
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS 1

Marginally Stable Triangular Recurrent Neural
Network Architecture for Time Series Prediction

Seshadri Sivakumar, Senior Member, IEEE, and Shyamala Sivakumar, Member, IEEE

Abstract—This paper introduces a discrete-time recurrent
neural network architecture using triangular feedback weight
matrices that allows a simplified approach to ensuring network
and training stability. The triangular structure of the weight
matrices is exploited to readily ensure that the eigenvalues of
the feedback weight matrix represented by the block diagonal
elements lie on the unit circle in the complex z-plane by updat-
ing these weights based on the differential of the angular error
variable. Such placement of the eigenvalues together with the
extended close interaction between state variables facilitated by
the nondiagonal triangular elements, enhances the learning abil-
ity of the proposed architecture. Simulation results show that the
proposed architecture is highly effective in time-series prediction
tasks associated with nonlinear and chaotic dynamic systems
with underlying oscillatory modes. This modular architecture
with dual upper and lower triangular feedback weight matrices
mimics fully recurrent network architectures, while maintain-
ing learning stability with a simplified training process. While
training, the block-diagonal weights (hence the eigenvalues) of
the dual triangular matrices are constrained to the same val-
ues during weight updates aimed at minimizing the possibility
of overfitting. The dual triangular architecture also exploits the
benefit of parsing the input and selectively applying the parsed
inputs to the two subnetworks to facilitate enhanced learning
performance.

Index Terms—Chaotic systems, marginally stable recurrent
neural network architecture, nonlinear prediction, selective input
parsing, upper-lower triangular recurrent neural networks.

I. INTRODUCTION

THE FEEDBACK structure of discrete-time recurrent neu-
ral networks (DTRNNs) has proven effective in modeling

dynamic characteristics of time varying signals [1]–[7].
A fully connected DTRNN architecture typically consists of
a single layer of neurons fully interconnected with each other
that allows interactions between all the state variables [1]–[4].
However, it has long been recognized that ensuring learning
stability and network stability of fully connected DTRNN is
a nontrivial problem that requires in most cases online com-
putation of a stability metric such as the eigenvalues of the
state transition matrix at each weight update instance. More

Manuscript received August 29, 2016; revised June 16, 2017 and August 20,
2017; accepted September 6, 2017. This paper was recommended by Associate
Editor P. Tino. (Corresponding author: Seshadri Sivakumar.)

Seshadri Sivakumar is with Pasumai EnergyTech LLC, Richmond,
CA 94804 USA (e-mail: seshadri.sivakumar@pasumaienergytech.com).

Shyamala Sivakumar is with Saint Mary’s University, Halifax, NS B3H3C3,
Canada (e-mail: shyamala.sivakumar@smu.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2017.2751005

importantly, the learning algorithm should include some direct
or indirect means of making sure that learning stability is
maintained. The computational complexity of monitoring and
maintaining stability online is proportional to the square of
the number of neurons in the network. This substantially lim-
its the size of fully connected recurrent networks that can be
applied for most practical applications.

Echo state networks (ESNs) have been successfully applied
to a range of time-series prediction problems. They typically
employ a large fixed recurrent weight matrix with full or
sparse recurrent connections and update only the output weight
matrix during learning [8]–[11] resulting in reduced computa-
tional requirement. The fixed feedback weight matrix mitigates
the vanishing and exploding gradient problems by not using
gradient descent learning [12]–[14]. However, any potential
value of training the recurrent weight matrix is not exploited
in ESNs.

DTRNNs with sparse and locally recurrent architectures
employing gradient descent techniques for training have been
shown to perform better and converge faster than fully recur-
rent networks [5]–[7]. DTRNNs with sparse feedback connec-
tions have reduced computational and storage requirements
and are also advantageous in terms of monitoring and ensur-
ing learning stability. Presented in [5] is a sparse DTRNN
architecture, referred to as the block-diagonal recurrent neu-
ral network (BDRNN), in which the feedback connections are
restricted to pairs of state variables. The BDRNN has two
layers, a feedback layer with a block-diagonal state-transition
matrix structure and an output layer that combines the state
variables of the feedback layer to generate the network output.
During learning, all weight matrices including the feedback
weight matrix are updated. It was shown that the learning pro-
cess in the BDRNN is inherently stable as the block-diagonal
structure facilitates seamless maintenance of network stabil-
ity at each weight update. Examples presented in previous
works [5], [15]–[17] demonstrated that the BDRNN archi-
tecture can successfully model a weakly nonlinear dynamic
system in which the system modes are “decomposable” into
several lower order dynamics. These subdynamics can be
characterized by the eigenvalues of the block diagonal state-
transition weight matrix. The BDRNN structure has been
successfully used for a range of applications including speech
processing and recognition [5], lung-sound processing [6], and
telecom call volume prediction [16].

However, the BDRNN architecture may be limited in its
ability to model complex time series with high inherent non-
linearity because the interaction within the state transition

2168-2267 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:seshadri.sivakumar@pasumaienergytech.com
mailto:shyamala.sivakumar@smu.ca
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CYBERNETICS

matrix is limited to pairs of state variables. While this
lack of interaction is partly compensated by the external
interconnections between the state variables facilitated by the
output matrix, the closely coupled interaction of the state vari-
ables within the state matrix gets muted by the sparseness of
the BDRNN structure. On the other hand, a fully connected
network can be more effective in modeling plant dynam-
ics with high order nonlinearity than the sparse and locally
recurrent counterparts [11].

A key objective addressed in this paper is to expand the
BDRNN architecture with increased recurrent interconnections
that mimics a fully connected network while retaining the
robust stability characteristics of the BDRNN. A second objec-
tive is to develop an improved learning algorithm that mitigates
the vanishing and exploding gradient problems commonly
associated with the gradient-descent training process used in
recurrent networks. A third objective is to employ a novel
input parsing technique that is amenable with the architecture
for enhancing the learning capacity and generalizability of the
proposed recurrent architecture.

To enhance interactions between the state variables as
possible with fully connected DTRNN while still retaining
the advantages of network and learning stability, the block-
diagonal matrix structure of the BDRNN is replaced with a tri-
angular state-transition weight matrix structure to exploit the
interactions of nondiagonal elements of the triangular matrix.
This paper introduces a novel DTRNN architecture, termed
upper-lower triangular recurrent neural network (ULTRNN),
which combines two subnetworks, one with an upper triangu-
lar state-transition weight matrix, and the other with a lower
triangular state-transition weight matrix. The upper and the
lower triangular weight matrices contain 2 × 2 diagonal
blocks with their eigenvalues constrained while training to lie
on the unit circle in the complex z-plane. Constraining the
eigenvalues is aimed at mitigating the vanishing and explod-
ing gradient problems [13] associated with online gradient
descent-based recurrent learning. In addition, while training
each corresponding 2 × 2 diagonal block in both triangular
matrix substructures are constrained to be the same such that
the hidden oscillatory modes of the target trajectory are learnt
by both subnetworks with a reduced possibility of overfitting.
The twin triangular subnetworks in the ULTRNN facilitate the
use of input parsing in which the inputs to the two subnetworks
can be different from each other and independently derived
from the network input which allows selective embedding of
some prior information for improved learning performance.

This paper is organized as follows. The architecture of the
ULTRNN is developed in detail in Section II-A. Section II-B
presents input parsing techniques. Section II-C presents a moti-
vational example. Section III discusses the stability constraints
of the ULTRNN architecture, and presents a novel weight
update technique that uses the differential of the angular
error variable to ensure that the eigenvalues of the triangular
weight matrices lie on the unit circle in the complex z-plane.
Section IV discusses the learning algorithm for the ULTRNN
that is local in space and presents a matrix manipulation means
that also makes it local in time. Section V presents represen-
tative examples that illustrate the feasibility of the ULTRNN

Fig. 1. ULTRNN architecture.

architecture in chaotic time series prediction and autonomous
pattern generation problems. Section VI presents conclusions.

II. TRIANGULAR RECURRENT NEURAL NETWORK

ARCHITECTURE

A. Architecture

The proposed ULTRNN architecture that uses twin triangu-
lar state-feedback weight matrices is depicted in Fig. 1.

The system equations of the ULTRNN, with k as the
sampling instant, is given by

xU(k + 1) = f a

(
WUxU(k) + BUuU(k) + dU

)

xL(k + 1) = f a

(
WL xL(k) + BLuL(k) + dL

)

y(k) = f b

(
CU xU(k) + CL xL(k)

)
(1)

where
WU the upper triangular state-feedback matrix, given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wU
1,1

−wU
1,2

wU
1,2

wU
1,1

wU
1,3

wU
2,3

wU
1,4

wU
2,4

0
0

0
0

wU
3,3

−wU
3,4

wU
3,4

wU
3,3

· · ·
wU

1,Ns−1

wU
2,Ns−1

wU
1,Ns

wU
2,Ns

wU
3,Ns−1

wU
4,Ns−1

wU
3,Ns

wU
4,Ns

.

.

.
. . .

.

.

.

