemdar and Ersory, 2010), habitat

monitoring, weather forecasting, supply chain management, inventory tracking and

military monitoring (Perera et. al, 2014). Many of these applications have been realized

through live exchange of sensors feeds with other systems in Wireless Sensor Networks

(WSNs). A Wireless Sensor Network may be considered as a group of wired and wireless

network possessing sensor nodes with the ability to perform computations, sense some

property along with a module capable of wireless functions deployed in a designated field

(Choi, 2010). A closer look at the types of sensors will highlight the trend to utilize

micro-sensors as opposed to macro- sensors. Macro-sensors have proved themselves

viable options in the past especially while monitoring the extraction, exploration and

refinement processes in the oil and gas industry. However, these wired macro-sensors

have also proved themselves as costly deployments that are not suited or easily

maintained for temporary assignments. They usually require large amounts of energy and

are even more difficult to install in remote and hostile environs as they often include

proximity requirements to guarantee sufficient monitoring (Adejo, et al, 2013).

A more pragmatic approach is to deploy multiple micro-sensors and actuators or

Micro-electro-mechanical systems (MEMs) in a WSN to exact coverage over a specified

area of interest. Although these deployments offset several of the aforementioned

concerns with macro-sensors, these advancements are accompanied by their own design

constraints, which correlate to their size and computing capacity.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 9
 .

2.2.1 Design Considerations for WSNs.

Several design constraints should be taken into consideration when designing

WSNs, notably: fault tolerance, scalability, hardware constraints, network

communication, environment, production costs and power consumption (Akyildiz, et al,

2002). These constraints provide a basis to compare different solutions to issues

experienced in the development and management of WSNs.

Fault tolerance is a network’s ability to remain functional despite the failure of

network devices or nodes. The reliability of the network becomes more debatable with

the limited power availability of battery operated nodes and harsh or unpredictable

environments that cause physical damage. For example, smart home WSNs monitoring

temperature and humidity may require less fault tolerance measures unlike sensors

deployed in critical military surveillance environments. The latter requires additional

strategies for fault tolerance due to the probable interference from the volatile

environment in which they are deployed (Akyildiz, et al, 2002).

Scalability focuses on the number of sensor nodes deployed or node density in a

WSN. This could involve approximately 300 nodes for a 5 x 5 m
2
 area in factory machine

diagnosis or 10 nodes per area in vehicle tracking. WSN schemes should be able to

facilitate and utilize the node density to tackle constraints experienced by sensors, such as

multi-hop routing networks for battery-operated nodes aiming to reduce power used for

radio communication (Akyildiz et al, 2002).

Moreover, production costs should be kept at a minimum in the design of WSNs.

Coupling the frequent deployments, density of regions of interest and the application

needs of WSNs, sensors nodes may develop specific hardware needs and in the case of

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 10
 .
software-defined sensors networks, software needs which may easily become impractical

to fund. Juxtaposing these facts with the vulnerability of sensor nodes, which will be

described later, it is important to ensure that the components of the WSN are minimized

to lower the cost of replacements also.

 Despite the advancements in Micro-Electro-Mechanical Systems (MEMs)

enabling much more powerful System on a Chip (SoC) designs, battery powered micro-

sensor nodes are still very constrained devices. Smart dust mode devices usually possess

approximately 1J of energy while Wireless Integrated Network Sensors (WINS) powered

by Lithium coin cells 1cm thick and 2.5cm in diameter operate on 30 A (Akyildiz et al,

2002). Moreover, Table 1 details additional hardware constraints as a result of the

required hardware size according to the application specifications.

Table 1: Comparison of Hardware Constraints

Note: Reprinted from Security Challenges in Wireless Sensor Networks, by Singh et al,

(2016)

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 11
 .

The use of a wireless medium, which is more open and accessible than wired

communication, introduces security concerns for WSNs. With communication being

more likely to be intercepted, replayed or modified, networks must aim to facilitate

security issues in addition to network congestion, noise and packet collisions (Akyildiz,

Su, Sankarasubramaniam & Cayirci, 2002). Juxtaposing these factors with battery-

exhausted nodes that may be participating in multi-hop networks, which support specific

concerns such as Application Specific WSNs (ASWSNs) or utilize other additional

communication protocols as in Software Defined WSNs (SDWSNs), communication may

be unreliable.

2.2.2 Communication and Transmission

Much Machine to Machine (M2M) communication on constrained devices are

conducted using more lightweight communication protocols such as the Constrained

Application Protocol (COAP) over the User Datagram Protocol (UDP). COAP, although

similar to HTTP, is a less complex, stateless web protocol working at the application

layer over UDP that provides Uniform Resource Identifiers (URI) and content types with

a lower header overhead (Shelby, Hartke, & Bormann, 2014). IPV6 over Lower Power

Wireless Personal Area Networks (6LoWPAN) is another protocol targeting constrained

devices which leverages IEEE 802.15.4 (Gehrmann et al,2015). The protocol focuses on

header compression, which reduces communication bandwidth, time and ultimately

power consumption. It achieves this by splitting communication in “contexts” that share

metadata including IPV6 addresses. For example, an abbreviated context identified by an

identifier 0x10 may be used to represent a particular session and set of source and or

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 12
 .
receiver addresses. Nodes may then optimize communication by agreeing on a context

identifier. Specific adaptations of 6LowPAN have also been proposed to work with

COAP and COAPs to optimize node communication based on the constraints highlighted

in the previous section (Raza et al, 2012)

 WSN nodes may also use the lightweight publish/subscribe transport protocol to

transmit or listen to message topics as proposed in the OASIS Message Queuing

Telemetry Transport (MQTT), which at the time of writing is at version 3.1. Designed

with constrained Machine-to-Machine (M2M) and IoT communication in mind, the

protocol leverages other protocols at the network layer such as TCP/IP to support

multicast messages in an agnostic manner. Furthermore, the protocol supports various

message delivery Quality of Service (QoS), such as the message being delivered at most

once, duplicated, or once-and-once-only delivery. This allows the devices to perform an

asynchronous push (publish) of messages without polling with bit-wise compressed

headers of at least 2 bytes (OASIS MQTT Technical Committee, 2014).

Additional methods suitable for short range communication in WSNs yet

operating at lower levels of the OSI stack include Bluetooth (IEEE 802.15.1), Zigbee

(IEEE 802.15.4), Wi-fi (IEEE 802.11) and ultra-wideband (UWB) (IEEE 802.15.3b)

(Lee, Su, & Shen , 2007). Bluetooth, usually used in computer peripherals in WPANs,

uses a frequency band of 2.4GHz with a maximum signal rate of 1Mb/s over

approximately 10m with a transmit power (TX power) between 0-10dBm. Although

UWB has a similar range, it’s frequency band spans from 3.1 to 10.6 GHz with a max

signal rate of 110MB/s and TX power of -41.3 dBm/ MHz making it more suitable for

indoor high-speed wireless communication. UWB also exceeds Zigbee’s max signal rate

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 13
 .
of 250 kb/s, but Zigbee’s frequency bands may span from 868 MHz to 2.4 GHz while

still possessing 10 times UWB’s range with a TX power between 0 and -25 dBm. Wifi,

the strongest of the four, has the same range as Zigbee with a frequency band of 2.4GHz

or 5Ghz with signal rates growing up to 54 Mb/s and a TX power between 15 and 20

dBm. When considering encryption and authentication, Bluetooth protects its data using a

16-bit Cycle Redundancy Check (CRC), encrypted with the E0 Stream Cipher using a

shared secret over a piconet or scatternet. The piconet is an adhoc network of no more

than eight interconnected wireless devices synchronized to a common clock and multi-

hop sequences. With transmissions over bluetooth, the network supports a master slave

hierarchy until multiple piconets become interconnected to become a scatternet (Lee, Su,

& Shen, 2007). A bit more secure is UWB which uses a 32 bit CRC after being encrypted

with Advanced Encryption Standard (AES) in Counter Mode (CTR) and authenticating

with the Cipher Block Chaining (CBC) Message Authentication Code (MAC) (CCM).

The Zigbee protocol utilizes the 16-bit CRC similar to bluetooth with the encryption and

authentication used by UWB. Finally, Wifi shares the CRC of UWB but encrypts with

the Rivest Cipher 4 (RC4) protocol with Wired Equivalent Privacy (WEP) and AES

before authenticating with Wifi Protected Access (WPA2). Moreover, Lee, Su, & Shen

(2007) in their comparative study, sought to evaluate the data code efficiency (sum total

bytes used in data transmission), protocol complexity (the number of supported MAC

primitives and Host Controller Interface (HCI) events) and required power consumption.

As it pertains to data code efficiency, they argued that Bluetooth and Zigbee were more

efficient for smaller payload transmissions since they had less data fragmentation and

their maximum payload data were 339, 102 bytes respectively followed by 2044 and

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 14
 .
2312 for UWB and Wifi at the time of writing. Furthermore, Zigbee’s low support for

many primitives and events (only 48 as defined in IEEE 802.15.4) made it more suitable

to be embedded in constrained WSN nodes. Bluetooth for example, supported the most

primitives such as client service access point (SAP) and Logical Link Adaptation

Protocol (L2CAP) followed by UWB and WIFI. Again, when power consumption was

evaluated by comparing the normalized energy consumption (mJ/Mb) of collected TX

and RX (receiving), Bluetooth and Zigbee were identified as most suitable for power

consumption in low data rate applications as opposed to UWB and WIFI (Lee et al ,

2007).

2.3 Securing Wireless Sensor Networks

2.3.1 Objectives and Threat Model

 In addition to the aforementioned design considerations, specific design goals for

securing WSNs include secure localization, time synchronization, self organization, data

freshness, confidentiality, integrity, availability and authentication (Chelli, 2015). With

sensor nodes possessing the ability to communicate highly sensitive data, it is important

to ensure that data transmitted remains confidential between the sender and intended

recipients.

When considering the threat model, an attack in a particular WSN may be

considered as goal, performer or layer-oriented (Chelli, 2015). In passive goal-oriented

attacks, the attack is usually directed to compromising data confidentiality through

network monitoring and traffic analysis. Poorly encrypted communication and the

exchange of keys enable the unwanted disclosure and possible re-use of information

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 15
 .
already sent or the prediction of future exchanges. Unlike passive attacks, the active

attacker aims to control segments or the whole network. These attacks include but are not

limited to hello floods and denial of service or sleep (DOS) attacks where victim nodes

are flooded with requests, which prevent them from accepting requests from legitimate

nodes. Such attacks ultimately exhaust the node’s battery power due to the excessive

power consumption associated with processing requests. Furthermore, black hole, sink

hole, worm hole, selective forwarding and false node attacks may also be used to divert

or drop transmitted packets in the network (Hu, Perrig, & Johnson, 2006). These attacks

may be difficult to detect, as a network monitor must deduce whether the packets are

being lost because the network is being compromised or whether the loss was caused by

network collisions or environmental conditions. Moreover, attackers may aim to falsify

transmitted data using replay, fabrication, spoofing and man-in-the-middle-attacks

(Chelli, 2015).

Performer oriented attacks usually describe the origin of the attack, i.e. whether

they originated from inside the network or not. Attacks from outside the network are

usually more passive, while inside attacks, including when an attacker garners the trust of

other nodes are more disruptive and similar to the aforementioned active attacks (Chelli,

2015).

Layer-oriented attacks consider the various attacks applicable at different layers

of the Open Systems Interconnection (OSI) model. At the lowest layer which is the

physical layer, an attacker may opt to jam the radio channel of the sensor with continuous

and spurious or high energy radio transmissions, resulting in DOS attacks. Moreover, at

the link layer, an abstraction responsible for coordinating nodes by regulating the flow of

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 16
 .
data, attackers may opt to drain node energy through the continuous disruption of packets

with abused Media Access Controls (MACs). Cryptanalysis at this layer may also deduce

patterns, even when transmissions are encrypted. However, at the network layer,

attackers aim to disrupt packet routing with sinkholes, spoofing or routing replay attacks.

Above this layer, the transport layer may become the victim of hello floods with

numerous connection requests to constrained nodes. Additionally, at the application

layer, attackers target applications by compromising executable code to incite malicious

behavior, such as those executed by captured bots or corrupting data (Chelli, 2015).

Different approaches have been utilized to target the various security design

considerations of WSNs. With sensors, especially in military applications or Body Area

Networks (BAN), often displaced after being deployed, nodes are required to re-establish

routing and communication or localization. Techniques used to localize nodes include

symmetric or asymmetric Diffie Hellman key exchanges (Liu et al, 2003), which ensure

authenticated communication even between vehicles moving between multiple sub-

networks (Hossain & Mahmud , 2007). Furthermore, confidentiality and integrity

becomes a primary concern especially while handling sensitive data. Modified versions

of standards such as MPEG-21 or ISO/IEC 21000, that addresses sharing of digital

content, has been used to embed authentication and confidentiality for Biomedical Sensor

Networks (Leister et al, 2008) along with protocols such as IPSec and DTLS. Finally,

additional strategies specific to authentication while also considering availability,

whether the nodes will be able to use the available resources within the network, and data

freshness which is concerned with replay attacks, forward and backward secrecy (Chelli,

2015) will be described further in this review.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 17
 .

2.3.2 Key management and distribution

Authentication is usually established on a shared premise or key. It is important to

note that the choice of a key management scheme for a WSN is heavily biased towards

the particular application and deployment concerns related to the WSN. Key distribution

and management schemes whether they are random or deterministic include varieties of

pairwise management, random key-chain based key pre-distribution, and network-wise

key management schemes (Dustin et. al, 2007, Lee and Stinson, 2005). These schemes

may choose Public Key Infrastructure (PKI) methods or different pre-distribution

schemes (some of which will be outlined later) to develop a trusted means of

communication. The latter is less resource intensive for nodes but requires a trusted

authority (TA), often represented as the base centre or station, which if compromised will

compromise the security of the entire network (Lee and Stinson,, 2005). Furthermore, for

schemes considering the ad-hoc nature of WSNs, a shared key discovery mechanism

which is deterministic may prove more resource friendly to sensor nodes since key

derivation may be verified through an algebraic function of pre-defined parameters (Lee

and Stinson, 2005). Moreover, these schemes may employ various re-keying techniques

including batch, immediate, delayed and periodic re-keying to reinforce the integrity of

the network (Hossain & Mahmud 2007). These re-keying strategies reinforce forward and

backward secrecy, i.e. whether a member of the network has access to future or past

information respectively, essentially creating a communication session that lasts for the

duration of the confirmed key. Finally, when considering key recovery, one may consider

self-healing and stateless key distribution techniques. Unlike self-healing techniques,

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 18
 .
which allow lost session keys to be recovered by group members, stateless techniques

allow nodes to acquire updated session keys even if they miss previous key update

messages. (Liu et al ,2003)

All pair-wise (using single master key) and All pair-wise (distributed pair-wise

keys) or fully pair-wise shared key schemes (Feng & Wenpeng ,2010) are two popular

pair wise key management schemes. Unlike the single master key implementation that

issues the same master key to all sensor nodes in the network, the distributed pair-wise

key implementation deploys all nodes in the network with their own key and the keys of

all network participants (Dustin et. al, 2007). Although the former is less resource

intensive due to the storage needs of sensor nodes and easier to deploy new nodes, an

attacker may easily compromise the entire network by only gaining access to one node.

The random pair-wise key scheme aims to improve the resilience of the single

master key scheme, yet reduce the load of the distributed pair wise key scheme using a

random distribution p. The Erdős–Rényi model encouraged the design that for a network

of N nodes, each node in the network would have the probability of being assigned Np

other keys (Dustin et. al, 2007). This design made it possible for a node to connect to Np

other nodes that were in its radio range during the shared-key discovery phase, thus

supporting larger WSNs, multi-hop network designs while requiring 2Np units of

memory to store the entire key chain. The closest pair-wise key distribution scheme

innovated further by utilizing location information to influence key distribution.

However, this scheme required prior knowledge of an organized deployment of nodes, as

each node would share pairwise keys with “c” of its closest neighbours. This made it

possible to reduce the storage needs to 2c+1 units as each node within a region could

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 19
 .
utilize a Pseudo-Random Function (PRF) to re-generate keys of its peers by only storing

its peers IDs and a shared key with PRF(PeerId, SharedKey) (Dustin et. al, 2007).

Alternatively, the ID based one-way function scheme (IOS) was inspired by a star

topology sub-network of an r-regular graph of nodes. With each node being the center of

a different star sub-graph, the scheme would distribute pair wise keys and require

memory for only r+1 neighbours. The scalability and resilience of this design may be

improved using Multiple IOS, which focuses on a one-to-one correspondence between

sensor nodes to decrease memory usage by a factor of 1. In this design, a sensor from a

sub-network A stores the common key for sub-network A in addition to a secret Hash

(secret key from sub-network B (KB) | ID of a node in network A(IDAi)) for each node

in network A. A node from network B may then verify a node from network A, Ai by

generating the secret key Hash(KB|ADi) (Dustin et. al, 2007).

Another scheme, Broadcast Session Key negotiation protocol (BROSK), initially

pre-deploys a single master key to all nodes, which allows the entire network to be

compromised if one node is compromised. The benefits associated with this scheme lie

within the low required storage requirements since nodes will only require the nonce

exchanged in post-deployment shared key discovery to generate the shared session key

using PRF (master key || nonce of node 1 || nonce of node 2) (Dustin et. al, 2007).

Unlike BROSK, the lightweight key management scheme leveraging initial trust,

proposed by Deutre et al, (2004), distributes group authentication keys (gaki) for each

deployed set of sensor nodes. The scheme relies on a previous trust relationship based on

the fact that the each deployed set will include a set of possible secret keys (ski) that may

be used to authenticate future deployed sets. A newly deployed set of nodes will possess

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 20
 .
an additional generation key (gki) that may be used to self authenticate with previous

generations. Authentication within a group would derive a session key, KA = PRF(gaki,

RNA, RNB) where RNA and RNB are randomly exchanged nonce values by sensor

nodes A and B respectively. A node forms the newly deployed set, C, aiming to

authenticate with node A from the first deployment, would first generate ski = PRF (gki |

RNA) before generating KA= PRF (ski, RNA, RNC). Although a node would require

approximately 4 + 2n units of key storage memory for n deployed sets of nodes,

resilience remains low as an entire deployed set may be compromised if gaki or ski is

identified (Dustin et. al, 2007).

Other schemes utilize more randomized key-chain based key pre-distribution

solutions. The basic probabilistic key pre-distribution scheme proposed in 2002, in its

key setup phase, generates a pool of KP keys and associated ids, before distributing k

randomly chosen keys (without replacement) to each sensor node’s key chain. In the

shared key discovery phase, the probability that a node is able to communicate with a

neighbour is dependent upon KP and k, as each node will broadcast the identities in its

key chain to neighbours, to determine node identities available in each node’s key chain.

Through the identification of shared identities, neighbouring nodes may utilize the keys

associated with theses identities to communicate. The cluster key grouping scheme

proposed by Hwang et. al. in 2004 utilizes a similar approach but splits key chains into

clusters, each possessing a start key id. This reduces the initial message length to the size

of the clusters multiplied by the size of the key id list since the start key id may be used to

determine the remaining cluster keys (Dustin et. al, 2007).

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 21
 .

In an effort to reduce the required key storage for each sensor node, the pair-wise

key establishment protocol proposed by Zhu et. al in 2003 utilizes a PRF seeded with the

unique ID of the sensor node to generate the necessary key IDS and reduce the shared

key discovery broadcast length to size of one key id. The trade off here lies with the

computation required for PRF(ID) for each neighbouring node (Dustin et. al, 2007). The

Q-composite random key pre-distribution scheme goes a bit further to improve resilience,

reducing the possibility that a node is captured from k/KP to kq/KPq where KP is the key

pool size, k is key chain size assigned randomly to the node and q is the number of

common keys shared between two nodes. It achieves this with the use of a secret key

composed of a hash of all the common keys between two neighbours (Dustin et. al,

2007).

Another scheme, which increases key resilience, is the multi-path key

reinforcement scheme. The scheme is CPU and power resource-intensive however, as it

requires each sensor node to generate n random key updates that are sent through n

disjoint secure paths which prompts each receiving node to generate a reinforced link

key. These progressive updates to keys in post-deployment through indirect or disjoint

nodes links reduces the possibility of successful traffic sniffing for the updated keys. In

order to compromise the new key, the attacker would need to identify the n random key

updates being routed through the n nodes and the PRF that is used to generate the new

key (Chan et al, 2003). This is similar to the key management scheme proposed by Feng

& Wenpeng (2010), which adds an additional storage overhead, as nodes will also store

the path to the base station since the combined key path doubles as a session key.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 22
 .

The pair-wise key establishment protocol is similar to the multi-path key

reinforcement scheme with the exception that it utilizes a “threshold secret sharing” for

key reinforcement and a more resource intensive key update strategy. The threshold of n-

1 random key part updates are all XOR’d with the current node’s key before being

transmitted along the disjoint path (Dustin et. al, 2007). Similarly, the cooperative pair-

wise key establishment protocol limits the shared key node set to a set of “cooperative

nodes”. Sensor node A will expect each cooperative node to generate a HMAC of

(cooperative node key | B | IDA). Sensor node A will then utilize this HMAC to generate

reinforced keys while also sharing the set of cooperative nodes with another sensor node

B which will repeat the process to generate the same key. Although this practice reduces

the possibility of compromising keys, it is associated with a high communication and

power usage cost (Dustin et. al, 2007).

Another approach is to utilize block design techniques in combinatorial design

theory to achieve the combinatorial design based key pre-distribution scheme. This

design aims to allocate pre-defined key chains to nodes where each node will have at

least one common key with another, thus reducing the key path to 1. Utilizing the number

of sensor nodes to be deployed n, a prime power p is chosen where 2p+p+1 >= n. The

prime power is then used to generate p-1 Mutually Orthogonal Latin Squares (MOLS), a

square matrix where each of the p elements occurs only once in each row and column and

each row column intersection is distinct. This complete set or order p may be used to

generate an affine plane (p^2, p, 1) or a projective plane (p^2 + p + 1, p +1, 1) which are

both symmetric in design. Although, these networks improves a node’s ability to localize

and reduce the network communication and power consumption used for shared key

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 23
 .
discovery, they require a storage capacity of n+1 keys for the keychain which becomes

less feasible with larger WSNs. Furthermore, in an effort to increase scalability, other

hybrid designs exist which reduces the necessary key storage by increasing the average

key-path (Camtepe & Yener, 2007).

Unlike much of the previous schemes, key matrix-based dynamic key generation

as utilized in the popular Blom’s scheme is a public key cryptography scheme which

utilizes the product of a public and private key matrix of size N x N, where N is the

amount of nodes in the network. The approach guarantees that each node, when assigned

a row (set of public-private key products) in the matrix, will be able to verify another

node when the node multiplies its private key with the other nodes public key. The

complexity associated with compromising the network then becomes dependent on the

attacker’s ability to attain the private key matrix. To increase scalability and reduce this

risk, the multiple space Blom scheme divides the network into two equal sets which do

not share a common key. Furthermore, the multi-space pre-distribution scheme improves

on these schemes by utilizing several predetermined private matrices and assigning each

node a row in each. The use of public key cryptography in these schemes increases each

node’s ability to communicate at the cost of excessive computation, power consumption

and storage needs (Dustin et. al, 2007).

Another scheme utilizing public key cryptography, is the polynomial based key

pre-distribution scheme which allows nodes to generate link keys with the assistance of

partially evaluated polynomials. With each node possessing a polynomial with p-1

coefficients, nodes are able to generate a link key from the evaluation of their polynomial

against their neighbour’s polynomial. Although scalability, storage and communication

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 24
 .
are good, the repetitive evaluation of polynomials increases power consumption and is

computationally intensive. The localized encryption and authentication protocol however,

encourages the use of pair-wise keys and distributes an initial key, KI, in the key setup

phase. A node, SA, with a unique identifier, IDA, will then be responsible for generating

its master key, KA = Hash(KI, IDA). In the shared key discovery phase, a node, SB,

broadcasting (IDB, RNB -- random nonce) will receive a response from its neighbour,

SA, containing (IDA, MAC (KA | RNB | IDA)), allowing SB to generate the key Kv =

Hash(KI + IDA) before both nodes generate the session key Ks = H(Kv). This scheme

may also be adapted to devise multi-hop pair-wise keys similar to the multi-path key

reinforcement scheme mentioned earlier. As such it inherits the same benefits and

disadvantages.

Moreover, network wise key management schemes, such as master key based

solutions, where the same key is issued for all nodes, are similar to single master key

pair-wise schemes. However, multi-tiered security solutions are characterized by varying

degrees of protection corresponding to the data available at the respective level. One such

solution (Slijepcevic et. al., 2002) divided into three tiers, utilizes a master key and strong

encryption algorithms to secure mobile codes being exchanged by sensors at level 1. At

level 2, sensor groups defined by location are assigned another key specific to the group

to encrypt location information. Finally, at level 3, application data is secured with a hash

of the original master key. Although scalable with low storage requirements (for storing

the master and location key with a PRF), the approach may be easily compromised

through the capture of one node’s keychain (Dustin et. al, 2007).

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 25
 .

Time Efficient Stream Loss-tolerant Authentication (TESLA) solutions increase

their robustness with delayed key disclosure techniques where the key required for a

future message is computed and disclosed with an earlier message. The computational

cost associated with this technique has encouraged u-TESLA (Dustin et. al, 2007).

Although, Hossain. & Mahmud (2007) analyse key distribution management

schemes for more powerful multi-cast WSNs to be used in a Vehicular Software

Designed Network comprised of different tiers of Central Managers, Regional Group

Managers, Control Groups, Base Stations and finally vehicles, the proposal considers a

key-update scheme for moving nodes. Since vehicles are able to move between multiple

groups localized by a base station’s range, a vehicle node may request entry into a new

group by sending a message to the new base station (the id of the base station is being

transmitted frequently) consisting of the hash of (vehicle’s id | the old group id | new base

id | old group key), which may be verified by the new base station by sending a

confirmation request from the old base station. If verified, this new vehicle would receive

the group key for the new base station.

 While exploring efficient key management distribution techniques for P2P live

streaming applications, with a focus on centralized schemes that are hierarchical tree

(HTS) based distribution networks, Liu X et. al, (2007), highlight the increased key

distribution performance gain in a single-hop tree delivery key distribution scheme over

multi-cast mesh networks. Their proposed scheme, Efficient and scalable Key

Management Distribution Scheme (EKMD) describes a P2P network, where each node

only shares keys with its immediate neighbour and the base station similar to the

aforementioned IOS scheme. The scheme’s performance in storage, scalability and

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 26
 .
communication benefits from the single-hop nature of the tree network and manages

sessions using a PKI model in what they term as the local view. A new node may join the

network and increase the local view of its neighbours by first authenticating with the base

station in an attempt to receive a group certificate. This may then be utilized to verify that

the new node is apart of the group and communicate with peers at the respective level of

the tree (a binary tree was utilized in the study). Furthermore, in order to revoke keys, the

base station may transmit the new certificate or key with each of its immediate peers who

will be responsible for decrypting the new key and subsequently encrypting this key with

their key before forwarding. This model increases the possibility for a man in the middle

attack however as each node will have the ability to re-encrypt their own message as the

new key.

2.3.3 Authentication and attestation

 While considering “severely” constrained nodes in WSNs as detailed in Figure 1

below, a set of Secure Protocols for Sensor Networks (SPINS) which consolidated

previous protocols such as the Secure Network Encryption Protocol (SNEP) and Tesla

was proposed as a constrained solution to two party data authentication, authenticated

broadcasts, data freshness and confidentiality (Perrig et al, 2002).

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 27
 .

Figure 1: Technical Specification for SmartDust node.

Reprinted from SPINS: Security Protocols for Sensor Networks. Wireless Networks by

Perrig, et al, (2002)

The proposal critiques asymmetric algorithms at the time such as RSA which

requires immense storage, 1024 bits, and computation along with bandwidth,

approximately 50-1000 bytes/packet as infeasible for the resource constrained devices.

Furthermore, it focuses primarily on direct communication between base stations and

nodes (with an extension for node to node communication) and base station broadcasts to

all nodes in what they coin as a routing forest (multiple base stations surrounded by

multiple nodes). With a trust model based on the assumption that the base station is

computationally resourceful and secure, the proposed SNEP, which adds 8 bytes to each

message, also utilizes a non-transmitted message counter. Furthermore, they achieve

semantic security (an attacker will be unable to derive information from encrypted plain

text if multiple encryptions of the same plain text are studied (Goldwasser & Micali,

1984)) by prepending each counter and DES-CBC (cipher block chaining) encrypted

message with a random bit string. The counters are stored by the nodes and not

transmitted to reduce the communication overhead. Furthermore, although the

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 28
 .
communicating nodes share a master key, a derived key is used to encrypt messages. The

counter enforces semantic security, data freshness, replay protection. Moreover, to

accommodate for the high communication overhead of 24 bytes, computationally

expensive PKI model, extensive bandwidth usage attributed to key disclosure in each

packet and storage needs of the one-way key-chain, an improvement of TESLA, uTesla

was proposed. By utilizing loose time synchronization with each node cognizant of the

upper bound of the time synchronization error, each MAC becomes verifiable with the

assumption that the generated MAC is a result of the current epoch. (Perrig et al, 2002).

 Another approach, which addresses authentication at the link layer, is TinySec, a

lightweight security architecture provided as a part of TinyOS operating system. It

facilitates replay protection, message integrity and authentication with a MAC,

confidentiality with encryption and semantic security through the use of initialization

vectors (IV) (Karlof, Sastry, & Wagner, 2004). The architecture, aimed at supporting

end-to-end security without crippling the ability of multi-hop networks to drop duplicate

messages (since dense WSNs reporting to base stations may flood the base station and

network communication with duplicates), supports two options, namely: authentication

only (TinySec-Auth) and authentication and encryption (TinySec-AE), with the latter

possessing the ability to encrypt the transmitted payload. Unlike, Tesla, Karlof et al (

2004) argue the use of only the less computationally expensive Skipjack CBC-MAC with

an encrypted IV instead of the counter mode since the latter is a stream cipher mode

operation which implies that if the counter is repeated with a repeatable (small) IV, then

more semantic security will be lost, unlike the block cipher which will only leak the

difference in block length. It should be noted that block ciphers are not completely

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 29
 .
impervious to attacks, some of which include the postfix equality check, last word and

block decryption oracles to name a few (Vaudenay 2002). Again, because of the resource

constraints of WSNs, TinySec utilizes a 4-byte MAC. Although shorter, the required

brute force of 2
31

 attempts to receiving nodes on the network for verification over a 19.2

kb/s channel would take approximately 20 months to attack (Karlof, Sastry, & Wagner,

2004). The transmitted packet and associated field sizes described by the architecture is

illustrated below in Figure 2.

