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Abstract. This paper proposes a network-based method forof assessing relationships between them. Given the ubig-
the assessment of earthquake relationships in space—timasity of power laws governing earthquake distributions (Nanjo
magnitude patterns. It is shown that networks with high val-and Nagahama, 2000; Lapenna et al., 2000; Shcherbakov et
ues for the minimum edge weightmin enjoy strong scaling  al., 2004, 2006; Carbone et al., 2005; Felzer and Brodsky,
properties, as opposed to networks with low value¥gin, 2006; Bunde and Lennartz, 2012; Lippiello et al., 2012a, b),
which exhibit no such properties. The scaling behavior alongpower law forms are used to estimate quantitatively the rela-
the spectrum oW nin values, in conjunction with the robust- tionships between events in a space-time—size perspective.
ness regarding parameter variations, endorse the idea of a retowever, there are major differences between Baiesi and
lationship between fundamental properties of seismicity andPaczuski's model and the work presented in this paper. Not
the scaling properties of the earthquake networks. Resultenly do the two methods use different metrics, but, most im-
of this method are further applied for the study of temporal portantly, they use different criteria for the discrimination
changes in volcanic seismicity patterns. of interrelated earthquakes from the rest of the set: in the
method of Baiesi and Paczuski (2004, 2005) the criterion
is the maximization of a correlation function, while in this
study series of networks are created, assessed and searched
1 Introduction for scale free properties. Since the main component in Baiesi
and Paczuski's metric is a function that is exponential in
Extensive research is dedicated to earthquake pattern anghagnitude, their method effectively addresses the identifi-
ysis in an ongoing effort to understand the laws that gov-cation of event clusters around the largest shocks, while our
ern seismicity. Correlations in earthquake patterns have beepethod addresses earthquakes of all sizes that are considered
found in magnitude (Gutenberg and Richter, 1954; Lippiello cjose enough in space-time—magnitude to be interrelated.
etal., 2012b), time (Omori, 1894; Shcherbakov et al., 2004;  Although a new quantitative metric is defined in our study
Shcherbakov et al., 2006), and space (Turcotte, 1977; Felzefnd a4 new type of network is built, the results show power law
and Brodsky, 2006; Lippiello et al., 2009). Integrated ap- properties that are consistent with previous work of Baiesi
proaches have been developed to find space—time-magnitudgq paczuski (2005) and with their interpretation that the un-
patterns (Bak et al., 2002). Network-based approaches havgerlying correlations of the seismicity structure are unam-

shown not only that networks of correlated earthquakes cabjguous, sufficiently strong to survive the approximation of
be created, but also that these networks enjoy scaling propegnhe metric, and can be reliably detected.

ties (Baiesi and Paczuski, 2004, 2005; Davidsen et al., 2008; oyr method is applied to seismicity associated with
Suteanu and Suteanu, 2011). _ _ hotspot volcanism in Hawaii. The earthquakes are seen as
A space—time-magnitude metric defined for directed netsets of space-time—magnitude events that can be related to
works of earthquakes was proposed by Baiesi and Paczusldach other, while the quality of the interactions among earth-
with their seismicity declustering method (Baiesi and guakes can vary over time. In order to assess these interac-

Paczuski, 2004, 2005). The study in our paper also createfons and their change in time, an integrative approach that
directed weighted networks of earthquakes with the purpose
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428 M. Suteanu: Scale free properties in a network-based integrated approach

maps seismic information to directed weighted networks is (c) Magnitude weight:

developed. Different classes of networks of earthquakes are m

studied, and results show scale free properties that are robust ~ w,, = , 3)
with respect to certain variations in the definition of the net- Mmax

works. Networks with values of the minimum edge weight wherem is the magnitude of the first occurring node of
Whin in the middle to upper range of the spectrum of edge the edge, anehmay is the maximum magnitude value
weight values enjoy strong scaling properties, as opposed to in the data set.

networks withWpn in the lower range, which exhibit poor . )
or no such properties. It is shown that network parameters The total weight of an edge is calculated as the product of

studied for successive event windows are able to reflect thé&he weights in space, time, and magnitude. Only the nodes
way the relationships between earthquakes are changing ovéat carry enough total weight belong to the network, which

time, and that patterns of change can be related to importarff?€@ns that only edges that have a value of the total weight
events in the life of the volcanic system. W higher than a minimum threshomin are selected for

the network:
2 Construction of the earthquake networks W= | W Wi W, W= Win (4)
0, W < Wmin

The epicenters of earthquakes that could be related to other lity of this definii I . bi
earthquakes are seen as network nodes that are connectgf® 9enerality of this definition allows various combina-
through directed edges. The edge direction is given by thd!OnS of space-time—magnitude correlations between any two
temporal succession of the events. Ideally, only interrelate vents a_nd includes the possibility of multiple interactions
earthquakes can be nodes of this network, and the edg %r any given event: any node can have any number of edges
that link them to other nodes carry a space—time—magnitudé at enterl the nodhe and any number of e(:lges tlhat .Ier?ve the
weight. Therefore, a combination of three factors is evaluated'®de. as long as these edges carry enough total weight.