0 · · · wU
Ns−1,Ns−1

−wU
Ns−1,Ns

wU
Ns−1,Ns

wU
Ns−1,Ns−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

WL is the lower triangular state-feedback matrix, given by
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wL
1,1

−wL
1,2

wL
1,2

wL
1,1

0

0

0

0

wL
3,1

wL
4,1

wL
3,2

wL
4,2

wL
3,3

−wL
3,4

wL
3,4

wL
3,3

· · · 0

.

.

.
. . .

.

.

.

wL
Ns−1,1

−wL
Ns,1

wL
Ns−1,2

wL
Ns,2

. · · · wL
Ns−1,Ns−1

−wL
Ns−1,Ns

wL
Ns−1,Ns

wL
Ns−1,Ns−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

BU = {bU
i,j}T

, BL = {bL
i,j}T

, i = 1, . . . , Ns, j = 1 . . . Ni are
the input matrices of the upper and lower triangular networks;

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SIVAKUMAR AND SIVAKUMAR: MARGINALLY STABLE TRIANGULAR RECURRENT NEURAL NETWORK ARCHITECTURE 3

CU = {cU
j,i}T

, CL = {cL
j,i}T

, i = 1 · · · Ns, j = 1 . . . No are
the output matrices of the upper and lower triangular networks;

dU = dU
i , i = 1 . . . Ns and dL = dL

i , i = 1 . . . Ns are the bias
weights;

xU(k) = {xU
i (k)}T

, xL(k) = {xL
i (k)}T

, i = 1 . . . Ns,

are the state vectors of the upper and lower triangular sub
networks; u(k) = {ui(k)}T , i = 1 . . . Ni, is the network
input vector; and uU(k) = gU(u(k)) = {uU

i (k)}T
, uL(k) =

gL(u(k)) = {uL
i (k)}T

, i = 1 . . . Ni, are the input vectors of the
upper and lower triangular sub networks;

y(k) = {yj(k)}T , j = 1 . . . No, is the network output vector;
gU(u(k)) and gL(u(k)) are functions that process the

network input vector u(k) to facilitate selective parsing and
channeling of the input contents to the upper and the lower
triangular subnetworks and further discussed in Section III;
and fγ (z), where γ = a, b represents the function on vector
z = {zi}T of the form {fγ (zi)}T , where

fγ (x) = (1 − eγ x)/
(
1 + eγ x), γ ≥ 0. (2)

Note that the nth 2 × 2 block diagonal submatrices of WL

and WU, denoted by WU
n and WL

n , respectively, are constrained
to the scaled-orthogonal [5] form

WU
n =

[
wU

2n−1,2n−1 wU
2n−1,2n

−wU
2n−1,2n wU

2n−1,2n−1

]
for n = 1, 2, . . . Ns/2

WL
n =

[
wL

2n−1,2n−1 wL
2n−1,2n

−wL
2n−1,2n wL

2n−1,2n−1

]
for n = 1, 2, . . . Ns/2.

(3)

As discussed in [5] and [17], a key motivation for the use of
the triangular architecture with the block diagonal form stems
from linear time-invariant systems theory where it is known
that a given complex system dynamic can be represented by
a linear combination of several first and second order dynam-
ics, each of which can be modeled by a 2 × 2 feedback weight
matrix. Extending this concept to weakly nonlinear dynamic
processes, it may be feasible to model such processes with
a triangular network such as the ULTRNN with the elements
of WU

n and WL
n representing the system eigenvalues in the com-

plex z-plane from a linear-system perspective, hence directly
facilitating an effective mechanism to model the underlying
oscillatory modes.

While the block diagonal elements are constrained as dis-
cussed above, the off-block-diagonal elements of the upper and
the lower triangular subsystems are free to assume any value
in the training process. The off-block-diagonal elements of
the two triangular subsystems allow the connections between
the various oscillatory modes to interact more flexibly than
achievable with only a block-diagonal, an upper triangular, or
a lower triangular architecture.

Another key motivation relates to the fact that the complex
2 × 2 block diagonal substructure is conducive to devising
a training algorithm that is local in space. The training algo-
rithm previously developed for the BDRNN [5], [17] can be
extended to the case of the ULTRNN with some modifica-
tion that renders its training process local in time. Hence,
just as in the case of the BDRNN, the use of a triangular

feedback weight matrix eases the problem of monitoring and
maintaining network stability at each weight update.

The block diagonal elements of WL and WU are further
constrained as given by

WU
n = WL

n =
[

αn βn

−βn αn

]
, n = 1 . . .

Ns

2√
αn

2 + βn
2 = 2

a
. (4)

For the case of the slope of the sigmoidal function a = 2,
without loss of generality, the constraint equation reduces to

αn
2 + βn

2 = 1. (5)

The motivation behind the constraint of equality between
WU

n and WL
n is to seek out the oscillatory modes present in

the time-series through a minimal realization of the neural
network by “synchronizing” the two triangular subnetworks
during the training process. This constraint is aimed at limit-
ing the proliferation of the number of system eigenvalues and
hence to minimize overfitting. This approach has the same
objective as presented in [18] where drop out techniques are
used to minimize the number of states to avoid overfitting.

Equation (5) can alternatively be reformulated using a set
of angular variables θn as

WU
n = WL

n =
[

cos(θn) sin(θn)

− sin(θn) cos(θn)

]
, n = 1 . . . Ns/2. (6)

Constraining each complex conjugate pair to lie on the unit
circle in the training process inherent through the formulation
using the angular variable θn eases maintaining the stability
of both the network and of learning, without specific need for
other means of online monitoring of network stability, or the
use of additional feedforward structures as proposed in [17].

B. Input Parsing for ULTRNN Structures

The twin triangular structures of the ULTRNN facili-
tate the application of inputs uU(k) and uL(k) that are
derived from u(k) where it may be beneficial in improv-
ing the learning performance of the network. For example,
the parsing and selective channeling of the input can be
implemented using an appropriate selection of functions gU(·)
and gL(·) to exploit some a priori knowledge of the system
dynamics being modeled. For a class of problems involv-
ing transductive learning [19], it was shown that modeling
such learning tasks on spectral graphs in which the labeled
observations are positive or negative sources, has been used
for encoding prior knowledge about the relationship between
individual examples. In [20], for data that can be naturally
partitioned into views, incorporating interactions among view
models was shown to be advantageous in improving predictive
performance and developing a model that provides insight into
the underlying relationship among views.

Most real time-series signals are shaped by attributes such as
trend, seasonality, periodicity, correlation, skewness, kurtosis,
chaos, nonlinearity, and quasi self-similarity. The applica-
tion of appropriate input signal parsing techniques that take
advantage of critical attributes can allow the two triangular
subnetworks to learn more effectively. Input parsing can be

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

implemented as an integral part of data preprocessing but with
an extended objective of extracting key competing features and
clustering the input in accordance with the extracted feature.

Some representative examples of input signal parsing for
a scalar input case u(k) are discussed below.

1) Threshold parsing (7) can be employed when the tar-
get waveform exhibits considerable dissymmetry about
a threshold ub. The threshold can either be a constant
such as the mean or median, or a variable such as
a trending function

gU(u(k)) =
{

u(k), u(k) > ub

0, u(k) ≤ ub

gL(u(k)) =
{

u(k), u(k) ≤ ub

0, u(k) > ub.
(7)

2) Sum-difference parsing (8) combines adjacent input
samples first as a sum and second as a difference
such that any harmonic content inherent in the target
waveform is highlighted by the difference, while any
undesirable high-frequency content or noise is filtered
out by the sum. The sum-difference parsing can also rep-
resent or be extended using multiple adjacent time series
samples to extract the rolling mean and variance profile
of the time series waveform. Also, it can help extract
and separate the high and low frequency components in
a target waveform

gU(u(k)) = u(k) + u(k − 1)

gL(u(k)) = u(k) − u(k − 1). (8)

3) Rectification parsing (9) can be considered in cases
where the target waveform exhibits a high degree of
skewness of frequency components about a threshold ub

gU(u(k)) = |u(k) − ub|; gL(u(k)) = u(k). (9)

4) Envelop parsing (10) can be employed in cases where
the target waveform is made up of low frequency
envelope function ϕ(·) modulating a high frequency
carrier-like waveform

gU(u(k)) = ϕ(u(k))u(k); gL(u(k)) = ϕ(u(k)). (10)

The ULTRNN with its dual subnets provides a unique
platform for effectively making use of the parsed inputs for
improved learning for cases where the features of the target
time series can be broadly decomposed into two competing
subsets. In cases where the target time series contains multiple
competing features, the learning performance of the ULTRNN
can still be enhanced by sorting the features into two com-
peting subsets and selectively channeling the corresponding
processed inputs to the two subnets of the ULTRNN. As a scal-
ing alternative, the ULTRNN can be recast as a multiple input
system, with each of the multiple inputs fed to the two subnets
appropriately parsed to represent a feature set. In such cases,
the onus of identifying and modeling the inherent multiple
features of the target waveform shifts to the ULTRNN’s
internal oscillatory modes and their interconnections, and
hence, the network dimensions should be sufficiently large
for enhancing the learning ability. It should be noted that

recasting as a multiple input system to handle target wave-
forms with multiple features is applicable to any network
architecture, and not just unique to the ULTRNN. However,
the ULTRNN still has an advantage as its dual subnets pro-
vide an additional input parsing mechanism for enhanced
learning.

