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The effect of operational sex ratio on fertilization success and clutch size in Japanese medaka 

(Oryzias latipes) 

By Morgan N. MacKinnon 

Abstract 

The operational sex ratio is the number of fertilizable females to mature males in a 

population at a particular time. Variation in this ratio is often associated with change in 

behaviour during mating, including differences in male tactics. In Japanese medaka (Oryzias 

latipes), a species of freshwater fish found throughout Japan, there are two types of male 

alternative mating tactics: sneaking in which small males attempt to achieve some fertilization 

success by joining a spawning pair and releasing sperm, and interference where there is a 

disruption to a reproductive event. In addition, females adjust their clutch sizes in response to 

male behaviour. The operational sex ratio in this species varies across latitudes and this variation 

is linked to differences in mating behaviour and morphology. The objective of this work is to 

determine whether clutch size and proportion of fertilized eggs varies with differing operational 

sex ratio. To measure these responses, I collected eggs from Japanese medaka under four 

experimental operational sex ratios. I determined fertilization success and clutch size for females, 

as well as female growth rate over a 4-month period. There was no significant difference in 

fertilized eggs or clutch size among all four treatments. This can be attributed to fertilization 

assurance in higher operational sex ratios. 
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Introduction  

Mating system structure is influenced by both phylogenetic and ecological factors (Emlen 

and Oring 1977). Mating systems are typically characterized based on the number of mates 

acquired by the non-limiting or most abundant sex of any given species (Emlen and Oring 1977; 

Andersson 1994). To better understand mating systems, it is important to determine how sexual 

selection shapes differential success among individuals in a population. Typically, the intensity 

of sexual selection is higher for males than females due to the differences in reproductive 

investment between the two sexes (Emlen 1977; Gopurenko 2007). This idea was first proposed 

by Darwin (1871), defined as a selective pressure that results in the evolution of characteristics 

that allow an individual to be successful in terms of mating by adopting certain behaviours or 

distinguishable features. For selective pressure to result in evolutionary change there must be a 

positive correlation between mating success and reproductive success such that it results in an 

increase in fitness for the individual (Jones et al. 2004). 

Many studies claim that the strength of sexual selection can be shaped by environmental 

factors or constraints (Emlen and Oring, 1977; Cogliati et al. 2014). While mating systems are 

often considered as “fixed” properties of a species (Cogliati 2014), temporal or spatial variation 

across populations can alter the relative advantage of a particular mating behaviour or 

morphology. This can ultimately lead to a change in mating system structure (Emlen and Oring 

1977). 

The intensity of sexual selection is relatively low in monogamous groups but increases as 

reproductive success becomes skewed in polygamous groups. This relationship can be explained 

by variation in the operational sex ratio (OSR), the number of fertile males to fertilizable 
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females, which ultimately influences mating system structure (Emlen 1976). When measuring 

the effects of OSR, the greater the degree of imbalance in the number of individuals of each sex, 

the greater the expected variance in reproductive success. For example, if the ratio of all sexually 

active males in a population to receptive females is 8:1, the distribution of reproductive success 

is expected to be more strongly skewed than in a male to female ratio of 1:1, as in the biased sex 

ratio not all males will have the opportunity to mate and variance in reproductive success among 

males is expected to be high (Emlen and Oring 1977). 

High variance in reproductive success leads to the evolution of alternative male mating 

strategies and tactics. Alternative reproductive tactics (ARTs) develop from fluctuations in 

environmental conditions, population densities and relative size of a rival (Emlen 2008). ARTs 

are a type of phenotypically plastic trait often referred to as a threshold trait, such that the 

expression of a certain tactic depends on the conditions an animal faces in its surrounding 

environment (Emlen 2008). ARTs include mutually exclusive tactics; they are not expressed at 

the same time in the same individual, but each individual holds the genetic potential to adopt 

either tactic in a particular condition (Emlen 2008). Males that compete aggressively for females 

may exhibit alternative tactics due to a shift in competitive modes associated with changes in the 