before deciding whether or not any two earthquakes belong FOF Practical reasons and with the purpose of avoiding sin-
to the network: the size (magnitude) of the first occurring gularities, a small cutoff value is used for the weights in space

event, and its proximity to future events in space and in time.and time (it is also reasonable to assume that all earthquakes

There are many possible combinations of these three factoréhat are very close in space or in time could be related to each

Even small earthquakes may be related to subsequent everﬁ%her)' Therefore, mOd_'f'ed forms of Egs. (1) and (2) are used
if the latter were close enough in space and time. In the actual construction of the networks:

In order to assess quantitatively the relationship between 1, d <dmin
earthquakes, three weight variables are defined: the weight'd = {qu d > dmin, ¥ <0 ®)
in distancew,, the weight in timew,, and the weight in
magnitudew,, . A total weightW characterizes every edge as ,, — { 1 t=tmin . (6)
a combination of the previous three variables. Considering stP, t = tmin, p <0
.the Gutgnberg—Rlchter !aw, the Qmp " I_aw, and other Scal'Various values for the exponentand p, and for the cutoff
ing relationships regarding the distributions of earthquakes _ _
. ) . . valuesdmin andzmin, are explored. The constantgnds are
in space, time, and magnitude (e.g. Lei and Kusunose, lgggCaIculated using the boundary conditions
Richards-Dinger et al, 2010; Felzer and Brodsky, 2006;
Shcherbakov et al., 2006; Lennartz et al., 2008; Lippiello et,,, , _ cdlio=1 @)
al., 2009, 2012a; Sanchez and Shcherbakov, 2012), the fol-
lowing forms for the node weights of any one edge have beerand
chosen:
w, =stP =1, (8)

(a) Distance weight: min =

wy=cd", r <0, (1) An essential difference between the total edge weight defined
in this paper and Baiesi and Paczuski’s (2004, 2005) metric
consists in the contribution of each of the three factors (time
interval, space interval, and magnitude). In contrast with their
approach, in this paper the three components (time interval,
(b) Time weight: spatial distance, and magnitude) are seen independently, as
separate components that can have comparable contributions
to the total edge weigh¥. This is accomplished by limiting
wherer is the time interval between the two nodes of the upper value of each of the three components to 1. The
the edge measured in hours, and a positive con-  definition of a magnitude weight proportional #q and not
stant. exponential inmn, is therefore meant to support a balance of

whered is the spatial distance between the two nodes
of the edge measured in km, ands a positive con-
stant.

w; =stP, p <0, (2
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factors in the total edge weight formula. The resulting net- Table 1. All classes.Tmax is the maximum time interval between
works and network distributions are governed by statisticalevents,Dmax is the maximum distance between events, the ex-
contributions of each of the three components. This choicePonent of the distance weight; (Eq. 1), p is the exponent of the
is especially important in the study of volcano-tectonic seis-time weightw; (Eq. 2),dmin @ndimin represent cutoff valuesy is
micity, where the seismic sources are associated not onli}’e highest value of the total edge weight in the class, lamithe
with tectonic stress, but also with thermodynamic processel?"Vest value of the total edge weight in the class.
and the dynamics of gas, fluid and solid. Class Trx D 7 ) P I B

To simplify the computation, a maximum interval of influ- (days)  (km) (hy (km)

ence in timeTmax and a maximum interval of influence in 10 30 -135 -1 1 1 100 101x10°5
spaceDmax, are assigned. Although fixed valuesTafax and 10 30 -135 -1 05 02 065 H6x 10*;

HE ; H 30 30 -135 -1 1 1 1.00 3B9x 10~
Dmax are chosen to create the initial network, making this o 20 19 1 005 02 607 DAr10-9

choice is different from making the parameter choice in win-
dow declustering methods or in Reasenberg’s cluster method
(Reasenberg, 1985). For example, in order to identify after-

10 -135 -1 005 0.1 272 M4x10°7
10 -135 -1 005 0.025 272 22x10°8
10 -135 -1 05 0.2 065 A9x10°6
11 -135 -1 005 0.1 272 11x1077

ZIre"ITOMMOOW

O N ~No®ow~N~N

shocks, Knopoff and Gardner define space—time windows 10 -13 -1 1 1 1.00 560x 1075
that are functions of the mainshock magnitude (Knopoff and 10 -1 -05 14 2 1.00  B9x 10’2

