Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tricarbonyl[*N*,*N*',*N*"-tris(2,6-diisopropylphenyl)guanidine]molybdenum(0)

René T. Boeré^a* and Jason D. Masuda^b

^aDepartment of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4, and ^bThe Maritime Centre for Green Chemistry and the Department of Chemistry, Saint Mary's University, Halifax, NS, Canada B3H 3C3 Correspondence e-mail: boere@uleth.ca

Received 29 May 2011; accepted 3 June 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.115; data-to-parameter ratio = 19.0.

In the title compound, $[Mo(C_{37}H_{53}N_3)(CO)_3]$, the Mo atom to ring-centroid distance in the η^6 -coordinated tricarbonylmolybdenum group is 1.958 (1) Å. The three C=O groups are pseudo-octahedrally disposed with C-Mo-C angles ranging from 80.7 (1) to 87.4 (1)°. The two uncoordinated 2,6diisopropylphenyl-substituted benzene rings form dihedral angles of 75.96 (8) and 78.01 (9)° with the mean plane of the guanidine group. The coordinated benzene ring is in a slight sofa conformation with the *N*-substituted C atom and the bonded N atom dispaced by 0.090 (3) and 0.458 (4) Å, respectively, from the mean plane of the remaining ring atoms. In the crystal, despite there being two N-H donor groups, no conventional hydrogen bonds are present. This may be because of the steric effects of the bulky diisopropylphenyl groups.

Related literature

For the structure of the parent guanidine ligand, see: Boeré, Boeré *et al.* (2000). For a series of related guanidines with varying conformational isomers, see: Gopi *et al.* (2010). For applications of this same ligand with cobalt(II) for catalysis, see: Eichman *et al.* (2011). For the use of a closely related ligand synthesized in an analogous manner, see: Brazeau *et al.* (2011). For a comprehensive review of the coordination chemistry of neutral guanidines, see: Coles (2006). For related amidine complexes in which Mo(CO)₃ is coordinated in a very similar manner, see; Boeré, Klassen & Wolmershäuser (1998, 2000). For thermal motion of carbonyl group oxygen atoms, see: Braga & Koetzle (1988)

Experimental

Crystal data

$$\begin{split} & [\text{Mo}(\text{C}_{37}\text{H}_{53}\text{N}_3)(\text{CO})_3] \\ & M_r = 719.79 \\ & \text{Triclinic, } P\overline{1} \\ & a = 10.6525 (12) \text{ Å} \\ & b = 11.7642 (14) \text{ Å} \\ & c = 16.5482 (19) \text{ Å} \\ & \alpha = 89.128 (1)^{\circ} \\ & \beta = 78.713 (1)^{\circ} \end{split}$$

Data collection

```
Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
T_{min} = 0.705, T_{max} = 0.746
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	
$wR(F^2) = 0.115$	
S = 1.05	
8399 reflections	
442 parameters	
2 restraints	

Mo $K\alpha$ radiation $\mu = 0.39 \text{ mm}^{-1}$ T = 173 K $0.29 \times 0.12 \times 0.11 \text{ mm}$

 $\gamma = 67.240 \ (1)^{\circ}$ V = 1871.1 (4) Å³

Z = 2

27034 measured reflections 8399 independent reflections 6634 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.042$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 1.12 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.59 \text{ e } \text{\AA}^{-3}$

Table 1

Comparison of interatomic distances and angles (Å, $^\circ)$ of (I) with free guanidine, (II).

	C1-N1	C1-N2	C1-N3	N1-C1-N2	N2-C1-N3	N3-C1-N1
(I)	1.287 (3)	1.361 (3)	1.374 (3)	125.0 (2)	115.57 (19)	119.42 (19)
(II)	1.316 (2)	1.348 (2)	1.357 (2)	121.99 (13)	118.47 (14)	119.52 (13)

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT-Plus* (Bruker, 2006); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged for a Discovery Grant. The diffractometer was purchased with the help of NSERC and the University of Lethbridge.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5261).

References

- Boeré, R. E., Boeré, R. T., Masuda, J. & Wolmershäuser, G. (2000). Can. J. Chem. 78, 1613–1619.
- Boeré, R. T., Klassen, V. & Wolmershäuser, G. (1998). J. Chem. Soc. Dalton Trans. pp. 4147-4154.
- Boeré, R. T., Klassen, V. & Wolmershäuser, G. (2000). Can. J. Chem. 78, 583–589.
- Braga, D. & Koetzle, T. F. (1988). Acta Cryst. B44, 151-156.
- Brazeau, A., Nikouline, A. S. & Ragogna, P. J. (2011). Chem. Commun. 47, 4817–4819.
- Bruker (2006). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Coles, M. P. (2006). Dalton Trans. pp. 985-1001.
- Eichman, C. C., Bragdon, J. P. & Stambuli, J. P. (2011). Synlett, pp. 1109–1112.
- Gopi, K., Rathi, B. & Thirupathi, N. (2010). J. Chem. Sci. 122, 157-167.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2011). E67, m895-m896 [doi:10.1107/S1600536811021441]

Tricarbonyl[N,N',N''-tris(2,6-diisopropylphenyl)guanidine]molybdenum(0)

R. T. Boeré and J. D. Masuda

Comment

The molecular stucture of the title compound, (I), is shown in Figure 1. The X-ray crystal structure of *N*,*N*,*N*"-tris(2,6-diisopropylphenyl)guanidine (II) was reported by Boeré, Boeré *et al.* (2000) with the three aryl groups in the same *syn-anti* conformation (Gopi *et al.*, 2010) as found in compound (I). Table 1 presents the selected geometric data for compounds (I) and (II). Coles (2006) has comprehensively reviewed the application of neutral amidines and guanidines as coordination ligands. Recently, a cobalt(II) complex of the title ligand has been used as a catalyst in the synthesis of polysubstituted arenes *via* the regioselective cyclotrimerization of alkynes (Eichman *et al.*, 2011). Also, deprotonated *N*,*N*',*N*"-aryl guandines have been reported to stabilize low-coordinate As(III) cations (Brazeau *et al.*, 2011).

The title compound has an η^6 -coordinated tricarbonylmolybdenum group with a Mo to ring-centroid distance of 1.958 (1)Å. The three C=O groups are pseudooctahedraly disposed with C-Mo-C angles ranging from 80.7 (1) to 87.4 (1)°. The three 2,6-diisopropylphenyl rings have normals that are disposed at 79.78 (8)° (C3-C7), 75.96 (8)° (C14-C19) and 78.01 (9)° (C26-C31) to the guanidine plane defined by C1, N1-N3. The ring coordinated by Mo(CO)₃ is bent back from the core such that C2 is located 0.090 (3) and N1 0.458 (4)Å from the plane defined by C3-C7. In the crystal, despite there being two N—H donor groups, no conventional hydrogen bonds are present. This is possibly due to the steric effects of the bulky diisopropylphenyl groups. The orientation of the Mo(CO)₃ unit and its geometric parameters are found to be very similar in compound (I) and in closely comparable tricarbonylmolybdenum complexes of structurally similar amidines (Boeré, Klassen & Wolmershäuser, 1998, 2000). The observed outward bending of the coordinated aryl ring suggests that some steric effects operate between the amidine/guanidine groups and the Mo(CO)₃ units.

Experimental

The compound was prepared by a thermal reaction between the neural guanidine ligand and $Mo(CO)_6$ as described in Boeré, Boeré *et al.* (2000). Full characterization by elemental analysis, NMR, mass spectrometry and infra-red spectroscopy are provided there.

Refinement

Hydrogen atoms attached to carbon were refined using a riding model with temperature factors of 1.2 (CH) or 1.5 (CH₃) \times the equivalent isotropic values of the attached atoms. H2 and H3 attached to nitrogen were positionally refined using distance restraints of 0.88 Å and temperature factors 1.2 \times the equivalent isotropic values of N2 and N3. Two reflections have unusually large deviations from the weighted errors of their intensities; no obvious cause could be determined for this effect. The isopropyl methyl groups are found to librate more than other carbon atoms but this effect is commonly observed in 2,6-diisopropylphenyl compounds. A rotational disorder model for isopropyl groups was judged to be unwarranted. Similarly, the carbonyl group oxygen atoms display considerable thermal motion, but this is also a well known behaviour, see Braga & Koetzle (1988).

Figures

Fig. 1. The molecular structure of (I) shown with 30% probability ellipsoids. H atoms bonded to C atoms are not shown.