Figure 2: TinySec and TinyOS packet formats illustrating field size in bytes.

Retrieved from TinySec: A Link Layer Security Architecture for Wireless Sensor

Networks by Karlof et al, (2004)

Another protocol which aims to provide intrusion prevention, integrity, anti-

replay, and authentication checks is the Authentication and Anti-replay Security Protocol

(AASP). The protocol utilizes two (2) approaches, namely the Authentication Handshake

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 30
 .
and the Last MAC Method (Gheorghe et al , 2010). The latter, utilizing a globally shared

key, requires the communicating nodes to initially accept the first unauthenticated packet

transferred by each node. Each subsequent message will then be verified with a MAC

computed from the hash of the previous message and shared key. To tackle the initially

unauthenticated packet from the last MAC method, the authentication handshake is used

to present a Diffie-Hellman challenge (Gheorghe et al ,2010). The use of the last MAC

challenge raises the issue of forward secrecy, however, even though it may assist with

replay protection.

With the constrained nature of these devices, utilizing COAP over UDP is a more

resourceful approach. In order to secure COAP and achieve end-to-end security,

Datagram Transport Layer Security Protocol (DTLS), the TLS equivalent for COAP, was

proposed as the main security protocol for COAP as COAPs (COAP with DTLS). The

protocol was designed to secure application communication for lossy networks where

handshake messages may not be delivered reliably or in sequence while retaining similar

traits to TLS (Rescorla & Modadugu, 2012). DTLS achieves this with the use of two

layers (illustrated in Figure 3), the lower layer consisting of the record protocol and the

upper layer, which may consist of the ChangeCipherSpec, handshake or alert protocols or

application data. During the handshake process, the ChangeCipherSpec protocol is

responsible for signaling to the record protocol layer that subsequent communication will

use the newly negotiated cipher suite and keys. Furthermore, the alert protocol is used

when transmitting error messages between peers and finally, the handshake protocol is

used to negotiate compression methods, cipher suites and security keys. The lower record

layer, contains a header which consists of the content-type, identifying the upper layer

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 31
 .
protocol, and the fragment which contains the respective protocol data. With the

assistance of its headers, the record protocol cryptographically protects the upper layers

to achieve authenticity, confidentiality and integrity (Raza et. al ,2013). Moreover, to

accommodate loss-insensitive messaging, explicit sequence numbers are added, to

prevent anti-replay and facilitate message re-ordering. Furthermore, a re-transmission

timer is used to resend messages for loss packets and a bitmap set of received records,

similar to Internet Protocol Security (IPSec), is used to achieve replay detection. With

UDP datagrams limited to approximately <1500 bytes, DTLS allows fragmentation for

messages which in theory could become 2
24

-1 bytes (Rescorla & Modadugu, 2012).

Figure 3: Layout of a packet secured with DTLS.

Retrieved from Lithe: Lightweight Secure CoAP for the Internet of Things by Raza,

Shafagh, Hewage, Hummen, & Voigt (2013)

Lithe, is another proposed protocol, which compresses the recommended security

for COAP communication, DTLS using 6LoWPAN Next Header Compression

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 32
 .
(6LoWPAN-NHC). Raza, et. al. (2013) argues that computation is a less expensive use of

a node’s power than communication and shows that 6LoWPAN-NHC reduces the 13

bytes added by the DTLS record protocol and the 12 bytes added by its handshake to 5

and 3 bytes respectively. By compressing the initial handshake, subsequent transmissions

will benefit from a reduced communication length since DTLS will encrypt these

messages. Moreover, they explore the compression of the record and handshake with a

single encoding (6LoWPAN-NHC-RHS) and the compression of the record protocol

when the fragment contains application data (6LoWPAN-NHC-R).

An alternate approach to the previously described cryptographic schemes is the

Implicit Security Authentication Scheme which utilizes unexpected node behaviour to

identify malicious nodes (Chen et al ,2010). The approach considers a base station,

watchdog stations and a fixed set of sensor nodes, which have previously recorded

behaviour data before being deployed. The behavior recorded comprises of a set of

vectors, each consisting of time, an event and a set of monitored parameters. These

monitored parameters may be reported from various levels of the OSI stack such as the

expected radio transmission range from the physical layer, error control and error rate

occurrences at the data link layer, number of successful deliveries at the network layer or

time synchronization activities at the application layer. Computationally competent

watchdog nodes deployed in WSNs may then monitor current node behaviour and

simultaneously compare it to previous data for the specific node to develop an

authentication score from a learned machine model. The approach was inspired by the

fact that a compromised node, may still be able to authenticate with its set of

compromised keys (Chen et al,,2010). Although insightful, the approach may not be

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 33
 .
feasible for many WSNs as harsh sensor environments may produce unpredictable node

behaviour and the approach does not consider the addition of new nodes or replacements

to the network to name a few.

The Short Message Authentication Code Check (SMACK) is a proposed security

extension for COAP aiming to reduce DOS and battery exhaustion attacks with a

verifiable 4 -byte HMAC inserted into the already available token field in COAP headers

(Gehrmann et al 2015). The HMAC consists of a 2-byte request ID and 2-byte validity

check. The validity check is the output of a HMAC seeded by three keys A, B and C

where C changes every modulus of the session length. With the assistance of a pre-

computed lookup table of 36 bytes, supporting Galois field sizes of 1 to 16 bytes for the

MAC calculations used, keys are combined with the message id, request id, version, type,

token length and code of the COAP header. While A and B are the first and last 16 bits of

the generated session key, C is taken from Session Key J= PRF(Session Key). Similarly,

the session key is the result of a PRF(Initial MID, Master Session key) given to all

network devices. The master key and seed used to generate the master session key is

maintained by the KDC or base station.

2.4 Blockchain

2.4.1 Overview

The blockchain represents a distributed and replicated structure shared,

contributed to and verified by networked peers. With the exception of the genesis block,

the starting block of transactions for the chain, each subsequent, time stamped block is

identifiable by its cryptographic hash that links it to its predecessor and may be used to

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 34
 .
validate the block using a consensus algorithm (Christidis & Devetsikiotis, 2016). With

the advent of Bitcoin, the use of this data structure to manage its cryptocurrency has

garnered widespread acceptance, speculation, and intrigued many researchers and

professionals alike to identify the applications in different domains. Bitcoin, uses these

verifiable blocks, each consisting of transactions, as a decentralized yet verifiable, peer

maintained ledger, allowing each node to verify the status of any account in their network

by perusing the history of the blockchain. At the time of writing, many alternative

networks and approaches to interacting with the blockchain have been implemented

utilizing different consensus and operating mechanisms with some promising domain

specific concerns. Some of these include Bitcoin, Ethereum, Tendermint, Ripple,

Hyperledger and Intel Ledger’s Sawtooth to name a few.

In this decentralized network (no mediation by a middle or single trusted entity),

each node aims to improve its global view of the network’s state. A typical round in this

iterative process includes peers, connected nodes (usually persons interested in

interacting with the respective network), committing signed transactions (changes to the

current state of the network or payments in terms of bitcoin) to the network. The

networks utilize public key cryptography to attain authentication and integrity, requiring

each transaction to be signed by its owner with his/her/its respective private key. This

transaction is then broadcasted to neighbouring peers who validate the transaction before

broadcasting the same to their peers. After an agreed time interval, participants group

acquire transactions into candidate blocks to be verified using the network’s consensus

algorithm or to be “mined”. Throughout this process, peers typically aim to validate the

transactions in the respective block and the provided cryptographic hash or link to the

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 35
 .
previously verified node. If successful, the block is committed to the trusted ledger of

blocks and the process is repeated (Christidis & Devetsikiotis, 2016).

The inherent properties of the blockchain around decentralized trust and the

ability to facilitate the popular cryptocrurrency has attracted much attention in several

domains. Of the many implementations thus far, is a taxonomy which includes private

and public networks, (Kosba, Miller, Shi, Wen, & Papamanthou, 2015), Unspent

Transaction Outputs (UTXO), smart contracts within an account based model as seen in

Ethereum (Christidis & Devetsikiotis, 2016) and Turing incomplete or quasi-turing

complete (Popejoy, 2016) languages. Furthermore, distributed ledgers may be

permissioned (Walport, 2016), privacy-preserving (Kosba, Miller, Shi, Wen, &

Papamanthou, 2015) or utilize more relaxed consensus models to fit a particular domain

in a trusted environment. Irrespective of the taxonomy, blockchains are able to provide a

verifiable and auditable consensus on assets in a distributed and possible untrusted peer-

to-peer (P2P) environment.

2.4.2 Consensus

As mentioned earlier, each participating node aims to achieve a single global view

of the network through mining, however with each node possessing so much

independence, it is possible to develop forks (branches) of the original chain. In the event

where two nodes identify that their blockchain is different, the most trusted fork, usually

the longest and most verifiable, is accepted as the main chain and the other discarded.

This is useful as will be discussed later especially in cases where new nodes connect to

the network or an existing node may have been dormant or disconnected for some time.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 36
 .
In an attempt to avert Sybil attacks, where a single entity with multiple identities may out

vote the entire network on the legitimacy of an illegitimate block to attain control of the

network, blockchain implementations such as Bitcoin has made mining computationally

“expensive”. This implies that it is possible for any node to have their assembled block be

considered as the next mined block in the network given that they find a random nonce in

the block’s header that will allow the SHA-256 of the header to include the amount of

leading zeroes expected by the network’s difficulty level (Christidis & Devetsikiotis,

2016). This computational expensive process to achieve consensus is considered the

proof-of-work (PoW) to create a legitimate block and may be easily verified by peer

nodes since this is a one-way cryptographic hash. Furthermore, the consensus protocol in

this implementation also declares that whenever forks are identified by peer nodes, the

longest chain should be accepted as the correct chain as mentioned before, being that it

would consist of the most blocks or the most PoW. Another crypto-currency, Litecoin

utilizing blockchain as a backbone is similar to Bitcoin, with the exception of the possible

hashing algorithms included such as Blake-256 (Henzen, Aumasson, Meier, & Phan,

2011) and scrypt (Percival,2009).

 Proof of Stake (PoS) is an alternative consensus protocol that is less

computationally intensive (leading to a faster network and mining process) but is heavily

reliant on a node’s overall balance (amount of cryptocurrency owned) or ownership of

the network. By allowing the node with the greatest stake or balance in the network to

make the most decisions as the trusted entity, issues such as the speed and storage

requirements of the network may be reduced. However, this may open the network to

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 37
 .
other attacks, especially if the malicious node has acquired enough of the currency to

influence the network.

 Another approach inheriting traits from PoS and PoW is Delegated Proof of Stake

(DPoS). In DPoS, participants of the network are considered shareholders with the ability

to delegate their vote of legitimate blocks to a rotating set of active participants similar to

how shareholders are represented by board of directors. These directors would then be

responsible for performing the PoW and communicating the results. With less voting

members, the network inevitably increases its mining power and overall reduces the

computational power required by all nodes ("Delegated Proof of Stake", 2016).

 In distributed networks, byzantine fault tolerance, which may be solved using the

Practical Byzantine Fault Tolerance algorithm (PBFT), is an important benchmark which

evaluates how the network handles the byzantine general problem or the loss of a node or

service in a manner which presents the same issues differently to each observer (AlZain,

Soh, & Pardede, 2013). This is a critical issue since these decentralized networks aim to

collaboratively achieve consensus through mining. Bitcoin aims to addresses this issue

with the aforementioned PoW, however if legitimate transactions were contained in

blocks on the shorter, rejected fork, the network would ultimately lose this history or part

of the ledger. Alternatively, other crypto-ledgers, Juno and Tendermint utilize variants of

the BFT or consensus such as Raft and Tangaroa respectively. PBFT is more suitable for

faults where up to one-third of the nodes are faulty (f) and therefore will require a

minimum of 3f + 1 nodes. Tendermint capitalizes on this by dynamically rotating and

varying the participants and validators in a round robin manner when more than a third of

the network is loss. Ripple approaches this issue differently with the use of Unique Node

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 38
 .
Lists (UNL). Instead of querying the entire network, nodes query there UNL or sub-

network, thereby reducing latency and potentially increasing its tolerance to 5f + 1.

Similar to UNL, Multichain utilizes a whitelisted set of nodes operating on a consensus

factor called “mining diversity”. Mining diversity describes with leniency how many

blocks a node should wait before attempting to mine again. If a node pre-empts this

factor, their attempt to contribute is rejected (Christidis & Devetsikiotis, 2016).

 Some blockchain implementations such as Ethereum and Kadena add additional

properties to their implementations such as the ability to support smart contracts

(Popejoy, 2016). Smart contracts, a concept introduced by Nick Szabo in 1994 are “a

computerized transaction protocol that executes the terms of a contract’’ (Szabo,

1994). Essentially, smart contracts enable parties (nodes or persons) to interact with

contractual clauses embedded or stored in the respective blockchains (at an address to be

executed later). This increases visibility and reduces the need for a trusted third party,

potentially creating Decentralized Autonomous Organizations (DAO). Both

implementations take different approaches to providing this functionality, for example,

Ethereum enables a quasi-turing complete language encoded using Recursive Length

Prefix (RLP) on its Virtual Machine (EVM) (Wood, 2016) while Bitcoin’s scripting

language and Kadena’s implementation, Juno, utilizing Pact as its language, features a

turing-incomplete language which they argue is more secure than Ethereuem since it

presents more limits (Popejoy, 2016).

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 39
 .

2.4.3 Oracles

Bitcoin defines oracles as external “servers possessing key pairs which are able to

sign transactions upon request when a user-provided expression is true” ("Contract -

Bitcoin Wiki", 2015). Oracles become necessary in this cryptographic consensus, as the

blockchain is unable to perceive its environment or world events without the inputs of its

stakeholders or human participants. In order to create a more autonomous operation,

outside devices or servers are used to submit transactions to the blockchain. Instead of

being completely independent, bitcoin proposes and utilizes several methods to attest and

improve the level of trust these oracles contribute. A typical re-enactment of an oracle’s

contribution may be identified in the pre-sale of crops in an automated green house. A

sensor or oracle capable of monitoring crop yield may attest the availability of a crop by

encoding it as a digital asset on the blockchain, thus allowing shoppers to pre-order their

yield months in advance and monitoring the crop throughout its lifecycle. Oracle

integrations tie the advancements in automated systems and IoT into the integrity the

blockchain is able to provide.

Trust remains an issue in this model however, especially if the oracle, being used

by a disbursement bureau, possesses knowledge of the owner’s assets and intends to

withhold its signature in return for remuneration. Bitcoin has proposed the used of

encrypted pre-conditions which only require that the oracle receives before hand, the

hash of the pre-condition and the public key, which may be used in the future to verify a

correct request. Moreover, the use of trusted hardware as discussed earlier in

authentication or the use of multi-signature contracts have also been proposed, where a

majority of oracles may vote on the pre-condition ("Contract - Bitcoin Wiki", 2015).

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 40
 .

Oraclize is one such service aiming to serve as a “provable-honest oracle” that

will enable smart contracts to access resources from the internet ("Oraclize API

Reference", 2016). Since the execution of smart contracts occur on the blockchain or in

virtual environments, disconnected from world events, Oraclize provides a smart contract

which acts as a service provider that uses TLSNotary to prove its honesty. Other smart

contracts may request data (from a HTTPS URL, Wolfram API to name a few) and

optionally request a cryptographic proof using TLSNotary (Gibson, 2014) which may be

accessed from a location stored on the InterPlanetary File System (IPFS). IPFS is a

distributed P2P file system that provides a content-addressed, block storage model

combined with a distributed hash table, self-certifying namespace and a block exchange

that has been incentivized (Benet, 2016). This design enables IPFS to provide a

decentralized, replicated, self-certified and version file system that allows users to enjoy

access similar to bittorrent clients or the git version control system. A similar yet pre-

mature service, Orisi, aims to provide multi-signature oracle confirmations utilizing

Bitmessage as its underlying communication protocol, limiting oracles to also be

participating blockchain nodes. Bitmessage utilizes a hash of the node’s public key as the

node’s id (potentially obscuring IP addresses), allowing messages to be easily

authenticated by verifying the sender’s id. Although messages are transferred similar to

how blocks are exchanged in bitcoin, DOS attacks are further reduced since each

message transferred would undergo an additional proof of work, with each participant in

the network attempting to decode a message to prove that they are the recipient. This

naturally raises scalability concerns, in which they propose to divide subsequent nodes

and their communication into streams after a network threshold size has been achieved.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 41
 .
Streams of divided nodes would be divided into sub-trees which would then require

nodes wishing to communicate with nodes in other sub-trees to broadcast up and down

the tree as necessary (Warren, 2012).

2.4.4 Resource Constraints

With the increased computing power incorporated into IoT, incorporating the

blockchain, smart contracts and oracles into the mix holds many possibilities. These

could automate asset tracking, supply chain management, contract signing, fund

disbursement with the assistance of sensors, servers and actuators (Christidis &

Devetsikiotis, 2016). In the aforementioned consensus models, blockchain nodes require

all or a delegated set of participants in PoW and DPoS respectively to perform

computationally expensive mining to determine the legitimacy of new blocks, which are

replicated on each node. This computational and storage constraint that requires a

significant amount of power and network connectivity has already been identified as an

issue with the blockchain’s public network amassing over 75,043 MB as of July 9, 2016

as illustrated in Figure 4 below("Bitcoin Charts - Blockchain.info", 2016).

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 42
 .

Figure 4: Blockchain Storage Size as of July 9, 2016.

Retrieved from Blockchain.info ("Bitcoin Charts - Blockchain.info", 2016)

Ethereum has run similar benchmarks to evaluate its block processing which

considered their PoW (specific to their quasi-turing complete execution model),

transaction signature checking, receipt verification, uncle validation and database

insertion on 1,000,000 blocks on their public frontier network (first public Ethereum

network). The test was conducted in Ubuntu 14.0.4 LTS on a virtual cloud server with

4GB RAM, 2 Core processors, 60 GB SSD and 4TB transfer rate (network) to yield the

results in Table 2 below("Ethereum Benchmarks", 2016).

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 43
 .

Table 2: Ethereum Benchmarks on Frontier Network for each client

Note. Reprinted from "Ethereum Benchmarks", retrieved from

https://github.com/ethereum/wiki/wiki/Benchmarks Copyright 2016 Ethereum

Foundation

Efforts to reduce the storage requirements include the use of Simple Payment

Verification (SPV) Clients in bitcoin or the Light Ethereum Sub-protocol (LES) in

Ethereum (not yet implemented at the time of writing). LES considers partially light

clients which still participate in the consensus and fully light clients which do not

participate at all. Low capacity nodes processing approximately 512Bytes/min may still

verify the integrity of the chain by performing a reverse-hash lookup in their respective

merkle trees ("Light Ethereum Subprotocol (LES)", 2016), however nodes tend to only

retrieve block headers, similar to the eth/63 fast synchronization algorithm which

downloads headers then verifies the set by verifying a random block from the newly

downloaded set (Szilágyi, 2015). SPV clients operate in a similar fashion, however

implementations such as bitcoinj tend to store the transactions related to the owner’s

wallet also as an additional step to verify the status of the owner’s account. As a result,

SPV clients are susceptible to Finney attacks where they may have accepted a double

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 44
 .
spent transaction because they have trusted a mining node which isn’t broadcasting

several spent transactions (Hearn, 2016).

In essence the associated resource constraints of the decentralized trust attained

through verifiable consensus in a fault tolerant network has made it infeasible to embed

and reap the rewards of the technology in constrained devices (sensors and actuators).

With the relatively young age of blockchain technology and the constraints of smaller

IoT devices still deemed applicable, additional research is required in incorporating these

devices into blockchain technology.

2.5 Conclusion

The ubiquitous use of micro-sensors has resulted in many variations as it pertains

to resource constraints. Furthermore, when considering numerous micro-sensors, it has

become more pragmatic to employ Wireless Sensor Networks as they are easier to deploy

and maintain. These networks however require different design considerations, notably:

fault tolerance, scalability, hardware constraints, network communication, environmental

considerations, production costs and power consumption. Moreover, the use of a wireless

medium increases the likelihood of the explored threats to occur such as replay attacks,

session hijacking and worm-holes.

 Due to device constraints, authentication and attestation schemes have been designed

with the communication medium in mind and are often integrated with a particular layer

of the OSI model. In particular, many sensors have incorporated wireless communication

protocols such as 802.15.4, IPv6 and 6LoWPAN. While there are many concerns, the

overlapping concerns of these authentication schemes have aimed to assert identity,

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 45
 .
integrity, data freshness and replay protection with the assumption that the base station is

computationally resourceful to enforce security. Moreover, while application specific,

random or deterministic pairwise key management schemes are less computationally

intensive than PKI methods for WSNs. These schemes however rely on a trusted

authority or base station and use various re-keying techniques to reinforce the integrity of

the network.

 The literature review therefore highlights several concerns and opportunities.

Notably, the cost (monetary, communication overhead) associated with key management

and key updates especially in post deployment and the costs associated with securing

base stations. In addition, the trust (i.e. to remain uncompromised) and fault tolerance

level required for base stations connecting constrained sensors to aggregation networks is

another area of concern. Moreover, the integrity of data is more likely to be lost while

propagating the data to different participants in a network topology, resulting in the final

recipient relying only on the trust of its closest peer. It is also evident that due to the

design considerations for WSNs, one solution may not fit all and the applicability of the

constrained authentication schemes may not be secure enough for more resource

competent nodes. However, although current blockchain implementations are too

resource intensive for constrained sensors, the blockchain addresses several issues such

as byzantine fault tolerance, provenance, integrity and auditability. It is therefore an

opportunity to explore the integration of existing security primitives, authentication

schemes into a WSN that integrates with the blockchain.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 46
 .

Chapter 3: Proposal

With the increased usage of constrained devices to provide valuable yet critical

information, it has become necessary to not only securely acquire data but prove its

source. The Lightweight Blockchain Authentication for Constrained Sensors

(L.B.A.C.S.) addresses this need for provenance of sensor data within highly distributed

and semi-trusted environments that utilize blockchain technology as a backbone to

achieve consensus. Blockchain technology, currently being researched and

commercialized, possesses attractive attributes for untrusted decentralized environments

but remains resource intensive as highlighted in the literature review. At the time of

writing, the author is yet to identify proposals targeting the provenance of constrained

oracle data on the blockchain, especially when most models addressing WSN concerns

utilize hierarchical networks which completely trust the base stations that forward

communication on behalf of the sensor nodes. The aforementioned model is useful for

aggregation networks but also requires greater security from the base stations involved.

This proposal will therefore define the scope, assumptions, threat model and security

objectives while describing how LBACS addresses this issue.

LBACS is a lightweight authentication scheme for wireless constrained oracle

sensors communicating with semi-trusted blockchain competent nodes. The scheme,

operating above the transport layer of the OSI model, enables interoperability with

existing schemes and blockchain implementations, while providing provenance and

auditing in fault tolerant networks. Considering the limited power, storage and

communication abilities of WSN nodes, the scheme proposes lightweight computations

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 47
 .
to achieve data freshness, semantic security, source repudiation, forward and backward

secrecy. Specifically, this proposal will include methods for key generation and

distribution (pre and post deployment) for WSNs interacting with the blockchain, key

revocation and authentication (peers, groups and multi-hop). Although possible, this

proposal considers methods enabling encryption, packet routing and confidentiality as out

of scope due to time constraints of this thesis.

3.1 Security Objectives

The Lightweight Blockchain Authentication for Constrained Sensors (LBACS) aims to

achieve the following security objectives:

1. Authentication: A receiver should be able to verify a claim made by the source

of a message forwarded through n communication links where n  N. (N

represents the set of natural numbers)

2. Blockchain Provenance: An interested party, without access to a constrained

oracle sensor or its network, may prove that data published on the blockchain

originated from the oracle sensor.

3. Integrity: The generated authentication tag should attest to the contents of the

transmitted message.

4. Replay Protection: The scheme should facilitate the identification and rejection

of replay attacks.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 48
 .

5. Weak Backward Secrecy: Without the permission of the key distribution centre,

previously used pairwise keys should not be discoverable by an adversary or

newly deployed members of the network

6. Weak Forward Secrecy: Future keys will be inaccessible to revoked peer or

group members.

7. Universal Forgeability: An adversary, not apart of the network, should not be

able to generate a correct authentication tag for all messages.

8. Identity Revocation: Any participating sensor node, semi-trusted base station or

trusted authentication entity may have their identity revoked by a valid certificate

authority.

9. Auditable: Communication between trusted authentication entities, semi-trusted

base stations and sensors should be available for examination.

3.2 Notation

The following notation will be used throughout this chapter to abbreviate the

concepts, terms and identifiers utilized within the LBACS scheme.

Table 3: LBACS Notation

Notation Definition

CA Certificate Authority

TAE Trusted Authentication Entity

STBS Semi-Trusted Base Station and Blockchain Node

BN Blockchain Node

SN Sensor Node

KDF Key Derivation Function

PRNG Pseudo-Random Number Generator

PKi(A, B) Pairwise key “i” between A and B where:

“i”  N

“i” represents the current iteration of the key

A and B are entities (either TAE, STBS, SN) where

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 49
 .
Notation Definition

A  B.

PKi(A, B) = PKi(B, A)

RSi(A, B) Random seed “i” shared between A and B where:

“i”  N

“i” represents the current iteration of the key

A and B are entities (either TAE, STBS, SN) where

A  B.

RSi(A, B) = RSi(B, A)

PPK(A) Public/private key pair assigned to A where A is an entity

from the set of STBS and TAE apart of the system

(valid/invalid)

PNKA Private Node Key for A where A is a TAE or Sensor node

PRNGA Pseudo Random Number Generator being used by A where

A is a TAE or Sensor node

No(A) Number of A where A will be defined

MAC Message Authentication Code

HMAC Keyed Hash Message Authentication Code

INTENTION_BIT_SIZE Size in bytes of the intention bit used in the LBACS

authentication tag

SESSION_SIZE Size of an LBACS authenticated session

LBACS_TOKEN_SIZE Size in bytes of the LBACS authentication tag/token

HMAC_SIZE Size in bytes of either HMAC within the LBACS

authentication tag

HMAC_PIECES_COUNT Number of pieces of the generated HMAC before

truncation (implementation specific)

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 50
 .
3.3 Overview and Assumptions

Figure 5: LBACS Network Overview

Figure 5 above illustrates four types of sub-networks connected by a larger

blockchain network. In operation, multiple types of each sub-network may co-exist on the

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 51
 .
same blockchain or form side-chains with other blockchains based on the respective

blockchain implementation. Each sub-network has access to the blockchain network

through a Blockchain Client Node (BN1-4) which also acts as Semi-Trusted Base Stations

(STBS) for sub-networks 2 and 3.

Sub-network 1 (SbN1) is a critical component of LBACS’ architecture. It is regarded

as the most trusted and secured sub-network and as a result, possesses the most authority

in the decentralized group. It consists of the Key Generation and Distribution Centre and

Trusted Authentication Entities (TAEs) along with the elements necessary to facilitate the

PKI model to be discussed later such as a Certification Authority (CA) and Registration

Authority (RA). Primarily this network will be responsible for the following activities:

1. maintaining a directory of valid public keys of STBS relaying sensor messages

2. verifying MAC of sensor messages

3. provenance of sensor data submitted to the blockchain

4. generation and distribution of symmetric keys to STBS and constrained oracle

sensors

5. generation and distribution of private-public keys to STBS (dependent on the PKI

model)

On the other hand, sub-network 4 (SbN4) consists of consumer applications and services

(web applications, servers, other IoT, etc.) that require information provided by oracles.

This network is typically untrusted and only awaits the non-repudiation of messages

submitted by STBSs from a member of SbN1.

 Both Sub-network 2 (SbN2) and Sub-network 3 (SbN3) are networks consisting of

constrained oracle sensors (SN). However, they have been separated to illustrate the

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 52
 .
pragmatic use of various topological schemes in various types of WSNs. Specifically,

SbN2 represents WSNs where each sensor node is able to communicate directly with the

base station (hub and spoke model) while nodes in SbN3 use routing mechanisms to

forward or broadcast packets until they arrive at the STBS (daisy-chained model). Sensor

nodes that are a part of these networks are assumed to be constrained devices with

resources similar to those identified in Figure 1 on page 27 where it may be impractical to

involve significant computation for authenticating packets such as the more heavyweight

computations of PKI models. Finally, these networks consist of more computationally

resourced base stations, which are responsible for relaying sensor data to the blockchain.

Due to the limited constraints of the participants of these networks, it is assumed that it is

also economical to deploy multiple base stations supporting the same WSN. However,

these base stations may experience the same environmental factors as the sensor nodes

and with less constraints in an untrusted environment, it is also assumed that these base

stations may be targets of attack or harsh environmental conditions as discussed earlier in

the literature review.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 53
 .
3.4 Key Management

3.4.1 Pre-Distribution

Figure 6: LBACS Pre-Distribution Pairwise Key Allocation

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 54
 .

LBACS utilizes a combination of pairwise symmetric and asymmetric key

approaches to provide provenance of constrained oracles sensors on the blockchain. Prior

to deploying base stations and WSN nodes in SbN2, as illustrated in Figure 6 on page 53,

the KDC issues pairwise keys between these parties to enable each to authenticate

communicated packets. These pairwise keys are accompanied by a random seed value for

a PRNG that will provide an expected nonce capable of reducing the communication

overhead and power consumption when transmitting the MAC as will be discussed

further. Similarly, the KDC will issue a keyset consisting of a pairwise key and seed

between Trusted Authentication Entities (TAE) in SbN1 and sensor nodes as these TAEs

will be responsible for authenticating sensor data published on the blockchain. It should

be noted that the STBS does not share the same keys shared between the Trusted

Authentication Entities (TAE) and oracle sensors. This additional storage requirement

reduces the possibility of man-in-the-middle attacks as a result of a compromised STBS,

a common risk in WSNs. In P2P or multi-hop networks represented by SbN3, each sensor

would receive a random set of N pairwise keys and seeds to communicate with N peers

with a probability of p assignments (where p is rational number). To further optimize a

node’s ability to communicate with nearby peers, the chosen set of keys would be picked

randomly from expected nearby nodes or the expected sensor group for multi-cast

networks. The resulting sensor node in these networks would require storage for the

keyset of Np peers in addition to the TAE in order to provide provenance on the chain.

This is similar and reaps the benefits of the earlier discussed probabilistic pairwise key

distribution scheme proposed by Hwang et. al. in 2004 (Dustin et. al, 2007) but with an

additional keyset for provenance on the blockchain. As with many scalable networks, it

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 55
 .
may not be feasible to physically inject the necessary keyset(s) into the participant nodes.

