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Quantification of the water content in synthetic glasses and natural melt inclusions using 

confocal Raman spectroscopy 

 

By 

 Connor John Dalzell 

 

Abstract  
 

The importance of water in controlling magmatic ore-forming processes cannot be 

understated. To accurately constrain the water content in these systems, the application of 

confocal 532 nm laser Raman spectroscopy was evaluated on silicate glasses of varying 

bulk composition and water content with a final goal of testing the method developed on 

hydrous melt inclusions from natural samples. Water derivation is ultimately based on the 

ratio between areas of the silicate region at 700-1250 cm-1 and the O–H region at            

~3600 cm-1 of the Raman spectra. Calibration of this method was carried out using hydrous 

synthetic glasses of rhyolitic, dacitic, and trachytic compositions with a range in water 

contents (2.68 to 6.59 wt% H2O). This study identified important steps for spectral 

treatment in the water quantification process, including baseline correction of the spectra 

and application of the frequency-temperature correction. The largest source of error for this 

determination was identified as a combination of glass sample heterogeneity and variations 

in the baseline correction of the spectra. The phenomenon of fluorescence, in coloured or 

impure glasses, obscures the water band and makes baseline corrections difficult. This was 

investigated through comparison of hydrous and anhydrous synthetic glasses of the same 

composition to evaluate a correction protocol, and the use of near-UV excitation sources to 

reduce fluorescence. Finally, this method was applied to natural, quartz-hosted melt 

inclusions from Late Paleozoic rhyolites from Southern New Brunswick. Ultimately, the 

method developed enables constraining of water content to within an average ~0.85 wt% 

accuracy for both synthetic glasses and natural melt inclusions. This is sufficient to 

differentiate between degassed vs. undegassed liquids, or melts trapped at contrasting 

crustal depths. 
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1.0 Introduction 

The water content of silicate magmas plays an important role in the formation of magmatic–

hydrothermal ore deposits through exsolution as a magmatic volatile phase, and influences 

an array of physicochemical properties such as viscosity, the composition of mineral 

assemblages that form during crystallization, and the temperatures and pressures of phase 

changes (Burnham, 1979, Lange, 1994, Ingerson, 1950). In addition, water is the most 

abundant volatile that gets released from siliceous magmas as they start to crystalize, which 

is the primary mechanism for ore fluid transportation (Hedenquist & Lowenstern, 1994). 

As such, it is crucial to have a precise constraint on water content, such that the degassing 

and crystallization histories of ore-forming magmas may be derived. Melt inclusions 

provide the best-preserved samples for determining water content in silicate melts. Hence, 

an analysis of melt inclusions provides an opportunity to investigate the evolution of 

magmatic systems (Thomas, 1994, Thomas et al., 2006, Zajacz et al., 2005). In doing so, it 

may be possible to predict the most productive (i.e., metal-fertile) magmatic events. 

 

1.1 Analytical methods for water determination 

Karl-Fisher titration is conventionally used to determine bulk water content in solid 

materials. The relatively small size of melt inclusions, however, makes this method 

impractical (Chabiron & Pironon, 2004). Several other micro techniques have been 

developed to quantify water content in glasses, such as electron microprobe and ion 

microprobe analysis. A great disadvantage of these methods is the need to have inclusions 

exposed at surface, or to have doubly-polished sections in the case of IR spectroscopy. This 

is not a problem for the analysis of bulk glasses, but may prove difficult for melt inclusions 

<50um in diameter (Behrens et al., 2006). In addition, methods like ion microprobe can 
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only provide an of estimate total water content, due to their inability to detect hydrogen. In 

these cases, water content is measured by subtracting total detected elements from 100% 

(Chabiron & Pironon, 2004). Even using standards with known water contents for 

calibration, the analytical uncertainty for these methods is typically ~0.5 wt% (Behrens et 

al., 2006).   

 

1.2 Raman spectroscopy 

The determination of water content in silicate glasses has been well described using Raman 

spectroscopy (Thomas et al., 2006, Thomas 2000; Chabiron et al. 2004). This technique 

relies on measuring the inelastic scattering of laser light as it interacts with molecular 

vibrations (bonds) within a sample. The resulting shift in wavelength of the incident laser 

light, measured as wavenumber, provides information about the type of molecular bonds 

within the sample. 

 

There are two areas of the Raman spectra that are important in determining the water 

content of hydrous silicate glasses. The “T-O band” is a low-wavenumber region (located 

at ~470–570 cm-1 or ~850-1250cm-1) which corresponds to the vibration of various T–O 

bonds within the sample (where “T” represents fourfold coordinated cations, and “O” 

represents bridging or non-bridging oxygen atoms) (Zajacz et al., 2005 and Mercier et al., 

2009). The “water band” is a high-wavenumber region (located at ~3600cm-1) that 

represents OH stretching vibrations from hydroxyl groups and H2O molecules (Mercier et 

al., 2009). Both the water band and the T-O band (from ~850-1250cm-1) are visualized in 

the Raman spectra of Figure 1. 
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Figure 1: Uncorrected Raman spectra of a hydrous silicate glass (sample 1-8-6 B) 

highlighting the T-O region (from ~850-1250cm-1) and water-band region (located at 

~3600cm-1). 
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1.2.1 Raman spectroscopic features of water within glasses and minerals 

It is important to recognize that the shape/area of the T-O band and the water band are not 

independent of composition. Hence, different features can be observed in Raman spectra 

based on the molecular structure and composition of the glass. For instance, the shape of 

the water band region (~3600cm-1) is highly dependent on the concentration of water 

dissolved in the glass. This region becomes much higher and broader as the amount of 

water increases, and becomes short and narrow as it decreases (Le Losq 2012). The 

intensity of the Raman peak in this region is directly proportional to the H2O concentration 

of the sample, and is largely unaffected by the anhydrous composition of the glass (Severs 

et al., 2007). 

 

The T-O area (~470–570 cm-1 or ~850-1250cm-1), in contrast, is relatively unaffected by 

the water content of the sample. Instead, the shape and position of this region depends on 

the SiO2 content and other anhydrous components of the glass. For instance, the presence 

of 3-6 membered rings of tetrahedra in the aluminosilicate network is responsible for the 

large peak at ~500cm-1 (See Figure 1). The peak near 800cm-1 is caused by Si-O stretching 

vibrations in samples with up to 60–65 wt% SiO2 (Le Losq 2012). Iron molecules create a 

peak at 940–970 cm-1, which is attributed to vibrating Fe–O–Si bonds (Zajacz et al., 2005). 