Tricarbonyl[*N*,*N*',*N*''-tris(2,6- diisopropylphenyl)guanidine]molybdenum(0)

Crystal data

[Mo(C ₃₇ H ₅₃ N ₃)(CO) ₃]	Z = 2
$M_r = 719.79$	F(000) = 760
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.278 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Melting point: 483 K
a = 10.6525 (12) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 11.7642 (14) Å	Cell parameters from 8978 reflections
c = 16.5482 (19) Å	$\theta = 2.2 - 26.7^{\circ}$
$\alpha = 89.128 (1)^{\circ}$	$\mu = 0.39 \text{ mm}^{-1}$
$\beta = 78.713 \ (1)^{\circ}$	T = 173 K
$\gamma = 67.240 \ (1)^{\circ}$	Block, yellow
$V = 1871.1 (4) \text{ Å}^3$	$0.29 \times 0.12 \times 0.11 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer	8399 independent reflections
Radiation source: X-ray	6634 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.042$
Detector resolution: 0.015 pixels mm ⁻¹	$\theta_{\text{max}} = 27.4^\circ, \ \theta_{\text{min}} = 1.9^\circ$
ϕ and ω scans	$h = -13 \rightarrow 13$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2006)	$k = -15 \rightarrow 15$
$T_{\min} = 0.705, T_{\max} = 0.746$	$l = -21 \rightarrow 21$
27034 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.115$	H atoms treated by a mixture of independent and constrained refinement

<i>S</i> = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0637P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
8399 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
442 parameters	$\Delta \rho_{\text{max}} = 1.12 \text{ e } \text{\AA}^{-3}$
2 restraints	$\Delta \rho_{\rm min} = -0.59 \text{ e } \text{\AA}^{-3}$
0 constraints	

Special details

Experimental. A crystal coated in Paratone (TM) oil was mounted on the end of a thin glass capillary and cooled in the gas stream of the diffractometer Kryoflex low temperature device.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. In the final cycle of LS refinement an unusually large residual peak of 1.13 e⁻/A³ was located about midway between carbonyl C1C and C2C. Though this might indicated positional disorder of the tripodal (CO)₃ group, no similar peaks were found between the remaining C1C - C3C and C3C - C2C carbonyl groups. Finally, the model includes two NH groups that are potential H-bond donors. However H-bonding is not observed, probably due to steric constraints.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Mo	0.71984 (2)	0.914384 (19)	0.598865 (13)	0.03364 (9)
O1C	0.6521 (2)	1.06506 (19)	0.76505 (13)	0.0555 (6)
O2C	0.6473 (3)	1.1793 (2)	0.54066 (17)	0.0972 (11)
O3C	0.4025 (2)	0.9815 (3)	0.61834 (16)	0.0787 (8)
C1C	0.6772 (3)	1.0059 (2)	0.70321 (17)	0.0374 (6)
C2C	0.6744 (4)	1.0793 (3)	0.56057 (19)	0.0597 (10)
C3C	0.5213 (3)	0.9546 (3)	0.61212 (18)	0.0513 (8)
N1	0.91757 (19)	0.62265 (16)	0.68815 (11)	0.0214 (4)
N2	0.7736 (2)	0.76440 (17)	0.79907 (12)	0.0216 (4)
H2	0.743 (2)	0.812 (2)	0.7652 (13)	0.026*
N3	0.9044 (2)	0.56192 (16)	0.82112 (11)	0.0214 (4)
H3	0.852 (2)	0.580 (2)	0.8656 (12)	0.026*
C1	0.8647 (2)	0.65043 (19)	0.76564 (13)	0.0184 (4)
C2	0.8854 (2)	0.7025 (2)	0.62515 (13)	0.0227 (5)
C3	0.9571 (2)	0.7836 (2)	0.60211 (14)	0.0256 (5)
C4	0.9517 (3)	0.8349 (2)	0.52481 (15)	0.0321 (6)
H4	1.0042	0.8834	0.5070	0.039*
C5	0.8699 (3)	0.8155 (2)	0.47345 (15)	0.0366 (6)
Н5	0.8686	0.8498	0.4211	0.044*

Fractional	atomic	coordinates	and	isotropic	or	eauivalent	isotropic	displacem	ent	narameters	$(Å^2$	')
i raciionai	aionnic	coordinates	unu	isonopie	01	cquivaieni	isonopie	aispiacem	cini j	parameters	(11)	/

C6	0.7917 (3)	0.7467 (2)	0.49918 (15)	0.0332 (6)
Н6	0.7335	0.7374	0.4653	0.040*
C7	0.7965 (2)	0.6890 (2)	0.57589 (14)	0.0259 (5)
C8	1.0516 (3)	0.7977 (2)	0.65510 (16)	0.0327 (6)
H8	1.0155	0.7833	0.7131	0.039*
C9	1.1982 (3)	0.6989 (3)	0.62729 (19)	0.0457 (7)
H9A	1.1940	0.6171	0.6269	0.069*
H9B	1.2563	0.7025	0.6655	0.069*
Н9С	1.2384	0.7135	0.5716	0.069*
C10	1.0555 (4)	0.9255 (3)	0.6556 (2)	0.0520 (8)
H10A	1.1001	0.9387	0.6006	0.078*
H10B	1.1087	0.9321	0.6961	0.078*
H10C	0.9604	0.9882	0.6703	0.078*
C11	0.7265 (3)	0.5997 (2)	0.59820 (16)	0.0323 (6)
H11	0.7080	0.5976	0.6597	0.039*
C12	0.8290 (3)	0.4709 (3)	0.5621 (2)	0.0552 (9)
H12A	0.8534	0.4713	0.5019	0.083*
H12B	0.7860	0.4112	0.5766	0.083*
H12C	0.9133	0.4475	0.5848	0.083*
C13	0.5881 (3)	0.6336 (3)	0.5711 (2)	0.0605 (9)
H13A	0.5228	0.7149	0.5968	0.091*
H13B	0.5497	0.5716	0.5883	0.091*
H13C	0.6030	0.6362	0.5109	0.091*
C14	0.6968 (2)	0.79018 (19)	0.88280 (14)	0.0233 (5)
C15	0.7616 (3)	0.8093 (2)	0.94427 (15)	0.0275 (5)
C16	0.6854 (3)	0.8331 (2)	1.02566 (16)	0.0375 (6)
H16	0.7268	0.8451	1.0689	0.045*
