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Mapping plant communities and understanding the landscape
structure of coastal barrens using an unmanned aerial vehicle

by Michael A. Buckland-Nicks

Abstract

Coastal barrens are landscape mosaics - patchworks of plant communities that
exist in harsh environmental conditions created by land-sea interactions and shallow
soils. Many rare and uncommon species inhabit these ecosystems, making them a high
priority for conservation. In Nova Scotia, coastal barrens are abundant along the coastline
of the Halifax region. Little is known of the spatial distributions of plant communities
that inhabit them and their overall landscape structure. The purpose of this study was to
investigate the use of a UAV to map plant communities and to quantify the landscape
structure of coastal barrens. First, high-resolution multispectral UAV imagery was
evaluated to discriminate plant communities from three classification levels across three
coastal barrens sites in Halifax, Nova Scotia: Chebucto Head, Prospect Bay, and Polly’s
Cove. All plant communities were discriminated with 95% confidence except for one
pair, showing that plant communities in the coastal barrens could be discriminated with a
high level of confidence using UAV imagery. Next, UAV imagery was classified to
produce detailed maps of plant communities for the three coastal barrens landscapes.
Environmental factors, such as elevation, stream networks and wind exposure were also
mapped to help understand landscape structure. Sites were dominated by shrublands and
dwarf heath; however, many other types of communities co-occurred on these landscapes,
including bogs, salt marshes, and tree islands. The most common plant community across

the three sites was Gaylussacia baccata shrubland. Plant community patches varied in



size, shape, abundance, and spatial distribution from one plant community type to another
and in many cases from one site to another. Landscape patterns were driven by various
combinations of environmental factors, including slope position, proximity to stream
networks, elevation, and distance to coastline. Overall differences in landscape structure
could be mostly explained by the degree of topographic heterogeneity of each landscape.
UAVs are an excellent tool for mapping plant communities and quantifying landscape
structure and this information is critical for informing land managers, conservation

planners, and policy makers.
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Introduction

Island viewed from a UAV off Polly’s Cove, Nova Scotia
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Ecosystems and their biodiversity are globally threatened by human activities
(Mckee et al., 2004; Brooks et al., 2006). Biodiverse ecosystems are intrinsically valuable
to human society and the ecosystem services they provide are irreplaceable (Edwards and
Abivardi, 1998). Coastal environments are of particular concern, since more than forty
percent of the global population live in coastal areas (UN Atlas of the Oceans, 2015).
High population densities primarily threaten coastal environments due to land use
activities, such as coastal development, timber harvesting, burning, agriculture, and
tourism traffic. The pressures exhibited on coastal environments suggest a deep need to
study coastal ecosystems and their biodiversity to inform land managers, conservation
planners, and policy makers on how to protect these areas for long-term conservation.

Coastal barrens are open habitats that are dominated by low-growing vegetation
such as grasses and ericaceous woody shrubs (Rodwell, 1991; Oberndorfer and
Lundholm, 2009; Burley and Lundholm, 2010; Porter, 2013). They occur in coastal areas
all over the world (Williams and Ashton, 1987; Rodwell, 1991; Anderson et al., 1999;
Webb, 1998; Porter, 2013). Coastal barrens are often described as landscape mosaics —
patchworks of plant communities that exist in harsh environmental conditions created by
land-sea interactions and shallow soils (Oberndorfer and Lundholm, 2009; Burley and
Lundholm, 2010; Porter, 2013). Despite what the name implies, coastal barrens can
support a large range of habitat types including wetlands, shrublands, dwarf heaths, and
trees islands and can contain high levels of biodiversity and many rare species
(Oberndorfer and Lundholm, 2009; Burley and Lundholm, 2010; Porter, 2013).

In Nova Scotia, Canada, coastal barrens are scattered along the coastlines. Some

of the most iconic sites are found in the Halifax region. The province of Nova Scotia has
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recognized the importance of protecting the coastal barrens and previous studies have
documented their species and communities (Oberndorfer and Lundholm, 2009; Burley
and Lundholm, 2010; Cameron and Bondrup-Nielsen, 2013; Porter, 2013). There is still
much to learn about these ecosystems, including the spatial distributions and spatial
patterns of species and communities, their overall landscape composition and structure,
and the biotic and abiotic processes that form and change them. These aspects of
landscape ecology are critical for improving our knowledge of coastal barrens and

informing conservation managers how to protect and manage these ecosystems.

Characteristics of Coastal Barrens

Geographically, coastal barrens are widespread. In North America, they are
particularly abundant along the northeastern coast of the United States and Atlantic
Canada (Motzkin and Foster, 2002; Griffiths and Orians, 2004; Oberndorfer and
Lundholm, 2009; Porter, 2013). They are less abundant in South America, although
McCulloch et al. (2000) reported the presence of coastal heathlands from
palaeoecological data. They are prominent in Britain, the Netherlands, and other coastal
European countries (Rodwell, 1991; Webb, 1998; Piessens et al., 2005; Saure et al.,
2013). In Europe, they are considered to be ‘cultural landscapes’, since historically
coastal barrens were used for farming and sheep grazing (Webb, 1998; von Oheimb et al.,
2008). Coastal barrens are also documented in Australia (Williams and Ashton, 1987;
Martin and Catterall, 2001) and Africa (Boucher, 1983; Milewski, 1983).

The environmental conditions for coastal barrens are often harsh for both plants

and animals. Soil properties are among the most important factors for plant survival
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(Smith et al., 2012). Plants require soil not only for anchoring themselves, but also for
receiving nutrients, minerals, and water for their vital functioning (Chapin 111, 1980;
Barber, 1995). In general, edaphic conditions for coastal barrens are relatively poor for
plants due to their acidic, nutrient-poor, and often shallow nature (Webb, 1998;
Oberndorfer and Lundholm, 2009; Porter, 2013). Acidic soils are problematic for
vegetation because they can make vital nutrients unavailable due to leaching and can
cause increases in toxic metals such as aluminum, which is detrimental for root
development and can cause the yellowing of plant leaves (De Graaf et al., 1997). When
soils become too acidic, species diversity and richness generally decrease (Roem and
Berendse, 2000). Studies by Oberndorfer and Lundholm (2009) and Porter (2013) both
found that nutrient availability in coastal barrens in Nova Scotia can vary significantly,
which can be stressful for plants. Variability in nutrient availability can promote species
and habitat diversity by creating multiple niches, which may partly explain the high
levels of diversity and rare species found in coastal barrens (Oberndorfer and Lundholm,
2009; Cameron and Bondrup-Nielsen, 2013; Porter, 2013).

High winds are characteristic of coastal environments. Sea breezes form due to
temperature differences between the land and the sea (Simpson, 1994). Temperature
differences creates differences in pressure, resulting in a sea breeze moving from the
ocean towards the land. High winds can be stressful for plants. The turbulent and drag
forces of wind can cause damage to plant tissues such as tearing, stripping, and abrasion
(Cleugh et al., 1998). Sometimes strong winds can uproot plants (De Langre, 2008).
Winds can also cause erosion and remove topsoil, exposing plant roots, further increasing

the risk of uprooting and reducing available soil for root exploration. Winds can also
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speed up the evaporation of water, which can reduce the amount of available water for
plants (Cleugh et al., 1998). Lastly, wind also can influence other environmental factors,
such as precipitation patterns and salt spray (Baker et al., 2001). Some studies have
suggested wind exposure is one of the most important factors driving the structure and
composition of vegetation in the coastal barrens (Oberndorfer and Lundholm, 2009,
Burley and Lundholm, 2010, Porter, 2013), although wind models have not yet been
made to test this assumption.

The three-dimensional shape of a landscape influences the amount of exposure an
area receives to wind and other environmental factors (Sebastia, 2004; Mikita and
Kliméanek, 2010). Topographic heterogeneity can result in a mosaic of habitat patches
depending on the degree and scale of topographic variability (Vivian-Smith, 1996;
Sebastia, 2004; Warren 11, 2008). In a study on alvars, a type of barren ecosystem, Stark
et al. (2004) found that microtopography was possibly the most important factor
determining alvar succession by forest. Furthermore, elevation gradients can affect the
distribution and structure of plant communities (Choler et al., 2001; Lomolino, 2001).
Coastal barrens are highly variable in their topographic ruggedness (Heikens and
Robertson, 1994) and the extent of ruggedness and differences in elevation likely plays
an important role in defining the occurrence, distribution, and persistence of coastal
barren vegetation (Burley and Lundholm, 2010; Porter, 2013).

Salt spray is common in coastal areas and typically occurs when ocean waves
strike the surface of rocks or cliff faces. This causes salt water to be sprayed into the air,
often blowing across the nearby landscape. Salt spray coupled with high winds can cause

physical injury to plant tissues, and high salt content accumulated on plant leaves and in
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the soil can inhibit water uptake and even cause osmotic injury at the cellular level
(Bernstein and Hayward, 1958; Dirr, 1976). Oberndorfer and Lundholm (2009) found
that in some coastal barren sites in Nova Scotia, there was a direct correlation between
sodium content in the soil and proximity to the coast, providing evidence of this effect.
Griffiths and Orians (2004) hypothesized that salt spray may be an important factor for
preventing forest encroachment on coastal barrens, since salt spray can inhibit plant
growth by inducing water stress, affect plant physiology, and inhibit the uptake of certain
nutrients. In one of their experiments, a common tree species, Pinus rigida, was
transplanted at different distances from a coastline in Massachusetts; it was found that
although salt spray didn’t cause direct mortality, there were significant signs of growth
inhibition caused by the salt (Griffiths and Orians, 2004), providing evidence that the salt
spray may prevent or slow tree encroachment on coastal barrens. Although the
significance of salt spray will vary from one region to another, it is likely an important
factor that influences plant community composition and distribution in the coastal
barrens.

Water is essential for the structure and function of plants (Taiz and Zeiger, 2006).
It is required for important physiological processes like photosynthesis, creating turgor
pressure for cell rigidity, and the transportation of vital materials across the plant. The
availability of water across a landscape is dependent on many factors. Since coastal
barrens occur in coastal areas, they are often cool in the growing season compared to
inland areas, and can experience relatively high levels of humidity, fog, and precipitation
(Bakun, 1990). Precipitation patterns are typically stable and constant in coastal areas due

to two main atmospheric processes: orographic and convectional uplifting. Orographic
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uplift occurs when an air mass encounters an elevated surface and becomes physically
uplifted (Wu et al., 2006). This is common when a sea-breeze forms from the ocean and
travels inland where the landscape is elevated above the ocean. If the landscape
topography is quite variable, then precipitation regimes will be affected. Convectional
uplift happens when a cool air mass travels over a warmer surface and rises due to
increasing in temperature. Sea-breezes are cool because they are generated from the
ocean and when they travel inland where it is warmer, convectional uplift occurs.
Uplifting will cause air to become cooler and denser, approaching the saturation level for
water vapor in which precipitation will take place (Wu et al., 2006). Interestingly, Baker
et al. (2001) found that coastline curvature can also impact precipitation regimes, where
convex coastlines are associated with heavier rainfall. Despite regular precipitation
regimes, coastal barrens can still exhibit drought-like conditions due to their combination
of shallow soil and high winds, which can increase evaporation. Landscape topography
also plays a key role in water regimes, since conditions tend to be wetter in valleys and
dryer on slopes and ridges. Salt spray can also induce water-stress by inhibiting water
absorption in plant roots (Bernstein and Hayward, 1958). As such, water availability in
coastal barrens can be highly variable, providing opportunities for plants that reside on
either end of the water-tolerance spectrum to establish in these ecosystems (Rodwell,
1991; Oberndorfer and Lundholm, 2009; Porter, 2013).

The family Ericaceae is the most common family of plants observed in coastal
barrens (Rodwell, 1991; Webb, 1998; Tybirk et al., 2000; Oberndorfer and Lundholm,
2009; Porter, 2013). They are a very diverse group of woody flowering plants that are

thought to have originated in North America during the time it belonged to the
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supercontinent Laurasia, approximately 200-300 million years ago (Kron and Luteyn,
2005). Ericoids are now found in all parts of the world and many are adapted for shallow
soil conditions, high wind exposure, and drought (Llorens et al., 2004). In Nova Scotia,
an ericoid called Empetrum nigrum, commonly known as black crowberry, is the most
dominant plant species on the coastal barrens (Oberndorfer and Lundholm, 2009; Hill et
al., 2012; Porter, 2013). In Europe, it is also very prominent (Bell and Tallis, 1973; De
Shmidt, 1977; Rodwell, 1991; Tybirk et al., 2000) and it is often accompanied by another
ericoid shrub Calluna vulgaris, known as common heather, which is the most dominant
heathland plant in Europe (Sedlakovéa and Chytry, 1999; Calvo et al., 2002).

Coastal barrens are diverse ecosystems that can be hot spots for uncommon and
rare species. Oberndorfer and Lundholm (2009) surveyed six coastal barren sites in Nova
Scotia using field plots and recorded 105 species of vascular plants, 41 species of
macrolichens, and 27 species of mosses. Furthermore, 11 species were provincially rare.
Interestingly, of the 173 species identified during the study, only 15 were found across all
sites, suggesting that floristic compositions of coastal barrens can be geographically
variable, which should be an important consideration for conservation management. The
study concluded that the plant species and communities observed in the coastal barrens
were similar to those observed in other coastal barrens around the world, particularly in
Europe and New England. In a similar study, Porter (2013) collected field plot data on
plant species abundances for 49 coastal barren sites in Nova Scotia to classify coastal
barren plant communities. Over 253 species of vascular plants, mosses, and lichens were
observed and 13 were found to be rare. Most vascular plant species belonged to the

family Ericaceae; however, many other species belonged to Rosaceae, Asteraceae, and
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Poaceae (true grasses). These studies show that coastal barrens can contain high amounts
of biodiversity and are often home to rare flora, highlighting their importance for

conservation (Anderson et al., 1999; Latham, 2003).

Classification of Vegetation

In the natural world, there have been two main views about how vegetation exists:
as discrete units or patches, in the form of plant communities or associations (Clements,
1916), or continuous variation of individual species along environmental gradients
(Gleason, 1926). The modern synthesis of these two views assumes that plant species are
distributed individualistically but can form associations or communities that are in
discrete and recognizable units (van der Maarel and Franklin, 2013; Porter, 2013). A
plant community will be defined as “a relatively uniform piece of vegetation in a uniform
environment, with a recognizable floristic composition and structure that is relatively
distinct from the surrounding vegetation” (van der Maarel and Franklin, 2013). Although
classifications of plant communities are human constructs, it is still valuable to classify
vegetation. It seeks to simplify the multiple-species continuum, helping to understand
ecological patterns and processes in a manageable way (Grossman et al., 1994; NPS,
2011). Doing so can help simplify and communicate ecological information to land
managers, conservation planners, and policy makers.

The Canadian National Vegetation Classification (CNVC, 2013) is a vegetation
classification system that consists of an 8-level taxonomic hierarchy. It uses a
physiognomic-floristic approach to classifying vegetation at different levels in the

hierarchy and is consistent with the United States National VVegetation Classification
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(USNVC) and the International Vegetation Classification (IVC) (Grossman et al., 1998).
In this hierarchy, the “association” is the finest level of classification and is based
primarily on floristic criteria (e.g. Empetrum nigrum — Juniperus communis dwarf heath).
The “formation class” is the coarsest level of classification and is based primarily on
physiognomy (e.g. shrubland). All classification levels are valuable to use and offer

important ecological information at different scales of interest.

Landscape Ecology

Landscape ecology is the study of interacting organisms and their distributions
across landscapes. A landscape generally refers to a landform or surface of a region and
its associated habitats (Turner, 1989). Landscapes are scale-dependent and so are the
landscape patches (Wiens, 1976). A widely held view of landscapes is the patch-corridor-
matrix model (Forman, 1995), which describes landscapes as mosaics consisting of
patches, corridors, and a background matrix. The distribution and degree of patchiness
across landscapes can influence the distributions of organisms, their interactions, and
their adaptations (Wiens, 1976). Furthermore, the size, shape, and distribution of patches,
i.e., their spatial configuration, can influence patterns of species abundance in animals
such as birds (Turner, 1989). A great deal can be learned by studying the interactions and
distributions of organisms across landscapes, and this knowledge can be applied to many
disciplines, such as integrating land-use planning and decision making (Turner, 1989).

There are three important characteristics of landscapes that interest landscape
ecologists: landscape structure, function, and change (McGarigal and Marks, 1995).

Landscape structure refers to the composition (global) and spatial configuration (local) of
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landscape features and patches that make up a landscape. It also refers to the spatial
heterogeneity of a landscape, including the heterogeneity of habitat patches, geological
features, and environmental conditions. Landscape function refers to interactions of
landscape patches or elements and the flow of energy, materials, and organisms across
landscapes. Landscape change is the alteration of landscape structure and function over
time. To understand landscape function or change, landscape structure must be known
(McGarigal and Marks, 1995). Landscape structure can be quantified using land cover
maps and computing various kinds of landscape metrics using geographic information
systems (GIS) (McGarigal et al., 2009). Land cover maps display the distributions of
landscape features and species or communities and GIS provides the ability to analyze
and quantify the spatial patterns and interrelationships within a map, for example
calculating the total area occupied by a mapping class. Making accurate land cover maps
can be challenging depending on the scale of study and level of detail desired; however,

recent advances in remote sensing technology have made map-making more feasible.

Remote Sensing

Remote sensing is the science of obtaining information from objects at a distance.
Many different platforms can be used to do remote sensing including satellites, manned
aircraft, and more recently unmanned aerial vehicles (UAVS) (Ustin and Gamon, 2010).
Global landcover maps have been made using the SPOT4-VEGETATION satellite with a
1 km pixel resolution and the Landsat ETM+ satellite with a 30 m pixel resolution (Xie et
al., 2008). The Worldview-2 Satellite has one of the finest resolutions for satellite

imagery to date with 2 m pixel resolution; however, this resolution is still insufficient to
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resolve important details of vegetation for mapping at the fine scale (Adam et al., 2010;
Cruzan et al., 2016). Vegetation has also been successfully mapped using manned
aircraft, which can collect both spectral and 3D structural data using a variety of sensors,
such as hyperspectral sensors and LIDAR (light detection and ranging) (Hill and
Thomson, 2005; Asner et al., 2015; Burai et al., 2015), at even higher resolutions than
satellites. Although the resolution is greater, the cost of collecting remotely sensed data
with a manned aircraft is very high and not practical for studies requiring frequent
surveys.

Mapping remotely sensed data can be useful in many research areas and
disciplines, particularly in plant ecology. Remote sensing has been used to map
biophysical parameters of vegetation, such as stress levels, chlorophyll, leaf water
content, leaf area index (LAI), and biomass (Adam et al., 2010; Mathews and Jensen,
2013; Aasen et al., 2015; Galidaki et al., 2017). Disturbance regimes can also be detected
by remote sensors; for example, Minaiik and Langhammer (2016) used a UAV to model
disturbance dynamics of a forest and response of individual trees to the bark beetle.
Remote sensing can also be used to map the distribution of organisms. Baldeck et al.
(2014) collected airborne LIDAR and hyperspectral imagery from a savanna in Kruger
National Park, South Africa to map over 500,000 tree and shrub crowns across a 144 km?
landscape. Producing the map revealed complex landscape patterns of woody plant
communities, which would not have been observable using field-based methods alone. In
another example, Chastain et al. (2008) used a combination of field data, remote sensing
data, and topographic data to map plant communities based on the USNVC (United

States National Vegetation Classification) in Ozark National Scenic Riverways, Missouri.
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Interestingly, their initial map of 49 associations had less accuracy and was not as useful
to resource managers as compared to their revised map containing 33 associations.

Many challenges still exist to collect remote sensing data in a cost-effective, time-
efficient manner, and at the desired resolution for the investigation. To map plant
communities in the coastal barrens, a very high resolution of remotely sensed data would
be required because coastal barrens are patchy at very fine scales. This fine-scale
patchiness would have important implications for how organisms interact, how they are
distributed, and the overall structure and function of coastal barrens landscapes. In some
cases, patches can be very small (< 1 m), such as a patch of lichen, and transitions from
one patch to another can be abrupt (Burley and Lundholm, 2010). Additionally,
differences in the 3D structure of vegetation canopies could be useful for discriminating
plant community types and their physiognomic forms, such as tree islands compared to
shrublands. This would require very high-resolution 3D remote sensing data to detect
structural differences. Conventional remote sensing techniques are likely inadequate for
achieving the level of detail required to discriminate plant community patches at the fine-

scale and accurately map the distributions of plant communities in the coastal barrens.

Unmanned Aerial Vehicles

More recently, commercial UAVS, which are synonymous with unmanned aircraft
systems (UAS), can capture very high-resolution aerial imagery with pixel sizes in the
low centimeters (e.g. Puttock et al., 2015). At this level of detail, vegetation stands can
easily be differentiated, and researchers have begun to construct highly detailed

vegetation maps that are giving the field of landscape ecology a whole new perspective
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(Gongalves et al., 2015; Guillot and Pouget, 2015; Sturdivant et al., 2017). UAVs are also
receiving a lot of attention due to their low-cost and ability to cover large regions in a
relatively short amount of time. They have the potential to repeatedly survey areas,
providing not only a good spatial resolution, but a good temporal resolution as well —an
aspect that has often limited the use of satellite imagery and manned aircraft.
Furthermore, UAVs can collect high-resolution data about the environment by being
equipped with specialized sensors for hyperspectral imagery, thermal imagery, and even
LIDAR, like manned aircraft (Klemas, 2015). They can also be equipped with cameras
that capture light in the NIR (near-infrared) spectrum, which is very useful for
differentiating vegetation characteristics (Ustin and Gamon, 2010). UAVs can capture
sequential overlapping aerial imagery, making it possible to compute high-resolution 3D
information of vegetation canopies and landscape features using structure from motion
(SfM) photogrammetry (Micheletti et al., 2015), providing an unprecedented level of 3D
detail at regional scales (Remondino et al., 2011).

Already UAVs have been used to produce highly detailed distributional maps of
vegetation across landscapes. Zweig et al. (2015) used a UAV to map wetland
communities in a 1 km area in Florida. In a mountainous heathland in Portugal,
Goncalves et al. (2015) derived spectral indices from UAV imagery to classify heathland
communities. Fraser et al. (2016) used a UAV to collect sub-centimeter aerial imagery
and computed ultradense 3D point clouds with a 1 cm resolution to quantify shrub
heights in the low-Arctic. In an application of UAVs in a coastal environment, Sturdivant
et al. (2017) produced accurate landcover maps of beach vegetation consisting of

foredunes, mashes, shrubs, and herbaceous vegetation. These applications demonstrate
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that UAVs can collect high-resolution spectral and 3D structural data across landscapes,
offering a promising solution to map plant community patches in the coastal barrens at

the fine-scale.

Study Sites

Coastal barrens are abundant in Atlantic Canada and some of the most iconic sites
are found in the Halifax region of Nova Scotia, including Chebucto Head, Prospect Bay,
and Polly’s Cove. The climate of Halifax, Nova Scotia is cool and mild with annual
rainfall amounts of 1200 mm, annual snowfall amounts of 221 cm, and an average annual
temperature of 6.6°C (ECCC, 2018). The spring and summer growing season tends to run
from May to September with average monthly temperatures above 10°C, while the fall
and winter months extend from October to April with temperatures below freezing.
Annual wind speeds are 16.5 km/h and average wind direction is south during the spring
and summer and northwest during the fall and winter (ECCC, 2018). The surficial
geology of the Halifax region is largely composed of granitoid rock from the Devonian-
Carboniferous period (MacDonald et al., 1992). Weathering and erosion of granite is very
slow (Oosting and Anderson, 1939), which may explain the abundance and persistence of

coastal barrens in the Halifax Region.

Chebucto Head
Chebucto Head, located at N 44.51008 W 63.52659, is approximately 25 km
southeast of Halifax. It is part of the Duncan’s Cove Nature Reserve and is frequently

visited by tourists for its hiking trails and its iconic light house. The site is characterised
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by its tall granite cliffs, exposed rock outcrops and dwarf heath along the coastline. The
terrain is very rugged, with many hills and valleys. Many species and communities have
been documented at the site including various types of bogs, shrublands, dwarf heath, and
tree islands (Oberndorfer and Lundholm, 2009; Burley and Lundholm, 2010; Porter,

2013).

Prospect Bay

Prospect Bay, located at N 44.47444, W 63.80156, is southwest of the city of
Halifax, Nova Scotia and is situated next to a small fishing community known as
Prospect Village. Part of the site is owned by the Nature Conservancy of Canada (NCC)
and the other part by a private landowner. Although little research has been done in the
area to document its flora, it is frequently visited for its hiking trails. The terrain is simple
and consists mostly of rolling hills and granite rocks along the coastline. Hill et al. (2012)

describe the area as being dominated by Empetrum nigrum dwarf heath.

Polly’s Cove

Polly’s Cove is 45 km southwest of Halifax and is located at approximately N
44.49088, W 63.88388 within a few kilometers of one of the most iconic coastal barrens
sites around the world — Peggy’s Cove. It is part of the West Dover Provincial Park and is
stewarded by the Nova Scotia Department of Natural Resources (NSDNR). Like
Chebucto Head, the site has rugged terrain with exposed rocky ridges, deep valleys, and
granite cliffs along the coastline. It is also frequently visited by tourists for its hiking

trails along the coastline. Like Prospect Bay, few studies have documented the site’s
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flora. Dwarf heath is generally observed along the coastline and further inland are tree

islands, bogs, and shrublands.