OSR and density of populations (Grant et al. 2000; Weir 2013). Sneaking is a type of ART 

commonly displayed in arthropods and some chordate groups (Emlen 2008). This tactic is often 

performed by small males who seek fertilizations while attempting to avoid conflict with larger 

males. A sneaker male uses stealthy movements and inconspicuous behaviour to fertilize eggs in 

the presence of another male. Typically, sneaker males do not fertilize as many eggs as males 

adopting more conventional tactics, but they obtain some reproductive success (Kokko 2008). 
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Fish with external fertilization release sperm into the water, making it difficult to 

monopolize access to females. This reproductive mode is favourable for the evolution of 

alternative mating tactics (Taborsky 2008). When ratios are biased, sneaking can be observed in 

which an unsuccessful male fish may join a spawning pair to achieve some reproductive success 

(Taborsky 2008). In OSRs that are strongly male biased it may be difficult for a male to guard a 

specific female for reproduction and variance is predicted to become lower as mate guarding and 

monopolization is not possible (Emlen and Oring 1977; Weir et al. 2011). In OSRs that are 

female biased, variance in reproductive success is predicted to be smaller as males have access to 

an abundance of females, and sneakers are expected to be less successful. 

Japanese medaka (Oryzias latipes) exhibit male alternative mating tactics. This species is 

a tropical, freshwater fish found around the Japanese archipelago (Fujimoto et al. 2015). When 

mature, medakas copulate daily at dawn and can produce a clutch of approximately 25 eggs per 

day in quality habitats (Grant & Foam 2002). Sexual selective pressure on the medaka has 

resulted in sexual dimorphism; males tend to have large anal fins which are used to hold the 

female during copulation, but females have larger bodies at maturity. Male anal fin size and 

behaviour varies with latitude across their natural range, and this variation can be attributed to 

variation in OSR (Fujimoto et al. 2015). The occurrence of alternative mating tactics in the 

medaka may also result in sneaking behaviours from sexually active males seeking fertilizations 

(Weir 2013). Mating in Japanese medaka involves a tight coupling of males and females, but 

sneak matings and fertilization success by more than one male during a single mating event 

occur frequently under some conditions (Grant et al. 1995; Weir 2013). In addition, males that do 

not initiate copulation can disrupt matings, resulting in a decrease in fertilization success (Grant 

et al. 1995; Weir 2013).  
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Sneaking is more likely to occur in OSRs that are male-biased (Grant et al. 1995; Weir 

2013), as males are less likely to secure a female and those who do not mate may use this 

approach to pass on their genes to the next generation. Sneaking in medaka may occur as a result 

of changes in competitive mode among males when OSR changes; as OSR becomes increasingly 

male-biased, contests for mates may switch from interference competition, which is 

characterized by aggression, to scramble competition observed as the searching and securing of 

mates (Grant et al. 2000). Under scramble competition conditions, sneaking may be more 

prevalent, and thus the variance in reproductive success among males may decrease. 

In highly male biased OSRs, there is more interference than in OSRs closer to unity 

(Grant et al. 1995; Weir 2013). Interference is a type of scramble competition associated with a 

disruption in reproductive events, where a male will insert himself between a spawning pair to 

prevent successful coupling (Weir 2013). In addition, interference can result in a reduction in egg 

fertilization, as well as an increase in female refusal behaviour (Weir 2013). In medaka, there is 

an association between clutch size and male courtship rate (Weir and Grant 2010), such that 

clutch size decreases as males decrease courtship rate due to sperm depletion. Thus, an 

adjustment of clutch size may also be observed when sex ratios are highly male biased, and 

interference occurs more frequently. 

To assess the effects that OSR has on clutch size and fertilization success in female 

Japanese medaka, I measured both clutch size and fertilization success across different OSRs. I 

predict that because of a breakdown of aggressive defense at very highly male-biased OSR, 

variability in mating success will reach a peak and then subsequently decline as interference 

begins to occur. When OSR is female-biased, the distribution of male success should be 
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relatively even because females are abundant and most males should get the opportunity to mate. 

I am also interested in whether or not growth rate varies across operational sex ratio as well as if 

the relationship between body size and clutch size varies among operational sex ratios; these 

were assessed secondarily to my main experimental objectives. 
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Methods 

2.1: Study Species and Experimental Design 

Two hundred and eighty-eight juvenile Japanese medaka (Oryzias latipes) were obtained 

from Aquatic Research Organisms in New Hampshire, U.S.A. Fish were housed in freshwater at 

a salinity of 0.25ppt and temperature ranging from 26-29°C. These parameters were used to 

replicate a medaka’s natural aquatic environment. Lights above the tanks simulated daytime with 

a 14-hour daylight period, with lights on at 7h45.  