. . : : 10 -1 -0.5 1 1 1.00 186x 10~
Gardner, 1972; Gardner and Knopoff, 1974); various choices 4 50 -1 05 05 02 066 49x10°5

of parameter values lead to significant variations in the af-
tershock identification. Reasenberg’s algorithm (Reasenberg,
1985) identifies foreshocks and aftershocks within a cluster
based on Omori's law for the cluster's time extension and ony, . 0\ vast value in network@is L = 1.01x 10-5. In gen-

a window-type function for the cluster’'s spatial extension; eral, the first networks & Co, ..., No are simply collections
also in this case, different choices of fixed parameter value%f e:arthquakes and not ne,two,rks of interrelated events. and
may lead to substantially different estimates of the correla—they serve for tﬁe operational initiation of the method. '

tions between earthquakes. In this paf@fax and Dmax re- . e

ceive fixed values only with the purpose of simplifying the delfr;ﬂsgd;s;’:l]ccfs r?tla?vsvz,ﬂ(ssp ecific values for the thresitigh

computation. In principle Imax and D4, could cover the '

whole extent of the catalogue in time and space. The study

shows that the final outcome is not affected by the initial 3 pata

choice ofTnax and Dinayx, Since large distances and long time

intervals between events result in very small values of theThe data source for this study is the Advanced National Seis-

edge weightsu; andw;, and therefore lead to small values of mic System (ANSS) catalog for the Big Island of Hawaii,

the total edge weigh¥ . The links carrying small weights are - with events ranging from 1 January 1989 to 31 December

eliminated from the network in the next step anyway, when2012. Figure 1 shows an example of a network of earth-

the network definition (4) is applied. quakes. By zooming in, the actual nodes and edges can be
Different values for the maximum interval of influence seen (Fig. 2).

in time Tmax, and for the maximum interval of influence in  The number of events in the catalog is 64 392. For cata-

spaceDmax, are explored, as well as various valuesifpp, log completeness, only events with magnitude- 1.6 are

dmin @ndrmin. This way, a series of network classes are generused in the analysis (37 451 earthquakes);thalue in the

ated with the purpose of creating a structured framework forGutenberg—Richter magnitude-frequency distribution for this

the analysis: all networks that belong to a certain class B, Cdata set i$ ~ 0.99 (Fig. 3).

..., N share the same initial choice Dfnax, 7, dmin, Tmax: P Different sets of networks in various network classes have

tmin. Letters are used to name the classes of earthquake negeen analyzed. The following values of the parameters have
works, and the choice of every letter has only a classificatiorpeen studied:

purpose. A description of the classes that have been studied
is shown in Table 1.

In each class, an initial network is created when assign-
ing the specific values to parameters. For clarity, an index ~ — Imax 7 days; 8days; 10 days; 30 days; 40 days.

is used to describe these initial networks;, Bg, etc. The . ) ) ) )
highest value of the total edge weight in each cl&ssis the = dmin: 0.025km; 0.1km; 0.2km; Tkm; 2km.

Dmax: 10km; 30 km; 50 km.

highest value of the total edge weight in the initial network — _ trmin: 3MiN: 30 min; 1 h: 14 h.
(NETWORK CLASSY), while the lowest value of the total

edge weight in the clasg,, is the lowest value of the total —r:—1;-1.35.

edge weight in the initial networks (NETWORK CLASS)

For example, the highest value in networkiB H = 1, and - p: —0.5;-1.
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Magnitude distribution. b=0.99 (M >= 1.6)
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Hawaii data set ranging from 1 January 1989 to 31 December 2012.

Fig. 1. The earthquake network: an example for the Big Island
of Hawaii.

node (out-connectivity) are also studied. Similarly, the node
weight, in-weight, and out-weight are calculated and ana-
lyzed. The node weight is given by the sum of the weights
of all edges in the node, the in-weight is the weight of all
edges that enter the node, and the out-weight is the weight of
all edges that go out of the node.

The results of the studies that were performed on all
classes in Table 1 show that, for each class of networks, the
connectivity distribution enjoys power law properties for all
networks that hav® i, in the upper range of the interval be-
tween the lowest edge weight vallieand the highest edge
weight valueH in the class, while for networks that have val-
ues ofWpin in the lower range of the interval betweé&rand
H, the connectivity distribution is irregular and scattered. In
many of the networks with irregular shapes, constants with a
Fig. 2. Zoomed-in example of nodes and edges of the earthquak(IPOWer law tail are present. .
network presented in Fig. 1. For example, a study on the large class E of networks is

shown in Fig. 4. The class definition, the initial networ§ E
and the network characteristics are presented in Table 2. The

Depending on the lowest edge weight valieand the large size of the class (8488 767 edges) originates in the as-

for the threshold¥mi, are chosen in order to create and ana-©f influence may go up to 40days in time, and up to 50 km
lyze distinct networks inside each class. in space. This is a broad supposition for the active volcanic

system of Hawaii; for the majority of these volcanic earth-
quakes, which do not have large magnitudes (Fig. 3), correla-

