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ABSTRACT

We have developed a multi-dimensional radiation hydrodynamics code to simulate the interaction of radial stellar
pulsation and convection for full-amplitude pulsating models. Convection is computed using large eddy simulations.
Here, we perform three-dimensional (3D) simulations of RR Lyrae stars for comparison with previously reported
2D simulations. We find that the time-dependent behavior of the peak convective flux on pulsation phase is very
similar in both the 2D and 3D calculations. The growth rates of the pulsation in the 2D calculations are about 0.1%
higher than in the 3D calculations. The amplitude of the light curve for a 6500 K RR Lyrae model is essentially the
same for our 2D and 3D calculations, as is the rising light curve. There are differences in the slope at various times

during falling light.
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1. INTRODUCTION

RR Lyrae and classical Cepheid variables have long played
an important role as standard candles in the development of our
understanding of the structure and evolution of our Galaxy and
nearby galaxies. Their importance has led to a long history of
trying to model the pulsation of these variables (e.g., Christy
1964, 1966a; Cox et al. 1966a; Stellingwerf 1975; Bono &
Stellingwerf 1994) with one-dimensional (1D) hydrodynamic
simulations. These were successful in computing a number of
full-amplitude light curves that agreed in some detail with those
observed, at least as long as the models were not chosen too close
to the red edge of the instability strip. It was speculated early on
that convection in the ionization regions for models near the red
edge would be important (Christy 1966b; Cox et al. 1966b), but
neither models in which mixing length convection was frozen
in at static model levels (e.g., Tuggle & Iben 1973) nor models
in which convection instantaneously adjusted to the static flux
for the current state variables (Cox et al. 1966b) predicted a
return to stability at the red edge. This led to the development
of more sophisticated time-dependent mixing length approaches
(e.g., Stellingwerf 1982a, 1982b, 1984a, 1984b, 1984c; Kuhfuss
1986; Xiong 1989) and 1D hydrodynamic simulations using
convective models such as these were able to compute a
red edge (e.g., Bono & Stellingwerf 1994; Gehmeyr 1992a,
1992b, 1993). Further calculations (e.g., Bono et al. 1997a,
1997b; Marconi et al. 2003; Marconi & Degl’Innocenti 2007)
were able to produce full-amplitude light curves of RR Lyrae
variables that somewhat resemble what is observed, although
the agreement between the observed and computed light curves
for low-amplitude RR Lyrae variables near the red edge remains
relatively poor (Marconi & Degl’Innocenti 2007). The general
conclusion appears to be that the treatment of convection
in pulsating stars remains unsatisfactory (e.g., Buchler 2009;
Marconi 2009), as evidenced by the relatively poor agreement
between the observed and computed light curves near the red
edge of the RR Lyrae gap.
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The problems with the local mixing length approach, includ-
ing the necessity of assuming values for free parameters that can
significantly change the solution, led Deupree (1977a) to ap-
proach the problem of the interaction between convection and
radial pulsation in RR Lyrae variables in a different way. He
performed 2D hydrodynamic simulations following the largest
eddy developed in two dimensions by the convective instability
in the hydrogen ionization zone. This allowed him to determine
the red edge location (Deupree 1977b) and to show that the
first overtone red edge was to the blue of the fundamental red
edge (Deupree 1977c¢). The reason for the red edge is that con-
vection essentially allows energy transport out of the hydrogen
ionization region when pulsational instability needs to store it
and stops transporting energy near maximum velocity when it
needs to be released to drive the pulsation. However, he was not
able to compute full-amplitude models because the algorithm
he used to determine the radial flow of his mesh (by forcing the
mesh to move at the horizontal average radial velocity at each
radial mesh point) could not keep the very narrow hydrogen
ionization zone resolved in the mesh for more than about 20 pe-
riods. There have been some other 2D calculations undertaken
recently to study the interaction of convection and pulsation
(Mundprecht et al. 2013; Gastine & Dintrans 2011), but these
have not yet led to a comparison of full-amplitude solutions with
observations.