Purpose of Study
The purpose of this study is to investigate the use of a UAV to map plant
communities and understand the landscape structure of the coastal barrens in Halifax,
Nova Scotia. The research questions of this study are as follows:
1) Can multispectral UAV imagery be used to discriminate plant community types in
the coastal barrens?
2) What are the landscape patterns of plant communities in the coastal barrens of
Halifax, Nova Scotia?
3) How do the landscape patterns of plant communities relate to environmental
factors?
4) What is the overall landscape structure of coastal barrens in Halifax, Nova Scotia

and how does it compare between sites?
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Evaluating Multispectral Imagery from an
Unmanned Aerial Vehicle for Discriminating
Plant Communities in the Coastal Barrens of

Halifax, Nova Scotia

Patches of ferns, dwarf heath, shrublands, and tree islands at Prospect Bay, Nova Scotia
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Abstract

In the coastal barrens of Halifax, Nova Scotia, plant communities are dispersed
across landscapes like shattered glass: different vegetation types exhibit a range of patch
sizes and spatial patterns. Maps have not yet been made of plant communities in the
coastal barrens of Nova Scotia and consequently there is little known of their landscape
patterns. Unmanned Aerial Vehicles (UAVS) are a promising tool to map coastal barrens
vegetation, providing a cost-effective way to collect high-resolution spectral, temporal,
and 3D information at regional scales. This study evaluated the use of a UAV with RGB
and near-infrared sensors to discriminate plant communities at three coastal barrens sites
in Halifax: Chebucto Head, Polly’s Cove, and Prospect Bay. Three levels of plant
community classification were evaluated from the Canadian National Vegetation
Classification: the association level, based on floristic criteria, the broadened association
level, and the formation class, based on physiognomy. Field sampling was conducted in
the summer of 2016 and UAV imagery was collected in the spring and summer of 2016.
Spectral and structural indices were extracted from the UAV imagery and were evaluated
for discriminating plant communities using linear discriminant analysis. All plant
communities from both classification levels were discriminated with 95% confidence
except for one pair in the association level classification. Overall classification accuracy
for the association level classification was lower (63%) than the formation class
classification (92%); however, merging confused groups to form a broadened association
level classification improved the accuracy to 83%. These results show that plant
communities in the coastal barrens can be discriminated at different classification levels

using a UAV.
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Introduction

Coastal barrens are terrestrial ecosystems that are scattered along coastlines
around the world, particularly in Atlantic Canada and Europe. They typically occur
within 500 m of the coastline and are predominantly occupied by low-growing ericaceous
vegetation and few trees. In Nova Scotia, Canada, coastal barrens are abundant, and some
of the most iconic sites occur in the Halifax region. The province of Nova Scotia has
recognized the importance of protecting these areas and researchers have begun to
document the species and communities that exist in the coastal barrens (Oberndorfer and
Lundholm, 2009; Cameron and Bondrup-Nielsen, 2013; Porter, 2013). Still, their
distributions, spatial patterns and interrelationships, and processes that form and change
them are largely unknown. Maps can help to visualize spatial relationships and would
improve our understanding of coastal barrens as an ecosystem, communicate the
importance and value that these ecosystems hold, and better focus future research and
conservation efforts.

Mapping the distributions of species and communities is valuable in many ways.
Much of the field of ecology focuses on understanding the patterns and scales of the
distributions and abundances of organisms, and this requires some level of distributional
mapping (Turner, 1989). Maps can be used to manage habitats and restoration projects,
assess regional biodiversity, design protected areas, assess risks of invasive species, and
predict the impacts of climate change on species, communities and ecosystems (He et al.,
2005; Tart et al., 2005; Adam et al., 2010; Franklin, 2010). There are many ways to
create maps; however, creating detailed vegetation maps across large areas would require

either intensive field work or the use of remote sensing technology. The challenge with
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using remote sensing technology to map vegetation is obtaining the necessary spatial and
spectral resolution needed to discriminate vegetation types with high confidence.

An important consideration for mapping vegetation is whether a classification
system will be used to classify assemblages of plant species into discrete units or plant
communities (Demers, 1991). A plant community is defined as “a relatively uniform
piece of vegetation in a uniform environment, with a recognizable floristic composition
and structure that is relatively distinct from the surrounding vegetation” (van der Maarel
and Franklin, 2013). Grouping vegetation into more manageable units helps to simplify
the multiple-species continuum (Ferrier, 2002; NPS, 2011; Faber-Langendoen et al.,
2014). It also helps to communicate ecological information for landscape managers,
conservation planners, and policy makers. Classifications for plant communities are
scale-dependent and range from fine level to coarse level, with either end of the spectrum
being valuable for ecologists and conservationists (Grossman et al., 1998). In Canada, the
Canadian National Vegetation Classification (CNVC, 2013) uses a standardized 8-level
taxonomic hierarchy to classify plant communities, which is based on the United States
National Vegetation Classification (USNVC) and the International VVegetation
Classification (IVC). Association is the finest level of classification and is based
primarily on floristic criteria, including dominant species; formation class is the coarsest
classification level and is based primarily on physiognomy.

Unmanned aerial vehicles (UAVSs) offer a promising solution for mapping
vegetation in the coastal barrens by offering a cost-effective method to obtain aerial
imagery with sub-decimeter pixel resolutions, computing high-resolution 3D structural

information, and having good temporal resolution (Remondino et al., 2011; Gongalves et
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al., 2015; Guillot and Pouget, 2015). UAVs have been used to map plant communities in
different terrestrial ecosystems, such as wetlands (Zweig et al., 2015), low-arctic tundra
(Fraser et al., 2016), and dunes (Sturdivant et al., 2017), but have yet to be used to map
plant communities in the coastal barrens. Prior to using a remote sensing platform for
mapping plant communities, the platform should be evaluated for its ability to
discriminate the vegetation at the desired scale or classification level. If the remote
sensing platform is not able to discriminate vegetation types at the desired classification
level, then it is not justifiable to use it for mapping applications.

The aim of this study is to evaluate the use of a UAV equipped with RGB and
NIR sensors for discriminating plant communities in the coastal barrens of Halifax, Nova
Scotia. This will be achieved by the following objectives: 1) To assess the discriminatory
power of multispectral UAV imagery for discriminating plant communities in the coastal
barrens at three classification levels from the Canadian National Vegetation
Classification: association level, broadened association level, and formation class; and, 2)
To determine which indices extracted from UAV imagery explain the most variance of

plant communities in the coastal barrens.
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Methods

Study Area

Coastal barrens are scattered along the coastline of Atlantic Canada and
northeastern United States. In the Halifax region of Nova Scotia, granite cliffs are
abundant, forming numerous coastal barrens sites (Figure 2.1). Three coastal barrens sites
in the Halifax region of Nova Scotia, Canada were selected for this study and
systematically surveyed in 2016 by a UAV to collect high-resolution multispectral aerial
imagery: Chebucto Head (N 44.51008 W 63.52659; Figure 2.2), Prospect Bay (N
44.47444, W 63.80156; Figure 2.3), and Polly’s Cove (N 44.49088, W 63.88388; Figure
2.4). All three sites are similar due to their proximity, experience similar climatic
conditions, and are well-documented in previous research (Oberndorfer and Lundholm,
2009; Burley et al., 2010; Porter, 2013). Each site measures approximately 500 meters
across and 500 meters inland from the coastline, in the shape of a square. This equates to
an approximate study area of 25 ha per site. These dimensions were chosen because
previous research has suggested that coastal barrens typically occur within 500 meters of
the coastline (Oberndorfer and Lundholm, 2009; Porter, 2013). Furthermore, a 25-hectare
area represents a significant portion of a landscape, consisting of a large spectrum of

environmental gradients, vegetation types and regional variation.
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Figure 2.1. Coastal barrens sites selected for this study: Chebucto Head, Prospect Bay,

and Polly’s Cove. All three sites are located in the Halifax region of Nova Scotia,
Canada.
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Figure 2.2. An RGB orthomosaic of the Chebucto Head study site in Halifax, Nova
Scotia. Aerial imagery was captured from a UAV in May 2016 at 90 m altitude,
providing 4 cm ground resolution.
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Figure 2.3. An RGB orthomosaic of the Prospect Bay study site in Halifax, Nova Scotia.
Aerial imagery was captured from a UAV in May 2016 at 90 m altitude, providing 4 cm
ground resolution.

34



0 50 100 Meters

Figure 2.4. An RGB orthomosaic of the Polly’s Cove study site in Halifax, Nova Scotia.
Aerial imagery was captured from a UAV in May 2016 at 90 m altitude, providing 4 cm
ground resolution.
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Data Collection and Processing

Multispectral UAV imagery was collected in the spring and summer of 2016 at

each study site and was evaluated for discriminating plant communities based on ground

truthing from field plot data (Figure 2.5). The UAV used for this study was a DJI

Phantom 3 Professional quadcopter, equipped with a 12-megapixel RGB camera on a

rotating gimbal and a fixed Sentera single Near-Infrared (NIR) sensor (Figure 2.6; see

Table Al.1 in Appendix for aircraft specifications). The cameras are independent of one

another and require separate microSD cards. The quadcopter weighs approximately 1.28

kg and uses lithium ion batteries, each providing a maximum flight time of 23 minutes.

Acquire UAV Imagery

Image Processing

Field Plot

Sampling

Plant Community

Classification
! L
RGB and NIR Orthomosaics 3D Point Cloud Training Polygons
Spectral Indices Structural Indices
|
L 1

Feature Extraction

Statistical Analysis

Figure 2.5. Flowchart illustrating the methodology used to extract spectral and structural
information from multispectral UAV imagery to discriminate plant communities
identified from field plot sampling in the coastal barrens of Halifax, Nova Scotia.
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Figure 2.6. DJI Phantom 3 Professional quadcopter used to collect high-resolution
multispectral aerial imagery. The aircraft was equipped with a 12-megapixel RGB
camera on a rotating gimbal and a fixed Sentera single Near-Infrared sensor.
Pix4DCapture (Pix4D, Lausanne, Switzerland), a flight planning mobile
application that can be downloaded for free on most smart phones and tablets that use
I0S or Android, was used to create flight plans and autonomously control the UAV to
collect sequential high-resolution aerial imagery at the study sites. Customizable grid
missions were created within the application to delineate areas to map and to control
flight parameters, such as image overlap and flight altitude (Figure 2.7). Flights were
conducted with the camera facing downward (nadir), with overlap set at 80% and sidelap
as 60%. In the spring, above-ground altitude was set to 90 m (resulting in 4 cm pixel
resolution for the RGB camera; 8 cm pixel resolution for the NIR sensor) and in the
summer, it was set to 50 m (resulting in 2 cm pixel resolution for the RGB camera; 4 cm

pixel resolution for the NIR sensor) to have a better resolution for reconstructing the

vegetation canopies in 3D. Since the UAV has two independent cameras, Pix4DCapture
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controlled the RGB camera while the NIR sensor was set to take images at a two-second

interval to achieve similar image overlap.
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Figure 2.7. A grld mission in the Pix4DCapture flight planning mobile application.
Pix4DCapture was used to autonomously fly the unmanned aerial vehicle to collect
sequential high-resolution multispectral aerial imagery of the three study sites.

Many plant species found in the coastal barrens are deciduous shrubs or
herbaceous perennials (Oberndorfer and Lundholm, 2009; Porter, 2013). The timing of
aerial surveys for observing and discriminating plant communities is therefore crucial. In
the fall, deciduous shrubs lose their leaves and herbaceous vegetation undergoes
senescence, known as the leaf-off period. In the late spring and early summer of the
following year, deciduous species regain their leaves and herbaceous perennial species
re-emerge, known as the leaf-on period. Research has shown that seasonal phenologies,
such as the leaf-on and leaf-off periods, have been useful for discriminating vegetation

based on their spectral properties (Anderson, 1970; Gilmore et al., 2008; Dandois and

Ellis, 2013; He et al., 2015). Further, some evergreen shrubs on Nova Scotia coastal
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barrens exhibit distinct seasonal colour changes in their foliage. The timing of surveys
was planned to capture this seasonal variation by collecting imagery at the end of May
(leaf-off period) and beginning of August (leaf-on period) in 2016 (see Table Al1.2 for
details on survey dates).

To ensure that aerial surveys were geolocated on the earth’s surface to sub-meter
accuracy, ten to twelve ground control points (GCPs) were laid out across each site prior
to image acquisition. A GCP is a visible target that is meant to be seen in aerial imagery
and has known XY Z coordinates which can later be used during image processing to
accurately georeference the models. GCPs consisted of 9-inch red plastic plates that were
pinned to the ground with metal pegs. A Real-Time Kinematic (RTK) was used to
acquire accurate geolocations of the center of each GCP in the field with horizontal
accuracy of 1-2 cm and vertical accuracy 2-6 cm.

The goal of acquiring and processing UAV imagery for this study was to create
two products: a single orthomosaic image of each site from May and August in 2016, and
a 3D point cloud in August (leaf-on period) for each site. An orthomosaic is a mosaic of
multiple images that have been stitched together and orthorectified to remove perspective
distortions. Orthomosaics retain the high resolution and detail of the original images used
to create them and are a great solution for image analysis and landscape mapping. A 3D
point cloud is simply a mass of points containing XYZ coordinates, which can be used to
create digital elevation models (DEM) and provide useful 3D information about a

landscape and its vegetation, such as topographic variability and canopy structure.
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Creating orthomosaics and 3D point clouds from multiple overlapping UAV
images is possible through a technique known as structure from motion (SfM)
photogrammetry. When multiple overlapping images are acquired, objects within the
images are viewed from multiple angles or perspectives. The position and appearance of
the objects may also change relative to their surroundings from one image to another.
SfM software can use this information to reconstruct surfaces and compute 3D models

(Micheletti et al., 2015) (Figure 2.8).

o

S SEN

Flgure 2.8. An 111ustrat10n of a tree at Polly s Cove as a3D p01nt cloud Computed from .
structure from motion photogrammetry.

Images were processed using the SfM software program Agisoft Photoscan
Professional (v. 1.3.2, Agisoft LLC, St Petersburg, Russia). Images were first imported
and aligned using the Align Photos tool and the following settings: Accuracy set as

‘High’, Generic preselection unchecked, Reference preselection checked, Key point limit
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set at 40000, Tie point limit set at 4000, and Adaptive camera model fitting checked. This
aligned the UAV imagery and created a preliminary thin 3D point cloud. Ground control
points were then added to georeference the model, followed by running the Optimize
Cameras command to update the geolocation of the model. To ensure surveys from the
spring accurately overlaid with summer surveys, additional GCPs were created from the
DEM of the summer surveys to georeference the spring surveys. Next, the Build Dense
Pointcloud tool was run with the following settings: Quality set as ‘High’ and Depth
filtering set as ‘Moderate’. The Quality setting determines how dense to build the point
cloud; selecting ‘High’ means that the point density of the point cloud would be half the
value of the pixel size of the original imagery. For example, if the pixel size was 2 cm
(flight altitude of ~50 m above ground), the point density at ‘High” would be roughly one
point every 4 cm?. For sites with imagery flown at 50 m altitude, this produced point
clouds with over 100 million 3D points. Next, the Build DEM tool was run with the
following settings: Source data set as ‘Dense cloud’, Interpolation set as ‘Enabled
(default)’, and Resolution set as the lowest possible value. Creating the DEM (digital
elevation model) in the software is necessary to create an orthomosaic, since an elevation
model is required to orthorectify the images. Alternatively, you can create a 3D
triangulated mesh; however, this produced variable results. Lastly, the Build Orthomosaic
tool was run with the following settings: Surface set as ‘DEM’, Blending mode set as
‘Mosaic’, Enable color correction unchecked, Enable hole filling checked, and Pixel size
(m) set as the lowest possible value. The final products were then exported: the

orthomosaic as a single TIFF file and the 3D point cloud as an LAS file, both of which
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can be imported into other software programs for further analysis, such as ArcGIS.

Results from image acquisition and processing can be viewed in Table 2.1.

42



Table 2.1. Acquisition results of RGB imagery at the study sites and root-mean-square error of the georeferenced models based on
ground control points.

Ground

Aerial Survey Resolution O'?ngggs X error (cm) Y error (cm) Z error (cm) Total error
Chebucto Head RGB May 4.1 178 2.1 1.9 3.6 4.6
Chebucto Head RGB August 2.2 806 0.5 0.4 0.5 0.8
Prospect Bay RGB May 3.6 215 2.5 2.9 3.2 5
Prospect Bay RGB August 2 763 1 1.7 1.7 2.6
Polly’s Cove RGB May 4.3 218 4.6 3.2 4.8 7.4
Polly’s Cove RGB August 2.7 780 1.5 0.7 2.7 1.8
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In total, 85 indices were extracted from the UAV imagery and 3D point cloud (see
full list in Table A1.3). Among them, 60 were spectral indices (Table 2.2) and 25 were
structural indices (Table 2.3). The spectral indices were chosen based on previous studies,
which included the normalized difference of vegetation Index (NDVI) (Huete et al.,
2002), color index of vegetation (CIVE) (Kataoka et al., 2003), hue, saturation, and
intensity value (HSV) (Ford and Roberts, 1998; Zheng, Zhang, and Wang, 2009), and
other mathematical combinations of red, green, blue, and near-infrared (NIR) channels
(Gilmore et al., 2008; Gongcalves et al., 2015; Fraser et al., 2016). NDVI is a function of
the NIR and the visible red part of the electromagnetic spectrum: (NIR-R)/(NIR+R).
Chlorophyll in plant leaves are highly reflective of NIR and are more absorbent of the red
visible region of the electromagnetic spectrum whereas plants with less chlorophyll, such
as unhealthy or stressed plants, show more equal reflectance of the two regions
(Ackermann, 2011). Due to the unique responses of vegetation to NIR and r, NDVI has
been shown to be very useful in many fields of research involving the mapping of
vegetation (Huete et al., 2002). For example, Burai et al. (2015) measured NDVI across
an alkali landscape and found that some species and communities could be discriminated
solely based on NDVI.

Another potentially useful index for discriminating plant community types is
CIVE, proposed by Kataoka et al. (2003): 0.441*R — 0.881*G + 0.385*B + 18.78745.
Zheng, Zhang, and Wang (2009) found that CIVE performed well to discriminate
vegetation from its surroundings in photographs. Lastly, converting an image from RGB
color space to HSV color space has been shown to provide useful information on the

colors in an image (Zheng, Zhang, and Wang, 2009; see Table 2.2 for conversion
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formulas). Hue describes color as an angle from 0° to 360°, where 0° is red, 120° is
green, and 240° is blue (Ford and Roberts, 1998). Saturation refers to the degree to
which a color is saturated in white, which measures from 0 to 1. Intensity value is a
measure of lightness and darkness, where 0 is black and 1 is white (Ford and Roberts,
1998). Laliberte and Rango (2008) evaluated the use of HSV for mapping rangeland
vegetation and found that it helped to produce the most accurate classification model and

recommended HSV be used in other vegetation mapping applications.
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Table 2.2. Spectral indices derived by UAV imagery.

Index |
R

Description
Mean, standard deviation and mean change of the red
channel in May and August

Source
Gongalves et al., 2015

G

Mean, standard deviation and mean change of the
green channel in May and August

Gongalves et al., 2015

B

Mean, standard deviation and mean change of the blue
channel in May and August

Gongalves et al., 2015

R/B

Mean, standard deviation and mean change of the red
channel divided by the blue channel in May and
August

Gongalves et al., 2015

R/IG

Mean, standard deviation and mean change of the red
channel divided by the green channel in May and
August

Goncalves et al., 2015

G/B

Mean, standard deviation and mean change of the
green channel divided by the blue channel in May and
August

Goncalves et al., 2015

NIR

Mean, standard deviation and mean change of near-
infrared channel in May and August

Gilmore et al., 2008

NDVI

Mean, standard deviation and mean change of
normalized difference of vegetation index (NDVI) in
May and August

NIR-R
NDVI =
NIR+R

Huete et al., 2002

CIVE

Mean, standard deviation and mean change of color
index of vegetation (CIVE) in May and August
CIVE = 0.441*R — 0.881*G + 0.385*B + 18.78745

Kataoka et al., 2003

Hue

Mean, standard deviation and mean change of the hue
in degrees (0-360°) in May and August

_ 1 (0.5*(R-G)+(R-B))
Hue = cos (((R-G)2+(R-B)(G-B))5)

Ford and Roberts, 1998

Saturation

Mean, standard deviation and mean change of the
saturation in May and August

Saturation = 1- (R * (3; * B) *a
Where a is the minimum of R, G and B

Ford and Roberts, 1998

Intensity

Mean, standard deviation and mean change of the
intensity value in May and August

. R+G+B
Intensity = —

Ford and Roberts, 1998

Structural indices included measures of vegetation height, topographic position

index (TPI), curvature (concavity/convexity), slope (degrees), ratio of 3D surface area to
the 2D planimetric area, and lastly point cloud density. All structural indices were derived
from SfM photogrammetric processing of UAV imagery acquired in August 2016.

Canopy height measurements can be useful metrics for describing physiognomic forms of
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plant communities, such as trees and shrubs. Fraser et al. (2016) found that 3D point
clouds derived from UAV imagery were accurate in predicting actual canopy heights of
arctic shrubs. TP1 is a scale-dependent index and involves the use of a search
window/neighborhood to determine the relative topographic position of a central point to
its surroundings (De Reu et al., 2013). In a forested ecosystem, Zellweger et al. (2013)
found that TPI was one of the best predictors for multi-species occurrences. A similar
metric to TPI is the deviation from mean elevation (DEV), which is also described by De
Reu et al. (2013). DEV normalizes TPI to local surface roughness by dividing TPI by the
standard deviation of the neighborhood elevation values (TPI/SD). De Reu et al. (2013)
recommended using both DEV and TPI for classification of landform and surface
structure. Curvature is another common landscape metric to describe the concavity and
convexity of an elevation model, where -1 to 0 is concave and 0 to +1 is convex.
Goncalves et al. (2015) used curvature as a metric to aid in the classification of heathland
vegetation. Another useful metric for describing terrain ruggedness is the slope of the
terrain, from 0° to 90° (McGarigal et al., 2009), which could be useful for the detection of
abrupt edges and the ruggedness of vegetation canopies. Determining the ratio of 3D
surface area to the 2D planimetric area of a neighborhood could give a direct
measurement of the ruggedness of the terrain or vegetation canopy. Hoechstetter et al.
(2008) describe a moving window algorithm to estimate the true 3D surface area, which
involves the triangulation of a point cloud, summing the area of the triangles, and then
dividing the 3D area by the 2D planar area; this method was used in this study. Lastly,
point cloud density is yet another structural index that can potentially provide useful

information about canopy structure, with the assumption that a more heterogeneous
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surface will require more 3D points for reconstruction than a homogeneous surface. For

example, Matthews and Jensen (2013) used point density of a 3D point cloud obtained

from a UAV to help model leaf area index (LAI) in a vineyard.

Table 2.3. Structural indices derived by analysis of 3D point clouds and subsequent 10
cm digital elevation models computed from structure from motion photogrammetric
processing of UAV imagery.

Index

Vegetation Height

Description
Mean, max, and standard deviation of vegetation
heights. Vegetation heights were calculated by
subtracting the minimum from the maximum elevation
value within a 50 cm search radius of each pixel using
the 10 cm elevation model

Source
Corcoran et al., 2015

Topographic Position
Index (TPI)

Mean and standard deviation of topographic position
index (TPI) from the 10 cm elevation model. Cell
search windows included 5x5, 11x11, 33x33 and
111x111

TPI=2,-7Z

Where z, = elevation of central point, Z = mean
elevation of neighborhood

De Reu et al., 2013

Deviation from Mean
Elevation (DEV)

Mean and standard deviation of the deviation from
mean elevation (DEV) from the 10 cm elevation model.
Cell search windows included 5x5, 11x11, 33x33 and
111x111

Zo-Z
DEV =

SD

Where z, = elevation of central point, Z = mean

elevation of neighborhood, and SD = standard deviation
of elevation values in the neighborhood

De Reuetal., 2013

Mean and standard deviation of the curvature index
(convexity/concavity) from 10 cm elevation model.

Gongalves et al.,
2015

(Spatial Analyst) tool in ArcGIS

Curvature Calculated using the Curvature tool from the DEM
Surface Tools toolbox with Profile setting
(http://www.jennessent.com/arcgis/surface_area.htm)
Mean and standard deviation of the slope (degrees) McGarigal et al.,
Slope from 10 cm elevation model. Calculated using the Slope | 2009

3D Surface Area /
Planimetric Area
Ratio

The ratio of the 3D surface area of the triangulated
point cloud and the 2D planimetric area

Hoechstetter et al.,
2008

Point Cloud Density

Density of point cloud per m?

@rka and Hauglin,
2016

The goal of the field sampling strategy was to achieve the greatest level of

representation of plant community types across each site in a time-efficient and effective
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way. Doing so reduced the time required in the field, which was necessary due to the
time-constraints of sampling in a single field season, and also minimized impacts on the
sites. To achieve this, locations of field plots were determined in three ways. Type | plot
locations were determined by analyzing RGB and NIR orthomosaics from UAV imagery
to identify distinct vegetation patches to sample in the field. Since the orthomosaics were
georeferenced, geographic coordinates could be directly obtained in GIS and
subsequently entered into a handheld global positioning service (GPS) with a horizontal
accuracy of 5-10 m to find the locations in the field. To help pinpoint the actual location
to sample in the field, a down-scaled RGB orthomosaic from the UAV imagery of each
site was uploaded as the basemap of the handheld GPS. Type Il plots were recorded when
unique plant communities or communities that had insufficient sample sizes were
encountered in the field. Lastly, Type Il plot locations were determined by stratified
random sampling. Sites were divided into four sections, followed by generating 6 random
field plot locations in each section, a maximum 24 field plots per site. If plot locations did
not contain any vegetation or were inaccessible (e.g. on the edge of a cliff), they were

omitted from the study. In total, 374 field plots were sampled (Table 2.4).

Table 2.4. The number of field plots of types I, 1l and I1l sampled at Chebucto Head,
Prospect Bay, and Polly’s Cove.

Type | plots Type Il plots Type 111 plots
Chebucto Head 62 38 24
Prospect Bay 51 41 24
Polly’s Cove 71 40 23
Sum 184 119 71
Grand Total 374

Field plots were sampled within the three study sites from June to August in 2016.

Plots generally measured 4 by 4 m (16 m?) except for when plant community patches
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were sparse or irregularly shaped. The percent cover of each taxa was visually estimated.
Also recorded from plots were photographs and a set of geographic coordinates of the
plot center using a Garmin GPSMAP 64S,

Field plots were initially assigned two classifications based on the Canadian
National Vegetation Classification (CNVC, 2013): the association level, which is the
finest level of the 8-level hierarchy and is based primarily on floristic criteria such as
dominant species; and, the formation class, the coarsest level of the 8-level hierarchy,
which is based on physiognomy. After confused classes from the association level
classification were identified, a third classification was formed: the broadened association
level classification.

To extract spectral and structural indices for each plant community from the UAV
imagery, plant community patches from field sampling were delineated by manually
drawing training polygons in ArcGIS (v. 10.3.1, Environmental Research Systems
Institute, Redlands, California). Training polygons are commonly used extract and
compile statistics for mapping classes and play an integral part in creating maps and
providing accuracy assessments through ground truthing. Training polygons were drawn
around homogeneous patches of vegetation with the help of the UAV imagery, plot
photographs, field data sheets, and GPS coordinates from each plot location. Sizes of
polygons were meant to represent the sampled areas from field plots, which were
approximately 4 by 4 m (16 m?); however, in cases when sampled areas contained more
than one community type or patches were sparse or irregularly shaped, smaller polygons
were drawn. In cases when a plant community type was composed of multiple, smaller

patches, multiple polygons were drawn and were treated as a subset.
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To extract spectral and structural indices using the training polygons, polygons
were first converted to raster zones using the Polygon to Raster (Spatial Analyst) tool in
ArcGIS. Next, the Zonal Statistics as Table (Spatial Analyst) tool in ArcGIS computed
statistics for each index within each raster zone/training polygon. Statistics for each index
were merged to form a data table consisting of 60 spectral indices (Table 2.2), 25
structural indices (Table 2.3), and columns containing the plant community classification

and training sample IDs. This table was later used for statistical analysis.