C17	0.5508 (3)	0.8392 (3)	1.04368 (17)	0.0443 (7)
H17	0.5006	0.8552	1.0993	0.053*
C18	0.4895 (3)	0.8225 (2)	0.98302 (17)	0.0381 (6)
H18	0.3962	0.8286	0.9969	0.046*
C19	0.5602 (2)	0.7966 (2)	0.90043 (15)	0.0280 (5)
C20	0.9061 (3)	0.8110 (2)	0.92375 (16)	0.0349 (6)
H20	0.9601	0.7517	0.8747	0.042*
C21	0.9865 (4)	0.7713 (4)	0.9927 (2)	0.0661 (10)
H21A	0.9423	0.8333	1.0395	0.099*
H21B	1.0825	0.7635	0.9726	0.099*
H21C	0.9865	0.6915	1.0106	0.099*
C22	0.8981 (3)	0.9385 (3)	0.8993 (2)	0.0570 (9)
H22A	0.8514	0.9616	0.8526	0.086*
H22B	0.9923	0.9371	0.8835	0.086*
H22C	0.8455	0.9990	0.9462	0.086*
C23	0.4864 (3)	0.7839 (2)	0.83388 (17)	0.0339 (6)
H23	0.5582	0.7473	0.7823	0.041*
C24	0.4066 (3)	0.6998 (3)	0.8554 (2)	0.0529 (8)
H24A	0.4683	0.6210	0.8722	0.079*
H24B	0.3738	0.6846	0.8069	0.079*
H24C	0.3268	0.7399	0.9007	0.079*
C25	0.3861 (3)	0.9100 (3)	0.8160 (2)	0.0516 (8)

H25A	0.3144	0.9476	0.8658	0.077*
H25B	0.3422	0.9005	0.7712	0.077*
H25C	0.4372	0.9631	0.7996	0.077*
C26	0.9760 (2)	0.43247 (19)	0.79664 (13)	0.0217 (5)
C27	1.1210 (2)	0.3814 (2)	0.77456 (14)	0.0248 (5)
C28	1.1875 (3)	0.2556 (2)	0.75388 (16)	0.0323 (6)
H28	1.2861	0.2192	0.7379	0.039*
C29	1.1121 (3)	0.1821 (2)	0.75617 (16)	0.0357 (6)
H29	1.1592	0.0959	0.7421	0.043*
C30	0.9694 (3)	0.2336 (2)	0.77869 (16)	0.0329 (6)
H30	0.9189	0.1822	0.7801	0.039*
C31	0.8980 (2)	0.3592 (2)	0.79933 (15)	0.0257 (5)
C32	1.2042 (3)	0.4605 (2)	0.77695 (16)	0.0323 (6)
H32	1.1474	0.5456	0.7631	0.039*
C33	1.3426 (3)	0.4132 (3)	0.7144 (2)	0.0553 (9)
H33A	1.4044	0.3336	0.7301	0.083*
H33B	1.3863	0.4729	0.7136	0.083*
H33C	1.3259	0.4029	0.6593	0.083*
C34	1.2277 (4)	0.4691 (3)	0.8638 (2)	0.0538 (9)
H34A	1.1381	0.4986	0.9030	0.081*
H34B	1.2729	0.5270	0.8666	0.081*
H34C	1.2874	0.3874	0.8778	0.081*
C35	0.7412 (3)	0.4149 (2)	0.82715 (18)	0.0363 (6)
H35	0.7079	0.5030	0.8126	0.044*
C36	0.6700 (4)	0.3517 (4)	0.7839 (3)	0.0876 (15)
H36A	0.7077	0.3429	0.7243	0.131*
H36B	0.5698	0.4015	0.7947	0.131*
H36C	0.6868	0.2698	0.8047	0.131*
C37	0.7001 (3)	0.4148 (4)	0.9208 (2)	0.0722 (12)
H37A	0.7309	0.3295	0.9371	0.108*
H37B	0.5988	0.4557	0.9382	0.108*
H37C	0.7441	0.4593	0.9471	0.108*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Мо	0.03955 (15)	0.02627 (13)	0.02197 (13)	0.00019 (9)	-0.00416 (9)	0.00151 (8)
O1C	0.0845 (17)	0.0362 (11)	0.0350 (12)	-0.0190 (11)	0.0031 (11)	-0.0101 (9)
O2C	0.135 (3)	0.0408 (14)	0.0652 (17)	0.0043 (15)	0.0105 (17)	0.0229 (12)
O3C	0.0403 (14)	0.104 (2)	0.0611 (16)	0.0089 (13)	-0.0167 (12)	-0.0177 (15)
C1C	0.0464 (16)	0.0236 (12)	0.0330 (15)	-0.0066 (12)	-0.0023 (12)	0.0044 (11)
C2C	0.077 (2)	0.0351 (16)	0.0340 (17)	0.0058 (15)	0.0049 (16)	0.0065 (13)
C3C	0.0461 (19)	0.0531 (19)	0.0321 (16)	0.0067 (15)	-0.0106 (13)	-0.0108 (13)
N1	0.0253 (10)	0.0186 (9)	0.0187 (9)	-0.0064 (8)	-0.0051 (8)	-0.0003 (7)
N2	0.0247 (10)	0.0186 (9)	0.0182 (10)	-0.0054 (8)	-0.0038 (8)	0.0027 (7)
N3	0.0263 (10)	0.0178 (9)	0.0178 (10)	-0.0067 (8)	-0.0036 (8)	0.0004 (7)
C1	0.0177 (10)	0.0188 (10)	0.0224 (11)	-0.0099 (9)	-0.0065 (9)	0.0012 (8)
C2	0.0253 (12)	0.0197 (11)	0.0162 (11)	-0.0028 (9)	-0.0008 (9)	-0.0029 (8)

C3	0.0306 (13)	0.0212 (11)	0.0212 (12)	-0.0079 (10)	-0.0013 (10)	-0.0013 (9)
C4	0.0409 (15)	0.0233 (12)	0.0265 (13)	-0.0102 (11)	0.0010 (11)	0.0014 (10)
C5	0.0473 (16)	0.0310 (13)	0.0180 (12)	-0.0029 (12)	-0.0023 (11)	0.0010 (10)
C6	0.0370 (14)	0.0366 (14)	0.0196 (12)	-0.0056 (11)	-0.0093 (10)	-0.0035 (10)
C7	0.0252 (12)	0.0242 (11)	0.0226 (12)	-0.0038 (10)	-0.0037 (9)	-0.0048 (9)
C8	0.0403 (15)	0.0355 (14)	0.0280 (13)	-0.0227 (12)	-0.0038 (11)	0.0012 (11)
С9	0.0423 (17)	0.0530 (18)	0.0468 (18)	-0.0219 (14)	-0.0140 (14)	0.0087 (14)
C10	0.064 (2)	0.0426 (17)	0.062 (2)	-0.0329 (16)	-0.0135 (17)	-0.0022 (15)
C11	0.0312 (13)	0.0356 (14)	0.0321 (14)	-0.0142 (11)	-0.0079 (11)	-0.0038 (11)
C12	0.0515 (19)	0.0382 (16)	0.074 (2)	-0.0225 (15)	0.0038 (17)	-0.0221 (15)
C13	0.0406 (18)	0.076 (2)	0.076 (2)	-0.0293 (18)	-0.0241 (17)	0.013 (2)
C14	0.0263 (12)	0.0153 (10)	0.0212 (11)	-0.0031 (9)	0.0003 (9)	0.0005 (8)
C15	0.0308 (13)	0.0226 (11)	0.0239 (12)	-0.0056 (10)	-0.0038 (10)	-0.0006 (9)
C16	0.0478 (17)	0.0331 (14)	0.0231 (13)	-0.0077 (12)	-0.0044 (12)	-0.0040 (10)
C17	0.0516 (18)	0.0375 (15)	0.0249 (14)	-0.0064 (13)	0.0116 (13)	-0.0014 (11)
C18	0.0321 (14)	0.0330 (14)	0.0386 (16)	-0.0091 (11)	0.0095 (12)	-0.0008 (11)
C19	0.0273 (12)	0.0193 (11)	0.0319 (13)	-0.0061 (10)	0.0000 (10)	0.0004 (9)
C20	0.0352 (14)	0.0382 (14)	0.0282 (14)	-0.0103 (12)	-0.0075 (11)	-0.0074 (11)
C21	0.051 (2)	0.095 (3)	0.049 (2)	-0.019 (2)	-0.0227 (17)	0.0062 (19)
