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Abstract. This paper proposes a network-based method for
the assessment of earthquake relationships in space–time–
magnitude patterns. It is shown that networks with high val-
ues for the minimum edge weightWmin enjoy strong scaling
properties, as opposed to networks with low values forWmin,
which exhibit no such properties. The scaling behavior along
the spectrum ofWmin values, in conjunction with the robust-
ness regarding parameter variations, endorse the idea of a re-
lationship between fundamental properties of seismicity and
the scaling properties of the earthquake networks. Results
of this method are further applied for the study of temporal
changes in volcanic seismicity patterns.

1 Introduction

Extensive research is dedicated to earthquake pattern anal-
ysis in an ongoing effort to understand the laws that gov-
ern seismicity. Correlations in earthquake patterns have been
found in magnitude (Gutenberg and Richter, 1954; Lippiello
et al., 2012b), time (Omori, 1894; Shcherbakov et al., 2004;
Shcherbakov et al., 2006), and space (Turcotte, 1977; Felzer
and Brodsky, 2006; Lippiello et al., 2009). Integrated ap-
proaches have been developed to find space–time–magnitude
patterns (Bak et al., 2002). Network-based approaches have
shown not only that networks of correlated earthquakes can
be created, but also that these networks enjoy scaling proper-
ties (Baiesi and Paczuski, 2004, 2005; Davidsen et al., 2008;
Suteanu and Suteanu, 2011).

A space–time–magnitude metric defined for directed net-
works of earthquakes was proposed by Baiesi and Paczuski
with their seismicity declustering method (Baiesi and
Paczuski, 2004, 2005). The study in our paper also creates
directed weighted networks of earthquakes with the purpose

of assessing relationships between them. Given the ubiq-
uity of power laws governing earthquake distributions (Nanjo
and Nagahama, 2000; Lapenna et al., 2000; Shcherbakov et
al., 2004, 2006; Carbone et al., 2005; Felzer and Brodsky,
2006; Bunde and Lennartz, 2012; Lippiello et al., 2012a, b),
power law forms are used to estimate quantitatively the rela-
tionships between events in a space–time–size perspective.
However, there are major differences between Baiesi and
Paczuski’s model and the work presented in this paper. Not
only do the two methods use different metrics, but, most im-
portantly, they use different criteria for the discrimination
of interrelated earthquakes from the rest of the set: in the
method of Baiesi and Paczuski (2004, 2005) the criterion
is the maximization of a correlation function, while in this
study series of networks are created, assessed and searched
for scale free properties. Since the main component in Baiesi
and Paczuski’s metric is a function that is exponential in
magnitude, their method effectively addresses the identifi-
cation of event clusters around the largest shocks, while our
method addresses earthquakes of all sizes that are considered
close enough in space–time–magnitude to be interrelated.

Although a new quantitative metric is defined in our study
and a new type of network is built, the results show power law
properties that are consistent with previous work of Baiesi
and Paczuski (2005) and with their interpretation that the un-
derlying correlations of the seismicity structure are unam-
biguous, sufficiently strong to survive the approximation of
the metric, and can be reliably detected.

Our method is applied to seismicity associated with
hotspot volcanism in Hawaii. The earthquakes are seen as
sets of space–time–magnitude events that can be related to
each other, while the quality of the interactions among earth-
quakes can vary over time. In order to assess these interac-
tions and their change in time, an integrative approach that
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maps seismic information to directed weighted networks is
developed. Different classes of networks of earthquakes are
studied, and results show scale free properties that are robust
with respect to certain variations in the definition of the net-
works. Networks with values of the minimum edge weight
Wmin in the middle to upper range of the spectrum of edge
weight values enjoy strong scaling properties, as opposed to
networks withWmin in the lower range, which exhibit poor
or no such properties. It is shown that network parameters
studied for successive event windows are able to reflect the
way the relationships between earthquakes are changing over
time, and that patterns of change can be related to important
events in the life of the volcanic system.

2 Construction of the earthquake networks

The epicenters of earthquakes that could be related to other
earthquakes are seen as network nodes that are connected
through directed edges. The edge direction is given by the
temporal succession of the events. Ideally, only interrelated
earthquakes can be nodes of this network, and the edges
that link them to other nodes carry a space–time–magnitude
weight. Therefore, a combination of three factors is evaluated
before deciding whether or not any two earthquakes belong
to the network: the size (magnitude) of the first occurring
event, and its proximity to future events in space and in time.
There are many possible combinations of these three factors.
Even small earthquakes may be related to subsequent events
if the latter were close enough in space and time.