Instead, the KDC, within a trusted environment, may inject a key setup symmetric key (to

be discarded after key setup phase) and broadcast the necessary keyset to each node to

bootstrap mass deployment. Finally, each node would receive an additional key, which

would allow the node to derive future pairwise keys broadcasted from the STBS using a

Key Derivation Function (KDF) seeded with the key and other parameters. An example

of the required key storage for a sensor node, A, with the ability to communicate with

two additional peers, namely sensor node B and C has been illustrated in Figure 7 below.

Figure 7: Required Key Storage for LBACS Sensor Node

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 56
 .

In order to facilitate signing and signature verification, STBS and TAE, assumed

to be computationally competent, would generate their public-private key pair and submit

to their public keys to a certificate authority for approval as illustrated in Figure 8 below.

Alternatively, but less secure, if a STBS is not computationally competent to generate its

key pair, it may be issued from the KDC. Furthermore, in order to enable a more fault

tolerant network that is auditable and thus less likely to be compromised, the blockchain

would be used as the decentralized directory storing a list of valid public keys for

respective TAE, SBTS and registration or certificate authorities who would be

responsible for publishing updates to this list. By publishing this directory on the

blockchain, any STBS, TAE or consumer application in SbN4 would be capable of

verifying signed transactions in the network and dynamically updating communication

partners where necessary in the case of sybil or byzantine attacks.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 57
 .

Figure 8: LBACS public/private key pre-distribution

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 58
 .

3.4.2 Post Deployment

Figure 9: LBACS Post Deployment: Addition of a STBS or TAE

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 59
 .

In order to add a TAE post deployment, the certification authority would update

the valid TAE registry on the blockchain with the new TAE’s public key. Furthermore,

the KDC would assign a set of symmetric keysets (pairwise key and seed) derived using

the KDF (illustrated in the notes section of

Figure 9 above) to the TAE. Finally, to update existing WSN nodes, the KDC

with the assistance of TAEs, publishes the pseudo-id of the new TAE along with a

random nonce on the blockchain. Subsequent to verifying the signature on the TAE’s

request, the STBS broadcasts this information to WSN nodes. WSN nodes then derive the

new pairwise key using KDF (SNjID | PNKSNj | KDF (TAENewID) | Random Nonce |

PRNG(TAENewID | PNKSNj)) . A STBS would be added similarly to TAEs but with less

pairwise keys based on the expected number of WSN nodes the base station would be

communicating with. The addition of a new TAE or STBS has been simplified in

Figure 9 above.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 60
 .

Figure 10: LBACS new Sensor Node Deployment

To add a new sensor node to the network, the KDC would first inject the new

sensors keychain before deploying the node into its sub-network. This deployment would

be accompanied with an authenticated broadcast to other participants of the new node id

and random nonce. This would allow other participants to derive keys using the KDF to

establish communication with this new node. The required key generation and necessary

broadcasts have been illustrated in Figure 10 above. It should be noted that even though

any deployed node or an attacker may receive this broadcast message of a new node, the

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 61
 .
node or attacker will not be able to authenticate with the new node if the new node was

not assigned the pairwise key generated by the already deployed node.

3.4.3 Session Management

A session in LBACS between a sensor node, A, and another peer (sensor node,

TAE or STBS) is characterized by the use of a shared pairwise key and random seed

derived by the ith iteration of a shared KDF and shared PRNG where i  N. The length of

a session, SESSION_LENGTH, is defined by the finite amount of requests (each

characterized by a request ID) that may be made by a single party,

NO_OF_REQUESTS_IN_SESSION, plus one (1) additional request to that may be used to

signify a session change, SESSION_CHANGE_REQUEST.

SESSION_LENGTH = NO_OF_REQUESTS_IN_SESSION + SESSION_CHANGE_REQUEST

With each request in a session, sent by a party A, characterized by a request ID, a

SESSION_CHANGE_REQUEST may be characterized by the last available request ID

within the session.

SESSION_CHANGE_REQUEST_ID= SESSION_LENGTH – 1

OR

SESSION_CHANGE_REQUEST_ID = NO_OF_REQUESTS_IN_SESSION + 1

After deployment, nodes utilize the first session, i = 1. Nodes may continue to

communicate within this session until they have exhausted

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 62
 .
NO_OF_REQUESTS_IN_SESSION or prematurely initiate a new session by transmitting a

message utilizing the SESSION_CHANGE_REQUEST_ID. Each participant of the session,

receiving a message containing the SESSION_CHANGE_REQUEST_ID will then be

responsible for performing the i+1 update of their pairwise key and random seed to

continue communication. The i+1 session generation has been illustrated below for two

peers, A and B.

PKi+1(A, B) = KDF (PRNG (RSi (A, B)) | PKi(A, B))

RSi+1(A, B) = PRNG (RSi(A, B))

It should also be noted that an identifier identifying the current session iteration or past

pairwise keys and random seeds should not be stored by participants. Not only does this

improve the key storage requirements of the scheme but reduces the associated risks to

the scheme’s security objectives such as backward and forward secrecy, replay protection

and others as discussed in the “Threat Analysis” section of this proposal.

3.4.4 Revocation

 A certificate authority may revoke an existing TAE at any time by updating the

revocation list of TAEs on the blockchain. Since all consumer applications and STBS

check this list while verifying the integrity of a signature, all parties will be able to

identify the signature of the revoked TAE. The process is similar for a STBS; however,

additional information will have to be propagated to WSN nodes utilizing this STBS.

Assuming that a second STBS (STBS2) has access to a WSN where the first STBS

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 63
 .
(STBS1) is being revoked; STBS2 would communicate an authenticated revocation

packet, characterized by the use of an intention bit (the intention will prompt the

constrained device to verify the TAE as will be discussed later) and the associated TAE’s

MAC, to all sensor nodes in the WSN. Since STBS1 does not share the same pairwise key

as the TAE and sensor nodes within the WSN, it is unable to fabricate this message even

if it has access to the published information on the blockchain.

Since the focus is the provenance of sensor data, sensor revocation not only has to

be at the sub-network level in the WSNs but also at the base station level and global level

(blockchain) where other STBS and TAEs may have the ability to authenticate

transmissions provided by an invalid sensor node. To remove a sensor node, the

certificate authority may communicate the pseudo-id (for privacy) of the revoked sensor

nodes on the blockchain in a revocation list or to other TAEs via another trusted medium.

TAEs would then be responsible for creating the revocation message with their HMAC to

be published on the blockchain where their STBS will have access. A STBS possessing a

node identified by this pseudo-id may then forward the authenticated revocation packet to

the WSN sub-network. In these cases, the use of an additional group key has proven

useful as discussed earlier in the key management and distribution section of the

literature review. In particular, polynomial regression techniques has not only proved to

provide confidentiality (Ozdemir, Peng, & Xiao, 2013) but have also reduced

communication overhead (Chen & Xie, 2014) in constrained Self-Healing Group Key

Distribution (SGKD) by only transmitting coefficients of a polynomial that may be

evaluated by WSN nodes.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 64
 .

This revocation strategy is suitable for nodes to update their personal key chains

by revoking the identified nodes, but may not be suitable when the WSN communicates

with a group pairwise key. To address this issue of group key revocation, the STBS

would forward a key update message to N=v+r (where v are valid nodes) individual

nodes within the network. N messages are required as the STBS is transmitting a message

M that when applied to a PRNG and KDF utilizing the individually assigned key to the

specific node, will generate the next group key. The set of revoked nodes (r) are also

included but their M will result in the generation of an incorrect group key. Assuming the

compromised nodes are still acting within the scheme key possession constraints i.e. only

storing one key at a time, the revoked nodes will no longer be able to communicate and

will lose the last valid group key.

By including revocation, the network owner is further able to optimize sensor

node storage at their discretion as a revoked STBS or peer node, may mean freeing the

storage used to keep the keys for this participant.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 65
 .
3.5 Authentication

3.5.1 Tag Format

LBACS utilizes a MAC or multi-signature packet comprised of an intention bit,

request id and ordered Hash Message Authentication Codes (HMACs) illustrated in

Figure 11 below. Since LBACS operates above the transport layer, the generated MAC

may then be included in the request, such as the Token field in the COAP header or

preceding the MQTT message payload.

Figure 11: LBACS Authentication Packet

The intention bit is a flag parameter that describes the intent of the message that is

being authenticated and may be as small as 2 bits. Depending on the network, the

following intention bits may be useful as described in Table 4 below. Based on the use of

intention bits described in Table 4 below it is clear, that the packet size is optimally

reduced (by removing HMAC2) based on the communication intent in the network. This

is a desirable trait as WSNs aim to reduce the resource (computational, power,

communication) overhead in each network activity. By increasing the bit length, the

intents and expectations of participating nodes may be adjusted to accommodate

Application Specific or SDWSNs.

Intention

Request Id

HMAC1

HMAC2

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 66
 .

Table 4: LBACS Intention Bits

Bit mask Intention Description

00 Peer Authentication

Used by a WSN node when

authenticating with the base

station or other immediate peer in

multi-hop or routed network.

HMAC1 will be used to

authenticate this message.

01 Group Authentication

Used by a WSN node when

authenticating with the group or

during multi-cast. HMAC1 will be

used to authenticate this message.

10 Key Revocation
A forwarded message will utilize

HMAC1 to verify the node or base

station which forwarded the

packet and use HMAC2 to verify

the TAE since a locally revoked

sensor node must also be revoked

globally.

11 Key Recovery

A Request Id (ReqId) is used (size is implementation or application specific) to

assist in replay attack detection in each communication session. A constrained node

receiving an authentication packet with a ReqId that has already been used will

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 67
 .
immediately be able to halt processing of the authentication packet or message, thus

saving resources similar to SMACK (Gehrmann et al, 2015). Since communication with

an oracle is presented as a single global view that is auditable; when a STBS

communicates with a WSN node (even for sub-network management), the STBS will be

responsible for publishing this request (at most the ReqId on the blockchain). If a TAE

attempting to communicate with the same node is unable to authenticate with a sensor

node because it has utilized a ReqId that is no longer valid, it implies that the STBS may

not be following the LBACS scheme. This is a precaution to highlight possible issues,

since the Base Station is not entirely trusted and may be compromised or not working

effectively (software or hardware issues).

 This implies that if a STBS is compromised and decides to communicate

excessively with nodes but not publish these updates to the chain, a subsequent failed

request from a TAE (because a TAE has utilized a ReqID the oracle has already received

and thus marks it as invalid) to a sensor node within that sub-network will highlight that

there is a rogue STBS. This also works in cases where the STBS continues to publish

ReqId updates to the chain, as network auditors would have the ability to audit suspicious

activity on the blockchain network. This optimized use of the single ReqId and the

already involved participation of STBS blockchain nodes, includes some of the desired

properties of the Implicit Security Authentication Scheme (Chen et al. ,2010) such as

audited communication and network behavior analysis without the additional overhead of

pre-behavioural analysis, additional watchdog node deployments and model development

of participating network nodes.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 68
 .
 Each HMAC enables and enforces forward and backward secrecy, replay

protection, source and destination repudiation, message integrity and authentication. An

HMAC is generated using HMAC (Pairwise Key | Integrity Parameters) and further

optimized in size with the use of r concatenated set of h HMAC pieces chosen at

“random” by the use of a shared PRNG(seed) that was initially shared between peers.

Integrity parameters include the packet source, destination, request id, intention bit and

message and therefore allow the generated HMAC to act as a signature for the request.

Moreover, the use of the “randomly” chosen pieces of the generated HMAC allows

network participants to utilize longer keys to maintain HMAC integrity while reducing

the communication overhead. A constrained oracle would then improve the used

semantic security by using longer keys, eg. 160 or 256 bits in Keccak, and reduce the

possibility of a hacker guessing the keys used from cipher text attacks (stream or block).

The attack problem is further compounded since the nodes use a random set of pieces of

the generated HMAC to reduce their communication overhead. Furthermore, pairwise

keys are updated each session length (related to the max id possible in request ids) using

a KDF (PRNG(seed), current Pairwise Key). By updating the pairwise key, an attacker

compromising the node will be unable to use the current key to effectively assist in key

attempts for previous messages, thus promoting backward secrecy. Although the

processes outlined may enable these properties, it does not guarantee these properties as

the desired use of a HMAC, KDF and PRNG based on specific network constraints and

applications may be prone to some side-channel attacks. To reduce this possibility and

localization issues in WSNs, the scheme has refrained from the use of time dependent

parameters.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 69
 .

3.5.2 Certificate Registry Storage Considerations

Based on the blockchain implementation and network use, storage and search

issues in large registries for valid or invalidated entities during the verification process

may become a concern. This concern is then propagated to lighter blockchain clients

(clients that selectively participate in the mining process or only store a subset of the

entire block chain). To reduce the storage needs, any request by a verified entity may be

accompanied by a signature from the certificate authority (also referred to as the

verification authority). This will enable a more involved certificate authority and is

similar to the Online Certificate Status Protocol RFC2560 (Myers et. al, 1999). With the

use of the blockchain however, the expected communication overhead changes from:

1. Sender sends signature request to verification authority

2. Verification authority checks verification list

3. Verification authority signs message if sender is not revoked

4. Verification authority responds to sender with signed message

5. Sender appends signature of verification authority to message to identify it as

verified

6. Sender sends verified message to recipient

7. Recipient checks for verification authority's signature and therefore accepts

message as not from a sender in the revocation list

to a more optimized approach:

1. Sender publishes message on blockchain with verification request

2. Certificate authority (having access to the blockchain) receives verification

request

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 70
 .

3. Verification authority checks whether sender is revoked

4. If sender is valid, verification authority publishes signature for verification

request.

5. Recipient (having access to the blockchain) acknowledges the verification

authority's signature of the sender's request and therefore accepts message as not

from a sender in the revocation list

In the second scenario, the blockchain is utilized as the communication medium and as

such reduces the number of needed requests to attest to whether the sender is revoked.

This provides several benefits which include:

1. Less independent requests for verification

2. Lighter clients storing a subset or only the most recent updates from the

blockchain may operate with the same level of verification from the verification

authority

3. The revocation list is still verifiable by any blockchain node capable of storing

and searching it and as a result averts sybil and other related attacks

4. Multiple verification authorities may be utilized to distribute the search and

verification cost of the entire revocation list since they have access to the same

data (requests for verification, verification authority responses)

5. Light blockchain clients only need to maintain an active view of valid certificate

authorities

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 71
 .

3.5.3 Communication Flows

The communication flows presented in this section will highlight common

message exchanges, composition of the LBACS authentication tag and the verification of

the created tag by the intended recipient. These message exchanges will include oracle

sensors and their peer sensor nodes, Semi-Trusted Base Stations (STBS) and Trusted

Authentication Entities (TAEs). Moreover, for each scenario, it will be assumed that a

communication session has already been initiated. As described in the “Session

Management” section of this proposal, a session may be initiated by sending a message

with the SESSION_CHANGE_REQUEST_ID, prompting the peer to update their pairwise

key and random seed to the next valid set. Furthermore, each flow will be described as a

scenario as an example of a context in which the authenticated exchanges would take

place.

Oracle Sensor Node → Semi-Trusted Base Station → Trusted Authentication Entity

The following scenario describes a sensor node that intends to publish

information globally or on the blockchain. The LBACS MAC generated by the sensor

node will be transmitted over a WSN to the STBS, which will verify the request before

publishing this information on the blockchain. The sensor’s message, forwarded by the

STBS to the blockchain, will then be verified by the TAE. Consumer applications will

then be able to attest that the data published originated from the oracle sensor. It should

be noted that this scenario is applicable whether the oracle sensor node uses a pairwise

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 72
 .
key or a group key shared with the STBS. This flow has also been illustrated in Figure 12

on page 76.

1. The sensor node creates a message to be sent, for e.g. monitored temperature data.

2. The sensor node prepends the intention bit (00) for peer authentication, the

request Id (currently shared with this TAE and STBS) of

REQUEST_ID_SIZE_BITS to the LBACS MAC.

3. The sensor node then appends the HMAC1 to be verified by the STBS.

a. PRE-HMAC1 = HMAC (Pairwise (Group) Key for STBS | (Packet source

= Sensor Node Id | Packet destination = STBS Id | Request id | Intention

bit = 00 | message = monitored temperature data))

b. Divide PRE-HMAC1 in HMAC_PIECES_COUNT of size

HMAC_PIECE_SIZE

c. RANDOM_INDEX = PRNG (seed shared with STBS | ith required index)

mod HMAC_PIECE_SIZE

d. HMAC1 reduced in size to optimize transmission = Concatenation of

every RANDOM_INDEX of PRE-HMAC1 pieces.

e. If the session has ended, update pairwise keys/group key using KDF and

randomization seed using, new seed = PRNG (current seed).

4. The sensor node then appends the HMAC2 to be verified by the TAE. The

HMAC2 is required in this case since the sensor intends to prove the origin of the

message on the blockchain. Furthermore, the addition of an additional HMAC

reduces the possibility of a man-in-the-middle (MITM) attack by the STBS.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 73
 .

a. PRE-HMAC2 = HMAC (Pairwise Key for TAE | (Packet source = Sensor

Node Id | Packet destination = TAE Pseudo Id | Request id | Intention bit =

00 | message = monitored temperature data))

b. Divide PRE-HMAC2 in HMAC_PIECES_COUNT of size

HMAC_PIECE_SIZE

c. RANDOM_INDEX = PRNG (seed shared with STBS | ith required index)

mod HMAC_PIECE_SIZE

d. HMAC2 reduced in size to optimize transmission = Concatenation of

every RANDOM_INDEX of PRE-HMAC2 pieces.

e. If session has ended update pairwise keys using KDF and randomization

seed using, new seed = PRNG (current seed).

5. The sensor node transmits the message and MAC to the STBS

6. The STBS verifies the HMAC1 by repeating Step 3. If it is invalid, the STBS

discards the message as not authenticated.

7. The STBS then removes the HMAC1

8. The STBS generates a signed message with its private key that may be verified

with its public key.

a. Signed message = SIGN (MAC (excluding HMAC1) | Pseudo ID for WSN

oracle node | message)

9. The STBS then publishes the signed message, the updated MAC (excluding

HMAC1), and the pseudo-id for the source WSN oracle sensor on the blockchain.

a. By removing HMAC1 the STBS reduces the possibility that future

communication between it and the sensor node may be compromised by a

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 74
 .

malicious member who has access to the blockchain network and who is

willing/able to perform the necessary cryptanalysis. Furthermore, this

reduces the storage requirements for the blockchain network by not

publishing information that will not be useful.

10. A TAE that has access to the network through a blockchain node, checks whether

any transactions within blocks contains requests from a STBS.

11. The TAE acknowledges that a block contains requests from the STBS and verifies

that its public key or ID is not in the revocation list available on the blockchain.

12. If the public key of the STBS is valid (not in the revocation list), the signature of

the STBS is verified.

13. If the STBS’ signature is verified, the TAE verifies HMAC2 by attempting to

derive HMAC2 utilizing the following steps:

a. Verify that the Request Id has not already been used. If the request Id has

already been used, the message is considered as invalid.

b. Create PRE-HMAC2 = HMAC (Pairwise Key for TAE | (Packet source =

Sensor Node Id | Packet destination = TAE Pseudo Id | Request id |

Intention bit = 00 | message = monitored temperature data))

c. Divide PRE-HMAC2 in HMAC_PIECES_COUNT of size

HMAC_PIECE_SIZE

d. RANDOM_INDEX = PRNG (seed shared with STBS | ith required index)

mod HMAC_PIECE_SIZE

e. HMAC2 reduced in size = Concatenation of every RANDOM_INDEX of

PRE-HMAC2 pieces.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 75
 .

f. If the generated HMAC2 matches the HMAC2 submitted by the STBS, the

message is authenticated.

g. If the session has ended, update pairwise keys using KDF and

randomization seed using, new seed = PRNG (current seed).

14. If both signatures (STBS submitted signature verifiable with its public key and

HMAC2) are verified, the TAE then submits a signature for the message

(confirmation signature) published by the STBS on the blockchain.

15. Consumer applications syncing transactions would receive the confirmation

signature for the TAE. If they are interested in the data published by this oracle

sensor (identified by the Pseudo ID) they may consume the data.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 76
 .

Figure 12: LBACS Oracle Sensor publishes data for consumer application

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 77
 .

Sensor node(j) → Sensor Node (j+1) → Semi-Trusted Base Station → Trusted

Authentication Entity

This scenario is similar to the aforementioned scenario with the exception that the

sensor node is unable to establish direct communication with the STBS such as nodes in

sub-network 3 in Figure 5. In this case, where a node must route its communication

through a peer, the node would generate HMAC1 with the pairwise key for its linked node

(modifying Steps 3 and 5). The linked node, sensor node (j+1), would then be able to

forward the same request by replacing the HMAC1 with its pairwise key for the STBS.

The communication and authentication flow for the other steps would be the same. This

has been illustrated in Figure 13 on page 78.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 78
 .

Figure 13: LBACS Oracle Sensor publishes data for consumer application via peer sensor

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 79
 .

Trusted Authentication Entity → Semi-Trusted Base Station →Sensor Node

The following scenario describes a TAE that wishes to communicate with an

oracle sensor node with the assistance of a STBS, which has access to both networks

(WSN and blockchain). The flow will denote how the LBACS MAC generated by the

TAE is verified by the oracle sensor and ultimately how a message sent by the TAE is

authenticated by a STBS before being forwarded to a sensor.

1. The TAE creates a message. For example, the TAE has received a request from

the certification authority to revoke Nodes 1 and 2 from Sub-network 3.

2. The TAE prepends the intention bit (10) for key revocation, the request Id

(currently shared with this oracle sensor and STBS) of

REQUEST_ID_SIZE_BITS to the LBACS MAC.

3. The TAE generates HMAC2 to be verified by the oracle sensor

a. PRE-HMAC2 = HMAC (Pairwise Key for oracle sensor | (Packet source =

TAE Pseudo Id | Packet destination = Oracle sensor ID | Request id |

Intention bit = 10 | message = key revocation message))

b. Divide PRE-HMAC2 in HMAC_PIECES_COUNT of size

HMAC_PIECE_SIZE

c. RANDOM_INDEX = PRNG (seed shared with STBS | ith required index)

mod HMAC_PIECE_SIZE

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 80
 .

d. HMAC2 reduced in size to optimize transmission = Concatenation of

every RANDOM_INDEX of PRE-HMAC2 pieces.

e. If the session has ended update pairwise keys using KDF and

randomization seed using, new seed = PRNG (current seed).

4. The TAE generates a signed message with its private key that may be verified

with its public key

a. Signed message = SIGN (MAC | message | Pseudo Id for Sub-network

with oracle sensor)

5. A STBS that has access to the network, receives and confirms a new blockchain

block with additional transactions.

6. The STBS acknowledges that it contains requests from the TAE and verifies that

its public key or ID is not in the revocation list available on the blockchain

7. If the STBS has access to the sub-network identified by the Psudeo Id, the STBS

injects the HMAC1

a. PRE-HMAC1 = HMAC (Pairwise Key for oracle sensor | (Packet source =

TAE Pseudo Id | Packet destination = Oracle Sensor | Request id |

Intention bit = 10 | message = revocation message))

b. Divide PRE-HMAC1 in HMAC_PIECES_COUNT of size

HMAC_PIECE_SIZE

c. RANDOM_INDEX = PRNG (seed shared with STBS | ith required index)

mod HMAC_PIECE_SIZE

d. HMAC1 reduced in size to optimize transmission = Concatenation of

every RANDOM_INDEX of PRE-HMAC1 pieces.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 81
 .

e. If session has ended update pairwise keys using KDF and randomization

seed using, new seed = PRNG (current seed).

8. The STBS transmits the message with the updated MAC to the oracle sensor

which will be able to verify the HMAC1 and HMAC2 by repeating the procedures

outlined in Step 7 and 3 respectively.

Semi-Trusted Base Station →Sensor Node

This would be similar to the aforementioned scenario with the exception that the

source of the message would be the STBS. This scenario describes a STBS

communicating with an actuator which is a thermostat, the temperature should be

changed to 21 ℃.

1. The STBS creates the message to be sent.

2. The STBS prepends the intention bit (00) for peer authentication, the request Id

(currently shared with the oracle sensor) of REQUEST_ID_SIZE_BITS to the

LBACS MAC.

3. The STBS then appends HMAC1 to be verified by the oracle sensor.

a. PRE-HMAC1 = HMAC (Pairwise Key for STBS | (Packet source = STBS

Id | Packet destination = sensor Id | Request id | Intention bit = 00 |

message = temperature update request))

b. Divide PRE-HMAC1 in HMAC_PIECES_COUNT of size

HMAC_PIECE_SIZE

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 82
 .

c. RANDOM_INDEX = PRNG (seed shared with STBS | ith required index)

mod HMAC_PIECE_SIZE

d. HMAC1 reduced in size to optimize transmission = Concatenation of

every RANDOM_INDEX of PRE-HMAC1 pieces.

e. If session has ended update pairwise keys using KDF and randomization

seed using, new seed = PRNG (current seed).

4. The STBS transmits the message and MAC to the oracle sensor which will be

able to verify HMAC1 by repeating the steps in Step 3

5. Because the STBS is audited, it signs and publishes the message + request +

sensor Pseudo Id on the blockchain

6. A TAE, receiving this updated block, which corresponds with that sensor node

and STBS may then update their request Id for future communication

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 83
 .

Chapter 4: Implementation

To further highlight the feasibility of the Lightweight Blockchain Authentication

Scheme for Constrained oracle Sensors (LBACS), it was implemented with tests on

several devices with varying resource constraints. These devices, including a Zolertia Z1

mote, Raspberry PI 3 and laptop, assured the provenance of sensor data and

authentication of peers in the LBACS network. This implementation of LBACS utilized

the Ethereum blockchain network in addition to the Keccak Sponge Family and the

secp256k1 elliptic curve to achieve the security objectives and benefits of the LBACS

scheme outlined in Chapter 3. This section will therefore highlight the aims of the

implementation, specifications of the apparatus used, particular configuration values

used, procedure to replicate the implementation along with issues faced and the solutions

or decisions made. Observations and analysis of results garnered are highlighted in

Chapter 4.

4.1 Objective

The overall objective of this first iteration was to implement a buoy monitoring

system using LBACS to authenticate sensor communication and achieve provenance of

sensor data. Sensors would be responsible for communicating the accelerometer readings

from the simulated buoys and TAEs would verify and authenticate the sensor data

forwarded by the STBSs. Furthermore, with the assistance of the already integrated

blockchain, consumer applications would be able to attest to the provenance of sensor

data.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 84
 .
4.2 Aims

The implementation had the following aims:

1. Implement LBACS for MSP430 Processors

2. Implement LBACS keychain store for Contiki devices

3. Implement LBACS for ARMv7 and ARMv8 Processors

4. Implement LBACS for x86-64 Processors

5. Implement Node.js add-on for LBACS

6. Implement a Trusted Authentication Entity (TAE) for x86-64

7. Implement a Semi Trusted Base Station (STBS) for Raspberry PI 3

8. Implement a buoy accelerometer sensor on Contiki Z1 motes

4.3 Configuration

LBACS was designed to allow the provenance and authentication of constrained

sensor data. As described in the literature review, these networks consider a varied

combination of devices, technologies and strategies to achieve their aims. This section

will outline the configurable parameters included in LBACS and the rationale for the

inclusion of each.

The configurable parameters specific to this implementation have been summarized

in Table 5 below. It should be noted that capitalized parameters included in Table 5 are

referenced from the notations listed in Table 3 on page 48.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 85
 .

Table 5: LBACS Configuration for Buoy Monitoring Implementation

Parameter Configuration

INTENTION_BIT_SIZE 1 byte

SESSION_SIZE 12

LBACS_TOKEN_SIZE 8 bytes

HMAC_SIZE 3 bytes

HMAC_PIECES_COUNT 3

HMAC_PIECES_SIZE 32

PRNG Keccak-f[1600, c=256, r=1344] SHA3

KDF Keccak-f[1600, c=256, r=1344] SHA3

Private/Public Key Generation secp256k1 elliptic curve

Signature generation and verification ECDSA using secp256k1 elliptic curve

Blockchain Implementation Private Ethereum Blockchain Network

4.3.1 Constrained Application Protocol

The Constrained Application Protocol (COAP) is a specialized machine-to-

machine (M2M) communication protocol for constrained devices operating within Low

Power and Lossy Networks (LLNs). The protocol, quite similar to the Hypertext Transfer

Protocol (HTTP), provides a request-response interaction, Uniform Resource Identifiers

(URIs), media types, status codes in addition to multicast support and a low overhead

which is required in these constrained networks (Shelby et. al, 2014).

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 86
 .

COAP was utilized to provide a uniform communication model between the

sensors, actuators and the base station within the WSN. This ensured greater

interoperability and a standard way to parse for the message payload and generated

LBACS authentication tag. As illustrated in the COAP message format in Figure 14

below, the 4 bit unsigned Token Length (TLK) specifies a maximum available token size

of 8 bytes.

Figure 14: COAP Message Format

Furthermore, the size allocation for the authentication tag included in the token field has

been illustrated below in Figure 15.

Intention

1 byte

Request Id

1 byte

HMAC1

3 bytes

HMAC2

3 bytes

Figure 15: LBACS authentication tag size allocations

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 87
 .

4.3.2 Keccak-f[1600, c=256, r=1344]

To reduce the required storage and memory needs of the constrained Z1 motes,

the same KDF and PRNG was used for all peer nodes. Each peer, still maintained their

independent set of shared random seeds and pairwise keys. The KDF, PRNG and HMAC

used were all derived from the Keccak family of functions using the Keccak-f[1600,

c=256, r=1344] permutation. The implementation used has been included in Appendix I.

The Federal Information Processing Standards (FIPS) Publication 202 of the

National Institute of Standards and Technology (NIST) published the adopted Keccak

family of cryptographic permutations in 2015. The Keccak family of functions are a set

of cryptographic permutations based on the sponge construction. Each of the seven (7)

Keccak-f permutations denoted as Keccak-f[b] where b  {25, 50,100,200, 400, 800,

1600 }are defined as a progression of operations on a three (3) dimensional state a where

a is a Galois Field of elements (GF(2)) (Bertoni, Daemen, Peeters, & Van Assche,

2011). The relationship between the Keccak-f permutation and its sponge construction

has been illustrated below in Figure 16 below.

Figure 16: Keccak relation to sponge construction

where

 r = bitrate

 c = capacity and c= b – r where b  {25, 50,100,200, 400, 800, 1600}

 pad10*1 = multi-rate padding

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 88
 .

As a cryptographic primitive, Keccak-f derives many of the capabilities of the

sponge and duplex constructions which were instrumental to this implementation. It

should be noted that while both sponge and duplex constructions accept a variable-input

length and yield an arbitrary output length based on a bitrate, r, padding rule and fixed-

length permutation, a duplex construction maintains its previous state through each use.