C22	0.0516 (19)	0.0476 (19)	0.077 (2)	-0.0270 (16)	-0.0093 (17)	0.0006 (17)
C23	0.0262 (13)	0.0328 (13)	0.0401 (15)	-0.0109 (11)	-0.0023 (11)	-0.0039 (11)
C24	0.0420 (17)	0.0404 (17)	0.083 (2)	-0.0205 (14)	-0.0194 (17)	0.0075 (16)
C25	0.059 (2)	0.0410 (17)	0.062 (2)	-0.0202 (15)	-0.0273 (17)	0.0126 (15)
C26	0.0273 (12)	0.0182 (10)	0.0198 (11)	-0.0075 (9)	-0.0082 (9)	0.0023 (8)
C27	0.0263 (12)	0.0244 (11)	0.0248 (12)	-0.0094 (10)	-0.0093 (10)	0.0030 (9)
C28	0.0279 (13)	0.0278 (13)	0.0352 (14)	-0.0032 (10)	-0.0092 (11)	0.0003 (10)
C29	0.0437 (15)	0.0197 (12)	0.0385 (15)	-0.0050 (11)	-0.0117 (12)	-0.0040 (10)
C30	0.0419 (15)	0.0231 (12)	0.0409 (15)	-0.0162 (11)	-0.0176 (12)	0.0022 (11)
C31	0.0297 (12)	0.0237 (11)	0.0275 (13)	-0.0118 (10)	-0.0114 (10)	0.0048 (9)
C32	0.0263 (13)	0.0301 (13)	0.0433 (16)	-0.0124 (11)	-0.0112 (11)	0.0087 (11)
C33	0.0300 (15)	0.0543 (19)	0.077 (2)	-0.0161 (14)	-0.0033 (15)	0.0110 (17)
C34	0.073 (2)	0.0541 (19)	0.063 (2)	-0.0444 (18)	-0.0377 (18)	0.0156 (16)
C35	0.0300 (14)	0.0335 (14)	0.0526 (17)	-0.0170 (11)	-0.0158 (12)	0.0135 (12)
C36	0.045 (2)	0.071 (3)	0.162 (5)	-0.0293 (19)	-0.040 (3)	-0.015 (3)
C37	0.0369 (18)	0.097 (3)	0.064 (2)	-0.0136 (18)	0.0020 (16)	0.038 (2)
Geometric pa	rameters (Å, °)					
Mo-C1C		1.928 (3)	C19—C23		1 513 (4)	
Ma C2C		1 038 (3)	C_{20} C_{21}		1 520 (4)	

Mo—C2C	1.938 (3)	C20—C21	1.520 (4)
01C—C1C	1.172 (3)	C20—C22	1.522 (4)
O2C—C2C	1.156 (4)	C20—H20	1.0000
O3C—C3C	1.164 (4)	C21—H21A	0.9800
N1—C1	1.287 (3)	C21—H21B	0.9800
N1—C2	1.395 (3)	C21—H21C	0.9800
N2—C1	1.361 (3)	C22—H22A	0.9800
N2-C14	1.435 (3)	C22—H22B	0.9800
N2—H2	0.809 (16)	C22—H22C	0.9800
N3—C1	1.374 (3)	C23—C25	1.521 (4)

N3—C26	1.437 (3)	C23—C24	1.533 (4)
N3—H3	0.807 (16)	C23—H23	1.0000
C2—C7	1.417 (3)	C24—H24A	0.9800
C3—C4	1.408 (3)	C24—H24B	0.9800
C4—C5	1.408 (4)	C24—H24C	0.9800
C4—H4	0.9500	C25—H25A	0.9800
C5—C6	1.379 (4)	С25—Н25В	0.9800
С5—Н5	0.9500	С25—Н25С	0.9800
C6—C7	1.431 (3)	C26—C27	1.395 (3)
С6—Н6	0.9500	C26—C31	1.406 (3)
C8—C10	1.520 (4)	C27—C28	1.386 (3)
C8—C9	1.527 (4)	C27—C32	1.518 (3)
С8—Н8	1.0000	C28—C29	1.385 (4)
С9—Н9А	0.9800	C28—H28	0.9500
С9—Н9В	0.9800	C29—C30	1.374 (4)
С9—Н9С	0.9800	С29—Н29	0.9500
C10—H10A	0.9800	C30—C31	1.387 (3)
C10—H10B	0.9800	С30—Н30	0.9500
C10—H10C	0.9800	C31—C35	1.514 (3)
C11—C13	1.527 (4)	C32—C34	1.518 (4)
C11—C12	1.529 (4)	C32—C33	1.530 (4)
C11—H11	1.0000	С32—Н32	1.0000
C12—H12A	0.9800	С33—Н33А	0.9800
C12—H12B	0.9800	С33—Н33В	0.9800
C12—H12C	0.9800	С33—Н33С	0.9800
C13—H13A	0.9800	C34—H34A	0.9800
C13—H13B	0.9800	C34—H34B	0.9800
C13—H13C	0.9800	C34—H34C	0.9800
C14—C19	1.398 (3)	C35—C36	1.518 (4)
C14—C15	1.401 (3)	C35—C37	1.525 (4)
C15—C16	1.400 (3)	С35—Н35	1.0000
C15—C20	1.519 (4)	С36—Н36А	0.9800
C16—C17	1.379 (4)	С36—Н36В	0.9800
С16—Н16	0.9500	С36—Н36С	0.9800
C17—C18	1.355 (4)	С37—Н37А	0.9800
С17—Н17	0.9500	С37—Н37В	0.9800
C18—C19	1.400 (3)	С37—Н37С	0.9800
C18—H18	0.9500		
C1C—Mo—C2C	80.69 (12)	С22—С20—Н20	107.5
O1C—C1C—Mo	177.4 (2)	C20—C21—H21A	109.5
O2C—C2C—Mo	177.4 (3)	C20—C21—H21B	109.5
O3C—C3C—Mo	177.9 (3)	H21A—C21—H21B	109.5
C1—N1—C2	125.51 (19)	C20—C21—H21C	109.5
C1—N2—C14	124.59 (18)	H21A—C21—H21C	109.5
C1—N2—H2	113.7 (18)	H21B—C21—H21C	109.5
C14—N2—H2	117.9 (18)	C20—C22—H22A	109.5
C1—N3—C26	122.77 (18)	C20—C22—H22B	109.5
C1—N3—H3	112.9 (18)	H22A—C22—H22B	109.5
С26—N3—H3	116.6 (18)	C20—C22—H22C	109.5

N1—C1—N2	125.0 (2)	H22A—C22—H22C	109.5
N1—C1—N3	119.41 (19)	H22B—C22—H22C	109.5
N2—C1—N3	115.57 (19)	C19—C23—C25	110.5 (2)
N1—C2—C7	118.4 (2)	C19—C23—C24	113.4 (2)
C4—C3—C2	118.5 (2)	C25—C23—C24	108.9 (2)
C3—C4—C5	121.1 (2)	С19—С23—Н23	108.0
C3—C4—H4	119.4	С25—С23—Н23	108.0
С5—С4—Н4	119.4	С24—С23—Н23	108.0
C6—C5—C4	120.0 (2)	C23—C24—H24A	109.5
С6—С5—Н5	120.0	C23—C24—H24B	109.5
C4—C5—H5	120.0	H24A—C24—H24B	109.5
C5—C6—C7	121.4 (2)	С23—С24—Н24С	109.5
С5—С6—Н6	119.3	H24A—C24—H24C	109.5
С7—С6—Н6	119.3	H24B—C24—H24C	109.5
C2—C7—C6	118.5 (2)	С23—С25—Н25А	109.5
C3—C8—C10	113.4 (2)	C23—C25—H25B	109.5
C3—C8—C9	109.8 (2)	H25A—C25—H25B	109.5
C10—C8—C9	110.4 (2)	С23—С25—Н25С	109.5
С3—С8—Н8	107.6	H25A—C25—H25C	109.5
С10—С8—Н8	107.6	H25B—C25—H25C	109.5
С9—С8—Н8	107.6	C27—C26—C31	121.6 (2)
С8—С9—Н9А	109.5	C27—C26—N3	119.6 (2)
С8—С9—Н9В	109.5	C31—C26—N3	118.8 (2)
Н9А—С9—Н9В	109.5	C28—C27—C26	118.3 (2)
С8—С9—Н9С	109.5	C28—C27—C32	120.7 (2)
Н9А—С9—Н9С	109.5	C26—C27—C32	120.9 (2)
Н9В—С9—Н9С	109.5	C29—C28—C27	120.8 (2)
C8—C10—H10A	109.5	С29—С28—Н28	119.6
C8—C10—H10B	109.5	C27—C28—H28	119.6
H10A—C10—H10B	109.5	C30—C29—C28	120.2 (2)
C8—C10—H10C	109.5	С30—С29—Н29	119.9
H10A—C10—H10C	109.5	С28—С29—Н29	119.9