The problem with the mesh propagation in multi-dimensional
calculations has been successfully solved by Geroux & Deupree
(2011), who devised a radial mesh flow algorithm in which the
mass in a given spherical shell does not vary during the course
of the calculation. This does not mean that the calculation is
Lagrangian; it merely means that there is no net mass flow out
of a spherical shell. This is a comparatively simple version
of techniques where the computational mesh is allowed to
move according to certain rules (e.g., Gehmeyr 1992a; Dorfi &
Feuchtinger 1991; Feuchtinger & Dorfi 1996). The horizontal
motion is determined by the conservation laws and mass can
flow into and out of a spherical shell; there just cannot be any
net mass flow out of the shell. This has allowed the calculation
of full-amplitude pulsation models in 2D (Geroux & Deupree
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Figure 1. Upper 16% by radius of a 2D simulation of a 6300 K effective
temperature RR Lyrae model. Temperature is indicated by the color scale and
the vectors show the direction of the convective flow. Note the relatively narrow,
high-velocity downward convective flow in comparison with the slower moving
wider area upward flow. The white radial lines indicate the horizontal periodic
boundaries of the calculation.

2013). The primary results of these calculations are that the
light curves resemble those produced by 1D codes for models
not close to the red edge, although the amplitudes tend to
be somewhat lower, while models near the red edge agree
much better with the observed light curves than do those of
Marconi & Degl’Innocenti (2007). These 2D calculations did
not produce a red edge, however, because the convective region
wanted to grow into the regions well below the ionization
regions as the models became cooler and the pulsation amplitude
became larger. This significantly changed the structure and
potential energy and thus thermal energy content in regions
of the model just interior to the ionization regions. The thermal
relaxation time of these deeper regions is sufficiently long that
it is impractical to follow the evolution to a full-amplitude
solution corresponding to the newer structure with an explicit
hydrodynamic calculation.

We appreciate that convection is not a 2D phenomenon. The
argument made by Deupree (1977a) and Geroux & Deupree
(2013) is that the time dependence of convection is possibly
more important in determining the pulsation behavior than the
details of the convective flow. This is clearly an assumption
and we are now in a position to examine this by computing 3D
convection and pulsation for comparison with the Geroux &
Deupree (2013) 2D results. The physics and model input in this
paper are the same as for the 2D calculations. The calculations
are made with the OPAL opacities (Iglesias & Rogers 1996) in
conjunction with the low-temperature (Alexander & Ferguson
1994) opacities. Radiation is treated with the diffusion approx-
imation everywhere. The OPAL equation of state (Rogers et al.
1996) is used throughout. Convection is treated as a large eddy
2D or 3D flow simulation depending on the calculation, with a
subgrid scale eddy viscosity approach to mimic the effects of the
small-scale convective flow that cannot be resolved in the mesh.
The equations and more details are given by Geroux & Deupree
(2013). Each calculation in this paper uses 16 processors.

In this paper, we compare 2D and 3D models both during the
pulsational growth for several models and at full amplitude for
one specific calculation. As one can imagine, the 3D calculations
are quite time consuming and it will be a few more months before
all models are complete to full amplitude. In the next section, we
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Figure 2. Upper 16% by radius of an r—6 slice through a 3D simulation of a
6300 K effective temperature RR Lyrae model. Temperature is indicated by the
color scale and vectors show the motion in the r—6 plane. Note that, in contrast
to Figure 1, the downward motion covers a wider area and there is little evidence
of upward flow in this particular plane.
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compare the 2D and 3D convective flow patterns. In Section 3,
we examine how the difference between 2D and 3D convection
affect the radial pulsation growth rates and how the convective
strength depends on pulsation amplitude. In Section 4, we
consider the differences in time-dependent behavior of full-
amplitude pulsation with 2D and 3D convection.

2. CONVECTIVE FLOW PATTERNS

We have performed simulations of RR Lyrae pulsation with
3D convection at effective temperatures of 6200, 6300, 6400,
6500, 6700, and 6900 K. The initial parameters of these
models match their 2D counterparts presented by Geroux &
Deupree (2013): L = 50Lp, M = 0.7Mg, X = 0.7595,
and Z = 0.0005. The difference is that these models have
an extra dimension for fluid flow. Given the highly turbulent
nature of convection in the surface ionization regions of RR
Lyrae stars, the convective motion should be 3D. These 3D
simulations have the same radial and 6-zoning (140 x 20) as the
2D calculations but also have 20 ¢ zones covering 6°, producing
a 3D version of a pie slice subtending 36 deg?. The choice of
6° coverage in each direction comes from relatively short 3D
simulations with angular zoning that subtended total angles from
2° x 2° to 10° x 10° with both 6 and ¢ stepping simultaneously
in increments of 2° between the two extremes. These short
simulations were for a 5700 K effective temperature model
with strong convection and were carried out until convection
had finished growing from machine round-off errors and at
least two additional pulsation cycles had been completed. The
6° x 6° configuration was found to be a good compromise
between the inclusion of multiple convective cells and good
resolution. The 6° simulation was the smallest angular coverage
for which we found more than one distinct convective cell. We
have performed short 3D simulations with the number of 8 and
¢ zones of 5 x5 up to zonings of 40 x 40. Simulations with the
largest number of angular zones had very large computational
requirements and the amount of computational time required to
reach full amplitude would have been prohibitively long. As a
compromise, we chose 20 6 and 20 ¢ zones, zoning that is still
quite computationally demanding (these calculations require
several months). It should be emphasized that the calculation