Yet another scaling alternative is to expand the network
with several distributed ULTRNNs as subnets with a combined
output, with each individual ULTRNN assigned to selectively
receive parsed inputs associated with a feature set of the target
waveform. While the training process and stability aspects of
the expanded network remains the same as that of a single
ULTRNN, the training time is compounded by the increased
dimensionality of the expanded network.

The input parsing techniques discussed in this paper mostly
make use of some prior knowledge of the target time series.
When there is no prior knowledge of the target waveform
available or apparent, the type of parsing can be chosen by
trial and error. A possible methodology can be to test sev-
eral variants of input parsing on a validation data set and then
select the parsing technique that yields the best performance.
Feature extraction and time series clustering techniques [21]
can conceivably be adapted for the automated assessment and
selection of the best candidates, however, such techniques are
not considered in this paper.

It should be noted while input parsing and selective channel-
ing can be effective in enhancing the learning performance of
the ULTRNN, it is not a necessary requirement for the effec-
tive application of the ULTRNN to modeling a wide range of
time series prediction problems.

C. Motivational Example

The example in this section compares the performance
of the ULTRNN with a fully connected recurrent neural
network (FCRNN) and other sparse DTRNN architectures
in replicating a simple deterministic nonlinear target wave-
form. The target waveform, shown in Fig. 2, is generated
by a plant with a DTRNN structure with pulsed inputs. For
positive input pulses, the plant generates a waveform with
a dominant 11th harmonic component, and for negative input
pulses, it generates a waveform with a dominant 3rd harmonic
component.

The sparse networks considered for comparison include
a BDRNN, an UTRNN—a DTRNN with only one triangu-
lar feedback weight matrix, a dual BDRNN—a DTRNN with
the two feedback matrices made up of only block-diagonal
elements the eigenvalues of which are not constrained to be
the same. Listed in Table I are the various networks along
with their input configurations that were considered for com-
parison. Cases 1–4 pertain to networks with a single feedback
weight matrix, cases 5 and 6 pertain to networks with dual
feedback matrices fed with common inputs, and cases 7–9 per-
tain to networks with dual feedback matrices fed with parsed
inputs. With the focus on the ULTRNNs (cases 6 and 8), the
dimensions of the BDRNN, the UTRNN, the FCRNN, and
the dual BDRNN (cases 1–3, 5, and 7) were chosen so that
they have roughly the same number of free trainable weights

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SIVAKUMAR AND SIVAKUMAR: MARGINALLY STABLE TRIANGULAR RECURRENT NEURAL NETWORK ARCHITECTURE 5

Fig. 2. Nonsymmetric target waveform—(top) input and (bottom) output.

TABLE I
NONSYMMETRIC WAVEFORM MODELING PERFORMANCE

COMPARISON OF DTRNNS

as that of the ULTRNNs for a balanced performance compari-
son. Cases 4 and 9 pertain to networks with higher dimensions
for extended comparison.

The inputs to the networks of cases 1–4 are the positive and
negative pulses applied to the plant. For the common input
cases 5 and 6 both the upper and the lower subnets receive
both positive and negative input pulses. For the parsed input
cases 7–9 the upper subnet receives only positive input pulses,
while the lower subnet receives only negative input pulses.

All the networks were trained with 500 points of the target
waveform with the inputs derived from the strobe of pulses
spaced at random time steps as shown in Fig. 2. The train-
ing used the modified backpropagation through time (BPTT)
technique described later in Section IV. For all networks other
than the FCRNNs, the initial block-diagonal weights were cho-
sen such that the eigenvalues of the feedback weight matrix
lie randomly on the unit circle. For the FCRNNs, to ensure
the stability of its training process, while the weight elements
were chosen randomly, the feedback weight matrix was con-
strained to have its maximum eigenvalue less than 1 at each
weight update step. Each network was trained until conver-
gence and their performance tested for input pulses at arbitrary
time steps.

(a)

(b)

(c)

Fig. 3. Nonsymmetric waveform modeling with common input. (a) 5-mode
BDRNN (case 1). (b) 4-mode FCRNN (case 3). (c) 2-mode ULTRNN (case 6).

(a)

(b)

(c)

Fig. 4. Nonsymmetric waveform modeling with parsed inputs. (a) 3-mode
dual BDRNN (case 7). (b) 3-mode dual ULTRNN (case 8). (c) 3-mode
ULTRNN (case 9).

Table I summarizes the test data NRMSE for the various
networks considered. Figs. 3 and 4 compare the key network
output waveforms with the target waveform for common input
and parsed inputs, respectively. From the results in Table I and
the plots in Figs. 3 and 4, it is seen as follows.

1) The 2-mode ULTRNN with parsed inputs (case 8), with
the fewest trainable parameters, outperforms all other
networks including both FCRNNs (cases 3 and 4). From
Fig. 4(b), it is seen that the ULTRNN is also bet-
ter able to differentiate between the varied harmonic
content.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

2) The higher order (3-mode) ULTRNN (case 9) marginally
improves tracking performance, but the onset of overfit-
ting is evident from the plot of Fig. 4(c).

3) The 2-mode ULTRNN with common input [case 6,
Fig. 3(c)] outperforms the BDRNN [case 1, Fig. 3(a)],
the UTRNN (case 2), and the 3-mode FCRNN [case 3,
Fig. 3(b)]. However, the 4-mode FCRNN (case 4) has
a lower NRMSE than the ULTRNN with common input,
but has more than twice the trainable weights.

4) The 3-mode UTRNN (case 2) performs marginally bet-
ter than the BDRNN (case 1) due to the additional
interconnections between feedback states.

It is also noted that the higher NRMSE of the 3-mode
FCRNN (case 3) may be due to the maximum eigenvalue
constraint imposed during training; the performance of the
BDRNN [case 1, Fig. 3(a)] and the dual BDRNN with com-
mon input (case 5) is impaired probably due to reduced
interconnections between feedback states; the dual BDRNN
with input parsing [case 7 and Fig. 4(a)] has a substantially
lower NRMSE.

III. STABILITY CONSIDERATIONS

The global asymptotic stability conditions for a nonlinear
dynamic system can be found by applying the contraction
mapping theorem. It is known for a fully connected DTRNN
with a feedback weight matrix Wf that the global behav-
ior of its output trajectories for any initial state variable
of the system is determined by the square root of each
of the eigenvalues of (Wf)

T
Wf . The stability of the learn-

ing dynamic on the other hand depends on the eigenvalues
of Wf (Wf)

T
. Hence, the global stability of the network

dynamic is also a sufficient condition for the learning dynamic
as well.

A sufficient condition for the local stability of a DTRNN
with feedback matrix Wf [1], [22] is

∣∣∣λi(Wf)

∣∣∣ ≤ 2

a
for i = 1 . . . N (11)

where λi(Wf) is the ith eigenvalue of Wf . A sufficient condi-
tion for the global stability of the DTRNN using contraction
mapping theorem was shown to be [23]

[
λmax

{
(Wf)

T
Wf
}]1/2 ≤ 2/a (12)

where λmax{·} represents the maximum eigenvalue. From (11)
and (12), it is clear that the local or global stability of the
DTRNN and its training depends on the eigenvalue with the
largest magnitude of Wf or (Wf)

T
Wf , respectively, at each

weight update. Satisfying these conditions at each weight
update in a fully connected DTRNN makes this monitor-
ing difficult and computationally expensive. In the case of
a sparse network with diagonal (as in the BDRNN) or tri-
angular (as in the ULTRNN) state-transition matrices, as the
eigenvalues are determined by the main block diagonal ele-
ments, satisfying global and learning stability while training
can be achieved relatively easily by continuously monitoring,
and imposing appropriate constraints on the main diagonal

elements. The global and local stability condition for the
ULTRNN is given by
[
λmax

(
(Wχ

n)
TWχ

n

)]1/2 ≤ 2

a
, n = 1 . . . Ns/2, χ = U, L.

(13)

With the chosen structure of the block diagonal submatrices
Wχ

n , this reduces to
∣∣λ(Wχ

n)
∣∣
max ≤ 2

a
≤ 1, n = 1 . . . Ns/2, χ = U, L. (14)

With the equality constraint per (4) on the block diago-
nal elements of WU

n and WL
n , the sufficient condition for the

network and learning stability reduces to
√

αn
2 + βn

2 ≤ 2

a
≤ 1, n = 1 . . .

Ns

2
. (15)

Hence, the constraint (5) and the angular formulation (6)
inherently facilitate a simple and direct means of ensuring that
both the network and the learning are stable.