Moreover, unlike previous primitives, the claims for security strength are not based on

the output length making it ideal for this constrained implementation. Furthermore, the

provably secure primitive has undergone much cryptanalysis and performance tests on

hardware varying in resource constraints.

4.3.3 Secp256k1 Elliptic Curve Digital Signature Algorithm

LBACS requires that resource competent entities such as the Semi-Trusted Base

Stations (STBS), Trusted Authentication Entities (TAEs) and the Certificate Authority

(CA) utilize asymmetric cryptography to enforce digital integrity of transmitted

messages. This implementation utilized an existing library implementing the Elliptic

Curve Digital Signature Algorithm (ECDSA) using the recommended Secp256k1 curve

parameters (Certicom Research, 2010).

The use of the elliptic curve variant of the digital signature algorithm has garnered

much attention due to the advantages of Elliptic Curve Cryptography (ECC) when

compared with the widely used Rivest-Shamir-Adleman (RSA) algorithm. Notably, ECC

offers the same level of security as RSA using smaller key sizes, less computational

effort and power consumption. ECC is based on the relative intractability of solving the

discrete logarithm problem for a random elliptic curve element with a publicly known

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 89
 .
base point (Khalique, Singh, & Sood, 2010). The Standards for Efficient Cryptography

(SECP) recommended Koblitz curve parameters for secp256k1 defined by the sextuplet T

= (p, a, b, G, n, h) are included below (Certicom Research, 2010).

Here the finite field, Fp, is defined as:

Furthermore, the curve E: is defined with constants

an uncompressed base point G

an order n and cofactor h

4.3.4 Ethereum and Solidity

This implementation utilized a private Ethereum blockchain network to record

sensor data. As mentioned earlier in the literature review, Ethereum is a blockchain

implementation similar to bitcoin but uses a quasi-turing-complete model on its virtual

machine. Each execution still requires gas and is verified by a compute-intensive Proof-

of-Work (PoW) consensus algorithm (Wood, 2016). Solidity is one high level language

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 90
 .
that allows developers to interact with the Ethereum blockchain network using smart

contracts and Externally Owned Accounts (EOA). The implementation used has been

included in Appendix B. Other languages available to developers include Serpent and

LLL.

4.4 Apparatus

4.4.1 Devices

Four (4) types of devices were included in the current implementation, notably the

Zolertia Z1 mote, Raspberry PI 3 a windows PC and Mac OS X laptop. Device

specifications have been listed below.

Zolertia Z1 Mote

 2nd generation MSP430TM 16-bit MCU

 92KB Flash

 8KB RAM

 2.4 GHz IEEE 802.15.4 Transceiver

 3-axis Digital Accelerometer

 Low Power Digital Temperature sensor

 16 Mbit, 100 Cycles Serial Flash

 USB/2xAA/coin cell power options

 52-pin expansion connector

 Contiki Operating System

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 91
 .
Raspberry PI 3 Model B

Processor

Broadcom BCM2387 chipset. 1.2GHz Quad-Core

ARM Cortex-A53 802.11 b/g/n Wireless LAN and

Bluetooth 4.1 (Bluetooth Classic and LE)

GPU

Dual Core VideoCore IV® Multimedia Co-Processor.

Provides Open GL ES 2.0, hardware-accelerated

OpenVG, and 1080p30 H.264 high-pro le decode.

Memory 1GB LPDDR2

ROM 16GB

Dimensions 85 x 56 x 17mm 

Power Micro USB socket 5V1, 2.5A

Operating System Ubuntu 15.10 (GNU/Linux 4.1.18-v7+ armv7l)

Windows PC

Operating System Windows 8

RAM 8 GB

ROM 500GB

Processor Intel(R) Core(TM) i3-3227U CPU @ 1.90 GHZ x64

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 92
 .

Mac OS X

Operating System OS X El Capitan version 10.11.6

RAM 8 GB

ROM 128GB

Processor 2.7GHz Intel Core i5 x64

4.4.2 Software and Libraries

Most of the development was completed with a text editor since the primary

languages in use were C and JavaScript. Additional software was used in simulations,

testing and management. The versions and source of each software and library used have

been included in Table 6 and Table 7 below. How each was used will be described later

in this chapter.

Table 6: Software used in implementation

Software Version Acquired From

Git 2.11.0 https://git-scm.com

Mocha Test Framework 3.2.0 https://github.com/mochajs/mocha

Contiki-OS 3.0 http://www.contiki-os.org

MSP430 tool chain 5.3 http://www.ti.com/tool/msp430-gcc-

opensource

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 93
 .

Software Version Acquired From

Cooja Simulator 3.0 http://www.contiki-os.org

Tunslip6 3.0 http://www.contiki-os.org

Truffle 2.1.0 https://github.com/ConsenSys/truffle

Geth 1.4.5 https://geth.ethereum.org

Docker 1.12.1 https://www.docker.com/

Node.js 4.4.7 https://nodejs.org/en/

Copper 1.0.0 https://addons.mozilla.org/en-

US/firefox/addon/copper-270430/

Table 7: Libraries used in implementation

Libraries Version Acquired From

web3.js 0.17.0-

beta

https://github.com/ethereum/web3.js

node-coap 0.18.0 https://github.com/mcollina/node-coap

node-ffi 2.1.0 https://github.com/node-ffi/node-ffi

node-ref 1.3.2 https://github.com/TooTallNate/ref

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 94
 .

Libraries Version Acquired From

Elliptic 6.3.2 https://github.com/indutny/elliptic

SHA3IUF Commit

772553b

https://github.com/brainhub/SHA3IUF

Keccak Code

Package

Commit

e39f89a

https://github.com/gvanas/KeccakCodePackage

4.5 Design

4.5.1 Network Overview

Figure 17: Implementation Network Overview Diagram

Figure 17 above illustrates how each device was connected to recreate the

LBACS network. Three (3) Z1 motes were a part of the LBACS WSN sub-network. It

Ethereum

Blockchain

Network

802.15.4

6LoWPAN

WSN

Z1 - Buoy Reporter

Z1 – Light Actuator

Z1 – Border Router

Raspberry PI

Windows PC

Mac OS X

USB Serial Connector

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 95
 .
should be noted that one mote was used as a RPL border router for the WSN, doubling as

a transceiver for the Raspberry PI (Semi-Trusted Base Station) connected to the Z1’s

USB-Serial Port. This allowed the STBS on the Raspberry Pi to communicate with the

sensors in the WSN. Moreover, the Raspberry PI, Mac OSX and Windows PC were able

to sync communication over the Ethereum blockchain network with the assistance of

Geth client nodes.

4.5.2 Technology Stacks

Illustrated below are the various application stacks used on each device.

Z1 – Buoy Reporter

Buoy Reporter Application

Erbium COAP LBACS LIB

Contiki OS

Figure 18 – LBACS Z1 Technology Stack

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 96
 .

Raspberry PI – Semi Trusted Base Station

 Restful COAP + HTTP Semi-Trusted Base Station Server

 lbacsjs elliptic node-coap web3

tunslip6

node-ffi

Node.js Geth LBACS

Shared LIB

Ubuntu 15.10 (GNU/Linux 4.1.18-v7+ armv7l)

Figure 19 - LBACS Raspberry Pi Technology Stack

Windows PC – Trusted Authentication Entity

Restful HTTP Trusted Authentication Entity Server

lbacsjs elliptic web3

node-ffi

Node.js Geth LBACS

Shared LIB

Windows 8 – i3 x64

Figure 20 - LBACS Trusted Authentication Entity Technology Stack

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 97
 .

Mac OS X – Certificate Authority

Restful HTTP Certificate Authority Server

lbacsjs elliptic web3

node-ffi

Node.js

Geth

LBACS

Shared LIB

Docker

Mac OS X El Capitan – i5 x64

Figure 21- LBACS Certificate Authority Technology Stack

4.6 Procedure

As seen in Appendix A, similar application programming interfaces were available

for the pairwise portion of LBACS, however Figure 27 and Figure 28 illustrate a few of

the variations across device platforms. Variations took into consideration the various

platform architectures, memory, storage and network constraints for each device

platform. Furthermore, additional considerations and strategies were implemented to

facilitate Ethereum blockchain interactions required by the TAE, STBS and CA on their

respective devices. The work done to implement the aims identified above on each

platform will be described below.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 98
 .

4.6.1 Buoy Node Reporter and Light Actuator

A lightweight version of LBACS capable of generating and authenticating

LBACS tags was developed for Contiki-OS. The implementation was abstracted into a

pluggable Contiki app module after forking the official Contiki-OS repository

(https://github.com/contiki-os/contiki). Although, the official Keccak implementations

are provided at https://github.com/gvanas/KeccakCodePackage, a minimal

implementation of the Keccak-f[1600, c=256, r=1344] SHA3, located at

https://github.com/brainhub/SHA3IUF, was chosen and modified (as included in

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 99
 .

Appendix I) to become more platform independent. This decision was a result of

the required program data used by the official implementation. When compiled for Z1

devices, the program data including the buoy functions performed by the Z1 motes

exceeded the maximum program data size by approximately 94 kb. Furthermore, the

LBACS implementation on Z1 motes was more static as it relied less on dynamic

memory allocation. Although this decision increased program data size, it allowed the

motes to have better networking capabilities and reduced program crashes due to memory

constraints. Additional work was also done to create bootstrap functions used in the pre-

distribution of pairwise keys and seeds for the keychain.

The buoy transmitter utilized the Contiki Erbium COAP implementation to

transmit a JSON message containing the x, y, and z accelerometer readings of the

transmitter every nine (9) seconds. The communication overhead for the message was

less than or equal to 24 bytes. Since the generated LBACS token used was 8 bytes, the

total communication overhead was less than or equal to 32 bytes. Similarly, the buoy

light actuator used the Contiki Erbium COAP implementation to parse incoming

messages and LBACS to verify the received token before toggling the light sensors. Both

applications were tested on actual hardware and simulated with the assistance of the

Cooja Simulator.

Finally, one Z1 mote was connected to the Raspberry PI via a USB-Serial

Connector and tunslip6 and used as a RPL Border Router to allow the Raspberry PI to

operate as a Semi-Trusted Base Station (STBS) for the IPV6 WSN network of Z1 motes.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 100
 .
This was necessary as the Raspberry PI did not have a IEEE 802.15.4 transceiver capable

of interacting with the WSN.

4.6.2 Blockchain Network

 The blockchain network was created by running geth Ethereum blockchain clients

on the Raspberry PI and laptops as illustrated in the Design section of this chapter. This

private blockchain network was created by initializing each Ethereum client with the

same genesis block as illustrated in Figure 22 below in addition to running each client

with the same network id of “2255346”.

Figure 22: LBACS Ethereum Genesis Block

Interactions with the Ethereum blockchain were performed with the assistance of

compiled solidity contracts. These contracts illustrated in

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 101
 .

Appendix B were used to store the current state of the LBACS blockchain

network. With the assistance of various features available in Solidity additional

constraints and interactions were seamlessly integrated in the autonomous servers.

Solidity events were used by new entities (Semi-Trusted Base Stations, Trusted

Authentication Entities and Certificate Authorities) to notify and request approval of

created public keys in the Certificate Registry. Furthermore, newly published buoy data,

denoted in Figure 39 on page 164, requiring authentication by Trusted Authentication

Entities (TAEs) also utilized events to notify consumers and TAEs respectively.

Moreover, access modifiers were used to restrict updates to the Certificate Registry,

denoted in Figure 36 on page 161 , to only approved Certificate Authorities. Also

included in

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 102
 .

Appendix B are the contracts used to store and access ECC public keys and

signatures and various entity types.

4.6.3 Base Station, Authentication Entity and Certificate Authority

Although different platform specific implementations, the Raspberry PI and both

laptops shared similar software and ran servers using similar code bases. In order for

devices to gain access to the private blockchain network, devices utilized Geth (Go

Ethereum client) enabled with a JSON RPC API to provide access to the private

Ethereum blockchain network. Furthermore, servers residing on these devices as

illustrated in the “Technology Stacks” section were implemented in Node.js to take

advantage of the well maintained web3.js package used to interact with the Ethereum

blockchain clients. Although the Raspberry PI could not actively participate in the mining

process due to memory constraints, the client was still able to achieve the global state of

the network by syncing with the more resource competent nodes in the network.

Moreover, since the servers on both devices were implemented in Node.js, a

Node.js add-on, named lbacsjs, was created to equip the servers with the ability to

authenticate and generate LBACS tags for each message. The C-implementation of

LBACS for the respective platform was packaged as a Node.js add-on with the assistance

of the Node.js foreign function interface package, node-ffi. Tests conducted with the

mocha testing framework verified LBACS token generation and authentication. The

lbacsjs, elliptic (used for ECDSA signature generation and verification) and web3.js

packages were then integrated to realize LBACS. Each server was then able to generate

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 103
 .
their respective public/private key pairs and request approval in the certificate registry

from the Certificate Authority.

With the assistance of the compiled tunslip6 available with Contiki-OS and the

node-coap package, the Raspberry PI hosting the Semi-Trusted Base Station was able to

actively participate in the WSN network and forward LBACS authenticated packets to

and fro as required.

4.7 Issues and Resolutions

Throughout the implementation, a few challenges were experienced and concerns

raised. This section will list a few of these challenges in addition to resolutions made to

realize the current implementation.

1. The prominent Keccak implementations from the Keccak Code Package for

multiple platforms being utilized by LBACS as a PRNG, KDF and HMAC had to

be replaced for a smaller Keccak implementation (SHA3IUF) as LBACS had

exceeded the max storage for program data on Z1 devices by approximately 94

kb. This was completed successfullyand verified by the unit tests.

2. Although within program data storage requirements, the SHA3IUF

implementation was not platform independent, resulting in the output generated

by the Z1 devices not to match the output on other platforms. The implementation

was modified to be more platform independent to realize a uniform KDF, PRNG

and HMAC construction (also included in Appendix I).

3. Although it resulted in a smaller program data size, Z1 motes experienced

numerous network and memory issues with dynamic memory allocation. As a

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 104
 .

result, a static implementation and different application programming interface

was adapted for Contiki LBACS. The static implementation has a predefined

amount of peers, currently two (2) in this implementation.

4. Although proximity was not an issue in the WSN, many packets were still lost in

transmission. As a result, the Erbium COAP implementation was modified to

prevent the device from waiting on a response to each message. The time used to

wait on responses lost in transmission prevented the Z1 mote from networking

and carrying out application needs as expected.

5. More recent versions such as Geth versions 1.4.10 and 1.5.4 had syncing issues

and did not allow the Raspberry Pi client to sync transactions to the other clients

on the network. Since modifying the codebase could have several domino

implications, Geth 1.4.5 was used instead.

6. The Semi-Trusted Base Station server on the Raspberry PI 3 is often interrupted

when submitting new transactions to the Ethereum blockchain network with Geth

1.4.5. This issue has been attributed to the frequent account locks experienced on

the Geth client which seem to occur in periods of inactivity (not submitting new

transactions to the blockchain network) or approximately every five (5) minutes.

This prevents the seamless forwarding of LBACS authenticated sensor messages

to the blockchain network. A temporary solution was implemented to detect and

unlock the default account, however, some transactions are still lost in the time

used to unlock accounts.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 105
 .

Chapter 5: Analysis

Throughout the implementation, several metrics were recorded alongside various

tests to assist in the evaluation of the proposed scheme, LBACS. These tests, including

unit, incremental integration and end-to-end tests, assisted the development and

verification of the buoy monitoring prototype using LBACS. This chapter will therefore

describe and detail the results of these metrics and tests in addition to providing a

qualitative threat assessment of the scheme.

5.1 Aims

Specifically, this analysis intends to fulfill the following objectives:

1. Perform a qualitative threat analysis for LBACS

2. Identify program data size for LBACS on Contiki Z1 motes

3. Identify keychain size for LBACS on Contiki Z1 motes

4. Identify WSN COAP communication overhead between Contiki Z1 motes and

Raspberry PI 3 Semi-Trusted Base Station

5. Identify Power consumption for LBACS authentication tag generation and

verification on Contiki Z1 motes

6. Identify duration for LBACS authentication tag generation and verification on

Contiki Z1 motes

7. Perform end-to-end tests for authenticated data transmission from Z1 mote to

TAE

8. Test Replay Packet attacks on LBACS peers

9. Test MITM fake authentication attacks with LBACS peers

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 106
 .

5.2 Threat Analysis

A qualitative threat analysis was performed to evaluate the associated risk of

various attacks on critical sub-components of the LBACS scheme. The methodology used

and accompanying assessment has been included below.

5.2.1 Methodology

The European Telecommunications Standards Institute (ETSI) published a threat

assessment methodology in 2003 which utilized a likelihood and impact estimate to rank

risk (Kheirabadi, Kulkarni, & Shaligram, 2011). Bardeau (2005) expanded on this to

include the difficulty level and motivation required to observe the threat. The resulting

risk evaluation grid has been denoted in Table 8 below.

Table 8: Risk Evaluation Grid

The likelihood describes the availability of theoretical and practical knowledge

that may be utilized to compromise the scheme. A threat that is considered as likely is

assigned the highest rank of three (3), implying that all of the required knowledge to

compromise the scheme is easily available. On the other hand, if some critical

components of the system are available, the threat is assigned a rank of 2 and considered

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 107
 .
as possible. With the lowest rank of 1, the required or critical information necessary to

compromise the scheme is assumed unavailable and therefore considered as unlikely.

Likelihood may be decomposed further into its technical difficulty and motivation

required or potential gain of the attacker. Bardeau considered three levels for technical

difficulty, namely none, solvable and strong, which was defined similar to the proposal

made by ETSI. None implies that the attack has been successful before, solvable alludes

to theoretical possibility of the attack while strong describes a scenario where required

theoretical and practical elements are missing. Similarly, three levels where considered

for motivation, namely, high, moderate and low. High implies that the expected gain

from the attack is significant; moderate implies that there may be service disruption only

or the attacker will only break-even with the expected gain and effort (time, resources

and cost of the attack). Finally, low implies that the expected gain is minimal.

The impact of a threat may assist in identifying the severity of the scenario in

which the scheme becomes compromised and further rationalize the motivation of an

attacker interesting in crippling the system using the scheme. Again, three ranks are used

from 1 – 3 (named Low, Medium and High respectively) with the counting order

determining the severity of impact. Low represented by 1 implies that the network and its

participants will experience little to no if an attack occurs while high represented by 3

implies serious consequences and long term outages.

Based on the aforementioned estimates, risk may then be deduced from the

product of associated numerical values for likelihood (technical difficulty and

motivation) and impact. The possible products may also be categorized based on their

ranges to achieve a single risk evaluation metric. These include minor (1,2,3) which

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 108
 .
identifies the threat as a low priority; major (4), implying that the threat should be

addressed in the near future and critical (6,9) threats as threats which should be addressed

immediately with countermeasures and sufficient risk mitigation strategies.

The threat analysis will therefore assess the likelihood and impact of various

attacks on critical sub-components of the scheme and the various affected security

objectives.

5.2.2 Sub-components

The network that requires provenance of sensor data may be sub-divided into six (6)

major components as illustrated in Figure 5 on page 50. These components include:

 Constrained Oracle Sensor

 Wireless Sensor Network (WSN)

 Semi-Trusted Base Station (STBS)

 Blockchain Network

 Trusted Authentication Entity (TAE)

 Consumer Applications

Although consumer applications will not be actively participating in the provenance

of data or authentication of participating entities, it should be noted that an adversary may

utilize consumer applications or servers as entry points to exploit available vulnerabilities

in the respective blockchain network. An exploited vulnerability in the blockchain

network as will be discussed later would be an additional threat for the scheme. This

threat analysis however will focus on the critical components required to establish the

scheme (sensors, WSN, STBS and the blockchain network) with the exception of Trusted

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 109
 .
Authentication Entities. It will be assumed that the Trusted Authentication Entity is

secure and the adversary in question is not motivated to attack the entity directly.

5.2.3 Threat Assessment

For the purpose of this analysis, a threat may be defined as a possible violation of

security arousing from an event or capability to cause harm (Shirey, 2000). An adversary,

A, will then be identified as an entity, individual or program that is a threat to the system

(Shirey, 2000) utilizing the LBACS scheme. It will be assumed that the adversary may

have physical access to a subset of sensor devices in a particular sub-network and may or

may not have physical access to a semi-trusted base stations. Furthermore, it is assumed

that the adversary is highly motivated to compromise the provenance of data on the

blockchain. As a result, only the likelihood and impact of each threat will be discussed

since the adversary has an assumed motivation of high (3) as outlined in the

aforementioned methodology. The analysis will therefore describe each threat and it’s

impact on the sub-components involved (with the exception of Trusted Authentication

Entities) and before assigning a rating denoted in the “Risk Evaluation Grid” in Table 8

on page 106 Table 8. Furthermore, each threat’s impact on the outlined security

objectives of the scheme will be discussed along with the scheme’s ability to secure these

objectives.

 A highly motivated adversary with physical access to a subset of sensor nodes

within the WSN is very likely to tamper, capture or attempt to replicate sensor devices.

Ideally, a sensor node should incorporate a framework to ensure integrity, confidentiality

of data, keys and computations to minimize the effect of unintended physical access or

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 110
 .
injected malware. Such capabilities may be included with the assistance of Trusted

Platform Modules (TPM). A TPM is microcontroller capable of securely storing artifacts

or platform measurements necessary to ensure the integrity of the device such as keys and

certifications (Trusted Computing Group, 2015). However, considering a context where a

constrained sensor has not implemented this framework or the framework has been

compromised then the attacker would gain access to the set of pairwise keys, shared

seeds (used to randomize and reduce communication overhead), PRNG and KDF used by

the sensor to communicate with each pair within the WSN (including semi-trusted base

stations) and the TAE responsible for authenticating the sensor. In the worst case

scenario, the adversary may then utilize this key to submit invalid data to the blockchain

on behalf of this sensor node. The adversary would have then successfully compromised

authentication, integrity, universal forgeability and auditing for this sensor but not the

entire network (WSN or blockchain). Since the scheme does not share pairwise keys or

seeds amongst other participants (sensor nodes, STBS or TAE) the impact of the attack

would be reduced to communication between the compromised sensor, the semi-trusted

base station sharing a pairwise key with the sensor and the TAE sharing a pairwise key

with the sensor. Possessing a sensor’s pairwise keys, shared seeds, PRNG and KDF does

not allow an attacker to perform replay attacks since each sensor tracks each request’s id

sent with the authentication tag. Furthermore, since identity revocation may only be

sanctioned from a TAE, they would be unable to revoke identities since they would

require the pairwise keys shared between a TAE and other sensor nodes within the WSN

and subsequently the STBS shared pairwise key for each sensor node. To compromise N

other sensor nodes, the attacker would need to obtain, N STBS shared pairwise keys to

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 111
 .
forge HMAC1 of the LBACS authentication tag and N TAE pairwise keys to forge

HMAC2 of the LBACS tag. LBACS has therefore increased the complexity to spoof

identity revocation even for a highly motivated attacker. Finally, LBACS encourages the

dismissal/deletion of pairwise keys and seeds used after each session change, therefore an

attacker would be unlikely to compromise weak backward secrecy. Although an

adversary, compromising a sensor node, would then be able to generate the next set of

keys (Ki-n) that would be used to communicate with a peer in an attempt to compromise

forward secrecy. If this sensor node has been identified as compromised, LBACS

facilitates the revocation of network participants, which allows the network to recover

and ignore future attempts to authenticate by this compromised node. As a result, these

attacks have been considered as likely (3) but with medium (2) impact to achieve a risk

rating of critical (6). These attacks become more severe in the case of a compromised

STBS as the attacker not only has access to all the pairwise keys and seeds used in the

WSN but has the ability to interact with the blockchain, an attack that will be discussed

later. Since the STBS is assumed more computationally resourceful (possessing enough

memory, power, storage to sufficiently implement a framework to reduce the impact of

physical access), the difficulty considers it as possible (2) with a high (3) impact and

critical (6) risk rating.

 LBACS aims to secure constrained devices communicating over a WSN which

makes it an easier target for traffic analysis and monitoring because of the wireless

medium. These passive attacks are therefore easier to accomplish and would aim to infer

from the transmitted tag and data the shared pairwise keys, shared seeds (used to

randomize and reduce communication overhead), KDF and PRNG. Assuming that the

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 112
 .
attacker is aware of the use of the LBACS scheme, KDF and PRNG, the problem of

deducing the pairwise key and shared seed becomes more difficult since they are changed

each session. Furthermore, the scheme’s use of the HMAC construction coupled with the

PRNG seed reduction, securely generates a MAC while reducing the available

information that would assist in compromising backward secrecy or forward secrecy on

each message exchange. These attacks should still be considered as pragmatic due to the

possibility of side channel attacks which are implementation specific. As a result, these

attacks have been assigned a likelihood of possible (2) and an impact of low (1) resulting

in a minor (2) risk rating.

 More active WSN threats targeting the physical, link and network layers of the

OSI model include jamming (constant, random, deceptive or reactive), radio interference,

network collisions, denial of sleep/service and flooding attacks impede wireless

communication by inhibiting the transmission and reception of messages on the

communication channel (Wenyuan et. al, 2006). Furthermore, they result in battery

exhaustion as the sensor’s receiver must remain in an active mode (instead of periodic

sleep) which requires more power and ultimately reduces the battery lifetime of the

sensor. These attacks directly impact identity revocation, since the STBS will be unable

to forward a revocation message over a flooded channel. However, due to the lightweight

nature of LBACS, battery exhaustion attempts will be less effective as a sensor will cease

processing any message containing an invalid authentication tag. These threats have

therefore been considered possible (2) with a medium (2) impact due to the loss of

services and a resulting major (4) risk.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 113
 .
 Other WSN threats affecting message transmission include sinkhole, black hole,

wormhole, blackmail, jelly fish, gray hole and selective forwarding attacks. These threats

aim to drop, selectively forward or change the route of transmitted messages and are

usually initiated through the fabrication of routing requests advertising shorter routes or

fake addresses (Bhargava & Goyal, 2014). Implementing LBACS at a lower level of the

OSI model (link or network layer) would allow the sensor to ignore unauthenticated

network participants sending fabricated routing requests. However, a compromised node

still possessing valid keys may still submit authenticated messages to disrupt the

networks routing operation. Although, LBACS (a lightweight authentication scheme

securing provenance of sensor data on the blockchain) does not cover routing, it’s

security objectives are still met during these attacks since it was designed for loss-tolerant

and time insensitive networks. As illustrated in Figure 11 on page 65, the format for the

LBACS authentication tag includes a Request ID which is included in the integrity check

and verification step of the authentication process. As such, a receiving node will be able

to identify which messages were received thus achieving the objectives of authentication,

integrity and being auditable. These attacks may also aim to subvert session change

requests and thus put the communicating peers out of sync. This may be ratified with

multiple re-transmissions, additional checks (especially for numerous failed

transmissions) and post deployment strategies that allows peers to recover shared keys

and random seeds as discussed in the proposal section. This tracked Request Id may also

assist other techniques utilized to identify and secure networks against these attacks such

as watchdog, ACK-based, reputation-based and incentive-based schemes (Bhargava &

Goyal, 2014). The Request ID also assists in replay protection as these attacks may replay

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 114
 .
valid authentication tags in an attempt to fabricate false routes messages when trying to

gain entry to the network. Moreover, even if a node has been compromised, the scheme

should sustain its premise on backward and forward secrecy along with universal

forgeability as discussed above for threats that possess physical access to devices. These

threats have therefore been considered possible (2) with a low (1) impact to the scheme’s

objectives and a resulting minor (2) risk.

 A Man-in-the-middle (MITM) attack occurs when two legitimate parties

communicate through an adversary without their knowledge or approval. With the

adversary’s control of the communication channel they may observe, modify, re-order,

insert or drop transmitted packets. This attack is also the basis for session hijacking, in

which the attacker hijacks a legitimate session, often flooding the user’s radio or ignoring

their messages, in order to masquerade as the user to the other communicating party

(Bharti & Chaudhary, 2013). As mentioned in the last paragraph about packet dropping

threats, the layer of the OSI model at which LBACS is implemented may allow the

adversary to initiate a more passive (observe, re-order or drop packets) MITM attack.

However, LBACS prevents the insertion or modification of packets which also includes

active session hijacking threats where the adversary attempts to masquerade as the

sensor. In the worst case scenario, the adversary will designate itself as the message

recipient by compromising routing behavior at the link or network layer, but will still be

unable to masquerade as the intended recipient without the ability to generate the correct

authentication tag. Session attacks are usually possible because critical session details are

communicated over the insecure communication medium, such as the session id in a

cookie or query parameter (Bharti & Chaudhary, 2013). This attack becomes more likely

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 115
 .
when this session identifier remains constant. The LBACS session is characterized by

pairwise key and a seed generated by a shared KDF and PRNG respectively. In addition

to changing these parameters (pairwise key and shared seed) each session, the

authentication tag also utilizes a changing Request ID to generate and verify it’s modified

HMAC (see Communication Flows section for additional information on generation and

verification). Even if the same message is sent repeatedly be legitimate participants

within a session, the generated authentication tag changes to maintain authentication or

the sender, integrity of the message, replay protection, auditing and universal forgeablity.

The MITM threat has therefore been considered as possible (2) with a low (1) impact to

the scheme’s objectives and a resulting minor (2) risk, while session hijacking has been

considered as unlikely (1) with a high (3) impact to the scheme’s objectives and a

resulting major (3) risk.

 Although WSN deployments are usually designed with their environment in

mind, highly volatile environments, as are some cases (military, weather monitoring),

should always be considered as a threat. These threats would disable the WSN by

immobilizing nodes, resulting in a loss of service. Unless captured by an adversary, this

individual threat does not pose a significant risk to the security objectives. As a result, the

threat has been considered as possible (2) with a low (1) impact to the scheme’s

objectives and a resulting minor (2) risk.

 Internal threats such as malicious employees or error prone organization

procedures are critical threats. Although the likelihood varies based on the maturity of the

organization’s policies and execution of such policies, issues propagating from these

policies are likely to reveal much theoretical and practical knowledge of the network’s

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 116
 .
implementation. These could reveal useful designs and artifacts to an adversary such as

certificates, keys or key generation procedures. These threats may be considered as likely

(3) with a high (3) impact to the scheme’s objectives and a resulting critical (3) risk.

 As discussed in the “Blockchain” section of the literature review, utilizing the

blockchain provides many security properties such as decentralized autonomy,

auditability, replication and integrity. A more objective threat analysis of this sub-

component would be more comprehensive and if a specific implementation was

considered. Since LBACS is independent of a particular blockchain implementation, this

will be considered as an area of future work and the sub-component would be assessed

generally as a software implementation and as such would inherit the vulnerabilities

associated with all software implementations.