The band at 586 cm−1 has been attributed to defects in the glass structure, while the 776 

cm−1 band has is caused by T–O–T bending vibrations (Severs et al., 2007). Finally, the 

broad region between 850 and 1250cm-1 is influenced by symmetric and asymmetric 

stretching in the Al-Si-O network (where “O” includes both bridging and non-bridging 

oxygen atoms). (Le Losq 2012). This demonstrates how the anhydrous composition of the 

glass influences the T-O region. 
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1.2.2 T-O area normalization 

Previous works have found a strong correlation between the water content of a glass and 

the area ratio between the water band and the T-O band (either at ~470–570 cm-1 or ~850-

1250cm-1) (Thomas 2000, Mercier et al., 2009, Le Losq 2012). Normalizing these regions 

works as an internal calibration to accurately derive the water content represented by the 

~3600cm-1 region. Although some studies have derived water content using the height/area 

of the water peak alone, it is often quite difficult to determine absolute Raman heights or 

areas (Mercier et al., 2009). Peak area ratios are also used rather than peak intensities 

(heights) to eliminate the need for multiple calibrations (due to long-term instability of the 

Raman laser) (Severs et al., 2007). In addition, a variety of factors can influence the shape 

and area of the water band, such as the reflectance and chemistry of the sample, and the 

depth of the analyzed volume below the samples surface (Zajacz et al., 2005, Mercier, et 

al., 2009, Behrens et al., 2006). Therefore, it is necessary to calibrate the water band using 

an internal standard. 

 

1.2.3 Advantages and disadvantages of Raman spectroscopy 

Raman spectroscopy is capable of analyzing water content in glasses and melt inclusions 

through a concentration range of 0 to 20 wt% H2O (Thomas, 2000). Additionally, there are 

several advantages to using Raman spectroscopy over other methods for the analysis of 

silicate melt inclusions and glasses. These include a high-spatial resolution (1-2 μm), the 

ability to analyze inclusions at different depths, a non-destructive character, and minimal 

sample preparation (i.e. no need for doubly-polished thin sections like FTIR, which proves 

difficult for melt inclusion analysis) (Le Losq, 2012, Thomas et al., 2006 Zajacz et al., 

2005). 
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It is important to note that there are several disadvantages to using this analytical technique. 

For instance, Raman analysis can be limited by fluorescence, which will obscure the Raman 

scattering of target materials. Fluorescence can be caused by trace elements, colouration, 

or defects in the crystal lattice (Campbell et al., 1986). Additionally, the depth of melt 

inclusions, in outcrop or prepared sample, may also influence water content determination. 

Near-surface melt inclusions may be subject to weathering, which causes water re-

equilibration with the atmosphere. Deeply buried melt inclusions within the sample will 

report a measured water content ~10% less than normal when exceeding a depth of ~120 

μm. Finally, variations in the size and shape of the water band (caused by instrumental 

effects, spectrometer settings, and the depth of the analyzed material below the surface) 

means that a calibration established for one instrument can not be transferred to another. In 

order to use this technique, each laboratory must run its own calibration procedure 

(Behrens, et al., 2006). 

 

1.3 Approach 

By analyzing a suite of hydrous silicate glass, a calibration curve may be generated relating 

measured water content to known water content. Once the Raman has been calibrated, this 

method will be applied to natural melt inclusions from the Late Paleozoic rhyolites of 

Southern New Brunswick. 

 

2.0 Geological setting 

The Late Devonian-Pennsylvanian Harvey volcanic suite occurs on the eastern edge of the 

Maritimes basin, 55 km southwest of Fredericton, New Brunswick (see Figure 2) (Payette 

& Martin, 1986, Gray et al., 2011). The Harvey Fm. occurs stratigraphically at the base of 
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the Maritimes basin, which is a 12km thick succession that formed during the mid-

Devonian in the final stages in the growth of Pangea. Stratigraphic and petrological data 

suggests that the Piskahegan Formation, deposited at 363.4 ± 1.8 Ma, is synchronous with 

the Harvey Formation. For example, some of the Harvey volcanic rocks can be correlated 

with those of the Mount Pleasant caldera, Piskahegan Group. 
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Figure 2: Location of the Harvey and Piskahegan Formation in Southern New Brunswick, 

Canada (modified from Gray et al., 2011).  
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2.1 Regional geology 

The Maritimes Basin has undergone four discrete magmatic events, controlled by faulting, 

basinal extension, and repeated basin subsidence from the Middle Devonian to the late 

Tournaisian (Gray et al., 2011). During the Carboniferous, the Maritimes Basin underwent 

an extensional phase which resulted in large-scale normal/strike-slip faults, with numerous 

associated small grabens. To the north-northwest, the Harvey formation is limited by the 

Fredericton-Norumbega fault, which is a major regional strike-slip fault (Payette & Martin, 

1986). 

 

The folded and faulted Harvey Formation was likely derived from partial melting of 

continental crust during a rifting (extensional) phase of the Maritimes Basin, in response to 

an influx of mantle-derived basic magmas (Payette & Martin, 1986). The Harvey volcanic 

unit is primarily composed of subaerially deposited, welded ash-fall/ash-flow volcanic tuff 

(Bottomley, 1984). The Harvey Formation is situated on the lower, northwest limb of a 

large northeast-plunging syncline, and is overlain by successive red beds of the 

Mississippian-Pennsylvanian Shin Formation (Bottomley, 1984, Payette & Martin, 1986). 

It is underlain by Silurian metasediments (Payette & Martin, 1986). 

 

2.2 Local geology 

The Harvey volcanic suite consists of three units: York Mills, Cherry Hill, and Harvey 

Mountain. 

 

York Mills comprises felsic volcanogenic sediments, minor ash-flow, and laminated 

rhyolite (Payette & Martin, 1986). Bands of lapilli tuff are also found interbedded 
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throughout the unit. Sedimentary rocks (red sandstone and siltstone) are the dominant rock 

type at York Mills (Payette & Martin, 1986, Gray et al., 2011). Detrital grains within the 

sandstone usually consist of quartz and feldspar phenocrysts, with minor fragments of 

rhyolite.  The itself deposit is roughly 60m thick (Payette & Martin, 1986). 

 

The Cherry Hill unit forms an assemblage of felsic volcanic rock, including volcanogenic 

sediments (approximately 10m thick), two sheets of ash-flow tuff (5 and 100m thick), 

volcaniclastic sediments (approximately 20m thick), quartz-feldspar porphyry, and ash-fall 

tuff (approximately 40m thick) (Harvey, 2016, Payette & Martin, 1986). The quartzfeldspar 

porphyry is host to ~20% phenocrysts of euhedral quartz and feldspar, up to 3 mm in 

diameter. Occurrences of glass are sometimes preserved in these quartz phenocrysts. The 

quartz-feldspar porphyry contains a groundmass of devitrified welded shards, and is 

thought to correspond to the most densely welded portion of an ash-flow tuff (Gray et al., 

2011, Payette & Martin, 1986). The base of Cherry Hill is composed of volcanogenic 

sediments and lithic tuff (Payette & Martin, 1986). Cherry Hill volcanics lie unconformably 

over black slate, argillite and graywacke of Pre-Carboniferous age, and are overlain by red 

shale, conglomerate and sandstone (Harvey, 2016). 

 

The Harvey Mountain Formation consists dominantly of laminated rhyolite, with minor 

ash-fall tuffs and pyroclastic breccia (Harvey, 2016, Payette & Martin, 1986). These 

rhyolites have an aphanitic texture, with well-defined alteration represented by gray-green 

layers of coarse spherulites (3–4 mm across) (Payette & Martin, 1986, Gray et al., 2011). 