THE ASTROPHYSICAL JOURNAL, 783:107 (7pp), 2014 March 10

Figure 3. Temperature isosurface (I’ = 10* K) and convective velocity vectors
for points on a horizontal plane above the isosurface. The color of the isosurface
indicates upward convective motion in red and downward convective motion in
blue. This *“snapshot” is taken during radial pulsation contraction for a 6300 K
effective temperature model.
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Figure 4. Similar to Figure 3 except during radial pulsation expansion instead
of radial pulsation contraction. Note that the convective velocities are larger
during contraction than expansion.

time per time step is quite reasonable; however, the number of
time steps required to obtain a full-amplitude solution is large.
We begin by comparing the flow patterns associated with
the convective motion. Figure 1 shows the top 16% by radius
of the 6300 K effective temperature 2D simulation. The color
shows the temperature of the material and the vectors show
the convective velocity. The white lines show the horizontal
periodic boundaries. Figure 2 is similar to Figure 1 but shows
a slice through the comparable 3D simulation. The convective
flow pattern of the 2D simulation at first glance appears similar
to a slice through a comparable 3D simulation. However, there
are some differences in the flow pattern. In particular, the
circular flow pattern clearly visible in the 2D simulation is not
as noticeable in the slice through the 3D simulation. This may
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Figure 5. Similar to Figure 3 except for a model with an effective temperature
of 6700 K during radial pulsation contraction.

Figure 6. Similar to Figure 5 except during radial pulsation expansion instead
of contraction.

be a result of the fact that the extra dimension allows some of
the return flow to take place in a different plane.

While Figure 2 provides information about how the 3D con-
vective flow pattern behaves in the radial and 6 directions, it
is more informative to see the flow pattern in both the hori-
zontal directions. Figures 3 and 4 show the temperature iso-
surface at 10* K spanning the full horizontal extent of the
6300 K effective temperature 3D simulation during the pulsation
compression and expansion phases, respectively. One can see
that the convection truly is 3D in nature. The reduction in con-
vective strength from compression to expansion is clear, with
larger velocity vectors and larger variations in the temperature
isosurface showing stronger convective flows during compres-
sion and smaller velocity vectors and a flatter temperature isosur-
face during expansion. Figures 5 and 6 are the same as Figures 3
and 4, except for the 6700 K effective temperature model. Com-
paring the figures for the 6300 K effective temperature model
with the figures for the 6700 K effective temperature model, it
is clear that the change in convective strength from compression
to expansion is smaller for the hotter model, although convec-
tion remains stronger during contraction than expansion for both
models. It is interesting to note that the convective patterns show
some similarity to the solar granulation pattern, in that they have
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Figure 7. Six-period average of the peak convective flux during a pulsation
period and three-period average of the log of the peak kinetic energy per period
vs. the time since the beginning of the calculation. 2D calculations are denoted
by the dashed curves and 3D calculations are denoted by the solid curves.
Although the effects of convection on the growth rate are small, they become
apparent over many periods. These results are for a 6500 K effective temperature
model.

large, slow-moving, hot up flows, surrounded by fast, narrow,
cool-down flows.

A possible criticism of these calculations is the small angular
extent (6° x 6°) only containing two (T = 6300 K model)
to four (Ter = 6700 K model) convective granules, as well as
the poor resolution (20 x 20 horizontal zones). In an attempt
to help validate that our simulations are getting the large-scale
flows correct, we can compare the granule sizes and the up-
flow filling factor with other 3D simulations of convection in
stars. Recently, work by Magic et al. (2013) has mapped out
granule diameters using high-resolution 3D atmosphere models.
These authors derived a simple relation among the granule
diameter and the two parameters T and log g. Unfortunately,
the T, and logg of our models (around logg = 2.8 and
T.;; = 6000-7000 K) have not been modeled by Magic et al.
The closest effective temperature of their models that bracket
our gravities is 5500 K. Although the authors caution against
extrapolation of their relations, it may still give some indication
of the size one might expect for granules in our simulations.
From Magic et al’s relations, we obtain 10.20 and 10.18 for
log dgran (With dgr,pn in cm) for the largest granules in the 6300 K
and 6700 K effective temperature models, respectively. A simple
way to estimate the diameter of the granule in our simulations
is to divide the horizontal area of our computational domain by
the number of granules and calculate the diameter of the granule
from this area. Doing so results in log dgan of 10.5 and 10.3 for
the 6300 K and 6700 K models, respectively. Our simulations
have granules that are slightly larger than predicted from the
work by Magic et al., but are the same order of magnitude.