4 Results tions with earthquakes so far away in space and time are quite
unlikely. This situation is suggestively illustrated in Fig. 4.
4.1 Network parameters and analysis The set of six images in Fig. 4 shows the change in shape of

the connectivity distribution when the minimum value of the
Network parameters such as node connectivity and nodéotal weight changes from low values, such as in networks
weight distribution (Boccaletti et al., 2006) are assessed folE1, E2, E3, towards higher values, as in networks E10, E11,
sets of earthquake networks in different classes. The nodé&om highly irregular and scattered shapes to well-organized
connectivity (degree) represents the total number of edgeshapes that exhibit significant power law properties. This be-
in the node. The number of edges that enter the node (inhavior is characteristic of networks in all the other classes.
connectivity), and the number of edges that go out of theWhen weak links are included (low values Wyn), most

Nonlin. Processes Geophys., 21, 42438 2014 www.nonlin-processes-geophys.net/21/427/2014/
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Fig. 4. Connectivity distribution for networks E1, E2, E3, E5, E10, and B 1on theY axis) is the number of nodes that have a number
of edges (on th& axis).

of the nodes in the emerging networks have little or no rela-the network are primarily earthquakes that are related to each
tionship with each other, and results show that this choice foother, and the results show that the underlying properties of
network nodes translates into irregular and scattered shapesgismicity manifest themselves in the well-organized, scale
of the node connectivity. When only strong links are retainedfree appearance of the node connectivity.

(high values ofWpn), the events selected to participate in
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Table 2.Class E networks. s the initial network that was generated using the parameter values shown in the first column. See Table 1 for
the meaning ofmax, Dmax; 7, P+ dmin, tmin, H, andL.

Class E definition  Characteristics of the initial Network Number of nodes  Number of edges
network kg
Name Wmin
—Tmax=40days — 37441 nodes E1 W >10"8 37441 8461301
—Dmax=50km  —8488767 edges E2 W=>5x10"8 37419 6628575
-r=-135 —H =6.07 E3 W >10"7 37357 5660485
—p=-1 —-L=724x10"° E4 W>5x10"7 36808 3782245
—dmin = 0.2km E5 W >106 36172 3102765
— tmin = 3 Min E6 W>5x10"6 32886 1784667
E7 W>10"° 30377 1330446
E8 W=>5x10"° 23032 584548
E9 w > 104 20063 376852
E1I0 W=>5x10"% 14091 117835
E11l W >103 11955 68408

The threshold value® i, are evaluated in the context of '
the whole set of earthquakes in the class, and not individu:
ally. Wmin values that identify networks of interrelated events B o
emerge from the global assessment of network properties .. ©
they are found as those values for which scale free proper e
ties appear and become stronger when subsequent networz
are created using increasing valuesiefin. In this sense, the g
thresholdWnn is a global parameter; it belongs to a range of -
values in the middle to upper zone of the interval between
the lowest edge weight value and the highest edge weight
value H in any given class of networks. This represents an- -
other major difference between this method and the methot
of Baiesi and Paczuski (2004, 2005). ; * :

Moreover, the generality of this method allows a variety of
correlations between earthquakes: any event of the networkKig. 5. Distribution of time intervals (in s) between any two nodes
can have any number of predecessors and any number of sutrthe initial network k. N is the number of time intervals aks
cessors if the corresponding edges carry enough space—timgeconds between any two earthquakes in a space—time window of
magnitude weight, with no arbitrary limitation on magnitude, 50 km and 40 days. The red line represents a reference line with the
time, or distance. slope of-0.5.

Power law properties can also be found in the distribu-
tions of time intervals and distances between nodes. Figure 5
shoyvs the di;triputiqn of times int(.arval.s in the initial network Although the context is volcano-tectonic and not all earth-
Ep, i.e., the distribution of all the time intervals between any quakes in this space

two earthquakes within a space-time window that is quite,) shape of the distribution shows remarkable similarities

large in the Hawaii volcano-tectonic context. As shown in i the distribution of distances of aftershocks from the
Fig. 5, there is a distinct scale free zone that goes up to 7 dayg, ainshock in Lippiello et al. (2009): an increase up to a max-

with a power law exponent 6f0.5. The peak between 7.and j,m value (1 km in this case), followed by a power law de-

15 days with a maximum at 11 days is consistent with stud-c;e4qe e believe that the peaks with maximums at 13, 18,

ies that show that the precursory sequences in Hawaii folgic | refer to events that are spatially clustered around the

low a power law acceleration with 10-15 days before erup-eighnhoring volcanoes, distinct vents and fracture zones, and

tion (Chastin and Main, 2003). reflect the spatial characteristics of the Hawaii volcanic sys-
The distribution of the distances between events also hagyy. 45 shown in Fig. 1, the network exhibits intense clusters

scaling properties. Figure 6 shows the distribution of spacegpayia|ly centered on the volcanoes, their vents and fracture

intervals in the initial network & which exhibits an expo-  ;oneq Wwhich are situated at distances compatible with the
nent of—1 for the power law interval between 1 and 10 km. peaks in Fig. 6.

s
Log 4 OAt

—time window are interrelated, the over-
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Table 3.Class M networks. M is the initial network that was generated using the parameter values shown in the first column. See Table 1
for the meaning ofmax, Dmax; s P dmin» tmin, H, andL.