Glass is found in the rhyolite, being replaced by illite and quartz (Gray et al., 2011). The 

deposit is estimated 75-150m thick (Payette & Martin, 1986). Fluorite is often found 
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disseminated within the felsic rocks in this outcrop, with minor hematite, quartz, white 

mica, and clay minerals (Harvey, 2016). The presence of tridymite in outcrop suggest a 

high emplacement and devitrification temperature of ~870-900oC (Payette & Martin, 

1986).  

 

The coeval Piskahegan Formation represents a caldera sequence with preserved exocaldera, 

intracaldera, and late caldera fill structures. Large melt inclusions, hosted in quartz 

phenocrysts, are found preserved in the Bailey Rock rhyolites within the exocaldera 

sequences. The Bailey Rock unit is characterized by quartz-feldsparphyric lava flows, 

containing K-feldspar phenocrysts, quartz, plagioclase, and hornblende pseudomorphs 

(Gray et al., 2011). 

 

2.3 Mineralization 

The rhyolitic rocks of the Harvey and Piskahegan contain uranium mineralization (Gray et 

al., 2011). U-mineralization occurs as pitchblende, with associated pyrite, arsenopyrite, 

molybdenite, quartz, and fluorite (Payette & Martin, 1986). The mineralization style is 

defined as caldera or volcanic related uranium, which is thought to be either synvolcanic 

or epigenetic, and is highly structurally controlled (Gray et al., 2011). Interest in the region 

started in 1954, with the discovery of these uranium occurrences (Payette & Martin, 1986). 

Although several test holes have been drilled, no economically significant deposits were 

found, and no mining of this formation has taken place (Bottomley, 1984, Payette & Martin, 

1986). Recently, exploration of the Harvey Fm. has found uranium concentrations grading 

0.24-0.45% U3O8 over 1.2 and 0.6 meters respectively (Gray et al., 2011). 
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2.4 Water content 

Glasses preserved in quartz and feldspar at Cherry Hill, Harvey Mountain, and Bailey Rock 

were analyzed by Gray et al., (2011) via electron microprobe (difference in oxide totals 

measured compared to 100%). The water values derived from their analysis will be used in 

comparison to our Raman analysis of melt inclusions from Cherry Hill. 

 

3.0 Methods 

A suite of hydrous silicate glasses with a wide compositional range and known water 

contents will be analyzed via Raman spectroscopy. The resultant spectra will undergo 

spectral treatment to allow for calculation of true T-O and water band areas. The area ratio 

of these two regions will then be used in an equation to quantify the water content 

represented by the spectra. A comparison of known vs. calculated water contents will 

ultimately be used to generate a calibration line for use on natural samples. This paper 

follows the work of Zajacz et al. (2005) as a basis for the various steps of analysis, and 

attempts to improve on them and explore their validity further. 

 

3.1 Glass samples 

Synthetic glasses with a range of hydrous and anhydrous chemistry were provided by Dr. 

James Webster of the American Museum of Natural History. Previous works by Webster 

et al., (2011 and 2014) had constrained a precise estimate of water content via FTIR. These 

glasses were also used by Zajacz et al. (2005) in his determination of water content using 

Raman spectroscopy. The glasses range from 1-9wt% H2O, 58-75wt% SiO2, and have an 

A/NK of 0.9-1.1. Overall, the glasses are rhyolitic, trachytic and dacitic in composition. 

The compositional data for these glasses are recorded in Table 1. 
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As mentioned previously, the fluorescence of samples during Raman analysis is a major 

disadvantage of the method as it obscures the Raman scattering of target materials. A novel 

method to account for fluorescence is to create synthetic analogues of the fluorescent 

glasses, minus the water content. The resulting anhydrous Raman spectra may be subtracted 

from the hydrous spectra, leaving only the non-fluorescent components behind. As such, 

several anhydrous equivalents of Dr. Webster’s glass were created. Samples 1-10-15 A and 

T 1-4-13 were selected for replication as they both vary in composition from each other 

and show strong levels of fluorescence. Samples were synthesized using carbonate/Fe2O3 

equivalents at Dalhousie’s Earth Sciences laboratory with the help of Dr. James Brennan 

(See Tables 2 and 3). Samples were calcined at 1400oC for 3 days, and extracted for 

mounting and polishing. 

 

Both the hydrous and anhydrous equivalents of Dr. Webster’s glass were mounted in 

transparent resin and polished before Raman analysis. This provided ease of use in handling 

the glass chips, which were only a few mm across, and a fresh surface required for Raman 

analysis. Samples were mounted using a Buehler Electro-hydraulic mounting press 

(SimpliMet™ 3000 Series) in Buehler TransOptic resin. Samples were subsequently 

polished using 2000grt sandpaper and 1μm diamond paste. 
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Table 3: True compositional data of anhydrous vs. hydrous glass samples via SEM (values in wt%)

Sample #

Sample type Hydrous Anhydrous Hydrous Anhydrous

SiO2 73.39 77.7 58.02 61.05

Al2O3 12.12 14.69 20.94 24.4

Na2O 3.87 2.34 6.92 6.32

K2O 4.77 4.18 5.56 5.29

FeO 1.04 1.08 1.48 1.35

 TiO2 0 0 0.12 0

 MnO 0 0 0.06 0

 MgO 0 0 0.16 0

 CaO 0 0 1.54 1.6

Total 95.19 99.99 94.8 100.01

1-10-15 A T 1-4-14

Table 2: Compositional data required to generate an anhydrous melt of equivalent composition

Sample no. 1-10-15 A

Compositional data
1

normalised to 100%
2 carbonate/Fe2O3 equivalents

3
milligram conversion

4
weighed

5

SiO2 73.4 77.1 77.1 771 771

Al2O3 12.1 12.7 12.7 127 127

Na2O 3.87 4.07 6.95 69.5 70.0

K2O 4.77 5.01 7.35 73.5 73.8

FeO 1.04 1.09 1.21 12.1 12.4

 TiO2 - - - - -

 MnO - - - - -

 MgO - - - - -

 CaO - - - - -

anhydrous sum 95.19 100 - - -

Sample no. T 1-4-14

Compositional data
1

normalised to 100%
2 carbonate/Fe2O3 equivalents

3
milligram conversion

4
weighed

5

SiO2 58.0 61.2 61.2 612 613

Al2O3 20.9 22.1 22.1 221 221

Na2O 6.92 7.30 12.48 125 125

K2O 5.56 5.86 8.60 86.0 86.0

FeO 1.48 1.56 1.74 17.4 17.3

 TiO2 0.12 0.13 0.13 1.27 1.30

 MnO 0.06 0.06 0.06 0.63 0.50

 MgO 0.16 0.17 0.17 1.69 1.40

 CaO 1.54 1.62 2.90 28.99 29.20

anhydrous sum 94.80 100 - - -

`- = not analyzed or calculated
1
composition of the hydrous melt in oxide wt%

2
composition of the "hydrous melt" without water and normalized to 100%

3
amount of solids required to generate an anhydrous melt of equivalent composition (in grams)

4
amount of solids required to generate an anhydrous melt of equivalent composition (in milligrams)

5
amount of solids weighed out during actual measuring 
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3.1.1 Quality control: heterogeneity 

It is important to recognize that glass samples may not be completely homogeneous. As 

such, Raman analysis on one region of the glass may produce different spectra than another, 

which will ultimately lead to a different derived water content. In order to quantify the 

effect of heterogeneity on the resultant spectra/water determination, multiple analyses were 

run on the same glass in different regions for samples 1-8-6B, 1-14-9 A, and T 1-5-6 (to 

represent our full compositional range of glasses, being rhyolitic, dacitic, and trachytic). 