Statistical Analysis

Statistical analyses were performed in R (v. 3.4.1; R Core Team, 2017). Data
were preprocessed prior to data analysis. Only plant community types with a minimum of
three field plots were analyzed. All indices were scaled, centered, and checked for
normality by plotting histograms. Indices that appeared to be non-normal were
transformed if possible. To remove redundant and collinear indices, indices with a greater
correlation than r? = 0.95 correlation with another index were first removed. Next, a
backwards stepwise selection of indices was done using variance inflation factor (VIF)
analysis, a common technique for assessing indices for multicollinearity (Mansfield and
Helms, 1982). In each step, the index with the highest ‘score’ was removed until all
indices had a score less than 10, which is commonly viewed as the cut-off value for
indicating multicollinearity. After these indices were removed, the remaining dataset

consisted of 36 indices (see Table Al.4).
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To determine if there was evidence of spectral and structural differences between
plant communities based on indices extracted from processed UAV imagery, linear
discriminant analysis (LDA) was performed. LDA is a common classification and
dimensionality reduction technique that looks for linear combinations of explanatory
variables (the spectral and structural indices) to predict a categorical variable, in this case
the plant community type (Fisher, 1936). Like principal components analysis (PCA), it
projects the explanatory variables into a set of fewer dimensions/axes to best describe the
variance of the variables, but at the same time maximizes class separation. Davidson et al.
(2016) found that LDA performed well at classifying low-arctic vegetation and Salovaara
et al. (2005) used LDA to classify four different types of tropical rainforest from
LANDSAT ETM+ satellite imagery with promising results.

The discriminatory power of the LDA model was assessed in two ways: First,
95% confidence intervals were constructed about the mean ‘scores’ of each plant
community type within each discriminatory axis. To determine if confidence intervals
overlapped in each discriminatory dimension for every plant community comparison, a
matrix was made. The matrix was used to evaluate the number of times each plant
community comparison could be differentiated with 95% confidence in at least one of the
discriminatory dimensions from the LDA. Plant community comparisons that always had
overlapping confidence intervals were considered to be non-differentiable. In the second
part of the analysis, the classification accuracy of the LDA model was evaluated using
leave-one-out cross validation. Leave-one-out cross validation is a common technique in
which one observation/sample is removed from the model training dataset at a time and

then the model attempts to classify the unknown testing sample (Molinaro et al., 2005).
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This was done for the entire dataset, providing an overall classification accuracy for the
LDA model.

The relative importance of each index as it contributed to the LDA model was
determined by taking the absolute value of the scalings (i.e., strength of contribution;
similar to the loadings in a PCA) for each discriminatory dimension, weighting the
scalings by the proportion of contribution of each discriminatory dimension to the LDA
model, and lastly summing the weighted scalings from each discriminatory dimension for
each index. The result is a relative, unitless “score” of the overall variance explained
from each index for the discriminatory model.

Discriminatory analysis was performed on the association level plant community
classification and the formation class classification based on field plot data. After
confused classes from the association level plant community classification were
identified, a broadened association level classification was formed by merging confused

classes and was also evaluated.
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Results

Across all sites, a total of 121 plant species were identified from field plot
sampling (Table Al.5). Sixty-seven species were found at all three sites. The greatest
number of species identified was at Polly’s Cove (101), followed by Prospect Bay (93),
then Chebucto Head (84). Polly’s Cove also had the greatest number of unique species to
that site (14), followed by Prospect Bay (13), then Chebucto Head (4). The top 10 most
frequent species are presented in Table 2.5
Table 2.5. The top 10 most frequent plant species identified from field plot sampling
across all sites.

Frequency

(# plots)

Common Name

Plant Species Name

Kalmia angustifolia Sheep Laurel 188
Juniperus communis Common Juniper 185
Gaylussacia baccata Black Huckleberry 182
Vaccinium angustifolium Late Lowbush 140
Blueberry
Cornus canadensis Bunchberry 132
Empetrum nigrum Black Crowberry 131
Morella pensylvanica Northern Bayberry 126
Alnus viridis Green Alder 124
Trientalis borealis Northern Starflower 119
Pteridium aquilinum Bracken Fern 118

From the association level plant community classification, 60 plant communities
were classified across all sites (Table A1.6). After plant communities with less than three
field plots were removed, 33 plant communities remained and were used for statistical
analysis (Table 2.6). Merging confused classes to form the broadened association level
classification narrowed the list of plant communities to 16 (Table A1.7). Nine plant

communities were classified based on the formation class classification: dwarf heath,
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shrubland, tree island, bog, salt marsh, brackish marsh, seep, lichen, and other (Tables 2.7

and A1.7).
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Table 2.6. List of classes from the association level plant community classification from
field plot sampling across all three sites. Plant communities with less than three field

plots were removed and not used for statistical analysis.

Association Level Classification

Frequency

(# plots)

Abies balsamea tree island 5
Acer rubrum tree island 7
Alnus viridis shrubland 3
Betula papyrifera tree island 9
Calamagrostis canadensis coastal vegetation 3
Carex exilis - Gaylussacia bigeloviana bog 6
Carex nigra bog 13
Cladonia spp. 39
Corema conradii lithomorphic 5
Empetrum nigrum - Juniperus communis dwarf heath 40
Empetrum nigrum dwarf heath 14
Gaylussacia baccata shrub bog 4
Gaylussacia baccata shrubland 79
Gaylussacia bigeloviana shrub bog 9
Gaylussacia bigeloviana shrubland 7
Gaylussacia shrub bog 7
Ilex glabra shrubland 8
Juncus balticus brackish marsh 7
Juniperus communis - Corema conradii lithomorphic 25
Juniperus communis dwarf heath 18
Juniperus horizontalis dwarf heath 8
Larix laricina tree island 8
Maianthemum trifolium bog 3
Mixed tall shrubs 22
Morella pensylvanica shrubland 4
Open bog 13
Osmunda cinnamomea seep 13
Picea glauca tree island 5
Picea mariana tree island 26
Rubus allegheniensis - Morella pensylvanica coastal vegetation 4
Spartina patens salt marsh 4
Spartina pectinata brackish marsh 3
Trichophorum caespitosum bog 11
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Table 2.7. List of classes from the formation class plant community classification from
field plot sampling across all three sites. Plant communities with less than three field
plots were removed and not used for statistical analysis.

Frequency

Formation Class Classification
- S TmEEe e e (# plots)
Bog 73
Brackish marsh 3
Dwarf heath 110
Lichen 39
Other 3
Salt marsh 4
Seep 13
Shrubland 127
Tree island 60

When 95% confidence intervals were constructed about the mean LDA scores for
each discriminatory axis for classes from the association level plant community
classification, only 1 pair (<1%) of 528 possible comparisons of plant communities could
not be discriminated in any of the dimensions (see plots of confidence intervals in Figures
Al1.1A-AF). The pair that could not be discriminated was Gaylussacia bigeloviana shrub
bog and Gaylussacia baccata shrub bog. The top 10 indices that explained the most
variance of plant communities for the association level classification are summarized in
Table 2.8 (see Table Al.3 for descriptions of indices; see Table A1.8 for complete list).
The overall classification accuracy of the LDA model using leave-one-out cross
validation for the association level plant community classification was 63%. Table A1.9
lists the plant community classifications in order from best to worst classification

accuracy.
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Table 2.8. Top 10 indices sorted by their “score” of importance in relation to their
contribution to the linear discriminant analysis (LDA) model for each plant community
classification. The score was determined by summing the weighted contributions of each
index for each discriminatory axis from the LDA model.
Association Level Broadened Association Formation Class

Classification Level Classification Classification
Index Score Index Score Index Score
R mean May 0.98 | R mean May 1.10 | R mean May 1.24
Slope SD 0.68 | Slope SD 0.75 | Slope SD 0.88
ﬁ;;ratlon b 0.53 | R/G mean May 0.51 | R/G mean May 0.55
CIVE SD August | 0.50 ﬁ/la;;ratlon SD 0.47 | Change R mean 0.40
Change R mean 0.50 | Change R mean 0.45 CIVE mean 0.37
August
R/G mean May 0.50 | TPl mean5 0.44 | CIVE SD August 0.37
Hue SD August | 0.42 | S'VE mean 0.39 | TPI'mean5 0.36
August
CoVE mean 039 | NIRmeanMay | 0.35 | R/B mean May 0.29
ugust
TPl mean 5 0.37 | R/B mean May 0.33 | TPI mean 111 0.28
R/B mean May 0.35 | CIVESD August | 0.32 | NIR mean May 0.28

Most misclassifications from the association level classification resulted from
structurally similar plant communities (Table A1.9). For example, all three field plot
locations of Abies balsamea tree island were misclassified as Picea mariana tree island,
both of which are coniferous tree islands. Table A1.7 summarizes how plant community
classifications from the association level were merged to form the broadened association
level classification to improve classification accuracy.

When the LDA was repeated for the broadened association level plant community
classification, all plant communities could be discriminated from each other when the
95% confidence intervals of the mean LDA scores in each discriminatory axis were
compared (see Figures A1.2A-0). The top 10 indices that explained the most variance of

plant communities for the broadened association level classification are summarized in
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Table 2.8 (see Table A1.3 for descriptions of indices; see Table A1.8 for complete list).
The overall classification accuracy of the LDA model improved to 83%. Table A1.10
lists plant community classifications from the broadened association level classification
in order from best to worst.

In the final LDA, plant communities in the formation class classification could be
discriminated from each other with 95% confidence when confidence intervals of the
mean LDA scores in each discriminatory dimension were compared (see Figures A1.3A-
H). Figure 2.9 illustrates the separation of plant communities from the formation class
classification in 3D when the first three LDA dimensions are plotted. The top 10 indices
that explained the most variance of plant communities for the formation class
classification are summarized in Table 2.8 (see Table A1.3 for descriptions of indices; see
Table A1.8 for complete list). The overall classification accuracy of the LDA model
improved to 92%. Table A1.11 lists plant community classifications from the formation

class classification in order from best to worst.
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Figure 2.9. Plant communities from the formation class classification projected in the first
three dimensions of the linear discriminant analysis model. Linear discriminant analysis
projects variables into fewer dimensions while maximizing the separation of a class.
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Discussion

In this study, multispectral UAV imagery was evaluated for its ability to
discriminate plant communities at three classification levels in the coastal barrens of
Halifax, Nova Scotia. Over 99% of plant community comparisons in the association level
plant community classification could be discriminated with 95% confidence. The only
pair that could not be discriminated was Gaylussacia bigeloviana shrub bog and
Gaylussacia baccata shrub bog. In most aspects, the shrub bogs appear identical, the only
difference being that they were dominated by different species belonging to the same
genus. Even in the field, the leaves needed to be closely examined to tell the difference
between the two species, which explains why differences between the two communities
were not detected using the UAV imagery. It is possible that the two species could be
discriminated at a different time of the year, such as the late summer or fall, if they
undergo senescence at different times. After the accuracy assessment and confused
classes were merged to form the broadened association level classification, effectively
reducing the number of classes from 33 to 16, all communities could be discriminated
with 95% confidence. The same result was found for the formation class plant
community classification. These findings suggest that UAV imagery can be used to
discriminate plant communities at different classification levels with high confidence.
This further suggests that it is possible to use a UAV to map the locations of plant
communities in the coastal barrens at different classification levels, which has not
previously been demonstrated.

Overall classification accuracy of the LDA model for the association level

classification was moderate at 63%; however, broadening the association level
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classification by merging ecologically similar groups that were causing misclassifications
increased the overall accuracy to 83%. Overall classification accuracy rose to 92% for the
formation class classification. Most misclassifications were found between plant
communities that were structurally similar. Part of the reason for misclassifications in the
association level classification could be due to the limitations in the spectral and
structural indices chosen for the study to discriminate the plant communities. Another
reason could be that initial misclassification was caused by uncertainty in assigning
classifications to the field plot data. Lastly, differences in spatial resolution of aerial
imagery from different surveys as well as the geopositioning error of the handheld GPS
and RTK may have introduced error in extracting spectral and structural statistics from
field plot locations.

Classifications were not always straightforward: many communities shared
similar species but with varying cover, while other communities may not have had any
species in common except for the dominant species. These gray areas in assigning
classifications made it challenging to determine the appropriate classification names. One
such community was Rubus allegheniensis - Morella pensylvanica coastal vegetation;
initially, this community seemed to be an outlier, and there was uncertainty in whether to
call it a shrubland or place it in the generic category of ‘coastal vegetation’. Upon
reviewing the UAV imagery and the spectral and structural characteristics of the plant
community, it seemed apparent that the community better fit in the category of
shrublands. A similar finding was made for Carex exilis - Gaylussacia bigeloviana bog;
at first, the community was classified simply as a bog dominated by sedges and dwarf

shrubs; however, when the community was analyzed with the UAV imagery, it became
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clear that the community was most like shrub bogs rather than grass/sedge/open bogs.
Utilizing the UAV imagery in this way can support the classification of plant
communities, providing a bird’s eye view of how the communities appear from above
and offering information on their spectral and structural characteristics in high-resolution
as another line of evidence for forming the classifications.

Sample size, i.e. the number of field plots sampled per community type, is another
factor that may have impacted the classification results of the LDA model (Burley, 2009).
Low sample size for vegetation sampling was unavoidable for finer classification levels;
some plant community types may only have one occurrence within a site, and in other
cases patches can go undetected when field sampling. A solution to this problem is
merging classes with low sample sizes to form broader classes, which was done in the
broad association level classification. One consequence of merging classes to form a
broader class, however, is that within-class variance is increased, which may cause more
misclassifications to occur between otherwise dissimilar plant communities.

The two indices that explained the most variance of the LDA models for the
association level classification, the broadened association level classification and for the
formation class classification were the red band from the May imagery and the standard
deviation of the canopy’s slopes, respectively. Other top indices included Saturation SD
May, R/G mean May, and change in R mean. Most of the important indices were spectral
indices from May imagery; however, some indices from August were important as well.
This makes sense, because most of the vegetation in August appears in the imagery as a
bright green color, while in May there is a much greater contrast between vegetation

types: shrublands appear brown due to leafless branches being exposed, dwarf heaths are
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different shades of green or yellow, coniferous trees are different shades of green and
deciduous trees are without leaves and appear as brown or grey. However, some plant
communities, such as herbaceous vegetation, may only be observable in the summer or
fall and not in the spring. Another consideration that needs to be made is that imagery in
the spring had slightly coarser spatial resolutions (4cm) compared to imagery in the
summer (2cm), which may have also influenced classification accuracy. Furthermore,
flight conditions in the spring at the three sites were in cloudy or partly cloudy conditions
while all surveys in the summer were conducted in full sun, which may have further
influenced the ability to discriminate vegetation. Although the springtime seems to be the
most advantageous time to discriminate plant communities in the coastal barrens of
Halifax, Nova Scotia, collecting imagery from more than one season may be necessary to
observe and discriminate all plant community types depending on the level of
classification.

Some studies have found NIR to be very useful for discriminating plant
communities and even species (Anderson, 1970; Gilmore et al., 2008; Adam et al., 2010),
since chlorophyll in plant leaves are highly reflective of the NIR region of the
electromagnetic spectrum (Galidaki et al., 2017). In this study, indices derived from the
NIR sensor of the UAV did not appear to be as important for discriminating the plant
communities as anticipated. The index NIR mean May, however, was listed among the
top 10 most important indices for discriminating plant communities for both the
broadened association level classification and for the formation class classification. It is
possible that the coarser spatial resolution of the NIR sensor (generally 2x coarser than

the RGB sensor) reduced the ability of the NIR band to discriminate plant community
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types, and that surveys should be conducted lower to the ground to detect greater
statistical differences in the vegetation.

Interestingly, the standard deviation of the slope of the vegetation canopies was
the second most important index for discriminating plant communities in all three
classification levels. Also, the mean topographic position index calculated within a 5-
pixel search window consistently scored in the top 10 most important indices for
discriminating plant communities. Providing that SfM photogrammetry can accurately
reconstruct the vegetation canopies in 3D as previous studies have found (Fraser et al.,
2016), it is rational that some structural indices would be important for discriminating
plant community types, especially plant communities in the formation class classification,
which is based primarily on physiognomy. The finding that structural indices were
important for discriminating plant communities across multiple classification levels
highlights the value of collecting 3D structural information for discriminating vegetation.

One limitation with using hue as a spectral index is that it is circular. Values for
hue range from 0 to 360°, where 0° is red, 120° is green, and 240° is blue (Ford and
Roberts, 1998). Hue may be a useful index to discriminate vegetation types; however,
computing linear statistics on a circular index would give misleading results and is most
likely the reason hue was not found to be important in the linear discriminant analysis. In
a similar case, Monk et al. (2011) converted aspect, a circular variable describing bearing
or direction from 0 to 360°, to two linear variables: northness and eastness. Converting
hue in a similar manner to two linear indices may solve this issue and should be explored

in future studies.
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Determining the flight altitude above ground is an important consideration for
collecting UAV imagery. It directly correlates with the ground resolution/pixel size of
each image. For example, if an image is captured at 90 m altitude relative to the ground,
the ground resolution will be approximately 4 cm with the UAV’s RGB camera and 8 cm
with the NIR sensor compared to only 2 cm and 4 cm respectively if flown at 50 m
altitude. Point clouds from 50 meters above ground had much greater structural detail
than images captured at 90 meters. Furthermore, it was much easier to discern important
details of the vegetation using imagery collected from lower flight altitudes. There are,
however, some drawbacks with flying lower altitudes. One such consideration is wildlife:
the lower an aircraft is flown, the more likely wildlife, such as birds, are to respond,
become stressed, and become aggressive towards the aircraft (Ditmer et al., 2015; Vas et
al., 2015; Lyons et al., 2017), which creates unsafe conditions due to risks of collision. In
this study, there were two close encounters with sea gulls when the UAV was flown near
their nesting sites. For surveying large areas, it may not be practical and safe to fly much
lower than 50 m altitude above the ground. Another consideration is time: the lower the
aircraft is flown to the ground, the more images are needed to be acquired to achieve
enough image overlap to accurately mosaic images and compute 3D information by SfM
photogrammetry, due to the reduced field of view as objects get closer to the sensor. To
survey one of the sites in this study (each study occupied approximately 25 ha), it
required 2 batteries and roughly 40 minutes of flight time when flown at 90 meters
altitude compared to 3 batteries and over an hour to fly at 50 meters altitude. Although a
high image overlap was programmed into the Pix4DCapture app for the surveys

conducted in this study, some images from low altitude surveys were difficult to align

66



during image processing and needed manual tiepoints. It is recommended that if UAV
surveys are conducted closer to the ground, ensure that there is enough image overlap and
sidelap for each survey, preferably 80% and 60% respectively.

Choosing a higher altitude in the spring followed by a lower altitude in the
summer was a limitation in this study. Imagery acquired at lower altitudes had inherently
higher spatial resolution than the higher altitude imagery. The resulting differences in
spatial resolution made the surveys not directly comparable for discriminating the plant
communities. If multiple surveys are conducted for temporal analysis, it is advisable to
choose one above-ground altitude for aerial surveys to achieve consistent spatial
resolutions and allow the imagery to be directly comparable.

No matter the remote sensing platform, weather conditions will affect the quality
and output of a sensor, with UAVs being no exception. During this study, many
environmental factors and weather conditions were found to affect the quality of images
acquired. Particularly in coastal areas, winds can be a challenge for operating a UAV.
High winds can cause difficulties in controlling the aircraft, reducing battery life and
consequently flight time, and can even cause some images to appear blurry due to
shaking of the aircraft and sensor. To avoid high winds, UAV surveys were generally
conducted in the mornings or early afternoons before winds got above 30 km/h. Another
factor that should be considered is insolation and scene illumination. The intensity and
angle of illumination of the sun changes constantly, and depends on the time of day, time
of year, as well as atmospheric conditions such as cloud cover. One example of this is
when images collected in the spring and the summer are compared: evergreen vegetation

in the summer appeared much brighter in images compared to the same evergreen
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vegetation in May, simply because the angle of insolation in May was lower than in the
summer, causing less solar radiation to be reflected towards the sensor. Variability in
insolation can alter the spectral statistics of an image, which can have consequences for
image analysis and should be considered when comparing multiple surveys.

An observed effect of insolation in this study was the opposition surge, also
known as the opposition effect or hot-spot effect. The opposition surge is an optical
phenomenon that is caused when the phase angle, the angle between the observer and the
light source, approaches 0° (Burratti, Hillier, and Wang, 1996). It can cause bright hues
to appear in images and was observed in this study when UAV imagery was collected in
the summer, when the insolation angle was at its peak (see Figure 2.10). Interestingly, the
opposition surge was not observed in the spring imagery, likely since the angle of
insolation was much lower. To avoid the effects of opposition surge, it is recommended
to fly earlier in the day when the angle of the sun is lower, especially around summer

solstice.
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Figure 2.10. An example of the opposition surge in UAV imagery, also known as the hot-
spot effect or opposition effect (A and B). A) was captured in May of 2016 at Prospect
Bay and shows no opposition surge because the angle of insolation in the spring is
relatively low; B) was captured in July of 2016 and shows the opposition surge
manifested in the eastern part of the image as a bright hue. The optical phenomenon
occurs when the phase angle, the angle between the observer and the light source,
approaches 0°.

Aside from the opposition surge, most problems with varying intensity of
illumination within and between surveys can be mitigated by configuring the settings of

the sensor and through image post-processing. Fixing the white balance and exposure
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settings to a constant value for an RGB camera will help to keep scene illumination
constant (Dandois, 2014). An alternative is to collect only raw, unaltered images. The
disadvantage with collecting raw images is that it is memory intensive and requires a lot
of storage space, especially when capturing hundreds of images for a single survey.
Although it was not done in this study, another option is to radiometrically calibrate the
sensor before each survey. This can be done by capturing an image of a radiometrically
calibrated target, and then correcting the values of all the images collected in that survey
to the known radiometric values of the radiometrically calibrated target (Kelcey and
Lucieer, 2012). If done for each survey, images from one survey to another would
theoretically be radiometrically comparable, likely enhancing the ability of aerial surveys
to discriminate vegetation types.

Despite the effects of weather conditions, such as variability in insolation within
and between surveys on acquired UAV imagery in this study, evidence of statistical
differences between plant communities were still found. It is hypothesized that if
mitigation measures are taken to control scene illumination, such as fixing white balance
and even radiometrically calibrating the sensor prior to each flight, the variance in
spectral and structural measurements of plant community types will decrease and
evidence of statistical differences will become even more apparent.

Processing UAV imagery requires a lot of time, computing power and trial and
error. Processing the imagery by far took the most time of any task in this study. The
most time-consuming part of processing the UAV imagery was producing the dense 3D
point cloud. It took one or two days to produce a point cloud for one of the surveyed sites

using the ‘high’ density setting in Agisoft. The ‘Ultra high’ setting was not possible to
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execute because the computer used to process the images did not have enough memory.
Choosing the ‘high’ density setting provided plenty of structural detail for the vegetation,
producing over a hundred million 3D points across a 25-hectare site flown at 50 meters
altitude. It is recommended to ensure the computer used to process the UAV imagery has
sufficient memory for the task.

The quality of the orthomosaics produced by Agisoft was excellent. Break lines
and other artifacts created by mosaicking the images were rare and the opposition surge
observed in some surveys conducted in the summer was mostly mitigated since landscape
features that may have occurred within a hot-spot in one image were observed from
different angles in other images. The orthomosaics made it possible to view the entirety
of each study site in very high resolution and allowed for the computation of spectral
statistics to help discriminate the plant communities.

The overall quality of the 3D point clouds produced from SfM photogrammetric
processing of the UAV imagery was very good. Errors in 3D reconstruction of vegetation
and other landscape features were seldom observed. Trees and shrubs were accurately
reconstructed; however, canopy heights were generally underestimated based on field
measurements, which is consistent with Fraser et al. (2016) and Aasen et al. (2015).
Underestimates of canopy height mostly occur because the ground is not directly visible
from the aircraft since it is often blocked by foliage, consequently not allowing a 3D
measurement of the ground to be taken. Canopy height measurements from UAV
imagery therefore represent the difference between the top of the canopy and the point
nearest the ground. This is a general limitation with current 3D reconstruction techniques

using UAV imagery alone. Improved processing algorithms may help to produce better
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bare-earth (ground) models from UAV imagery and achieve better estimates of true
canopy height of the vegetation.

Featureless and homogeneous surfaces can cause problems in image stitching and
computation of 3D information using SfM photogrammetry (Eltner et al., 2015). To
mosaic images and compute 3D information, the software needs to identify
features/objects to match images. This issue was apparent when processing images in the
summer, particularly NIR imagery. NIR imagery had slightly lower resolution than the
RGB imagery (4 cm pixels compared to 2 cm pixels at 50 meters altitude), and vegetation
captured in the summer can appear very homogeneous, causing certain parts of the study
sites to have poor image matching. Some options exist to alleviate these problems. Flying
at a higher altitude will reduce image resolution but increase the viewshed of each image,
possibly allowing for the detection of more features to match. Another option, which
proved successful in this study, is to create manual tie points for the problematic images
within the software, which is like georeferencing a set of images with GCPs except
manual tie points are only created in the software and are determined solely by the user
specifically to help match images, since it is likely that some features in the images are
still recognizable by the user, even though the software was not able to create matches.

One of the greatest challenges with processing the UAV imagery was accurately
georeferencing the surveys and having the surveys accurately overlay on top of each
other. Initially, using 10-12 GCPs per site allowed surveys to overlay with moderate
precision. In some areas, particularly between GCPs, positioning errors from one survey
to another ranged from one to several feet. It is hypothesized that this was caused by

landforms, such as boulders and hills, being captured from slightly different viewing

72



angles of the aircraft from one survey to another, giving the perception that parts of the
landscape were shifting while other parts remained in the same place. Normally,
orthorectifying the images using a digital elevation model is meant to mitigate this
problem; however, distortions and positioning errors were still noticeable after the initial
georeferencing. To mitigate this issue in this study, summer surveys were treated as the
reference and additional targets were created across each site in ArcGIS, which were then
incorporated for the georeferencing of the spring surveys. This allowed the surveys to
overlay much better, reducing most of the positioning errors to only a few centimeters,
and prevented the need to go back into the field to collect more GCPs and re-survey the
sites.