In order to assess quantitatively the relationship between
earthquakes, three weight variables are defined: the weight
in distancewd , the weight in timewt , and the weight in
magnitudewm. A total weightWcharacterizes every edge as
a combination of the previous three variables. Considering
the Gutenberg–Richter law, the Omori law, and other scal-
ing relationships regarding the distributions of earthquakes
in space, time, and magnitude (e.g. Lei and Kusunose, 1999;
Richards-Dinger et al, 2010; Felzer and Brodsky, 2006;
Shcherbakov et al., 2006; Lennartz et al., 2008; Lippiello et
al., 2009, 2012a; Sanchez and Shcherbakov, 2012), the fol-
lowing forms for the node weights of any one edge have been
chosen:

(a) Distance weight:

wd = cdr , r < 0, (1)

whered is the spatial distance between the two nodes
of the edge measured in km, andc is a positive con-
stant.

(b) Time weight:

wt = stp, p < 0, (2)

wheret is the time interval between the two nodes of
the edge measured in hours, ands is a positive con-
stant.

(c) Magnitude weight:

wm =
m

mmax
, (3)

wherem is the magnitude of the first occurring node of
the edge, andmmax is the maximum magnitude value
in the data set.

The total weight of an edge is calculated as the product of
the weights in space, time, and magnitude. Only the nodes
that carry enough total weight belong to the network, which
means that only edges that have a value of the total weight
W higher than a minimum thresholdWmin are selected for
the network:

W =

{
wd · wt · wm, W ≥ Wmin
0, W < Wmin

. (4)

The generality of this definition allows various combina-
tions of space–time–magnitude correlations between any two
events and includes the possibility of multiple interactions
for any given event: any node can have any number of edges
that enter the node and any number of edges that leave the
node, as long as these edges carry enough total weight.

For practical reasons and with the purpose of avoiding sin-
gularities, a small cutoff value is used for the weights in space
and time (it is also reasonable to assume that all earthquakes
that are very close in space or in time could be related to each
other). Therefore, modified forms of Eqs. (1) and (2) are used
in the actual construction of the networks:

wd =

{
1, d ≤ dmin
cdr , d ≥ dmin, r < 0

(5)

wt =

{
1, t ≤ tmin
stp, t ≥ tmin,p < 0

. (6)

Various values for the exponentsr andp, and for the cutoff
valuesdmin andtmin, are explored. The constantsc ands are
calculated using the boundary conditions

wd = cdr
min = 1 (7)

and

wt = st
p

min = 1. (8)

An essential difference between the total edge weight defined
in this paper and Baiesi and Paczuski’s (2004, 2005) metric
consists in the contribution of each of the three factors (time
interval, space interval, and magnitude). In contrast with their
approach, in this paper the three components (time interval,
spatial distance, and magnitude) are seen independently, as
separate components that can have comparable contributions
to the total edge weightW. This is accomplished by limiting
the upper value of each of the three components to 1. The
definition of a magnitude weight proportional tom, and not
exponential inm, is therefore meant to support a balance of
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factors in the total edge weight formula. The resulting net-
works and network distributions are governed by statistical
contributions of each of the three components. This choice
is especially important in the study of volcano-tectonic seis-
micity, where the seismic sources are associated not only
with tectonic stress, but also with thermodynamic processes
and the dynamics of gas, fluid and solid.

To simplify the computation, a maximum interval of influ-
ence in timeTmax, and a maximum interval of influence in
spaceDmax, are assigned. Although fixed values ofTmax and
Dmax are chosen to create the initial network, making this
choice is different from making the parameter choice in win-
dow declustering methods or in Reasenberg’s cluster method
(Reasenberg, 1985). For example, in order to identify after-
shocks, Knopoff and Gardner define space–time windows
that are functions of the mainshock magnitude (Knopoff and
Gardner, 1972; Gardner and Knopoff, 1974); various choices
of parameter values lead to significant variations in the af-
tershock identification. Reasenberg’s algorithm (Reasenberg,
1985) identifies foreshocks and aftershocks within a cluster
based on Omori’s law for the cluster’s time extension and on
a window-type function for the cluster’s spatial extension;
also in this case, different choices of fixed parameter values
may lead to substantially different estimates of the correla-
tions between earthquakes. In this paper,Tmax andDmax re-
ceive fixed values only with the purpose of simplifying the
computation. In principle,Tmax and Dmax could cover the
whole extent of the catalogue in time and space. The study
shows that the final outcome is not affected by the initial
choice ofTmax andDmax, since large distances and long time
intervals between events result in very small values of the
edge weightswd andwt , and therefore lead to small values of
the total edge weightW . The links carrying small weights are
eliminated from the network in the next step anyway, when
the network definition (4) is applied.