IV. LEARNING ALGORITHM

Trajectory learning in the proposed ULTRNN architecture
is accomplished using the BPTT algorithm [24] modified as
in [5]. The traditional BPTT algorithm computes the exact
error gradient in the backward pass using spatially local com-
putations. This requires that the input, state, and error vectors
be stored for each time instant in the forward pass, and hence,
the storage requirement increases with the length of the train-
ing pattern, which makes the BPTT algorithm nonlocal in time.
In the modified version reported in [5], the gradient compu-
tation can be made local in time by recursively recomputing
the state vector in the backward pass, thereby eliminating the
storage requirement. However, the modified algorithm requires
that the state weight matrix be invertible after each weight
update. In addition, the recalculation of the state vector in the
backward pass can occasionally result in numerical instabil-
ity especially for long training sequences. In the ULTRNN,
the use of triangular state-transition matrices whose diag-
onal weights are nonzero at every weight update ensures
their invertibility. Additionally, as discussed earlier, constrain-
ing the block diagonal elements to lie on the unit circle in
the complex plane ensures marginal stability at each weight
update. As shown later in Section IV-F, this formulation leads
to the easy invertibility of the state-transition matrices with
low-computational burden. Additionally, requiring the block
diagonal weights to lie on the unit circle also reduces the possi-
bility of numerical instability. Thus, the ULTRNN architecture
is conducive to devising a trajectory learning algorithm in
which the gradient computation is local in both space and time,
provided that the numerical stability is maintained through
suitable means. Numerical stability is achieved extending the
back-stepping method proposed for the BDRNN in [5], and
this is discussed later in Section IV-F.

A. Weight Initialization

The block diagonal elements of WU and WL are initial-
ized using random angular variable θn, n = 1, . . . , Ns/2,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SIVAKUMAR AND SIVAKUMAR: MARGINALLY STABLE TRIANGULAR RECURRENT NEURAL NETWORK ARCHITECTURE 7

uniformly distributed in the range (0:2π) and the correspond-
ing weights computed according to (6). The nondiagonal
elements of WU and WL, the elements of BU, BL, CU,
CL, dU, dL, and the state vectors xU(0) and xL(0) are
initialized with random values uniformly distributed in the
range (−1:1).

B. Forward Pass

In the forward pass, for any training cycle t, the state vectors
{xU

i (k)} for the upper triangular subnetwork and {xL
i (k)} for the

lower triangular subnetwork are computed for all time steps k
for the qth training sequence of length Kq as

sχ
i (k + 1) =

Ns∑
j=1

wχ
i,j xχ

j (k) +
Ni∑

j=1

bχ
i,j uχ

j (k) + dχ
i

xχ
i (k + 1) = fa

(
sχ

i (k + 1)
)
, i = 1 . . . Ns, χ = U, L. (16)

The network output {yh(k)} is given by

yh(k) = fb

⎛
⎝

Ns∑
j=1

cU
h,j xU

j (k) +
Ns∑

j=1

cL
h,j xL

j (k)

⎞
⎠, h = 1 . . . No.

(17)

The error vector {eh(k)} is computed as

eh(k) = yp
h(k) − yh(k), h = 1 . . . No (18)

where yp
h(k) is the desired output for the hth output unit at

instant k. The total squared error over all the No output units
for the qth training sequence is given by

Jq(k) = 1

2

No∑
h=1

(
yp

h(k) − yh(k)
)2
∣∣∣∣∣
q

. (19)

The computed state and error vectors are stored for use in the
backward pass computations.

C. Backward Pass

At any training cycle t, let
wU
i,j(t) and
wL

i,j(t) repre-
sent the accumulated error gradients of the nonzero elements
of the upper and the lower triangular subnetworks over Kq

steps of the qth training sequence. They are computed using
the state vectors {xU

i (k)} and {xL
i (k)} and the error vector

{eh(k)} (computed and stored in the forward pass) with spa-
tially local computations. Using the chain rule as detailed
in [1] and [17]

wχ
i,j(t) = ∂Jq(t)

∂wχ
i,j(t)

=
Kq∑

k=1

(
∂Jq(k, t)

∂wχ
i,j(t)

)

=
Kq∑

k=1

(
∂Jq

∂xχ
i (k)

)(
∂xχ

i (k)

∂wχ
i,j

)
, χ = U, L. (20)

Fig. 5. Computation of the differential of the angular error variable
θn.

Denoting (∂Jq/∂xχ
i (k)) as ε

χ
i (k), it is computed recursively

in the backward pass from the value of ε
χ
i (k + 1) as

ε
χ
i (k) = −

No∑
h=1

eh(k)f
,
b

⎛
⎝

N∑
j=1

(
cU

h,jx
U
j (k)

)
+
(

cL
h,jx

L
j (k)

)⎞
⎠cχ

h,i

+
N∑

j=1

wχ
j,i f ,

a

(
sχ

j (k + 1)
)
ε
χ
j (k + 1), χ = U, L

(21)
∂xχ

i (k)

∂wχ
i,j

= f ,
a

(
sχ

i (k)
)
xχ

j (k − 1), χ = U, L (22)

where f ,
a(·) is the derivative function of fa(·) and is given by

f ,
a(·) = 1 − [fa(·)]2. With the initial value of ε

χ
i (Kq)

ε
χ
i

(
Kq
) = −

No∑
h=1

eh
(
Kq
)
cχ

h,i, χ = U, L. (23)

D. Updating of Block Diagonal Weights

To constrain the block diagonal elements of both the upper
and the lower triangular state-transition matrices to stay on the
unit circle in the complex z-plane, the differential of the angu-
lar variable of each block diagonal submatrix is computed as
a combination of the differential of the block diagonal weight
elements, as shown in Fig. 5. In this figure, P represents the
complex z-plane location of the eigenvalue corresponding to
a block diagonal element pair prior to a weight update. Q
represents the new weight-update location based only on the
differentials computed per (20) with no constraint imposed.
R represents the actual updated location after the unit cir-
cle constraint is imposed, as per the computational steps
outlined below.

From (4) and (6)

tan(θn) = βn

αn
= wχ

2n−1,2n

wχ
2n−1,2n−1

, χ = U, L. (24)

On each weight update, the differential of the angular variable

θn is related to the differential of the block diagonal weight
elements
αn and
βn as given by

tan(θn +
θn) = βn +
βn

αn +
αn
. (25)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CYBERNETICS

For small values of
θn, this reduces to
sin(θn) + cos(θn)
θn

cos(θn) − sin(θn)
θn
= βn +
βn

αn +
αn
. (26)

Rearranging the terms, and simplifying

θn = −
αnsin(θn) +
βncos(θn). (27)

In terms of the individual differentials of the block diagonal
weights of the upper and the lower triangular subnetworks, the
differential of the angular variable can be written as

θn = − sin θn

{
1

4

(

wU

2n,2n +
wU
2n+1,2n+1

+
wL
2n,2n +
wL

2n+1,2n+1

)}

+ cos θn

{
1

4

(

wU

2n,2n+1 −
wU
2n+1,2n

+
wL
2n,2n+1 −
wL

2n+1,2n

)}
. (28)

Note that the two terms within {} in (28) represent the aver-
age differentials of pertinent block diagonal weights. Unlike
in the conventional DTRNN where weight updates may very
often result in the updated weight matrix becoming unstable,
or move the eigenvalues to a location within the unit circle in
the z-plane, using the differential of the angular variable for
updating the weights (in place of the direct differentials of the
block diagonal weight elements) forces the eigenvalues to be
retained on the unit circle in the z-plane. This helps to retain
network and learning stability, while ensuring that the sensitiv-
ity of the ULTRNN is sustained through the training process
to help capture the plant’s oscillatory modes. At training cycle
t + 1, θn is updated as

θn(t + 1) = θn(t) − μ

Kq

θn(t) (29)

where μ is the learning rate.

E. Updating Nonblock Diagonal, Input,
Output, Bias Weights

1) Updating Nonblock Diagonal Weights: The nonblock
diagonal nonzero weights of the ULTRNN are updated as

wχ
i,j(t + 1) = wχ

i,j(t) − μ

Kq

wχ

i,j(t), χ = U, L. (30)

2) Updating Output Weights: The output weight matrices
CU and CL of the ULTRNN are updated as

cχ
i,j(t + 1) = cχ

i,j(t) − μ

Kq

cχ

i,j(t), χ = U, L (31)

where,
cχ
i,j(t) is the accumulation of the instantaneous error

gradient given by

cχ
h,j(t) = ∂Jq(t)

∂cχ
h,j(t)

=
Kq∑

k=1

(
∂Jq(k, t)

∂cχ
h,j(t)

)

=
Kq∑

k=1

(
∂Jq

∂yh(k)

)(
∂yh(k)

∂cχ
h,j

)

h = 1 . . . No, j = 1 . . . Ns , χ = U, L (32)

where

∂yh(k)

∂cχ
h,j

= f ,
b

⎛
⎝

N∑
j=1

(
cU

h,jx
U
j (k)

)
+
(

cL
h,jx

L
j (k)

)⎞⎠cχ
h,i, χ = U, L

(33)
∂Jq

∂yh(k)
= −eh(k) , h = 1 . . . No. (34)