 

3.2 Raman spectroscopy 

Spectra were captured using a Horiba Jobin-Yvon LabRam HR spectrometer, equipped 

with LabSpec v.6.3.40.4 software. The spectrometer was outfitted with a 100mW, 532nm 

Nd-YAG diode laser (Toptica Photonics), a 100x Olympus MPlanN objective (0.21 nm 

WD), and a Synapse charge-coupled device (CCD; Horiba Jobin-Yvon) detector, which 

was cooled below -50oC to minimize dark current effects. Frequency calibration of the 

spectrometer was carried out using pure silicon. 

 

There are a variety of settings on the spectrometer that may be adjusted to produce the 

highest-resolution Raman spectra. These include the confocal hole size, grating, laser 

power, number of accumulations, and acquisition time. Thus, these parameters were tested 

iteratively to produce the highest-resolution spectra while (1) remaining time effective, (2) 

reducing fluorescence levels of affected glasses and (3) avoiding “flooding” of the Raman 

detector. Note that some settings, such as the 100x objective, were chosen outright to 

optimize the calibration procedure for small, natural melt inclusions (a few μm across) 

rather than bulk glass samples. 
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The effects of each setting on the resultant spectra, and the resultant “optimal settings” are 

reviewed in the Results/Discussion section of this paper. Once found, these settings were 

used henceforth during spectral acquisition, and are as follows: 

 

1. 100μm confocal hole diameter 

2. 1800 grooves/nm grating 

3. 4 accumulations 

4. 20 second acquisition time 

5. 100% laser power 

 

3.3 Spectral treatment 

In order to accurately derive water content from acquired spectra, the deleterious effects of 

fluorescence, instrumental effects, and environmental factors (such as temperature and 

humidity) must be accounted for. As outlined by Zajacz et al. (2005), and Le Losq (2012), 

the raw spectra first underwent baseline removal and frequency-temperature correction 

before spectral deconvolution took place (i.e. fitting the spectra to a function to find the 

areas of the T-O and water band). 

 

3.3.1 Baseline removal 

An important step in the internal calibration process is the removal of the spectral 

background.  This background is present in the T-O and water band regions of the spectra, 

and is thought to be caused by fluorescence, luminescence, and reflectance of the sample 

under laser radiation (Chabiron, 2004, Zajacz et al., 2005). The degree in which these 

parameters affects the background level of the spectra depends, in part, on acquisition 

parameters and the structure and chemistry of the sample. As such, the baseline correction 
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procedure is unique to each individual Raman spectra, and is thus often based on empirical 

considerations (Le Losq, 2012).  

 

A number of methods have been proposed to facilitate the baseline correction of Raman 

spectra. For instance, Zhang et al. (2009) developed an algorithm-based software which 

uses Wavelet transforms to identify peak maxima and correct the spectral background. 

However, such algorithm-based corrections may become problematic when analyzing 

glasses, as the broad and asymmetric nature of their Raman peaks may cause a 

misalignment of the peak maxima (Le Losq, 2012). Another method was proposed by 

Behrens et al. (2006), involving a set of nine invariant nodes that was used to draw the 

baseline for all glasses. Although this eliminated some ambiguity in the experiment, the 

method became highly dependant on the structure and chemistry of the glass, as these affect 

the prominence of peaks in key areas (500 cm–1 and 1000 cm–1). As such, several 

calibrations were employed (dependant on the silica content of the glass), adding to the 

complexity of this method (Le Losq, 2012).  

 

A simple method for baseline subtraction was employed by Zajacz et al., (2005), which 

involves the linear extrapolation of the baseline from the flat signal region from            

1,250– 1,850 cm-1 (See Figure 3). According to Zajacz et al., (2005) this method provides 

both accurate and reproducible results. As such, the baseline correction procedure proposed 

by Zajacz et al., (2005) was carried out for all spectra using Fityk software. Fityk is a 

nonlinear peak-fitting program developed by Wojdyr, M. (2010). It is primarily used to fit 

peaks using bell-shaped functions (Gaussian, Lorentzian, etc.), but it also has several built-

in tools that are useful for Raman analysis. One such function is the “manual baseline 
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subtraction tool”, which was the primary implement used for all baseline corrections in this 

study (See Figure 4). 
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Figure 3: The flat signal region from 1,250–1,850 cm-1described in Zajacz et al. (2005) 

baseline correction. 
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Figure 4: Baseline removal of sample 1-8-6 B. The manual baseline subtraction tool in 

Fityk was used to extrapolate the baseline from the flat spectral region between 1,250–

1,850 cm-1. 
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3.3.2. Quality control: Baseline removal 

Zajacz et al., (2005) notes that even small variations in the baseline correction result in 

drastic changes to the deconvolution of the spectra, and ultimately the derived water 

content. In order to test the reproducibility of this method, baselines were drawn multiple 

times for the same spectra of samples 1-8-6 B, T 1-5-6, and 1-14-9 A (representing our full 

compositional suite of glasses). These duplicates underwent further spectral treatment 

(described henceforth), and deconvolution to quantify the effects of baseline variability on 

derived water content.  

 

3.3.3 Frequency-temperature correction 

It is important to note a discrepancy in the efficiency of Raman scattering as a function of 

the Raman shift. As the Raman shift increases, the peak intensity produced by Raman-

active species will sharply decrease (Zajacz 2005). As such, Raman species that appear at 

high wavenumbers will generate disproportionally lower signals than species at lower 

wavenumbers. The heights and areas of these high-wavenumber peaks are thus not 

representative of the true abundance of those species.  This is especially deleterious to our 

calibration, as the true area of the water band (which appears relatively high along the 

Raman shift) is needed to derive the abundance of H2O. Without correction, this 

disproportionately lower water band area would report a lower water content than the true 

water content of the sample. As such, application of the Long correction is needed to derive 

a true abundance of these high Raman-shift species. This correction will amplify Raman 

peaks at higher wavenumbers, while maintaining the intensity of the low-wavenumber 

peaks proportional to their species abundance. The Long correction also allows for 
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comparison of spectra taken at different incident laser excitation lines, and at different 

temperatures (Le Losq, 2012). 

