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Low-molecular-weight glutenin subunits (LMW-GS) are of great importance in processing quality and participate in the formation
of polymers in wheat. In this study, eight new LMW-GS alleles were isolated from Chinese wheat landraces (Triticum aestivum
L.) and designated as Glu-A3-1a, Glu-A3-1b, Glu-B3-1a, Glu-B3-1b, Glu-B3-1c, Glu-D3-1a, Glu-D3-1b, and Glu-D3-1c, which were
located at the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. Based on the proteins encoded, the number of deduced amino acids
of Glu-B3 alleles was approximately 50 more than those of Glu-A3 and Glu-D3 alleles. The first cysteine of Glu-A3 and Glu-D3
alleles was located at the N-terminal domain, while that of Glu-B3 alleles was found in the repetitive domain, which may lead to
the different functioning in forming disulfide bonds. All the eight genes were LMW-m types and the new allele of Glu-B3-1a which
had nine cysteine residues may be the desirable LMW-GS gene for improving bread-making quality.

1. Introduction

Wheat dough possesses unique viscoelastic properties deter-
mined by the structure and interaction of storage proteins
in making bread and noodles [1]. Wheat storage proteins
are mainly composed of monomeric gliadins and poly-
meric glutenins [2, 3], and these glutenins are divided
into the low-molecular-weight glutenin subunits (LMW-GS)
and the high-molecular-weight glutenin subunits (HMW-
GS) according to their electrophoretic mobility in sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) [4].TheHMW-GS have been recognized as the major
determinants of dough and gluten properties [5], but LMW-
GS also play an important role in determining wheat dough’s
viscoelastic properties [6].

The LMW-GS genes are encoded by Glu-A3, Glu-B3, and
Glu-D3 loci on the short arms of chromosomes 1A, 1B, and
1D, respectively, in hexaploid wheat [7]. Allelic variation in
LMW-GS is generally accepted to have an important effect

on wheat processing quality [8]. Glu-A3a, Glu-B3d, and Glu-
D3a have a better effect on dough strength than other alleles
at the Glu-3 loci. The effects of Glu-A3d, Glu-B3i, Glu-A3d,
and Glu-B3d contribute most to dough extensibility and
Zeleny sedimentation volume, while Glu-D3 loci do not have
a significant effect on either [9]. According to He et al. [10],
noodle quality is decided by the protein subunits of Glu-A3d
and Glu-B3d, and Glu-A3d is significantly more important
in this process than other alleles. Si et al. [11] reported that
Glu-B3b, Glu-B3g, and Glu-B3h significantly heightened the
SDS sedimentation volume,whileGlu-B3a,Glu-B3c, andGlu-
B3j significantly lowered the SDS sedimentation volume. So
far, no consistent conclusion has been reached regarding the
influence of LMW-GS allelic variation on wheat processing
quality, perhaps due to the different materials used, and the
interaction between genotypes and the environment.

Although themobility of many LMW-GS subunits is very
similar and sometimes overlapped with each other in SDS-
PAGE, a lot of researches have recently been conducted on
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Table 1: Comparison of nucleotide sequences of the eight cloned genes.

LMW-GS genes Upstream CDS Total length Deduced
amino acids

Putative transcription binding sites in the
upstream region

Glu-A3-1a 195 bp 894 bp 1089 bp 298 CAAT-box, TATA-box, ARE, and MRE
Glu-A3-1b 195 bp 894 bp 1089 bp 298 CAAT-box, TATA-box, ARE, and MRE

Glu-B3-1a 317 bp 1053 bp 1370 bp 351 CAAT-box, TATA-box, and
Prolamin-box

Glu-B3-1b 317 bp 1044 bp 1361 bp 348 CAAT-box, TATA-box, and
Prolamin-box

Glu-B3-1c 317 bp 1050 bp 1367 bp 350 CAAT-box, TATA-box, and
Prolamin-box

Glu-D3-1a 593 bp 921 bp 1591 bp 307 CAAT-box, TATA-box, and
Prolamin-box

Glu-D3-1b 605 bp 921 bp 1603 bp 307 CAAT-box, TATA-box, and
Prolamin-box

Glu-D3-1c 605 bp 912 bp 1594 bp 306 CAAT-box, TATA-box, and
Prolamin-box

LMW-GS genes by allelic-specific polymerase chain reaction
(PCR) in common wheat and related species [12–14], which
lead to a better understanding of the function, structure, and
diversity of LMW-GS.

The landraces possess many useful traits that have been
lost in modern cultivars. The phenological, morphological,
physiological, and quality traits in landraces are genetically
diverse [15]. Although more than 15 LMW-GS genes have
been found so far inwheat [16], further studies of the diversity
of these LMW-GS genes and cloning of new and rare alleles
are interesting and challenging. In this study, we isolated
and characterized eight new alleles located at Glu-A3, Glu-
B3, and Glu-D3 loci from landraces for which no LMW-GS
genes have been previously detected by the corresponding
molecular markers [17–19].