Different values for the maximum interval of influence
in time Tmax, and for the maximum interval of influence in
spaceDmax, are explored, as well as various values forr, p,
dmin andtmin. This way, a series of network classes are gener-
ated with the purpose of creating a structured framework for
the analysis: all networks that belong to a certain class B, C,
. . ., N share the same initial choice ofDmax, r, dmin, Tmax, p,
tmin. Letters are used to name the classes of earthquake net-
works, and the choice of every letter has only a classification
purpose. A description of the classes that have been studied
is shown in Table 1.

In each class, an initial network is created when assign-
ing the specific values to parameters. For clarity, an index0
is used to describe these initial networks: B0, C0, etc. The
highest value of the total edge weight in each class,H , is the
highest value of the total edge weight in the initial network
(NETWORK CLASS)0, while the lowest value of the total
edge weight in the class,L, is the lowest value of the total
edge weight in the initial networks (NETWORK CLASS)0.
For example, the highest value in network B0 is H = 1, and

Table 1. All classes.Tmax is the maximum time interval between
events,Dmax is the maximum distance between events,r is the ex-
ponent of the distance weightwd (Eq. 1),p is the exponent of the
time weightwt (Eq. 2),dmin andtmin represent cutoff values,H is
the highest value of the total edge weight in the class, andL is the
lowest value of the total edge weight in the class.

Class Tmax Dmax r p tmin dmin H L

(days) (km) (h) (km)

B 10 30 −1.35 −1 1 1 1.00 1.01× 10−5

C 10 30 −1.35 −1 0.5 0.2 0.65 5.76× 10−7

D 30 30 −1.35 −1 1 1 1.00 3.39× 10−6

E 40 50 −1.35 −1 0.05 0.2 6.07 7.24× 10−9

F 7 10 −1.35 −1 0.05 0.1 2.72 1.44× 10−7

G 7 10 −1.35 −1 0.05 0.025 2.72 2.22× 10−8

H 8 10 −1.35 −1 0.5 0.2 0.65 3.19× 10−6

I 8 11 −1.35 −1 0.05 0.1 2.72 1.11× 10−7

J 8 10 −1.35 −1 1 1 1.00 5.60× 10−5

L 7 10 −1 −0.5 14 2 1.00 1.39× 10−2

M 7 10 −1 −0.5 1 1 1.00 1.86× 10−3

N 40 50 −1 −0.5 0.5 0.2 0.66 2.19× 10−5

the lowest value in network B0 is L = 1.01× 10−5. In gen-
eral, the first networks B0, C0, . . ., N0 are simply collections
of earthquakes, and not networks of interrelated events, and
they serve for the operational initiation of the method.

Inside each class, specific values for the thresholdWmin
define distinct networks.

3 Data

The data source for this study is the Advanced National Seis-
mic System (ANSS) catalog for the Big Island of Hawaii,
with events ranging from 1 January 1989 to 31 December
2012. Figure 1 shows an example of a network of earth-
quakes. By zooming in, the actual nodes and edges can be
seen (Fig. 2).

The number of events in the catalog is 64 392. For cata-
log completeness, only events with magnitudem ≥ 1.6 are
used in the analysis (37 451 earthquakes); theb value in the
Gutenberg–Richter magnitude-frequency distribution for this
data set isb ≈ 0.99 (Fig. 3).

Different sets of networks in various network classes have
been analyzed. The following values of the parameters have
been studied:

– Dmax: 10 km; 30 km; 50 km.

– Tmax: 7 days; 8 days; 10 days; 30 days; 40 days.

– dmin: 0.025 km; 0.1 km; 0.2 km; 1 km; 2 km.

– tmin: 3 min; 30 min; 1 h; 14 h.

– r: −1; −1.35.

– p: −0.5;−1.
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Fig. 1. The earthquake network: an example for the Big Island
of Hawaii.

Fig. 2. Zoomed-in example of nodes and edges of the earthquake
network presented in Fig. 1.

Depending on the lowest edge weight valueL and the
highest edge weight valueH in each class, specific values
for the thresholdWmin are chosen in order to create and ana-
lyze distinct networks inside each class.

4 Results

4.1 Network parameters and analysis

Network parameters such as node connectivity and node
weight distribution (Boccaletti et al., 2006) are assessed for
sets of earthquake networks in different classes. The node
connectivity (degree) represents the total number of edges
in the node. The number of edges that enter the node (in-
connectivity), and the number of edges that go out of the

Fig. 3.Gutenberg–Richter magnitude-frequency distribution for the
Hawaii data set ranging from 1 January 1989 to 31 December 2012.

node (out-connectivity) are also studied. Similarly, the node
weight, in-weight, and out-weight are calculated and ana-
lyzed. The node weight is given by the sum of the weights
of all edges in the node, the in-weight is the weight of all
edges that enter the node, and the out-weight is the weight of
all edges that go out of the node.