We have also explored the filling factor of up flows (the
fraction of the horizontal area with v, — v > 0), fip, and found
that there is a time dependence on the pulsation phase. The filling
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factor was measured at the temperature where the temperature
gradient is the steepest (10* K). When the star is fully expanded
Sfup &~ 0.7, while when the star is fully contracted f,, ~ 0.4.
The time average of the filling factor over four pulsation phases
results in (fyp) =~ 0.6. These values are quite similar for both
the 6300 K and 6700 K models examined. The time-averaged
value of 0.6 is reasonably close to that found by other authors
of about 2/3 (Magic et al. 2013; Stein & Nordlund 1998).
The similarity of the granule sizes and filling factor with those
obtained by higher resolution 3D studies of stellar convection,
covering larger horizontal extents, provides some confidence
that we are calculating the largest scale structures of convection
correctly. Despite this order-of-magnitude agreement, we do not
argue that our horizontal zoning is sufficient for our calculations
to adequately represent the details of turbulent convection.
Given the amount of computer time required for the current
3D calculations, full-amplitude 3D calculations with, say, an
order of magnitude more zones in each horizontal direction are
still some time away.

3.2D AND 3D DEPENDENCE OF PULSATION
GROWTH RATES AND CONVECTION ON
PULSATION AMPLITUDE

Geroux & Deupree (2013) showed that the peak convective
flux for a pulsating model depended on the pulsation amplitude.
Here, we wish to see that this remains true in 3D. Figure 7 shows
how the six-period average of peak convective flux per period
varies with pulsation amplitude. This average is determined in
the following way. First, we find the convective flux for every
zone in a given model and select the largest value. We then
compare this peak convective flux for all models within a given
period and again select the largest value. The six-period average
is then the average of these single-period peak fluxes. The peak
convective flux averaged over the six periods clearly increases
as the peak kinetic energy of the radial pulsation increases.

Figure 7 also shows that the corresponding 3D simulations
have a larger peak maximum convective flux for a given peak
kinetic energy than the 2D simulations. This does have an effect
on the pulsational growth rates. We determine the growth of the
stellar pulsation by using the three-period average of the peak
kinetic energy per period. The three-period average reduces the
variation introduced by the first overtone in these fundamental
mode calculations. Figure 7 indicates that the 3D pulsational
growth rate is less than the 2D growth rate. We have calculated
the growth rates for the 2D and 3D simulations and find that the
2D growth rates are larger than the 3D growth rates by about
0.07%-0.09% per period, with larger differences for cooler
models. This suggests that the relative behavior of convection
in 2D and 3D, in terms of its interaction with pulsation, does not
vary much across the fundamental mode region of the instability
strip. In the calculation of the pulsational kinetic energy, it is
assumed that the pulsation is given by the radial motion of
the coordinate system. Note that this assumption does not affect
the numerical simulation; it only affects our interpretation of the
results. In fact, the pulsational kinetic energy vastly exceeds the
convective kinetic energy so that some error in this assumption
should not alter our conclusions. We note in this regard that all
of our calculations are pulsation-dominated, not convectively
dominated, including those near the red edge. This suggests that
the density stratification does not strongly limit the pulsation,
as found in some cases by Gastine & Dintrans (2011). The 2D
and 3D growth rates are much closer to each other than are the
1D and 2D growth rates given in Geroux & Deupree (2013),
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emphasizing that convection in either its 2D or 3D framework
helps to slow the pulsational growth.

4. FULL-AMPLITUDE, TIME-DEPENDENT BEHAVIOR

We have indicated that the time-dependent behavior of
convection as a function of pulsation phase is generally the same
in 2D and 3D, based on general trends in the convective velocity
and the warping of isothermal surfaces. Here, we wish to
examine the relative strength of convection more quantitatively
in both types of calculations. This is not overly straightforward
because we need a definition of the convective strength that
can account for the differences in the flow patterns in 2D and
3D. This comparison will be made for a 6500 K model at full
amplitude in both 2D and 3D. To proceed, we need to compute
the convective flux for the two cases. There is no explicit
expression for the convective flux in the conservation equations,
only expressions for the total energy advection, the PdV work,
the conversion of the subgrid-scale kinetic energy into heat,
and the radiation terms (see Equation (8) of Geroux & Deupree
2013). Thus, the energy equation includes the energy balance
of the pulsation, radiation, and convection without explicitly
dividing the flow into that associated with pulsation and that
associated with convection. However, we would like to examine
the behavior of the (radial) convective flux, which we will
approximate by