3) Updating Input Weights: The input weight matrices BU

and BL are updated as

bχ
i,j(t + 1) = bχ

i,j(t) − μ

Kq

bχ

i,j(t), χ = U, L (35)

where,
bχ
i,j(t) is the accumulation of the instantaneous error

gradient given by

bχ
i,j(t) = ∂Jq(t)

∂bχ
i,j(t)

=
Kq∑

k=1

(
∂Jq(k, t)

∂bχ
i,j(t)

)
=

Kq∑
k=1

ε
χ
i (k)

(
∂xχ

i (k)

∂bχ
i,j

)

i = 1 . . . Ns, j = 1 . . . Ni , χ = U, L (36)

where, ε
χ
i (k) is given by (21), and

∂xχ
i (k)

∂bχ
i,j

= f ,
a

(
sχ

i (k)
)
uχ

j (k − 1), χ = U, L. (37)

4) Updating Bias Weights: The bias weight vectors dU and
dL are updated as

dχ
i (t + 1) = dχ

i (t) − μ

Kq

dχ

i (t), χ = U, L (38)

where,
dχ
i (t) is the accumulation of the instantaneous error

gradient given by

dχ
i (t) = ∂Jq(t)

∂dχ
i (t)

=
Kq∑

k=1

(
∂Jq(k, t)

∂dχ
i (t)

)
=

Kq∑
k=1

ε
χ
i (k)

(
∂xχ

i (k)

∂dχ
i

)

i = 1 . . . Ns, χ = U, L (39)

where, ε
χ
i (k) is given by (21), and

∂xχ
i (k)

∂dχ
i

= f ,
a

(
sχ

i (k)
)
, χ = U, L. (40)

F. Learning Algorithm for Reduced Storage

With the conventional BPTT applied to the ULTRNN, the
memory required for the storage of the state, the input and
the error vectors is of O{Kq(Ns + Ni + No)}. With the mod-
ified BPTT algorithm reported in [5] the storage requirement
can substantially be reduced at the cost of computational time,
by recomputing the state variables in each step of the back-
ward pass from the previously recomputed values of the state
variables.

The recomputation of the state vectors is performed recur-
sively according to

xχ ′
i (k) =

Ns∑
j=1

wχ
i,j

∗
⎧
⎨
⎩fa

−1
(

xχ ′
i (k + 1)

)
−

Ni∑
j=1

bχ
i,j uχ

j (k)

− dχ
i

⎫
⎬
⎭, i = 1 . . . Ns, χ = U, L (41)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SIVAKUMAR AND SIVAKUMAR: MARGINALLY STABLE TRIANGULAR RECURRENT NEURAL NETWORK ARCHITECTURE 9

where xχ ′
i (k) is the recomputed value of the ith state variable

at each backward pass step k, and wχ
i,j

∗ is the i, jth element of
the inverse of the state weight matrix Wχ .

From (41), it is seen that the recomputation of the state vari-
ables requires the inversion of the sigmoidal function fa(·) and
the inverses of WU and WL. The triangular structure of WU

and WL together with the requirement that their block diagonal
elements remain on the unit circle facilitates the computation
of their inverses by simple iterative operations on the elements
of WU and WL, using the following outline steps [25].

Step 1: Compute the inverse of each of the block diagonal
submatrices as its transpose, that is
(
Wχ

n

)−1 = (Wχ
n

)T
, n = 1 . . .

Ns

2
, χ = U, L.

(42)

Step 2: Partition WU and WL along their diagonal into
square submatrices with each submatrix composed
of an adjacent diagonal block pair the inverses of
which have been computed in the previous iterative
step along with the associated off-diagonal blocks.
The partitioned ith submatrix VU

i of WU is of the
generic form

VU
i =

[

U

11
U
12

0
U
22

]

i
. (43)

The partitioned ith submatrix VL
i of WL is of the

form

VL
i =

[

L

11 0

L

21
L
22

]

i
. (44)

The inverses of VU
i and VL

i are computed as

(
VU

i

)−1 =
[(

U
11

)−1 −(
U
11

)−1

U

12

(

U

22

)−1

0
(

U

22

)−1

]

i
(45)

(
VL

i

)−1 =
[(

L
11

)−1
0

−(
L
22

)−1

L

21

(

L

11

)−1 (

L

22

)−1

]

i

.

(46)

Step 3: Step 2 is repeated recursively until the inverse of
the entire triangular matrix has been computed.

It was shown in [5] and [17] that the state recomputation
technique helps to significantly reduce the storage requirement
but may occasionally result in numerical instability, especially
for long training sequences due to the recursive nature of the
recomputation. A key reason for the numerical instability is the
amplifying effect of the inverse of the state-transition matrix
on a small error introduced in any step of the iteration. The
dynamics of the numerical stability error was shown to be the
same as the dynamics of the recomputation of the state vari-
able, hence it is divergent. In the case of the ULTRNN, the
error increase due to the recursive nature of the amplifying
effect is eliminated, as the eigenvalues of WU and WL, and
hence, that of their inverses, are on the unit circle. However,
numerical instability may still occur due to the amplifying
effect of fa−1(·) on the recomputed state variables. For practi-
cal situations, despite this effect, it is still possible to perform

several recursive computations without significant loss of accu-
racy. If numerical stability is degraded during the recursive
computation, recovery is possible through a back-stepping
method using the selective intermediate state vectors captured
and stored during the forward pass computation as has been
previously demonstrated for the BDRNN [5]. The steps for
the recomputation of the state vectors with numerical stability
are as follows.

Step 1 (Recursive State Vector Recomputation): In the for-
ward pass, intermediate values of the state vectors are stored at
evenly spaced intervals over the length of the training pattern.
In the backward pass, these stored values are used as initial
values for the recomputations of the state vectors performed
over sublengths of the training pattern.

Step 2 (Monitoring Numerical Stability): Any signs of
numerical instability in the backward pass are monitored using
a scalar shadow error es(k), which is obtained by comparing
a scalar shadow output yf

h(k) computed in the forward pass
with a scalar shadow output yr

h(k) computed in the backward
pass using the recomputed values of the state vectors. The
shadow error is thus a measure of the numerical stability of
the state recomputations.

Step 3 (Recovery): When the shadow error es(k) exceeds
a threshold value, the state vectors {xU

i (k)} and {xL
i (k)} are

recomputed from the nearest intermediate stored state vectors
per step 1 by iteratively using the forward pass computations.

V. ILLUSTRATIVE EXAMPLES

Several illustrative examples are presented in this section
to demonstrate the effectiveness of the proposed ULTRNN
architecture. The examples encompass: 1) 1-step prediction
of single-variable chaotic time series; 2) autonomous genera-
tion of loop-like waveforms; 3) output response reproduction
of a multiple-input multiple-output (MIMO) plant driven by
noisy input waveforms; 4) 5-step prediction of multivariable
chaotic time series; and 6) n-step prediction (n = 1, 2, and
100) of a low-frequency waveform with chaotic pulsations.
Most of the examples employ input signal parsing discussed
in Section II-B to encode prior knowledge when the target
dynamics exhibit nonlinear features such as dissymmetry, kur-
tosis, skewness, varied harmonic content, and multiple time
constants.

In the following examples, the ULTRNNs were trained with
the initial angular variable θn randomly assigned values uni-
formly distributed in the range (0:2π), and the corresponding
block diagonal weights of WU and WL computed according
to (6). The nondiagonal elements of the ULTRNN, the ele-
ments of the corresponding input, the output and the bias
weight matrices are initialized with random values uniformly
distributed in the range (−1:1).

A. Example 1: Chaotic Henon Attractor Prediction

This example considers the one step ahead prediction of the
Henon attractor [26] given by

yp(k) = 1.5zp(k) (47)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 6. Case 2. Henon attractor—rectified input parsing. Plant and ULTRNN
outputs (top) and prediction error (bottom).

Fig. 7. Case 3. Henon attractor—sum-difference parsing. Plant and ULTRNN
outputs (top) and prediction error (bottom).

where zp(k) is generated by state equations

xp(k + 1) = 1 − 1.4xp(k)2 + zp(k); zp(k + 1) = 0.3xp(k).

(48)

The Henon attractor exhibits chaotic behavior as shown in
Figs. 6 and 7.

Several variants of the input parsing are formulated and an
ULTRNN with 16 feedback variables representing eight oscil-
latory modes was trained to perform 1-step output prediction,
with yp(k) given as the inputs. Input parsing is employed as
the chaotic Henon attractor exhibits dissymmetry around its
mean value, and high frequency variations are largely confined
to the positive half of each cycle. For each input configura-
tion, the network was trained over a cycle of 400 sampling
instants with the weights updated at the end of each cycle.
Convergence was achieved after about 50 000 training iter-
ations with a nominal learning rate μ = 2E-4. Comparative
results of the ULTRNN performance for three selective input
configurations for an independent test data set consisting of
400 sampling instants are summarized in Table II.