2. Materials and Methods

2.1. Plant Materials. The landraces Jiangdongmen, Daq-
ingmang, Hongjinbaoyin, Dabaimai, Hongmangzi, Hong-
dougou, and Baimangmai used in this study were kindly
provided by the National Gene Bank of China, Institute
of Crop Science, CAAS, China. In our previous research,
none of the LMW-GS genes were detected in the varieties
Daqingmang and Hongjinbaoyin using the PCR markers for
Glu-A3 [17] alleles, the Glu-B3 [18] alleles from the varieties
Hongdougou, Dabaimai, and Hongmangzi, or the Glu-D3
[19] alleles from the varieties Jiangdongmen, Daqingmang,
and Baimangmai. To determine whether the genes at the
Glu-A3, Glu-B3, and Glu-D3 loci corresponding to the above
varieties are missing or whether it is a novel gene, we
used locus-specific primers to amplify the LMW-GS genes
specifically for the Glu-A3, Glu-B3, and Glu-D3 loci.

2.2. Genomic DNA Extraction and PCR Amplification.
Genomic DNA was isolated from single dry seeds
according to the procedure of SDS-phenol-chloroform
with minor modification. Six locus-specific primer sets,

Glua3f1/Glua3r2 (R: GTACGCTTTTGTAGCTTGTGC, F:
GATGCCAACGCCTAATGGCACAC) [17], 5/7 (R: TCCT-
GAGAAGTGCATGACATG, F: GTAGGCACCAACTCCG-
GTGC) [20], and 3/4 (R: TTGTAGAAACTGCCATCCTT,
F: GTCACCGCTGCATCGACATA) [20], were used
for amplifying LMW-GS genes at the Glu-A3 locus
on chromosome 1A and the Glu-B3 and Glu-D3 loci
on chromosomes 1B and 1D, respectively. The locus-
specific primers were synthesized by Shanghai Sangon
Biological Engineering & Technology and Service
Ltd. (http://www.sangon.com/). PCR amplification was
performed using Ex Taq DNA polymerase (0.5U, TaKaRa,
Shiga, Japan) in 10 𝜇L of 1x PCR buffer (comprising 2mM
MgCl

2
; TaKaRa) containing 50 ng genomic DNA, 0.1mM

dNTP, and 20𝜇M of each primer. The PCR conditions were
94∘C for 5min followed by 38 cycles at 94∘C for 1min (or 35 s
for primer pair 3/4 at 52∘C, 5/7 at 54∘C, and Glua3f1/Glua3r2
at 59∘C), followed by 72∘C for 90 s and a final extension at
72∘C for 10min.

2.3. DNA Cloning and Sequencing of LMW-GS Genes. The
PCR products were separated using 1.2% agarose gels and the
expected fragments were isolated from the gels using an Easy-
Pure Quick Gel Extraction Kit (TransGen, Beijing, China).
The isolated PCR products were cloned into the pMD18-
T Simple Vector (TaKaRa) and transformed into E. coli
Competent Cells DH5𝛼 (TaKaRa).The positive colonies were
verified using M13 universal primers, and the selected clones
were sequenced by Shanghai Sangon Biological Engineering
& Technology and Service Ltd. Each PCR and sequencing
analysis was repeated at least three times to avoid technical
errors.

2.4. Accession Numbers. The LMW-GS gene sequences iden-
tified from Jiangdongmen, Daqingmang, Hongjinbaoyin,
Dabaimai, Hongmangzi, Hongdougou, and Baimangmai
were deposited in GenBank under accession numbers
KF020658–KF020665. KF020658 and KF020659 were cloned
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Table 2: Sequence identities of the eight new LMW-GS alleles to the previously reported Glu-3 genes.

LMW-GS alleles Glu-A3 gene accession number Glu-B3 gene accession number Glu-D3 gene accession number
FJ549946 FJ549937 FJ549938 DQ630441 EU369729 EU369730 DQ357054 DQ357055 EU189094

Glu-A3-1a 93 92 92 84 84 84 87 87 87
Glu-A3-1b 93 92 91 83 83 83 86 86 87
Glu-B3-1a 85 85 85 95 84 84 83 83 83
Glu-B3-1b N 85 86 99 85 85 84 84 85
Glu-B3-1c N 85 86 99 85 85 83 83 84
Glu-D3-1a 87 88 88 88 85 85 95 95 94
Glu-D3-1b 86 87 87 83 82 82 99 99 99
Glu-D3-1c 87 87 87 84 82 82 99 99 99
Note: N means that no highly similar sequences were found using BLAST tools.

using Glu-A3 locus-specific primers from Daqingmang
and Hongjinbaoyin, designated as Glu-A3-1a and Glu-A3-
1b, respectively. The sequences KF020660–KF020662 were
cloned using Glu-B3 locus-specific primers from Hong-
dougou, Dabaimai, and Hongmangzi, designated as Glu-B3-
1a, Glu-B3-1b, and Glu-B3-1c, respectively, and KF020663–
KF020665 were cloned using Glu-D3 locus-specific primers
from Jiangdongmen, Daqingmang, and Baimangmai, desig-
nated as Glu-D3-1a, Glu-D3-1b, and Glu-D3-1c, respectively.