Class M definition  Characteristics of the initial Network Number of nodes  Number of edges
network My
— Tmax= 7 days — 33065 nodes M1 W>15x 102 26919 1270458
— Dmax=10km —1913280edges M2 W=>2x 1072 25396 1088015
—r=-1 -H=1 M3 W >3x 102 22682 782659
-p=-05 —-L=186x10"3 M4 W>4x102 20440 584 686
—dmin=1km M5 W >5x 1072 18825 443533
—fmin=1h M6 w>10"1 14006 149235
5 : . : 6.2
o) O edges
sl gm ] 6 Q 0 nodes O
o o
46 O - O 8y
&
OO = 4027 ki Q
44 O " - O
o 5.5
= o o n °8 O
Z r o 7325 km b o S
o Z & 3 o
3 . o 13563 km | vg u6 56
8 s = o
38 O 2584 km - =4
\m 1 km/ g 540 o)
S— is
34 - &
o 26,444 km' T DD 59
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Fig. 6. Distribution of distances (in km) between any two nodes 0 0\‘,?,;” 01 A1 |o%120(No_ o‘%‘ﬁodes) 44

in the initial network k. N is the number of distances @fd km

between any two earthquakes in a space—time window of 50 km andFig. 7. Class M networks(a) The dependency of the numb&rof

40days. The red line represents a reference line with the slope oédges (circles) and the numb&rof nodes (squares) on the mini-

-1. mum weightWpmin. (b) The dependency of the number of edges on
the number of nodes.

As another example, one of the network classes, class M,
was created with characteristics drawn from the two distri-values, inside class M even networks with relatively low val-
butions shown in Figs. 5 and @nax= 7 days,p = —0.5, ues of Wmin display power law properties, as illustrated in
Dmax=10km, r = —1. The full description of class M is Fig. 8a. The connectivity distributions for the other five net-
summarized in Table 3. works M2—-M6 are quite similar; another example is shown

The choice of the parameter values in the definition offor network M5 in Fig. 9a. The exponeift for each type
class M was largely based on specific statistical characteref connectivity distribution (all, in, out) is calculated and a
istics of the data set; however, the analysis reveals the samgraph with allg values is shown in Fig. 10. Similarly, power
behavior and the same qualitative patterns as those found ilaw properties are detected for the weight, in-weight and
all the other classes. For example, Fig. 7a shows the exposut-weight distributions in networks M1-M6, as shown in
nential character of the dependency of the number of edgeBigs. 8b and 9b, and the exponent(Albert and Barabasi,
and number of nodes on the minimum weight in the network,2002) for each weight distribution is illustrated in Fig. 11.
and Fig. 7b shows the power law dependency of the number In general, the analysis shows that the scale free behavior
of edges on the number of nodes for class M of networks. observed in all networks with superior valuesVgg,, inside

In the example of class M, the connectivity, in- their class is remarkably robust with respect to variations of
connectivity and out-connectivity distributions are assessegarameter values p, dmin, andtmin. Moreover, networks of
for networks M1-M6. Since the maximum intervals in time the same class that have lower valuesifin exhibit poor
and spac@max and Dmayx that define class M have rather low scaling characteristics or even no such characteristics at all.

www.nonlin-processes-geophys.net/21/427/2014/ Nonlin. Processes Geophys., 2143872014
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Fig. 8. Connectivity and weight distributions for network M1. The Fig. 9. Connectivity and weight distributions for network MS. The
curves are shifted by 10 units each along Yhaxis. (a) Total con-  curves are shifted by 10 units each along thaxis. (a) Total con-

nectivity (circles), in-connectivity (squares), out-connectivity (dia- nectivity (circles), in-connectivity (squares), out-connectivity (dia-
monds).N is the number of nodes that have a number of edgies monds).N is the number of nodes that have a number of edges

(on theX axis).(b) Total weight (circles), in-weight (squares), out- (on theX axis).(b) Total weight (circles), in-weight (squares), out-

weight (diamonds)N is the number of nodes that have a weight of Weight (diamonds)N is the number of nodes that have a weight of
W (on theX axis). W (on theX axis).