The results of this study emphasize the value and effectiveness of using UAVSs to
discriminate and map plant communities in the coastal barrens. Although UAVs currently
have some limitations, such as constraints on survey size due to battery life, inability to
penetrate the canopy to obtain elevation measurements directly from the ground with
standard sensors, and continued tightening of regulations of operating UAVS, their
benefits for research in plant ecology are many fold: low cost, adaptability for equipping
different kinds of sensors, including hyperspectral sensors, ease of access to difficult
sites, and high spatial, spectral, and temporal resolution (Cruzan et al., 2016).

Satellite imagery has been successfully used to map broad categories of
vegetation (Ustin and Gamon, 2010); however, they have not yet been adequate for
mapping plant communities at the fine scale, particularly in the coastal barrens where
landscapes are patchworks of plant communities. This is because pixel sizes from satellite

imagery are usually greater than 1m, which would be insufficient to resolve the important
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details of vegetation (Adam et al., 2010; Cruzan et al., 2016). Furthermore, satellites
currently lack the ability to collect high-resolution 3D structural information of
vegetation canopies, which was found to be very useful for discriminating the plant
communities in this study. Nonetheless, satellite technology is improving very quickly
and could eventually be very useful for fine scale mapping of vegetation, especially with
multispectral sensors.

Manned aircraft can obtain imagery with sub-meter resolution and can also be
equipped with high-powered sensors like hyperspectral and LIDAR (Light Detection and
Ranging). LIDAR emits laser pulses to collect 3D data about the earth’s surface. Studies
have found that it is useful for assessing canopy heights of vegetation, since the laser
pulses can penetrate canopies and provide ground signal returns (Baltsavias, 1999; Asner
et al., 2015); however, when compared to SfM photogrammetry from a UAV, LIDAR
from traditional aircraft platforms are unable to achieve the spatial resolution needed to
reconstruct fine-scale geomorphological features (Kalacska et al., 2017). Furthermore,
employing manned aircraft is much costlier than the costs associated with purchasing
most UAVs. More recently, ground-based LIDAR have been used in various applications
to create highly detailed 3D point clouds with sub-centimeter resolution, providing the
ability to accurately quantify biomass of vegetation and compute biophysical parameters
such as leaf area index (LAI) (Loudermilk et al., 2009). This application of LIDAR
shows potential for mapping vegetation structure; however, currently costs are very high
for collecting ground LIDAR and it is limited to relatively small areas (Kalacska et al.,

2017).
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Although it was not within the scope of this study to compare different remote
sensing platforms, it may be worthwhile in future studies to examine which platform or
combination of platforms yield the best results for discriminating plant communities at
the fine scale.

One of the greatest controversies in the field of ecology has been the debate of
whether plant communities exist as discrete, recognizable units (Clements, 1916) versus
existing as a continuum of species along environmental gradients (Gleason, 1926).
Although it is generally agreed upon that species are distributed individualistically, there
is also growing agreement that assemblages of species as communities can be recognized
as identifiable units (van der Maarel and Franklin, 2013). Porter (2013) used clustering
analysis to identify three distinct dwarf heath plant communities occurring in the coastal
barrens of Nova Scotia. These communities were recurring across multiple sites, had
similar species abundances and compositions, and had similarly associated environmental
conditions. The findings of this study add support to the modern synthesis of the two
plant community paradigms: upon reviewing the field plot data, it was clear that no two
field plots were exactly the same compositionally, which is in agreement with Gleason’s
view of species distributions; however, it was also evident that patterns existed in the
field plot data, and statistical analysis of UAV imagery showed that evidence of
differences between the classified plant communities existed, suggesting that plant
communities in the coastal barrens of Halifax, Nova Scotia can be recognized as discrete

units.
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Implications and Future Work

This study offers the first empirical evidence that UAVs can be used to
discriminate plant communities at different classification levels in the coastal barrens.
This means that, with a certain level of confidence, the distributions of plant communities
can be mapped. Distribution maps of the communities at a fine scale have not yet been
possible for the coastal barrens, and producing them will help to further our
understanding of the spatial patterns of the plant communities, learn more about the
processes that form and change them and the ecosystem as a whole, assess ecosystem
health, estimate biophysical parameters such as biomass, and focus conservation efforts
(Grossman et al., 1994; He et al., 2005; Tart et al., 2005; Adam et al., 2010). It is also
possible to use the statistical information to build a spectral and structural library of the
known plant community types to help locate communities and predict their distributions
in previously unknown areas (Zomer, Trabucco, & Ustin, 2009). This can further make
field sampling efforts more focused and efficient. Lastly, when assigning plant
community classification based on field plot data alone was difficult, UAV imagery
offered a bird’s eye view of the field plots and offered spectral and 3D structural
information as another line of evidence to form the classifications. The use for UAVS in
plant ecology research may not be limited to only vegetation mapping, but also for
assisting field work and how ecologists describe and define plant communities.

The next steps forward are to apply the knowledge from this study to produce fine
scale distribution maps of plant communities in the coastal barrens. This will improve our
understanding of the spatial patterns and distributions of the plant communities that

inhabit the coastal barrens, in which information is currently limited. Future work should
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continue to investigate other potentially useful spectral and structural indices that can be
derived from processed multispectral UAV imagery to discriminate plant communities, in
addition to exploring the use of image texture metrics, i.e. statistics on the spatial
arrangements of colors and intensities in an image. Doing so would likely improve
classification accuracies of the plant communities from UAV imagery. It would also be
worthwhile comparing UAVs with other remote sensing platforms for mapping plant
communities in the coastal barrens. Furthermore, identifying the most optimal spatial
resolution for collecting spectral, structural, and textural statistics as well as season to
discriminate plant communities based on plant phenologies would further enhance
mapping efforts. Lastly, UAVs equipped with hyperspectral sensors, although relatively
costly, have already been shown to discriminate vegetation at the species level
(Nevalainen et al., 2017) and should be a consideration for discriminating and mapping

plant communities in the coastal barrens and other ecosystems.
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Conclusion

In this study, a UAV equipped with RGB and NIR sensors was used to determine
if plant communities can be discriminated from each other in the coastal barrens of
Halifax, Nova Scotia. All plant community classification except for one pair could be
discriminated with 95% confidence. The formation class classification yielded higher
classification accuracies than the association level classification. Most confusion was
found between structurally similar classifications, and merging confused groups
substantially increased classification accuracy. These results show that when spectral and
structural characteristics of vegetation are extracted from multispectral UAV imagery,
plant communities can be discriminated and recognized as discrete units, adding support
to the modern synthesis of Gleason’s (1926) and Clements’ (1916) views that, although
species may be distributed individualistically, assemblages of species as communities can
be recognized as identifiable units. Furthermore, the findings suggest that plant
communities can be mapped in the coastal barrens at different classification levels using
UAVs, which has not been demonstrated until now. Producing detailed distribution maps
of plant communities can be directly used to focus conservation efforts and manage the
protection of these ecosystems while also telling a great deal about the spatial patterns of
the plant communities and the processes that govern them. Future research should begin
using UAV imagery to map the distributions of plant communities in the coastal barrens
and investigate ways to optimize image acquisition and processing techniques to

discriminate plant communities with the greatest level of confidence.
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Abstract

The coastal barrens of Halifax, Nova Scotia are patchy mosaics of plant
communities that experience harsh environmental conditions. Despite the harsh
conditions, many rare and uncommon species inhabit these ecosystems, making them a
high priority for conservation. Little is known of the landscape patterns of plant
communities in the coastal barrens. In 2016, multispectral aerial imagery was collected
from an unmanned aerial vehicle at three coastal barrens sites in Halifax, Nova Scotia:
Chebucto Head, Prospect Bay, and Polly’s Cove. Images were processed using structure
from motion photogrammetry to create 3D models and orthomosaics of the landscapes,
which were used with ground truthing field plot data to produce detailed maps of plant
community patches and landscape features. Environmental factors, such as elevation,
stream networks and wind exposure were also mapped to help understand the structure
and spatial heterogeneity of the landscapes. Sites were dominated by shrublands and
dwarf heath; however, many other types of communities co-existed, including bogs, salt
marshes, and tree islands. Plant community patches varied in size, shape, abundance, and
spatial distribution from one plant community type to another and in many cases from
one site to another. Landscape patterns were driven by various combinations of
environmental factors, including slope position, proximity to stream networks, elevation,
and distance to coastline. Overall site differences could be mostly explained by the
degree of topographic heterogeneity of each landscape. UAVs are an excellent option for
mapping plant communities and understanding the structure of landscapes and future

research should consider using UAVSs for environmental monitoring.
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Introduction

Coastal barrens are mosaics of plant communities and different types of habitats
that exist in harsh environmental conditions (Oberndorfer and Lundholm, 2009; Burley
and Lundholm, 2010; Porter, 2013). They can be diverse and contain rare and uncommon
species, making them a high priority for conservation. Near Halifax, Nova Scotia, coastal
barrens are abundant and previous research has attempted to document their species and
plant communities (Oberndorfer and Lundholm, 2009; Burley and Lundholm, 2010;
Cameron and Bondrup-Nielsen, 2013; Porter, 2013). Currently, the distributions, spatial
relationships, and spatial configurations of species and communities across coastal
barrens landscapes are unknown. Understanding these aspects of landscape pattern are
critical to revealing landscape function and processes that govern them, and ultimately
how to manage and protect them.

Landscape ecology is the study of interacting organisms and their distributions
across landscapes. A landscape is scale-dependent and often refers to a land surface of a
region and its associated habitats (Turner, 1989). A popular view of landscapes is the
patch-corridor-matrix model (Forman, 1995), which describes landscapes as being
composed of patches, corridors, and a background matrix. Patches are relatively discrete
areas with relatively homogeneous environmental conditions (McGarigal and Marks,
1995). Corridors are linear elements in a landscape that are usually isolated in a
background matrix. Lastly, the matrix is the most extensive and connected element in the
landscape (McGarigal and Marks, 1995). This view of landscapes as mosaics has often
held true for both urban and natural landscapes. Organisms and their habitats within a

landscape can occur across a wide range of spatial scales, influencing population
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dynamics and the overall structure and function of the ecosystem (Johnson et al., 1992).
To understand the ecological function of landscapes and how they change over time,
landscape structure must be quantified, i.e. the composition and spatial configurations of
its components or patches (McGarigal and Marks, 1995). Landscape structure can be
quantified by computing various kinds of landscape metrics from land cover maps
(McGarigal and Marks, 1995). Remote sensing is a promising tool that can help to make
accurate land cover maps.

Remote sensing is the science of obtaining information from objects at a distance.
A great deal can be learned from mapping remotely sensed data, including vegetation
productivity, biomass, stress levels of vegetation, disturbance regimes, nutrient cycling,
leaf water content, chlorophyll, and lastly the spatial patterns and distributions of
organisms (Adam et al., 2010; Ustin and Gamon, 2010; Homolova et al., 2013; Asner et
al., 2015; Minatik and Langhammer, 2016; Galidaki et al., 2017). Many different
platforms can be used for remote sensing, including satellites, manned aircraft, and more
recently unmanned aerial vehicles (UAVs). Each platform has its own limitations
associated with factors such as costs, timing, geographic scale, and resolution. Satellites,
such as the SPOT4-VEGETATION satellite, which has a 1 km pixel resolution, have
been used to make global landcover maps (Xie et al., 2008). Most satellites have
resolutions greater than 1 meter, which is insufficient to resolve important details of
vegetation for mapping at the fine scale (Adam et al., 2010; Cruzan et al., 2016). Manned
aircraft can be equipped with sensors and flown much closer to the earth’s surface,
obtaining sub-meter resolution and having the ability to also collect detailed 3D structural

information from vegetation canopies and the earth’s surface (Hill and Thomson, 2005;
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Asner et al., 2015). Manned aircraft are expensive to operate, and the spatial resolution is
often still too coarse to resolve important morphological features of vegetation to make
accurate classifications (Kalacska et al., 2017), especially for the coastal barrens where
plant community patches can be less than a meter wide. A more promising option for
collecting high-resolution remotely sensed data are UAVs.

Commercial UAVSs can capture very high-resolution aerial imagery across broad
extents with pixel sizes in the low centimeters, giving landscape ecology an entirely new
perspective (Gongalves et al., 2015; Zweig et al., 2015; Sturdivant et al., 2017). They are
relatively low-cost, can survey many hectares of land in a single flight, and can achieve
high temporal resolution, since survey frequency mostly depends on the availability of
the pilot and weather conditions. UAVs can be equipped with many different types of
sensors as well, allowing them to collect hyperspectral imagery, thermal imagery, and in
some cases LIDAR at very high spatial resolutions. Another advantage of UAVs is that
they collect sequential overlapping imagery close to the ground, which allows 3D
information to be computed for the landscape using structure from motion (SfM)
photogrammetry (Micheletti et al., 2015). This can provide realistic 3D models of
landscapes, providing enormous opportunities for quantitative and spatial analysis of
landscape topography and 3D vegetation structure. Based on previous applications of
UAVs, UAVs may be a good solution for mapping plant communities in the coastal
barrens at the fine-scale for quantifying their landscape patterns.

The aim of this study is to quantify the landscape patterns of plant communities at
three coastal barrens sites in Halifax, Nova Scotia. This will be achieved by the following

objectives: 1) To quantify the landscape composition and spatial configuration of plant
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community patches at the fine-scale (minimum area of 0.3 m? per patch) for three coastal
barrens sites in Halifax, Nova Scotia: Chebucto Head, Prospect Bay, and Polly’s Cove; 2)
To evaluate the landscape patterns of plant community patches in relation to
environmental factors; and, 3) To compare the landscape structure of Chebucto Head,

Prospect Bay, and Polly’s Cove.
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Methods

Study Area and Scale

In Nova Scotia and other provinces in Atlantic Canada, coastal barrens are
abundant (Porter, 2013). Many iconic coastal barrens sites exist near Halifax, Nova
Scotia and three were selected for this study: Polly’s Cove (Figure 3.1A), Prospect Bay
(Figure 3.1B), and Chebucto Head (Figure 3.1C). The extent of each site measured 500
by 500 m in the shape of a square, which is approximately 25 ha per site. Although there
are many definitions for a landscape (McGarigal and Mark, 1995), for the purposes of
this study a landscape will be defined as an area of land that contains a mosaic of patches,
which will be equivalent to a “site”. A “patch” refers to the smallest unit or component of
a landscape and will be specifically defined as a discrete, relatively homogeneous area
such as a plant community or a landscape feature (e.g. a boulder). A plant community
will be defined as “a relatively uniform piece of vegetation in a uniform environment,
with a recognizable floristic composition and structure that is relatively distinct from the
surrounding vegetation” (van der Maarel and Franklin, 2013). Finally, a “class” is a

discrete category within a classification system, such as a plant community type.
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Figure 3.1. Three coastal barrens landscapes selected as study sites in the Halifax region
of Nova Scotia, Canada: Polly’s Cove (A), Prospect Bay (B), and Chebucto Head (C).

Data Collection and Processing

The coastal barrens are known for their high-degree of patchiness, particularly at
small scales. To capture this fine-scale patchiness for evaluating the landscape structure
of each landscape, a minimum patch size of 0.3 m? was designated. Therefore, the
resolution or grain of the remotely sensed data must be even finer to resolve patches in
the landscape. For this study, a UAV was selected as the remote sensing platform since
they can collect aerial imagery with sub-decimeter resolution, are relatively inexpensive,
and can be used to map large areas in short periods of time. The UAV, a DJI Phantom 3
Professional quadcopter equipped with an RGB (Red-Green-Blue) camera and a Sentera
near-infrared (NIR) sensor, was flown in May and August 2016 at the three study sites to
collect high-resolution multispectral aerial imagery. Pix4DCapture (Pix4D, Lausanne,
Switzerland), a flight planning mobile application, was used to make customized grid

missions and autonomously pilot the unmanned aerial vehicle to collect sequential
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imagery across each site. In May, the aircraft was flown at an above-ground altitude of 90
m, providing 4 cm pixel resolution for the RGB camera and 8 cm pixel resolution for the
NIR sensor. In August, the aircraft was flown at 50 m above-ground altitude, proving 2
cm pixel resolution for the RGB camera and 4 cm pixel resolution for the NIR sensor.
Image overlap was set to 80% and sidelap at 60% with both sensors oriented downward.
Images were processed using Agisoft Photoscan Professional (v. 1.3.2, Agisoft
LLC, St Petersburg, Russia). Agisoft is one of the most common softwares currently used
to process aerial imagery using SfM photogrammetry and is often used to stitch aerial
images together to create high-resolution orthomosaics and compute 3D information to
generate 3D point clouds and digital surface models. First, images were aligned using the
Align Photos tool with the Accuracy setting set to ‘High’, Generic preselection
unchecked, Reference preselection checked, Key point limit set at 40000, Tie point limit
set at 4000, and Adaptive camera model fitting checked. Afterward, ground control points
(GCPs) were added to accurately georeference the models. GCPs are commonly used to
georeference aerial surveys and usually consist of a visible target placed in the field with
known XYZ coordinates. For this study, 10 to 12 9-inch red plastic plates were evenly
spread out across each site prior to aerial surveys and a real-time kinematic (RTK) was
used to obtain the geographic coordinates of the center of each GCP with a horizontal
accuracy of 1-2 cm and a vertical accuracy of 2-6 cm. Additional control points were
added to the models from the spring, which were derived from the digital elevation
models (DEM) from the summer surveys. This improved the alignment of the spring and
summer surveys. After GCPs were incorporated into the models, the Optimize Cameras

command was run to georeference the models. Next, the Build Dense Pointcloud tool was
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run with Quality set to ‘High’ and Depth filtering as ‘Moderate’, creating a dense point
cloud. Subsequently, the Build DEM tool was used to create an elevation model. Lastly,
the Build Orthomosaic tool was run with Surface set to ‘DEM’, Blending Mode as
‘Mosaic’, Enable color correction unchecked, and Enable hole filling checked, which
created an orthomosaic of the imagery for each survey. The final products that were
exported from the software and used for further analysis were the RGB & NIR
orthomosaics and the 3D point clouds. Image acquisition and processing results can be
viewed in Table 2.1.

Spectral indices were derived from the RGB and NIR orthomosaics from the May
and August surveys. Structural indices were derived from the 3D point cloud and
subsequently digital elevation model from August. In total, 44 mapped indices were
created (see Table A2.1). These indices were later used in conjunction with RGB

orthomosaics to create a classified plant community map for each site.

Image Classification

Plant community maps were generated from UAV imagery using an object-based
image classification approach (also known as object-based image analysis or OBIA) in
ArcGIS (v. 10.3.1, Environmental Research Systems Institute, Redlands, California).
OBIA reduces noise and the undesired salt-and-pepper effect often produced from
conventional per-pixel classification techniques, particularly from classifying high-
resolution imagery, by segmenting an image into spatially and spectrally-similar objects
(Blaschke, 2010). A classifier is later used to classify each segmented object rather than

each pixel. For this study, the support vector machine (SVM) classifier was chosen. It has

94



performed well in previous studies at classifying vegetation compared to other
classification techniques, can handle high-dimensional datasets, and is robust to having
low sample sizes (Tzotsos and Argialas, 2008; Dronova et al., 2012; Burai et al., 2015;
Pande-Chhetri et al., 2017). First, a segmented 3-band raster image, a support raster, and
ground truthing data were used to generate a classified raster image for each site using the
SVM classifier available in ArcGIS. Afterward, the classified images were post-
processed to remove noise and fix obvious errors. Lastly, a 10-fold cross-validation was
done by randomly splitting the ground truthing data 10 times into sets of 50% training
and 50% testing data to assess the map accuracy. This methodology was applied
individually to each site. The image classification workflow is illustrated below in Figure

3.2.

Spectral & Structural
Indices
l |
v v ¥
Train Support Vector
Machine Classifier

Segmented UAV Imagery TrainingSamples

v

Classify Imagery

\ 4

Post-Process Classification

l

Accuracy Assessment

Figure 3.2. Flowchart illustrating the image classification workflow used in this study to
derive plant community maps from UAV imagery.

First, UAV imagery were segmented into spectrally-similar objects using the

Segment Mean Shift tool in ArcGIS. The tool can only operate on an image with a
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maximum number of 3 bands, so either the May or the August RGB imagery were used
depending on which yielded the best classification results. The amount of spatial and
spectral smoothing of the image was controlled by three settings within the tool: spectral
detail (0-20), spatial detail (0-20) and the minimum segment size (in pixels). From trial
and error, the most optimal settings were found to be 20, 20, and 20 respectively.

To support the classification, a supporting raster was made. A support raster is
optional for the Train Support Vector Machine Classifier tool in ArcGIS and is used to
provide additional information (i.e. spectral or structural) to support the classification.
The support raster was made by running principal components analysis (PCA). Principal
components analysis is a multivariate technique that transforms a dataset into a new set of
principal components that have reduced dimensionality, are uncorrelated, and retain the
maximum amount of variation explained by the original dataset (Jolliffe, 1986). The
analysis was run using the Principal Components tool in ArcGIS on the 44 spectral and
structural indices. The first 32 bands of the output PCA raster were extracted, since the
SVM classifier tool has a 32-band limit.

To train the SVM classifier, training samples in the form of polygons were
required. Ground truthing data from field plots were collected at each site from June to
August in 2016, with each plot measuring approximately 4 by 4 m (16 m?) except for
when plant community patches were smaller or irregularly shaped. All taxa were
recorded in each plot and the percent cover of the most dominant taxa were visually
estimated. Each field plot was assigned an association level plant community
classification, which is based on the Canadian National Vegetation Classification

(CNVC, 2013). The CNVC is a standardized 8-level hierarchy in which the association
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level is the finest level of plant community classification and is based primarily on
floristic criteria such as dominant species. To achieve the greatest level of representation
of plant community types for each site, field plot locations were determined using a
combination of stratified random sampling and strategic sampling, including the
interpretation of aerial imagery and identifying areas to sample while in the field (Table
2.4). The locations of each field plot were subsequently mapped in ArcGIS. Lastly, plant
community patches were delineated as training polygons based on the field plot locations,
UAYV imagery, plot photographs, and field data sheets.

The segmented RGB orthomosaic, the support raster, and the training sample
polygons were input into the Train Support Vector Machine Classifier tool in ArcGIS to
create a classifier definition file. The Segment Attributes parameter within the tool allows
the user to select the following attributes to compute from the input image: ‘color’,
‘mean’, ‘std’, ‘count’, ‘compactness’ and ‘rectangularity’. Classification accuracies
varied using different combinations of these parameters and best results were found
through trial and error for each site. For Chebucto Head, only ‘mean’ and ‘std’ were
selected; for Prospect Bay all were selected; for Polly’s Cove ‘color, ‘mean’ and ‘std’
were selected. Another optional parameter is Max Number of Samples Per Class; for
Chebucto Head this parameter was set to the default value of 100 and for Prospect Bay
and Polly’s Cove it was set to 0, meaning it would use all samples. From the tool inputs
and the parameter settings, the tool creates a classifier definition file, which was
subsequently input along with the segmented RGB orthomosaic and support raster into

the Classify Raster tool to create a classified raster image.
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Classified images were post-processed to remove noise, smooth out patch
boundaries, and remove obvious classification errors. First, the Majority Filter tool was
used to filter out initial noise with number of neighbors to use set to 8 and replacement
threshold set to ‘half’. Next, the Boundary Clean tool was used to smooth out the
boundaries of each patch with sorting technique set to ‘descend’ and Run expansion and
shrinking twice checked. Afterward, a minimum mapping unit of 30 cm? was set for each
patch except for Cladonia spp using the Region Group tool followed by the SetNull tool
and lastly by running the Nibble tool. Larger plant community types, such as tree islands,
were given a minimum mapping unit of 1.6 m2. The Region Group tool groups connected
cells of the same values into regions. Parameter settings for the Region Group tool
included setting Number of neighbors to use to ‘4’ and Zone grouping method to ‘within’.
Next, a written expression was input into the SetNull tool to nullify the output regions
from the Region Group tool that did not meet the minimum size criteria mentioned above.
Lastly, the Nibble tool was used to replace the nullified regions from the Set Null tool
with their nearest neighboring regions/patches. Finally, each class was separately
examined and compared with the original UAV imagery to identify and manually fix any
obvious classification error. Manually fixing errors was only done after the accuracy
assessments so as not to introduce bias.

To assess the classification accuracy of the maps, a 10-fold cross-validation was
done by randomly splitting the ground truthing data 10 times into sets of 50% training
data and 50% testing data. Each training set was used to create a classified map,
producing 10 validation maps, while the testing sets were used to evaluate whether the

validation maps correctly classified the locations of the testing data. To assess the
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accuracy of the validation maps, the centroid point of each polygon was used to extract
the class values from the validation maps using the Extract Values to Points tool in
ArcGIS. Tables were later exported from ArcGIS and imported into R (v. 3.4.1; R Core
Team, 2017) to compute confusion matrices, comparing actual and predicted values from
the ground truth locations for each class. Overall accuracy was computed by summing the
total correctly classified ground truth points divided by the total number of ground truth
points. Classes that were not plant communities, such as rocks or dead trees, were
excluded from the accuracy assessment. Accuracies were subsequently averaged across
the 10 validation sets to arrive at a final accuracy estimate. This method for assessing
map accuracy was chosen to accommodate for classes with low sample sizes. Ideally, a
leave-one-out cross-validation technique would have been done, where one field plot
sample is removed from the training set at a time and used to assess whether the
validation map correctly predicted that location. This method would have resulted in
creating hundreds of validation maps and would not be feasible due to the length of time
to create a map.

Following the accuracy assessment, plant community types from the association
level classification with a high number of misclassifications with other plant community
types were merged together to form a broadened association level classification. The
Reclassify by Table tool in ArcGIS was used to reclassify the classified rasters. Following

this, the accuracy assessment was re-run.
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Landscape Pattern Analysis

Landscape structure was described in terms of landscape composition (global) and
the spatial configuration of patch types that make up the landscape (local), such as size,
shape, and aggregation. Various landscape metrics were used to quantify these aspects of
landscape structure. Landscape metrics were calculated using FRAGSTATS (v. 4.0,
McGarigal et al., 2012) and ArcGIS. Measures of landscape composition included:
number of classes (class richness), most dominant communities, largest patch, total
number of patches, patch density, and total vegetation cover (Table 3.1; McGarigal et al.,
2012). Class-level metrics for the spatial configurations of patches included: patch area,
patch perimeter, number of patches, perimeter-area ratio, shape index, and related
circumscribing circle index (Table 3.2; McGarigal et al., 2012). In addition to these
metrics, the average nearest neighbor ratio of each class, i.e. plant community type, was
calculated using the Average Nearest Neighbor tool in ArcGIS. It is a measure of the
degree of clustering or dispersion of each class across the landscape. Furthermore, a
neighborhood analysis was done to determine the top three most common neighbors for
each class. This was done using the Polygon Neighbor tool in ArcGIS, which quantifies
the length of edge shared between patches and their adjacent neighbors.