 

 

 

 

Where Vo= wavenumber of the Raman laser (in this study, 532nm laser = 18796.99 cm–

1), h= Planck's Constant, c= speed of light, k= Boltzmann’s constant, T= sample 

temperature in °K, e= Euler's number, and Vi= measured wavenumber in cm–1. The effects 

of the Frequency-temperature correction are illustrated in Figure 5. The spectral intensity 

of the high wavenumber species (i.e. the water band and surrounding peaks) becomes much 

higher than the low wavenumber species. Although the relative intensity of both regions is 

reduced, the spectra are now representative of the true abundance of these species. 
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Figure 5: Spectra 1-8-6 B before (A) and after (B) application of the frequency-

temperature correction. Note that intensity (counts) becomes drastically reduced after the 

application of this correction. 
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3.4 Deconvolution   

Deconvolution involves finding the peak areas of the spectra, which will ultimately be used 

to derive the total water content of the sample. As noted by Thomas (2000), Le Losq (2012), 

and others, there is a strong relationship between the water content of a glass and the area 

ratio between the water band and the T-O band at either 470–570 cm-1 or 850-1250cm-1. 

The T-O area itself has no relation to the actual water content of the glass, but is used to 

calibrate the water band as a semi-consistent peak feature that is present in all (hydrous) 

silicate glasses.  First, we must decide which region of the T-O band (470–570 cm-1 or 850-

1250cm-1) is most appropriate to normalize our water band. This is dependant on the 

compositional suite of glasses to be analyzed.  

 

Studies by Thomas (2000) and Chabiron et al. (2004) successfully determined water 

content by normalizing the area of the water band to the T-O region at 470–570 cm-1. 

However, these studies are limited to a narrow compositional range of rhyolitic glasses. As 

noted by Zajacz et al. (2005), application of this method to glasses of intermediate to mafic 

composition proved difficult and led to inconsistent results. This was likely due to a large 

variability in the area of the 470-570 cm-1 region as a function of glass composition. To 

compensate, Zajacz et al. (2005) employed a much broader T-O region (from ~850-

1250cm-1) to calibrate the water band area. By broadening this spectral window, they were 

able to better account for composition-dependant changes in the T-O area, instead of 

relying on the area of a single peak.  

 

For an even broader suite of hydrous glasses (including rhyolitic, trachytic, and dacitic 

compositions), the T-O window proposed by Zajacz et al. (2005) could be expanded 
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further. As shown in Figure 6, the shape, position, and area of the T-O band changes as a 

function of composition, notably in the region just before 850cm-1. These changes must be 

accounted for in the calibration of the spectra. As such, to account for compositional 

variations between rhyolitic, trachytic, and dacitic glasses, the T-O region proposed by 

Zajacz et al. (2005) has been expanded to 700-1,250 cm-1.  
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Figure 6: Change in shape/position of the T-O region as a function of composition. 

Spectra shown are 1-13-21 (dacitic, top), T-1-5-6 (trachytic, middle), and 1-8-6 B 

(rhyolitic, bottom). 
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Using Fityk software, the T-O band and water band spectral regions underwent 

deconvolution. Fityk has several curve-fitting functions that can be used to evaluate peak 

areas, such as Gaussian, Lorentzian, Voigt, Pearson VII, EMG, and Doniach-Sunjic 

(Wojdyr, 2010). Although any of these functions could be used to quantify peak areas, the 

Gaussian function, which produces a symmetric bell curve, diminished residual values to 

the greatest extent. As such, the water band and T-O region of the spectra were fitted using 

Gaussian functions, with each region taking 4-10 Gaussian peaks to diminish residual 

effects (See Figure 7). Once drawn, the sum of all Gaussian functions were taken for each 

region to derive peak areas for the T-O and water band. 
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Figure 7: Deconvolution of T-O and Water band regions for sample 1-8-6 B. The 

residual is shown below each spectra 

 



36 
 

In some instances, the Gaussian peaks would encroach into areas beyond their intended 

spectral range. This was most prevalent around the 700cm-1 area, as shown in Figure 7 with 

peaks 1 and 2. Fityk cannot measure partial peak areas, and as such, the true area for the 

700-1250cm-1 band had to be derived manually. This was done using a pixel-counting 

program called Image J (National Institutes of Health), in which the sum of all peaks below 

the 700cm-1 mark were subtracted from the total peak area. This produced true area of the 

700-1250cm-1 band (See Figure 8). 
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Figure 8: Partitions created in ImageJ to remove the pre-700cm-1 area from the total peak 

area. In this example, the pre-700cm-1 area counted 151978 out of 391708 total pixels, 

which represents roughly 40% of the total area. As such, 40% of the total area (i.e., the sum 

of all Gaussian peaks) was removed to derive the true area for the 700-1250cm-1 band 
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3.5 Water equation 

The following equation, derived by Zajacz et al. (2005), normalizes the water band to the 

T-O region while also correcting for compositional effects caused by the T-O band. 

 

 

 

 

Where watertot is the total water content in wt%, “Water band area” is the sum of all 

Gaussian peaks between ~3000 and ~3800 cm-1, “T-O band area” is the sum of all Gaussian 

peaks between ~700 and ~1250 cm-1, “T-O” peak position is the position of the maxima of 

the T-O band region, Ttot is the total cations of the sample, and A1 is a correction factor 

derived for each glass composition. The correction factor adjusts the H2O value derived 

from the water equation (which is first calculated without “A1”) to be closer to the actual 

value of H2O. It is determined by taking the quotient between calculated vs. true H2O values 

for each glass and averaging. This correction factor is unique to each Raman instrument, as 

instrumental effects, spectrometer settings, and other factors will alter the peak areas of 

acquired spectra (Behrens, et al., 2006).  At the end of our calibration, we found a correction 

factor of 2.68 for rhyolites, 2.01 for dacites, 2.79 for trachytes.  

 

As mentioned previously, the shape and size of certain peaks within the T-O band will 

change as a function of composition (see Figure 6). In order to account for these effects, 

the water equation makes a linear correction based on the total number of tetrahedral cations 

in each sample. This theoretical consideration is based on the fact that T-O band is 

comprised of different T–O–T and T–O species in the glass’s structure, and that the 
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abundance of each species is related to the total number of tetrahedral cations in the sample. 

Compositional changes can also manifest as a shift in T-O band position, due to different 

ratios of T-O and T-O-T structural species in the glass. As such, the position of each T-O 

band is also corrected relative to a rhyolitic standard with an NBO/T (number of non- 

bridging oxygen atoms divided by the number of tetrahedral sites) close to 0, which has a 

T-O peak maxima at 1130cm-1 (Zajacz et al., 2005)  

 

3.6 Raman analysis of fluorescing inclusions 

A major drawback of Raman spectroscopy (in the visible light range) is fluorescence, which 

creates background noise that can obscure Raman peaks, as shown in Figure 9. 