2.5. LMW-GS Gene Analysis. Sequence analysis and
characterization were performed using DNAMAN
software (http://www.lynnon.com/), BLAST tools at NCBI
(http://blast.ncbi.nlm.nih.gov/Blast.cgi/), and the PlantCare
database (http://bioinformatics.psb.ugent.be/webtools/plan-
tcare/html/). The nomenclature of the LMW-GS genes
followed the “Catalogue of Gene Symbols for Wheat” at
http://wheat.pw.usda.gov/ggpages/wgc/98//.

3. Results and Discussion

3.1. Basic Characteristics of the LMW-GS Alleles Identified
in This Study. Eight novel LMW-GS alleles with
no intron were obtained in this study (see Figure
S1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2014/371045/). Their sequences
were submitted to GenBank with the accession numbers
KF020658–KF020665 and designated as Glu-A3-1a, Glu-
A3-1b, Glu-B3-1a, Glu-B3-1b, Glu-B3-1c, Glu-D3-1a, Glu-
D3-1b, and Glu-D3-1c, following the nomenclature rules
at http://wheat.pw.usda.gov/ggpages/wgc/98//. Glu-A3-1a
and Glu-A3-1b had the same size of 1089 bp and could be
translated into 298 amino acids. The nucleotide and deduced
amino acid sequences of the other six genes were varied with
1361–1603 bp and 306–351 residues (Table 1). The upstream
nucleotide sequences of the cloned genes were searched
for in the PlantCare database to analyze the characteristics
of the promoter sequences. The eight genes all contained
CAAT-boxes and TATA-boxes. Glu-B3-1a, Glu-B3-1b, Glu-
B3-1c, Glu-D3-1a, Glu-D3-1b, and Glu-D3-1c contained a
Prolamin-box in the upstream sequence (Table 1). All eight
genes from landraces in our study belonged to the LMW-m

type since their first amino acid at the N-terminal was
methionine.

3.2. Nucleotide Comparison Analysis of the LMW-GS Alleles
within the Glu-3 Loci. To more accurately compare the
differences between LMW-GS genes at theGlu-3 loci, we used
BLAST tools to find the sequences most similar to the eight
genes obtained in this study. Nine Glu-3 genes deposited in
GenBank were selected for multiple sequence alignment and
included FJ549937, FJ549938, and FJ549946 located at the
Glu-A3 locus; EU369729, EU369730, and DQ630441 at the
Glu-B3 locus; and DQ357054, DQ357055, and EU189094 at
the Glu-D3 locus. Based on the results of these alignments
(Table 2), of the eight genes isolated in this study, Glu-A3-
1a, and Glu-A3-1b were found to be new alleles at the Glu-A3
locus; Glu-B3-1a, Glu-B3-1b, and Glu-B3-1c were new alleles
at the Glu-B3 locus; and Glu-D3-1a, Glu-D3-1b, and Glu-D3-
1c were new alleles at the Glu-D3 locus.

3.3. Deduced Proteins Comparison Analysis of the LMW-
GS Alleles within the Glu-3 Loci. The deduced amino acid
sequences of the eight genes comprised four structural
regions, including a signal peptide of 20 amino acids, a
conserved N-terminal region of 13 amino acids, a diverse
repetitive domain, and a C-terminal domain, suggesting
that the eight genes conformed to the typical molecular
characteristics of LMW-GS (Supplementary Material, Figure
S2). We compared the alleles within the Glu-3 loci and found
that isoleucine was at the sixth position of the signal peptide
in the allele located at Glu-B3 locus, while valine was at the
Glu-A3 and Glu-D3 loci (Table 3), which might result from
the substitution of ATC for GTC (Supplementary Material,
Figure S1).The eleventh position of theN-terminal at theGlu-
A3 and Glu-D3 loci was arginine, while lysine filled the same
position at theGlu-B3 locus (Table 3), whichmay be the result
of an AGA → AAA transversion (Supplementary Material,
Figure S1).