 

2.1.1: Tagging, measuring and fin clips 

Fish were anaesthetized using 0.15g/L MS222 (Tricaine S) buffered with 0.3g/L Sodium 

Bicarbonate in 1L of water. The fish were tagged by placing Visual Implant Elastomer tags 

under the first layer of the skin in two of four different locations on each fish, each having its 

own unique combination of tag colours (pink, blue, black, orange, green or yellow). A fish was 

placed on a damp paper towel and a paint brush was used to spread out the anal fins. 

Photographs of the fish were taken at 60x magnification through a dissecting microscope. A 

small ruler was placed next to the fish while photographs were being taken for size reference. 

Standard length measurements were taken using Vernier calipers. A small portion of the caudal 

fin was cut and then placed in a labeled tube in 95% ethanol for later DNA extraction using a 

GenEluteTM Mammalian Genomic DNA Miniprep Kits. Fish were chosen for each OSR at 

random, but the mean and variance among tanks was approximately the same. The average male 

size ranged from 18-25mm and average female size ranged from 18-24mm. 
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2.1.2: Tank Set-up 

Two hundred and eighty-eight fish were then placed in 24 10 gallon tanks 

(50cmx25cmx30cm) in groups of 12 and at four different operational sex ratios: 4:8, 6:6, 8:4 and 

10:2. Fish were sexed based on morphological traits, being classified as male by the presence of 

a large, parallelogram-shaped anal fin or as female based on the presence of a smaller triangular 

anal fin and with a large, rounded abdomen. Fish were fed twice a day: in the morning with 

frozen adult Artemia and in the afternoon with live Artemia nauplii.   

 

2.2 Data Collection 

2.2.1 Egg Collection 

For a two-month period, eggs were collected from females on a daily basis. Each OSR 

treatment was sampled each day. Females with eggs on their ventral side were identified and 

collected in small plastic containers, ensuring a sufficient amount of water in the dish for the 

female to remain submerged. A small paint brush was used to brush along each female’s ventral 

side to remove the eggs. The eggs were placed into a petri dish and immersed in rearing solution 

(1.0g NaCl, 0.03g KCl, 0.04g CaCl2· 2H2O, 0.163g MgSO4·7H2O, 10mL 0.01% methylene blue 

and distilled water to 1L). Eggs that were adhered together with filaments were separated using a 

metal spatula to ensure that eggs were completely separated and submerged in the rearing 

solution. Each female’s identification was recorded before she was placed back into her original 

tank. Another female with eggs was then identified and this process was repeated for every 

female for approximately four tanks a day. Twelve tanks were sampled twice while the other 

twelve tanks were sampled three times. The number of times a tank could be sampled was 

restricted by time allowed for the experiment.  
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2.2.2 Counting Fertilized Eggs 

 Successful egg fertilization was assessed 24 hours after the eggs were first placed in 

rearing solution. Fertilized eggs were identifiable by the formation of a perivitelline space 

between the outer and inner egg membranes. The egg itself has a yellowish hue due to the 

presence of yolk. When observing the difference between fertilized and unfertilized eggs, the 

blue dye in the rearing solution (methylene blue) will enter unfertilized eggs, resulting in a blue 

colour. The number of fertilized and unfertilized eggs for each female was recorded. Embryos 

remained in rearing solution for 9 days, after which they were stored in a 1ml tube with 95% 

ethanol for later DNA analysis.   

 

2.3 Data Analysis 

 Data were analyzed using Graphpad Prism™. Relationships between operational sex ratio 

and fertilized eggs, unfertilized eggs, and total clutch size were tested using a one-way ANOVA. 

To determine if operational sex ratio impacted female growth rate, the relationship between 

growth rate of females and operational sex ratio was assessed using a one-way ANOVA. Linear 

regression was used to determine whether the relationship between clutch size and body size 

varied across OSRs.  
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Results  

3.1: Measurements 

 Proportion of fertilized eggs, body size, clutch size and growth rate for each operational 

sex ratio are summarized in Table 1.  

 

Table 1: Proportion of fertilized eggs (%) with standard error (SE), mean body size (cm) with 

standard error (SE), the average clutch size (number of eggs) with standard error (SE) and the 

average growth rate (mm/3 months) with standard error (SE) for four different operational sex 

ratios. 