FconVA =cCpp (vr - er) ATa (1)

where v, is the radial velocity of a given zone, v, is the velocity
of the coordinate system, and AT is the difference between the
temperature in the zone from the horizontal average temperature
at that radial zone. Recall that the velocity of the coordinate
system is that required for the mass in the spherical shell to
remain constant throughout the calculation (see the discussion
in Geroux & Deupree 2011).

One possible comparison is between the maximum convective
fluxes anywhere through the computational mesh at a particular
time. Once convection has developed sufficiently, this will be in
adownward-moving column in either 2D or 3D. This maximum
convective flux is merely the maximum value of the flux given in
Equation (1) over all the zones in the calculation. However, one
could argue that the strength of convection should be measured
by the amount of convective energy transport through a spherical
surface. Here, we must add up all the convective fluxes from all
the zones at a given radius, with the individual zone surface
areas taken into account. For convenience, we turn this into a
convective luminosity. A comparison of these two convective
flux-related quantities in 2D and 3D will not necessarily yield
the same result because the fraction of the surface area taken
up by the downward moving material is quite different in the
differing dimensions. Specifically, the 2D extension into 3D
would have the downward convective flows moving in a long
“trench” not shown in the 3D simulations.

We present the results of such a 2D-3D comparison in
Figure 8 for an effective temperature of 6500 K. The top panel
shows the comparison of the 2D and 3D maximum convective
flux and the second panel shows the maximum convective lumi-
nosity computed as described above. The maximum convective
flux is higher in 3D than 2D, while the opposite is true for
the convective luminosity. Clearly, the fraction of the surface
taken up by the large convective flux situated in the down-
ward flow makes the difference. Having said that, we note that
the relative time dependence of either the maximum convec-
tive flux or the convective luminosity is quite similar in 2D and
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phase

Figure 8. From top to bottom: peak convective flux, peak of the ratio of
convective luminosity to total luminosity, peak radial convective velocity,
maximum variation of the horizontal temperature variation from the horizontally
averaged temperature, and surface pulsation velocity for 3D (solid line) and
2D (dashed line) calculations of the 6500 K effective temperature model as
functions of pulsation phase. Peak values are the maximum value of a quantity
throughout the 2D or 3D computational mesh at any given time. Note that these
peak quantities are generally smaller for the 2D calculation than for the 3D
calculation.

3D. The convective energy transport increases markedly dur-
ing the latter phases of pulsational contraction and decreases
during early expansion. As noted by Deupree (1977a) and also
by (Gastine & Dintrans 2011), this is the type of behavior that
leads to a decrease in the pulsational driving by the ionization
zones. This is not to say that this time-dependent behavior is
the sole property affecting pulsational growth or decay. For ex-
ample, Gastine & Dintrans (2011) present an example in which
the static-model density stratification can appreciably affect the
pulsation amplitude. While we do not believe this is an issue
in this particular case because the pulsational kinetic energy is
so much larger than the convective kinetic energy, we have not
done a suite of calculations covering the possible range in the
physical and model properties to determine if any of these affect
the pulsation amplitudes.

The peak convective velocity, shown in the third panel of
Figure 8, appears to be somewhat higher in 3D than 2D.
The largest difference is at maximum convective flux, but the
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Figure 9. Top panel shows the comparison of the 2D and 3D light curves for

the 6500 K model. The bottom panel shows the 3D light curved compared with
observations of V93 in M3 by Cacciari et al. (2005).

velocity differences are not that large. The maximum horizontal
temperature variation also appears to be a little larger in 3D
than 2D at maximum convective flux. The combination of these
two differences are responsible for the increased maximum
convective flux in 3D.

Of course, the crucial test in modeling RR Lyrae stars at full
amplitude is the light curve. In Figure 9, we compare the 2D
light curve with the 3D light curve for the 6500 K full-amplitude
model and the 3D light curve with that of RR Lyrae variable star
VO3 in the globular cluster M3 as observed by Cacciari et al.
(2005). We first note that the amplitude of the light curve and the
rising light segments of all three light curves agree well. The 2D
and 3D light curves differ in the rate of decline from maximum
light and then in the new slope between phases 0.2 and 0.6.
The 2D calculation actually agrees better with the observations
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during declining light, although the 3D slope between phases
0.2 and 0.6 is closer to that of V93 than it is to the 2D slope.
The reasons for these differences are unknown and more 3D
calculations are required to determine the sensitivity of the
light curves to parameters of the model and the zoning. The
completion of the 3D models at other effective temperatures
will indicate whether this is a global problem or confined to this
one model.