Eight cysteine residues were found in Glu-A3-1a, Glu-A3-
1b, Glu-B3-1b, Glu-B3-1c, Glu-D3-1a, Glu-D3-1b, and Glu-D3-
1c, while Glu-B3-1a had nine. By comparing the Glu-3 loci
alleles, the locations of the first and seventh cysteine were
found to be varied. As shown in Figure S2 (Supplementary
Material) and Table 3, the first cysteine of the Glu-A3 and
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Table 3: Comparison of the deduced amino acid sequences for genes isolated in this study and data from GenBank.

Sig. N-ter. Rep. C-ter.

Glu-A3

FJ549937 V C R C C C CC C C
FJ549938 V C R C C C CC C C
FJ549946 V C R C C C CC C C
Glu-A3-1a V C R C C C CC C C
Glu-A3-1b V C R C C C CC C C

Glu-B3

EU369729 I K C C C C CC C C
EU369730 I K C C C C CC C C
DQ630441 I K C C C C CC C C
Glu-B3-1a I K C C C C CC C C C
Glu-B3-1b I K C C C C CC C C
Glu-B3-1c I K C C C C CC C C

Glu-D3

DQ357054 V C R C C C CC C C
DQ357055 V C R C C C CC C C
EU189094 V C R C C C CC C C
Glu-D3-1a V C R C C C CC C C
Glu-D3-1b V C R C C C CC C C
Glu-D3-1c V C R C C C CC C C

The accession numbers are as follows: FJ549937, FJ549938, and FJ549946 are genes at the Glu-A3 locus; EU369729, EU369730, and DQ630441 are genes at the
Glu-B3 locus; and DQ357054, DQ357055, and EU189094 are genes at Glu-D3 locus. I, V, R, K, and C represent isoleucine, valine, arginine, lysine, and cysteine,
respectively.

Glu-D3 alleles was located at the fifth position of the N-
terminal domain, whereas the first cysteine of the Glu-B3
alleles was found at the 46th position of the deduced amino
acid sequences in the repetitive domain.The seventh cysteine
at the Glu-D3 alleles was located 16 amino acids higher up
than that at the Glu-A3 and Glu-B3 alleles. In particular,
the extra cysteine of allele Glu-B3-1a was found at the 321st
position of the amino acid sequence.

Usually the first and seventh cysteine residues partic-
ipate in forming the intermolecular disulfide bond, while
the remaining residues participate in the formation of
intramolecular disulfide bonds [21]. Disulfide bonds have
an important influence on determining the properties and
structure of wheat gluten proteins [22]. The first cysteine at
the Glu-B3 allele was in the repetitive domain, however, the
first cysteine at Glu-A3 and Glu-D3 alleles were in the N-
terminal. The positions of the seventh cysteine residue at the
Glu-D3 alleles were also different from theGlu-A3 andGlu-B3
alleles.The LMW-GS gene, which had nine cysteine residues,
resulted in desirable processing quality [20]; therefore, the
new allele of Glu-B3-1a may be the desirable LMW-GS
gene for improving bread-making quality because the extra
cysteine residue could form more disulfide bonds than other
alleles during the development of glutenin macropolymer.

Insertions/deletions often appeared within the repetitive
domain. The length variation of the LMW-GS genes was
mainly due to the numbers of repeat motifs, which ranged
from 12 to 25 in the repetitive domain. The repeat motif
is shown in Table 4. Two long insertions were present in
the Glu-B3 sequences, that is, 18 amino acid insertions at
positions 44–61 and eight amino acid insertions at positions
81–88.The repetitive regionwas composed of a representative
repeat motif P

1-2FP/SQ2–6, of which the number would have

an impact on changes in the length of the protein [23].
The length of the diverse repetitive domain of Glu-B3 alleles
was longer than those of Glu-A3 and Glu-D3 alleles since
more insertions occurred in this domain. Masci et al. [24]
indicated that a 42K LMW-GSwould have a good processing
quality due to its large repeat domain. The repeat domain
through intermolecular interactions between large numbers
of glutamine side chains, which are both good hydrogen bond
donors and acceptors, may prove useful in increasing the
viscosity and elasticity of wheat dough [24]. More repeat
motifs in the repetitive domain would lead to a better flour
quality [25]. Based on Figure S2 (Supplementary Material),
the sequences at the Glu-B3 locus had 50 more deduced
amino acids than those atGlu-A3 andGlu-D3 loci.Therefore,
genes at theGlu-B3 locus are more desirable than those at the
Glu-A3 and Glu-D3 loci.

4. Conclusion

This study showed that, of the eight new Glu-3 alleles added
to the LMW-GS gene family, Glu-B3-1a had nine cysteine
residues and the others had eight. The first cysteine of Glu-
A3 and Glu-D3 alleles was found in the N-terminal domain,
while it was located at the repetitive domain ofGlu-B3 alleles.
The LMW-GS allele of Glu-B3-1a can be used as candidate
gene for improving bread-making quality because it can form
more disulfide bonds.
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