Some patch metrics listed in Table 3.2 were summarized using the area-weighted
mean rather than the mean. The area-weighted mean was chosen because it offers a
landscape-centric perspective of the patches by weighting patches based on their area,
which reflects conditions when a location on a landscape is chosen at random (McGarigal
et al., 2012). In landscape ecology studies, it is often the preferred method to calculate the

mean, because larger patches theoretically have more influence on landscape function.
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Table 3.1. Landscape-level metrics used to describe landscape composition.

Metric Description

Landscape Area Area (hectares) of the landscape or study area.
Number of Classes | Number of plant community classification (also known as class

richness).
Most Dominant Top three most dominant plant communities based on percentage
Communities of landscape occupied. Expressed as the total area of a class
divided by the total area of the site, multiplied by 100.
Largest Patch Largest plant community patch in the landscape (hectares).

Total Number of The total number of plant community patches in the landscape.
Patches
Patch Density Density of plant community patches in the landscape. Expressed
as the number of plant community patches per hectare of land.
Total Vegetation The total vegetation cover of the landscape (%). Expressed as the
Cover total area of all plant communities divided by the total area of the
site, multiplied by 100.
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Table 3.2. Class-level metrics used to describe the spatial configurations of plant

community patches within a landscape.
Metric Description

Class Area Total area of a class (hectares).

Number of Patches | The number of patches in a class.

Patch Area The area-weighted mean area (square meters) of patches in a
class.

Patch Perimeter The area-weighted mean perimeter (meters) of patches in a class.

Perimeter-Area The area-weighted mean of the perimeter-area ratio (meters) of

Ratio patches in a class. Expressed as the perimeter divided by the area.
Commonly used as a measure of shape complexity.

Shape Index The area-weighted mean of the shape index of patches in a class.

Expressed as the perimeter divided by the square root of the patch
area and adjusted by a constant for a square standard. It is a
measure of shape complexity. Values range from 0 to infinity,
where a value 1 indicates the shape of a square and increasing
values indicate increasing shape complexity.

Related The area-weighted mean of the related circumscribing circle
Circumscribing index of patches in a class. Values range from 0 to 1, where a
Circle Index value of 0 indicates a circle and values approaching 1 indicate

elongated linear patches.

Average Nearest A measure of the degree of clustering or dispersion of a class
Neighbor Ratio across a landscape. It is the ratio of the average distance of each
feature’s centroid and its nearest neighbor’s centroid of the same
class, divided by the expected distance from the feature to its
nearest neighbor of the same class in a hypothetical random
distribution. Calculated using the Average Nearest Neighbor tool
in ArcGIS. If the value of the index is less than 1, the pattern is
clustered; if the value is greater than 1, the pattern is dispersed; if
the value is 0, the pattern is random.

Most Common Top three most common neighbors of a class. Calculated using
Neighbors the Polygon Neighbor tool in ArcGIS. The tool quantifies the
length of edge shared between patches and their adjacent
neighbors for each class.

Environmental Factors

Eight environmental factors were chosen to further describe the landscape
structure of each site and to help interpret the landscape patterns of plant communities.
These included: elevation above sea-level, distance from coastline, wind exposure,

hydrology (stream order), incoming solar radiation, slope position classification, local
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surface ruggedness, and global surface ruggedness (Table 3.3). Each environmental factor
took the form of a 2 m raster of the landscape. Seven of the environmental factors were
derived from the DEM produced from SfM photogrammetry of the UAV imagery;
distance from coastline was computed separately without a DEM. Statistics were
computed by first running the Region Group tool in ArcGIS on the classified plant
community raster, followed by inputting the regions and environmental rasters into the
Zonal Statistics as Table tool. Doing so obtained statistics for each region/patch for each
environmental factor. Statistics were later exported from ArcGIS as tables and imported
into R for further analysis. Quantitative variables were analyzed by computing 95%
confidence intervals about the area-weighted means for each class. Categorical variables
(i.e. hydrology and slope position classification) were analyzed by computing area-

weighted counts for each class.
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Table 3.3. Environmental factors computed for plant community patches.

Environmental
Factor

Elevation Above

Description

The area-weighted mean elevation above sea level (meters) of

Sea-level patches in a class. Measured from the 2 m bare ground DEM.
Distance from The area-weighted mean distance (meters) of patches in a class
Coastline from the coastline. Calculated using the Euclidean Distance tool

in ArcGIS.

Wind Exposure

The area-weighted mean value of wind exposure for patches in a
class. Wind exposure was modeled using a combination of wind
direction data, in the form of a wind rose, and hillshades from a 2
m DEM. Values were scaled to range from 0 to 100.

Hydrology
(Stream Order)

Stream networks were derived from a 2 m DEM using the
Hydrology toolset in ArcGIS. Statistics for patches were
calculated by first obtaining the maximum stream order value
within a 10 m search radius of each patch followed by computing
area-weighted counts of all patches for each class in R. Stream
order values are expressed as integers and typically range from 0
to 10, although maximum values could be lower depending on
the number of intersecting streams. Stream order increases when
streams of the same order intersect.

Incoming Solar
Radiation

The area-weighted mean incoming solar radiation (Watt
hours/m?) of one year (2016) for patches in a class. Calculated
using the Incoming Solar Radiation tool in ArcGIS. Values were
scaled to range from 0 to 100.

Slope Position

Majority slope position classification for each patch followed by
computing area-weighted counts of all patches for each class in
R. Calculated using Slope Position Classification tool from the
Topography Tools ArcGIS toolbox (Dilts, 2015). Possible slope
positions include: valley, toe slope, flat, midslope, upper slope,
and ridge.

Surface
Ruggedness

The area-weighted mean local and global surface ruggedness for
a patch. Measures of topographic heterogeneity at two scales.
Calculated using the Roughness tool from the Geomorphometry
and Gradient Metrics toolbox for ArcGIS (Evans et al., 2014).
Values were scaled to range from 0 to 100.

Elevation gradients are known to affect the distributions and structure of plant

communities (Choler et al., 2001; Lomolino, 2001). Elevation above sea-level can

potentially influence the amounts of wind exposure, salt spray, precipitation, and other

environmental factors received by plant communities. Elevation above sea-level was
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directly derived from the digital elevation model produced from the SfM
photogrammetric processing of the UAV imagery (Figure A2.1). The DEM was derived
from the 3D point cloud produced from SfM photogrammetry of the UAV imagery and
had a 2 m resolution with values representing the minimum elevation of the 3D point
cloud to simulate a ground elevation model rather than a canopy model. This 2 m bare
ground elevation model was used for deriving all environmental factors that required the
use of a DEM in this study.

The distance of a plant community patch from the coastline can potentially
influence the amount of salt spray, wind exposure, and possibly other environmental
factors received by the patch (Burley and Lundholm, 2009). Furthermore, disturbance
regimes may be higher near the coastline since all three sites have popular hiking trails
near the coastline, which may further affect distribution patterns of the plant
communities. A 2 m raster of distance from the coastline was made by selecting the
boundary line of the site that runs along the coast and executing the Euclidean Distance
tool in ArcGIS, with the cell size parameter set to 2 m (Figure A2.2).

Wind exposure is likely one of the most important driving forces that influence
the ecology of the coastal barrens (Burley and Lundholm, 2010; Porter, 2013). Exposure
to wind can uproot plants, cause physical damage by tearing, stripping, and abrasion, and
can erode topsoil which can further limit the establishment of plants (Cleugh et al., 1998;
De Langre, 2008). It can also influence other environmental factors, such as precipitation
patterns and salt spray (Baker et al., 2001). Creating a model simulating wind exposure
across a landscape is therefore crucial for examining the landscape patterns of plant

communities in the coastal barrens. For this study, wind exposure was modeled for each
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landscape using a combination of wind direction data and a digital elevation model
(Figure A2.3; Mikita et al., 2010). A wind rose representing three years of wind direction
data for Chebucto Head was obtained from the Duncan’s Cove weather station

(https://www.windfinder.com/windstatistics/duncans-cove halifax); a wind rose

representing four years of wind direction data for Polly’s Cove and Prospect Bay was
obtained from the East Dover weather station

(https://www.windfinder.com/windstatistics/east dover nova scotia). First, the

Hillshade tool in ArcGIS was used. A hillshade is a hypothetical illumination of an
elevation model from a hypothetical light source, where each pixel in the raster receives
an illumination value from 0 to 255. The position of the illumination source is determined
by setting the horizontal angle or azimuth (0° to 360°) and the vertical angle from the
horizontal plane (0 to 90°). To mimic wind exposure across an elevation model, a vertical
angle of illumination of 5° was recommended from previous literature (Boose et al.,
1994; Mikita et al., 2010). Sixteen hillshade models with vertical angles of illumination
of 5° were created from a 2 m elevation model. Each hillshade model had the horizontal
angle of illumination set to one of sixteen cardinal directions (e.g. N, NNE, NE, etc.). All
sixteen hillshades were each weighted by their percent contribution to their corresponding
cardinal direction in the windrose model. Lastly, all sixteen weighted hillshades were
added together using Raster Calculator in ArcGIS to form a final model of wind
exposure. Values were later scaled to range from 0 to 100.

An additional consideration for the wind exposure model of Polly’s Cove was a
large barrier island sitting in front of the site (Figure 3.3). It is possible that the barrier

island provides sheltering from wind and possibly other environmental factors such as
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salt spray to parts of the site. To consider these potential effects of the barrier island, an
additional set of aerial images were collected in August 2016 from the UAV and were
subsequently processed using SfM photogrammetry to derive an elevation model for the
island. This additional elevation model was combined with the original elevation model
for Polly’s Cove. The combined elevation model was only incorporated into the wind

exposure model and the incoming solar radiation model but was not used for the other

environmental factors since it was not expected to have influenced them.
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Figure 3.3. A) color imagery of the Polly’s Cove study site and the barrier island near the
site. B) A digital elevation model of the Polly’s Cove study site and the barrier island
near the site. It was hypothesized that the barrier island may shelter parts of the site and
consequently influence the landscape patterns of the plant communities.

The flow of water across a surface can influence where different plant
communities can grow (Silvertown et al., 1999; Zinko et al., 2005). For example, streams
or rivers flowing through a landscape would likely be inhabited by riparian and wetland

vegetation. Conversely, areas on exposed ridges would have lower flow accumulation,
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dryer soil conditions and would be inhabited by more drought tolerant plants. To simulate
the flow of water across each site, stream networks were derived from 2 m digital
elevation models using the Hydrology toolset in ArcGIS (Figure A2.4). The following
methods used to derive stream networks are like the methods used by Murphy et al.
(2008). First, a 2 m elevation model derived from the UAV imagery was input into the
Fill tool in ArcGIS. This fills the depressions or sinks of a DEM to remove
imperfections. Next, the fill raster was used in the Flow Direction tool to create a flow
direction raster. A flow direction raster indicates the direction that water is flowing across
the surface. The flow direction raster is then used in the Flow Accumulation tool to create
a flow accumulation raster. The flow accumulation raster represents for each cell the
number of adjacent cells that flow into that cell. Areas with high flow accumulation may
indicate stream channels. Afterward, the flow accumulation raster was input into the Con
(conditional) tool with Input true raster or constant value set as the flow direction raster
and Input false raster or constant value also set as the flow direction raster. Doing so
created a stream network raster. Lastly, the output stream network raster was used in the
Stream Order tool to assign a stream order value to each stream using the Strahler
method (Strahler, 1952). According to the Strahler method, stream order is a hierarchical
classification in which stream order increases when two streams of the same order
intersect to create a larger stream. Streams with larger stream orders are more substantial
and have greater water flow than streams with lesser stream order values.

Plants can respond differently to shaded environments compared to being in direct
sunlight (Buckland-Nicks et al., 2016). This is because the amount of sunlight received

on the earth’s surface can influence many biotic and abiotic conditions, such as growth
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potential for plants (sunlight is a key component for photosynthesis), surface temperature,
evapotranspiration rate, evaporation rate of water from the soil, and so on. Modeling the
amount of sunlight received across a landscape could therefore be an important factor
influencing the landscape patterns of plant communities. To model incoming solar
radiation, the Area Solar Radiation tool in ArcGIS was used. The 2 m DEM for each site
was input into the tool along with the following parameter settings: Latitude set as the
latitude of the input DEM; Sky size / Resolution set as the default value 200; Time
configuration set to the calendar year of 2016 with Start day as 1 and End day as 366;
Day interval set to 7; Hour interval set as the default value 0.5. The result is a raster
representing the maximum possible incoming solar radiation in watt hours per m? for the
land surface for the entirety of 2016 (Figure A2.5). Values were later scaled to range
from 0 to 100.

Topographic slope position (e.g. valley, ridge, or flat), can influence soil
conditions, moisture regimes, wind exposure, and other environmental conditions, all of
which can affect the distributions and composition of plant communities (Zawawi, 2015).
Slope position was calculated across a 2 m DEM using the Slope Position Classification
tool from the Topography Tools toolbox for ArcGIS (Dilts, 2015). First, the Topographic
Position Index tool from the same toolbox was run to create a topographic position index
(TPI) raster with a certain focal search distance. For the slope position classification, a
search distance of 30 m was chosen. The TPI raster was subsequently input into the Slope
Position Classification tool along with the 2 m DEM to create a slope position raster with
cells classified as either a valley, toe slope, flat, midslope, upper slope, or ridge (Figure

A2.6).
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Topographic heterogeneity at different scales can influence the distributions and
composition of plant communities across landscapes due to its influence on other
environmental factors such as wind exposure and edaphic conditions, like slope position
(Vivian-Smith, 1997; Sebastia, 2004; Burley and Lundholm, 2010). For this study,
surface ruggedness (topographic heterogeneity) was measured at two distinct scales: a
3x3 neighborhood from a 2 m DEM (local) and a 51x51 neighborhood from a 2 m DEM
(global). Surface ruggedness was computed from the 2 m DEM using the Roughness tool
from the Geomorphometry and Gradient Metrics toolbox for ArcGIS (Evans et al., 2014).
For local surface ruggedness, the following parameters were used: the 2 m DEM as the
Select DEM and a rectangular 3x3 cell window for Analysis Window. For global surface
ruggedness, the following parameters were used: the 2 m DEM as the Select DEM and a
rectangular 51x51 cell window for Analysis Window. Executing the tool created 2 surface
ruggedness rasters representing topographic heterogeneity at two scales: local (Figure
A2.7) and global (A2.8). Values of surface ruggedness were later scaled to range from 0

to 100.
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Results

Chebucto Head

Classification of high-resolution UAV imagery at Chebucto Head yielded a highly
detailed map of plant community patches at the broadened association level classification
and landscape features (Figure 3.4). The overall classification accuracy of plant
communities was 87% (Table 3.4). Generally, misclassifications arose between
structurally similar communities such as Gaylussacia baccata shrubland and Mixed tall
shrubs (see confusion matrix in Table A2.2). Plant communities with low field plot
samples (< 4) also tended to have more misclassifications.

Table 3.4. Classification accuracies of mapped plant communities from the broadened
association level classification at Chebucto Head.

Plant Community Accuracy (%)
Broadleaf tree island 55
Calamagrostis canadensis coastal 80
vegetation
Calystegia sepium coastal lithomorphic 100
Cladonia spp. 100
Coniferous tree island 93
Empetrum nigrum - Juniperus communis 90
dwarf heath
Gaylussacia baccata shrubland 86
Gaylussacia shrub bog 87
Juniperus communis - Corema conradii 87
lithomorphic
Mixed tall shrubs 55
Open bog 97
Osmunda cinnamomea seep 85
Overall 87
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Figure 3.4. Mapped plant communities from the broadened association level
classification at Chebucto Head, Nova Scotia.
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The study area at Chebucto Head measured 22.9 ha, consisted of 12 plant
community types and contained 33,198 plant community patches - a patch density of
1,450 per hectare. The total vegetation cover of the landscape was 85.7%, the remainder
being mostly exposed rocks and cliff faces (Figure 3.5C). Generally, the landscape was
dominated by shrublands (39.2%), dwarf heath (16.9%), and tree islands (14.4%) (Figure
3.5A). The most dominant plant communities were Gaylussacia baccata shrubland
(22.9%), Mixed tall shrubs (15.2%), and Coniferous tree island (11.6%) respectively. The
landscape topography was heterogeneous, consisting of midslopes (30.4%), flats (18.5%),
and ridges (15.1%), as well as several long and deep valleys (Figure 3.5D). Lastly, a map
of stream networks showed that three major streams flow across the site and drain into

the ocean (Figure 3.5B).
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Figure 3.5. Landscape composition of Chebucto Head: A) Coarse classification of plant
communities; B) Stream networks; C) Vegetation cover; and D) Slope classification.
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Total class areas ranged from 13 m? (Calystegia sepium coastal lithomorphic) to
5.48 ha (Gaylussacia baccata shrubland) (Table 3.5). The number of patches also ranged
greatly from 2 (Calamagrostis canadensis coastal vegetation) to 17,040 (Cladonia spp.),
although most classes ranged from 500 to 5,000 patches. Area-weighted mean patch areas
were relatively small for coastal vegetation, Open bogs, and Cladonia spp. Interestingly,
Broadleaf tree islands had small patch areas, suggesting most patches consisted of one to
several trees. As expected, Juniperus communis - Corema conradii lithomorphic also
showed small patch areas, since the community is abundant near exposed rock faces.
Larger patch areas were recorded for shrublands, tall shrubs, Empetrum nigrum -
Juniperus communis dwarf heath, and Coniferous tree islands.

Based on the shape index, classes with the greatest shape complexity were
Gaylussacia baccata shrubland, Empetrum nigrum - Juniperus communis dwarf heath,
and Mixed tall shrubs (Table 3.5). Classes with lowest shape complexity were Calystegia
sepium coastal lithomorphic, Open bog, and Broadleaf tree island. Related circumscribing
circle index (area-weighted) ranged from 0.57 to 0.78, indicating that most patches were
more elongated and rectangular rather than circular. Lastly, average nearest neighbor
ratios for all classes were below 1, signifying that all communities had some degree of
clustering at the landscape scale.

A neighborhood analysis of plant communities at Chebucto Head revealed that
tree islands were most often neighbored by Mixed tall shrubs and vice versa (Table 3.6).
Gaylussacia baccata shrublands were often adjacent to Gaylussacia shrub bog, Juniperus
communis - Corema conradii lithomorphic, and Mixed tall shrubs. Gaylussacia shrub

bog, Juniperus communis - Corema conradii lithomorphic, and Cladonia spp. were all
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strongly associated with each other. Open bogs were often found next to Gaylussacia
shrub bogs, Cladonia spp., and Coniferous tree islands. Interestingly, Osmunda
cinnamomea seep was often adjacent to Gaylussacia baccata shrublands and Mixed tall
shrubs, which was observed while in the field. Both Calamagrostis canadensis coastal
vegetation and Calystegia sepium coastal lithomorphic were associated with Osmunda
cinnamomea seeps. Lastly, Empetrum nigrum - Juniperus communis dwarf heath was
often adjacent to Juniperus communis - Corema conradii lithomorphic, Gaylussacia

shrub bog, and Cladonia spp.
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Table 3.5. Summary of the spatial configurations of plant community patches at Chebucto Head. *AW = Area-weighted.

Average

Class | Number Patch Perimeter Perimeter- Related Nearest
Classification Area of Patch Area (m2) . Shape Index  Circumscribing ;
(m) Area Ratio . Neighbor
(ha) Patches Circle Index Ratio
AW* SD AW SD AW | SD AW | SD AW SD
Mean Mean Mean Mean Mean

Broadleaf tree 0.64 586 30.67 14.72 56.45 2457 | 232 | 1448 | 2.46 | 054 0.57 0.14 0.79
island
Calamagrostis <0.01 2 31.44 22.09 75.49 49.26 | 2.54 1.89 3.35 0.86 0.78 0.16 0.05
canadensis coastal
vegetation
Calystegia sepium <0.01 5 4.19 2.24 12.82 4.47 3.65 2.59 1.60 | 0.12 0.58 0.07 0.6
coastal lithomorphic
Cladonia spp. 1.20 17040 56.38 6.25 166.79 18.47 | 581 | 12.76 | 4.13 | 0.49 0.67 0.14 0.63
Coniferous tree 2.64 798 1118 189.59 1197 202,31 | 144 | 1335 | 7.05 | 1.10 0.68 0.16 0.92
island
Empetrum nigrum - 1.26 928 2870 196.89 3772 258.61 | 1.85 | 11.69 | 1556 | 1.11 0.78 0.14 0.48
Juniperus communis
dwarf heath
Gaylussacia 5.48 1985 6628 426.82 8313 536.33 | 1.60 | 14.32 | 22.16 | 1.57 0.77 0.15 0.71
baccata shrubland
Gaylussacia shrub 1.80 5152 161.58 23.51 413.79 60.94 | 443 | 10.70 | 6.25 | 0.99 0.71 0.14 0.81
bog
Juniperus communis | 2.61 4527 60.87 17.82 124.64 3590 | 294 | 1233 | 3.64 | 0.75 0.67 0.14 0.89
- Corema conradii
lithomorphic
Mixed tall shrubs 3.49 1121 2454 274.60 2812 315.20 | 1.69 | 1515 | 1252 | 151 0.76 0.16 0.76
Open bog 0.03 74 24.32 8.61 50.53 17.43 | 3.33 | 15.08 | 2.64 | 0.57 0.66 0.16 0.3
Osmunda 0.47 980 112.76 22.69 178.13 35.84 | 2.98 6.30 3.96 | 0.65 0.69 0.13 0.55
cinnamomea seep
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Table 3.6. The top three most common neighbors of each plant community type at

Chebucto Head.

Plant Community

Top Neighboring Communities

Shared Edge

Length (m)

Broadleaf tree island Mixed tall shrubs 8668
Coniferous tree island 4031
Gaylussacia baccata shrubland 1483
Calamagrostis canadensis | Osmunda cinnamomea seep 14.0
coastal vegetation Mixed tall shrubs 12.4
Gaylussacia shrub bog 2.6
Calystegia sepium coastal Osmunda cinnamomea seep 2.8
lithomorphic Gaylussacia baccata shrubland 1.1
Empetrum nigrum - Juniperus communis dwarf heath 0.6
Cladonia spp. Gaylussacia shrub bog 22103
Juniperus communis - Corema conradii lithomorphic 14586
Gaylussacia baccata shrubland 12297
Coniferous tree island Mixed tall shrubs 18201
Juniperus communis - Corema conradii lithomorphic 5221
Gaylussacia baccata shrubland 4034
Empetrum nigrum - Juniperus communis - Corema conradii lithomorphic 4937
.rl]tégtiﬁerus communis dwarf "Gy jussacia shrub bog 3507
Cladonia spp. 3258
Gaylussacia baccata Gaylussacia shrub bog 22358
shrubland Juniperus communis - Corema conradii lithomorphic 18392
Mixed tall shrubs 16700
Gaylussacia shrub bog Juniperus communis - Corema conradii lithomorphic 24681
Gaylussacia baccata shrubland 22358
Cladonia spp. 22103
Juniperus communis - Gaylussacia shrub bog 24681
Corema conradii Gaylussacia baccata shrubland 18392
lithomorphic :
Cladonia spp. 14586
Mixed tall shrubs Coniferous tree island 18201
Gaylussacia baccata shrubland 16700
Broadleaf tree island 8668
Open bog Gaylussacia shrub bog 758.5
Cladonia spp. 385
Coniferous tree island 25.9
Osmunda cinnamomea Gaylussacia baccata shrubland 6092
seep Mixed tall shrubs 5726
Gaylussacia shrub bog 647.3
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Environmental conditions differed greatly for plant communities at Chebucto
Head (Table 3.7; see Figures A2.1-A2.8 for mapped environmental factors; see Figures
A2.9-16 for confidence intervals and bar plots). Most plant communities occurred at
elevations greater than 20 m; however, several plant communities mostly occurred at
lower elevations, which included Empetrum nigrum - Juniperus communis dwarf heath,
Osmunda cinnamomea seep, and coastal vegetation. Tree islands, Mixed tall shrubs and
Open bogs were usually situated greater than 200 m from the coastline; Gaylussacia
baccata shrubland, Gaylussacia shrub bog, Cladonia spp., and Juniperus communis -
Corema conradii lithomorphic ranged between 150 to 200 m from the coast; Osmunda
cinnamomea seep was on average about 100 m from the coastline, and Empetrum nigrum
- Juniperus communis dwarf heath and Coastal vegetation normally were within 50 m of
the coastline.

Coastal vegetation recorded highest values of wind exposure, although both
community types had lower sample sizes and consequently had greater error (Table 3.7).
Other communities with relatively high wind exposure values included tree islands,
Mixed tall shrubs and Empetrum nigrum - Juniperus communis dwarf heath. Conversely,
communities with lower wind exposure values were Open bogs, Gaylussacia shrub bog,
and Cladonia spp. Plant communities with highest stream order values (6 or above) were
Osmunda cinnamomea seep, Calamagrostis canadensis coastal vegetation, and Open
bog; the community with the lowest stream order (dryer) value was Cladonia spp. (3); all
other communities had stream orders of 4 or 5. Incoming solar radiation did not vary

much between communities, although Coastal vegetation had relatively lower solar
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radiation values compared to other communities, likely because the communities
occurred in a sheltered valley.

Most communities at Chebucto Head occurred on midslopes, including tree
islands, shrublands, and dwarf heath (Table 3.7). Interestingly, Gaylussacia shrub bog
occurred on flats and Open bogs occurred on toe slopes. Cladonia spp. was often
associated with ridges. Coastal vegetation and Osmunda cinnamomea seep occurred in
valleys. Local surface ruggedness was generally low for most communities; local
ruggedness was elevated for coastal vegetation likely because they occurred along a
rocky shoreline; communities with lowest values were Open bog, Gaylussacia shrub bog,
Gaylussacia baccata shrubland, and Cladonia spp. Lastly, global surface ruggedness was
elevated for Coastal vegetation, Empetrum nigrum - Juniperus communis dwarf heath,
and Osmunda cinnamomea seep; intermediate values were observed for shrublands,
Cladonia spp., and Juniperus communis - Corema conradii lithomorphic; lower global
ruggedness values were observed from Open bogs, tree islands, and Gaylussacia shrub

bog.
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Table 3.7. Environmental factors for plant communities at Chebucto Head. *AW = Area-weighted; C.I = Area-weighted 95%
confidence interval.