Operational 
Sex Ratio 

Proportion of 
Fertilized Eggs (%) 

Initial Body Size of 
Females 

Clutch Size 
(number of eggs) 

Growth Rate  
(mm/3 months) 

4:8 (0.5) 95.3 ±2.13 21.99cm ± 0.370cm 5.44 ±1.00 1.87 ±0.172 
6:6 (1) 92.9 ±2.80 21.08cm ± 0.346cm 5.50 ±0.701 2.38 ±0.233 
8:4 (2) 97.8 ±1.22 22.12cm ± 0.263cm 7.50 ±1.21 1.92 ±0.247 
10:2 (5) 100 ±0 22.76cm ± 0.254cm 7.20 ±1.85 2.09 ±0.660 
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3.2 Effects of Operational Sex Ratio  

3.2.1 Operational sex ratio vs clutch size 

 The relationship between clutch size and OSR was not significant (one-way ANOVA: 

F3,20 =0.40, P=0.76; Figure 1).  

 

Figure 1: Relationship between operational sex ratio and clutch size. Data are averages and error 

bars represent standard error.  
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3.2.2 Operational sex ratio vs proportion of fertilized eggs 

 The relationship between OSR and proportion of fertilized eggs was not significant (one-

way ANOVA: F3,20 = 1.49, p=0.22; Figure 2).  

 

Figure 2: Relationship between operational sex ratio and proportion of fertilized eggs. Bars 

represent averages; error bars are standard error. Operational sex ratio of 5 had a fertilization 

success rate of 100%, therefore there is no error bar.  
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3.2.3 Operational sex ratio vs growth Rate  

 There was not a significant relationship between growth rate (mm/3 months) and OSR 

(one-way ANOVA: F3,20 =2.67, p=0.6177; Figure 3) 

 

Figure 3: Relationship between operational sex ratio and growth rate. Bars represent averages; 

error bars are standard error  
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3.2.4 Female body size vs clutch size 

 There were significant relationships between body size and clutch size for the lower 

OSRs (0.5 and 1), while they were not significant for the male-biased OSRs (Table 2, Figure 4). 

Outlying data points in OSRs 0.5, 1, 2 and 5 are real data and were not removed for this reason.  

  

Table 2: Regression analysis on female body size versus four different operational sex ratio 

treatments. The slope, F-statistic and p-value are summarized for each operational sex ratio.   

 OSR 

 0.5 (4:8) 1 (6:6) 2 (8:4) 5 (10:2) 

Slope 1.31± 0.54 1.31± 0.54 1.08± 1.0 0.63± 1.11 

F statistic F1,23=5.938 F1,21=4.766  F1,12=1.169 F1,8=0.3246 

p-value p=0.0230 p=0.030 p=0.31 p=0.58 
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a)                                                                       b) 

 

       c)                                                                        d) 

 

Figure 4:  

Relationship between clutch size and body size for OSR of: a) 4:8; b) 6:6; c) 8:4; d) 10:2.   
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Discussion 

 The proportion of fertilized eggs and clutch size did not differ across operational sex 

ratios. However, there was a positive trend in clutch size with increasingly male-biased sex 

ratios. Relationships among body size and clutch size for four different operational sex ratios 

differed across OSRs; the 0.5 and 1 operational sex ratios were significantly positive, while the 

operational sex ratios of 2 and 5 were not. Overall, there were observed positive trends in each 

operational sex ratio, indicating larger females typically produced larger clutch sizes.  

 

The relationship between proportion of fertilized eggs and operational sex ratio did not 

match my predictions. I predicted that at a high male density, disruption during mating would 

result in a decrease in spawning duration, egg fertilization and clutch size (Weir 2013; Klemme 

et al. 2007). However, the observed absence of this relationship from this study could be 

attributed to the alternative hypothesis that increasing the number of males may also increase 

fertilization assurance. This could be because the larger number of males in a sex ratio, the more 

eager they are to mate, resulting in increased fertilization. Vahl et al. (2013) found no indication 

of fertilization success correlated with sex ratio, much like I observed in this experiment. 

Similarly, the absence of any observed decrease in the proportion of fertilized eggs in the highly 

male biased operational sex ratio observed in this experiment could be because female encounter 

rate is lower, high-quality males may not fully express their competitive potential (Dreiss et al. 