The results of the studies that were performed on all
classes in Table 1 show that, for each class of networks, the
connectivity distribution enjoys power law properties for all
networks that haveWmin in the upper range of the interval be-
tween the lowest edge weight valueL and the highest edge
weight valueH in the class, while for networks that have val-
ues ofWmin in the lower range of the interval betweenL and
H , the connectivity distribution is irregular and scattered. In
many of the networks with irregular shapes, constants with a
power law tail are present.

For example, a study on the large class E of networks is
shown in Fig. 4. The class definition, the initial network E0
and the network characteristics are presented in Table 2. The
large size of the class (8 488 767 edges) originates in the as-
sumption that, for any earthquake of the network, the interval
of influence may go up to 40 days in time, and up to 50 km
in space. This is a broad supposition for the active volcanic
system of Hawaii; for the majority of these volcanic earth-
quakes, which do not have large magnitudes (Fig. 3), correla-
tions with earthquakes so far away in space and time are quite
unlikely. This situation is suggestively illustrated in Fig. 4.
The set of six images in Fig. 4 shows the change in shape of
the connectivity distribution when the minimum value of the
total weight changes from low values, such as in networks
E1, E2, E3, towards higher values, as in networks E10, E11,
from highly irregular and scattered shapes to well-organized
shapes that exhibit significant power law properties. This be-
havior is characteristic of networks in all the other classes.
When weak links are included (low values ofWmin), most
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Fig. 4.Connectivity distribution for networks E1, E2, E3, E5, E10, and E11.N (on theY axis) is the number of nodes that have a numberE

of edges (on theX axis).

of the nodes in the emerging networks have little or no rela-
tionship with each other, and results show that this choice for
network nodes translates into irregular and scattered shapes
of the node connectivity. When only strong links are retained
(high values ofWmin), the events selected to participate in

the network are primarily earthquakes that are related to each
other, and the results show that the underlying properties of
seismicity manifest themselves in the well-organized, scale
free appearance of the node connectivity.

www.nonlin-processes-geophys.net/21/427/2014/ Nonlin. Processes Geophys., 21, 427–438, 2014
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Table 2.Class E networks. E0 is the initial network that was generated using the parameter values shown in the first column. See Table 1 for
the meaning ofTmax, Dmax, r, p, dmin, tmin, H , andL.

Class E definition Characteristics of the initial Network Number of nodes Number of edges
network E0

Name Wmin

– Tmax= 40 days – 37 441 nodes E1 W ≥ 10−8 37 441 8 461 301
– Dmax= 50 km – 8 488 767 edges E2 W ≥ 5× 10−8 37 419 6 628 575
– r = −1.35 –H = 6.07 E3 W ≥ 10−7 37 357 5 660 485
– p = −1 –L = 7.24× 10−9 E4 W ≥ 5× 10−7 36 808 3 782 245
– dmin = 0.2 km E5 W ≥ 10−6 36 172 3 102 765
– tmin = 3 min E6 W ≥ 5× 10−6 32 886 1 784 667

E7 W ≥ 10−5 30 377 1 330 446
E8 W ≥ 5× 10−5 23 032 584 548
E9 W ≥ 10−4 20 063 376 852
E10 W ≥ 5× 10−4 14 091 117 835
E11 W ≥ 10−3 11 955 68 408

The threshold valuesWmin are evaluated in the context of
the whole set of earthquakes in the class, and not individu-
ally. Wmin values that identify networks of interrelated events
emerge from the global assessment of network properties:
they are found as those values for which scale free proper-
ties appear and become stronger when subsequent networks
are created using increasing values ofWmin. In this sense, the
thresholdWmin is a global parameter; it belongs to a range of
values in the middle to upper zone of the interval between
the lowest edge weight valueL and the highest edge weight
valueH in any given class of networks. This represents an-
other major difference between this method and the method
of Baiesi and Paczuski (2004, 2005).

Moreover, the generality of this method allows a variety of
correlations between earthquakes: any event of the network
can have any number of predecessors and any number of suc-
cessors if the corresponding edges carry enough space–time–
magnitude weight, with no arbitrary limitation on magnitude,
time, or distance.