Elevation Distance from Wind Hydrology Incoming Slope Local Global
Plant Community Above Sea- Coastline (m) ExDOSUre (Stream Solar Posit?on Surface Surface
level (m) P Order) Radiation Ruggedness  Ruggedness
AW Mean £ AW Mean £ AW Mean + Fr';/:]%setnt AW Mean + Frlt\e/l]cl:setnt AW Mean+ | AW Mean +
0, * 0, 0, 0, 0, 0,
95% C.I. 95% C.I. 95% C.I. (AW) 95% C.I. (AW) 95% C.I. 95% C.I.
Broadleaf tree island 27.81+£0.27 | 296.1+7.82 14.63 + 0.56 4 83.71+£0.48 | Midslope 1.78+0.11 | 5.31+0.59
Calamagrostis
canadensis coastal 6.05+1.91 24.85+17.42 24.01 £ 6.54 7 67.14 £ 56.43 Valley 427+4.65 | 38.31+183
vegetation
Calystegia sepium 427+109 | 911+436 | 21.28+27.87 5 73.79+12.49 | Valley 31+459 |4536+5.28
coastal lithomorphic
Cladonia spp. 27.1+0.08 | 182.36+1.19 7.3+0.06 85.83 + 0.05 Ridge 0.41+0.007 | 8.43+0.11
Coniferous tree island | 27.64+0.31 | 279.91+6.17 12.29+0.33 84.07 £0.27 | Midslope 1.21+£0.07 404+0.4
Empetrum nigrum -
Juniperus communis 14.64 + 0.34 46.84 £ 1.11 10.32 +0.39 4 81.44 +0.29 Midslope 1.23+0.07 | 34.48+0.83
dwarf heath
Sh%'bulzsn"’(‘f'a baccata | 5 454021 | 200734314 | 8.27+011 4 87.37+011 | Midslope | 0.34+001 | 8.83+0.38
Gaylussacia shrub bog | 27.18+0.14 | 187.53 +2.06 6.5+0.08 4 86.78 £ 0.07 Flat 0.22+0.008 | 6.82+0.19
Juniperus communis -
Corema conradii 26.58+0.16 | 188.78 +2.28 8.74+0.13 4 86.26 + 0.1 Midslope | 0.51+0.02 | 8.64+0.25
lithomorphic
Mixed tall shrubs 25.98+0.24 | 253.37+6.21 11.34+0.26 4 84.66 +0.26 | Midslope | 0.88+0.04 | 8.87+0.57
Open bog 29.91+04 | 279.57 +16.81 5.93+0.2 6 87.77+0.17 | ToeSlope | 0.04+0.008 | 0.86+0.45
Osmunda cinnamomea | 15 65 4 099 | 99.06+412 | 10.33+0.45 7 8196045 | Valley 1.03+0.07 | 22.85+1.03

seep

121




Prospect Bay

Classification of high-resolution UAV imagery at Prospect Bay yielded a highly
detailed map of plant communities and landscape features at the fine-scale (Figure 3.6).
The overall classification accuracy of plant communities was 85% (Table 3.8). Generally,
misclassifications arose between structurally similar communities, such as between
different types of bogs and shrublands (see confusion matrix in Table A2.3).
Classifications with low field plot samples (< 4) also tended to have more
misclassifications.

Table 3.8. Classification accuracies of mapped plant communities from the broadened

association level classification at Prospect Bay.
Plant Community Accuracy (%)

Alnus viridis shrubland 70
Betula papyrifera tree island 90
Cladonia spp. 100
Coniferous tree island 100
Empetrum nigrum - Juniperus communis dwarf heath 92
Eriophorum russeolum bog 100
Festuca rubra - Solidago sempervirens - Trifolium 100
repens disturbed coastal vegetation
Gaylussacia baccata shrubland 79
Gaylussacia shrub bog 57
Grass/Sedge/Open bog 85
Juncus balticus brackish marsh 67
Juniperus horizontalis dwarf heath 50
Lonicera villosa shrubland 100
Maianthemum trifolium bog 100
Mixed tall shrubs 70
Morella pensylvanica shrubland 70
Osmunda cinnamomea seep 78
Spartina pectinata brackish marsh 73
Toxicodendron radicans coastal vegetation 80
Overall 85
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Figure 3.6. Mapped plant communities from the broadened association level
classification at Prospect Bay, Nova Scotia.
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The study area at Prospect Bay measured 28 ha, consisted of 19 plant community
types and contained 63,312 plant community patches - a patch density of 2,263 per
hectare. The total vegetation cover of the landscape was 92.3%, the remainder being
mostly exposed rocks and cliff faces (Figure 3.7C). Generally, the landscape was
dominated by dwarf heath (38%), shrublands (22.9%), and bogs (22.5%) (Figure 3.7A).
The most dominant plant communities were Empetrum nigrum - Juniperus communis
dwarf heath (37.7%), Grass/Sedge/Open bog (20.6%), and Gaylussacia baccata
shrubland (14%) respectively. The landscape topography was mostly homogeneous,
largely consisting of gentle slopes or flats (57.2%) (Figure 3.7D). Most topographic
heterogeneity was observed along the rocks and cliff faces that follow the coastline.
Lastly, a map of stream networks showed that two major streams extend across the site

and drain into the ocean (Figure 3.7B).
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Figure 3.7. Landscape composition of Prospect Bay: A) Coarse classification of plant
communities; B) Stream networks; C) Vegetation cover; and D) Slope classification.
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Total class areas ranged from 23 m? (Betula papyrifera tree island) to 10.56 ha
(Empetrum nigrum - Juniperus communis dwarf heath) (Table 3.9). The number of
patches ranged from 3 (Toxicodendron radicans coastal vegetation) to 36,523 (Cladonia
spp.), although most classes ranged between 100 and 6,000 patches. Area-weighted mean
patch areas were small for most shrublands (< 35 m?) except for Gaylussacia baccata
shrubland and Mixed tall shrubs which had large average patch areas. Tree islands also
had small patch areas, as well as Gaylussacia shrub bog, Cladonia spp., Osmunda
cinnamomea seep, and Eriophorum russeolum bog. Plant communities with the largest
patch areas were Empetrum nigrum - Juniperus communis dwarf heath and
Grass/Sedge/Open bog.

Perimeter-area ratios (area-weighted) of patches were generally smaller for
classes with larger patch areas and larger for patches with smaller areas (Table 3.9). The
only exception was Coniferous tree island, which had an area-weighted mean patch size
of 37.60 m? and a perimeter-area ratio of only 2.02, suggesting patches had lower shape
complexity. This was supported by a shape index score of 2.47 and a related
circumscribing circle index of 0.48, indicating the patch shapes are regular and more
circular rather than elongated and rectangular. Other classes with low shape index scores
were Alnus viridis shrubland, Lonicera villosa shrubland, Gaylussacia shrub bog, and
Betula papyrifera tree island. Classes with greater shape complexity included Empetrum
nigrum - Juniperus communis dwarf heath, Grass/Sedge/Open bog, Mixed tall shrubs,
and Gaylussacia baccata shrubland. Related circumscribing circle index (area-weighted)

ranged from 0.48 (Coniferous tree island) to 0.82 (Toxicodendron radicans coastal
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vegetation). Lastly, average nearest neighbor ratios showed that plant communities
exhibited clustering at the landscape scale.

A neighborhood analysis of plant communities at Prospect Bay showed that Tree
islands were most often adjacent to Mixed tall shrubs and Gaylussacia baccata shrubland
(Table 3.10). Gaylussacia baccata shrubland and Mixed tall shrubs were the most
common neighbors of each other. Other shrublands were frequently neighbored by either
Empetrum nigrum - Juniperus communis dwarf heath or Gaylussacia baccata shrubland.
Empetrum nigrum - Juniperus communis dwarf heath was most often associated with
Grass/Sedge/Open bog, Cladonia spp., and Mixed tall shrubs. Juniperus horizontalis
dwarf heath was largely adjacent to Empetrum nigrum - Juniperus communis dwarf
heath. Smaller bogs were commonly neighbored by Grass/Sedge/Open bog and
Empetrum nigrum - Juniperus communis dwarf heath while the larger bog,
Grass/Sedge/Open bog, was mostly associated with Empetrum nigrum - Juniperus
communis dwarf heath and Cladonia spp. Gaylussacia shrub bog was often next to
Gaylussacia baccata shrubland, Cladonia spp., and Grass/Sedge/Open bog. Osmunda
cinnamomea seep was frequently neighbored by Gaylussacia baccata shrubland and
Mixed tall shrubs. Coastal vegetation was often adjacent to marshes and Empetrum
nigrum - Juniperus communis dwarf heath. Marshes were often next to Empetrum nigrum
- Juniperus communis dwarf heath. Lastly, Cladonia spp. was associated with
Grass/Sedge/Open bog, Empetrum nigrum - Juniperus communis dwarf heath, and

Gaylussacia baccata shrubland.
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Table 3.9. Summary of the spatial configurations of plant community patches at Prospect Bay. *AW = Area-weighted.

Average

Number Patch Perimeter Perimeter-Area Related Nearest
Plant Community of Patch Area (m) ] Shape Index Circumscribing .
(m) Ratio h Neighbo
Patches Circle Index .
r Ratio
AW* AW AW AW
Mean SD AW Mean SD Mean SD Mean SD Mean SD
Alnus viridis shrubland 0.09 715 2.58 1.29 11.01 4.30 5.63 11.80 1.79 0.41 0.53 0.14 0.65
Betula papyrifera tree island <0.01 5 6.53 3.27 26.57 13.13 4.53 35.22 2.70 0.97 0.59 0.05 0.60
Cladonia spp. 1.22 36523 36.15 3.45 112.45 10.85 7.63 19.77 3.73 0.40 0.65 0.13 0.67
Coniferous tree island 0.20 142 36.70 17.92 60.85 27.17 2.02 21.90 247 0.63 0.48 0.14 0.59
Empetrum nigrum - Juniperus communis 10.56 4884 43096 962.02 43463 970.98 1.55 29.40 45.50 1.38 0.71 0.18 0.79
dwarf heath
Eriophorum russeolum bog 0.03 192 20.34 5.47 65.71 16.81 6.00 18.74 347 0.69 0.66 0.13 0.16
Festuca rubra - Solidago sempervirens - 0.03 97 69.91 15.24 108.96 23.06 3.24 27.15 3.20 0.55 0.68 0.19 0.14
Trifolium repens disturbed coastal vegetation
Gaylussacia baccata shrubland 3901 4519 3644 176.80 4795 233.16 | 2.46 25.00 15.27 1.09 0.70 0.16 0.80
Gaylussacia shrub bog 0.19 1386 411 1.95 22.01 9.46 6.70 16.62 2.59 0.63 0.63 0.13 0.51
Grass/Sedge/Open bog 5.76 5888 10405 317.78 14860 468.95 | 2.43 27.24 31.03 1.38 0.78 0.18 0.81
Juncus balticus brackish marsh 0.50 2553 149.01 17.00 343.78 39.27 5.47 20.37 5.52 0.79 0.68 0.14 0.50
Juniperus horizontalis dwarf heath 0.06 207 40.60 10.76 79.99 20.12 3.98 15.25 3.09 0.59 0.66 0.14 0.21
Lonicera villosa shrubland 0.02 106 5.42 2.55 20.20 8.30 5.20 18.22 2.19 0.51 0.60 0.15 0.27
Maianthemum trifolium bog 0.32 462 337.26 48.01 506.46 74.28 2.58 24.66 6.59 0.99 0.75 0.17 0.36
Mixed tall shrubs 2.34 1689 1650 150.12 3151 29131 | 3.08 34.27 16.65 2.05 0.73 0.20 0.57
Morella pensylvanica shrubland 0.04 140 34.05 9.07 120.64 31.32 4.92 23.02 437 0.87 0.67 0.15 0.15
Osmunda cinnamomea seep 0.46 1750 32.93 8.88 87.92 2341 4.73 21.79 3.66 0.85 0.63 0.15 0.53
Spartina pectinata brackish marsh 0.07 109 157.02 31.83 273.63 54.47 2.64 18.43 5.02 0.82 0.74 0.14 0.18
Toxicodendron radicans coastal vegetation <0.01 3 19.70 12.01 65.73 37.41 3.53 1.48 3.63 1.00 0.82 0.14 0.31
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Table 3.10. The top three most common neighbors of each plant community type at

Prospect Bay.

Shared Edge

Plant Community

Top Neighboring Communities

Length (m)

Alnus viridis shrubland Gaylussacia baccata shrubland 1809
Empetrum nigrum - Juniperus communis dwarf
1634
heath
Mixed tall shrubs 661.1
Betula papyrifera tree island Gaylussacia baccata shrubland 73.8
Mixed tall shrubs 12.5
Coniferous tree island 10.8
Cladonia spp. Grass/Sedge/Open bog 34567
Empetrum nigrum - Juniperus communis dwarf 31578
heath
Gaylussacia baccata shrubland 14284
Coniferous tree island Mixed tall shrubs 1342
Empetrum nigrum - Juniperus communis dwarf
757.8
heath
Gaylussacia baccata shrubland 703.7
Empetrum nigrum - Juniperus Grass/Sedge/Open bog 60070
communis dwarf heath Cladonia spp. 31578
Mixed tall shrubs 24277
Eriophorum russeolum bog Grass/Sedge/Open bog 1772
Empetrum nigrum - Juniperus communis dwarf
23.9
heath
Maianthemum trifolium bog 10.3
Festuca rubra - Solidago Juncus balticus brackish marsh 194.1
sempervirens - Trifolium repens  ["Erypetrum nigrum - Juniperus communis dwarf
disturbed coastal vegetation heath 176.1
Grass/Sedge/Open bog 174.9
Gaylussacia baccata shrubland Mixed tall shrubs 31419
Empetrum nigrum - Juniperus communis dwarf 17385
heath
Cladonia spp. 14284
Gaylussacia shrub bog Gaylussacia baccata shrubland 3845
Cladonia spp. 3192
Grass/Sedge/Open bog 2570
Grass/Sedge/Open bog Empetrum nigrum - Juniperus communis dwarf 60070
heath
Cladonia spp. 34567
Gaylussacia baccata shrubland 10723
Juncus balticus brackish marsh Empetrum nigrum - Juniperus communis dwarf 14704
heath
Grass/Sedge/Open bog 9832
Cladonia spp. 646.2
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(continued) Table 3.10. The top three most common neighbors of each plant community

type at Prospect Bay.

Plant Community

Top Neighboring Communities

Shared Edge

Length (m)

Juniperus horizontalis dwarf Empetrum nigrum - Juniperus communis dwarf 1661
heath heath
Spartina pectinata brackish marsh 153.4
Juncus balticus brackish marsh 134.5
Lonicera villosa shrubland Empetrum nigrum - Juniperus communis dwarf 3387
heath '
Grass/Sedge/Open bog 184.2
Mixed tall shrubs 116.7
Maianthemum trifolium bog Grass/Sedge/Open bog 6173
Empetrum nigrum - Juniperus communis dwarf 6271
heath '
Juncus balticus brackish marsh 529.2
Mixed tall shrubs Gaylussacia baccata shrubland 31419
Empetrum nigrum - Juniperus communis dwarf 24277
heath
Osmunda cinnamomea seep 4972
Morella pensylvanica shrubland | Empetrum nigrum - Juniperus communis dwarf 595 2
heath '
Gaylussacia baccata shrubland 495.6
Osmunda cinnamomea seep 283.2
Osmunda cinnamomea seep Gaylussacia baccata shrubland 11642
Mixed tall shrubs 4972
Grass/Sedge/Open bog 2922
Spartina pectinata brackish Empetrum nigrum - Juniperus communis dwarf 314.4
marsh heath '
Morella pensylvanica shrubland 249.0
Juncus balticus brackish marsh 191.3
Toxicodendron radicans coastal | Spartina pectinata brackish marsh 50.7
vegetation Empetrum nigrum - Juniperus communis dwarf a1
heath '
Osmunda cinnamomea seep 8.0

Environmental factors for plant communities at Prospect Bay indicated many

interesting relationships (Table 3.11; see Figures A2.1-A2.8 for mapped environmental

factors; see Figures A2.17-24 for confidence intervals and bar plots). In general, plant

communities belonged to one of two altitudinal groupings: those occurring at elevations

less than 15 m above sea-level and those occurring at elevations greater than 15 m.
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Lower-altitude plant communities included Coastal vegetation, marshes, Juniperus
horizontalis dwarf heath, and two smaller, i.e. shorter shrublands, (Morella pensylvanica
shrubland & Lonicera villosa shrubland). Higher altitude communities included bogs,
tree islands, larger shrublands (Gaylussacia baccata shrubland & Mixed tall shrubs),
Alnus viridis shrubland, Osmunda cinnamomea seep, Cladonia spp., and Empetrum
nigrum - Juniperus communis dwarf heath. Distance from the coastline was highly
correlated with elevation above sea-level (r> = 0.83), and plant communities similarly fell
into two groups: lower altitude communities within 150 meters of the coastline and
higher altitude communities that were further than 150 meters from the coastline.

Wind exposure was highest for plant communities nearest the coastline, which
included Toxicodendron radicans coastal vegetation, Spartina pectinata brackish marsh,
Juniperus horizontalis dwarf heath, and Morella pensylvanica shrubland (Table 3.11).
Communities with lowest wind exposure values were Eriophorum russeolum bog,
Maianthemum trifolium bog, Gaylussacia shrub bog, and Grass/Sedge/Open bog.
Analysis of stream networks showed that Maianthemum trifolium bog occurred in very
wet areas (stream order of 7). The next highest stream order was 5, which was recorded
from the other bogs, Betula papyrifera tree island, and Juncus balticus brackish marsh.
All other communities had stream orders of either 3 or 4. Incoming solar radiation had
little variability between communities with values mostly ranging from 88 to 90,
although communities nearest the coastline appeared to experience higher amounts of
solar radiation, including Toxicodendron radicans coastal vegetation and Spartina
pectinata brackish marsh. A closer look at the slope positions of the two communities

and the solar radiation map (Figure A2.5B) suggests that both communities are angled on
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upper slopes and midslopes and are facing south relative to the general slope in that area,
which is likely the optimal position for receiving the most amount of sunlight from both
the east and west.

Most plant communities at Prospect Bay occurred on flat or gentle sloping areas
(Table 3.11). Several exceptions included Juniperus horizontalis dwarf heath, which
occurred on ridges, Toxicodendron radicans coastal vegetation and Morella pensylvanica
shrubland, which occurred on upper slopes, and Coniferous tree island, Lonicera villosa
shrubland, and Spartina pectinata brackish marsh, all of which occurred on midslopes.
The strong association of plant communities with flat areas at Prospect Bay was probably
due to much of the site consisting of flats and gentle slopes (57.2%; Figure 3.7D). Local
surface ruggedness was generally very low for all communities. VValues were larger for
plant communities nearest the coastline, such as Toxicodendron radicans coastal
vegetation, Spartina pectinata brackish marsh, and Juniperus horizontalis dwarf heath.
Local ruggedness values were particularly low for bogs. Similarly, global surface

ruggedness was high for plant communities near the coastline and low for bogs.
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Table 3.11. Environmental factors for plant communities at Prospect Bay. *AW = Area-weighted; C.I = Area-weighted 95%

confidence interval.

- . Hydrology . Global
Plant Community Elevation Above Dlstan(_:e from Wind Exposure (Stream Incoml'ng'SoIar Slope Position Local Surface Surface
Sea-level (m) Coastline (m) Radiation Ruggedness
Order) Ruggedness
AW Mean + AW Mean + AW Mean + Most Frequent AW Mean + Most Frequent AW Mean + AW Mean +
959 C.I.* 959%C.1. 95%C.I. (AW) 959%C.1. (AW) 95%C.I. 95 % C.I.
Alnus viridis shrubland 20.55 +0.26 273.65+ 6.6 458+0.35 3 89.29 +0.17 Flat 003+0003 | 9.34+0.78
Betula papyrifera tree island 20.26 + 2.66 334.62 + 214.85 2.84+1.12 5 89.02 0.4 Flat 0.02 +0.02 8.46 + 9.69
Cladonia spp. 21.41+0.03 301.98 +1.01 2.79+0.03 4 89.45 + 0.01 Flat 0.01+0.0003 | 7.87+0.08
Coniferous tree island 21.49 +0.59 322.19 +20.53 7.18+0.93 4 88.88 +0.36 Midslope 0.07£0.01 8.24+161
Empetrum nigrum - Juniperus 17.26 +0.11 212.2+3.72 4.18 £0.06 4 89.93 +0.03 Flat 0.02+0.0006 | 18.06+0.32
communis dwarf heath
Eriophorum russeolum bog 22.15+0.04 513.37 + 3.42 152 +0.02 5 88.47 +0.07 Flat 0.001+0.0001 | 0.86+0.05
Festuca rubra - Solidago
sempervirens - Trifolium repens 7.11+0.28 35.91+1.45 3.58 £ 0.83 4 89.87 +£0.42 Flat 0.02 £ 0.007 49.33 £ 3.67
disturbed coastal vegetation
Gaylussacia baccata shrubland 23.06 +0.12 371.94 + 3.23 3.71+0.07 4 89.42 + 0.04 Flat 0.02+0.0006 | 9.3+034
Gaylussacia shrub bog 22.58 +0.16 371.88 +4.23 2.01+0.05 4 89.42 + 0.06 Flat 0.01+0.0005 | 6.95+0.28
Grass/Sedge/Open bog 18.95+0.1 298.24 + 3.06 2.07 +0.03 5 89.18 + 0.02 Flat 0.007 + 0.0003 | 6.98+0.27
Juncus balticus brackish marsh 12.37+0.15 11842 +2.54 2.96 +0.08 5 89.57 +0.04 Flat 0.01+0.0006 | 18.94+05
f]‘égt'ﬁerus horizontalis dwarf 8.03+0.14 342112 12.33+1.05 3 89.97 £ 0.58 Ridge 009001 | 69.68%292
Lonicera villosa shrubland 11.24+0.95 87.24+7.2 6.09 +1.09 4 90.2 + 0.54 Midslope 0.04+0008 | 31.23+3.62
Maianthemum trifolium bog 19.63+0.26 305.83 + 5.89 1.77+0.06 7 88.94 +0.04 Flat 0.003 +0.0007 | 3.01+0.48
Mixed tall shrubs 22.25+0.12 397.91 + 4.65 2.74+0.08 3 89.08 + 0.06 Flat 0.02+0.0009 | 4.48+0.26
Morella pensylvanica shrubland 6.79+0.13 33.96+1.14 10.68+1.03 3 91.07 £ 0.46 UpperSlope | 0.07£0.009 | 62.98+3.1
Osmunda cinnamomea seep 2068 +0.22 355.4+5.73 31£0.12 4 88.88 £ 0.09 Flat 0.02+0.001 | 87066
Spartina pectinata brackish marsh 5.6+0.16 27.75+0.87 17.98 + 1.69 4 92.33+0.44 Midslope 0.16+002 | 6395+326
Toxicodendron radicans coastal 6.02+0.37 24.07 + 551 26.66 + 11.39 4 95.45 + 8.61 Upper Slope 0.25+0.11 83.98 +
vegetation 18.29
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Polly’s Cove

Classification of high-resolution UAV imagery at Polly’s Cove yielded a highly
detailed map of plant communities and landscape features (Figure 3.8). The overall
classification accuracy of plant communities was 78% (Table 3.12). Most
misclassifications arose between structurally similar communities, the majority resulting
between Gaylussacia baccata shrubland, Mixed tall shrubs, Broadleaf tree island, and
Rubus allegheniensis - Morella pensylvanica coastal vegetation (see confusion matrix in
Table A2.4). Plant communities with low field plot samples (< 4) also tended to have
more misclassifications.

Table 3.12. Classification accuracies of mapped plant communities from the broadened

association level classification at Polly’s Cove.
Plant Community Accuracy (%)

Broadleaf tree island 53
Calamagrostis canadensis coastal vegetation 40
Carex nigra - Festuca rubra coastal vegetation 100
Carex nigra bog 100
Carex vesicaria bog 100
Cladonia spp. 100
Coniferous tree island 90
Empetrum nigrum - Juniperus communis dwarf heath 55
Gaylussacia baccata shrubland 81
Gaylussacia shrub bog 56
Ilex glabra shrubland 90
Juncus balticus brackish marsh 60
Juniperus communis - Corema conradii lithomorphic 85
Juniperus horizontalis dwarf heath 60
Mixed tall shrubs 17
Osmunda cinnamomea seep 98
Rubus allegheniensis - Morella pensylvanica coastal 15
vegetation
Spartina patens salt marsh 100
Thalictrum pubescens coastal vegetation 100
Trichophorum caespitosum bog 55
Overall 78

134



Classification

P sooadiea tree isiand

Calamagrostis

- canadensis coastal

vegetation

Carex nigra - Festuca
rubra coastal vegetation

- Carex nigra bog
- Carex vesicaria bog

Cladonia spp.

- Coniferous tree island

Figure 3.8. Mapped plant ¢

Empetrum nigrum -
Juniperus communis

- dwarf heath
- Gaylussacia baccata
shrubland

- Gaylussacia shrub bog

llex glabra shrubland

=
]
Juncus balticus brackish -
B

- marsh

Juniperus communis -

Corema conradii

lithomorphic

Juniperus horizontalis
dwarf heath

Mixed tall shrubs

Osmunda cinamomea 0

seep :

50 100 Meters

Rubus allegheniensis -
Morella pensylvanica
coastal vegetation

Spartina patens salt
marsh

Thalictrum pubescens
coastal vegetation

Trichophorum
caespitosum bog

Other
- ATV Trail

Rocks / Bare Ground /
Dead Trees

.

ommunities from the broadened association level
classification at Polly’s Cove, Nova Scotia.