H10B-C10-H10C	109.5	C29—C30—C31	121.1 (2)
C7—C11—C13	114.8 (2)	С29—С30—Н30	119.4
C7—C11—C12	108.1 (2)	С31—С30—Н30	119.4
C13—C11—C12	110.8 (2)	C30—C31—C26	117.9 (2)
C7—C11—H11	107.6	C30—C31—C35	121.0 (2)
C13—C11—H11	107.6	C26—C31—C35	121.0 (2)
C12—C11—H11	107.6	C34—C32—C27	109.5 (2)
C11—C12—H12A	109.5	C34—C32—C33	110.7 (2)
C11—C12—H12B	109.5	C27—C32—C33	113.0 (2)
H12A—C12—H12B	109.5	С34—С32—Н32	107.8
C11—C12—H12C	109.5	С27—С32—Н32	107.8
H12A—C12—H12C	109.5	С33—С32—Н32	107.8
H12B—C12—H12C	109.5	С32—С33—Н33А	109.5
C11—C13—H13A	109.5	С32—С33—Н33В	109.5
С11—С13—Н13В	109.5	H33A—C33—H33B	109.5
H13A—C13—H13B	109.5	С32—С33—Н33С	109.5
С11—С13—Н13С	109.5	H33A—C33—H33C	109.5

H13A—C13—H13C	109.5	H33B—C33—H33C	109.5
H13B—C13—H13C	109.5	C32—C34—H34A	109.5
C19—C14—C15	122.2 (2)	С32—С34—Н34В	109.5
C19—C14—N2	119.4 (2)	H34A—C34—H34B	109.5
C15—C14—N2	118.4 (2)	С32—С34—Н34С	109.5
C16-C15-C14	117.5 (2)	H34A—C34—H34C	109.5
C16—C15—C20	120.6 (2)	H34B—C34—H34C	109.5
C14—C15—C20	121.8 (2)	C31—C35—C36	112.8 (3)
C17—C16—C15	120.7 (3)	C31—C35—C37	110.3 (2)
С17—С16—Н16	119.7	C36—C35—C37	111.2 (3)
C15-C16-H16	119.7	С31—С35—Н35	107.4
C18—C17—C16	120.7 (2)	С36—С35—Н35	107.4
С18—С17—Н17	119.6	С37—С35—Н35	107.4
С16—С17—Н17	119.6	С35—С36—Н36А	109.5
C17—C18—C19	121.6 (3)	С35—С36—Н36В	109.5
C17—C18—H18	119.2	H36A—C36—H36B	109.5
C19—C18—H18	119.2	С35—С36—Н36С	109.5
C14—C19—C18	117.2 (2)	H36A—C36—H36C	109.5
C14—C19—C23	122.6 (2)	H36B—C36—H36C	109.5
C18—C19—C23	120.1 (2)	С35—С37—Н37А	109.5
C15—C20—C21	114.0 (2)	С35—С37—Н37В	109.5
C15—C20—C22	110.4 (2)	Н37А—С37—Н37В	109.5
C21—C20—C22	109.7 (3)	С35—С37—Н37С	109.5
C15—C20—H20	107.5	Н37А—С37—Н37С	109.5
С21—С20—Н20	107.5	Н37В—С37—Н37С	109.5
C2—N1—C1—N2	-3.4 (4)	N2-C14-C19-C23	-3.2 (3)
C2 N1 C1 N2	170.0 (0)	a. a. a. a. a	0.0 (1)
C_2 — N_1 — C_1 — N_3	1/9.0(2)	C17 - C18 - C19 - C14	-0.8 (4)
C14—N2—C1—N1	1/9.0 (2) 168.7 (2)	C17C18C19C14 C17C18C19C23	-0.8(4) -177.5(2)
C14—N2—C1—N3 C14—N2—C1—N1 C14—N2—C1—N3	1/9.0 (2) 168.7 (2) -13.7 (3)	C17—C18—C19—C14 C17—C18—C19—C23 C16—C15—C20—C21	-0.8 (4) -177.5 (2) 31.2 (4)
C14—N2—C1—N3 C14—N2—C1—N3 C14—N2—C1—N3 C26—N3—C1—N1	1/9.0 (2) 168.7 (2) -13.7 (3) -15.4 (3)	C17—C18—C19—C14 C17—C18—C19—C23 C16—C15—C20—C21 C14—C15—C20—C21	-0.8 (4) -177.5 (2) 31.2 (4) -152.1 (3)
C14—N2—C1—N3 C14—N2—C1—N1 C14—N2—C1—N3 C26—N3—C1—N1 C26—N3—C1—N2	179.0 (2) 168.7 (2) -13.7 (3) -15.4 (3) 166.85 (19)	C17—C18—C19—C14 C17—C18—C19—C23 C16—C15—C20—C21 C14—C15—C20—C21 C16—C15—C20—C22	$\begin{array}{c} -0.8 (4) \\ -177.5 (2) \\ 31.2 (4) \\ -152.1 (3) \\ -92.9 (3) \end{array}$
C14—N2—C1—N3 C14—N2—C1—N1 C14—N2—C1—N3 C26—N3—C1—N1 C26—N3—C1—N2 C1—N1—C2—C7	179.0 (2) 168.7 (2) -13.7 (3) -15.4 (3) 166.85 (19) -103.3 (3)	C17-C18-C19-C14 C17-C18-C19-C23 C16-C15-C20-C21 C14-C15-C20-C21 C16-C15-C20-C22 C14-C15-C20-C22	-0.8 (4) -177.5 (2) 31.2 (4) -152.1 (3) -92.9 (3) 83.9 (3)
C14—N2—C1—N3 C14—N2—C1—N3 C26—N3—C1—N3 C26—N3—C1—N1 C26—N3—C1—N2 C1—N1—C2—C7 N1—C2—C3—C4	$\begin{array}{c} 179.0(2) \\ 168.7(2) \\ -13.7(3) \\ -15.4(3) \\ 166.85(19) \\ -103.3(3) \\ 161.8(2) \end{array}$	C17-C18-C19-C14 C17-C18-C19-C23 C16-C15-C20-C21 C14-C15-C20-C21 C16-C15-C20-C22 C14-C15-C20-C22 C14-C15-C20-C22 C14-C19-C23-C25	$\begin{array}{c} -0.8 (4) \\ -177.5 (2) \\ 31.2 (4) \\ -152.1 (3) \\ -92.9 (3) \\ 83.9 (3) \\ -101.8 (3) \end{array}$
C14-N2-C1-N3 C14-N2-C1-N1 C14-N2-C1-N3 C26-N3-C1-N1 C26-N3-C1-N2 C1-N1-C2-C7 N1-C2-C3-C4 C7-C2-C3-C4	$\begin{array}{c} 179.0(2) \\ 168.7(2) \\ -13.7(3) \\ -15.4(3) \\ 166.85(19) \\ -103.3(3) \\ 161.8(2) \\ -8.6(3) \end{array}$	C17-C18-C19-C14 C17-C18-C19-C23 C16-C15-C20-C21 C14-C15-C20-C21 C16-C15-C20-C22 C14-C15-C20-C22 C14-C19-C23-C25 C18-C19-C23-C25	$\begin{array}{c} -0.8 (4) \\ -177.5 (2) \\ 31.2 (4) \\ -152.1 (3) \\ -92.9 (3) \\ 83.9 (3) \\ -101.8 (3) \\ 74.7 (3) \end{array}$
C14—N2—C1—N3 C14—N2—C1—N1 C14—N2—C1—N3 C26—N3—C1—N1 C26—N3—C1—N2 C1—N1—C2—C7 N1—C2—C3—C4 C7—C2—C3—C4 C2—C3—C4—C5	$ \begin{array}{c} 179.0(2) \\ 168.7(2) \\ -13.7(3) \\ -15.4(3) \\ 166.85(19) \\ -103.3(3) \\ 161.8(2) \\ -8.6(3) \\ 4.8(3) \end{array} $	C17-C18-C19-C14 C17-C18-C19-C23 C16-C15-C20-C21 C14-C15-C20-C21 C16-C15-C20-C22 C14-C15-C20-C22 C14-C19-C23-C25 C18-C19-C23-C25 C14-C19-C23-C24	-0.8 (4) -177.5 (2) 31.2 (4) -152.1 (3) -92.9 (3) 83.9 (3) -101.8 (3) 74.7 (3) 135.6 (2)
C14—N2—C1—N3 C14—N2—C1—N3 C26—N3—C1—N3 C26—N3—C1—N1 C26—N3—C1—N2 C1—N1—C2—C7 N1—C2—C3—C4 C7—C2—C3—C4 C2—C3—C4—C5 C3—C4—C5—C6	$ \begin{array}{c} 179.0(2) \\ 168.7(2) \\ -13.7(3) \\ -15.4(3) \\ 166.85(19) \\ -103.3(3) \\ 161.8(2) \\ -8.6(3) \\ 4.8(3) \\ 0.9(4) \end{array} $	C17-C18-C19-C14 C17-C18-C19-C23 C16-C15-C20-C21 C14-C15-C20-C21 C16-C15-C20-C22 C14-C15-C20-C22 C14-C19-C23-C25 C18-C19-C23-C24 C18-C19-C23-C24	$\begin{array}{c} -0.8 (4) \\ -177.5 (2) \\ 31.2 (4) \\ -152.1 (3) \\ -92.9 (3) \\ 83.9 (3) \\ -101.8 (3) \\ 74.7 (3) \\ 135.6 (2) \\ -47.9 (3) \end{array}$