Power law properties can also be found in the distribu-
tions of time intervals and distances between nodes. Figure 5
shows the distribution of times intervals in the initial network
E0, i.e., the distribution of all the time intervals between any
two earthquakes within a space–time window that is quite
large in the Hawaii volcano-tectonic context. As shown in
Fig. 5, there is a distinct scale free zone that goes up to 7 days
with a power law exponent of−0.5. The peak between 7 and
15 days with a maximum at 11 days is consistent with stud-
ies that show that the precursory sequences in Hawaii fol-
low a power law acceleration with 10–15 days before erup-
tion (Chastin and Main, 2003).

The distribution of the distances between events also has
scaling properties. Figure 6 shows the distribution of space
intervals in the initial network E0, which exhibits an expo-
nent of−1 for the power law interval between 1 and 10 km.

Fig. 5. Distribution of time intervals (in s) between any two nodes
in the initial network E0. N is the number of time intervals of1t

seconds between any two earthquakes in a space–time window of
50 km and 40 days. The red line represents a reference line with the
slope of−0.5.

Although the context is volcano-tectonic and not all earth-
quakes in this space–time window are interrelated, the over-
all shape of the distribution shows remarkable similarities
with the distribution of distances of aftershocks from the
mainshock in Lippiello et al. (2009): an increase up to a max-
imum value (1 km in this case), followed by a power law de-
crease. We believe that the peaks with maximums at 13, 18,
etc. km refer to events that are spatially clustered around the
neighboring volcanoes, distinct vents and fracture zones, and
reflect the spatial characteristics of the Hawaii volcanic sys-
tem: as shown in Fig. 1, the network exhibits intense clusters
spatially centered on the volcanoes, their vents and fracture
zones, which are situated at distances compatible with the
peaks in Fig. 6.
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Table 3.Class M networks. M0 is the initial network that was generated using the parameter values shown in the first column. See Table 1
for the meaning ofTmax, Dmax, r, p, dmin, tmin, H , andL.

Class M definition Characteristics of the initial Network Number of nodes Number of edges
network M0

Name Wmin

– Tmax= 7 days – 33 065 nodes M1 W ≥ 1.5× 10−2 26 919 1 270 458
– Dmax= 10 km – 1 913 280 edges M2 W ≥ 2× 10−2 25 396 1 088 015
– r = −1 –H = 1 M3 W ≥ 3× 10−2 22 682 782 659
– p = −0.5 –L = 1.86× 10−3 M4 W ≥ 4× 10−2 20 440 584 686
– dmin = 1 km M5 W ≥ 5× 10−2 18 825 443 533
– tmin = 1 h M6 W ≥ 10−1 14 006 149 235

Fig. 6. Distribution of distances (in km) between any two nodes
in the initial network E0. N is the number of distances of1d km
between any two earthquakes in a space–time window of 50 km and
40 days. The red line represents a reference line with the slope of
−1.

As another example, one of the network classes, class M,
was created with characteristics drawn from the two distri-
butions shown in Figs. 5 and 6:Tmax = 7 days,p = −0.5,
Dmax = 10 km, r = −1. The full description of class M is
summarized in Table 3.

The choice of the parameter values in the definition of
class M was largely based on specific statistical character-
istics of the data set; however, the analysis reveals the same
behavior and the same qualitative patterns as those found in
all the other classes. For example, Fig. 7a shows the expo-
nential character of the dependency of the number of edges
and number of nodes on the minimum weight in the network,
and Fig. 7b shows the power law dependency of the number
of edges on the number of nodes for class M of networks.

In the example of class M, the connectivity, in-
connectivity and out-connectivity distributions are assessed
for networks M1–M6. Since the maximum intervals in time
and spaceTmax andDmax that define class M have rather low

Fig. 7. Class M networks.(a) The dependency of the numberN of
edges (circles) and the numberN of nodes (squares) on the mini-
mum weightWmin. (b) The dependency of the number of edges on
the number of nodes.

values, inside class M even networks with relatively low val-
ues ofWmin display power law properties, as illustrated in
Fig. 8a. The connectivity distributions for the other five net-
works M2–M6 are quite similar; another example is shown
for network M5 in Fig. 9a. The exponentβ for each type
of connectivity distribution (all, in, out) is calculated and a
graph with allβ values is shown in Fig. 10. Similarly, power
law properties are detected for the weight, in-weight and
out-weight distributions in networks M1–M6, as shown in
Figs. 8b and 9b, and the exponentγ (Albert and Barabasi,
2002) for each weight distribution is illustrated in Fig. 11.