The scaling behavior along the spectrum@fi, values, in  selective network, having 11 966 nodes (the lowest number
conjunction with the robustness regarding parameter variaef nodes), the next selective is J6, with 13523 nodes, while
tions, endorse the idea of a relationship between fundamentaf6 and E10 have almost the same number of nodes, 14 006,
properties of seismicity and the scaling characteristics founcand 14 091, respectively. Although they come from differ-
in earthquake networks. ent classes, with different characteristics, all these networks
This observation suggests that a way of testing the reliabipossess a high value 8fy, inside their class, and their con-

lity of the method is to question the identity of the earth- nectivity distributions enjoy significant power law properties.
quakes selected in networks that possess scaling propertieShe question is how many earthquakes selected in the small-
If the method is reliable, networks with strong scaling prop- est network, D6, have also been selected in the slightly larger
erties should retain only the nodes that correspond to earthretworks J6, M6, and E10, then how many earthquakes cho-
quakes that are truly related to each other, regardless of theen for network J6 have also been accepted in networks M6
choice in the parameter values. Since a series of parametand E10, and how many earthquakes included in network M6
values were explored in this study, a discussion of a fewhave also been included in network E10. The results in Ta-
samples of results would be relevant. As shown in Table 1pble 4 show that all the earthquakes selected in network D9
each specific set of parameter values corresponds to the defirave also been selected in networks J6 and M6, and 98.72 %
nition of a class. Table 4 compares four networks with stronghave also been included in E10, regardless of the variations in
scale free properties (D9, J6, M6, and E10) from four dif- the choice of the parameter values. In network J6, 97.27 % of
ferent combinations of initial parameters, i.e., from four dif- the earthquakes have also been selected by the slightly larger
ferent classes, with the purpose of showing that all four ofnetwork M6, and 93.93 % of the events have also been cho-
them identify the same correlated earthquakes. D9 is the mosten for network E10. Finally, 91.34 % of the events included

Nonlin. Processes Geophys., 21, 42438 2014 www.nonlin-processes-geophys.net/21/427/2014/



M. Suteanu: Scale free properties in a network-based integrated approach 435

1.4 Temporal variation of the connectivity distribution exponent, B
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Fig. 10. Exponent of connectivity distributions for networks
M1—M6. Fig. 12. Temporal variation of the connectivity distribution expo-
nent (absolute value) in successive temporal windows of network

M2.
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in network M6 have also been included in network E10. We Fig. 13.Temporal variation of the weight distribution exponent (ab-
are actually looking, in each of these cases, at the same stgolute value) in successive temporal windows of network M2.
tistical population of earthquakes. These are the earthquakes

that, being close enough in space—time-magnitude, are most . . o .
likely to be related to each other. properties can be identified in the temporal windows. If that

This is an interesting result, indicating that the method isiS the case, the next objective is to study whether changes
reliable, robust with respect to variations in parameter val-in scaling properties in successive temporal windows can be
ues, and reflects fundamental properties of seismicity. Conse€lated to real-life changes in the volcanic system.
quently, the process of identification of correlations between Numerous networks from different classes have been stud-
earthquakes can start with a certain choice of parameter vafed. The networks chosen for the analysis were those with
ues (class definition), and end when networks with scale fretrong scaling properties. They were split into event windows

properties are found. of 1000 successive events and sub-networks of 1000 nodes
were generated accordingly. In each case, the node connec-

4.2 Evolution of network properties over time tivity distribution and the node weight distribution were as-
sessed.

Results of this method are further applied for the study of the The results (not shown) confirm that also these distribu-
way the relationships between earthquakes change over timéions manifest power law characteristics; for each scaling
The network is split up into successive event windows, eaclregime, the corresponding exponeptsand y were calcu-
window having the same number of successive events. Thiated. As an example, the study of successive event windows
first objective of the analysis is to determine whether scalingin network M2 is presented in Fig. 12 (the variation of the
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Table 4. Robustness of the method: regardless of various choices of parameter values shown under column “Class definition”, the method
identifies the same statistical population of events as being the earthquakes that are interconnected. In this example, the overlap between tf
nodes selected by networks D9, J6, M6, and E10 ranges between 91.34 and 100 %.