C14—N2—C1—N3 C14—N2—C1—N1 C14—N2—C1—N3 C26—N3—C1—N1 C26—N3—C1—N2 C1—N1—C2—C7 N1—C2—C3—C4 C7—C2—C3—C4 C2—C3—C4—C5 C3—C4—C5—C6 C4—C5—C6—C7	179.0(2) $168.7(2)$ $-13.7(3)$ $-15.4(3)$ $166.85(19)$ $-103.3(3)$ $161.8(2)$ $-8.6(3)$ $4.8(3)$ $0.9(4)$ $-3.0(4)$	C17-C18-C19-C14 C17-C18-C19-C23 C16-C15-C20-C21 C14-C15-C20-C21 C16-C15-C20-C22 C14-C15-C20-C22 C14-C19-C23-C25 C18-C19-C23-C25 C14-C19-C23-C24 C18-C19-C23-C24 C1-N3-C26-C27	$\begin{array}{c} -0.8 (4) \\ -177.5 (2) \\ 31.2 (4) \\ -152.1 (3) \\ -92.9 (3) \\ 83.9 (3) \\ -101.8 (3) \\ 74.7 (3) \\ 135.6 (2) \\ -47.9 (3) \\ 88.2 (3) \end{array}$
C2-N1-C1-N3 $C14-N2-C1-N1$ $C14-N2-C1-N3$ $C26-N3-C1-N1$ $C26-N3-C1-N2$ $C1-N1-C2-C7$ $N1-C2-C3-C4$ $C7-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-C6$ $C4-C5-C6-C7$ $N1-C2-C7-C6$	$ \begin{array}{c} 179.0(2) \\ 168.7(2) \\ -13.7(3) \\ -15.4(3) \\ 166.85(19) \\ -103.3(3) \\ 161.8(2) \\ -8.6(3) \\ 4.8(3) \\ 0.9(4) \\ -3.0(4) \\ -164.0(2) \end{array} $	C17-C18-C19-C14 C17-C18-C19-C23 C16-C15-C20-C21 C14-C15-C20-C22 C14-C15-C20-C22 C14-C19-C23-C25 C18-C19-C23-C25 C14-C19-C23-C24 C18-C19-C23-C24 C18-C19-C23-C24 C1-N3-C26-C27 C1-N3-C26-C31	$\begin{array}{c} -0.8 (4) \\ -177.5 (2) \\ 31.2 (4) \\ -152.1 (3) \\ -92.9 (3) \\ 83.9 (3) \\ -101.8 (3) \\ 74.7 (3) \\ 135.6 (2) \\ -47.9 (3) \\ 88.2 (3) \\ -94.8 (3) \end{array}$
$\begin{array}{c} C2 = N1 = C1 = N3 \\ C14 = N2 = C1 = N1 \\ C14 = N2 = C1 = N3 \\ C26 = N3 = C1 = N1 \\ C26 = N3 = C1 = N2 \\ C1 = N1 = C2 = C7 \\ N1 = C2 = C3 = C4 \\ C7 = C5 = C6 \\ C4 = C5 = C6 = C7 \\ N1 = C2 = C7 = C6 \\ C5 = C6 = C7 = C2 \end{array}$	$ \begin{array}{c} 179.0(2) \\ 168.7(2) \\ -13.7(3) \\ -15.4(3) \\ 166.85(19) \\ -103.3(3) \\ 161.8(2) \\ -8.6(3) \\ 4.8(3) \\ 0.9(4) \\ -3.0(4) \\ -164.0(2) \\ -0.8(3) \end{array} $	C17-C18-C19-C14 $C17-C18-C19-C23$ $C16-C15-C20-C21$ $C14-C15-C20-C22$ $C14-C15-C20-C22$ $C14-C19-C23-C25$ $C18-C19-C23-C25$ $C14-C19-C23-C24$ $C18-C19-C23-C24$ $C18-C19-C23-C24$ $C1-N3-C26-C27$ $C1-N3-C26-C31$ $C31-C26-C27-C28$	$\begin{array}{c} -0.8 (4) \\ -177.5 (2) \\ 31.2 (4) \\ -152.1 (3) \\ -92.9 (3) \\ 83.9 (3) \\ -101.8 (3) \\ 74.7 (3) \\ 135.6 (2) \\ -47.9 (3) \\ 88.2 (3) \\ -94.8 (3) \\ 0.9 (3) \end{array}$
C2-N1-C1-N3 $C14-N2-C1-N1$ $C14-N2-C1-N3$ $C26-N3-C1-N1$ $C26-N3-C1-N2$ $C1-N1-C2-C7$ $N1-C2-C3-C4$ $C7-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-C6$ $C4-C5-C6-C7$ $N1-C2-C7-C6$ $C5-C6-C7-C2$ $C4-C3-C8-C10$	179.0(2) $168.7(2)$ $-13.7(3)$ $-15.4(3)$ $166.85(19)$ $-103.3(3)$ $161.8(2)$ $-8.6(3)$ $4.8(3)$ $0.9(4)$ $-3.0(4)$ $-164.0(2)$ $-0.8(3)$ $40.7(3)$	C17-C18-C19-C14 $C17-C18-C19-C23$ $C16-C15-C20-C21$ $C14-C15-C20-C22$ $C14-C15-C20-C22$ $C14-C19-C23-C25$ $C18-C19-C23-C25$ $C14-C19-C23-C24$ $C18-C19-C23-C24$ $C18-C19-C23-C24$ $C18-C19-C23-C24$ $C1-N3-C26-C27$ $C1-N3-C26-C27$ $C1-N3-C26-C27$ $C131-C26-C27-C28$ $N3-C26-C27-C28$	$\begin{array}{c} -0.8 (4) \\ -177.5 (2) \\ 31.2 (4) \\ -152.1 (3) \\ -92.9 (3) \\ 83.9 (3) \\ -101.8 (3) \\ 74.7 (3) \\ 135.6 (2) \\ -47.9 (3) \\ 88.2 (3) \\ -94.8 (3) \\ 0.9 (3) \\ 177.9 (2) \end{array}$
C2-N1-C1-N3 $C14-N2-C1-N1$ $C14-N2-C1-N3$ $C26-N3-C1-N1$ $C26-N3-C1-N2$ $C1-N1-C2-C7$ $N1-C2-C3-C4$ $C7-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-C6$ $C4-C5-C6-C7$ $N1-C2-C7-C6$ $C5-C6-C7$ $N1-C2-C7-C6$ $C5-C6-C7-C2$ $C4-C3-C8-C10$ $C2-C3-C8-C10$	179.0(2) $168.7(2)$ $-13.7(3)$ $-15.4(3)$ $166.85(19)$ $-103.3(3)$ $161.8(2)$ $-8.6(3)$ $4.8(3)$ $0.9(4)$ $-3.0(4)$ $-164.0(2)$ $-0.8(3)$ $40.7(3)$ $-148.0(2)$	C17-C18-C19-C14 $C17-C18-C19-C23$ $C16-C15-C20-C21$ $C14-C15-C20-C22$ $C14-C15-C20-C22$ $C14-C19-C23-C25$ $C18-C19-C23-C25$ $C14-C19-C23-C24$ $C18-C19-C23-C24$ $C18-C19-C23-C24$ $C18-C19-C23-C24$ $C1-N3-C26-C27$ $C1-N3-C26-C27$ $C1-N3-C26-C27$ $C1-N3-C26-C27$ $C31-C26-C27-C28$ $N3-C26-C27-C28$ $C31-C26-C27-C32$	$\begin{array}{c} -0.8 (4) \\ -177.5 (2) \\ 31.2 (4) \\ -152.1 (3) \\ -92.9 (3) \\ 83.9 (3) \\ -101.8 (3) \\ 74.7 (3) \\ 135.6 (2) \\ -47.9 (3) \\ 88.2 (3) \\ -94.8 (3) \\ 0.9 (3) \\ 177.9 (2) \\ -176.3 (2) \end{array}$