135



The study area at Polly’s Cove measured 27.4 ha, consisted of 20 plant
community types and contained 53,595 plant community patches - a patch density of
1,957 per hectare. The total vegetation cover of the landscape was 79.3%, the remainder
being mostly exposed rocks, cliff faces, and a body of salt water from the ocean
occupying the southeast corner of the site (Figure 3.9C). Generally, the landscape was
dominated by shrublands (38.1%), bogs (17.7%), and dwarf heath (9.2%) (Figure 3.9A).
The most dominant plant communities were Gaylussacia baccata shrubland (27.9%),
Gaylussacia shrub bog (16.5%), and Juniperus communis - Corema conradii
lithomorphic (8.1%) respectively. The landscape topography was heterogeneous, largely
consisting of midslopes (24.2%), ridges (18%), and valleys (16.6). (Figure 3.9D). Toe
slopes, flats, and upper slopes were also prevalent, however, indicating a very high
degree of topographic heterogeneity across the landscape. Lastly, a map of stream
networks showed that one major stream extended diagonally across the site towards the
inlet of salt water to the southeast and two other lesser streams flowed north to south,

draining into the ocean (Figure 3.9B).
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communities; B) Stream networks; C) Vegetation cover; and D) Slope classification.
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Total class areas ranged from 43 m? (Thalictrum pubescens coastal vegetation) to
7.64 ha (Gaylussacia baccata shrubland) (Table 3.13). The number of patches ranged
from 6 (Thalictrum pubescens coastal vegetation) to 23,299 (Cladonia spp.), although
most classes consisted between 100 and 8,000 patches. Area-weighted mean patch areas
were small for Juniperus horizontalis dwarf heath, Cladonia spp., Broadleaf tree island,
Juniperus communis - Corema conradii lithomorphic, and Empetrum nigrum - Juniperus
communis dwarf heath. Classes with larger patch areas included Gaylussacia baccata
shrubland and Mixed tall shrubs.

Plant communities with low shape complexities based on the shape index (area-
weighted) included Juniperus horizontalis dwarf heath, Broadleaf tree island, Juniperus
communis - Corema conradii lithomorphic, Empetrum nigrum - Juniperus communis
dwarf heath, and Cladonia spp. (Table 3.13). Plant communities with larger shape
complexities included Gaylussacia baccata shrubland, Gaylussacia shrub bog,
Trichophorum caespitosum bog, and Mixed tall shrubs. Related circumscribing circle
index (area-weighted) ranged from 0.52 (Carex vesicaria bog) to 0.77 (Mixed tall shrubs
& Trichophorum caespitosum bog). Average nearest neighbor ratios indicated that plant
communities were clustered at the landscape scale.

Tree islands were often neighbored by Mixed tall shrubs and Gaylussacia baccata
shrubland (Table 3.14). Shrublands were often associated with Gaylussacia shrub bog,
Juniperus communis - Corema conradii lithomorphic, as well as other types of
shrublands. Empetrum nigrum - Juniperus communis dwarf heath was mostly associated
with Juniperus communis - Corema conradii lithomorphic and Rubus allegheniensis -

Morella pensylvanica coastal vegetation. Juniperus horizontalis dwarf heath was also
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associated with Juniperus communis - Corema conradii lithomorphic and Rubus
allegheniensis - Morella pensylvanica coastal vegetation, as well as Empetrum nigrum -
Juniperus communis dwarf heath. Juniperus communis - Corema conradii lithomorphic
was frequently adjacent to Gaylussacia shrub bog, Gaylussacia baccata shrubland, and
Cladonia spp. All bogs were associated with Gaylussacia shrub bog and Juniperus
communis - Corema conradii lithomorphic. Gaylussacia shrub bog was often neighbored
by Gaylussacia baccata shrubland, Cladonia spp., and Juniperus communis - Corema
conradii lithomorphic. Osmunda cinnamomea seep was associated with Gaylussacia
baccata shrubland. Both Spartina patens salt marsh and Juncus balticus brackish marsh
were associated with each other as well as with Calamagrostis canadensis coastal
vegetation. All Coastal vegetation types were associated with either Mixed tall shrubs,
Gaylussacia baccata shrubland, or both. Carex nigra - Festuca rubra coastal vegetation
and Thalictrum pubescens coastal vegetation were also strongly associated with
Calamagrostis canadensis coastal vegetation. Calamagrostis canadensis coastal
vegetation also had an association with Juncus balticus brackish marsh. Rubus
allegheniensis - Morella pensylvanica coastal vegetation was often neighbored by
Gaylussacia baccata shrubland, Empetrum nigrum - Juniperus communis dwarf heath,
and Juniperus communis - Corema conradii lithomorphic. Lastly, Cladonia spp. was
frequently neighbored by Gaylussacia shrub bog, Gaylussacia baccata shrubland, and

Juniperus communis - Corema conradii lithomorphic.
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Table 3.13. Summary of the spatial configurations of plant community patches at Polly’s Cove. *¥AW = Area-weighted.

Class Related Average
. Number Patch Perimeter Perimeter-Area . - Nearest
Plant Community Area Patch Area (m) ] Shape Index Circumscribing :
of Patches (m) Ratio h Neighbor
(ha) Circle Index Ratio
AW* SD AW SD AW SD AW SD AW SD
Mean Mean Mean Mean Mean

Broadleaf tree island 0.24 398 13.85 6.87 34.10 13.60 331 12.66 2.34 0.50 0.61 0.15 0.70
Calamagrostis canadensis coastal 0.07 63 64.48 24.76 92.46 33.38 2.24 2.58 3.04 0.72 0.75 0.12 0.22
vegetation
Carex nigra - Festuca rubra coastal 0.01 9 119.66 43.58 128.69 45.02 1.36 2.39 2.93 0.56 0.72 0.12 0.16
vegetation
Carex nigra bog 0.02 34 57.05 18.40 103.39 31.85 2.65 2.25 3.38 0.67 0.64 0.10 0.16
Carex vesicaria bog 0.01 7 48.98 19.35 83.90 31.78 2.10 32.57 3.00 0.60 0.52 0.25 0.05
Cladonia spp. 1.12 23299 10.77 221 37.91 7.68 6.84 10.47 2.66 0.42 0.66 0.14 0.62
Coniferous tree island 1.56 1311 130.73 37.41 146.97 40.91 1.83 7.98 2.94 0.55 0.58 0.14 0.88
Empetrum nigrum - Juniperus 0.28 1023 20.14 6.88 49.93 15.96 3.99 5.87 2.64 0.52 0.67 0.13 0.39
communis dwarf heath
Gaylussacia baccata shrubland 7.64 3780 6255 352.45 7068 400.33 1.73 11.79 18.98 1.34 0.76 0.14 0.80
Gaylussacia shrub bog 453 7746 629.26 59.95 1460 141.65 3.59 11.50 11.38 1.27 0.76 0.15 0.88
llex glabra shrubland 0.65 967 157.60 31.61 276.92 55.92 2.86 10.31 5.04 0.90 0.72 0.14 0.38
Juncus balticus brackish marsh 0.06 47 88.38 32.02 129.86 46.30 1.91 2.57 3.46 0.80 0.75 0.14 0.12
Juniperus communis - Corema 2.21 7472 19.54 6.96 48.04 16.03 381 9.17 2.56 0.51 0.63 0.14 0.97
conradii lithomorphic
Juniperus horizontalis dwarf heath 0.03 149 5.92 2.73 18.99 7.39 4.60 10.27 1.99 0.38 0.63 0.13 0.27
Mixed tall shrubs 214 982 1130 154.31 1511 207.73 1.98 13.31 9.72 1.37 0.77 0.15 0.68
Osmunda cinnamomea seep 0.14 370 83.52 17.45 123.54 25.14 3.04 5.12 3.09 0.47 0.68 0.12 0.45
Rubus allegheniensis - Morella 0.58 718 340.06 51.50 384.79 58.78 2.27 7.66 4.93 0.75 0.73 0.13 0.35
pensylvanica coastal vegetation
Spartina patens salt marsh 0.14 20 512.83 177.41 262.25 101.08 0.82 20.11 3.19 0.94 0.69 0.20 0.10
Thalictrum pubescens coastal <0.01 6 23.70 11.93 72.37 34.08 3.53 36.20 3.64 0.96 0.74 0.27 0.03
vegetation
Trichophorum caespitosum bog 0.28 385 713.91 71.13 1111 112.93 2.64 9.95 9.91 1.10 0.77 0.14 0.24
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Table 3.14. The top three most common neighbors of each plant community type at

Polly’s Cove.

Shared Edge

Plant Community

Top Neighboring Communities

Length (m)

Broadleaf tree island Mixed tall shrubs 3711
Coniferous tree island 1893
Gaylussacia baccata shrubland 1737
Calamagrostis canadensis | Gaylussacia baccata shrubland 4875
coastal vegetation Juncus balticus brackish marsh 176.4
Mixed tall shrubs 143.4
Carex nigra - Festuca Mixed tall shrubs 25.5
rubra coastal vegetation Calamagrostis canadensis coastal vegetation 21.9
Gaylussacia baccata shrubland 21.2
Carex nigra bog Juniperus communis - Corema conradii lithomorphic 2135
Gaylussacia shrub bog 123.7
Rubus allegheniensis - Morella pensylvanica coastal 100.2
vegetation
Carex vesicaria bog Gaylussacia shrub bog 335
Juncus balticus brackish marsh 29.2
Juniperus communis - Corema conradii lithomorphic 21.4
Cladonia spp. Gaylussacia shrub bog 39483
Gaylussacia baccata shrubland 7919
Juniperus communis - Corema conradii lithomorphic 6334
Coniferous tree island Mixed tall shrubs 10498
Gaylussacia baccata shrubland 6582
Juniperus communis - Corema conradii lithomorphic 3257
Empetrum nigrum - Juniperus communis - Corema conradii lithomorphic 3878
Juniperus communis dwarf g s allegheniensis - Morella pensylvanica coastal 2438
heath vegetation
Gaylussacia baccata shrubland 875.8
Gaylussacia baccata Gaylussacia shrub bog 49204
shrubland Juniperus communis - Corema conradii lithomorphic | 19224
Mixed tall shrubs 14012
Gaylussacia shrub bog Gaylussacia baccata shrubland 49204
Cladonia spp. 39483
Juniperus communis - Corema conradii lithomorphic 34192
llex glabra shrubland Gaylussacia baccata shrubland 8665
Gaylussacia shrub bog 2791
Juniperus communis - Corema conradii lithomorphic 2154
Juncus balticus brackish Spartina patens salt marsh 279.6
marsh Calamagrostis canadensis coastal vegetation 176.4
Gaylussacia shrub bog 133.3
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(continued) Table 3.14. The top three most common neighbors of each plant community

type at Polly’s Cove.

Shared Edge

Plant Community

Top Neighboring Communities

Length (m)

Juniperus communis - Gaylussacia shrub bog 34192
Corema conradii Gaylussacia baccata shrubland 19224
lithomorphic -
Cladonia spp. 6334
Juniperus horizontalis Empetrum nigrum - Juniperus communis dwarf heath 342.1
dwarf heath Juniperus communis - Corema conradii lithomorphic | 218.9
Rubus allegheniensis - Morella pensylvanica coastal 171.3
vegetation
Mixed tall shrubs Gaylussacia baccata shrubland 14012
Coniferous tree island 10498
Gaylussacia shrub bog 3742
Osmunda cinnamomea Gaylussacia baccata shrubland 2137
seep Mixed tall shrubs 1016
Rubus allegheniensis - Morella pensylvanica coastal 557.6
vegetation
Rubus allegheniensis - Gaylussacia baccata shrubland 3773
Morella pensylvanica Empetrum nigrum - Juniperus communis dwarf heath | 2438
coastal vegetation . - — -
Juniperus communis - Corema conradii lithomorphic 1947
Spartina patens salt marsh | Juncus balticus brackish marsh 279.6
Calamagrostis canadensis coastal vegetation 113.6
Gaylussacia baccata shrubland 11.6
Thalictrum pubescens Calamagrostis canadensis coastal vegetation 65.7
coastal vegetation Juncus balticus brackish marsh 42.8
Gaylussacia baccata shrubland 19.6
Trichophorum caespitosum | Gaylussacia shrub bog 5016
bog Juniperus communis - Corema conradii lithomorphic 3415
Cladonia spp. 177.6

Many associations were observed when plant communities at Polly’s Cove were

related to environmental factors (Table 3.15; see Figures A2.1-A2.8 for mapped

environmental factors; see Figures A2.25-32 for confidence intervals and bar plots).

Mean elevations for plant communities ranged from just below a meter to 16 meters.

Plant communities at higher elevations included Empetrum nigrum - Juniperus communis

dwarf heath, Juniperus communis - Corema conradii lithomorphic, Gaylussacia shrub

bog, Cladonia spp., and llex glabra shrubland. Plant communities at lower elevations
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included Spartina patens salt marsh, Thalictrum pubescens coastal vegetation, Juncus
balticus brackish marsh, Calamagrostis canadensis coastal vegetation, Carex nigra -
Festuca rubra coastal vegetation, and Carex vesicaria bog. Tree islands, shrublands,
Cladonia spp., Trichophorum caespitosum bog, and Gaylussacia shrub bog were situated
further from the coastline (> 250 m). Other communities, including Juniperus communis -
Corema conradii lithomorphic, Calamagrostis canadensis coastal vegetation, Thalictrum
pubescens coastal vegetation, marshes, and Osmunda cinnamomea seep, occurred at more
intermediate distances from the coastline (between 100 to 250 m). Plant communities
found nearest the coastline (< 100 m) included Carex nigra - Festuca rubra coastal
vegetation, Juniperus horizontalis dwarf heath, Carex nigra bog, Rubus allegheniensis -
Morella pensylvanica coastal vegetation, and Carex vesicaria bog. It should be noted that
although distance from coastline values for marshes and some of the coastal vegetation
were recorded at intermediate ranges (between 100 to 250 meters), the plant communities
in the south-eastern portion of the site were actually near a salt water inlet (see plant
community map in Figure 3.8). For this study, the inlet was not included as part of the
coastline.

Wind exposure was highest for Rubus allegheniensis - Morella pensylvanica
coastal vegetation, Empetrum nigrum - Juniperus communis dwarf heath, and Juniperus
horizontalis dwarf heath (Table 3.15). Communities with low wind exposure values
included bogs, marshes, and other Coastal vegetation. Analysis of stream networks at
Polly’s Cove showed a high variability in moisture regimes for different communities.
Plant communities in the wettest areas were Calamagrostis canadensis coastal

vegetation, Carex nigra bog, Osmunda cinnamomea seep, Coniferous tree island, and
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Trichophorum caespitosum bog. Plant communities in dryer areas included Cladonia
spp., Empetrum nigrum - Juniperus communis dwarf heath, and Juniperus communis -
Corema conradii lithomorphic. All other communities had intermediate moisture
regimes. A large amount of variability was observed in incoming solar radiation as well.
Communities with low solar radiation values included tree islands, Gaylussacia baccata
shrubland, Mixed tall shrubs, and Cladonia spp. Higher values of solar radiation were
recorded from Juniperus horizontalis dwarf heath, Rubus allegheniensis - Morella
pensylvanica coastal vegetation, Carex nigra - Festuca rubra coastal vegetation, and
Empetrum nigrum - Juniperus communis dwarf heath.

Slope position classifications varied for plant communities (Table 3.15). Ridges
were the most common slope position for Cladonia spp., Empetrum nigrum - Juniperus
communis dwarf heath, Juniperus communis - Corema conradii lithomorphic, Juniperus
horizontalis dwarf heath, and Rubus allegheniensis - Morella pensylvanica coastal
vegetation. Midslopes often associated with tree islands, and Gaylussacia baccata
shrubland. Flat areas were occupied by Trichophorum caespitosum bog, Gaylussacia
shrub bog, and Carex vesicaria bog. Toe slopes were common to two of the Coastal
vegetation types: Carex nigra - Festuca rubra coastal vegetation and Thalictrum
pubescens coastal vegetation. Valleys were often occupied by marshes, Osmunda
cinnamomea seep, Carex nigra bog, Calamagrostis canadensis coastal vegetation, Ilex
glabra shrubland, and Mixed tall shrubs. Local surface ruggedness was high for
Rubus allegheniensis - Morella pensylvanica coastal vegetation, Empetrum nigrum -
Juniperus communis dwarf heath, and Juniperus horizontalis dwarf heath. Conversely,

local ruggedness was noticeably low for Trichophorum caespitosum bog, Carex vesicaria
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bog, Spartina patens salt marsh, and Juncus balticus brackish marsh. Similarly, global
surface ruggedness was highest for Rubus allegheniensis - Morella pensylvanica coastal
vegetation, Empetrum nigrum - Juniperus communis dwarf heath, and Juniperus
horizontalis dwarf heath. Global surface ruggedness was particularly low for llex glabra

shrubland and Trichophorum caespitosum bog.
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Table 3.15. Environmental factors for plant communities at Polly’s Cove. *AW = Area-weighted; C.I = Area-weighted 95%

confidence interval.

Plant Community

Elevation
Above Sea-

Distance from

Wind

Hydrology

Incoming Solar

Slope Position

Local
Surface

Global
Surface

Coastline (m) Exposure (Stream Order) Radiation
level (m) Ruggedness  Ruggedness
AW Mean + AW Mean + AW Mean + Most Frequent AW Mean + Most Frequent AW Mean + | AW Mean +
95% C.1.* 95% C.1. 95% C.1. (AW) 95% C.1. (AW) 95% C.1. 95% C.1.
Broadleaf tree island 9.84 £0.34 360.88 + 9.57 15.08 +1 4 76.57 +0.89 Midslope 117+0.12 | 6.61+053
Sgg':gﬁg;os“s canadensis coastal 154 +0.34 212.64 +10.1 5.74+0.92 8 81.6+1.24 Valley 04+007 | 7.77+153
S‘fg':t’; thora- Festuca rubra coastal 216+ 1.02 255 +72.82 695+25 5 87.05+2.85 Toe Slope 0.26+0.07 | 24.46+527
Carex nigra bog 6.25+0.5 34.47 +3.95 433+188 7 85.33 +0.97 Valley 027+025 | 26.21+2.33
Carex vesicaria bog 2.62+0.23 4188+72 1.36 £ 0.66 5 83.63+1.9 Flat 006+0.06 | 57061
Cladonia spp. 14.82+005 | 32897+118 7.47 £0.08 3 80.89 + 0.08 Ridge 0.42+0.007 | 5.35+0.05
Coniferous tree island 9.47£0.2 345.49 +5.33 8.98 +0.35 6 80.36 + 0.33 Midslope 063+0.03 | 519+0.25
Evrcggtﬂé?ﬂ:"gmm - Juniperus communis |46 484 39 4523 +1.36 24.71+0.88 3 87.04 +0.48 Ridge 271+019 | 46.72+£1.32
Gaylussacia baccata shrubland 12.72+012 | 259.96+364 | 1017+0.14 4 80.47 £ 0.16 Midslope 061+001 | 9.81+0.22
Gaylussacia shrub bog 14.96 £0.11 282.66 + 2.42 508+0.1 5 82.1+0.1 Flat 026+0008 | 6.3+0.13
Ilex glabra shrubland 1456018 | 377.25+512 82+0.3 4 85.16 + 0.28 Valley 037+001 | 385+0.1
Juncus balticus brackish marsh 1.37£0.17 158.73 £ 17.42 2.93+0.84 5 82.97 £0.65 Valley 014+0.04 | 10.86+1.69
. . . 22+0. 232, .96 + 0. 49 +0. idge 73+0. 18 +0.
flfgéﬁ;‘;;hﬁgmm“”'s Corema conradii 1522+012 | 22223+285 | 10.96+0.21 3 83.49+0.16 Ridg 0.73+002 | 12.18+0.27
Juniperus horizontalis dwarf heath 9721 2558 +3.3 2358 +2.37 4 90.32+0.93 Ridge 251+0.67 | 36.98+284
Mixed tall shrubs 9.76+0.23 317.66 + 7.08 1153 £0.4 4 78.88 £ 0.36 Valley 083003 | 8.73+041
Osmunda cinnamomea seep 10.96 +0.42 106.92 +9.23 8.08 +0.61 7 81.98 + 0.57 Valley 0.62+0.09 | 1942+1.21
Rubus allegheniensis - Morella 12.7+0.39 3526+ 1.2 24.98 +0.97 4 88.73 + 0.44 Ridge 294029 | 508714
pensylvanica coastal vegetation
Spartina patens salt marsh 0.9+0.02 169.87 +9.24 273+0.78 4 82.24 +1.07 Valley 0.13+0.09 | 15.16+2.68
Thalictrum pubescens coastal vegetation 1.35+0.1 148.05 + 19.03 416+7.73 5 82.86 £ 6.95 Toe Slope 0342072 | 7.02+041
Trichophorum caespitosum bog 12.3+0.33 382.67 £8.51 1.82£0.12 6 83.92£0.12 Flat 004001 | 1.18+0.09
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Discussion

For the first time, landscape patterns of plant community patches in the coastal
barrens near Halifax, Nova Scotia were quantified at the fine-scale. Mapping plant
community patches using high-resolution multispectral UAV imagery provided many
insights into the overall structure of coastal barrens landscapes and the spatial patterns
and relationships of the plant communities that occupy them. All three sites exhibited
complex spatial patterns of plant communities, a wide spectrum of environmental
gradients and topographic heterogeneity, and a high degree of patchiness. Furthermore,
plant community patches varied greatly in size, shape, abundance, and spatial distribution
from one plant community type to another and in many cases from one site to another. It
is without a doubt that these complex landscape patterns are linked to various
combinations of environmental factors; however, which combinations of environmental
factors and for which communities remains to be determined.

Coastal barrens landscapes in Halifax, Nova Scotia were dominated by shrublands
and dwarf heath; however, their spatial patterns were not always consistent among sites.
Interestingly, the most dominant plant community across the three sites was Gaylussacia
baccata shrubland, occupying on average 21.6% of the three landscapes. Some studies
have suggested that Gaylussacia baccata is the dominant shrub in the coastal barrens of
eastern North America (Strang, 1972; Matlack et al., 1993; Harper, 1995; Dunwiddie et
al., 1996); however, no study has been able to confirm this until now by using
distributional maps. Dominance, however, was site-specific, and although Gaylussacia

baccata shrubland was overall the most dominant community across the three landscapes,
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Empetrum nigrum - Juniperus communis dwarf heath was most dominant at Prospect
Bay.

Gaylussacia baccata shrubland tended to have very large patch areas with
irregular shapes, occurring mostly on midslopes. Similar to Porter (2013), Gaylussacia
baccata shrubland was often found in higher elevations further from the coastline.
However, two types of dwarf heath were most abundant across the three sites but had
inconsistent spatial patterns among sites: Empetrum nigrum - Juniperus communis dwarf
heath and Juniperus communis - Corema conradii lithomorphic. At Prospect Bay,
Empetrum nigrum - Juniperus communis dwarf heath was the most abundant of all
communities, occupying 38% of the landscape. The community had large patch areas
with irregular shapes and mostly occurred on flats and midslopes closer to the coastline
but also extending further inland. Interestingly, since the topography of Prospect Bay was
homogeneous with few rock outcrops, Juniperus communis - Corema conradii
lithomorphic was non-existent at the site. Conversely, at Chebucto Head and Polly’s
Cove, Juniperus communis - Corema conradii lithomorphic was the dominant dwarf
heath, mostly occupying exposed rock faces and ridges with small to medium patch sizes
and simpler patch shapes. Empetrum nigrum - Juniperus communis dwarf heath was
found within 150 m of the coastline for the two sites; however, it’s abundance was much
lower at Polly’s Cove (0.28 ha) when compared to Chebucto Head (1.26 ha). This may be
partly caused by the large barrier island (Figure 3.3) at Polly’s Cove providing shelter
from wind and salt spray for parts of the site nearest the water, which could have created
more favorable conditions for other communities such as Rubus allegheniensis - Morella

pensylvanica coastal vegetation and bogs. This would support the hypothesis of Cameron
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and Bondrup-Nielsen (2013) that taller shrub communities rather than dwarf heath would
exist near the coastline if it weren’t for the high winds and salt spray.

Tree islands were common at Chebucto Head and Polly’s Cove but were seldom
at Prospect Bay. Coniferous tree island patches were mostly large with simple shapes
while Broadleaf tree islands also had simple shapes but had much smaller patch areas and
were often intermixed with Coniferous tree islands and Mixed tall shrubs. Mixed tall
shrubs were more prevalent across the three sites and had large irregular patch areas.
Analysis of stream networks indicated that both tree islands and tall shrubs mostly
occurred in moderately wet areas and further inland, which is consistent with Burley and
Lundholm (2010). Although tree islands were recorded as occurring on midslopes from
the slope position model, they actually occurred in valleys and on flats. The
misclassification of slope position resulted from the limitation of computing ground
elevation models from UAV imagery; 3D information can only be computed from what
the UAV can ‘see’, so only vegetation canopies, not the ground beneath vegetation
canopies, were reconstructed. This can be mostly alleviated by generalizing the elevation
model to a coarser resolution, for example 2 m, and assigning the minimum elevation
value within each cell. This technique of computing a ground DEM will still be limited
for larger stands of trees when there is no visible ground nearby. This issue was not as
apparent for Mixed tall shrubs, where they were found mostly on midslopes at Chebucto
Head, flats at Prospect Bay, and valleys at Polly’s Cove. Interestingly, a strong
relationship was found between tree islands and tall shrubs, where tall shrubs often
surrounded tree islands (Burley et al., 2010). It is possible that this was due to succession,

where tree islands colonized valleys and gradually succeeded the original tall shrub
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communities. Another explanation could be due to topographic gradients: tree islands
may be more suited to sheltered valleys and the transition from valleys to midslopes
provided more suitable habitat for tall shrubs rather than tree islands.

Various types of bogs were present at all three sites although they were most
abundant at Prospect Bay and Polly’s Cove. Patch areas, numbers, and shapes varied
according to the type of bog, but most had small to medium sized patch areas with simple
shapes. The main exception was at Prospect Bay, where Grass/Sedge/Open bogs were the
second most dominant plant community type, occupied 20.6% of the landscape, and had
irregular patch shapes. What was most interesting was that the majority of bogs seemed
to depend on two main environmental factors occurring at two different scales: slope
position classification (local) and the spatial distribution of stream networks across the
landscape (global), which would depend on the shape of the landscape as a whole. Bogs
mostly occurred on flat areas that had one or more higher order streams either flowing
directly into it or was flowing nearby. This dependency of bogs on flat areas and stream
networks would explain the large prevalence of bogs at Prospect Bay, since the site was
mostly composed of flat areas or gentle slopes and had two main streams that undulated
across the site, tracing the distribution of the bogs.