In general, the analysis shows that the scale free behavior
observed in all networks with superior values ofWmin inside
their class is remarkably robust with respect to variations of
parameter valuesr, p, dmin, andtmin. Moreover, networks of
the same class that have lower values ofWmin exhibit poor
scaling characteristics or even no such characteristics at all.

www.nonlin-processes-geophys.net/21/427/2014/ Nonlin. Processes Geophys., 21, 427–438, 2014
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(a)

(b)

Fig. 8. Connectivity and weight distributions for network M1. The
curves are shifted by 10 units each along theY axis.(a) Total con-
nectivity (circles), in-connectivity (squares), out-connectivity (dia-
monds).N is the number of nodes that have a number of edgesE

(on theX axis).(b) Total weight (circles), in-weight (squares), out-
weight (diamonds).N is the number of nodes that have a weight of
W (on theX axis).

The scaling behavior along the spectrum ofWmin values, in
conjunction with the robustness regarding parameter varia-
tions, endorse the idea of a relationship between fundamental
properties of seismicity and the scaling characteristics found
in earthquake networks.

This observation suggests that a way of testing the reliabi-
lity of the method is to question the identity of the earth-
quakes selected in networks that possess scaling properties.
If the method is reliable, networks with strong scaling prop-
erties should retain only the nodes that correspond to earth-
quakes that are truly related to each other, regardless of the
choice in the parameter values. Since a series of parameter
values were explored in this study, a discussion of a few
samples of results would be relevant. As shown in Table 1,
each specific set of parameter values corresponds to the defi-
nition of a class. Table 4 compares four networks with strong
scale free properties (D9, J6, M6, and E10) from four dif-
ferent combinations of initial parameters, i.e., from four dif-
ferent classes, with the purpose of showing that all four of
them identify the same correlated earthquakes. D9 is the most

(a)

(b)

Fig. 9. Connectivity and weight distributions for network M5. The
curves are shifted by 10 units each along theY axis.(a) Total con-
nectivity (circles), in-connectivity (squares), out-connectivity (dia-
monds).N is the number of nodes that have a number of edgesE

(on theX axis).(b) Total weight (circles), in-weight (squares), out-
weight (diamonds).N is the number of nodes that have a weight of
W (on theX axis).

selective network, having 11 966 nodes (the lowest number
of nodes), the next selective is J6, with 13 523 nodes, while
M6 and E10 have almost the same number of nodes, 14 006,
and 14 091, respectively. Although they come from differ-
ent classes, with different characteristics, all these networks
possess a high value ofWmin inside their class, and their con-
nectivity distributions enjoy significant power law properties.
The question is how many earthquakes selected in the small-
est network, D6, have also been selected in the slightly larger
networks J6, M6, and E10, then how many earthquakes cho-
sen for network J6 have also been accepted in networks M6
and E10, and how many earthquakes included in network M6
have also been included in network E10. The results in Ta-
ble 4 show that all the earthquakes selected in network D9
have also been selected in networks J6 and M6, and 98.72 %
have also been included in E10, regardless of the variations in
the choice of the parameter values. In network J6, 97.27 % of
the earthquakes have also been selected by the slightly larger
network M6, and 93.93 % of the events have also been cho-
sen for network E10. Finally, 91.34 % of the events included
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Fig. 10. Exponent of connectivity distributions for networks
M1–M6.

Fig. 11.Exponent of the weight distribution for networks M1–M6.

in network M6 have also been included in network E10. We
are actually looking, in each of these cases, at the same sta-
tistical population of earthquakes. These are the earthquakes
that, being close enough in space–time–magnitude, are most
likely to be related to each other.

This is an interesting result, indicating that the method is
reliable, robust with respect to variations in parameter val-
ues, and reflects fundamental properties of seismicity. Conse-
quently, the process of identification of correlations between
earthquakes can start with a certain choice of parameter val-
ues (class definition), and end when networks with scale free
properties are found.

4.2 Evolution of network properties over time

Results of this method are further applied for the study of the
way the relationships between earthquakes change over time.
The network is split up into successive event windows, each
window having the same number of successive events. The
first objective of the analysis is to determine whether scaling

Fig. 12. Temporal variation of the connectivity distribution expo-
nent (absolute value) in successive temporal windows of network
M2.

Fig. 13.Temporal variation of the weight distribution exponent (ab-
solute value) in successive temporal windows of network M2.

properties can be identified in the temporal windows. If that
is the case, the next objective is to study whether changes
in scaling properties in successive temporal windows can be
related to real-life changes in the volcanic system.

Numerous networks from different classes have been stud-
ied. The networks chosen for the analysis were those with
strong scaling properties. They were split into event windows
of 1000 successive events and sub-networks of 1000 nodes
were generated accordingly. In each case, the node connec-
tivity distribution and the node weight distribution were as-
sessed.