As noted from Table II, all three cases of the 8-mode
ULTRNNs exhibit acceptable prediction performance. The
ULTRNNs with sum-difference parsing (case 3) and the recti-
fication parsing (case 2) outperform the ULTRNN with the
unprocessed inputs (case 1). However, the ULTRNN with
sum-different parsing is perhaps handicapped by overfitting
as evident from the increased NRMSE on test data. When
the rectified values (|yp(k)|) are used as the inputs (case 2),

TABLE II
ULTRNN PERFORMANCE WITH VARIANTS OF INPUT PARSING

the ULTRNN outperforms others in terms of robust learning
as evident from the lowest NRMSE for test data, and this
can be attributed to the fact that the rectified wave eases the
task of modeling the plant’s high frequency oscillatory modes
leading to improved generalization. The performance of the
networks of cases 2 and 3 for a set of training and test samples
are depicted in Figs. 6 and 7. A similar prediction task with
several ESN variants was considered in [11]. While an objec-
tive one-to-one comparison is difficult, it is seen that the test
performance of the ULTRNN with rectified parsing (NRMSE:
0.133) is comparable to the ESN delay line reservoir variant
with a reservoir size of 50 (NRMSE: 0.108) [11].

B. Example 2: Autonomous Loop Generation

This example considers the autonomous generation of a
7-petal trajectory shown in Fig 8(a). The 7-petals trajectory
is generated by the autonomous plant given by

[
yp

1(k)
yp

2(k)

]
= 7

10

⎡
⎣ sin

(
k
2 + 1.173

)
sin
(7

2 k
)

cos
(

k
2 + 1.173

)
sin
(7

2 k
)
⎤
⎦. (49)

A plot of yp
2(k) versus yp

1(k) yields the target trajectory as
shown in Fig. 8(a), with the length of the trajectory Kq = 120.

An autonomous ULTRNN with eight state variables (four
oscillatory modes), with two output units was trained without
any input to reproduce the 7-petals flower. With no inputs,
the ULTRNN must be marginally unstable if its outputs are to
move through the 7-petal limit cycles. The training was started
with randomly allotted weights, and after each iteration τ of
the 7-petal trajectory the initial state variable conditions were
set according to

xn
i (0)|τ+1 = ρxn

i (0)|τ + (1 − ρ)xn
i

(
Kq
)|

τ
(50)

where the filter time-constant ρ was set at 0.95. This technique
for resetting the initial conditions is to ensure stable learning
as the network’s performance is highly dependent on the initial
states with no inputs to guide the learning process.

The ULTRNN was trained with 120 points of the 7-petal
trajectory (49), with the weights updated at the end of a cycle
of the trajectory. The training was performed until conver-
gence achieved after 100 000 iterations with a relatively low
learning rate μ = 5E-6. After training, for testing purposes,
the ULTRNN’s “freewheeling” autonomous outputs were col-
lected for six additional cycles of the 7-petal trajectory, and
compared with the corresponding target outputs. A plot of
y2(k) versus y1(k) shown in Fig. 8(b) depicts the ULTRNN
output trajectory for these six cycles. Fig. 9 shows the
ULTRNN test outputs and the corresponding error traces for

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SIVAKUMAR AND SIVAKUMAR: MARGINALLY STABLE TRIANGULAR RECURRENT NEURAL NETWORK ARCHITECTURE 11

(a) (b)

Fig. 8. Autonomous loop generation. (a) Plant: yp
2(k) versus yp

1(k).
(b) ULTRNN: y2(k) versus y1(k).

Fig. 9. Autonomous loop generation—(top) ULTRNN test outputs and (bot-
tom) tracking errors.

300 sampling instants. It was observed that the ULTRNN’s
performance degrades uniformly with NRMSE increasing
from 0.08 to 0.19 over six cycles as the small errors of a cycle
accumulate and impact the performance in the next cycle.

Although not addressed in this example, it should be noted
that for long length trajectories (large Kq) the ULTRNN can
still be effectively trained by partitioning the data set into
several segments (e.g., one segment for each petal) and the
weights and the initial conditions updated at each segment
transition. As the training progresses, additional segments
(e.g., two, four, and all seven petals can be presented before
updating the weights and the initial conditions.

C. Example 3: MIMO Plant Modeling

This example considers the modeling of a MIMO plant
studied in [27], given by[

xp
1(k + 1)

xp
2(k + 1)

]
= 1

1 + [xp
2(k)

]2
[

xp
1(k)

xp
1(k)x

p
2(k)

]
+
[

up
1(k)

up
2(k)

]
(51)

[
up

1(k)
up

2(k)

]
=
⎡
⎣

1
2

{
sin 2πk

25 + sin 2πk
10

}
+ η1(k)

1
2

{
cos 2πk

25

}
+ η2(k)

⎤
⎦. (52)

The plant output is given by yp
1(k) = 0.2xp

1(k), and yp
2(k) =

0.2xp
2(k), and η1(k) and η2(k) represent noise terms.

A two-input two-output 12-state ULTRNN (six oscillation
modes) employing parsed inputs was trained to model this
plant. Observing that one input of the plant is a sinusoidal
at a single frequency, while the other input has additional
harmonic content, the sum-difference parsing per (8) was

Fig. 10. MIMO plant modeling—(top and middle) ULTRNN inputs
and (bottom) target outputs.

TABLE III
MIMO PLANT MODELING ULTRNN PERFORMANCE

VERSUS NOISE VARIANCE

employed to combine the inputs so to distribute the input
harmonic content to both subnets. As shown in Fig. 10, the
two inputs to the upper subnet are the plant inputs up

1(k), and
up

2(k) while the two inputs to the lower subnet are the sum of
the plant inputs up

1(k) + up
2(k), and the difference of the plant

inputs up
1(k) − up

2(k). The target plant outputs are shown at
the bottom of Fig. 10. Training was performed over an epoch
of 100 time steps with the variance of noise terms η1(k) and
η2(k) set at 0.1, and the network weights were updated at
the end of each epoch. Convergence was achieved after about
70 000 training iterations with a learning rate μ = 1E-5. The
trained network was tested over 1000 data points with the
noise variance in the range of 0.05 to 0.2. The average training
and test NRMSEs at different noise variances are presented in
Table III. Fig. 11 shows the ULTRNN output traces compared
to the plant outputs and the corresponding errors for test data.

It is noted that while the ULTRNN is robustly tracking the
output trajectories for varied noise variance cases, the high
NRMSE in modeling the second output can be attributed to the
unpredictability of the amplifying effect of the input noise on
the output trajectory due to the multiplicative term in the target
state transition matrix (51). This was confirmed by training
and testing the ULTRNN with no input noise which yielded
an NRMSE of 0.137 for output 1 and 0.117 for output 2.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 11. MIMO plant modeling—ULTRNN test outputs [(a) and (c)] and
errors [(b) and (d)] for inputs with noise (var. 0.1).

(a) (b) (c)

Fig. 12. Lorentz limit cycles. (a) yp
2(k) versus yp

1(k). (b) yp
3(k) versus yp

1(k).
(c) yp

3(k) versus yp
2(k).

Addition of feedforward structures as in [17] may be beneficial
in improving modeling accuracy when input noise is present.

D. Example 4: Lorentz Limit Cycles 5-Step Prediction

This example considers the 5-step prediction of the the
Lorenz limit cycles [28] produced by solving for the ordinary
differential equation (ODE) given by

d

dt

⎡
⎣

yp
1

yp
2

yp
3

⎤
⎦ =

⎡
⎣

σ
(
yp

2 − yp
1

)
ρyp

1 − yp
1yp

3 − yp
2

yp
1yp

2 − βyp
3

⎤
⎦ (53)

where σ = 10, ρ = 28 and β = 8/3. The ODE is solved with
initial values set at yp

1 = −10, yp
2 = −8, and yp

3 = 30, using
a fourth order Runge Kutta with a step size of 0.001 to provide
values of yp

i , i = 1, 2, 3 at discrete intervals. The limit cycle
trajectories are plotted in Fig. 12.

A three-input, three-output ULTRNN with 12 state variables
(representing six oscillation modes) was trained to predict the
plant output. In order to improve the learning performance
of the ULTRNN given the waveform nonsymmetry as evident

Fig. 13. Lorentz limit cycles—threshold input parsing.

(a) (b) (c)

Fig. 14. Lorentz limit cycles—ULTRNN test outputs. (a) y2(k) versus y1(k).
(b) y3(k) versus y1(k). (c) y3(k) versus y2(k).

from Fig. 12, the inputs of the ULTRNN are parsed such that
the positive signal values of yp

1(k), yp
2(k), and yp

3(k) are fed

as inputs uU
1 (k), uU

2 (k), and uU
3 (k), respectively, to the upper

triangular subnetwork, and their negative signal values are fed
as inputs uL

1(k), uL
2(k), and uL

3(k), respectively, to the lower
triangular subnetwork. As examples, the graphical depiction
of threshold parsing for the first and second signals are given
in Fig. 13.