Fluorescence occurs because the Raman scattering effect is relatively weak, with only 1 in 

104 photons from the incident laser light interacting successfully with a Raman-active 

species. Fluorescence, in contrast, is much stronger than the Raman effect, and forms 

through similar molecular interactions. As such, the energy required to produce excitation 

in a Raman active species is much less than that required to generate fluorescence. Any 

minor contaminant in the sample which is fluorescent can thus produce signals (Smith, 

2005). In consequence, Raman spectra can become completely overwhelmed by the 

fluorescence background, which is also thought to be the main contributor to the shape of 

the baseline shape (Le Losq, 2012). 
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Figure 9: Uncorrected spectra showing the effects of fluorescence, which causes the water 

band between ~3000 and ~3800 cm-1 to ride atop a large fluorescence peak. This can 

interfere with baseline correction and reduce the accuracy and reproducibility of water 

determination. 
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Ideally, samples should be physically homogeneous and transparent. Coloured and 

translucent samples are rapidly overheated by absorption of laser beam energy, which can 

result in fluorescence (Campbell et al., 1986). Other contributing sources to fluorescence 

include fingerprints, dissolved iron, defects in the crystal lattice, water absorption near the 

sample’s surface, and the excitation of the embedding resin (Smith, 2005, Chabiron et al., 

2004, Mercier et al., 2009, Behrens et al., 2006, and Le Losq, 2012). Seven of our samples 

were affected by fluorescence, including sample 1-10-15 A-C, 1-13-21, 1-15-04, T 1-4-14, 

and T 1-5-6. As most natural and synthetic samples are affected by this phenomenon, it is 

important to quantify how fluorescence effects the spectra. The following steps were taken 

to investigate the effect of fluorescence on water peaks, and to mitigate its effects: 

i. Develop anhydrous equivalents of the synthetic glass 

ii. Analyze the glasses under UV radiation 

 

3.6.1 Anhydrous samples 

From Figure 9, it is difficult to tell if the water band is riding atop the fluorescence peak, 

or if it’s being partially obscured by the fluorescence in some way. In order to quantify how 

fluorescence affects the spectra, anhydrous analogues were made of the fluorescent glass 

and analyzed via Raman spectroscopy (the details of this glass synthesis are discussed in 

section 3.1). The resultant spectra, sans hydrous components, will be subtracted from the 

normal spectra thus removing the fluorescent components and leaving only the water peak 

behind. This spectral subtraction was carried out using the “A-B” subtraction function in 

LabSpec 6 (see Figure 10 and 11). Note that this subtraction was limited to the water band 

region at ~3600cm-1, in order to preserve the T-O region (which is present in both the 

hydrous and anhydrous glasses). To do so, the anhydrous spectra was trimmed to a range 
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of 1500-4000 cm-1 before subtraction took place. The resultant “subtracted spectra” 

underwent spectral treatment, deconvolution, and water determination (as described in 

sections 3.3-3.5). 
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Figure 10: Hydrous and anhydrous equivalent of sample T 1-4-14. Spectra were subtracted 

from each other using the “subtract” function in LabSpec 6, giving the resultant spectra 

shown in red. Note that this subtraction was limited to the water band region of the spectra, 

in order to preserve the T-O band region, which shows up in both the hydrous and 

anhydrous glasses. 
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Figure 11: Highlight of the T-O region for (A) the hydrous and anhydrous equivalents of 

sample T 1-4-14 and (B) the subtracted spectra. Note how all fluorescent components are 

removed from the subtracted spectra. 
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3.6.2 UV spectroscopy  

A proven method to minimize fluorescence is to use a Raman laser with a lower 

wavelength, such as in the UV region (244 nm). As noted by Millen et al. (1999) and Severs 

et al. (2007) fluorescence can be reduced or completely mitigated by recording spectra at 

this very short wavelength. In most UV-excited systems, fluorescent energy will be 

dissipated into the material, due to interactions with electronically excited states. Even if 

some fluorescence is radiated by the material, the emitted wavelength will be beyond the 

region used for Raman detection (Smith, 2005).  

 

In order to quantify the true effects of fluorescence on the spectra, the fluorescent samples 

1-10-15 A, T 1-4-13, and 1-15-4 were analyzed using UV Raman spectroscopy. Samples 

were sent to the HORIBA Scientific labs in Edison, New Jersey and were analyzed using a 

near-UV 405nm Raman laser. The resultant peaks were then analyzed for water content 

(following the procedure from 3.3-3.5).   

 

4.0 Results and discussion 

4.1 Raman parameters 

A variety of settings were adjusted iteratively to produce the highest-resolution Raman 

spectra. These include the confocal hole size, grating, laser power, number of 

accumulations, and acquisition time. A high spectral resolution is important, as it will 

reveal subtle details of the spectra that might not be apparent at lower resolution (Adar, 

2013). The effects of these settings on acquired spectra are outlined in Figures 12-16, which 

shows that a high hole size, power, and acquisition time appear to increase spectral 

resolution. The number of accumulations also positively affects the resolution, but does not 
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make much difference beyond an accumulation of four. Grating gives a higher resolution 

at 600 rather than 1800 grooves/mm, but also enhances the fluorescent background of the 

sample, which obscures the water band at ~3600cm-1. 
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Figure 12: Effect of hole size on resolution 

 

 

Figure 13: Effect of laser power on resolution. At 100% laser power, there is ~2.15 mW at 

the sample surface. 
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Figure 14: Effect of the number of accumulations on resolution. 
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Figure 15: Effect of acquisition time on resolution for a non-fluorescent sample (A) and a 

fluorescent sample (B). 
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Figure 16: Effect of grating on resolution for a non-fluorescent sample (A) and a 

fluorescent sample (B). 
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4.1.1 Confocal Hole Size 

Hole size has a very clear effect on spectral resolution. The Confocal hole (or aperture) 

controls how much of the Raman signal passes through the spectrograph and onto the 

detector (Wieboldt, 2010). As such, a smaller confocal hole results in a lower resolution 

image, while a large hole size results in a high-resolution image. Smaller aperture sizes are 

typically only used to analyze samples that are smaller than the beam diameter. Samples 

examined in this way are usually only ~1μm across (Smith, 2005). As such, the hole size 

for our study was set at 100μm.  

 

4.1.2 Power  

The intensity of the Raman spectra appears directly proportional to the power of the Raman 

laser. It should be obvious that the more energy used to excite the sample, the stronger the 

signal will return. As such, it is commonly recommended to use 100% laser power first 

when optimizing Raman parameters for spectral resolution (Wieboldt, 2010). Accordingly, 

the power for our study was set at 100%.  

 

4.1.3 Accumulations 

Multiple exposures of the same Raman spectra can be combined to reduce its overall signal-

to-noise ratio. This is the principle behind the number of accumulations (Wieboldt, 2010). 

The number of accumulations appears to have a positive impact on spectral resolution, but 

it stops making a big difference past an Acc of 4 (See Figure 14). In addition, raising the 

accumulation number from 4 to 8 effectively doubles the time of analysis (from 15 to 30 

minutes). In order to keep our analysis time-effective, the maximum number of 

accumulations was capped at 4.  
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4.1.4 Acquisition Time 

Acquisition time is analogous to the exposure time on a photographic camera. Just as a 

longer exposure in dim light can produce a higher resolution image, a longer acquisition 

time can produce higher resolution spectra from weak Raman scattering (Wieboldt, 2010). 