The results (not shown) confirm that also these distribu-
tions manifest power law characteristics; for each scaling
regime, the corresponding exponentsβ and γ were calcu-
lated. As an example, the study of successive event windows
in network M2 is presented in Fig. 12 (the variation of the
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Table 4. Robustness of the method: regardless of various choices of parameter values shown under column “Class definition”, the method
identifies the same statistical population of events as being the earthquakes that are interconnected. In this example, the overlap between the
nodes selected by networks D9, J6, M6, and E10 ranges between 91.34 and 100 %.

Network Network characteristics Comparative node selection Class Class definition Class characteristics

D9 11 966 nodes 11 966 nodes in J6 D Tmax= 30 days 37 325 nodes
W ≥ 7.5× 10−3 – 100 % Dmax= 30 km 5 801 083 edges

11 966 nodes in M6 r = −1.35
– 100 % p = −1 H = 1.00
11 813 nodes in E10 dmin = 1 km L = 3.39× 10−6

– 98.72 % tmin = 1 h

J6 13 523 nodes 13 154 nodes in M6 J Tmax= 8 days 33 447 nodes
W ≥ 5× 10−2 – 97.27 % Dmax= 10 km 2 035 257 edges

r = −1.35
12 702 nodes in E10 p = −1 H = 1.00
– 93.93 % dmin = 1 km L = 5.60× 10−5

tmin = 1 h

M6 14 006 nodes 12 793 nodes in E10 M Tmax= 7 days 33 065 nodes
W ≥ 10−1 – 91.34 % Dmax= 10 km 1 913 280 edges

r = −1
p = −0.5 H = 1.00
dmin = 1 km L = 1.86× 10−3

tmin = 1 h

E10 14 091 nodes E Tmax= 40 days 37 441 nodes
W ≥ 5× 10−4 Dmax= 50 km 8 488 767 edges

r = −1.35
p = −1 H = 6.07
dmin = 0.2 km L = 7.24× 10−9

tmin = 3 min

connectivity distribution exponentβ) and Fig. 13 (the varia-
tion of the weight distributionγ ). Although the graphs of the
two distributions are not identical, they show the same trend
in their evolution. In this example, the minimum values in the
variation ofβ correspond to the windows whereγ also has
minimum values; therefore, the same lower-case letters from
“a” to “i” were used on both graphs to tag the corresponding
minimum values of the two exponents.

Figure 14 presents the graph of the cumulative number
of earthquakes from January 1989 to December 2012. On
this graph, the areas corresponding to the temporal windows
tagged with letters from “a” to “i” in Figs. 13 and 14 were
tagged with the same letters. Each of the labeled areas in
Fig. 14 is therefore associated with minima in the abso-
lute values ofβ andγ in successive temporal windows. A
steep increase in the number of earthquakes can be noticed
in Fig. 14 for the tagged areas. The history of the volcano
shows that sudden events, with important discharges of en-
ergy, such as rapid openings of new fissures, violent massive
eruptions or explosions, occurred in the volcano in the corre-
sponding time intervals.

For example, minimum “a”, corresponding to window
number 2, can be related to the braking of the Kupaianaha
tube system in 1989 that caused massive surface lava flows;

Fig. 14.Cumulative number of earthquakes between January 1989
and December 2012. The small letters tag the areas corresponding to
the minimum absolute values of the exponentsβ andγ in successive
temporal windows of network M2.

Nonlin. Processes Geophys., 21, 427–438, 2014 www.nonlin-processes-geophys.net/21/427/2014/



M. Suteanu: Scale free properties in a network-based integrated approach 437

these surface lava flows spectacularly invaded new terri-
tory, overran the Waha‘ula Visitor Center and residences
in Hawaii Volcanoes National Park. Minimum “b”, corre-
sponding to window number 6, can be related to the four
episodes that occurred between the end of 1991 and the end
of 1992: episodes 49, 50, 51, and 52. New fissures developed
with these four episodes, and were accompanied by impor-
tant seismic phenomena, as for example the 4.5 magnitude
earthquake that preceded episode 52 from October 1992. As
another example, minimum “d”, corresponding to window
number 10, can be related to episode 54 from 1997, when
another new fissure developed, lava fountains reached tens of
meters in height, and a period with 2000–4000 earthquakes
per day followed.

Each of these minima can be related to such sudden events,
with surges in the activity of the volcano, important dis-
charges of energy, and changes in seismicity. However, the
steep slope situated between “h” and “i” in Fig. 14, which is
probably due to episode 58 from July 2007, cannot be related
to a minimum in the values ofβ andγ . A possible explana-
tion for this exception is the process of artificially breaking
down network M2 into sub-networks with an equal number
of nodes. A study on the optimization of the temporal win-
dows selection should address this issue and is subject to fur-
ther research.