At this time however, it is possible to identify how the failure of this sub-

component may affect the scheme since it formalizes the trust backbone of LBACS. In

the worst case, the complete failure of a blockchain node would disconnect the sub-

network (the types illustrated in Figure 5 on page 50) that utilizes the blockchain node to

achieve a global state of the network. If the blockchain node utilized by a Trusted

Authentication Entity (TAE) fails (and there is no other TAE using another blockchain

node), the network would be unable to sufficiently prove the source of sensor data,

ultimately relying only on the authenticated contribution published by the Semi-Trusted

Base Station (STBS). Furthermore, the network would be unable to revoke participants,

since revocation is an action sanctioned from the trusted sub-network with the assistance

of a TAE. In essence, the network could continue to maintain itself until another TAE is

able to connect to the network (since a blockchain node will first sync with its peers to

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 117
 .
achieve a global state). The most affected participants would be consumer applications

requiring complete provenance (not solely relying on the STBS) and revocation. LBACS

may also utilize the chain of message submissions stored within the blockchain for

implicit security analysis.

Although, not a critical component of the scheme, it highlights the loss of some

auditability achieved through the shared use of the blockchain. Similarly, if a STBS loses

its ability to interact with the blockchain, it would lose its ability to secure provenance of

its forwarded sensor data and the ability to receive revocation messages from TAEs. Post

deployment procedures, such as the deployment of new nodes would also be negatively

affected. These threats may be considered as possible (2) with a medium (2) impact to the

scheme’s objectives and a resulting major (4) risk.

Although the blockchain network may be prone to sybil, byzantine attacks or peer

nodes who have found it possible to subvert the consensus protocol in their favor,

LBACS requires that all interactions on the network be digitally signed and verified

utilizing public/private key pairs. This verification process increases the integrity of the

global network. Moreover, software vulnerabilities and side channel attacks may expose

even more implementation vulnerabilities. These vulnerabilities may be classified under

many taxonomies such as the Comprehensive, Lightweight Application Security Process

v1.0 (Viega & Secure Software Inc, 2005)

 the Seven Pernicious Kingdoms (Tsipenyuk, Chess, & McGraw, 2005) or even a simpler

taxonomy of system vulnerabilities as illustrated in Figure 23 below to name a few.

These threats may be considered as possible (2) with a medium (2) impact to the

scheme’s objectives and a resulting major (4) risk.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 118
 .

Figure 23: Taxonomy of System Vulnerabilities (Hansen & Hansen, 2010)

The following tables assign pseudo-identifies for the earlier identified security

objectives (Table 9) and summarizes the LBACS threat assessment (Table 10)

respectively. It should be noted that Table 9 above was used to encode the LBACS

security objectives with identifiers that would be used in Table 10: LBACS Threat

Assessment Summary on page 119. Table 10, contains the list of vulnerabilities/threats

including MITM attacks and how they affected each security objective (encoded in the

table) based on the threat assessment methodology. The table also summarizes the

likelihood and impact of the threat or vulnerability when using LBACS.

Table 9: Security Objective Key for LBACS Threat Assessment Summary Table

Identifier Security Objective

1 Authentication

2 Integrity

3 Replay protection

4 Forward Secrecy

5 Backward Secrecy

6 Universal forgeability

7 Identity Revocation

8 Auditable

ALL All security objectives

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 119
 .

Table 10: LBACS Threat Assessment Summary

Component Sensor WSN STBS Blockchain

Threat Difficulty or Likelihood / Impact / Risk | Objectives

Device

Tampering
3/2/6 1248 2/3/6 1248

Device

Capture
3/2/6 1248 2/3/6 1248

Jamming 3/1/3 1248 2/3/6 1248

Node

Replication
3/1/3 1248 2/3/6 1248

Traffic

Analysis
 2/1/2 456

Traffic

Monitoring
 2/1/2 456

Network

Collisions

 2/2/4 17

Noise 2/2/4 17

Denial of

Service

 2/2/4 17

Denial of

Sleep

 2/2/4 17

Flooding 2/2/4 17

Sinkhole 2/1/2 37

Blackhole 2/1/2 37

Wormhole 2/1/2 37

Blackmail 2/1/2 37

Jellyfish 2/1/2 37

Grayhole 2/1/2 37

Selective

forwarding

 2/1/2 37

Man-in-the-

middle
2/1/2 1234678 1/3/3 1234678

Session

Hijacking
2/1/2 1234678 1/3/3 1234678

Natural

Environment
2/1/2 7 2/1/2 7

Replay Attack 1/3/3 1236

Insufficient

Security

Policies

3/3/3 ALL 3/3/3 ALL 3/3/3 ALL 3/3/3 ALL

Malicious

Employees

3/3/3 ALL 3/3/3 ALL 3/3/3 ALL 3/3/3 ALL

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 120
 .

Component Sensor WSN STBS Blockchain

Threat Difficulty or Likelihood / Impact / Risk | Objectives

STBS

Blockchain

node failure

2/2/4

1278

TAE

Blockchain

node failure

2/2/4

1278

Side Channel 2/2/4 ALL 2/2/4 ALL 2/2/4 ALL

Software

Vulnerabilities
2/2/4 ALL 2/2/4 ALL

2/2/4
ALL

5.3 LBACS Comparison

The following table highlights the vulnerabilities identified in the literature review

and subsequent threat assessment that LBACS directly protects sensors against.

Table 11: Vulnerabilities prevented by LBACS

Vulnerability With LBACS Without LBACS

Jamming Y N

Denial of Service Y N

Denial of Sleep Y N

Man-in-the-middle Y N

Session Hijacking Y N

Replay Attack Y N

As highlighted in the literature review, securing WSNs with lightweight

authentication schemes has been an active research area. Schemes and protocols such as:

 Secure Protocols for Sensor Networks (SPINS) (consolidating Secure Network

Encryption Protocol (SNEP) and the “micro” version of the Timed, Efficient,

Streaming, Loss-tolerant Authentication Protocol (Tesla))

 Short Message Authentication ChecK (SMACK) for battery exhaustion

 TinySec

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 121
 .

 Authentication and Anti-replay Security Protocol (AASP)

 Datagram Transport Layer Security Protocol (DTLS) with COAP

 Lithe

 Implicit Security Authentication Scheme

 all address authentication and other security concerns in different ways. The remainder

of this section will be dedicated to comparing the proposed Lightweight Blockchain

Authentication for Constrained Sensors (LBACS) scheme to these existing schemes.

5.3.1 SPINS

Although both SPINS and LBACS facilitate peer and group authentication in a

WSN, SPINS also provides data confidentiality and data freshness based on loose time

synchronization. LBACS is time independent however, instead using a PRNG to enforce

integrity. Moreover, while both utilizes an iterative key chain, SPINS assumes the base

station is computationally resourceful and secure while LBACS does not as it utilizes a

Trusted Authentication Entity connected by a fault tolerant and auditable blockchain

network. Furthermore, both utilize a non-transmitted message counter, preventing replay

attacks. In addition, SPINS uses a derived key to compute its authentication tag to protect

its master key, while LBACS reduces the key storage requirements by using a key

reduction mechanism and PRNG to reduce the transmitted authentication tag and

information available for differential cryptanalysis.

5.3.2 TinySec

Similar to the TinySec architecture included in the TinyOS providing replay

protection, message integrity and authentication, LBACS also asserts these security

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 122
 .
objectives. However, by operating at the link-layer, TinySec also provides confidentiality

and aims to support end-to-end security. Unlike TinySec which does not provide replay

protection, LBACS includes a request ID to address these concerns. Furthermore, to

achieve semantic security TinySec utilizes Initialization Vectors (IV) which are added to

the communication overhead. LBACS however relies on the HMAC reduction, changing

request ID, PRNG and KDF to reduce the information available for cryptanalysis.

5.3.3 Authentication and Anti-replay Security Protocol

Similar to the AASP, LBACS also provides integrity, intrusion detection, anti-

replay and authentication. It should be noted that AASP utilizes two approaches. The first

approach utilizes an authenticated handshake similar to the diffie hielman exchange for

new peers which presents an additional communication overhead. LBACS requires an

authenticated peer message from the KDC, distributed via the blockchain to add a new

peer to its keychain. This provides greater control and auditability. Interestingly, the

second approach, the last MAC method, provides authentication by hashing the shared

key and previous message. This raises concerns in lossy and low power networks (LLNs)

with high transmission rates as messages may be lost. LBACS enforces integrity by

including the message in the HMAC but iterates the shared keys and PRNG thus

facilitating these types of networks. Although this last MAC method assists with replay

protection, LBACS utilizes a request id that is a part of the session size to accomplish the

same.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 123
 .

5.3.4 DTLS and Lithe

Unlike AASP, COAP over DTLS (COAPs) and LBACS was designed with LLNs

in mind, where handshake messages may not be suitable. However, unlike LBACS,

DTLS provides confidentiality. Similar to LBACS which includes a request ID, DTLS

uses sequence numbers to facilitate message reordering and replay protection.

Furthermore, unlike DTLS, LBACS does not accommodate for fragmented messages.

Although, DTLS has more communication overhead dependent on the chosen HMAC

size for LBACS, Lithe utilizes 6LoWPAN to further compress DTLS.

5.3.5 Implicit Security Authentication Scheme

Similar to the Implicit Security Authentication Scheme which identifies malicious

node behavior to authenticate nodes, LBACS monitors node behaviour with the

assistance of the blockchain. However, in LBACS, the monitored parameters need not be

benchmarked before deployment allow easier to deployment. For example, if a rogue

base station using LBACS, has managed to spoof an authenticated transmission from a

trusted authentication entity, this attempt may be discovered when the Trusted

authentication entity fails to elicit a response from the sensor because of a failed

authentication attempts.

5.3.6 Short Message Authentication Check

Unlike many of the schemes and authentication methods identified in the

literature review, LBACS is implemented above the network layer of the OSI model.

Although, this may seem as an additional overhead, the scheme benefits from the well-

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 124
 .
researched and secure design considerations of lower layers of the OSI model while

providing authentication and the optional additional provenance on the blockchain.

Another security scheme operating above the transport layer but only considering the

immediate WSN is SMACK. Although SMACK includes the COAP version, code, token

length, message type, message id and request id in the integrity check, it does not include

the payload or the sender and recipients. LBACS, while acting independent of a

particular protocol above the network layer of the OSI model, also focuses on the

integrity of the payload, recipient and sender. Another concern with SMACK is the

ability of an attacker to perform a replay attack by submitted an accepted message from

the last session (Gehrmann, C., Tiloca, M., & Hoglund, R. 2015). LBACS prevents this

occurrence as each session change iterates on the shared key and random seed generated

by the KDF and PRNG respectively.

5.4 Results

The following metrics and tests results were recorded throughout the investigation.

5.4.1 Storage

Since LBACS aims to allow constrained oracles to achieve authentication and

provenance on larger blockchain networks, storage needs, a common concern for

constrained devices were recorded. Specifically, the size of the program data and key

storage requirements were recorded. Key storage requirements were captured at run-time

using the sizeof function in C programming language used, while program data size was

identified as the difference of the compiled mote program with and without LBACS. It

should be noted that program data size for LBACS will be considered with the ability to

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 125
 .
retrieve and update the keychain stored using the Contiki file system in addition to token

generation for two peers (Semi-Trusted Base Station and Trusted Authentication Entity).

Furthermore, the key sizes used were 32 bytes each as seen in Appendix A. These results

have been highlighted in the table below.

Table 12: LBACS Storage Requirements

Metric Size (bytes)

LBACS Keychain (see Figure 7 on page 55) 180

Z1 Buoy Reporter without LBACS 49,561

Z1 Buoy Reporter with LBACS 58,997

LBACS program data 9,436

5.4.2 Communication Overhead

Independent of the varying message size (no more than 24 bytes from sensors),

LBACS utilized 8 bytes for its authentication tag as specified in the configuration

parameters in the Configuration section of the previous Implementation Chapter.

5.4.3 Power Consumption

Power consumption for LBACS on the Z1 mote was also recorded and compared

with the same mote not using LBACS. The CPU time recorded over 50 intervals with the

assistance of the Contiki Energest module was used to calculate power consumption

using the following formula:

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 126
 .
Although the CPU time was recorded, the remaining parameter values for the formula

were acquired from the Z1 data sheet based on the mote’s use. In this instance,

calculations used a 3.6V (Voltage), 0.5mA (Current) with the frequency of the internal

clock (RTIMER_SECOND) to be 32768 ticks at a 10 second interval (INTERVAL

TIME). The average power difference illustrated in Figure 24 below was 0.077  0.01

mW using a 95% confidence interval. The CPU time for each observation along with

additional metrics such as low power mode, transmit, listen and clock time have been

included in Appendix D.

Figure 24: Power Consumption Comparison with LBACS

5.4.4 Time

Moreover, the time recorded to generate the LBACS authentication tag for two

(2) peers (STBS and TAE) on the Z1 mote was recorded with the assistance of the

Contiki Energest module. As illustrated in Figure 25 below, LBACS token generation on

the Z1 mote averaged 38 milliseconds (ms) with the exception of session changes which

0

0.05

0.1

0.15

0.2

0.25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

P
o

w
er

 (
m

W
)

Interval

Power Consumption Comparison

LBACS Without LBACS

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 127
 .
averaged 107 ms due to the combined use of the KDF and PRNG. Time was recorded

over 388 tag generation attempts which included 35 session changes. The data recorded

has been included in Appendix C.

Figure 25:LBACS Token Generation Time on Z1

5.4.5 Functional Test

In addition to unit and incremental testing to assert the correctness of the

implementation, a complete end-to-end test was performed. In this test, the session size

was reduced to 12 available requests and up to 400 requests were sent from the Z1 mote

to the Semi-Trusted Base Station (STBS) and to the Trusted Authentication Entity (TAE)

via the blockchain. The Firefox Copper COAP Client and a simpler COAP application

written in Node.js was also used to inject replay and spoof attacks into the WSN which

0

20

40

60

80

100

120

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

2
0

9

2
2

2

2
3

5

2
4

8

2
6

1

2
7

4

2
8

7

3
0

0

3
1

3

3
2

6

3
3

9

3
5

2

3
6

5

3
7

8

To
ke

n
 G

en
er

at
io

n
 T

im
e

(m
s)

Observation Number

LBACS Token Generation Time

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 128
 .
were rejected by network peers. Sampled serial output from the Z1 for request id 8 has

been included in Appendix F.

Although many requests were successful, due to the Low Power and Lossy Network

(LLN), some packets were loss in transmission. As a result, the session change request

was re-transmitted to ensure that the base station would receive this request. The TCP

dump showing network packets acquired from the Raspberry PI’s slip (USB) connection

to the router has also been included in Appendix E. Moreover, log output from the STBS

denoting the LBACS authentication, session change, signature generation and publishing

of the buoy data has also been included in Appendix G. Similarly, logs from the TAE,

acknowledging newly published buoy data from the blockchain, verifying the STBS in

the Certificate Registry, verifying the signature of the STBS and subsequently

authenticating the sensor mote using LBACS and approving the message on the

blockchain has been included in Appendix H. It should be noted that logs from the STBS

and the TAE were retrieved from an asynchronous implementation and therefore will not

always follow the order in which messages were received especially due to the latency

from interacting with the blockchain implementation. The Certificate Authority (CA) was

also implemented with the ability to approve or remove entities (STBS, TAE or CA)

from the certificate registry using a restful endpoint.

5.4.6 Hardware Overhead

The hardware overhead on a constrained device contributed by a LBACS

implementation is directly dependent on the hardware requirements of the cryptographic

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 129
 .
constructions (KDF, PRNG, HMAC) and application needs. The hardware requirements

of LBACS has been modeled using the block diagram in Figure 26 which describes

LBACS as an integrated circuit.

Figure 26: LBACS Authentication Hardware Block Diagram

The block diagram illustrates an authentication module, similar to the one

described in the Implementation chapter, for a LBACS Integrated Circuit (IC) that uses a

HMAC component and three multiplexers to achieve the HMAC reduction as described

in the proposal. Specifically, the module uses mainly eight (8) bit data paths to accept the

authentication parameters (intention, request id, node id, peer id random seed) except for

the pairwise key and message which are thirty-two (32) or four times eight (4 x 8) data

paths to reduce the required design area for low core micro processor and System on a

Chip (SoC) designs. Both the intention bits and request id are included in the IC’s output.

In order to generate the HMAC, LBACS uses the HMAC specified in its configuration

parameters by the system designer as highlighted in the proposal. The HMAC output,

illustrated as eight eight bit data paths is fed into three 8-1 multiplexers (MUX1, MUX2

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 130
 .
and MUX3) which reduce the HMAC output based on the inputted data select lines. In

this implementation, the data select lines are three constants (C1, C2, C3), and the shared

PRNG random seed.

This design was implemented in Very High Speed Integrated Circuit Hardware

Description Language (VHDL) IEEE1076 in Appendix K. VHDL IEEE1076 provides a

standard formal notation that assists in the development, synthesis, testing and

communication of hardware designs ("IEEE Standard VHDL Language Reference

Manual", 2009). This therefore allows this design to be easily replicated, communicated

and tested for further research and implementations.

In this implementation, the Keccak-f permutation was chosen as the variable size,

output sponge construction allowed it to be used as a suitable PRNG, KDF and HMAC.

Many contributions have been made to optimize the area, storage and memory

requirements on low core processors used in constrained devices as proposed in the

Keccak Implementation Overview (Bertoni et. al, 2011). Variants of these contributions

have even targeted very constrained RFID devices (Pessl and Hutter, 2013) (Kavun and

Yalcin, 2010) and Fixed Programmable Gated Array implementations (FPGA)

(Provelengios et. al, 2012).

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 131
 .

Chapter 6: Conclusion

With the research objectives met, this section will discuss the findings of the

research project, specifically answer the research questions and highlight possible areas

for future work.

6.1 Discussion

The review of existing literature highlighted several concerns and opportunities as

it pertains to achieving provenance of sensor data on the blockchain. Concerns arising

from the design considerations and review of existing WSN authentication schemes

included:

 Costs (financial and communication overhead) associated with key management

 Costs to deploy secure base stations

 Fault tolerance

 Loss of provenance through network topologies

 One solution does not fit all

 Inability to deploy secure cryptographic constructions on constrained sensors to

communicate with more resource competent nodes.

Although the blockchain addresses several issues such as byzantine fault tolerance,

provenance, integrity and auditability, current implementations are too resource intensive

for constrained devices.

To address this gap in the research, the Lightweight Blockchain Authentication for

Constrained Sensors (LBACS) scheme was proposed. With the assistance of a

lightweight multi-signature authentication tag, symmetric and asymmetric schemes, it

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 132
 .
allows constrained sensor devices to authenticate with resource competent peers on the

blockchain through semi-trusted base stations. The integration of the blockchain and the

use of several cryptographic constructions allows the scheme to observe the various

design considerations of sensors networks while providing the following security

objectives:

1. Authentication

2. Blockchain Provenance

3. Integrity

4. Replay Protection

5. Weak Backward Secrecy

6. Weak Forward Secrecy

7. Universal Forgeability

8. Identity Revocation

9. Auditable

When using the LBACS configuration parameters as described in Table 5 on page 85,

the resource requirements for a constrained sensor authenticating and providing

provenance through integrity on the blockchain has been included in Table 3 below.

Table 13: LBACS Resource Requirements Summary

Metric Value

LBACS Keychain (see Figure 7 on page 55) 180 bytes

LBACS program data 9,436 bytes

Communication Overhead 8 bytes

Power Consumption 0.077  0.01 mW

Token Generation Time (general) 38ms

Token Generation Time (during session

change)
107ms

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 133
 .

Similarly, the hardware requirements for a sensor device utilizing LBACS or

implementing LBACS as an independent Integrated Circuit were highlighted and

illustrated in a block diagram in Figure 26 on page 129 and also in VHDL in Appendix

K.

The functional tests conducted attested to the qualitative thread and risk assessment

conducted as participating nodes successfully rejected replay and spoofed attacks.

Specifically, LBACS protects nodes from vulnerabilities such as jamming, denial of

service, denial of sleep, replay, session hijacking and man-in-the-middle attacks.

Although, routing related attacks may result in packet loss, LBACS incorporates post-

deployment key management methods to allow node and session recovery if necessary.

Furthermore, when compared to existing authentication schemes such as DTLS, TinySec,

Lithe, AASP, SPINS and SMACK, LBACS possessed many qualities of the compared

schemes with the exception of confidentiality. Although similar, LBACS possessed

several attractive traits such as being time independent when compared to SPINS,

preventing replay attacks when compared to TinySec, a small communication overhead,

fault tolerance, maintenance of provenance and the ability to integrate with the

blockchain. When compared to a node with no security, LBACS directly provides

protection against the following vulnerabilities:

1. Jamming

2. Denial of Service

3. Denial of Sleep

4. Man-in-the-middle

5. Session Hijacking

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 134
 .

6. Replay Attack

Based on the results arising from the quantitative and qualitative study, the

Lightweight Blockchain Authentication for Constrained Sensors (LBACS) scheme has

proven to provide a lightweight means for constrained sensors to authenticate and achieve

provenance of sensor data on the blockchain while providing several other benefits when

compared to other authentication schemes.

Although, the use case discussed in this thesis pertained to buoy monitoring, it should

be noted that the applicability of LBACS extends to all IoT. This includes areas such as

health, mining, supply chain management, aerospace to name a few. The configuration

parameters presented by LBACS increases its interoperability as devices with varying

computational resources may use a different KDF, PRNG, HMAC based on the

computational resources and needs of the network. This allows devices with hardware

enhanced modules such as the Texas Instruments CC2538 that has an AES128/256 SHA2

Hardware Encryption Engine (Gehrmann, Tiloca, & Hoglund, 2015) or mobile phones

with accelerated GPUs to utilize cryptographic primitives which are best suited for their

hardware and the network's needs. Similarly, the more competent blockchain nodes need

not be constrained to the Elliptic Curve implementation used in the buoy monitoring

implementation and may use other methods such as variants of RSA algorithm.

6.2 Future Work

Due to the time constraints of this thesis submission and the applicability and need

for sensor provenance, there is room for additional scope and work with LBACS.

Additional tests with other sensors or motes, Fixed Programmable Gated Arrays,

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 135
 .
blockchain implementations and LBACS configuration parameters may also identify

additional concerns or opportunities. Furthermore, several concerns such as

confidentiality, routing and closer integration with layers of the OSI model may be

explored. Furthermore, existing approaches to provenance which focus more on the

metadata collected such as the Open Provenance Model may be explored as LBACS only

asserts the integrity of data transmitted (which may include metadata) but does not

specify any meta data requirements.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 136
 .

References

Adejo, A., Onumanyi, A., Anyanya, J., & . Oyewobi, S. (2013). OIL AND GAS

PROCESS MONITORING THROUGH WIRELESS SENSOR NETWORKS: A

SURVEY. Ozean Journal Of Applied Sciences, 6(2), 39-43. Retrieved from

http://ozelacademy.com/ojas.v6.i2-1.pdf

Akyildiz, I., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor

networks: a survey.Computer Networks, 38(4), 393-422.

http://dx.doi.org/10.1016/s1389-1286(01)00302-4

Alemdar, H. & Ersoy, C. (2010). Wireless sensor networks for healthcare: A survey.

Computer Networks, 54(15), 2688-2710.

http://dx.doi.org/10.1016/j.comnet.2010.05.003

AlZain, M., Soh, B., & Pardede, E. (2013). A Byzantine Fault Tolerance Model for a

Multi-cloud Computing. 2013 IEEE 16Th International Conference On

Computational Science And Engineering. http://dx.doi.org/10.1109/cse.2013.30

Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer

Networks,54(15), 2787-2805. http://dx.doi.org/10.1016/j.comnet.2010.05.010

Arkko, J., Devarapalli, V., & Dupont, F. (2004). Using IPsec to Protect Mobile IPv6

Signaling Between Mobile Nodes and Home Agents.

http://dx.doi.org/10.17487/rfc3776

Barbeau, M. (2005). WiMax/802.16 threat analysis. Proceedings Of The 1St ACM

InternationalWorkshop On Quality Of Service & Security In Wireless And Mobile

Networks - Q2swinet '05. http://dx.doi.org/10.1145/1089761.1089764

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 137
 .
Beigl, M., Krohn, A., Zimmer, T., & Decker, C. (2014). Typical sensors needed in

ubiquitous and pervasive computing. Proceedings Of First International Workshop

on Networked Sensing Systems (INSS), 22-23. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.195&rep=rep1&type=p

df

Benet, J. (2016). IPFS - Content Addressed, Versioned, P2P File System (DRAFT 3) (1st

ed., pp. 1-11). IPFS. Retrieved from

https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ip

fs.draft3.pdf

Bertoni, G., Daemen, J., Peeters, M., & Van Assche, G. (2011). Cryptographic sponge

functions (1st ed.). Retrieved from http://sponge.noekeon.org/CSF-0.1.pdf

Bertoni, G., Daemen, J., Peeters, M., & Van Assche, G. (2011). The Keccak reference

(3rd ed., pp. 7-10, 31-65). Retrieved from http://keccak.noekeon.org/Keccak-

reference-3.0.pdf

Bhargava, K. & Goyal, D. (2014). PACKET DROPPING ATTACKS IN MANET: A

SURVEY. Journal Of Advanced Computing And Communication Technologies,

2(3), 14-18. Retrieved from http://www.jacotech.org/uploads/

1403889878__64718502.pdf

Bharti, A. & Chaudhary, M. (2013). Detection of Session Hijacking and IP Spoofing

Using Sensor Nodes and Cryptography. IOSR Journal Of Computer Engineering

(IOSR-JCE), 13(2), 66-73. Retrieved from http://www.iosrjournals.org/iosr-

jce/papers/Vol13-issue2/K01326673.pdf?id=4013

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 138
 .
Bitcoin Charts - Blockchain.info. (2016). Blockchain.info. Retrieved 2 August 2016,

from https://blockchain.info/charts/blocks-size

Camtepe, S. & Yener, B. (2007). Combinatorial Design of Key Distribution Mechanisms

for Wireless Sensor Networks. IEEE/ACM Transactions On Networking, 15(2), 346-

358. http://dx.doi.org/10.1109/tnet.2007.892879

Certicom Research,. (2010). Standards for Efficient Cryptography 2 (SEC 2) (1st ed., p.

9). Standards for Efficient Cryptography. Retrieved from http://www.secg.org/sec2-

v2.pdf

Chan, H., Perrig, A., & Song, D. (2003). Random Key Predistribution Schemes for

Sensor Networks. Proceedings Of The 2003 IEEE Symposium On Security And

Privacy, 197. Retrieved from http://dl.acm.org/citation.cfm?id=830566

Chen, H., Chen, X., & Niu, J. (2010). Implicit Security Authentication Scheme in

Wireless Sensor Networks. 2010 International Conference On Multimedia

Information Networking And Security. http://dx.doi.org/10.1109/mines.2010.170

Chen, H. & Xie, L. (2014). Improved One-Way Hash Chain and Revocation Polynomial-

Based Self-Healing Group Key Distribution Schemes in Resource-Constrained

Wireless Networks. Sensors, 14(12), 24358-24380.

http://dx.doi.org/10.3390/s141224358

CHELLI, K. (2015). Security Issues in Wireless Sensor Networks: Attacks and

Countermeasures.Proceedings Of The World Congress On Engineering 2015, 1(1),

519-524. Retrieved from

http://www.iaeng.org/publication/WCE2015/WCE2015_pp519-524.pdf

Choi, Y., Jeon, Y., & Park, S. (2010). A study on sensor nodes attestation protocol in a

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 139
 .

Wireless Sensor Network. In Advanced Communication Technology (ICACT), 2010 The

12
th

 International Conference on (pp. 574 - 579). Phoenix Park: IEEE. Retrieved from

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5440398

Christidis, K. & Devetsikiotis, M. (2016). Blockchains and Smart Contracts for the

Internet of Things. IEEE Access, 4, 2292-2303.

http://dx.doi.org/10.1109/access.2016.2566339

Contract - Bitcoin Wiki. (2015). Bitcoin Wiki. Retrieved 2 July 2016, from

https://en.bitcoin.it/wiki/Contract

Delegated Proof of Stake. (2016). Delegated Proof of Stake. Retrieved 2 August 2016,

from http://docs.bitshares.org/bitshares/dpos.html

Duetre, B., Cheung, S. and Levy, J. (2004) Lightweight Key Management in Wireless

Sensor Networks by Leveraging Initial Trust, Contract F30602-02-C-0212, April,

Menlo Park, CA: SRI International.

Ethereum Benchmarks. (2016). GitHub. Retrieved 4 July 2016, from

https://github.com/ethereum/wiki/wiki/Benchmarks

Gehrmann, C., Tiloca, M., & Hoglund, R. (2015). SMACK: Short message

authentication check against battery exhaustion in the Internet of Things. 2015 12Th

Annual IEEE International Conference On Sensing, Communication, And

Networking (SECON), 274 - 282. http://dx.doi.org/10.1109/sahcn.2015.7338326

Gheorghe, L., Rughinis, R., Deaconescu, R., & Tapus, N. (2010). Authentication and

Anti-replay Security Protocol for Wireless Sensor Networks. 2010 Fifth

International Conference On Systems And Networks Communications.

http://dx.doi.org/10.1109/icsnc.2010.9

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 140
 .
Gibson, A. (2014). TLSnotary - a mechanism for independently audited https sessions

(1st ed., pp. 1-10). Retrieved from https://tlsnotary.org/TLSNotary.pdf

Goldwasser, S. & Micali, S. (1984). Probabilistic encryption. Journal Of Computer And

System Sciences, 28(2), 270-299. http://dx.doi.org/10.1016/0022-0000(84)90070-9

Hansen, J. & Hansen, N. (2010). A taxonomy of vulnerabilities in implantable medical

devices. Proceedings Of The Second Annual Workshop On Security And Privacy In

Medical And Home-Care Systems - SPIMACS '10.

http://dx.doi.org/10.1145/1866914.1866917

Hearn, M. (2016). Understanding the bitcoinj security model. Bitcoinj.github.io.