There are, however, special considerations to be noted when choosing acquisition time. 

From Figure 15-B, we can see that an increased acquisition time enhances the fluorescent 

background of the sample. This may alter the area of the Raman peaks, which will 

ultimately effect the water content determination. Damage is also a concern, as samples 

with a dark colouration or with an absorption band close to the excitation wavelength may 

become burned by the laser (Wieboldt, 2010). Damage can occur in a large volume of glass 

over a short time, and can affect the Raman scattering of the sample (Smith, 2005). 

Additionally, an acquisition time past 20 seconds caused saturation of the Raman detector 

for certain samples. As such, to get consistent readings for calibration, the acquisition time 

was lowered to 20 sec.  

 

4.1.5 Grooves 

From Figure 16, it appears that the lower the groove density of the grating, the higher the 

spectral resolution. Ideally, peak intensity/resolution should be maximized while keeping 

the effects of fluorescence to a minimum. The fluorescent background is greatly enhanced 

at 600 grooves/mm for our fluorescent samples, effectively obscuring the water band at 

~3600cm-1. As such, the 1800 groove setting was used in our Raman analysis to help 

combat the effects of fluorescence. 
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To summarize, the analysis of silicate glass is best performed with a 100-micron confocal 

hole diameter, 1800 grooves/nm grating, four accumulations, twenty second acquisition 

time, and 100% laser power. This produced a final spectral resolution of ±0.45cm-1. 

 

4.2 Quality control (reproducibility assessment) 

It is important to quantify the largest source of error in our water determination. As 

mentioned previously, Zajacz et al. (2005) found that uncertainties in the baseline 

correction lead to large uncertainties in deconvolution, and ultimately the water 

determination of the sample. However, the effects of heterogeneity of the glass may also 

alter the final water content, and must also be explored as a possible source of error. As 

such, the baseline uncertainty was tested by applying the baseline correction to the same 

spectra over a large number of trials. This was done on a representative suite of glasses, to 

include our full compositional range of rhyolitic, trachytic, and dacitic samples. To test the 

effects of heterogeneity, the same procedure was followed using different spectra for each 

glass, which were collected in different areas of the same chip. Tables 4 and 5 show the 

peak areas, H2O content, and error derived for each trial, with error calculated as a standard 

deviation for each glass type (with 18 repeat analyses per glass). Figures 17 and 18 illustrate 

the variation in final derived H2O content caused by these effects, which is lowest for the 

rhyolitic and dacitic glasses, and high for the trachytic glasses. 

 

 From Tables 4 and 5, it appears that the “heterogeneity+baseline” test produces a larger 

error than the pure “baseline” test (± 0.52, 0.48, and 0.96 vs. 0.17, 0.36, and 0.72 wt% H2O 

error for rhyolitic, dacitic, and trachityc glasses respectively). If glass heterogeneity does 

not contribute to the overall error in the experiment, we would not expect the error 
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associated with this trial to be much different than the “pure” baseline trial. However, the 

error associated with the heterogeneity+baseline test is significantly larger than the baseline 

test, which suggests that compositional differences within each sample will contribute to 

the overall water determination. As such, it is recommended for future studies that multiple 

spectra of each glass be taken in different regions of the sample, to account for the error 

associated with both baseline removal and sample heterogeneity. 
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Figure 17: Variation in calculated H2O content caused by changes in the baseline 

correction of the spectra. Each dot represents the final H2O content derived from a repeat 

analysis using the same spectra with a different baseline correction. The error for each glass 

within 1 standard deviation of the mean is ± 0.17wt% for the rhyolite, 0.35wt% for the 

dacite, and 0.72wt% for the trachyte. 
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Figure 18: Variation in calculated H2O content caused by sample heterogeneity and 

variations in the baseline correction of the spectra. Each dot represents the final H2O 

content derived from a repeat analysis using different spectra taken from different areas 

of the glass, plus a different baseline correction. The error for each glass within 1 

standard deviation of the mean is ± 0.52wt% for the rhyolite, 0.48wt% for the dacite, and 

0.96wt% for the trachyte. 
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4.3 Water determination 

The results of our water determination for our suite of rhyolitic, dacitic, and trachytic 

glasses are shown in Figure 19 and Table 6. The maximum error associated with our 

determination is 1.29 wt% H2O for rhyolites, 2.18 wt% H2O for dacites, and 1.08 wt% H2O 

for trachytes. The average error between all values is 0.85 wt% H2O. Errors were calculated 

by taking the difference between calculated vs. true H2O values for all glasses (See Table 

7). The error associated with these values are in keeping with similar studies by Zajacz et 

al. (2005) and Di Muro et al. (2006). Uncertainties for our values are based off the 1 sigma 

deviation of error associated with sample heterogeneity and variation in the baseline 

correction of the spectra (See Section 4.2). This resulted in a ± 0.52 wt% H2O uncertainty 

for the rhyolites, 0.48 wt% H2O uncertainty for the dacites, and 0.96 wt% H2O uncertainty 

for the trachytes. 
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Figure 19: Calibration line for silicate glasses. “f” subscript denotes fluorescence problem 

with sample. Error bar values are based on the 1 sigma uncertainty derived from the error 

associated with glass heterogeneity and baseline variability.  
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Table 7: Uncertainties in calculated water content 

Sample # Calculated H2O (wt%)
1

True H2O (wt%)
2

Difference
3

Average
4

1-8-6 B 3.43 2.68 0.75 0.85

1-9-10 A 5.37 5.94 0.57

1-9-10 B 4.83 4.32 0.51

1-10-1 A 3.21 2.27 0.94

1-10-1 B 2.89 2.45 0.44

1-10-2 A 4.50 3.93 0.57

1-10-2 B 5.33 5.35 0.02

1-10-15 A 2.96 4.25 1.29

1-10-15 B 3.15 3.98 0.83

1-10-15 C 3.09 3.37 0.28

1-13-10 3.81 5.99 2.18

1-13-21 7.57 6.59 0.98

1-14-9 A 6.99 5.44 1.55

1-15-4 4.34 3.38 0.96

T 1-4-13 4.57 5.34 0.77

T 1-5-6 6.42 5.34 1.08
1
the wt% H2O content for each sample after application of the correction factor

2
the actual wt% H2O of the sample calculated via FTIR spectroscopy

3
the absolute value of the difference between the calculated vs. true H2O values

4
the average uncertainty for all glasses in wt% H2O
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4.4 Raman analysis of fluorescing inclusions 

4.4.1 Anhydrous samples 

As detailed in section 3.6.1, a spectral subtraction of a hydrous vs. anhydrous fluorescent 

glass will leave only the hydrous components behind. This will allow us to quantify the 

effects of fluorescence on the peak areas of our spectra, and may give insight as to whether 

our Raman peaks are “riding” atop the fluorescence background, or being obscured by it. 