2010). The constant harassment from males may force females to mate with more males, 

therefore giving them a higher reproductive success because more sperm would be available.  
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Frequent copulation during mating may be another type of fertilization assurance in 

extremely high male biased ratios in medakas, ensuring fertilized eggs regardless of the 

operational sex ratio because of an abundance of sperm. Often, a strongly male biased OSR leads 

to stronger sexual selection over generations (Dearborn 2001). Typically, as the operational sex 

ratio becomes skewed towards males, polygyny should occur, where individual males can 

monopolize more than one female and where some males may gain more success than others 

(Emlen and Oring 1977). More males mean more competitors; this could result in more available 

sperm for fertilization, thus increasing fertilization success.  

 

Successful reproduction depends on a series of complex courting events such as male 

encounter, mate choice and mating (Vahl et al. 2013). Unfortunately, spawnings were not 

directly observed during this experiment. The results with respect to clutch size and the 

proportion of fertilized eggs may be due to lack of interference, which was typically expected to 

occur at extremely male biased sex ratios. If interference was occurring as predicted, it is likely 

that interference could result in a decrease in fertilization success and clutch size in the female 

medaka (Weir and Grant 2010). This indicates that females are more likely to decrease their 

clutch size in response to extremely highly male biased ratios where interference is presumed to 

be occurring more. Similarly, females respond to male signals of fertility by reducing clutch size 

(Weir and Grant 2010).   

 

Based on previous results in this experiment that male growth increased with OSR, I 

examined female growth rate. While not significant across treatments, female growth rate was 

highest in the 10:2 operational sex ratio. The findings are consistent with other studies showing 
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that intensity of selection acting on female body size was higher in male biased operational sex 

ratios (Fitze & Gaillard 2008). This could be because females are being subjected to more sperm 

in the 10:2 operational sex ratio, therefore a faster increase in body size may be beneficial to 

compensate for the cost of breeding (Fitze & Gaillard 2008). 

 

 Larger females can have more eggs (Darwin 1874). This is likely a result of selection 

that may have resulted from the onset of size-dependent costs of increased male aggression for 

females in the highly male-biased operational sex ratio (Fitze & Gaillard 2008; Head & Brooks 

2006). This is a trend commonly seen over generations, however this experiment was only done 

over a single generation, and thus differences in growth rate are attributable only to phenotypic 

plasticity.  The increased size may also be due to the larger observed clutch sizes in females in 

male biased operational sex ratios. These extra eggs may have been an extra source of nutrients 

for the fish to feed on, leading to larger female size in higher operational sex ratios. 

 

The relationship between female body size and clutch size was significantly positive in 

the 4:8 and 6:6 operational sex ratios, however it was not significant within the 8:4 and 10:2 

operational sex ratios. Body size is often subject to variation depending on nutrition, 

temperature, environmental conditions and genes (Gürtler et al. 2017). Typically, larger females 

have higher fecundity (Marshall et al. 2013; Monroe 2015) because in theory larger females have 

more space and capacity to produce eggs (Darwin 1874). Marshall et al. (2013) predicted that 

female body size is more sensitive to environmental change than male body size. This may result 

in lack of a significant relationship between body size and clutch size in the higher male biased 

operational sex ratios. The male biased environment may affect only the fecundity rate of 
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females. Outlying data points in all four OSRs could be influential to the significant relationship 

found in OSRs of 4:8 and 6:6. These points were left in the analysis because they are real data 

collected from the experiment and therefore should not be excluded.  

 

Operational sex ratio and the effects on fertilization success and mating system structure 

show differing trends throughout literature (Weir 2013; Klemme et al. 2007; Vahl et al. 2013). 

The results obtained from this study suggest that operational sex ratio does not significantly 

affect clutch size or the proportion of fertilized eggs. Fertilization assurance is most likely the 

reason for these results; the more sperm in the environment, the more likely eggs will become 

fertilized and the larger the clutch sizes will be. Studies on growth rate of females in operational 

sex ratios are scarce, and though some studies suggest that females grow in more highly-male 

biased ratios faster than female-biased, the reason is unclear (Fitze & Gaillard 2008). Operational 

sex ratio does show interesting effects on clutch size, proportion of fertilized eggs, growth rate 

and relationship between clutch size and body size. Though some relationships were not 

significant and did not match predictions, the number of males in a sex ratio does alter some 

aspects of female reproductive success. The current literature appears to have mixed results 

(Weir 2013; Klemme et al. 2007; Vahl et al. 2013), and thus it would be beneficial to repeat 

similar experiments to determine if interference occurs at the rate at which we had predicted and 

observe any further effects of operational sex ratio on not only the medaka but other species as 

well.  
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