Retrieved 3 July 2016, from https://bitcoinj.github.io/security-model

Henzen, L., Aumasson, J., Meier, W., & Phan, R. (2011). VLSI Characterization of the

Cryptographic Hash Function BLAKE. IEEE Transactions On Very Large Scale

Integration (VLSI) Systems, 19(10), 1746-1754.

http://dx.doi.org/10.1109/tvlsi.2010.2060373

Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2002). An application-specific

protocol architecture for wireless microsensor networks. IEEE Transactions On

Wireless Communications,1(4), 660-670. http://dx.doi.org/10.1109/twc.2002.804190

Hossain, I. & Mahmud, S. (2007). Analysis of Group Key Management Protocols for

Secure Multicasting in Vehicular Software Distribution Network. Third IEEE

International Conference On Wireless And Mobile Computing, Networking And

Communications (Wimob 2007). http://dx.doi.org/10.1109/wimob.2007.4390819

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 141
 .
Hu, Y., Perrig, A., & Johnson, D. (2006). Wormhole attacks in wireless networks. IEEE

J. Select. Areas Commun., 24(2), 370-380.

http://dx.doi.org/10.1109/jsac.2005.861394

IBM Corporation,. (2015). Device democracy: Saving the future of the Internet of Things

(pp. 1-23). NY: IBM Corporation. Retrieved from http://www-

935.ibm.com/services/us/gbs/thoughtleadership/internetofthings/

IEEE Standard VHDL Language Reference Manual. (2009).

http://dx.doi.org/10.1109/ieeestd.2009.4772740

Jooyoung Lee and D. R. Stinson, "A combinatorial approach to key predistribution for

distributed sensor networks," IEEE Wireless Communications and Networking

Conference, 2005, 2005, pp. 1200-1205 Vol. 2.

Karlof, C., Sastry, N., & Wagner, D. (2004). TinySec. Proceedings Of The 2Nd

International Conference On Embedded Networked Sensor Systems - Sensys '04,

162-175. http://dx.doi.org/10.1145/1031495.1031515

Kavun, E., & Yalcin, T. (2010). A Lightweight Implementation of Keccak Hash Function

for Radio-Frequency Identification Applications. Radio Frequency Identification:

Security And Privacy Issues, 258-269. http://dx.doi.org/10.1007/978-3-642-16822-

2_20

Khalique, A., Singh, K., & Sood, S. (2010). Implementation of Elliptic Curve Digital

 Signature Algorithm. International Journal Of Computer Applications, 2(2), 21-

 27. http://dx.doi.org/10.5120/631-876

Kheirabadi, S., Kulkarni, N., & Shaligram, A. (2011). WIRELESS SENSOR

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 142
 .
 NETWORK BASED TRAFFIC MONITORING; OVERVIEW AND THREATS

 TO ITS SECURITY. Journal Of Global Research In Computer Science, 2(8), 60-

 66. Retrieved from http://www.rroij.com/open-access/wireless-sensor-network-

 based-traffic-monitoring- overview-and-threats-to-its-security-60-66.pdf

Kortuem, G., Kawsar, F., Sundramoorthy, V., & Fitton, D. (2010). Smart objects as

building blocks for the Internet of things. IEEE Internet Computing, 14(1), 44-51.

http://dx.doi.org/10.1109/mic.2009.143

Kosba, A., Miller, A., Shi, E., Wen, Z., & Papamanthou, C. (2015). Hawk: The

Blockchain Model of Cryptography and Privacy-Preserving Smart Contracts. IACR

Cryptology Eprint Archive, 2015, 675. Retrieved from

https://eprint.iacr.org/2015/675.pdf

Lange, F. & Trón, V. (2015). RLPx Encryption. GitHub. Retrieved 4 August 2016, from

 https://github.com/ethereum/go-ethereum/wiki/RLPx-Encryption

Lee, J., Su, Y., & Shen, C. (2007). A Comparative Study of Wireless Protocols:

Bluetooth, UWB, ZigBee, and Wi-Fi. IECON 2007 - 33Rd Annual Conference Of

The IEEE Industrial Electronics Society, 46 - 51.

http://dx.doi.org/10.1109/iecon.2007.4460126

Leister, W., Fretland, T., & Balasingham, I. (2008). Use of MPEG-21 for Security and

Authentication in Biomedical Sensor Networks. 2008 Third International

Conference On Systems And Networks Communications.

http://dx.doi.org/10.1109/icsnc.2008.24

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 143
 .
Light Ethereum Subprotocol (LES). (2016). GitHub. Retrieved 13 July 2016, from

https://github.com/zsfelfoldi/go-ethereum/wiki/Light-Ethereum-Subprotocol-

%28LES%29

Liu, D., Ning, P., & Sun, K. (2003). Efficient self-healing group key distribution with

revocation capability. Proceedings Of The 10Th ACM Conference On Computer And

Communication Security - CCS '03, 231-240.

http://dx.doi.org/10.1145/948109.948141

Liu Feng, & Zhang Wenpeng,. (2010). The study on key distribution and management

mechanisms in Wireless Sensor Networks. 2010 The 2Nd International Conference

On Industrial Mechatronics And Automation.

http://dx.doi.org/10.1109/icindma.2010.5538067

Lopez, J., Roman, R., & Alcaraz, C. (2009). Analysis of Security Threats, Requirements,

 Technologies and Standards in Wireless Sensor Networks. Foundations of Security

 Analysis And Design V, 289-338. http://dx.doi.org/10.1007/978-3-642-03829-7_10

OASIS Message Queuing Telemetry Transport (MQTT) TC,. (2014). MQTT Version

3.1.1. Docs.oasis-open.org. Retrieved 5 August 2016, from http://docs.oasis-

open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

Oracalize API Reference. (2016). Docs.oraclize.it. Retrieved 2 July 2016, from

 http://docs.oraclize.it/

Ozdemir, S., Peng, M., & Xiao, Y. (2013). PRDA: polynomial regression-based privacy-

preserving data aggregation for wireless sensor networks. Wirel. Commun. Mob.

Comput., 15(4), 615-628. http://dx.doi.org/10.1002/wcm.2369

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 144
 .
Percival, C. (2009). Stronger key derivation via sequential memory-hard functions. Self-

published, 1-16. http://www.tarsnap.com/scrypt/scrypt.pdf

Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context Aware

Computing for The Internet of Things: A Survey. IEEE Communications Surveys &

Tutorials, 16(1), 414-454. http://dx.doi.org/10.1109/surv.2013.042313.00197

Perrig, A., Szewczyk, R., Tygar, J., Wen, V., & Culler, D. (2002). SPINS: Security

Protocols for Sensor Networks. Wireless Networks, 8(5), 521-534.

http://dx.doi.org/10.1023/a:1016598314198

Pessl, P., & Hutter, M. (2013). Pushing the Limits of SHA-3 Hardware Implementations

to Fit on RFID. Cryptographic Hardware And Embedded Systems - CHES 2013,

126-141. http://dx.doi.org/10.1007/978-3-642-40349-1_8

Ponemon Institute LLC,. (2016). 2016 Cost of Data Breach Study: Global Analysis (p. 1).

IBM. Retrieved from http://www-01.ibm.com/common/ssi/cgi-

bin/ssialias?htmlfid=SEL03094WWEN

Popejoy, S. (2016). The Pact Smart-Contract Language (1st ed., pp. 1-16). Kadena LLC.

Retrieved from http://kadena.io/docs/Kadena-PactWhitepaper-Aug2016.pdf

Provelengios, G., Kitsos, P., Sklavos, N., & Koulamas, C. (2012). FPGA-based Design

Approaches of Keccak Hash Function. 2012 15Th Euromicro Conference On Digital

System Design. http://dx.doi.org/10.1109/dsd.2012.63

Raza, S., Shafagh, H., Hewage, K., Hummen, R., & Voigt, T. (2013). Lithe: Lightweight

Secure CoAP for the Internet of Things. IEEE Sensors J., 13(10), 3711-3720.

http://dx.doi.org/10.1109/jsen.2013.227765

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 145
 .
Raza, S., Trabalza, D., & Voigt, T. (2012). 6LoWPAN Compressed DTLS for CoAP.

2012 IEEE 8Th International Conference On Distributed Computing In Sensor

Systems, 287 - 289. http://dx.doi.org/10.1109/dcoss.2012.55

Rescorla, E. & Modadugu, N. (2012). Datagram Transport Layer Security Version 1.2.

http://dx.doi.org/10.17487/rfc6347

Schroeder, N. (2008). Sensors as Information Transducers. arXiv preprint

arXiv:0804.0814.

Shelby, Z., Hartke, K., & Bormann, C. (2014). The Constrained Application Protocol

(CoAP). http://dx.doi.org/10.17487/rfc7252

Shirey, R. (2000). Internet Security Glossary. http://dx.doi.org/10.17487/rfc2828

Singh, R., Singh, J., & Singh, R. (2016). SECURITY CHALLENGES IN WIRELESS

SENSOR NETWORKS. International Journal Of Computer Science And

Information Technology & Security, 6(3), 1-6. Retrieved from

http://ijcsits.org/papers/vol6no32016/1vol6no3.pdf

Szabo, N. (1994). Smart Contracts. Nick Szabo's Essays, Papers, and Concise Tutorials.

Retrieved 2 August 2016, from http://szabo.best.vwh.net/smart.contracts.html

Szilágyi, P. (2015). eth/63 fast synchronization algorithm. GitHub. Retrieved 6 July

2016, from https://github.com/ethereum/go-ethereum/pull/1889

Tiburski, R., Amaral, L., Matos, E., & Hessel, F. (2015). The importance of a standard

security archit ecture for SOA-based iot middleware. IEEE Commun. Mag., 53(12),

20-26. http://dx.doi.org/10.1109/mcom.2015.7355580

Townend, P., Webster, D., Venters, C., Dimitrova, V., Djemame, K., Lau, L., Jie Xu,

Fores, S., Viduto, V., Dibsdale, C., Taylor, N., Austin, J., Mcavoy, J. and Hobson, S.

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 146
 .

(2013). Personalised Provenance Reasoning Models and Risk Assessment in

Business Systems: A Case Study. 2013 IEEE Seventh International Symposium on

Service-Oriented System Engineering.

Trón, V. & Fikki, R. (2016). Account Management — Ethereum Homestead 0.1

 documentation.Ethdocs.org. Retrieved 4 August 2016, from

 http://ethdocs.org/en/latest/account-management.html

Trusted Computing Group. (2015). Guidance for Securing IoT Using TCG Technology

(1st ed..pp. 1-25). Trusted Computing Group. Retrieved from

http://www.trustedcomputinggroup.org/wp-

content/uploads/TCG_Guidance_for_Securing_IoT_1_0r21.pdf

Tsipenyuk, K., Chess, B., & McGraw, G. (2005). Seven Pernicious Kingdoms: A

Taxonomy of Software Security Errors. IEEE Security And Privacy Magazine, 3(6),

81-84. http://dx.doi.org/10.1109/msp.2005.159

Vaudenay, S. (2002). Security Flaws Induced by CBC Padding - Applications to SSL,

IPSEC, WTLS ... In EUROCRYPT '02 Proceedings of the International Conference

on the Theory and Applications of Cryptographic Techniques: Advances in

Cryptology (pp. 534-546). London, UK: Springer-Verlag.

Viega, J. & Secure Software Inc. (2005). The CLASP Application Security Process (1st

ed.). Secure Software Inc. Retrieved from

https://www.ida.liu.se/~TDDC90/literature/papers/clasp_external.pdf

Walport, M. (2016). Distributed ledger technology: beyond block chain (pp. 17-19).

London, U.K.: U.K. Government Office Science. Retrieved from

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 147
 .

https://www.gov.uk/government/publications/ distributed-ledger-technology-

blackett-review

Warren, J. (2012). Bitmessage: A Peer‐to‐Peer Message Authentication and Delivery

System (1st ed., pp. 1-5). Retrieved from https://bitmessage.org/bitmessage.pdf

Wenyuan Xu, Ke Ma, Trappe, W., & Yanyong Zhang. (2006). Jamming sensor networks:

attack and defense strategies. IEEE Network, 20(3), 41-47.

http://dx.doi.org/10.1109/mnet.2006.1637931

Wood, G. (2016). ETHEREUM: A SECURE DECENTRALISED GENERALISED

TRANSACTION LEDGER (1st ed., pp. 1-32). Retrieved from

http://gavwood.com/Paper.pdf

Zeng, Y., Xiang, K., & Li, D. (2012). Monitoring Technologies in Mission-Critical

Environment by Using Wireless Sensor Networks. Wireless Sensor Networks -

Technology And Applications. http://dx.doi.org/10.5772/48185

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 148
 .

Appendix

Appendix A

Included are the various LBACS shared library interfaces utilized in C.

/*

 * @copyright Gilroy Gordon 2016

 * @overview LBACS C Implementation for Constrained Devices

 */

#ifndef LBACS_H_

#define LBACS_H_

#include <stdint.h>

// Intention Bits

#define LBACS_INTENTION_BIT_SIZE 0x02 //bits

#define LBACS_INTENTION_PEER_AUTHENTICATION 0x00 //0000 - binary

#define LBACS_INTENTION_GROUP_AUTHENTICATION 0x01 //0001 - binary

#define LBACS_INTENTION_KEY_REVOCATION 0x02 //0010 - binary

#define LBACS_INTENTION_KEY_RECOVERY 0x03 //0011 - binary

#define LBACS_SESSION_SIZE 12//0x7F

#define LBACS_SESSION_CHANGE LBACS_SESSION_SIZE // 127 requests / max for 8 bits

#define LBACS_MAX_REQUEST_ID (LBACS_SESSION_SIZE-1)//0x7E // 126 requests

#define LBACS_TOKEN_TYPE uint8_t*

#define LBACS_MAX_TOKEN_SIZE 8

#define LBACS_HMAC_SIZE 3

#define LBACS_HMAC_PIECES_COUNT 32

#define LBACS_HMAC_PIECE_SIZE 8

#define LBACS_MAX_PEERS 2

#define LBACS_MAX_PAIRWISE_KEY_SIZE 32

#ifndef NULL

#define NULL 0

#endif

#ifndef bool

#define bool uint8_t

#endif

#ifndef true

#define true 1

#endif

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 149
 .

#ifndef false

#define false 0

#endif

/*

 * @function KDF

 * @description Key derivation function

 * @param seed uint8_t - PRNG seed

 * @param key uint8_t* - key array

 * @param keysize uint8_t - key array size

 * @returns uint8_t derived key

 */

typedef uint8_t* (* LBACS_KDF)(const uint8_t seed,

 const uint8_t* key_array,

 const uint8_t key_array_size);

typedef uint8_t (* LBACS_PRNG)(void **prngStore, const uint64_t seed);

typedef struct BIT_ {

 uint8_t value : 1;

 //char value;

} BIT;

typedef struct LBACS_SESSION_CTX_ {

 uint8_t my_request_id;

 uint8_t pairwise_key[LBACS_MAX_PAIRWISE_KEY_SIZE];

 uint8_t pairwise_key_size;

 uint8_t random_seed;

 BIT received_request_ids[LBACS_SESSION_SIZE];

} LBACS_SESSION_CTX;

typedef struct LBACS_KEYCHAIN_NODE_ {

 uint8_t peer_id;

 LBACS_SESSION_CTX session;

 //------ Functions used

 /*

 * @function PRNG

 * @param seed uint8_t - PRNG seed

 * @returns uint8_t PRNG number

 */

 LBACS_PRNG prng;

 void *prngStore;

 //struct LBACS_KEYCHAIN_NODE_ *next;

 void * next;

} LBACS_KEYCHAIN_NODE ;

typedef struct LBACS_CTX_

{

 //------ Node Specific Properties

 uint8_t node_id;

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 150
 .

 uint8_t node_private_key[LBACS_MAX_PAIRWISE_KEY_SIZE];

 uint8_t node_private_key_size;

 uint8_t no_peers; // keychain length

 //------ Peer Related Propeties

 /*

 - keychain linkedlist

 > peer Id | pairwise key | random seed

 */

 LBACS_KEYCHAIN_NODE keychain[LBACS_MAX_PEERS];

 /*

 * @function KDF

 * @description Key derivation function

 * @param seed uint8_t - PRNG seed

 * @param key uint8_t* - key array

 * @param keysize uint8_t - key array size

 * @returns uint8_t derived key

 */

 LBACS_KDF kdf;

 //uint8_t (*KDF) (uint8_t, uint8_t*, uint8_t);

} LBACS_CTX;

//--

// Private Methods

//--

// Public Methods

static LBACS_CTX * lbacs_ctx_instance = NULL;

//creates key store context from static variable

void lbacs_init_context(

 const uint8_t node_id,

 const uint8_t* node_private_key,

 const uint8_t node_private_key_size

);

void lbacs_clear_context(void);

void lbacs_init_context_with_kdf(

 const uint8_t node_id,

 const uint8_t* node_private_key,

 const uint8_t node_private_key_size,

 const LBACS_KDF kdf

);

void lbacs_init_context_with_context(LBACS_CTX *ctx);

//gets lbacs context

LBACS_CTX * get_lbacs_ctx();

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 151
 .

uint8_t lbacs_get_node_id();

//gets key store context from static variable

LBACS_KEYCHAIN_NODE * get_lbacs_keychain();

LBACS_KEYCHAIN_NODE * add_lbacs_peer(

 const uint8_t peer_id,

 const uint8_t* pairwise_key,

 const uint8_t pairwise_key_size,

 const uint8_t random_seed

);

LBACS_KEYCHAIN_NODE * add_lbacs_peer_with_prng(

 const uint8_t peer_id,

 const uint8_t* pairwise_key,

 const uint8_t pairwise_key_size,

 const uint8_t random_seed,

 const LBACS_PRNG prng,

 void *prngStore

);

LBACS_KEYCHAIN_NODE * get_lbacs_peer(

 const uint8_t peer_id

);

uint8_t lbacs_remove_peer_by_id(

 const uint8_t peer_id

);

//returns token/lbacs mac?

bool lbacs_authenticate(

 const uint8_t intention,

 uint8_t request_id,

 const uint8_t* message,

 const uint64_t message_size,

 const uint8_t* peer_ids,

 const uint8_t peer_id_size,

 const LBACS_TOKEN_TYPE token,

 const uint8_t token_size

);

LBACS_TOKEN_TYPE lbacs_generate_token(

 LBACS_TOKEN_TYPE token,

 const uint8_t intention,

 uint8_t* request_id,

 const uint8_t* message,

 const uint64_t message_size,

 const uint8_t* peer_ids,

 const uint8_t peer_id_size,

 uint8_t from_peer_id,

 const bool isAuthRequest

);

uint8_t* lbacs_generate_hmac(

 const uint8_t intention,

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 152
 .

Figure 27: LBACS C Interface for Constrained Devices

 const uint8_t request_id,

 const uint8_t* message,

 const uint64_t message_size,

 const uint8_t from_peer_id,

 const uint8_t to_peer_id,

 LBACS_KEYCHAIN_NODE * peer,

 uint8_t* hmac_size

);

bool lbacs_truncate_hmac(

 uint8_t* hmac,

 uint8_t* hmac_size,

 const uint8_t random_seed,

 const uint8_t expected_size

);

void lbacs_update_session_after_request(LBACS_KEYCHAIN_NODE * peer);

void lbacs_init_session(

 LBACS_SESSION_CTX * session,

 const uint8_t* pairwise_key,

 const uint8_t pairwise_key_size,

 const uint8_t random_seed

);

//-----------------

// Utility Functions

LBACS_CTX* loadLBACSContext(void);

int saveLBACSContext(LBACS_CTX * ctx);

int removeLBACSContextStore();

void print_lbacs_context(const LBACS_CTX * ctx);

void print_lbacs_peer(const LBACS_KEYCHAIN_NODE * peer);

//-----------

// Utility Functions Debug

#endif

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 153
 .

/*

 * @copyright Gilroy Gordon 2016

 * @overview LBACS C Implementation for Resource Competent Devices
 */

#ifndef LBACS_H_
#define LBACS_H_

#include <stdint.h>

// Intention Bits

#define LBACS_INTENTION_BIT_SIZE 0x02 //bits
#define LBACS_INTENTION_PEER_AUTHENTICATION 0x00 //0000 - binary

#define LBACS_INTENTION_GROUP_AUTHENTICATION 0x01 //0001 - binary
#define LBACS_INTENTION_KEY_REVOCATION 0x02 //0010 - binary

#define LBACS_INTENTION_KEY_RECOVERY 0x03 //0011 - binary

#define LBACS_SESSION_SIZE 12//0x7F

#define LBACS_SESSION_CHANGE LBACS_SESSION_SIZE // 127 requests / max for 8 bits
#define LBACS_MAX_REQUEST_ID (LBACS_SESSION_SIZE-1)//0x7E // 126 requests

#define LBACS_TOKEN_TYPE uint8_t*
#define LBACS_MAX_TOKEN_SIZE 8

#define LBACS_HMAC_SIZE 3

#define LBACS_HMAC_PIECES_COUNT 32
#define LBACS_HMAC_PIECE_SIZE 8

#ifndef NULL
#define NULL 0

#endif

#ifndef bool

#define bool uint8_t

#endif

#ifndef true

#define true 1
#endif

#ifndef false
#define false 0

#endif

/*

 * @function KDF

 * @description Key derivation function
 * @param seed uint8_t - PRNG seed

 * @param key uint8_t* - key array

 * @param keysize uint8_t - key array size
 * @returns uint8_t derived key

 */

typedef uint8_t* (* LBACS_KDF)(const uint8_t seed,
 const uint8_t* key_array,

 const uint8_t key_array_size);

typedef uint8_t (* LBACS_PRNG)(void **prngStore, const uint64_t seed);

typedef struct BIT_ {
 uint8_t value : 1;

} BIT;

typedef struct LBACS_SESSION_CTX_ {

 uint8_t my_request_id;
 uint8_t* pairwise_key;

 uint8_t pairwise_key_size;

 uint8_t random_seed;

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 154
 .

 BIT received_request_ids[LBACS_SESSION_SIZE];

} LBACS_SESSION_CTX;

typedef struct LBACS_KEYCHAIN_NODE_ {

 uint8_t peer_id;

 LBACS_SESSION_CTX * session;

 //------ Functions used
 /*

 * @function PRNG

 * @param seed uint8_t - PRNG seed
 * @returns uint8_t PRNG number

 */

 LBACS_PRNG prng;

 void *prngStore;

 struct LBACS_KEYCHAIN_NODE_ *next;

} LBACS_KEYCHAIN_NODE ;

typedef struct LBACS_CTX_

{

 //------ Node Specific Properties
 uint8_t node_id;

 uint8_t* node_private_key;

 uint8_t node_private_key_size;

 uint8_t no_peers; // keychain length

 //------ Peer Related Propeties

 /*

 - keychain linkedlist
 > peer Id | pairwise key | random seed

 */

 LBACS_KEYCHAIN_NODE *keychain;

 /*

 * @function KDF
 * @description Key derivation function

 * @param seed uint8_t - PRNG seed

 * @param key uint8_t* - key array
 * @param keysize uint8_t - key array size

 * @returns uint8_t derived key

 */
 LBACS_KDF kdf;

 //uint8_t (*KDF) (uint8_t, uint8_t*, uint8_t);

} LBACS_CTX;

//--
// Private Methods

//--
// Public Methods

static LBACS_CTX * lbacs_ctx_instance = NULL;

//creates key store context from static variable

void lbacs_init_context(
 const uint8_t node_id,

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 155
 .

 const uint8_t* node_private_key,

 const uint8_t node_private_key_size

);

void lbacs_clear_context(void);

void lbacs_init_context_with_kdf(

 const uint8_t node_id,

 const uint8_t* node_private_key,
 const uint8_t node_private_key_size,

 const LBACS_KDF kdf

);

//gets lbacs context
LBACS_CTX * get_lbacs_ctx();

uint8_t lbacs_get_node_id();

//gets key store context from static variable

LBACS_KEYCHAIN_NODE * get_lbacs_keychain();

LBACS_KEYCHAIN_NODE * add_lbacs_peer(

 const uint8_t peer_id,
 const uint8_t* pairwise_key,

 const uint8_t pairwise_key_size,

 const uint8_t random_seed
);

LBACS_KEYCHAIN_NODE * add_lbacs_peer_with_prng(
 const uint8_t peer_id,

 const uint8_t* pairwise_key,

 const uint8_t pairwise_key_size,
 const uint8_t random_seed,

 const LBACS_PRNG prng,

 void *prngStore

);

LBACS_KEYCHAIN_NODE * get_lbacs_peer(
 const uint8_t peer_id

);

uint8_t lbacs_remove_peer_by_id(

 const uint8_t peer_id

);

//returns token/lbacs mac?

bool lbacs_authenticate(
 const uint8_t intention,

 uint8_t request_id,

 const uint8_t* message,
 const uint64_t message_size,

 const uint8_t* peer_ids,

 const uint8_t peer_id_size,
 const LBACS_TOKEN_TYPE token,

 const uint8_t token_size

);

LBACS_TOKEN_TYPE lbacs_generate_token(

 LBACS_TOKEN_TYPE token,
 uint8_t* token_size,

 const uint8_t intention,

 uint8_t* request_id,
 const uint8_t* message,

 const uint64_t message_size,
 const uint8_t* peer_ids,

 const uint8_t peer_id_size,

 uint8_t from_peer_id,
 const bool isAuthRequest

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 156
 .

Figure 28: LBACS C Interface for Resource Competent Devices

);

uint8_t* lbacs_generate_hmac(
 uint8_t* hmac,

 uint8_t* hmac_size,

 const uint8_t intention,
 const uint8_t request_id,

 const uint8_t* message,

 const uint64_t message_size,
 const uint8_t from_peer_id,

 const uint8_t to_peer_id,

 LBACS_KEYCHAIN_NODE * peer
);

bool lbacs_truncate_hmac(

 uint8_t* hmac,

 uint8_t* hmac_size,

 const uint8_t random_seed,

 const uint8_t expected_size

);

void lbacs_update_session_after_request(LBACS_KEYCHAIN_NODE * peer);

void lbacs_init_session(

 LBACS_SESSION_CTX ** session,

 const uint8_t* pairwise_key,
 const uint8_t pairwise_key_size,

 const uint8_t random_seed

);

//-----------------

// Utility Functions
void print_lbacs_context(const LBACS_CTX * ctx);

void print_lbacs_peer(const LBACS_KEYCHAIN_NODE * peer);

//-----------

// Utility Functions Debug

#endif

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 157
 .
Appendix B

Included are the various Solidity contracts used by LBACS to interact with the

Ethereum Blockchain network.

Figure 29: LBACS Solidity ECDSASignature Contract

Figure 30: LBACS Solidity Public Key Contract

pragma solidity ^0.4.0;

/*

 @author Gilroy Gordon

 @copyright Gilroy Gordon 2016. All Rights Reserved.

*/

contract ECPublicKey {

 string public pubKey;

 function ECPublicKey(string _pubKey){

 pubKey = _pubKey;

 }

}

pragma solidity ^0.4.0;

/*

 @author Gilroy Gordon

 @copyright Gilroy Gordon 2016. All Rights Reserved.

*/

contract ECDSASignature {

 string public signature;

 function ECDSASignature(string _signature){

 signature = _signature;

 }

}

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 158
 .

Figure 31: LBACS Solidity Library Contract

Figure 32: LBACS Solidity Abstract Entity Contract

pragma solidity ^0.4.0;

/*

 @author Gilroy Gordon

 @copyright Gilroy Gordon 2016. All Rights Reserved.

*/

import "./../libraries/LBACSLIB.sol";

contract LBACSEntity {

 address public publicKey;

 address public owner;

 LBACSLIB.EntityType public entityType;

 function LBACSEntity(address pubKey,LBACSLIB.EntityType _entityType){

 owner = msg.sender;

 publicKey = pubKey;

 entityType = _entityType;

 }

}

pragma solidity ^0.4.0;

/*

 @author Gilroy Gordon

 @copyright Gilroy Gordon 2016. All Rights Reserved.

*/

library LBACSLIB {

 enum EntityType {

 CertificateAuthority,

 TrustedAuthenticationEntity,

 SemiTrustedBaseStation,

 Sensor

 }

}

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 159
 .

Figure 33: LBACS Solidity Certificate Authority Contract

Figure 34: LBACS Solidity Trusted Authentication Entity Contract

pragma solidity ^0.4.0;

/*

 @author Gilroy Gordon

 @copyright Gilroy Gordon 2016. All Rights Reserved.

*/

import "./LBACSEntity.sol";

import "./../libraries/LBACSLIB.sol";

contract LBACSTrustedAuthEntity is LBACSEntity {

 event TAERequiresVerification(address entity);

 function LBACSTrustedAuthEntity(address pubKey)

 LBACSEntity(pubKey, LBACSLIB.EntityType.TrustedAuthenticationEntity)

 {

 TAERequiresVerification(this);

 }

}

pragma solidity ^0.4.0;

/*

 @author Gilroy Gordon

 @copyright Gilroy Gordon 2016. All Rights Reserved.

*/

import "./LBACSEntity.sol";

import "./../libraries/LBACSLIB.sol";

contract LBACSCertAuthority is LBACSEntity {

 event CARequiresVerification(address entity);

 function LBACSCertAuthority(address pubKey)

 LBACSEntity(pubKey, LBACSLIB.EntityType.CertificateAuthority)

 {

 CARequiresVerification(this);

 }

}

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 160
 .

Figure 35: LBACS Solidity Semi-Trusted Base Station Contract

pragma solidity ^0.4.0;

/*

 @author Gilroy Gordon

 @copyright Gilroy Gordon 2016. All Rights Reserved.

*/

import "./LBACSEntity.sol";

import "./../libraries/LBACSLIB.sol";

contract LBACSBaseStation is LBACSEntity {

 event STBSRequiresVerification(address entity);

 function LBACSBaseStation(address pubKey)

 LBACSEntity(pubKey, LBACSLIB.EntityType.SemiTrustedBaseStation)

 {

 STBSRequiresVerification(this);

 }

}

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 161
 .

Figure 36: LBACS Solidity Certificate Registry Contract

pragma solidity ^0.4.0;

/*

 @author Gilroy Gordon

 @copyright Gilroy Gordon 2016. All Rights Reserved.

*/

contract LBACSCertificateRegistry {

 mapping (address => bool) public certAuthorities;

 mapping (address => bool) public baseStations;

 mapping (address => bool) public authEntities;

 modifier isCertificateAuthority(address sender){

 if(!certAuthorities[msg.sender])throw;

 _;

 }

 function LBACSCertificateRegistry(){

 //assign creator as valid cert authority

 certAuthorities[msg.sender]=true;

 }

 function approveCertAuthority(address entity, bool approval)

 isCertificateAuthority(msg.sender)

 {

 certAuthorities[entity] = approval;

 }

 function approveBaseStation(address entity, bool approval)

 isCertificateAuthority(msg.sender)

 {

 baseStations[entity] = approval;

 }

 function approveAuthEntity(address entity, bool approval)

 isCertificateAuthority(msg.sender)

 {

 authEntities[entity] = approval;

 }

}

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 162
 .

Figure 37: LBACS Solidity Generic Message Contract

pragma solidity ^0.4.0;

/*

 @author Gilroy Gordon

 @copyright Gilroy Gordon 2016. All Rights Reserved.