Training was performed with 10 000 points of the Lorenz
data series described by the solution to (53), with the weights
updated after each training run consisting of 100 points. The
network output is the 5-step predicted values. Convergence
was achieved after 50 000 training iterations with a nominal
learning rate μ = 1E-4. The performance of the ULTRNN
for each output was assessed by testing with an addi-
tional 4500 points. Fig. 14 shows the time-series trajecto-
ries as predicted by the ULTRNN for the test data series.
Fig. 15 shows the ULTRNN output traces compared with
the corresponding Lorentz plant output traces for the test
data series, and the corresponding error traces. The NRMSE
was less than 0.067 for all three test data series. It is observed
that the ULTRNNs performance does not degrade significantly
over the 4500 points of the Lorentz limit cycles. A 1-step
prediction task was considered in [29] that uses a DTRNN
with 89 free trainable parameters. While one-to-one objec-
tive comparison is not possible, it is evident that the 5-step
prediction of the ULTRNN with threshold parsing outperforms
the 1-step prediction results in [29].

E. Example 5: Santa Fe Laser Data n-Step Prediction

This example considers the Santa Fe Laser generated
data set [30] that consists of periodic to chaotic intensity pulsa-
tions of a far-infrared-laser. The objective is to use ULTRNNs
for three cases of n-step prediction of the laser data series
(n = 1, 2, and 100). It is observed that the laser output

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SIVAKUMAR AND SIVAKUMAR: MARGINALLY STABLE TRIANGULAR RECURRENT NEURAL NETWORK ARCHITECTURE 13

Fig. 15. Lorentz limit cycles—ULTRNN outputs versus target wavforms and
errors for test data.

Fig. 16. Sante Fe Laser data—mean-threshold input parsing.

yp(k) exhibits significant dissymmetry around the mean value,
and mimics a chaotic low frequency waveform modulating
a high frequency carrier. For the short term (1-step and 2-step)
prediction cases threshold parsing per (7) is used, while for the
long term (100-step) prediction case envelop parsing per (10)
is used.

The input parsing for the 1-step and 2-step prediction cases
is depicted in Fig. 16. The input uU(k) to the upper subnetwork
of the ULTRNN consists only of the values of yp(k) greater
than or equal to the mean yp(k). The input uL(k) to the lower
subnetwork consists of values of yp(k) below the mean yp(k).

The 1-step prediction task uses an 8-state ULTRNN
(four oscillatory modes). The ULTRNN was trained with the
first 800 points of the Santa Fe laser data series A.cont as
depicted in Fig. 16, with the weights updated after every
100 points. Convergence was achieved after 50 000 train-
ing iterations with a learning rate μ = 0.001. The trained
ULTRNN was tested with the following 8000 points of the
same data series. The NRMSE obtained for the training dataset
is 0.102, and that for the test dataset is 0.180. Fig. 17 shows
the ULTRNN output trajectory and the corresponding error
trajectory for the first 1000 test data points. A similar task
was considered in [11] where the performances of a fully
connected ESN and several sparse ESN variants with reser-
voir sizes ranging from 50 to 200 were assessed. While an
objective one-to-one performance comparison is difficult, it is
evident that the ULTRNN with only four oscillatory modes
(with a total of 48 free trainable parameters) performs com-
paratively well with the fully connected ESN with a reservoir
size of 50 (NRMSE: 0.136). It is to be noted that, while the

Fig. 17. Santa Fe Laser data 1-step prediction—ULTRNN test output
versus (top) target wavefrom and (bottom) error.

Fig. 18. Santa Fe Laser data 2-step prediction—ULTRNN test output
versus (top) target wavefrom and (bottom) error.

number of free trainable parameters in the ULTRNN and the
ESN are about the same, the fully connected ESN version
employs a large feedback matrix (50 × 50) with randomly
selected fixed weights, while the ULTRNN uses much smaller
triangular feedback matrices (8 × 8) with all trainable weights.

The 2-step prediction task also uses an 8-state ULTRNN
trained with 800 points of the laser data series A.cont (with
the weights updated after every 100 points) and tested with
the following 8000 points of the same series. Training conver-
gence was achieved after 80 000 iteration with a learning rate
μ = 0.001. The NRMSE for the training dataset is 0.176 and
that for the test dataset is 0.210. Fig. 18 shows the ULTRNN
ouput trajectory and the corresponding error trace for the first
1000 test data points. The small difference in the NRMSE
between the training and the test data sets for both 1-step and
2-step prediction cases indicate good generalization capability.

In order to probe the ULTRNN’s performance stability and
robustness when the uncertainty in the input increases, the
ULTRNN’s input was modified to be a combination of the
plant output and the predicted ULTRNN output as per

uo(k + 2) = {(1 − ξ)xp(k + 2) + ξyn(k)
}
. (54)

Fig. 19 shows the ULTRNN’s NRMSE averaged over 8 sets
of 1000 data points from the test dataset A.cont, as ξ is varied
from 0 to 1. From Fig. 19 it is seen that the NRMSE increases
only marginally as ξ increaces from 0 to 0.5 implying that

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 19. Santa Fe Laser data 2 step prediction—ULTRNN prediction
performance robustness.

Fig. 20. Santa Fe Laser data—envelop computation for parsing.

the ULTRNN performance is stable and sufficiently robust for
a moderate range of input uncertainties.

The 100-step prediction task uses a 24-state ULTRNN
(twelve oscillatory modes). Envelope parsing per (10) is
employed surmising that it will improve the ULTRNN’s ability
to learn the laser data’s chaotic low frequency envelop while
simultaneously keeping track of its high frequency carrier like
pulsations. Shown in Fig. 20 is the envelop wave ϕ(u(k)) used
in parsing computed per (55) by averaging the positive and the
negative envelopes, ϕ1(u(k)) and ϕ2(u(k)), respectively

ϕ(u(k)) = 1

2
{ϕ1(u(k)) + ϕ2(u(k))}. (55)

As shown in Fig. 21, the input uL(k) to the lower subnet-
work is the average envelop ϕ(u(k)), and the input uU(k) to
the upper subnetwork is the product of the average envelop
and the laser data

uU(k) = ϕ(u(k))u(k); uL(k) = ϕ(u(k)). (56)

The ULTRNN was trained with the first 5000 points
from the data series A.cont, with the weights updated every
100 data points. Training convergence was achieved after
150 000 iterations with a learning rate μ = 1E-5. The NRMSE
obtained for the training set is 0.729. The trained ULTRNN
was tested on the next 4500 data points. The NRMSE obtained
for the test data set is 0.676. Shown in Fig. 22 are the first
3000 test data points and the corresponding ULTRNN out-
put. As suggested in [31] where a prediction task on the laser
data was considered using a large multilayer perceptron-based
network, the large NRMSE is attributable to the fact that the
laser dynamic is highly unpredictable at signal collapses with
several possible continuations. As a result, the ULTRNN out-
put exhibits a “phase lag” with respect to the laser signal’s high
frequency pulsations at transitions following signal collapses.
The result is that the ULTRNN’s short-term performance is
worse for 100-step prediction than it is for 1-step and 2-step
predictions considered earlier. None the less, it is clearly evi-
dent from Fig. 22, that the ULTRNN with envelop parsing has
indeed learnt to model the long-term dependency.

Fig. 21. Santa Fe Laser data 100-step prediction—envelop parsing.

Fig. 22. Santa Fe Laser data 100-step prediction—ULTRNN test output
versus target waveform.

VI. CONCLUSION

This paper has dealt with an effective analytical formu-
lation and development of the ULTRNN architecture using
twin triangular feedback weight matrices, and has extended
the learnings from the previously studied BDRNN structure
on aspects including network and learning stability, sim-
plicity of gradient descent learning process, storage require-
ment minimization, and improved robustness and sensitiv-
ity. The ULTRNN architecture and the training algorithm
presented are shown to facilitate enhanced and highly effec-
tive solution to a wide range of time series prediction
problems. Specific contributions of this paper include the
following.

1) The triangular architecture of the ULTRNN is aptly
suited for modeling and prediction of dynamic trajec-
tories with inherent and varied oscillatory modes.

2) The ULTRNN is inherently stable with the eigenvalues
of the feedback weight matrices constrained to lie on
the unit circle in the complex z-plane.

3) The nonzero off-diagonal elements of the ULTRNN
feedback weight matrices facilitate close interaction
between the feedback state variables of the network
resulting in improved learning when compared with
other sparse networks.

4) The novel weight update technique of the block-diagonal
submatrices is formulated based on the differential of the
angular error variable
θn that constrains the eigenval-
ues of the feedback weight matrices to lie on the unit
circle. This technique increases the network’s sensitivity
in detecting the underlying oscillatory modes of the time
series being modeled while maintaining learning stabil-
ity. It also eliminates the need for monitoring on-line
learning stability through specific ad-hoc means.

5) The ULTRNN aims to mimic the performance of a fully
connected recurrent network, with the eigenvalues of
twin-triangular subnetworks constrained to be the same
to facilitate enhanced interaction between the feedback
state variables, resulting in better trajectory learning
while mitigating overfitting.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SIVAKUMAR AND SIVAKUMAR: MARGINALLY STABLE TRIANGULAR RECURRENT NEURAL NETWORK ARCHITECTURE 15

6) The twin triangular subnetworks of the ULTRNN
allow the parsing and channeling of the input signals,
thereby improving the learning capability, specifically
for dynamic processes that exhibit chaotic, nonsymmet-
ric, and/or long-term dependency behavior.