Network  Network characteristics Comparative node selection Class Class definition  Class characteristics
D9 11966 nodes 11966 nodes in J6 D Tmax=30days 37325nodes
W>75x103 —-100% Dmax=30km 5801083 edges
11966 nodes in M6 r=-135
- 100% p=-1 H =100
11813 nodes in E10 dimin = 1km L=339x106
—-98.72% tmin=1h
J6 13523 nodes 13154 nodes in M6 J Tmax= 8days 33447 nodes
W >5x 102 -97.27% Dmax=10km 2035257 edges
r=-135
12702 nodes in E10 p=-1 H=1.00
-93.93% dpmin = 1km L=560x10"°
tmin=1h
M6 14 006 nodes 12793 nodes in E10 M Tmax= 7 days 33065 nodes
w>10"1 -91.34% Dmax=10km 1913280 edges
r=-1
p=-05 H =100
dpin = 1km L=186x10"3
tmin=1h
E10 14091 nodes E Tmax=40days 37441nodes
W>5x10"% Dmax=50km 8488767 edges
r=-135
p=-1 H =6.07
dmin=0.2km L =7.24x10"9
tmin = 3 Min
connectivity distribution exponerft) and Fig. 13 (the varia-
tion of the weight distributiory). Although the graphs of the LA —
two distributions are not identical, they show the same trend : E59
in their evolution. In this example, the minimum values in the N SR WU PN NS U WOV NN MO A I A
variation of 8 correspond to the windows wheyealso has ‘ ‘ ‘ L
minimum values; therefore, the same lower-case letters from : ‘ h(K
“a”to “i” were used on both graphs to tag the corresponding g & A
minimum values of the two exponents. E g
Figure 14 presents the graph of the cumulative number é: L i
of earthquakes from January 1989 to December 2012. On ;
this graph, the areas corresponding to the temporal windows ¢
tagged with letters from “a” to “i” in Figs. 13 and 14 were %'5* e 1
tagged with the same letters. Each of the labeled areas in 2 d
Fig. 14 is therefore associated with minima in the abso- & | = U/ ]
lute values off andy in successive temporal windows. A b =
steep increase in the number of earthquakes can be noticed E49. E50. E51. _
in Fig. 14 for the tagged areas. The history of the volcano ", ESZ i
shows that sudden events, with important discharges of en-
ergy, such as rapid openings of new fissures, violent massive |,

L L L L I L I L L i I i
1988 1891 1893 1995 1897 1899 2001 2003 2005 2007 2000 2011 2013

eruptions or explosions, occurred in the volcano in the corre-

sponding time intervals. Fig. 14. Cumulative number of earthquakes between January 1989
For example, minimum “a”, corresponding to window and December 2012. The small letters tag the areas corresponding to

number 2, can be related to the braking of the Kupaianahéhe minimum absolute values of the expongh#ndy in successive

tube system in 1989 that caused massive surface lava flowdemporal windows of network M2.
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these surface lava flows spectacularly invaded new terriand a factor in magnitude, is comprehensive and permits var-
tory, overran the Waha'‘ula Visitor Center and residencesious combinations of space—time—magnitude correlations be-
in Hawaii Volcanoes National Park. Minimum “b”, corre- tween earthquakes. Since any node can have any number of
sponding to window number 6, can be related to the fouredges that enter the node and any number of edges that leave
episodes that occurred between the end of 1991 and the ertle node, any given event may have multiple predecessors,
of 1992: episodes 49, 50, 51, and 52. New fissures developednd any given event can contribute to multiple future events,
with these four episodes, and were accompanied by imporas long as its edges carry enough weight.
tant seismic phenomena, as for example the 4.5 magnitude Parameters and formulas used in the calculation of the
earthquake that preceded episode 52 from October 1992. Aweights take into consideration well-established properties of
another example, minimum “d”, corresponding to window seismicity. High values of¥ are associated with strong re-
number 10, can be related to episode 54 from 1997, whetationships between earthquakes, while low value®odre
another new fissure developed, lava fountains reached tens efssociated with either weak relationships or no relationships
meters in height, and a period with 20004000 earthquakest all. Various classes of networks can be generated based on
per day followed. distinct values of the parameters. Inside each class, different
Each of these minima can be related to such sudden eventagtworks can be created by setting different thresholds for
with surges in the activity of the volcano, important dis- the minimum edge weighWmin.
charges of energy, and changes in seismicity. However, the It is shown that networks that hav&y, in the middle to
steep slope situated between “h” and “i” in Fig. 14, which is upper range of the interval between the lowest edge weight
probably due to episode 58 from July 2007, cannot be relatedalue L and the highest edge weight valégin their class
to a minimum in the values ¢f andy. A possible explana- manifest significant scaling properties of node connectiv-
tion for this exception is the process of artificially breaking ity distributions, as opposed to networks with low values of
down network M2 into sub-networks with an equal number W, which exhibit poor or no scaling characteristics. Since
of nodes. A study on the optimization of the temporal win- high values of weight describe the strong links, the events
dows selection should address this issue and is subject to fuselected in the networks with high values Wi, are pri-
ther research. marily the earthquakes that are most likely to be related to
The meaning of the minima in the exponepgtandy is each other. Therefore, it is reasonable to see a relationship
an increased connectivity in the corresponding networks; thébetween the fundamental characteristics of seismicity and the
proportion of nodes that have high connectivity is larger. Inwell-organized, scale free distributions of node connectivity.
the studied context, energy dissipates through various prok networks with low values oW, most of the nodes have
cesses such as magma flows, lava effusion, explosions, hebttle or no relationship with each other. In this context, the
emission, tectonic phenomena, degassing, etc. (Wright andregular and scattered shapes of their connectivity distribu-
Pilger, 2008). Although the increased connectivity in min- tions are not a surprise.
ima of the exponentg andy is not consistently related to It is also shown that the scale free behavior observed in
higher dissipation in tectonic energy, it could be related tonetworks with superior values &%y, is robust with respect
peaks in the overall energy emitted by the volcanic systento variations in parameter values. Tests performed on net-
during eruptions or large outpourings of lava. An analysisworks that manifest strong power law properties, but origi-
of the clustering coefficient and of associations with energynating in different choices of parameter values, confirm the
dissipation in the system is the subject of future research. reliability of the method. They show that the same statistical
Overall, the study shows that variations in the values ofpopulation of earthquakes is chosen to participate in these
the exponentg andy are able to reflect the way the relation- networks, i.e., the earthquakes most likely to be interrelated.
ships between earthquakes are changing over time. MinimunThe results indicate that the method is reliable, robust with
absolute values g8 andy in successive temporal windows respect to variations of parameter values, and reflects funda-
can be related to important events in the life of the volcanicmental properties of seismicity.