C2-N1-C1-N3 $C14-N2-C1-N1$ $C14-N2-C1-N3$ $C26-N3-C1-N1$ $C26-N3-C1-N2$ $C1-N1-C2-C7$ $N1-C2-C3-C4$ $C7-C2-C3-C4$ $C7-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-C6$ $C4-C5-C6-C7$ $N1-C2-C7-C6$ $C5-C6-C7-C2$ $C4-C3-C8-C10$ $C2-C3-C8-C10$ $C4-C3-C8-C9$	$\begin{array}{c} 1.79.0\ (2)\\ 168.7\ (2)\\ -13.7\ (3)\\ -15.4\ (3)\\ 166.85\ (19)\\ -103.3\ (3)\\ 161.8\ (2)\\ -8.6\ (3)\\ 4.8\ (3)\\ 0.9\ (4)\\ -3.0\ (4)\\ -164.0\ (2)\\ -0.8\ (3)\\ 40.7\ (3)\\ -148.0\ (2)\\ -83.4\ (3)\end{array}$	C17-C18-C19-C14 $C17-C18-C19-C23$ $C16-C15-C20-C21$ $C14-C15-C20-C22$ $C14-C15-C20-C22$ $C14-C19-C23-C25$ $C18-C19-C23-C25$ $C14-C19-C23-C24$ $C18-C19-C23-C24$ $C18-C19-C23-C24$ $C1-N3-C26-C27$ $C1-N3-C26-C27$ $C1-N3-C26-C27$ $C31-C26-C27-C28$ $N3-C26-C27-C28$ $C31-C26-C27-C32$	$\begin{array}{c} -0.8 (4) \\ -177.5 (2) \\ 31.2 (4) \\ -152.1 (3) \\ -92.9 (3) \\ 83.9 (3) \\ -101.8 (3) \\ 74.7 (3) \\ 135.6 (2) \\ -47.9 (3) \\ 88.2 (3) \\ -94.8 (3) \\ 0.9 (3) \\ 177.9 (2) \\ -176.3 (2) \\ 0.7 (3) \end{array}$
C2-N1-C1-N3 $C14-N2-C1-N1$ $C14-N2-C1-N3$ $C26-N3-C1-N1$ $C26-N3-C1-N2$ $C1-N1-C2-C7$ $N1-C2-C3-C4$ $C7-C2-C3-C4$ $C7-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-C6$ $C4-C5-C6-C7$ $N1-C2-C7-C6$ $C5-C6-C7-C2$ $C4-C3-C8-C10$ $C2-C3-C8-C10$ $C4-C3-C8-C9$ $C2-C3-C8-C9$	$\begin{array}{c} 1.79.0\ (2)\\ 168.7\ (2)\\ -13.7\ (3)\\ -15.4\ (3)\\ 166.85\ (19)\\ -103.3\ (3)\\ 161.8\ (2)\\ -8.6\ (3)\\ 4.8\ (3)\\ 0.9\ (4)\\ -3.0\ (4)\\ -164.0\ (2)\\ -0.8\ (3)\\ 40.7\ (3)\\ -148.0\ (2)\\ -83.4\ (3)\\ 87.9\ (3) \end{array}$	C17-C18-C19-C14 $C17-C18-C19-C23$ $C16-C15-C20-C21$ $C14-C15-C20-C22$ $C14-C15-C20-C22$ $C14-C19-C23-C25$ $C18-C19-C23-C25$ $C14-C19-C23-C24$ $C18-C19-C23-C24$ $C18-C19-C23-C24$ $C18-C19-C23-C24$ $C1-N3-C26-C27$ $C1-N3-C26-C27$ $C1-N3-C26-C27$ $C131-C26-C27-C28$ $C31-C26-C27-C32$ $C31-C26-C27-C32$ $C32-C28-C29$	$\begin{array}{c} -0.8 (4) \\ -177.5 (2) \\ 31.2 (4) \\ -152.1 (3) \\ -92.9 (3) \\ 83.9 (3) \\ -101.8 (3) \\ 74.7 (3) \\ 135.6 (2) \\ -47.9 (3) \\ 88.2 (3) \\ -94.8 (3) \\ 0.9 (3) \\ 177.9 (2) \\ -176.3 (2) \\ 0.7 (3) \\ -0.9 (4) \end{array}$
C2-NI-C1-N3 $C14-N2-C1-N1$ $C14-N2-C1-N3$ $C26-N3-C1-N1$ $C26-N3-C1-N2$ $C1-N1-C2-C7$ $N1-C2-C3-C4$ $C7-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-C6$ $C4-C5-C6-C7$ $N1-C2-C7-C6$ $C5-C6-C7-C2$ $C4-C3-C8-C10$ $C2-C3-C8-C10$ $C4-C3-C8-C9$ $C2-C3-C8-C9$ $C2-C3-C8-C9$ $C2-C7-C11-C13$	$\begin{array}{c} 1.79.0\ (2)\\ 168.7\ (2)\\ -13.7\ (3)\\ -15.4\ (3)\\ 166.85\ (19)\\ -103.3\ (3)\\ 161.8\ (2)\\ -8.6\ (3)\\ 4.8\ (3)\\ 0.9\ (4)\\ -3.0\ (4)\\ -164.0\ (2)\\ -0.8\ (3)\\ 40.7\ (3)\\ -148.0\ (2)\\ -83.4\ (3)\\ 87.9\ (3)\\ 152.1\ (2)\\ \end{array}$	C17-C18-C19-C14 $C17-C18-C19-C23$ $C16-C15-C20-C21$ $C14-C15-C20-C22$ $C14-C15-C20-C22$ $C14-C19-C23-C25$ $C14-C19-C23-C25$ $C14-C19-C23-C24$ $C18-C19-C23-C24$ $C18-C19-C23-C24$ $C1-N3-C26-C27$ $C1-N3-C26-C27$ $C1-N3-C26-C27$ $C1-N3-C26-C27$ $C31-C26-C27-C28$ $C31-C26-C27-C32$ $C31-C26-C27-C32$ $C32-C27-C28-C29$	$\begin{array}{c} -0.8 (4) \\ -177.5 (2) \\ 31.2 (4) \\ -152.1 (3) \\ -92.9 (3) \\ 83.9 (3) \\ -101.8 (3) \\ 74.7 (3) \\ 135.6 (2) \\ -47.9 (3) \\ 88.2 (3) \\ -94.8 (3) \\ 0.9 (3) \\ 177.9 (2) \\ -176.3 (2) \\ 0.7 (3) \\ -0.9 (4) \\ 176.3 (2) \end{array}$
C2-NI-C1-N3 $C14-N2-C1-N1$ $C14-N2-C1-N3$ $C26-N3-C1-N1$ $C26-N3-C1-N2$ $C1-N1-C2-C7$ $N1-C2-C3-C4$ $C7-C2-C3-C4$ $C7-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-C6$ $C4-C5-C6-C7$ $N1-C2-C7-C6$ $C5-C6-C7-C2$ $C4-C3-C8-C10$ $C2-C3-C8-C10$ $C2-C3-C8-C9$ $C2-C3-C8-C9$ $C2-C7-C11-C13$ $C6-C7-C11-C13$	$\begin{array}{c} 1.79.0\ (2)\\ 168.7\ (2)\\ -13.7\ (3)\\ -15.4\ (3)\\ 166.85\ (19)\\ -103.3\ (3)\\ 161.8\ (2)\\ -8.6\ (3)\\ 4.8\ (3)\\ 0.9\ (4)\\ -3.0\ (4)\\ -164.0\ (2)\\ -0.8\ (3)\\ 40.7\ (3)\\ -148.0\ (2)\\ -83.4\ (3)\\ 87.9\ (3)\\ 152.1\ (2)\\ -37.5\ (3)\end{array}$	C17-C18-C19-C14 $C17-C18-C19-C23$ $C16-C15-C20-C21$ $C14-C15-C20-C22$ $C14-C15-C20-C22$ $C14-C19-C23-C25$ $C18-C19-C23-C25$ $C14-C19-C23-C24$ $C18-C19-C23-C24$ $C18-C19-C23-C24$ $C1-N3-C26-C27$ $C1-N3-C26-C27$ $C1-N3-C26-C27$ $C1-N3-C26-C27$ $C31-C26-C27-C28$ $N3-C26-C27-C28$ $C31-C26-C27-C32$ $C26-C27-C32$ $C26-C27-C28-C29$ $C32-C27-C28-C29$ $C32-C27-C28-C29$ $C27-C28-C29-C30$	$\begin{array}{c} -0.8 (4) \\ -177.5 (2) \\ 31.2 (4) \\ -152.1 (3) \\ -92.9 (3) \\ 83.9 (3) \\ -101.8 (3) \\ 74.7 (3) \\ 135.6 (2) \\ -47.9 (3) \\ 88.2 (3) \\ -94.8 (3) \\ 0.9 (3) \\ 177.9 (2) \\ -176.3 (2) \\ 0.7 (3) \\ -0.9 (4) \\ 176.3 (2) \\ 0.4 (4) \end{array}$