REFERENCES

[1] R. J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,” Neural Comput., vol. 1, no. 2,
pp. 270–280, 1989.

[2] L. B. Almeida, “Backpropagation in perceptrons with feedback,” in
Neural Computers (NATO ASI Series), vol. 41, R. Eckmiller and
C. V. D. Malsburg, Eds. Berlin, Germany: Springer-Verlag, 1988,
pp. 199–208.

[3] F. J. Pineda, “Recurrent backpropagation and the dynamical approach
to adaptive neural computation,” Neural Comput., vol. 1, no. 2,
pp. 161–172, 1989.

[4] B. A. Pearlmutter, “Gradient calculations for dynamic recurrent neu-
ral networks: A survey,” IEEE Trans. Neural Netw., vol. 6, no. 5,
pp. 1212–1228, Sep. 1995.

[5] S. C. Sivakumar, W. Robertson, and W. J. Phillips, “Online stabilization
of block-diagonal recurrent neural networks,” IEEE Trans. Neural Netw.,
vol. 10, no. 1, pp. 167–175, Jan. 1999.

[6] P. A. Mastorocostas and C. H. Hilas, “A stable learning algorithm for
block-diagonal recurrent neural networks: Application to the analysis
of lung sounds,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 36,
no. 2, pp. 242–254, Apr. 2006.

[7] A. C. Tsoi and A. D. Black, “Locally recurrent globally feedforward
networks: A critical review of architectures,” IEEE Trans. Neural Netw.,
vol. 5, no. 2, pp. 229–239, Mar. 1994.

[8] M. C. Ozturk, D. Xu, and J. C. Príncipe, “Analysis and design of echo
state networks,” Neural Comput., vol. 19, no. 1, pp. 111–138, Jan. 2007.

[9] H. Jaeger, “Adaptive nonlinear system identification with echo state
networks,” in Proc. 15th Int. Conf. Neural Inf. Process. Syst., 2002,
pp. 609–616.

[10] M. Lukoševièius, “A practical guide to applying echo state networks,” in
Neural Networks: Tricks of the Trade (LNCS 7700). Berlin, Germany:
Springer-Verlag, 2012, pp. 659–686.

[11] A. Rodan and P. Tino, “Minimum complexity echo state network,” IEEE
Trans. Neural Netw., vol. 22, no. 1, pp. 131–144, Jan. 2011.

[12] S. Basterrech, “An empirical study of the L2-boost technique with echo
state networks,” in Proc. 13th Int. Conf. Intell. Syst. Design Appl. (ISDA),
Bangi, Malaysia, Dec. 2013, p. 8.

[13] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5,
no. 2, pp. 157–166, Mar. 1994.

[14] D. Prokhorov, “Echo state networks: Appeal and challenges,” in Proc.
IEEE Int. Joint Conf. Neural Netw., vol. 3. Montreal, QC, Canada, 2005,
pp. 1463–1466.

[15] T. D. Batzel and K. Y. Lee, “An approach to sensorless operation of the
permanent-magnet synchronous motor using diagonally recurrent neural
networks,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 100–106,
Mar. 2003.

[16] P. Mastorocostas, C. Hilas, D. Varsamis, and S. Dova, “A recurrent
neural network–based forecasting system for telecommunications call
volume,” Appl. Math. Inf. Sci., vol. 7, no. 5, pp. 1643–1650, 2013.

[17] S. C. Sivakumar, “Architectures and algorithms for stable and con-
structive learning in discrete time recurrent neural networks,” Ph.D.
dissertation, Dept. Elect. Eng., Dalhousie Univ., Halifax, NS, Canada,
1997.

[18] N. Srivastav, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[19] T. Joachims, “Transductive learning via spectral graph partitioning,” in
Proc. 20th Int. Conf. Mach. Learn. (ICML), Washington, DC, USA,
2003, pp. 290–297.

[20] M. Culp, G. Michailidis, and K. Johnson, “On multi-view learning with
additive models,” Ann. Appl. Stat., vol. 3, no. 1, pp. 292–318, 2009.

[21] A. Sardá-Espinoza. Comparing Time-Series Clustering Algorithms
in R Using the dtwclust Package. Accessed: May 31, 2017.
[Online]. Available: https://cran.r-project.org/web/packages/dtwclust/
vignettes/dtwclust.pdf

[22] S. Y. Kung, Digital Neural Networks: Deterministic Temporal Neural
Networks. Englewood Cliffs, NJ, USA: Prentice-Hall, 1993, ch. 6,
pp. 219–224.

[23] L. Jin and M. M. Gupta, “Globally asymptotical stability of discrete-
time analog neural networks,” IEEE Trans. Neural Netw., vol. 7, no. 4,
pp. 1024–1031, Jul. 1996.

[24] P. J. Werbos, “Backpropagation through time: What it does and how to
do it,” in Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.

[25] W. Nasri and Z. Mahjoub, “Optimal parallelization of a recursive algo-
rithm for triangular matrix inversion on MIMD computers,” Parallel
Comput., vol. 27, no. 13, pp. 1767–1782, Dec. 2001.

[26] M. Hénon, “A two-dimensional mapping with a strange attractor,”
Commun. Math. Phys., vol. 50, no. 1, pp. 69–77, 1976.

[27] K. S. Narendra and K. Parthasarathy, “Identification and control of
dynamical systems using neural networks,” IEEE Trans. Neural Netw.,
vol. 1, no. 1, pp. 4–27, Mar. 1990.

[28] E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci., vol. 20,
no. 2, pp. 130–141, 1963.

[29] S. V. Dudul, “Prediction of a Lorenz chaotic attractor using two-
layer perceptron neural network,” Appl. Soft Comput., vol. 5, no. 4,
pp. 333–355, 2005.

[30] A. S. Weigend and N. A. Gershenfeld. The Santa Fe Time
Series Competition Data: Data Set A: Laser Generated
Data. Accessed: Aug. 18, 2016. [Online]. Available: http://
www-psych.stanford.edu/∼andreas/Time-Series/SantaFe.html

[31] R. Bakker, J. C. Schouten, C. L. Giles, F. Takens, and
C. M. van den Bleek, “Learning chaotic attractors by neural networks,”
Neural Comput., vol. 12, no. 10, pp. 2355–2383, 2000.

Seshadri Sivakumar (S’81–M’86–SM’14) received
the B.E. degree in electrical technology and electron-
ics from the Indian Institute of Science, Bengaluru,
India, in 1977, and the M.Sc.E. and Ph.D. degrees
in electrical engineering from the University of
New Brunswick, Fredericton, NB, Canada, in 1983
and 1987.

He is currently the Chief Consultant with Pasumai
Energytech LLC, Richmond, CA, USA, and is on
assignment with Healy Wave Energy LLC, Hollis,
NH, USA, developing smart control and power

electronic systems for a wave energy converter. He has led engineering
and research and development assignments on power electronic products
and systems for Bharat Heavy Electricals Ltd., Bengaluru, India, from
1977 to 1981, Pivotal Power Inc., Bedford, NS, Canada, from 1987 to 2006,
MKS Instruments Ltd., Rochester, NY, USA, from 2007 to 2009, United
Technologies Research Center, East Hartford, CT, USA, from 2009 to 2010,
and SunPower Corp., Richmond, CA, USA, from 2010 to 2016. He was
also an Adjunct Faculty Member of electrical engineering with Dalhousie
University, Halifax, NS, Canada, from 2004 to 2012. His current research
interests include machine learning algorithms and power electronic topologies
and control systems for alternative and distributed energy applications.

Shyamala Sivakumar (M’00) received the B.E.
degree in electrical engineering from Bangalore
University, India, in 1984, and the M.A.Sc. and
Ph.D. degrees in electrical engineering from the
Technical University of Nova Scotia (currently
Dalhousie University), Halifax, NS, Canada, in 1992
and 1997.

She was a Post-Doctoral Research Fellow with
the Internetworking Program, Dalhousie University
from 1997 to 1999. She started her career as an
Aeronautical Engineer with Hindustan Aeronautics

Limited, Bengaluru, India, from 1985 to 1989. Her academic career began as
an Assistant Professor from 1999 to 2000 with the Internetworking Program,
Dalhousie University. She moved to Saint Mary’s University, Halifax, in 2000,
where she is currently a Professor of computer and information systems with
the Sobey School of Business. She has also been an Adjunct Faculty Member
of engineering mathematics and internetworking with Dalhousie University
since 2000. Her current research interests include architectures and algorithms
for recurrent neural networks and quality of service and energy conservation
algorithms for wireless sensor and body area networks.

https://cran.r-project.org/web/packages/dtwclust/vignettes/dtwclust.pdf
https://cran.r-project.org/web/packages/dtwclust/vignettes/dtwclust.pdf
http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html
http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html