5. DISCUSSION

We have computed a number of 3D hydrodynamic models
of RR Lyrae variables, one of which has now reached full
amplitude. The convective flow pattern, of course, is genuinely
3D and thus different from that found in our previous 2D models
(Geroux & Deupree 2013). However, the differences of the
effects between 2D versus 3D convection on pulsation appear
to be comparatively modest. The phase-dependent behavior of
the peak convective flux is quite similar between the 2D and
3D models and the 3D models decrease the pulsational growth
rate by only about 0.1% per period compared with the 2D
models. The comparison between light curves from the 2D and
3D calculations for the one 3D model at full amplitude are
somewhat different during falling light, although the amplitude
of the pulsation and the rising part of the light curve is
quite similar. As full-amplitude 3D calculations are completed,
we should be able to determine how pervasive these differences
are, particularly closer to the red edge. Also, very little has
been done in terms of parameter studies in the 3D calculations.
These remain difficult simply because 3D calculations to full
amplitude require so much time.

The relatively small differences between the 2D and 3D
calculations in terms of the effects of convection on pulsation
should be considered good news. This suggests that the effects of
different masses, luminosities, and compositions can probably
be mapped out in 2D instead of the full 3D. Thus, the time
can be shortened considerably because the 2D calculations take
only days to weeks, whereas the 3D calculations require several
months to reach full amplitude.

The authors gratefully acknowledge the support of ACEnet,
both for providing high-performance computing in Atlantic
Canada and for an ACEnet Research Fellowship to C.M.G. We
also thank ACEnet for the use of the Data Cave in visualizing the
3D calculations. As anyone who has performed significant 3D
simulations knows, visualizing the results is almost as difficult
as the calculations themselves and the Data Cave animations
made this possible. ACEnet is funded by the Canada Foundation
for Innovation and the provincial funding agencies of Nova
Scotia, New Brunswick, and Newfoundland and Labrador.
C.M.G. received partial financial support during writing from a
Consolidated STFC grant (ST/J001627/1).

REFERENCES

Alexander, D. R., & Ferguson, J. W. 1994, ApJ, 437, 879

Bono, G., Caputo, F., Cassisi, S., Incerpi, R., & Marconi, M. 1997a, ApJ,
483,811

Bono, G., Caputo, F,, Castellani, V., & Marconi, M. 1997b, A&AS, 121, 327

Bono, G., & Stellingwerf, R. F. 1994, ApJS, 93, 233

Buchler, J. R. 2009, in AIP Conf. Ser. 1170, Stellar Pulsation: Challenges for
Theory and Observation, ed. J. A. Guzik & P. A. Bradley (Melvile, NY: AIP),
51

Cacciari, C., Corwin, T. M., & Carney, B. W. 2005, AJ, 129, 267

Christy, R. F. 1964, RvMP, 36, 555


http://dx.doi.org/10.1086/175039
http://adsabs.harvard.edu/abs/1994ApJ...437..879A
http://adsabs.harvard.edu/abs/1994ApJ...437..879A
http://dx.doi.org/10.1086/304284
http://adsabs.harvard.edu/abs/1997ApJ...483..811B
http://adsabs.harvard.edu/abs/1997ApJ...483..811B
http://dx.doi.org/10.1051/aas:1997289
http://adsabs.harvard.edu/abs/1997A&AS..121..327B
http://adsabs.harvard.edu/abs/1997A&AS..121..327B
http://dx.doi.org/10.1086/192054
http://adsabs.harvard.edu/abs/1994ApJS...93..233B
http://adsabs.harvard.edu/abs/1994ApJS...93..233B
http://adsabs.harvard.edu/abs/2009AIPC.1170...51B
http://dx.doi.org/10.1086/426325
http://adsabs.harvard.edu/abs/2005AJ....129..267C
http://adsabs.harvard.edu/abs/2005AJ....129..267C
http://dx.doi.org/10.1103/RevModPhys.36.555
http://adsabs.harvard.edu/abs/1964RvMP...36..555C
http://adsabs.harvard.edu/abs/1964RvMP...36..555C