system and the associated seismicity. The threshold value® i, that identify networks of in-
terrelated events are assessed in the context of all the earth-
5 Conclusions quakes in the class: they are found as those values for

which scale free properties appear and become stronger when
A new type of directed network has been proposed for the assubsequent networks are created using increasing values of
sessment of relationships between earthquakes. The methddin. It can be said that the thresholdy,, is a global pa-
was applied to volcanic seismicity in Hawaii. The nodes of rameter that characterizes the set of earthquakes and its val-
the networks are epicenters of earthquakes; the edges thats are meaningful only inside that set.
link the nodes carry space-time—magnitude weights, and There are also other significant scaling properties that are
have a direction given by the temporal succession of thedetected in the analysis of the classes of networks. Node
events. The generality of the definition of the edge weight,weight distributions also enjoy scaling properties. For each
W, as a combination of a factor in time, a factor in space,class, the dependency of the number of edges on the number
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of nodes is a power law. The distribution of the distances be+elzer, K. R. and Brodsky, E. E.: Decay of aftershock density with
tween events exhibits distinct regimes with scale free prop- distance indicates triggering by dynamic stress, Nature, 441,
erties. Similarly, the distribution of the time intervals be-  735-738, 2006.

tween events is characterized by different domains with scal&ardner, J. K. and Knopoff, L.: Is the sequence of earthquakes in
ing properties. Southern California, with aftershocks removed, Poissonian?, B.

. . . . Seismol. Soc. Am., 64, 1363—-1367, 1974.
It is also shown that the evolution of the relationships Gutenberg, B. and Richter, C. F.: Seismicity of the Earth, Princeton

among earthquakes over Fime can be_studied b_y splitting up University Press, Princeton, 1954.
the network into succegswe e,Vem windows with "’}n, eqlJaIKnopoﬁ, L. and Gardner, J. K.: Higher seismic activity during local
number of nodes. The distributions of node connectivity and  jght on the raw worldwide earthquake catalogue, Geophys. J.
node weight in the emerging sub-networks manifest scaling Roy. Astr. S., 28, 311-313, 1972.
properties that can be used to follow the change of seismictapenna, V., Macchiato, M., Piscitelli, S., and Telesca, L.: Scale
ity over time. The exponentg andy of these distributions invariance properties in seismicity of Southern Apennine Chain
have a similar evolution over the temporal windows. The in-  (ltaly), Pure Appl. Geophys., 157, 589-602, 2000.
creased connectivity in minima gfandy can be associated Lei, X. and Kusunose, K.: Fractal structure and characteristic scale
with sudden, important discharges of energy in the life of the in the distributions of earthquake epicentres, active faults and
volcanic system and accompanying earthquakes. It is shown "Vers in Japan, Geophys. J. Int., 139, 754-762, 1999.
that the exponents of connectivity and weight distributions -6z, S., Livina, V. N., Bunde, A., and Havlin S.: Long-

. . term memory in earthquakes and the distribution of interoccur-
for successive event windows are able to reflect the way the

lati hips b h K h X . rence times, EPL-Europhys. Lett., 89, 69001, H0i1209/0295-
relationships between earthquakes are changing over time. 5075/81/690012008.

Aspects regarding the clustering coefficient, energy dissipay jppiello, E., de Arcangelis, L., and Godano, C.: The role
tion and Optimization Of the Selection Of the temporal Win' of static stress diffusion in the Spatio_temporaj organi_
dows are subject to further research. zation of aftershocks, Phys. Rev. Lett., 103, 038501,
doi:10.1103/PhysRevLett.103.0385@D09.
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