The results of this analysis are shown in Table 8, which shows that the water content 

derived for the subtracted (non-fluorescent) values are higher than the original (fluorescent) 

values. This suggests that the fluorescence background is partially obscuring the water band 

at ~3600cm-1, reducing its total area during deconvolution and ultimately causing water 

values to be underestimated. Note however, that the sample size for this experiment was 

quite small, with only 2 anhydrous analogues made for subtraction. As such, these larger 

water values might be coincidental. For future studies, a larger suite of samples should be 

made into anhydrous glasses and tested, to confirm the validity of this claim. 
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Table 8: Calculated peak-areas and H2O content (wt%) using subtracted spectra

Sample # T-O area
1

Water area
2 Calc H2O

3
Corrected H2O

4
True H2O

5

T 1-4-13 168 1009 1.86 5.20 5.34

T 1-4-13 subbed 200 1482 2.30 6.43 5.34

1-10-15 A 451 2915 1.20 3.20 4.25

1-10-15 A subbed 446 3204 1.33 3.57 4.25
1
the sum of all Gaussian peaks between ~700 and ~1250 cm

-1

2
the sum of all Gaussian peaks between ~3000 and ~3800 cm

-1

3
the wt% H2O content for each sample calculated using the water equation

4
the actual wt% H2O of the sample calculated via FTIR spectroscopy

5
the wt% H2O content for each sample after application of the correction factor
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4.4.2 UV spectroscopy 

As mentioned previously, UV excitation is a proven method to mitigate sample 

fluorescence, and thus remove the fluorescent background from a spectra (Millen et al., 

1999 and Severs et al., 2007). As such, three of our fluorescent samples, encompassing the 

full compositional suite of our glasses (rhyolitic, dacitic, and trachytic), were analyzed via 

UV spectroscopy. Figure 20 shows a comparison of a UV spectra vs a 532nm (green, 

visible light) spectra. The fluorescent background is completely eliminated from the UV 

spectra, giving an unobstructed view of both the T-O and water band regions.  

 

Table 9 and Figure 21 show a comparison of the final water values determined by our 

532nm Raman method, and our UV method. Curiously, there is little difference between 

the calculated water contents of the UV and 532 analytes, which still fall within 0.85 wt% 

of the true H2O content. This suggests that the water and T-O bands in our fluorescent 

spectra are relatively unaffected by the fluorescence background, and can produce accurate 

peak areas for water determination without any special treatment. It is important to note, 

however, that UV Raman spectra may appear different from normal Raman spectra, as 

many compounds can absorb UV radiation (Smith, 2005). This has been shown to alter the 

relative intensities of Raman bands. This calls into question whether it was appropriate to 

use the calibration derived from our 532nm glasses to our UV glasses. For future studies, a 

wider range of glasses may be compared between UV and light microscopy, to assess if the 

fluorescent background can be truly ignored, or if it requires treatment. 

 

 

 



66 
 

 

 

Figure 20: UV (red) vs. 532nm (black) spectra for sample T 1-4-13. 
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Figure 21: Plot of UV (405 nm) vs. 532nm excitation source derived water contents. 
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4.5 First test on natural melt inclusions  

The methods outlined in sections 3.2-3.5 were applied to natural melt inclusions from 

southern New Brunswick. These samples were mounted in thin section rather than resin to 

allow for location of glass inclusions via light microscopy. Figure 22 shows a typical glass 

inclusion selected for Raman analysis. Table 10 shows the average bulk composition of the 

melts, based on EMP and LA-ICP-MS by Gray et al., (2011). Table 11 shows the water 

content of the inclusions derived from our Raman analysis. These H2O values, on average, 

fall within 0.70 wt% of their actual values, which demonstrates that the calibration method 

described in this paper can be applied to natural melt inclusions, as well as bulk glass 

samples. 

 

The water values derived from our melt inclusion analysis ranged from 0.34 to 3.99wt% 

H2O. This range in water content may reflect the position of the Cherry Hill unit as it 

ascended through the country rock, trapping melt inclusions with decreasing H2O content 

as pressure, and thus water solubility, decreased. Figure 23 shows a plot of our melt H2O 

contents on a P-T projection of water solubility modeled for rhyolitic melts (Yamashita, 

1999). This projection shows that the maximum depth of entrapment for the Cherry Hill 

pluton corresponds to a pressure of ~100-120 MPa (or ~50-60 MPa if our 3.99wt% H2O 

inclusion is an outlier). This translates to a depth of ~4.07 km (or ~2.04 km) in the crust. 

The melt inclusions with the lowest H2O content (1.14-0.34 wt% H2O) represent a depth of 

entrapment of ~0.37km (~10MPa). As such, we can surmise that the rhyolitic magma of 

the Cherry Hill unit lost ~3.65 (or 2.28) wt% H2O as it traveled from its initial depth of 

emplacement at ~4.07 (or ~2.04) km to its final depth of ~0.37 km. As such, the dewatering 
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history of the Cherry Hill magma has been reconstructed using H2O values derived using 

Raman spectroscopy.  
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Figure 22: Natural glass inclusions from southern New Brunswick, sample NB07-18.  
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Table 10: Average bulk composition of NB07-18 melt inclusions (wt%)

SiO2 73.52

TiO2 0.089

Al2O3 14.46

Cr2O3 -

Fe2O3 -

FeO 1.26

MnO 0.051

MgO 0.031

CaO 0.822

Na2O 3.35

K2O 5.27

H2O 0.78-1.7
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Figure 23: Plot of calculated H2O contents on a P-T trajectory diagram of water solubility 

modeled for rhyolitic melts (adapted from Yamashita, 1999). 
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5.0 Conclusion 

Numerous analytical techniques are available for the quantification of water content in 

silicate glasses (FTIR, ICPMS, SIMS). However, these methods have serious drawbacks in 

terms of ease of use, sample destruction, and/or analytical uncertainty in deriving water 

content. Raman spectroscopy has been demonstrated as a quick, non-destructive technique 

in which water content may be analyzed within rhyolites, dacites, and trachytes to within        

0.85 wt% accuracy. The peak-area ratio between the water band at ~3600cm-1 and the T-O 

band at 700-1250cm-1 was found to closely approximate H2O content after application of 

the baseline and frequency temperature corrections to the spectra, along with special 

considerations for T-O band variability made in Zajacz et al.s (2005) water equation. The 

methods described were successfully applied to natural silicate melt inclusions, confirming 

the versatility of the Raman technique. The largest source of error in the experiment was 

identified as a combination of glass heterogeneity and variations in the baseline correction 

of the spectra. This revealed an uncertainty of ± 0.52, 0.48, and 0.96 wt% H2O for rhyolitic, 

dacitic, and trachityc glasses respectively. The problems associated with fluorescing 

spectra, variations in the baseline correction, and sample homogeneity were also addressed 

and found to be acceptable in terms of the error inherent to the experiment.  

 

Future studies may wish explore other techniques at reducing fluorescence. For example, 

Smith (2005) states that fluorescence caused by impurities in the sample may be “burned 

off” if left in the laser beam for some time. In addition, calibration standards based on 

fluorophores have been proposed for spectrometers in the visible light range. Pulsed lasers 

have also been found to reduce or mitigate fluorescence. 
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