THE ASTROPHYSICAL JOURNAL, 783:107 (7pp), 2014 March 10

Christy, R. F. 1966a, ApJ, 144, 108

Christy, R. F. 1966b, ARA&A, 4, 353

Cox, A. N., Brownlee, R. R., & Eilers, D. D. 1966a, ApJ, 144, 1024

Cox, J. P, Cox, A. N,, Olsen, K. H., King, D. S., & Eilers, D. D. 1966b, ApJ,
144, 1038

Deupree, R. G. 1977a, ApJ, 211, 509

Deupree, R. G. 1977b, AplJ, 214, 502

Deupree, R. G. 1977¢, Apl, 215, 232

Dorfi, E. A., & Feuchtinger, M. U. 1991, A&A, 249, 417

Feuchtinger, M. U., & Dorfi, E. A. 1996, A&A, 306, 837

Gastine, T., & Dintrans, B. 2011, A&A, 528, A6

Gehmeyr, M. 1992a, ApJ, 399, 265

Gehmeyr, M. 1992b, AplJ, 399, 272

Gehmeyr, M. 1993, ApJ, 412, 341

Geroux, C. M., & Deupree, R. G. 2011, ApJ, 731, 18

Geroux, C. M., & Deupree, R. G. 2013, ApJ, 771, 113

Iglesias, C. A., & Rogers, F. J. 1996, ApJ, 464, 943

Kuhfuss, R. 1986, A&A, 160, 116

GEROUX & DEUPREE

Magic, Z., Collet, R., Asplund, M., et al. 2013, A&A, 557, 26

Marconi, M. 2009, in AIP Conf. Ser. 1170, Stellar Pulsation: Challenges for
Theory and Observation, ed. J. A. Guzik & P. A. Bradley (Melvile, NY: AIP),
223