*/

contract LBACSMessage {

 uint8 public fromPeerId;

 uint8 public toPeerId;

 uint8 public intention;

 uint8 public requestId;

 bytes5 public hmac;

 address public signature;

 address public authorEntity;

 function LBACSMessage(

 uint8 _fromPeerId,

 uint8 _toPeerId,

 uint8 _intention,

 uint8 _requestId,

 bytes5 _hmac,

 address _signature,

 address _authorEntity

){

 fromPeerId=_fromPeerId;

 toPeerId=_toPeerId;

 intention=_intention;

 requestId=_requestId;

 hmac= _hmac;

 signature= _signature;

 authorEntity = _authorEntity;

 }

}

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 163
 .

Figure 38: LBACS Solidity Authenticated Data Message

pragma solidity ^0.4.0;

/*

 @author Gilroy Gordon

 @copyright Gilroy Gordon 2016. All Rights Reserved.

*/

contract LBACSAuthenticatedData{

 //will only be verified by TAEs

 address public verifiedBy;

 address public item;

 address public submittedBy;

 function LBACSAuthenticatedData(address _item, address entity){

 item = _item;

 verifiedBy = entity;

 submittedBy = msg.sender;

 }

}

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 164
 .

Figure 39: LBACS Solidity Buoy Data Contract

pragma solidity ^0.4.0;

/*

 @author Gilroy Gordon

 @copyright Gilroy Gordon 2016. All Rights Reserved.

*/

import "./LBACSMessage.sol";

contract BuoyData is LBACSMessage {

 int32 public x;

 int32 public y;

 int32 public z;

 event BuoyDataPublished(address bouyData, int32 x, int32 y, int32 z);

 function BuoyData(

 uint8 _fromPeerId,

 uint8 _toPeerId,

 uint8 _intention,

 uint8 _requestId,

 bytes5 _hmac,

 address _signature,

 address _authorEntity,

 int32 _x,

 int32 _y,

 int32 _z

)

 LBACSMessage(

 _fromPeerId,

 _toPeerId,

 _intention,

 _requestId,

 _hmac,

 _signature,

 _authorEntity

)

 {

 x = _x;

 y = _y;

 z = _z;

 BuoyDataPublished(this,x,y,z);

 }

}

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 165
 .

Figure 40: LBACS Solidity Revocation Message

pragma solidity ^0.4.0;

/*

 @author Gilroy Gordon

 @copyright Gilroy Gordon 2016. All Rights Reserved.

*/

contract LBACSRevocationMessage {

 address public entity;

 address public submittedBy;

 /*

 * Shoud be Certificate Authority*

 */

 address public revokedBy;

 function LBACSRevocationMessage(

 address _entity,

 address _revokedBy

){

 revokedBy = _revokedBy;

 entity = _entity;

 submittedBy = msg.sender;

 }

}

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 166
 .
Appendix C

Table 14: LBACS Token Generation Time Observations

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

1,313 1276 37

2,449 2411 38

3,601 3563 38

4,753 4715 38

5,973 5867 106

7,057 7019 38

8,209 8171 38

9,361 9323 38

10,513 10475 38

11,665 11627 38

12,817 12779 38

13,969 13931 38

15,121 15083 38

16,273 16235 38

17,425 17387 38

18,645 18539 106

19,729 19691 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 167
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

20,881 20843 38

22,033 21995 38

23,185 23147 38

24,337 24299 38

25,489 25451 38

28,116 28078 38

28,166 28128 38

28,945 28907 38

30,097 30059 38

31,317 31211 106

32,401 32363 38

33,553 33515 38

34,705 34667 38

35,857 35819 38

37,009 36971 38

38,161 38123 38

39,313 39275 38

40,465 40427 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 168
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

41,617 41579 38

42,769 42731 38

43,989 43883 106

45,073 45035 38

46,225 46187 38

47,377 47339 38

48,529 48491 38

49,681 49643 38

50,833 50795 38

51,985 51947 38

53,137 53099 38

54,289 54251 38

55,441 55403 38

56,662 56555 107

57,745 57707 38

58,897 58859 38

60,049 60011 38

61,201 61163 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 169
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

62,353 62315 38

63,505 63467 38

64,657 64619 38

65,809 65771 38

66,961 66923 38

68,113 68075 38

69,334 69227 107

70,417 70379 38

71,569 71531 38

72,721 72683 38

73,873 73835 38

75,025 74987 38

76,177 76139 38

77,329 77291 38

78,481 78443 38

79,633 79595 38

80,785 80747 38

82,006 81899 107

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 170
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

83,089 83051 38

84,241 84203 38

85,393 85355 38

86,545 86507 38

87,697 87659 38

88,849 88811 38

90,001 89963 38

91,153 91115 38

92,305 92267 38

93,457 93419 38

94,678 94571 107

95,761 95723 38

96,913 96875 38

98,065 98027 38

99,217 99179 38

100,369 100331 38

101,521 101483 38

102,673 102635 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 171
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

103,825 103787 38

104,977 104939 38

106,129 106091 38

107,350 107243 107

108,433 108395 38

109,585 109547 38

110,737 110699 38

111,889 111851 38

113,041 113003 38

114,193 114155 38

115,345 115307 38

116,497 116459 38

117,649 117611 38

118,801 118763 38

120,022 119915 107

121,105 121067 38

122,257 122219 38

123,409 123371 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 172
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

124,561 124523 38

125,713 125675 38

126,865 126827 38

128,017 127979 38

129,169 129131 38

130,321 130283 38

131,473 131435 38

132,694 132587 107

133,777 133739 38

134,929 134891 38

136,081 136043 38

137,233 137195 38

138,385 138347 38

139,537 139499 38

140,689 140651 38

141,841 141803 38

142,993 142955 38

144,145 144107 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 173
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

145,366 145259 107

146,449 146411 38

147,601 147563 38

148,753 148715 38

149,905 149867 38

151,057 151019 38

152,209 152171 38

153,361 153323 38

154,513 154475 38

155,665 155627 38

156,817 156779 38

158,038 157931 107

159,121 159083 38

160,273 160235 38

161,425 161387 38

162,577 162539 38

163,729 163691 38

164,881 164843 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 174
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

166,033 165995 38

167,185 167147 38

168,337 168299 38

169,489 169451 38

170,710 170603 107

171,793 171755 38

172,945 172907 38

174,097 174059 38

175,249 175211 38

176,401 176363 38

177,553 177515 38

178,705 178667 38

179,857 179819 38

181,009 180971 38

182,161 182123 38

183,382 183275 107

184,465 184427 38

185,617 185579 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 175
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

186,769 186731 38

187,921 187883 38

189,073 189035 38

190,225 190187 38

191,377 191339 38

192,529 192491 38

193,681 193643 38

194,833 194795 38

196,054 195947 107

197,137 197099 38

198,289 198251 38

199,441 199403 38

200,593 200555 38

201,745 201707 38

202,897 202859 38

204,049 204011 38

205,201 205163 38

206,353 206315 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 176
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

207,505 207467 38

208,726 208619 107

209,809 209771 38

210,961 210923 38

212,113 212075 38

213,265 213227 38

214,417 214379 38

215,569 215531 38

216,721 216683 38

217,873 217835 38

219,025 218987 38

220,177 220139 38

221,398 221291 107

222,481 222443 38

223,633 223595 38

224,785 224747 38

225,937 225899 38

227,089 227051 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 177
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

228,241 228203 38

229,393 229355 38

230,545 230507 38

231,697 231659 38

232,849 232811 38

234,070 233963 107

235,153 235115 38

236,305 236267 38

237,457 237419 38

238,609 238571 38

239,761 239723 38

240,913 240875 38

242,065 242027 38

243,217 243179 38

244,369 244331 38

245,521 245483 38

246,742 246635 107

247,825 247787 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 178
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

248,977 248939 38

250,129 250091 38

251,281 251243 38

252,433 252395 38

253,585 253547 38

254,737 254699 38

255,889 255851 38

257,041 257003 38

258,193 258155 38

259,414 259307 107

260,497 260459 38

261,649 261611 38

262,801 262763 38

263,953 263915 38

265,105 265067 38

266,257 266219 38

267,409 267371 38

268,561 268523 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 179
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

269,713 269675 38

270,865 270827 38

272,086 271979 107

273,169 273131 38

274,321 274283 38

275,473 275435 38

276,625 276587 38

277,777 277739 38

278,929 278891 38

280,081 280043 38

281,233 281195 38

282,385 282347 38

283,537 283499 38

284,758 284651 107

285,841 285803 38

286,993 286955 38

288,145 288107 38

289,297 289259 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 180
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

290,449 290411 38

291,601 291563 38

292,753 292715 38

293,905 293867 38

295,057 295019 38

296,209 296171 38

297,430 297323 107

298,513 298475 38

299,665 299627 38

300,817 300779 38

301,969 301931 38

303,121 303083 38

304,273 304235 38

305,425 305387 38

306,577 306539 38

307,729 307691 38

308,881 308843 38

310,102 309995 107

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 181
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

311,185 311147 38

312,337 312299 38

313,489 313451 38

314,641 314603 38

315,793 315755 38

316,945 316907 38

318,097 318059 38

319,249 319211 38

320,401 320363 38

321,553 321515 38

322,774 322667 107

323,857 323819 38

325,009 324971 38

326,161 326123 38

327,313 327275 38

328,465 328427 38

329,617 329579 38

330,769 330731 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 182
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

331,921 331883 38

333,073 333035 38

334,225 334187 38

335,446 335339 107

336,529 336491 38

337,681 337643 38

338,833 338795 38

339,985 339947 38

341,137 341099 38

342,289 342251 38

343,441 343403 38

344,593 344555 38

345,745 345707 38

346,897 346859 38

348,118 348011 107

349,201 349163 38

350,353 350315 38

351,505 351467 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 183
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

352,657 352619 38

353,809 353771 38

354,961 354923 38

356,113 356075 38

357,265 357227 38

358,417 358379 38

359,569 359531 38

360,790 360683 107

361,873 361835 38

363,025 362987 38

364,177 364139 38

365,329 365291 38

366,481 366443 38

367,633 367595 38

368,785 368747 38

369,937 369899 38

371,089 371051 38

372,241 372203 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 184
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

373,462 373355 107

374,545 374507 38

375,697 375659 38

376,849 376811 38

378,001 377963 38

379,153 379115 38

380,305 380267 38

381,457 381419 38

382,609 382571 38

383,761 383723 38

384,913 384875 38

386,134 386027 107

387,217 387179 38

388,369 388331 38

389,521 389483 38

390,673 390635 38

391,825 391787 38

392,977 392939 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 185
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

394,129 394091 38

395,281 395243 38

396,433 396395 38

397,585 397547 38

398,806 398699 107

399,889 399851 38

401,041 401003 38

402,193 402155 38

403,345 403307 38

404,497 404459 38

405,649 405611 38

406,801 406763 38

407,953 407915 38

409,105 409067 38

410,257 410219 38

411,478 411371 107

412,561 412523 38

413,713 413675 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 186
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

414,865 414827 38

416,017 415979 38

417,169 417131 38

418,321 418283 38

419,473 419435 38

420,625 420587 38

421,777 421739 38

422,929 422891 38

424,150 424043 107

425,233 425195 38

426,385 426347 38

427,537 427499 38

428,689 428651 38

429,841 429803 38

430,993 430955 38

432,145 432107 38

433,297 433259 38

434,449 434411 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 187
 .

Clock Time After (ms) Clock Time Before (ms)
Difference

(ms)

435,601 435563 38

436,822 436715 107

437,905 437867 38

439,057 439019 38

440,209 440171 38

441,361 441323 38

442,513 442475 38

443,665 443627 38

444,817 444779 38

445,969 445931 38

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 188
 .
Appendix D

Table 15: Z1 mote metrics without LBACS

observation clock_time cpu lpm transmit listen Power (mW)

0 1384 2192 325508 69 137 0.012041016

1 2664 4247 323435 283 327398 0.023329468

2 3944 3742 323935 275 327402 0.02055542

3 5224 3786 323892 284 327394 0.020797119

4 6504 3214 324464 116 327563 0.017655029

5 7784 3629 324050 116 327564 0.019934692

6 9064 3581 324097 283 327393 0.019671021

7 10344 3225 324453 116 327563 0.017715454

8 11627 4059 324459 233 328285 0.022296753

9 12904 3250 323589 116 326721 0.017852783

10 14184 3394 324285 219 327460 0.018643799

11 15464 3363 324315 116 327562 0.018473511

12 16744 3214 324464 116 327562 0.017655029

13 18024 3912 323767 288 327390 0.021489258

14 19304 3226 324452 116 327561 0.017720947

15 20584 3210 324469 116 327562 0.017633057

16 21864 3219 324460 116 327562 0.017682495

17 23147 4202 324319 232 328287 0.023082275

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 189
 .
observation clock_time cpu lpm transmit listen Power (mW)

18 24424 3253 323584 116 326719 0.017869263

19 25704 3220 324459 116 327562 0.017687988

20 26984 3401 324278 219 327460 0.018682251

21 28264 3214 324464 117 327561 0.017655029

22 29544 3492 324187 224 327454 0.019182129

23 30824 3362 324316 116 327562 0.018468018

24 32104 3216 324462 117 327561 0.017666016

25 33384 3710 323969 181 327497 0.020379639

26 34667 4064 324455 233 328285 0.022324219

27 35944 3279 323560 116 326722 0.018012085

28 37224 3221 324457 116 327562 0.017693481

29 38504 3371 324308 116 327563 0.018517456

30 39784 3497 324181 224 327454 0.019209595

31 41064 3238 324440 116 327561 0.017786865

32 42344 3247 324432 116 327562 0.017836304

33 43624 3234 324445 116 327562 0.017764893

34 44904 3243 324436 116 327562 0.017814331

35 46187 4225 324296 232 328287 0.023208618

36 47464 3277 323560 116 326720 0.018001099

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 190
 .
observation clock_time cpu lpm transmit listen Power (mW)

37 48744 3244 324435 116 327561 0.017819824

38 50024 3247 324432 116 327562 0.017836304

39 51304 3234 324445 116 327562 0.017764893

40 52584 3663 324016 181 327497 0.02012146

41 53864 3383 324296 116 327563 0.018583374

42 55144 3237 324441 116 327561 0.017781372

43 56424 3516 324163 224 327454 0.019313965

44 57707 4088 324430 233 328284 0.022456055

45 58984 3276 323563 116 326722 0.017995605

46 60264 3243 324436 116 327561 0.017814331

47 61544 3383 324296 116 327562 0.018583374

48 62824 3236 324442 116 327561 0.017775879

Table 16: Z1 Mote metrics with LBACS

observation clock_time cpu lpm transmit listen Power (mW)

0 1384 21419 306275 68 137 0.117658081

1 2664 13760 313922 284 327398 0.075585938

2 3944 31606 296072 739 326935 0.173616943

3 5224 13104 314575 219 327460 0.071982422

4 6504 18938 308739 180 327496 0.104029541

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 191
 .
observation clock_time cpu lpm transmit listen Power (mW)

5 7784 13098 314581 116 327564 0.071949463

6 9064 13073 314604 283 327394 0.071812134

7 10344 12717 314961 117 327562 0.069856567

8 11664 29093 308928 232 337788 0.159812622

9 12904 12719 304616 117 317219 0.069867554

10 14184 12608 315071 0 327679 0.069257813

11 15464 19127 308553 219 327459 0.105067749

12 16744 31274 296404 573 327102 0.171793213

13 18024 12714 314964 116 327562 0.069840088

14 19304 12737 314942 116 327562 0.069966431

15 20584 18799 308879 116 327562 0.103265991

16 21864 12716 314963 117 327562 0.069851074

17 23184 23197 314825 234 337788 0.127424927

18 24424 18848 298487 117 317219 0.103535156

19 25704 12714 314965 116 327562 0.069840088

20 26984 12980 314699 224 327455 0.07130127

21 28264 12705 314973 117 327562 0.069790649

22 29544 37149 290530 464 327213 0.204065552

23 30824 12849 314830 116 327563 0.070581665

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 192
 .
observation clock_time cpu lpm transmit listen Power (mW)

24 32104 12707 314971 117 327562 0.069801636

25 33384 12707 314972 116 327563 0.069801636

26 34704 29397 308625 337 337685 0.161482544

27 35944 12755 304580 116 317219 0.070065308

28 37224 12984 314694 224 327453 0.071323242

29 38504 19029 308649 117 327562 0.104529419

30 39784 12705 314973 116 327562 0.069790649

31 41064 12719 314960 117 327562 0.069867554

32 42344 30924 296755 349 327328 0.169870605

33 43624 18923 308756 117 327562 0.103947144

34 44904 12726 314953 117 327562 0.069906006

35 46224 23214 314808 234 337788 0.127518311

36 47464 18959 298376 117 317219 0.104144897

37 48744 12724 314955 116 327563 0.06989502

38 50024 12726 314953 117 327562 0.069906006

39 51304 12722 314957 116 327562 0.069884033

40 52584 18971 308708 116 327562 0.104210815

41 53864 12871 314808 116 327562 0.070702515

42 55144 31290 296388 572 327103 0.171881104

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 193
 .
observation clock_time cpu lpm transmit listen Power (mW)

43 56424 12727 314951 117 327562 0.069911499

44 57744 29337 308685 233 337788 0.161152954

45 58984 12738 304597 117 317219 0.069971924

46 60264 12727 314952 117 327562 0.069911499

47 61544 19157 308522 116 327562 0.105232544

48 62824 12716 314962 117 327562 0.069851074

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 194
 .
Appendix E

The TCP dump showing network packets (between Zolertia Z1 mote and

Raspeberry PI Semi-Trusted Base Station) acquired from the Raspberry PI’s slip (USB)

connection to the router has also been included below.

13:37:00.923576 IP6 133:33:1033:1033:c30c::66.51 > 133:33:1033:1033:1633:1633:1633:1633.5683: UDP, length 45
 0x0000: 6000 0000 0035 1115 0133 0033 1033 1033 `....5...3.3.3.3

 0x0010: c30c 0000 0000 0066 0133 0033 1033 1033 f.3.3.3.3

 0x0020: 1633 1633 1633 1633 0033 1633 0035 ae78 .3.3.3.3.3.3.5.x
 0x0030: 4802 0008 0308 4eb4 978e 8f48 b361 7069 H.....N....H.api

 0x0040: 0462 756f 79ff 7b22 7822 3a2d 372c 2279 .buoy.{"x":-7,"y

 0x0050: 223a 352c 227a 223a 2d32 3530 7d ":5,"z":-250}
13:37:02.145325 IP6 133:33:1033:1033:c30c::66 > 133:33:1033:1033:1633:1633:1633:1633: ICMP6, destination

unreachable, unreachable port, 133:33:1033:1033:c30c::66 udp port 51, length 97

 0x0000: 6000 0000 0061 3a3f 0133 0033 1033 1033 `....a:?.3.3.3.3
 0x0010: c30c 0000 0000 0066 0133 0033 1033 1033 f.3.3.3.3

 0x0020: 1633 1633 1633 1633 0104 2d5b 0000 0000 .3.3.3.3..-[....

 0x0030: 6000 0000 0031 113f 0133 0033 1033 1033 `....1.?.3.3.3.3
 0x0040: 1633 1633 1633 1633 0133 0033 1033 1033 .3.3.3.3.3.3.3.3

 0x0050: c30c 0000 0000 0066 1633 0033 0031 6e67 f.3.3.1ng

 0x0060: 6845 0008 0308 4eb4 978e 8f48 ff43 6f6e hE....N....H.Con
 0x0070: 6669 726d 6564 2042 756f 7920 4461 7461 firmed.Buoy.Data

 0x0080: 2052 6563 6569 7665 64 .Received

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 195
 .
Appendix F

LBACS sensor output for Z1 mote has been included below.

Message : {"x":-6,"y":6,"z":-251}
--Requesting api/buoy--

LBACS Context is not NULL. No of peers : 2. Size : 180
LBACS Generating Token. Is Auth Request N from peer 102 with peer count 2

Checking if peer 50 is LBACS Peer

Found Peer With Id 50
About to update next request id 7

Updating next request id to 8. Session Request Id 8

Allocating memory to token
Assigned 16 bytes to token

Intention bit assigned 3

Getting first peer
Intention(3) requestId(8) from_peer_id(102) to_peer_id(50) message(

7b2278223a2d362c2279223a362c227a223a2d3235317d) pairwise_key(328ce2e8574)

Hex Hash : cbbe604358eacaf065e6e4c627b5203194bc39d159cff9c82833a370f37d27
Truncation | hmac_size L 32

here 1 = expected size : 3 | random_seed : 91 | hmac_size : 32

reducedBy : 0
reducedBy : 19

reducedBy : 6

Checking LBACS Session update for peer id : 50
Peer(50) Session does not need to be updated :

Assigning c @ token[2] to hmac1 generated using from_peer_id(102) to peer_id(50) with request_id(8)

Assigning 39 @ token[3] to hmac1 generated using from_peer_id(102) to peer_id(50) with request_id(8)
Assigning ea @ token[4] to hmac1 generated using from_peer_id(102) to peer_id(50) with request_id(8)

Generated and assgned hmac1

Checking if peer 51 is LBACS Peer
Skipping LBACS Peer With Id 50 to get to end of keychain

Found Peer With Id 51

Intention(3) requestId(8) from_peer_id(102) to_peer_id(51) message(
7b2278223a2d362c2279223a362c227a223a2d3235317d) pairwise_key(776f6e646572)

Hex Hash : 7597e694e7eec8271ab259134a824cf4e9dd7bc44ba85890663ac7cb688f0

Truncation | hmac_size L 32
here 1 = expected size : 3 | random_seed : 12 | hmac_size : 32

reducedBy : 0

reducedBy : 12
reducedBy : 24

Checking LBACS Session update for peer id : 51
Peer(51) Session does not need to be updated :

Assigning 75 @ token[5] to hmac2 using from_peer_id(102) to peer_id(51) with request_id(8)

Assigning 13 @ token[6] to hmac2 using from_peer_id(102) to peer_id(51) with request_id(8)
Assigning 90 @ token[7] to hmac2 using from_peer_id(102) to peer_id(51) with request_id(8)

Generated and assgned hmac2

Current Token in Hex : 3 - 8 - c - 39 - ea - 75 - 13 - 90 -
Token Address : 0x30b4

Setting token

Token Set (8) bytes. Token Hex : 38c39ea751390

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 196
 .
Appendix G

Output from Semi-Trusted Base Station running on Raspberry PI.

Received Request : { method: 'POST',
 coapCode: '0.02',

 url: '/api/buoy',

 rsinfo:
 { address: '133:33:1033:1033:c30c::66',

 family: 'IPv6',

 port: 51,
 size: 45 },

 options:

 [{ name: 'Uri-Path', value: <Buffer 61 70 69> },
 { name: 'Uri-Path', value: <Buffer 62 75 6f 79> }],

 payload: '{"x":-7,"y":5,"z":-250}',

 token: '\u0003\bN����H',

 headers: {} }

[34mdebug: [39mRouting Request [POST] -api/buoy
[34mdebug: [39mraw data {"x":-7,"y":5,"z":-250}

[34mdebug: [39mraw data after {"x":-7,"y":5,"z":-250}

[34mdebug: [39mtoken undefined
[34mdebug: [39mtoken hex 03084eb4978e8f48

[34mdebug: [39mhexToBytes 03084eb4978e8f48

[34mdebug: [39mhexToBytes start 03084eb4978e8f48
[34mdebug: [39mhexToBytes end ['3', '8', '4E', 'B4', '97', '8E', '8F', '48']

[34mdebug: [39mProcessing message id : 03084eb4978e8f48-102-50-{"x":-7,"y":5,"z":-250}

bytesToHex start ['3', '8', '4E', 'B4', '97', '8E', '8F', '48']
bytesToHex end 03084eb4978e8f48

[34mdebug: [39mauth { message: '{"x":-7,"y":5,"z":-250}',

 intention: 3,
 requestId: 8,

 token: [3, 8, 78, 180, 151, 142, 143, 72],

 hmac: '03084eb4978e8f48',
 peerIds: [50],

 fromPeerId: 102,

 toPeerId: 51,
 x: -7,

 y: 5,
 z: -250,

 status: 'Pending' }

hexToBytes start 03084eb497
hexToBytes end ['3', '8', '4E', 'B4', '97']

Authenticating request id 8 fom 2 peers

Checking if peer with id 102 exists
Checking if peer 102 is LBACS Peer

Found Peer With Id 102

checking for replay attacks
Request id is a valid request id

Checking if peer with id 50 exists

Skipping id 50 since this is node id
LBACS Generating Token. Is Auth Request Y from peer 102 with peer count 1

Generating token from Peer (102) to Peer Ids : [50 ,]

Checking if peer 102 is LBACS Peer
Found Peer With Id 102

Allocating memory to token

Assigned 8 bytes to token
Intention bit assigned 3

Getting first peer

Intention(3) requestId(8) from_peer_id(102) to_peer_id(50) message(
7b2278223a2d372c2279223a352c227a223a2d3235307d) pairwise_key(6d617276656c)

Hex Hash : 4ed89757de7d23f25de8222da494e48d8b45392168d932084ec652d49b2784e

Truncation | hmac_size L 32

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 197
 .

here 1 = expected size : 3 | random_seed : 9 | hmac_size : 32

reducedBy : 0

reducedBy : 17
reducedBy : 2

Checking LBACS Session update for peer id : 102

Peer(102) Session does not need to be updated :
Assigning 4e @ token[2] to hmac1 generated using from_peer_id(102) to peer_id(50) with request_id(8)

Assigning b4 @ token[3] to hmac1 generated using from_peer_id(102) to peer_id(50) with request_id(8)

Assigning 97 @ token[4] to hmac1 generated using from_peer_id(102) to peer_id(50) with request_id(8)
Generated and assgned hmac1

Current Token in Hex : 3 - 8 - 4e - b4 - 97 - 0 - 0 - 0 -

Token Address : 0x2b55c40
Marking request id 8 as received for peer 102

Checking LBACS Session update for peer id : 102
Peer(102) Session does not need to be updated :

authentication successful

[34mdebug: [39mPairwise Auth Successful

[34mdebug: [39mretrieved entity { publicKey:

'04f1412dad768cbf62374430e463ad11485bf3bb0a3cae9a580564edb4541ef64c9388134e5e726d6d747d98d8c2dd99413dece0d

99d40601246053f0b882ed6f5',
 pubKey: '0x698806fdc850b0316aae21d2d6c1fe14859fa6fc',

 address: '0x57a2bb7f4781102460f98776672a8383328814bc',

 entityType: 2 }
bytesToHex start [3, 8, 142, 143, 72]

bytesToHex end 030814214372

pairwise signature included, complete params { intention: 3,
 message: '{"x":-7,"y":5,"z":-250}',

 toPeerId: 51,

 peerIds: [50],
 fromPeerId: 102,

 hmac: '030814214372',

 requestId: 8,
 hmacBytes: '030814214372' }

data message to be signed {"intention":3,"requestId":8,"fromPeerId":102,"toPeerId":51,"message":"{\"x\":-7,\"y\":5,\"z\":-

250}","hmac":"030814214372"}

Current Gas Cost : 4712377

new

signature(30450220651d689508acbec0c52d23e1d697f63af0f067b653ca4b5efa745f77467b0baf022100dd86e00fb1a5ede289e0d
8ca8a0336bf8e5339a84ed35441facd3eb89572922f) created at address 0xe0eae27e64dab0e7e5730781cfcf2a2892f7dea4

signature with address result { requestId: 8,

 hmac: '030814214372',
 hmacBytes: '030814214372',

 signature:

'30450220651d689508acbec0c52d23e1d697f63af0f067b653ca4b5efa745f77467b0baf022100dd86e00fb1a5ede289e0d8ca8a033
6bf8e5339a84ed35441facd3eb89572922f',

 signatureAddress: '0xe0eae27e64dab0e7e5730781cfcf2a2892f7dea4' }

[34mdebug: [39mbuoyData created at 0x2251e2e51123db527e0fb3a92e63b501308fd4b1

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 198
 .
Appendix H

Output from Trusted Authentication Entity running on Mac OS X has been

included below.

rr { address: '0x2251e2e51123db527e0fb3a92e63b501308fd4b1',
 blockHash: '0x0d12f060042e491783f363c475de7baa33465e5128d6f5d2e37b0ba361d58be6',

 blockNumber: 3884,

 data:
'0x0000000000000000000000002251e2e51123db527e0fb3a92e63b501308fd4b1fff

ffffffffff80007ff

ffffffffffffffffff04',
 logIndex: 0,

 topics: ['0x250749d98ef32bb38fd1f63d529c2947cecd0039e0a06285800b7abfd66dab08'],

 transactionHash: '0x6d3bcde971d9e1126b9581079c138bb3ff667a950c070b7ece5309bc86bf1aa3',
 transactionIndex: 0 }

BuoyDataPublishedListener logs [{ address: '0x2251e2e51123db527e0fb3a92e63b501308fd4b1',

 blockHash: '0x0d12f060042e491783f363c475de7baa33465e5128d6f5d2e37b0ba361d58be6',
 blockNumber: 3884,

 logIndex: 0,

 transactionHash: '0x6d3bcde971d9e1126b9581079c138bb3ff667a950c070b7ece5309bc86bf1aa3',
 transactionIndex: 0,

 event: 'BuoyDataPublished',

 args:
 { bouyData: '0x2251e2e51123db527e0fb3a92e63b501308fd4b1',

 x: [Object],

 y: [Object],
 z: [Object] } }]

Processing buoy data at 0x2251e2e51123db527e0fb3a92e63b501308fd4b1

Processing message id : 0x2251e2e51123db527e0fb3a92e63b501308fd4b1
Current Gas Cost : 4712377

Current Gas Cost : 4712377

saved event { logIndex: 0,
 transactionIndex: 0,

 transactionHash: '0x6d3bcde971d9e1126b9581079c138bb3ff667a950c070b7ece5309bc86bf1aa3',

 blockHash: '0x0d12f060042e491783f363c475de7baa33465e5128d6f5d2e37b0ba361d58be6',
 blockNumber: 3884,

 address: '0x2251e2e51123db527e0fb3a92e63b501308fd4b1',

 type: null,
 event: 'BuoyDataPublished',

 args:

 { bouyData: '0x2251e2e51123db527e0fb3a92e63b501308fd4b1',
 x: { s: -1, e: 0, c: [Object] },

 y: { s: 1, e: 0, c: [Object] },
 z: { s: -1, e: 2, c: [Object] } },

 id: 104,

 createdAt: '2016-12-14T17:38:32.652Z',
 updatedAt: '2016-12-14T17:38:32.652Z' }

Current Gas Cost : 4712377

retrieved

signature(30450220651d689508acbec0c52d23e1d697f63af0f067b653ca4b5efa745f77467b0baf022100dd86e00fb1a5ede289e