The meaning of the minima in the exponentsβ andγ is
an increased connectivity in the corresponding networks; the
proportion of nodes that have high connectivity is larger. In
the studied context, energy dissipates through various pro-
cesses such as magma flows, lava effusion, explosions, heat
emission, tectonic phenomena, degassing, etc. (Wright and
Pilger, 2008). Although the increased connectivity in min-
ima of the exponentsβ andγ is not consistently related to
higher dissipation in tectonic energy, it could be related to
peaks in the overall energy emitted by the volcanic system
during eruptions or large outpourings of lava. An analysis
of the clustering coefficient and of associations with energy
dissipation in the system is the subject of future research.

Overall, the study shows that variations in the values of
the exponentsβ andγ are able to reflect the way the relation-
ships between earthquakes are changing over time. Minimum
absolute values ofβ andγ in successive temporal windows
can be related to important events in the life of the volcanic
system and the associated seismicity.

5 Conclusions

A new type of directed network has been proposed for the as-
sessment of relationships between earthquakes. The method
was applied to volcanic seismicity in Hawaii. The nodes of
the networks are epicenters of earthquakes; the edges that
link the nodes carry space–time–magnitude weights, and
have a direction given by the temporal succession of the
events. The generality of the definition of the edge weight,
W , as a combination of a factor in time, a factor in space,

and a factor in magnitude, is comprehensive and permits var-
ious combinations of space–time–magnitude correlations be-
tween earthquakes. Since any node can have any number of
edges that enter the node and any number of edges that leave
the node, any given event may have multiple predecessors,
and any given event can contribute to multiple future events,
as long as its edges carry enough weight.

Parameters and formulas used in the calculation of the
weights take into consideration well-established properties of
seismicity. High values ofW are associated with strong re-
lationships between earthquakes, while low values ofW are
associated with either weak relationships or no relationships
at all. Various classes of networks can be generated based on
distinct values of the parameters. Inside each class, different
networks can be created by setting different thresholds for
the minimum edge weightWmin.

It is shown that networks that haveWmin in the middle to
upper range of the interval between the lowest edge weight
valueL and the highest edge weight valueH in their class
manifest significant scaling properties of node connectiv-
ity distributions, as opposed to networks with low values of
Wmin, which exhibit poor or no scaling characteristics. Since
high values of weight describe the strong links, the events
selected in the networks with high values ofWmin are pri-
marily the earthquakes that are most likely to be related to
each other. Therefore, it is reasonable to see a relationship
between the fundamental characteristics of seismicity and the
well-organized, scale free distributions of node connectivity.
In networks with low values ofWmin, most of the nodes have
little or no relationship with each other. In this context, the
irregular and scattered shapes of their connectivity distribu-
tions are not a surprise.

It is also shown that the scale free behavior observed in
networks with superior values ofWmin is robust with respect
to variations in parameter values. Tests performed on net-
works that manifest strong power law properties, but origi-
nating in different choices of parameter values, confirm the
reliability of the method. They show that the same statistical
population of earthquakes is chosen to participate in these
networks, i.e., the earthquakes most likely to be interrelated.
The results indicate that the method is reliable, robust with
respect to variations of parameter values, and reflects funda-
mental properties of seismicity.

The threshold valuesWmin that identify networks of in-
terrelated events are assessed in the context of all the earth-
quakes in the class: they are found as those values for
which scale free properties appear and become stronger when
subsequent networks are created using increasing values of
Wmin. It can be said that the thresholdWmin is a global pa-
rameter that characterizes the set of earthquakes and its val-
ues are meaningful only inside that set.

There are also other significant scaling properties that are
detected in the analysis of the classes of networks. Node
weight distributions also enjoy scaling properties. For each
class, the dependency of the number of edges on the number
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of nodes is a power law. The distribution of the distances be-
tween events exhibits distinct regimes with scale free prop-
erties. Similarly, the distribution of the time intervals be-
tween events is characterized by different domains with scal-
ing properties.

It is also shown that the evolution of the relationships
among earthquakes over time can be studied by splitting up
the network into successive event windows with an equal
number of nodes. The distributions of node connectivity and
node weight in the emerging sub-networks manifest scaling
properties that can be used to follow the change of seismic-
ity over time. The exponentsβ andγ of these distributions
have a similar evolution over the temporal windows. The in-
creased connectivity in minima ofβ andγ can be associated
with sudden, important discharges of energy in the life of the
volcanic system and accompanying earthquakes. It is shown
that the exponents of connectivity and weight distributions
for successive event windows are able to reflect the way the
relationships between earthquakes are changing over time.
Aspects regarding the clustering coefficient, energy dissipa-
tion and optimization of the selection of the temporal win-
dows are subject to further research.
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