C2-NI-C1-N3 $C14-N2-C1-N1$ $C14-N2-C1-N3$ $C26-N3-C1-N1$ $C26-N3-C1-N2$ $C1-N1-C2-C7$ $N1-C2-C3-C4$ $C7-C2-C3-C4$ $C7-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-C6$ $C4-C5-C6-C7$ $N1-C2-C7-C6$ $C5-C6-C7-C2$ $C4-C3-C8-C10$ $C2-C3-C8-C10$ $C4-C3-C8-C9$ $C2-C3-C8-C9$ $C2-C7-C11-C13$ $C6-C7-C11-C13$ $C2-C7-C11-C12$	$\begin{array}{c} 1.79.0\ (2)\\ 168.7\ (2)\\ -13.7\ (3)\\ -15.4\ (3)\\ 166.85\ (19)\\ -103.3\ (3)\\ 161.8\ (2)\\ -8.6\ (3)\\ 4.8\ (3)\\ 0.9\ (4)\\ -3.0\ (4)\\ -164.0\ (2)\\ -0.8\ (3)\\ 40.7\ (3)\\ -148.0\ (2)\\ -83.4\ (3)\\ 87.9\ (3)\\ 152.1\ (2)\\ -37.5\ (3)\\ -83.7\ (3)\end{array}$	C17-C18-C19-C14 C17-C18-C19-C23 C16-C15-C20-C21 C14-C15-C20-C22 C14-C15-C20-C22 C14-C15-C20-C22 C14-C19-C23-C25 C18-C19-C23-C25 C18-C19-C23-C24 C18-C19-C23-C24 C18-C19-C23-C24 C1-N3-C26-C27 C1-N3-C26-C27 C1-N3-C26-C27-C28 N3-C26-C27-C28 C31-C26-C27-C32 C31-C26-C27-C32 C32-C27-C28-C29 C32-C27-C28-C29 C27-C28-C29-C30 C28-C29-C30-C31	$\begin{array}{c} -0.8 (4) \\ -177.5 (2) \\ 31.2 (4) \\ -152.1 (3) \\ -92.9 (3) \\ 83.9 (3) \\ -101.8 (3) \\ 74.7 (3) \\ 135.6 (2) \\ -47.9 (3) \\ 88.2 (3) \\ -94.8 (3) \\ 0.9 (3) \\ 177.9 (2) \\ -176.3 (2) \\ 0.7 (3) \\ -0.9 (4) \\ 176.3 (2) \\ 0.4 (4) \\ 0.1 (4) \end{array}$
$C_{2} = N_{1} = C_{1} = N_{3}$ $C_{1} = N_{2} = C_{1} = N_{3}$ $C_{2} = N_{3} = C_{1} = N_{3}$ $C_{2} = N_{3} = C_{1} = N_{3}$ $C_{2} = N_{3} = C_{1} = N_{2}$ $C_{1} = N_{1} = C_{2} = C_{7}$ $N_{1} = C_{2} = C_{3} = C_{4}$ $C_{2} = C_{3} = C_{4} = C_{5}$ $C_{3} = C_{4} = C_{5} = C_{6}$ $C_{4} = C_{5} = C_{6} = C_{7}$ $N_{1} = C_{2} = C_{7} = C_{6}$ $C_{5} = C_{6} = C_{7} = C_{2}$ $C_{4} = C_{3} = C_{8} = C_{10}$ $C_{4} = C_{3} = C_{8} = C_{9}$ $C_{2} = C_{3} = C_{8} = C_{9}$ $C_{2} = C_{7} = C_{11} = C_{13}$ $C_{6} = C_{7} = C_{11} = C_{12}$ $C_{6} = C_{7} = C_{11} = C_{12}$	$\begin{array}{c} 1.79.0\ (2)\\ 168.7\ (2)\\ -13.7\ (3)\\ -15.4\ (3)\\ 166.85\ (19)\\ -103.3\ (3)\\ 161.8\ (2)\\ -8.6\ (3)\\ 4.8\ (3)\\ 0.9\ (4)\\ -3.0\ (4)\\ -164.0\ (2)\\ -0.8\ (3)\\ 40.7\ (3)\\ -148.0\ (2)\\ -83.4\ (3)\\ 87.9\ (3)\\ 152.1\ (2)\\ -37.5\ (3)\\ -83.7\ (3)\\ 86.8\ (3)\\ \end{array}$	C17-C18-C19-C14 $C17-C18-C19-C23$ $C16-C15-C20-C21$ $C14-C15-C20-C22$ $C14-C15-C20-C22$ $C14-C19-C23-C25$ $C14-C19-C23-C25$ $C14-C19-C23-C24$ $C18-C19-C23-C24$ $C18-C19-C23-C24$ $C1-N3-C26-C27$ $C1-N3-C26-C27$ $C1-N3-C26-C27$ $C1-N3-C26-C27-C28$ $C31-C26-C27-C28$ $C31-C26-C27-C32$ $C32-C27-C28-C29$ $C32-C27-C28-C29$ $C32-C27-C28-C29$ $C27-C28-C29-C30$ $C28-C29-C30-C31$ $C29-C30-C31-C26$	$\begin{array}{c} -0.8 (4) \\ -177.5 (2) \\ 31.2 (4) \\ -152.1 (3) \\ -92.9 (3) \\ 83.9 (3) \\ -101.8 (3) \\ 74.7 (3) \\ 135.6 (2) \\ -47.9 (3) \\ 88.2 (3) \\ -94.8 (3) \\ 0.9 (3) \\ 177.9 (2) \\ -176.3 (2) \\ 0.7 (3) \\ -0.9 (4) \\ 176.3 (2) \\ 0.4 (4) \\ 0.1 (4) \\ -0.1 (4) \end{array}$
C2-NI-C1-N3 $C14-N2-C1-N1$ $C14-N2-C1-N3$ $C26-N3-C1-N1$ $C26-N3-C1-N2$ $C1-N1-C2-C7$ $N1-C2-C3-C4$ $C7-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-C6$ $C4-C5-C6-C7$ $N1-C2-C7-C6$ $C5-C6-C7-C2$ $C4-C3-C8-C10$ $C2-C3-C8-C10$ $C2-C3-C8-C9$ $C2-C3-C8-C9$ $C2-C7-C11-C13$ $C6-C7-C11-C13$ $C2-C7-C11-C12$ $C6-C7-C11-C12$ $C1-N2-C14-C19$	179.0(2) $168.7(2)$ $-13.7(3)$ $-15.4(3)$ $166.85(19)$ $-103.3(3)$ $161.8(2)$ $-8.6(3)$ $4.8(3)$ $0.9(4)$ $-3.0(4)$ $-164.0(2)$ $-0.8(3)$ $40.7(3)$ $-148.0(2)$ $-83.4(3)$ $87.9(3)$ $152.1(2)$ $-37.5(3)$ $-83.7(3)$ $86.8(3)$ $-96.6(3)$	C17-C18-C19-C14 $C17-C18-C19-C23$ $C16-C15-C20-C21$ $C14-C15-C20-C22$ $C14-C15-C20-C22$ $C14-C19-C23-C25$ $C18-C19-C23-C25$ $C14-C19-C23-C24$ $C18-C19-C23-C24$ $C18-C19-C23-C24$ $C1-N3-C26-C27$ $C1-N3-C26-C27$ $C1-N3-C26-C27-C28$ $N3-C26-C27-C28$ $C31-C26-C27-C32$ $C26-C27-C32$ $C26-C27-C32$ $C26-C27-C32$ $C26-C27-C32$ $C26-C27-C28-C29$ $C32-C27-C28-C29$ $C32-C29-C30-C31$ $C29-C30-C31-C26$ $C29-C30-C31-C35$	$\begin{array}{c} -0.8 (4) \\ -177.5 (2) \\ 31.2 (4) \\ -152.1 (3) \\ -92.9 (3) \\ 83.9 (3) \\ -101.8 (3) \\ 74.7 (3) \\ 135.6 (2) \\ -47.9 (3) \\ 88.2 (3) \\ -94.8 (3) \\ 0.9 (3) \\ 177.9 (2) \\ -176.3 (2) \\ 0.7 (3) \\ -0.9 (4) \\ 176.3 (2) \\ 0.4 (4) \\ 0.1 (4) \\ -0.1 (4) \\ -177.7 (2) \end{array}$

C19-C14-C15-C16	1.3 (3)	N3-C26-C31-C30	-177.4 (2)
N2-C14-C15-C16	-179.4 (2)	C27—C26—C31—C35	177.2 (2)
C19—C14—C15—C20	-175.6 (2)	N3—C26—C31—C35	0.2 (3)
N2-C14-C15-C20	3.8 (3)	C28—C27—C32—C34	-92.4 (3)
C14-C15-C16-C17	-1.0 (4)	C26—C27—C32—C34	84.7 (3)
C20-C15-C16-C17	175.9 (2)	C28—C27—C32—C33	31.5 (3)
C15—C16—C17—C18	-0.1 (4)	C26—C27—C32—C33	-151.4 (2)
C16-C17-C18-C19	1.1 (4)	C30-C31-C35-C36	-34.8 (4)
C15-C14-C19-C18	-0.4 (3)	C26—C31—C35—C36	147.6 (3)
N2-C14-C19-C18	-179.8 (2)	C30-C31-C35-C37	90.2 (3)
C15—C14—C19—C23	176.2 (2)	C26—C31—C35—C37	-87.3 (3)

Table 1

Comparison of interatomic distances $(Å, \circ)$ of (I) with free guanidine, (II)

	C1—N1	C1—N2	C1—N3	N1-C1-N2	N2—C1—N3	N3-C1-N1
(I)	1.287 (3)	1.361 (3)	1.374 (3)	125.0 (2)	115.57 (19)	119.42 (19)
(II)	1.316 (2)	1.348 (2)	1.357 (2)	121.99 (13)	118.47 (14)	119.52 (13)

Fig. 1