0d8ca8a0336bf8e5339a84ed35441facd3eb89572922f) at address 0xe0eae27e64dab0e7e5730781cfcf2a2892f7dea4

LBACSAuthService:: Authenticating: { signature:
'30450220651d689508acbec0c52d23e1d697f63af0f067b653ca4b5efa745f77467b0baf022100dd86e00fb1a5ede289e0d8ca8a0

336bf8e5339a84ed35441facd3eb89572922f',

 entityAddress: '0x57a2bb7f4781102460f98776672a8383328814bc',
 intention: 3,

 requestId: 8,

 hmac: '0x03088e8f48',
 fromPeerId: 102,

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 199
 .

 toPeerId: 51,

 message: '{"x":-7,"y":5,"z":-250}' }

Current Gas Cost : 4712377
Verifying BaseStation in Registry On Chain using : 0x57a2bb7f4781102460f98776672a8383328814bc

Current Gas Cost : 4712377

BaseStation(0x57a2bb7f4781102460f98776672a8383328814bc) approval : true
Retrieveing public key of entity : 0x57a2bb7f4781102460f98776672a8383328814bc

Retrieved public key address(0x698806fdc850b0316aae21d2d6c1fe14859fa6fc) of

entity(0x57a2bb7f4781102460f98776672a8383328814bc)
retrieved public

key(04f1412dad768cbf62374430e463ad11485bf3bb0a3cae9a580564edb4541ef64c9388134e5e726d6d747d98d8c2dd99413dec

e0d99d40601246053f0b882ed6f5) at address 0x698806fdc850b0316aae21d2d6c1fe14859fa6fc

LBACSAuthService:: Received public key:
04f1412dad768cbf62374430e463ad11485bf3bb0a3cae9a580564edb4541ef64c9388134e5e726d6d747d98d8c2dd99413dece0d

99d40601246053f0b882ed6f5

data message to be signed {"intention":3,"requestId":8,"fromPeerId":102,"toPeerId":51,"message":"{\"x\":-7,\"y\":5,\"z\":-

250}","hmac":"0x03088e8f48"}

attempting to verify message with public key

04f1412dad768cbf62374430e463ad11485bf3bb0a3cae9a580564edb4541ef64c9388134e5e726d6d747d98d8c2dd99413dece0d
99d40601246053f0b882ed6f5

attempting to verify message with signature

30450220651d689508acbec0c52d23e1d697f63af0f067b653ca4b5efa745f77467b0baf022100dd86e00fb1a5ede289e0d8ca8a03
36bf8e5339a84ed35441facd3eb89572922f

key from public key <Key priv: null pub: <EC Point x:

f1412dad768cbf62374430e463ad11485bf3bb0a3cae9a580564edb4541ef64c y:
9388134e5e726d6d747d98d8c2dd99413dece0d99d40601246053f0b882ed6f5> >

verifyMessage result true

LBACSAuthService:: Verified signaure:
04f1412dad768cbf62374430e463ad11485bf3bb0a3cae9a580564edb4541ef64c9388134e5e726d6d747d98d8c2dd99413dece0d

99d40601246053f0b882ed6f5

hexToBytes start 03088e8f48
hexToBytes end ['3', '8', '8E', '8F', '48']

Authenticating pairwise params { message: '{"x":-7,"y":5,"z":-250}',

 intention: 3,

 requestId: 8,

 token: ['3', '8', '8E', '8F', '48'],

 peerIds: [51],
 fromPeerId: 102 }

LBACSAuthService:: Authenticated Pair Message:

04f1412dad768cbf62374430e463ad11485bf3bb0a3cae9a580564edb4541ef64c9388134e5e726d6d747d98d8c2dd99413dece0d
99d40601246053f0b882ed6f5

Retrieved Author Entity and Created Signature for Approved Message :

304602210080cdd5f683c7367b757b28c5888d6e8d0c3dfd56f875f59607da1d373f39521c022100e7a42b4eb0d7df8a7246ebba0
831f5e14541435fe60d13ee5d6cf65ff01dc745

Current Gas Cost : 4712377

new

signature(30450220487aaddc02bba75ab9e9de67b0b6e7e572c42e76e26c14fc8c07f79cfd3c4095022100f6938673ad84b64d13d

594c2d9eabde9b06e4721911e4250bf69669dbcc8f6d6) created at address 0x94b6bb02a1e4ecfab77679212cf43525c54e16cd

Approved message published at : 0x9c4579aafbeec156d739904cbcec58d81650e8e5
Approved message on chain for buoydata : 0x2251e2e51123db527e0fb3a92e63b501308fd4b1

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 200
 .
Appendix I

 The modified SHA3IUF implementation used as the KDF, PRNG and HMAC has

been included below.

 /* ---
 * Works when compiled for either 32-bit or 64-bit targets, optimized for

 * 64 bit.

 *
 * Canonical implementation of Init/Update/Finalize for SHA-3 byte input.

 *

 * SHA3-256, SHA3-384, SHA-512 are implemented. SHA-224 can easily be added.
 *

 * Based on code from http://keccak.noekeon.org/ .

 *
 * I place the code that I wrote into public domain, free to use.

 *

 * I would appreciate if you give credits to this work if you used it to
 * write or test * your code.

 *

 * Aug 2015. Andrey Jivsov. crypto@brainhub.org
 * Oct 2016 Modified by Gilroy Gordon. gilroygordon@gmail.com

 * -- */

#ifndef KECCAK_SHA_3_H_

#define KECCAK_SHA_3_H_

#include <stdint.h>

#define SHA3_ASSERT(x)

#if defined(_MSC_VER)

#define SHA3_TRACE(format, ...)
#define SHA3_TRACE_BUF(format, buf, l, ...)

#else

#define SHA3_TRACE(format, args...)
#define SHA3_TRACE_BUF(format, buf, l, args...)

#endif

#define SHA3_USE_KECCAK 1

/*

 * Define SHA3_USE_KECCAK to run "pure" Keccak, as opposed to SHA3.
 * The tests that this macro enables use the input and output from [Keccak]

 * (see the reference below). The used test vectors aren't correct for SHA3,
 * however, they are helpful to verify the implementation.

 * SHA3_USE_KECCAK only changes one line of code in Finalize.

 */

#if defined(_MSC_VER)

#define SHA3_CONST(x) x

#else

#define SHA3_CONST(x) x##L

#endif

/* The following state definition should normally be in a separate

 * header file
 */

/* 'Words' here refers to uint64_t */
#define SHA3_KECCAK_SPONGE_WORDS \

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 201
 .

 (((1600)/8/*bits to byte*/)/sizeof(uint64_t))

typedef struct sha3_context_ {

 uint64_t saved; /* the portion of the input message that we
 * didn't consume yet */

 union { /* Keccak's state */

 uint64_t s[SHA3_KECCAK_SPONGE_WORDS];
 uint8_t sb[SHA3_KECCAK_SPONGE_WORDS * 8];

 };

 uint32_t byteIndex; /* 0..7--the next byte after the set one
 * (starts from 0; 0--none are buffered) */

 uint32_t wordIndex; /* 0..24--the next word to integrate input

 * (starts from 0) */
 uint32_t capacityWords; /* the double size of the hash output in

 * words (e.g. 16 for Keccak 512) */
} sha3_context;

#ifndef SHA3_ROTL64

#define SHA3_ROTL64(x, y) \

 (((x) << (y)) | ((x) >> ((sizeof(uint64_t)*8) - (y))))

#endif

static const uint64_t keccakf_rndc[24] = {

 SHA3_CONST(0x0000000000000001UL), SHA3_CONST(0x0000000000008082UL),
 SHA3_CONST(0x800000000000808aUL), SHA3_CONST(0x8000000080008000UL),

 SHA3_CONST(0x000000000000808bUL), SHA3_CONST(0x0000000080000001UL),

 SHA3_CONST(0x8000000080008081UL), SHA3_CONST(0x8000000000008009UL),
 SHA3_CONST(0x000000000000008aUL), SHA3_CONST(0x0000000000000088UL),

 SHA3_CONST(0x0000000080008009UL), SHA3_CONST(0x000000008000000aUL),

 SHA3_CONST(0x000000008000808bUL), SHA3_CONST(0x800000000000008bUL),
 SHA3_CONST(0x8000000000008089UL), SHA3_CONST(0x8000000000008003UL),

 SHA3_CONST(0x8000000000008002UL), SHA3_CONST(0x8000000000000080UL),

 SHA3_CONST(0x000000000000800aUL), SHA3_CONST(0x800000008000000aUL),
 SHA3_CONST(0x8000000080008081UL), SHA3_CONST(0x8000000000008080UL),

 SHA3_CONST(0x0000000080000001UL), SHA3_CONST(0x8000000080008008UL)

};

static const uint32_t keccakf_rotc[24] = {

 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14, 27, 41, 56, 8, 25, 43, 62,
 18, 39, 61, 20, 44

};

static const uint32_t keccakf_piln[24] = {

 10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4, 15, 23, 19, 13, 12, 2, 20,

 14, 22, 9, 6, 1
};

/* For Init or Reset call these: */
void sha3_Init256(void *priv);

void sha3_Update(void *priv, void const *bufIn, size_t len);

/* This is simply the 'update' with the padding block.

 * The padding block is 0x01 || 0x00* || 0x80. First 0x01 and last 0x80
 * bytes are always present, but they can be the same byte.

 */

void const * sha3_Finalize(void *priv);

#endif

#ifndef SHA3_USE_KECCAK

#define SHA3_USE_KECCAK 1

#endif

/* generally called after SHA3_KECCAK_SPONGE_WORDS-ctx->capacityWords words

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 202
 .

 * are XORed into the state s

 */

static void
keccakf(uint64_t s[25])

{

 int i, j, round;
 uint64_t t, bc[5];

#define KECCAK_ROUNDS 24

 for(round = 0; round < KECCAK_ROUNDS; round++) {

 /* Theta */
 for(i = 0; i < 5; i++)

 bc[i] = s[i] ^ s[i + 5] ^ s[i + 10] ^ s[i + 15] ^ s[i + 20];

 for(i = 0; i < 5; i++) {

 t = bc[(i + 4) % 5] ^ SHA3_ROTL64(bc[(i + 1) % 5], 1);
 for(j = 0; j < 25; j += 5)

 s[j + i] ^= t;

 }

 /* Rho Pi */

 t = s[1];
 for(i = 0; i < 24; i++) {

 j = keccakf_piln[i];

 bc[0] = s[j];
 s[j] = SHA3_ROTL64(t, keccakf_rotc[i]);

 t = bc[0];

 }

 /* Chi */

 for(j = 0; j < 25; j += 5) {

 for(i = 0; i < 5; i++)

 bc[i] = s[j + i];

 for(i = 0; i < 5; i++)
 s[j + i] ^= (~bc[(i + 1) % 5]) & bc[(i + 2) % 5];

 }

 /* Iota */

 s[0] ^= keccakf_rndc[round];

 }
}

/* *************************** Public Inteface ************************ */

/* For Init or Reset call these: */

void
sha3_Init256(void *priv)

{

 sha3_context *ctx = (sha3_context *) priv;
 memset(ctx, 0, sizeof(*ctx));

 ctx->capacityWords = 2 * 256 / (8 * sizeof(uint64_t));

}

void

sha3_Update(void *priv, void const *bufIn, size_t len)

{
 sha3_context *ctx = (sha3_context *) priv;

 /* 0...7 -- how much is needed to have a word */
 uint32_t old_tail = (8 - ctx->byteIndex) & 7;

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 203
 .

 size_t words;

 uint32_t tail;
 size_t i;

 const uint8_t *buf = bufIn;

 SHA3_TRACE_BUF("called to update with:", buf, len);

 SHA3_ASSERT(ctx->byteIndex < 8);

 SHA3_ASSERT(ctx->wordIndex < sizeof(ctx->s) / sizeof(ctx->s[0]));

 if(len < old_tail) { /* have no complete word or haven't started

 * the word yet */
 SHA3_TRACE("because %d<%d, store it and return", (uint32_t)len,

 (uint32_t)old_tail);

 /* endian-independent code follows: */

 while (len--)

 ctx->saved |= (uint64_t) (*(buf++)) << ((ctx->byteIndex++) * 8);

 SHA3_ASSERT(ctx->byteIndex < 8);
 return;

 }

 if(old_tail) { /* will have one word to process */

 SHA3_TRACE("completing one word with %d bytes", (uint32_t)old_tail);

 /* endian-independent code follows: */
 len -= old_tail;

 while (old_tail--)

 ctx->saved |= (uint64_t) (*(buf++)) << ((ctx->byteIndex++) * 8);

 /* now ready to add saved to the sponge */

 ctx->s[ctx->wordIndex] ^= ctx->saved;
 SHA3_ASSERT(ctx->byteIndex == 8);

 ctx->byteIndex = 0;

 ctx->saved = 0;

 if(++ctx->wordIndex ==

 (SHA3_KECCAK_SPONGE_WORDS - ctx->capacityWords)) {

 keccakf(ctx->s);
 ctx->wordIndex = 0;

 }

 }

 /* now work in full words directly from input */

 SHA3_ASSERT(ctx->byteIndex == 0);

 words = len / sizeof(uint64_t);
 tail = len - words * sizeof(uint64_t);

 SHA3_TRACE("have %d full words to process", (uint32_t)words);

 for(i = 0; i < words; i++, buf += sizeof(uint64_t)) {

 const uint64_t t = (uint64_t) (buf[0]) |
 ((uint64_t) (buf[1]) << 8 * 1) |

 ((uint64_t) (buf[2]) << 8 * 2) |

 ((uint64_t) (buf[3]) << 8 * 3) |
 ((uint64_t) (buf[4]) << 8 * 4) |

 ((uint64_t) (buf[5]) << 8 * 5) |

 ((uint64_t) (buf[6]) << 8 * 6) |
 ((uint64_t) (buf[7]) << 8 * 7);

#if defined(__x86_64__) || defined(__i386__)

 SHA3_ASSERT(memcmp(&t, buf, 8) == 0);
#endif

 ctx->s[ctx->wordIndex] ^= t;
 if(++ctx->wordIndex ==

 (SHA3_KECCAK_SPONGE_WORDS - ctx->capacityWords)) {

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 204
 .

 keccakf(ctx->s);

 ctx->wordIndex = 0;

 }
 }

 SHA3_TRACE("have %d bytes left to process, save them", (uint32_t)tail);

 /* finally, save the partial word */

 SHA3_ASSERT(ctx->byteIndex == 0 && tail < 8);
 while (tail--) {

 SHA3_TRACE("Store byte %02x '%c'", *buf, *buf);

 ctx->saved |= (uint64_t) (*(buf++)) << ((ctx->byteIndex++) * 8);
 }

 SHA3_ASSERT(ctx->byteIndex < 8);
 SHA3_TRACE("Have saved=0x%016" PRIx64 " at the end", ctx->saved);

}

/* This is simply the 'update' with the padding block.

 * The padding block is 0x01 || 0x00* || 0x80. First 0x01 and last 0x80

 * bytes are always present, but they can be the same byte.
 */

void const *

sha3_Finalize(void *priv)
{

 sha3_context *ctx = (sha3_context *) priv;

 SHA3_TRACE("called with %d bytes in the buffer", ctx->byteIndex);

 /* Append 2-bit suffix 01, per SHA-3 spec. Instead of 1 for padding we
 * use 1<<2 below. The 0x02 below corresponds to the suffix 01.

 * Overall, we feed 0, then 1, and finally 1 to start padding. Without

 * M || 01, we would simply use 1 to start padding. */

#ifndef SHA3_USE_KECCAK

 /* SHA3 version */

 ctx->s[ctx->wordIndex] ^=

 (ctx->saved ^ ((uint64_t) ((uint64_t) (0x02 | (1 << 2)) <<

 ((ctx->byteIndex) * 8))));
#else

 /* For testing the "pure" Keccak version */

 ctx->s[ctx->wordIndex] ^=
 (ctx->saved ^ ((uint64_t) ((uint64_t) 1 << (ctx->byteIndex *

 8))));

#endif

 ctx->s[SHA3_KECCAK_SPONGE_WORDS - ctx->capacityWords - 1] ^=

 SHA3_CONST(0x8000000000000000UL);
 keccakf(ctx->s);

 /* Return first bytes of the ctx->s. This conversion is not needed for
 * little-endian platforms e.g. wrap with #if !defined(__BYTE_ORDER__)

 * || !defined(__ORDER_LITTLE_ENDIAN__) || \

 * __BYTE_ORDER__!=__ORDER_LITTLE_ENDIAN__ ... the conversion below ...
 * #endif */

 {

 uint32_t i;
 for(i = 0; i < SHA3_KECCAK_SPONGE_WORDS; i++) {

 const uint32_t t1 = (uint32_t) ctx->s[i];

 const uint32_t t2 = (uint32_t) ((ctx->s[i] >> 16) >> 16);
 ctx->sb[i * 8 + 0] = (uint8_t) (t1);

 ctx->sb[i * 8 + 1] = (uint8_t) (t1 >> 8);

 ctx->sb[i * 8 + 2] = (uint8_t) (t1 >> 16);
 ctx->sb[i * 8 + 3] = (uint8_t) (t1 >> 24);

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 205
 .

 ctx->sb[i * 8 + 4] = (uint8_t) (t2);

 ctx->sb[i * 8 + 5] = (uint8_t) (t2 >> 8);

 ctx->sb[i * 8 + 6] = (uint8_t) (t2 >> 16);
 ctx->sb[i * 8 + 7] = (uint8_t) (t2 >> 24);

 }

 }

 SHA3_TRACE_BUF("Hash: (first 32 bytes)", ctx->sb, 256 / 8);

 return (ctx->sb);

}

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 206
 .
Appendix J

 A section of the LBACS authentication service implemented in nodeJS utilizing

the custom pairwise implementation of LBACS, blockchain and elliptic curve library has

been included below.

/*
 @author Gilroy Gordon

 @copyright Gilroy Gordon 2016. All Rights Reserved.

*/

function LBACSAuthService(props) {

 props = props || {};
 var _self = this;

 _self.pairwiseContext = null;
 _self.pkiContext = new PKIService();

 _self.getNodeId = function() {
 return lbacsConfig.nodeId;

 };

 /**

 * Verify Signature Authenticity and Authenticate
 * Pairwise Message from EthereumContract

 */

 _self.authenticateLBACSMessage = function(params, callback) {
 callback = typeof callback === 'function' ? callback : function() {};

 params = params || {};

 params.getMessageFromJSON = typeof params.getMessageFromJSON == 'function' ?
 params.getMessageFromJSON : function(m) {

 return JSON.stringify(m.message)

 };
 logger.debug(LBACSAuthService.name + ":: Authenticating LBACS Message:", params);

 params.Contract

 .at(params.messageAddress)
 .toJSON(myEthConfig.getDefaults(), function(err, _messageJSON) {

 if (err) {

 logger.debug("Retrieved from json error", err);
 }

 logger.debug("Retrived message json", _messageJSON);

 LBACSChainUtility.retrieveSignature(_messageJSON.signature, function(signatureErr, signature) {

 if (signatureErr) {
 return callback(signatureErr);

 }

 params.message = params.getMessageFromJSON(_messageJSON);

 _self.authenticate({

 intention: _messageJSON.intention,

 message: params.message,
 peerIds: [_messageJSON.toPeerId],

 toPeerId: _messageJSON.toPeerId,

 fromPeerId: _messageJSON.fromPeerId,
 entityAddress: _messageJSON.authorEntity,

 signature: signature,

 requestId: _messageJSON.requestId,

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 207
 .

 hmac: _messageJSON.hmac.replace("0x", "")

 }, callback);

 });

 });

 };

 /**

 * Verify Signature Authenticity using ECDSA and Authenticate Pairwise Message with LBACS

 */
 _self.authenticate = function(params, callback) {

 callback = typeof callback === 'function' ? callback : function() {};
 params = params || {};

 logger.debug(LBACSAuthService.name + ":: Authenticating:", params);

 //check valid public key

 LBACSChainUtility.retrieveAndVerifyPublicKeyOfEntity(

 params.entityAddress,

 function(err, publicKey) {
 if (err) {

 return callback(err);

 }

 logger.debug(LBACSAuthService.name + ":: Received public key:", publicKey);

 //verify signature

 if (_self.pkiContext.verifyMessage(

 LBACSChainUtility.buildDataMessageToBeSigned(params),
 params.signature,

 publicKey

)) {
 logger.debug(LBACSAuthService.name + ":: Verified signaure:", publicKey);

 //pairwise authentication with sensor

 var pairwiseAuthParams = {

 message: params.message,

 intention: params.intention,

 requestId: params.requestId,
 token: hexToBytes(params.hmac, true),

 peerIds: [params.toPeerId],

 fromPeerId: params.fromPeerId
 };

 logger.debug("Authenticating pairwise params", pairwiseAuthParams);

 if (_self.pairwiseContext.authenticate(pairwiseAuthParams)) {
 logger.debug(LBACSAuthService.name + ":: Authenticated Pair Message:", publicKey);

 return callback(null, true);

 } else {
 return callback(new Error('Peer Authentication Failure'));

 }

 } else {
 return callback(new Error('Signature Could not be verified'));

 }

 })
 };

 /**
 * Authenticate Pairwise Message with LBACS

 */

 _self.authenticatePairwiseMessage = function(params) {

 params = params || {};

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 208
 .

 return _self.pairwiseContext.authenticate({

 message: params.message,

 intention: params.intention,
 requestId: params.requestId,

 token: hexToBytes(params.hmac, true),

 peerIds: Array.isArray(params.peerIds) ? params.peerIds : [params.toPeerId],
 fromPeerId: params.fromPeerId

 });

 };

 /**
 * Sign Message with ECDSA

 */

 _self.signMessage = function(params) {

 params = params || {};

 params.message = params.message || '';

 if (typeof params.message == 'function') {

 params.message = params.message();
 }

 if (typeof params.message === 'object') {

 params.message = JSON.stringify(params.message);
 }

 var pairwiseResult = _self.signMessageForPairwiseAuth(params);
 if (pairwiseResult) {

 params.requestId = pairwiseResult.requestId;

 pairwiseResult.hmac = params.hmac = bytesToHex(pairwiseResult.token.slice(0, 5));
 pairwiseResult.hmacBytes = pairwiseResult.token.slice(0, 5);

 logger.debug("pairwise signature successful, complete params", params);

 var messageToBeSigned = LBACSChainUtility.buildDataMessageToBeSigned(params);
 pairwiseResult.signature = _self.pkiContext.signMessage(messageToBeSigned);

 return pairwiseResult;

 }

 return null;

 };

 /**

 * Sign Message with ECDSA and create signature on Ethereum blockchain
 */

 _self.signMessageAndCreateSignatureOnChain = function(params, callback) {

 callback = noop(callback);
 var result = _self.signMessage(params);

 if (!result) {

 return callback(new Error("Unable to sign message"), result);
 }

 LBACSChainUtility.createSignature(result.signature, function(err, signatureAddress) {

 if (err) {
 return callback(err, result);

 }

 result.signatureAddress = signatureAddress;
 return callback(null, result);

 });

 };

 /**

 * Sign Message with ECDSA and create signature on Ethereum blockchain
 */

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 209
 .

 _self.forwardSignedMessageAndCreateSignatureOnChain = function(params, callback) {

 callback = noop(callback);

 params = params || {};
 params.message = params.message || '';

 if (typeof params.message == 'function') {

 params.message = params.message();
 }

 if (typeof params.message === 'object') {

 params.message = JSON.stringify(params.message);
 }

 params.hmac = bytesToHex(params.hmac);
 params.hmacBytes = params.hmac;

 var pairwiseResult = {

 requestId: params.requestId,

 hmac: params.hmac,

 hmacBytes: params.hmacBytes

 };
 if (pairwiseResult) {

 logger.debug("pairwise signature included, complete params", params);

 var messageToBeSigned = LBACSChainUtility.buildDataMessageToBeSigned(params);
 pairwiseResult.signature = _self.pkiContext.signMessage(messageToBeSigned);

 }

 LBACSChainUtility.createSignature(pairwiseResult.signature, function(err, signatureAddress) {
 if (err) {

 return callback(err, pairwiseResult);

 }
 pairwiseResult.signatureAddress = signatureAddress;

 return callback(null, pairwiseResult);

 });

 };

 /**

 * Sign Message using LBACS
 */

 _self.signMessageForPairwiseAuth = function(params) {

 logger.debug("signMessageForPairwiseAuth params", params);
 params = params || {};

 params.message = params.message || '';

 var result = _self.pairwiseContext.generateToken({
 intention: params.intention || 0,

 message: params.message,

 peerIds: params.peerIds,
 fromPeerId: params.fromPeerId || 0

 });

 return result;
 };

 /**

 * Approve/Sign Authenticated Data and Publish on Blockchain

 */
 _self.approveMessage = function(params, callback) {

 params = params || {};

 callback = noop(callback);

 _self.getMyAuthorEntity(null, function(err, authorEntity) {

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 210
 .

 if (err) {

 logger.error("Unable to approve message. Did not retrieve author entity", err);

 return callback(err);
 }

 var signature = _self.pkiContext.signMessage(params.messageAddress);

 logger.debug("Retrieved Author Entity and Created Signature for Approved Message : " + signature);

 LBACSChainUtility.createSignature(signature, function(err, signatureAddress) {
 if (err) {

 logger.error("Unable to publish approved message on chain, signature not created", err);

 return callback(err);
 }

 LBACSAuthenticatedData.new(params.messageAddress, authorEntity.address, signatureAddress, {
 from: myEthConfig.defaults.ownerAddress,

 gas: myEthConfig.getLatestGasCost()

 }).then(function(_approvedMessage) {

 logger.debug("Approved message published at : " + _approvedMessage.address);

 callback(null, _approvedMessage);

 }).catch(function(err) {

 logger.error("Unable to publish approved message on chain", err);

 callback(err);
 });

 });

 });

 };

 _self._init = function(props) {

 props = props || {};

 //load and save private key if its first time

 _self.pkiContext.savePrivateKey();

 //create pairwise context from lbacsjs

 _self.pairwiseContext = new LBACSContext({
 nodeId: lbacsConfig.nodeId,

 nodePrivateKey: lbacsConfig.nodePrivateKey,

 initializeContext: true,
 peers: lbacsConfig.peers

 });

 }

 _self._init(props);

}

module.exports = LBACSAuthService;

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 211
 .
Appendix K

IEEE1076 Very High Speed Integrated Circuit Hardware Definition Language

implementation of LBACS integrated circuit components.

-- Mock implementation of a HMAC

entity hmacMock is

 port (

 intention, requestId : in BIT_VECTOR(7 downto 0);

 nodeId, peerId : in BIT_VECTOR(7 downto 0);

 pairwiseKey, message : in BIT_VECTOR(31 downto 0);

 hmac : out BIT_VECTOR(255 downto 0)

);

end hmacMock;

architecture rtl of hmacMock is

begin

 process(pairwiseKey)

 begin

 for i in 0 to 8 loop

 for j in 0 to 31 loop

 hmac (i*j) <= pairwiseKey(j) xor message(j);

 end loop;

 end loop;

 end process;

end rtl;

-- Mock implementation of a HMAC ends

-- LBACS truncation module - Series of Multiplexers

entity lbacsTruncation is

 port (

 randomSeed : in BIT_VECTOR(7 downto 0);

 hmacIn : in BIT_VECTOR(255 downto 0);

 hmacOut : out BIT_VECTOR(23 downto 0)

);

end lbacsTruncation;

architecture rtl of lbacsTruncation is

begin

 process(hmacIn)

 variable randomSeedInt : integer ;

 variable tempInt : integer;

 begin

 randomSeedInt := 0;

 if (randomSeed(7)='1') then

 randomSeedInt := randomSeedInt + 128;

 end if;

 if (randomSeed(6)='1') then

 randomSeedInt := randomSeedInt + 64;

 end if;

 if (randomSeed(5)='1') then

 randomSeedInt := randomSeedInt + 32;

 end if;

 if (randomSeed(4)='1') then

Lightweight Wireless Network Authentication Scheme for Constrained Oracle Sensors 212
 .

 randomSeedInt := randomSeedInt + 16;

 end if;

 if (randomSeed(3)='1') then

 randomSeedInt := randomSeedInt + 8;

 end if;

 if (randomSeed(2)='1') then

 randomSeedInt := randomSeedInt + 4;

 end if;

 if (randomSeed(1)='1') then

 randomSeedInt := randomSeedInt + 2;

 end if;

 if (randomSeed(0)='1') then

 randomSeedInt := randomSeedInt + 1;

 end if;

 tempInt := (41 * randomSeedInt) mod 32;

 hmacOut(7 downto 0) <= hmacIn(tempInt+7 downto tempInt);

 tempInt := (2*41 * randomSeedInt) mod 32;

 hmacOut(15 downto 8) <= hmacIn(tempInt+7 downto tempInt);

 tempInt := (4*41 * randomSeedInt) mod 32;

 hmacOut(23 downto 16) <= hmacIn(tempInt+7 downto tempInt);

 end process;

end rtl;

-- LBACS truncation module ends

-- LBACS Integrated Circuit begins

entity lbacs is

 port (

 intentionIn, requestIdIn : in BIT_VECTOR(7 downto 0);

 nodeId, peerIdA, peerIdB : in BIT_VECTOR(7 downto 0);

 pairwiseKeyA, pairwiseKeyB, message : in BIT_VECTOR(31 downto 0);

 randomSeedA, randomSeedB : in BIT_VECTOR(7 downto 0);

 intentionOut, requestIdOut : out BIT_VECTOR(7 downto 0);

 hmac1, hmac2 : out BIT_VECTOR(23 downto 0)

);

end lbacs;

architecture rtl of lbacs is

 signal tempHMAC1 : BIT_VECTOR(255 downto 0);

 signal tempHMAC2 : BIT_VECTOR(255 downto 0);

begin

 intentionOut <= intentionIn;

 requestIdOut <= requestIdIn;

 ENTHMAC1 : entity work.hmacMock port map(

 intentionIn, requestIdIn , nodeId, peerIdA, pairwiseKeyA,message,tempHMAC1

);

 HMAC1TRUN : entity work.lbacsTruncation port map(

 randomSeedA, tempHMAC1, hmac1

);

 ENTHMAC2 : entity work.hmacMock port map(

 intentionIn, requestIdIn , nodeId, peerIdB, pairwiseKeyB,message,tempHMAC2

);

 HMAC2TRUN : entity work.lbacsTruncation port map(

 randomSeedB, tempHMAC2, hmac2

);

end rtl;

-- End LBACS module