Marconi, M., Caputo, F., Di Criscienzo, M., & Castellani, M. 2003, ApJ,
596, 299

Marconi, M., & Degl’Innocenti, S. 2007, A&A, 474, 557

Mundprecht, E., Muthsam, H. J., & Kupka, F. 2013, MNRAS, 435, 3191

Rogers, F. J., Swenson, F. J., & Iglesias, C. A. 1996, ApJ, 456, 902

Stein, R. F., & Nordlund, A. 1998, ApJ, 499,914

Stellingwerf, R. F. 1975, ApJ, 195, 441

Stellingwerf, R. F. 1982a, ApJ, 262, 330

Stellingwerf, R. F. 1982b, AplJ, 262, 339

Stellingwerf, R. E. 1984a, ApJ, 277, 322

Stellingwerf, R. F. 1984b, ApJ, 277, 327

Stellingwerf, R. F. 1984c, AplJ, 284, 712

Tuggle, R. S., & Iben, 1. J. 1973, ApJ, 186, 593

Xiong, D. 1989, A&A, 209, 126


http://dx.doi.org/10.1086/148593
http://adsabs.harvard.edu/abs/1966ApJ...144..108C
http://adsabs.harvard.edu/abs/1966ApJ...144..108C
http://dx.doi.org/10.1146/annurev.aa.04.090166.002033
http://adsabs.harvard.edu/abs/1966ARA&A...4..353C
http://adsabs.harvard.edu/abs/1966ARA&A...4..353C
http://dx.doi.org/10.1086/148701
http://adsabs.harvard.edu/abs/1966ApJ...144.1024C
http://adsabs.harvard.edu/abs/1966ApJ...144.1024C
http://dx.doi.org/10.1086/148702
http://adsabs.harvard.edu/abs/1966ApJ...144.1038C
http://adsabs.harvard.edu/abs/1966ApJ...144.1038C
http://dx.doi.org/10.1086/154958
http://adsabs.harvard.edu/abs/1977ApJ...211..509D
http://adsabs.harvard.edu/abs/1977ApJ...211..509D
http://dx.doi.org/10.1086/155276
http://adsabs.harvard.edu/abs/1977ApJ...214..502D
http://adsabs.harvard.edu/abs/1977ApJ...214..502D
http://dx.doi.org/10.1086/155352
http://adsabs.harvard.edu/abs/1977ApJ...215..232D
http://adsabs.harvard.edu/abs/1977ApJ...215..232D
http://adsabs.harvard.edu/abs/1991A&A...249..417D
http://adsabs.harvard.edu/abs/1991A&A...249..417D
http://adsabs.harvard.edu/abs/1996A&A...306..837F
http://adsabs.harvard.edu/abs/1996A&A...306..837F
http://dx.doi.org/10.1051/0004-6361/201015631
http://adsabs.harvard.edu/abs/2011A&A...528A...6G
http://adsabs.harvard.edu/abs/2011A&A...528A...6G
http://dx.doi.org/10.1086/171921
http://adsabs.harvard.edu/abs/1992ApJ...399..265G
http://adsabs.harvard.edu/abs/1992ApJ...399..265G
http://dx.doi.org/10.1086/171922
http://adsabs.harvard.edu/abs/1992ApJ...399..272G
http://adsabs.harvard.edu/abs/1992ApJ...399..272G
http://dx.doi.org/10.1086/172924
http://adsabs.harvard.edu/abs/1993ApJ...412..341G
http://adsabs.harvard.edu/abs/1993ApJ...412..341G
http://dx.doi.org/10.1088/0004-637X/731/1/18
http://adsabs.harvard.edu/abs/2011ApJ...731...18G
http://adsabs.harvard.edu/abs/2011ApJ...731...18G
http://dx.doi.org/10.1088/0004-637X/771/2/113
http://adsabs.harvard.edu/abs/2013ApJ...771..113G
http://adsabs.harvard.edu/abs/2013ApJ...771..113G
http://dx.doi.org/10.1086/177381
http://adsabs.harvard.edu/abs/1996ApJ...464..943I
http://adsabs.harvard.edu/abs/1996ApJ...464..943I
http://adsabs.harvard.edu/abs/1986A&A...160..116K
http://adsabs.harvard.edu/abs/1986A&A...160..116K
http://dx.doi.org/10.1051/0004-6361/201321274
http://adsabs.harvard.edu/abs/2013A&A...557A..26M
http://adsabs.harvard.edu/abs/2013A&A...557A..26M
http://adsabs.harvard.edu/abs/2009AIPC.1170..223M
http://dx.doi.org/10.1086/377641
http://adsabs.harvard.edu/abs/2003ApJ...596..299M
http://adsabs.harvard.edu/abs/2003ApJ...596..299M
http://dx.doi.org/10.1051/0004-6361:20065840
http://adsabs.harvard.edu/abs/2007A&A...474..557M
http://adsabs.harvard.edu/abs/2007A&A...474..557M
http://dx.doi.org/10.1093/mnras/stt1511
http://adsabs.harvard.edu/abs/2013MNRAS.435.3191M
http://adsabs.harvard.edu/abs/2013MNRAS.435.3191M
http://dx.doi.org/10.1086/176705
http://adsabs.harvard.edu/abs/1996ApJ...456..902R
http://adsabs.harvard.edu/abs/1996ApJ...456..902R
http://dx.doi.org/10.1086/305678
http://adsabs.harvard.edu/abs/1998ApJ...499..914S
http://adsabs.harvard.edu/abs/1998ApJ...499..914S
http://dx.doi.org/10.1086/153343
http://adsabs.harvard.edu/abs/1975ApJ...195..441S
http://adsabs.harvard.edu/abs/1975ApJ...195..441S
http://dx.doi.org/10.1086/160425
http://adsabs.harvard.edu/abs/1982ApJ...262..330S
http://adsabs.harvard.edu/abs/1982ApJ...262..330S
http://dx.doi.org/10.1086/160426
http://adsabs.harvard.edu/abs/1982ApJ...262..339S
http://adsabs.harvard.edu/abs/1982ApJ...262..339S
http://dx.doi.org/10.1086/161698
http://adsabs.harvard.edu/abs/1984ApJ...277..322S
http://adsabs.harvard.edu/abs/1984ApJ...277..322S
http://dx.doi.org/10.1086/161699
http://adsabs.harvard.edu/abs/1984ApJ...277..327S
http://adsabs.harvard.edu/abs/1984ApJ...277..327S
http://dx.doi.org/10.1086/162454
http://adsabs.harvard.edu/abs/1984ApJ...284..712S
http://adsabs.harvard.edu/abs/1984ApJ...284..712S
http://dx.doi.org/10.1086/152524
http://adsabs.harvard.edu/abs/1973ApJ...186..593T
http://adsabs.harvard.edu/abs/1973ApJ...186..593T
http://adsabs.harvard.edu/abs/1989A&A...209..126X
http://adsabs.harvard.edu/abs/1989A&A...209..126X

	1. INTRODUCTION
	2. CONVECTIVE FLOW PATTERNS
	3. 2D AND 3D DEPENDENCE OF PULSATION GROWTH RATES AND CONVECTION ON PULSATION AMPLITUDE
	4. FULL-AMPLITUDE, TIME-DEPENDENT BEHAVIOR
	5. DISCUSSION
	REFERENCES