In addition to slope position and location of stream networks, bogs also occurred
in areas of low wind exposure, low local and global topographic ruggedness, and mostly
at higher altitudes and distances further from the coastline. One exception was at Polly’s
Cove, where two bogs were found occurring near the coastline. Their unusual occurrence
near the coastline was likely caused by the sheltering of wind and salt spray from the

large barrier island to the south-west of the site (Figure 3.3).
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Spatial patterns of marshes and seeps varied from one site to another. Osmunda
cinnamomea seep was the only kind of seep detected and was present at all sites. Spatial
patterns were very similar at Chebucto Head and Polly’s Cove, where Osmunda
cinnamomea seep inhabited valleys with highest stream orders, mostly occurred within
150 meters of the coastline and in intermediate elevations. Conversely, at Prospect Bay
Osmunda cinnamomea seep was recorded in higher elevations, further from the coastline
(> 300 meters), in flat areas and with medium stream orders. Patches were small to
medium-sized and had low shape complexity. Interestingly, across all three sites
Osmunda cinnamomea seep was most often adjacent to Gaylussacia baccata shrubland
and Mixed tall shrubs.

Marshes were only observed at Prospect Bay and Polly’s Cove. Spatial patterns of
marshes at the two sites were quite different. At Prospect Bay, Juncus balticus brackish
marsh was observed in an alluvial fan in the south-western portion of the site
accompanied by Grass/Sedge/Open bogs, whereas at Polly’s Cove, Juncus balticus
brackish marsh accompanied Spartina patens salt marsh in a salt water inundation zone in
the south-eastern portion of the site and in much lower elevations (< 2 m). These findings
are consistent with Porter et al. (2015), who found that Spartina patens salt marsh often
was competitively dominant in the lower areas of salt water inundation zones with higher
salt concentration and Juncus balticus brackish marsh occupied slightly higher elevations.
The other marsh at Prospect Bay was Spartina pectinata brackish marsh, which occurred
in low elevations closer to the coastline and on midslopes. All types of marshes generally
had small to medium-sized patch areas with low to intermediate shape complexities. It is

hypothesized that marshes were not observed at Chebucto Head because of the
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topography of the site. Based on observations from Prospect Bay and Polly’s Cove and
previous studies on salt marshes (Porter et al., 2015; van Proosdij et al., 2006), marshes
are more suited to low elevations, particularly for salt water marshes requiring tidal
inundation, and simple flat terrain. Since much of Chebucto Head’s coastline is rugged
cliffs with few flat areas near the coastline, there is no suitable habitat for marshes at the
site.

Coastal vegetation was a class used to capture all other communities occurring
along the coastline, mostly being herbaceous. Each site had unique coastal vegetation
types, although Calamagrostis canadensis coastal vegetation was present at both
Chebucto Head and Polly’s Cove. Coastal vegetation mostly inhabited areas of low
elevation closest to the coastline and experienced medium to high amounts of wind
exposure and surface ruggedness (local and global). Patch numbers were mostly low and
sizes of patches were small to medium-sized with low to medium shape complexity.

Perhaps one of the most unexpected results of this study was the sheer abundance
of Cladonia spp. at all three sites. Lichens can be very sensitive to disturbance and many
species of lichens are listed as either uncommon or rare, making them a high priority for
conservation efforts (Christensen and Johnsen, 2001; Porter, 2013). The presence of
lichen in the coastal barrens in Nova Scotia has been previously noted (Oberndorfer and
Lundholm, 2009; Cameron and Bondrup-Nielsen, 2013; Porter, 2013); however, no study
to date has been able to quantify its abundance across a landscape due to the coarseness
of previous remote sensing techniques. The amount of lichen occupying each site was
very similar: Chebucto Head had 1.2 ha of Cladonia spp.; Prospect Bay had 1.22 ha; and

Polly’s Cove had 1.12 ha. Patches were numerous across each landscape (> 15,000) and
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tended to be small to medium-sized with low to intermediate shape complexity. At
Chebucto Head and Polly’s Cove, lichen was most abundant on ridges and rock
exposures with low moisture availability. At Prospect Bay, however, rock exposures were
infrequent, and lichen instead inhabited flat, gentle sloping areas that were moderately
wet. Interestingly, this same habitat type occurred on the eastern part of Chebucto Head,
50-100 m from the coastline, where an unexpectedly dense population of Cladonia spp.
was observed. This suggests that there are at least two environmental scenarios for which
Cladonia spp. are likely to occur in dense populations on a landscape: on dry rock-
exposed ridges or on moderately wet flats or gentle slopes. This is supported by
Oberndorfer and Lundholm (2009), who found that various species of Cladonia occupy
different niches and habitats in the coastal barrens. Having knowledge of the locations
and environmental requirements of rare or uncommon species across a landscape could
help to better focus conservation efforts for protecting sensitive species like lichen.

Patch perimeters were highly correlated with patch areas (r*> = 0.99). Perimeter-
area ratios (area-weighted) of patches were generally smaller for classes with larger patch
areas compared to classes with smaller patch areas. Although perimeter-area ratio and
shape index are both measures of shape complexity, results from the two metrics were not
consistent for classes with larger patch areas. For example, Gaylussacia baccata
shrubland had an area-weighted perimeter-area ratio of 1.60, the second lowest score, but
had an area-weighted shape index of 22.16, the highest shape index recording for any
class at Chebucto Head. This is consistent with Patton (1975), who proposed the shape
index as an alternative to the conventional perimeter-area ratio as a measure of shape

complexity, since perimeter-area ratio fails to account for differences in patch sizes.
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Instead, shape index evaluates the complexity of a patch by comparing it to a circle or
square standard.

In this study, environmental factors, including elevation and wind exposure, were
mapped across each site to help understand the structure and spatial heterogeneity of the
landscapes. Chebucto Head and Polly’s Cove had similarly high degrees of topographic
heterogeneity and as a result had similar landscape patterns for the dominant vegetation
types. Topographic variability of Prospect Bay was much different, having a much more
homogeneous and uniform landscape. Not surprisingly, plant communities and their
spatial patterns were quite different. Based on these findings, using 3D models from the
SfM photogrammetric processing of UAV imagery and GIS techniques to model
environmental factors gave many useful insights into the dynamic nature of coastal
barrens and helped to explain the complex spatial patterns of the plant communities.
Further research should continue to fine-tune the current methods used to derive
environmental conditions for landscapes, such as wind exposure models, and develop
new techniques for modeling other environmental conditions that may be useful for
characterizing a landscape’s environment and understanding its landscape patterns.

Historically, humans have caused a wide range of disturbances to coastal barrens,
in some cases maintaining them by preventing re-forestation, such as accidental or
purposeful fires, grazing from livestock, clear-cutting for timber, and creation of hiking
trails (Heikens and Robertson, 1994; Mitchell et al., 2000; Motzkin and Foster, 2002;
Kerbiriou et al., 2008; von Oheimb et al., 2008). These activities have been found to
impact biodiversity, species richness, and threaten rare species. Anthropogenic

disturbances were clearly visible at all sites using high-resolution UAV imagery. At
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Chebucto Head, numerous hiking trails extended along the coastal cliffs and dwarf heath
and several paths were noticed further inland that traced through shrublands and several
tree islands. At Prospect Bay, two main hiking trails dissected the site horizontally, one
along the coastline and the other 100-150 m from the coastline. Polly’s Cove was perhaps
the most disturbed, with numerous hiking trails tracing the coastline as well as multiple
ATV Trails carving out bogs at the back of the site (see mapped ATV trails in Figure
3.8). To gain a better understanding of the extent and impacts of disturbances on coastal
environments and how they impact the landscape patterns of vegetation, the use of
multispectral imagery and the Normalized Differentiation of Vegetation Index (NDVI) is
a strong possibility. For example, Minatik and Langhammer (2016) used multispectral
UAYV imagery to assess disturbance dynamics in a forest and found that NDVI was one of
the best indices for identifying individual trees that were healthy, dead, and infested with
bark beetles. It is unfortunate that coastal ecosystems like the coastal barrens are subject
to such amounts of disturbance, which highlights the importance of developing better
monitoring tools and management practices to protect them.

Harper et al. (2005) discuss the importance of edge to interior relationships and
how the amount of edge of a habitat patch can influence habitat fragmentation, habitat
loss, changes in biodiversity and species richness, and community structure. Although it
was not within the scope of this study to quantify edge-interior relationships of plant
community patches in relation to habitat fragmentation and biodiversity, several metrics
were quantified for patches in this study that relate to edge-interior relationships,
including perimeter-area ratio, shape index, and the amount of edge shared with other

plant communities. Natural edges of fine scale plant community patches were detectable
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from UAV imagery which made it possible the quantify edge-interior relationships.
Given the important implications of edge-interior relationships for habitats and ecosystem
biodiversity, future research should consider the use of UAVs as a tool to detect natural
edges of plant communities and to quantify edge-interior relationships at different spatial
scales.

Classifying landscapes with UAV imagery can be highly accurate and can offer
an unprecedented level of detail about the structure and composition of a landscape
(Cunliffe et al., 2016; Fraser et al., 2016). Furthermore, maps provide a way to
qualitatively and quantitatively analyze spatial patterns and relationships of vegetation
and other features across landscapes, offering many different avenues for research in
landscape ecology and other scientific fields. Although final overall classification
accuracies of plant community patches from UAV imagery were very good for all three
sites, many challenges were encountered, and it was a lengthy process to optimize the
image classification methodology. The Support Vector Machines classifier in ArcGIS
proved to be excellent for classifying UAV imagery compared to other methods tested,
such as Supervised Maximum Likelihood. The classifier was quite robust for low sample
sizes, although most issues encountered with misclassifications were related to classes
with not enough samples. A minimum of 4 field plot samples is ideal for each class,
although realistically this isn’t always possible. Consider the example of Toxicodendron
radicans coastal vegetation (poison ivy) at Prospect Bay: only two patches were
identified in the entire landscape, therefore it would be impossible to have any more than

two field plot samples unless samples were pseudoreplicates (i.e. multiple samples from
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the same patch). As with many tools, trial and error was needed to find out the best
settings and parameters for the image classifier.

The most challenging communities to classify were those with low field plot
samples and those that were either structurally and/or spectrally similar to other
communities. Rubus allegheniensis - Morella pensylvanica coastal vegetation at Polly’s
Cove was one of the more difficult communities to classify because it only had a few
samples and it was similar in appearance to several other communities, such as
Gaylussacia baccata shrubland. Mixed tall shrubs were also challenging to classify at
Chebucto Head and Polly’s Cove because of a similar appearance to Gaylussacia baccata
shrubland. To reduce misclassifications between these two communities at the two sites,
a decision tree approach was used after the initial image classification procedure; the two
shrublands were temporarily joined as one group and subsequently re-split based on a
cutoff value using a structural index, such as Topographic Position Index (TPI), since
Mixed tall shrubs have greater structural variability and are generally taller than
Gaylussacia baccata shrubland. The cutoff value was selected by calculating 95%
confidence intervals of the mean values of the structural index for each community and
the value that best split the two groups as chosen. Doing so improved classification
accuracies of the shrublands at both sites, although Mixed tall shrubs still classified
poorly at Polly’s Cove due to low sample sizes. Using this post-classification technique
may be helpful when the initial classification yields poor results for one or more classes
and there is a known index or parameter that can later be used to separate them.

From observation, many misclassifications should have been preventable. For

example, sometimes Coniferous tree islands were misclassified as dwarf heath due to
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their similar spectral appearance; however, their differences in structure should have
prevented those misclassifications. Furthermore, most communities could be easily
discriminated by visually inspecting the RGB imagery alone, suggesting that the SVM
classifier wasn’t always making the best decisions given the information provided.
Although results were overall still very good using the SVM classifier, future research
should continue to explore, improve, and develop better machine learning algorithms for
classifying UAV imagery.

In this study, detailed 3D models of landscapes were made by processing UAV
imagery in Agisoft software using SfM photogrammetry. The purpose of generating high-
resolution 3D models was 2-fold: 1) to assist image classification by digitally
reconstructing vegetation canopies and deriving structural indices of plant communities,
and 2) to model environmental factors such as elevation and wind exposure to understand
the landscape patterns of plant communities. Using Agisoft to create 3D landscape
models provided realistic representations of the landscapes with very few computational
errors. Many structural differences were found between plant communities using the 3D
landscape models, and environmental factors derived from the elevation models were
able to explain many important landscape patterns and relationships of the plant
communities across the landscapes. One challenge with using UAV imagery to derive 3D
models is the creation of bare earth/bare ground models. Objects or surfaces can only be
digitally reconstructed if they are in direct view of the aircraft, so the ground beneath
vegetation canopies is often not measured and incorporated into the 3D models. This
poses limitations for estimating canopy height of vegetation and computing bare ground

models for deriving environmental indices such as stream networks and slope position
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classifications (Dandois, 2014; Aasen et al., 2015; Cunliffe et al., 2016; Fraser et al.,
2016). One option is to generalize the elevation model to a coarser resolution and assign
the minimum elevation value observed for each cell. Future research should investigate
techniques to optimize the derivation of bare ground models from UAV imagery when
bare ground is not visible and further improve the computation of 3D models from UAV

imagery using SfM photogrammetry.

Implications and Future Work

To the author’s knowledge, this is the first study to reveal the landscape structure
of coastal barrens using detailed maps of plant communities, landscape features, and
environmental factors. Novel techniques in remote sensing and image processing were
used to derive high-resolution 3D models and orthomosaics of coastal barrens landscapes,
shedding a new light on their true complexity and patchiness. The findings of this study
show that landscape patterns of plant communities in the coastal barrens are very
complex but are linked to various combinations of environmental factors, particularly
slope position, proximity to stream networks, elevation, and the distance from the
coastline. Furthermore, creating highly detailed maps of plant community patches and
quantifying their spatial patterns and distributional statistics, such as total area occupied,
can help to better inform conservation managers about what measures are needed to
protect these ecosystems and where to allocate resources in future efforts. Maps not only
serve as communication tools for scientific researchers but can also help to better inform
the public and showcase the brilliant diversity and complexity of these ecosystems.

Future work should continue to expand on spectral and structural indices to use for
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discriminating plant communities, explore other environmental factors for characterizing
coastal environments and how they relate to the landscape patterns of plant communities,
and investigate new ways to quantify and interpret the spatial patterns of vegetation from
plant community maps. Optimizing and standardizing image acquisition techniques,
camera settings, and image processing techniques for UAV imagery will help to improve
classification accuracies of plant community maps, conduct temporal analyses, and will
make maps more comparable. Lastly, more work is still needed to document the different
species and plant communities occurring in these coastal environments and assign
classifications using standardized classification systems, such as the Canadian National

Vegetation Classification (CNVC).
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Conclusion

In this study, the landscape structure of three coastal barrens sites in the Halifax
region was revealed through maps of plant community patches, landscape features, and
environmental factors. Coastal barrens were dominated by shrublands and dwarf heath;
however, many other types of communities co-existed, including bogs, salt marshes, and
tree islands. Sites displayed a wide spectrum of environmental gradients and topographic
heterogeneity, providing many different habitat types and niches, resulting in complex
spatial patterns of vegetation and a high degree of patchiness. Plant community patches
varied in size, shape, abundance, and spatial distribution from one plant community type
to another and in many cases from one site to another. One of the most unexpected results
of this study was the predominance of Cladonia spp. lichen; lichen occupied 4-5% of
each landscape and dense populations were found on dry, rock-exposed ridges and on
mildly wet slopes and flats. This is a significant finding because many species of lichen
are uncommon or rare, highlighting the conservation value of coastal barrens and the
need to protect them. 3D models from the SfM photogrammetric processing of UAV
imagery were essential for computing structural indices for image classification and for
deriving environmental factors such as stream networks and wind exposure models.
Lastly, mapping plant community patches at the fine-scale with high accuracy would not
have been possible without the use of aerial imagery with sub-decimeter resolutions.
Maps offer tremendous potential for quantifying spatial patterns and relationships of
species and communities across landscapes, can inform conservation managers, and can

be used as communication tools to inform and engage the public. Future research should
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continue to explore the use of UAVs for mapping species and communities across coastal

barrens landscapes and quantify their landscape patterns.

162



References

Aasen, H., Burkart, A., Bolten, A., & Bareth, G. (2015). Generating 3D hyperspectral
information with lightweight UAV snapshot cameras for vegetation monitoring: from
camera calibration to quality assurance. ISPRS Journal of Photogrammetry and Remote
Sensing, 108, 245-259.

Adam, E., Mutanga, O., & Rugege, D. (2010). Multispectral and hyperspectral remote
sensing for identification and mapping of wetland vegetation: a review. Wetlands
Ecology and Management, 18(3), 281-296.

ArcGIS (Version 10.3.1) [Software]. (2014). Environmental Systems Research Institute
(ESRI), Redlands, California.

Asner, G. P., Ustin, S. L., Townsend, P. A., Martin, R. E., & Chadwick, K. D. (2015).
Forest biophysical and biochemical properties from hyperspectral and LIDAR remote
sensing. Land resources monitoring, modeling and mapping with remote sensing. CRC
Press, Taylor & Francis Group, 429-448.

Baker, R. D., Lynn, B. H., Boone, A., Tao, W. K., & Simpson, J. (2001). The influence
of soil moisture, coastline curvature, and land-breeze circulations on sea-breeze-initiated
precipitation. Journal of Hydrometeorology, 2(2), 193-211.

Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS journal of
photogrammetry and remote sensing, 65(1), 2-16.

Boose, E. R., Foster, D. R., & Fluet, M. (1994). Hurricane impacts to tropical and
temperate forest landscapes. Ecological Monographs, 64(4), 369-400.

Buckland-Nicks, M., Heim, A., & Lundholm, J. (2016). Spatial environmental
heterogeneity affects plant growth and thermal performance on a green roof. Science of
the Total Environment, 553, 20-31.

Burai, P., Dedk, B., Valkd, O., & Tomor, T. (2015). Classification of herbaceous
vegetation using airborne hyperspectral imagery. Remote Sensing, 7(2), 2046-2066.

Burley, S. T., & Lundholm, J. T. (2010). Environmental predictors of forest expansion on
open coastal barrens. Biodiversity and conservation, 19(11), 3269-3285.

Burley, S. T., Harper, K. A., & Lundholm, J. T. (2010). Vegetation composition,
structure and soil properties across coastal forest—barren ecotones. Plant ecology, 211(2),
279-296.

Cameron, R. P., & Bondrup-Nielsen, S. (2013). Plant Communities within Atlantic
Coastal Heathlands in Nova Scotia. Northeastern Naturalist, 20(4).

163



Canadian National Vegetation Classification (CNVC) [online] 2013. Sault Ste. Marie,
ON, Canada. Accessed 2015. Accessed on October 08, 2017 from: http://cnvc-cnvce.ca.

Choler, P., Michalet, R., & Callaway, R. M. (2001). Facilitation and competition on
gradients in alpine plant communities. Ecology, 82(12), 3295-3308.

Christensen, S. N., & Johnsen, 1. (2001). The lichen-rich coastal heath vegetation on the
isle of Anholt, Denmark—conservation and management. Journal of Coastal
Conservation, 7(1), 13-22.

Cleugh, H. A., Miller, J. M., & Béhm, M. (1998). Direct mechanical effects of wind on
crops. Agroforestry Systems, 41(1), 85-112.

Cruzan, M. B., Weinstein, B. G., Grasty, M. R., Kohrn, B. F., Hendrickson, E. C.,
Arredondo, T. M., & Thompson, P. G. (2016). Small unmanned aerial vehicles (micro-
UAVs, drones) in plant ecology. Applications in Plant Sciences, 4(9), 1600041.

Cunliffe, A. M., Brazier, R. E., & Anderson, K. (2016). Ultra-fine grain landscape-scale
quantification of dryland vegetation structure with drone-acquired structure-from-motion
photogrammetry. Remote Sensing of Environment, 183, 129-143.

Dandois, J. P. (2014). Remote sensing of vegetation structure using computer vision.
University of Maryland, Baltimore County.

De Langre, E. (2008). Effects of wind on plants. Annu. Rev. Fluid Mech., 40, 141-168.
Dilts, T.E. (2015). Topography Tools for ArcGIS 10.1. University of Nevada Reno.

Available at;
http://www.arcgis.com/home/item.html?id=b13b3b40fa3c43d4a23a1a09c5fe96h9

Dronova, I., Gong, P., Clinton, N. E., Wang, L., Fu, W., Qi, S., & Liu, Y. (2012).
Landscape analysis of wetland plant functional types: The effects of image segmentation
scale, vegetation classes and classification methods. Remote Sensing of

Environment, 127, 357-369.

Dunwiddie, P. W., Zaremba, R. E., & Harper, K. A. (1996). A classification of coastal
heathlands and sandplain grasslands in Massachusetts. Rhodora, 117-145.

Evans, J.S., Oakleaf, J., Cushman, S.A., & Theobald, D. (2014). An ArcGIS Toolbox for
Surface Gradient and Geomorphometric Modeling, version 2.0-0. Available at:
http://evansmurphy.wixsite.com/evansspatial/arcgis-gradient-metrics-toolbox.

Fraser, R., Olthof, I., Lantz, T. C., & Schmitt, C. (2016). UAV Photogrammetry for
Mapping Vegetation in the Low-Arctic. Arctic Science, (ja).

164


http://cnvc-cnvc.ca./
http://www.arcgis.com/home/item.html?id=b13b3b40fa3c43d4a23a1a09c5fe96b9
http://evansmurphy.wixsite.com/evansspatial/arcgis-gradient-metrics-toolbox

Forman, R. T. (1995). Some general principles of landscape and regional
ecology. Landscape ecology, 10(3), 133-142.

Galidaki, G., Zianis, D., Gitas, I., Radoglou, K., Karathanassi, V., Tsakiri-Strati, M., ... &
Mallinis, G. (2017). Vegetation biomass estimation with remote sensing: focus on forest
and other wooded land over the Mediterranean ecosystem. International Journal of
Remote Sensing, 38(7), 1940-1966.

Gongalves, J., Henriques, R., Alves, P., Sousa-Silva, R., Monteiro, A. T., Lomba, A., ...
& Honrado, J. (2015). Evaluating an unmanned aerial vehicle-based approach for
assessing habitat extent and condition in fine-scale early successional mountain
mosaics. Applied Vegetation Science.

Harper, K. A. (1995). Effect of expanding clones of Gaylussacia baccata (black
huckleberry) on species composition in sandplain grassland on Nantucket Island,
Massachusetts. Bulletin of the Torrey Botanical Club, 124-133.

Harper, K. A., Macdonald, S. E., Burton, P. J., Chen, J., Brosofske, K. D., Saunders, S.
C., ... & Esseen, P. A. (2005). Edge influence on forest structure and composition in
fragmented landscapes. Conservation Biology, 19(3), 768-782.

Heikens, A. L., & Robertson, P. A. (1994). Barrens of the Midwest: a review of the
literature. Castanea, 184-194.

Hill, R. A., & Thomson, A. G. (2005). Mapping woodland species composition and
structure using airborne spectral and LIDAR data. International Journal of Remote
Sensing, 26(17), 3763-3779.

Homolova, L., Malenovsky, Z., Clevers, J. G., Garcia-Santos, G., & Schaepman, M. E.
(2013). Review of optical-based remote sensing for plant trait mapping. Ecological
Complexity, 15, 1-16.

Johnson, A. R., Wiens, J. A., Milne, B. T., & Crist, T. O. (1992). Animal movements and
population dynamics in heterogeneous landscapes. Landscape ecology, 7(1), 63-75.

Jolliffe, 1. T. (1986). Principal Component Analysis and Factor Analysis. In Principal
component analysis (pp. 115-128). Springer New York.

Kalacska, M., Chmura, G. L., Lucanus, O., Bérubé, D., & Arroyo-Mora, J. P. (2017).
Structure from motion will revolutionize analyses of tidal wetland landscapes. Remote
Sensing of Environment, 199, 14-24.

Kerbiriou, C., Leviol, 1., Jiguet, F., & Julliard, R. (2008). The impact of human
frequentation on coastal vegetation in a biosphere reserve. Journal of Environmental
Management, 88(4), 715-728.

165



Lomolino, M. (2001). Elevation gradients of species-density: historical and prospective
views. Global Ecology and biogeography, 10(1), 3-13.

Matlack, G. R., Gibson, D. J., & Good, R. E. (1993). Regeneration of the shrub
Gaylussacia baccata and associated species after low-intensity fire in an Atlantic coastal
plain forest. American Journal of Botany, 119-126.

McGarigal, K., & Marks, B. J. (1995). Spatial pattern analysis program for quantifying
landscape structure. Gen. Tech. Rep. PNW-GTR-351. US Department of Agriculture,
Forest Service, Pacific Northwest Research Station.

McGarigal, K., SA Cushman, & E Ene. (2012). FRAGSTATS v4: Spatial Pattern
Analysis Program for Categorical and Continuous Maps. Computer software program
produced by the authors at the University of Massachusetts, Amherst. Available at the
following web site: http://www.umass.edu/landeco/research/fragstats/fragstats.html

Micheletti, N., Chandler, J. H., & Lane, S. N. (2015). Structure from motion (SFM)
photogrammetry. Geomorphological Techniques, Chap. 2, Sec. 2.2.

Mikita, T., & Klimanek, M. (2010). Topographic exposure and its practical applications.
Journal of Landscape Ecology, 3(1), 42-51.

Minatik, R., & Langhammer, J. (2016). Use of a Multispectral UAV photogrammetry for
detection and tracking of forest disturbance dynamics. International Archives of the
Photogrammetry, Remote Sensing & Spatial Information Sciences, 41.

Mitchell, R. J., Auld, M. H., Le Duc, M. G., & Robert, M. H. (2000). Ecosystem stability
and resilience: a review of their relevance for the conservation management of lowland
heaths. Perspectives in Plant Ecology, Evolution and Systematics, 3(2), 142-160.

Motzkin, G., & Foster, D. R. (2002). Grasslands, heathlands and shrublands in coastal
New England: historical interpretations and approaches to conservation. Journal of
Biogeography, 29(10-11), 1569-1590.

Murphy, P. N., Ogilvie, J., Meng, F. R., & Arp, P. (2008). Stream network modelling
using lidar and photogrammetric digital elevation models: a comparison and field
verification. Hydrological Processes, 22(12), 1747-1754.

Oberndorfer, E. C., & Lundholm, J. T. (2009). Species richness, abundance, rarity and
environmental gradients in coastal barren vegetation. Biodiversity and Conservation,
18(6), 1523-1553.

Pande-Chbhetri, R., Abd-Elrahman, A., Liu, T., Morton, J., & Wilhelm, V. L. (2017).
Object-based classification of wetland vegetation using very high-resolution unmanned
air system imagery. European Journal of Remote Sensing, 50(1), 564-576.

166


http://www.umass.edu/landeco/research/fragstats/fragstats.html

Patton, D. R. (1975). A diversity index for quantifying habitat "edge". Wildlife Society
Bulletin (1973-2006), 3(4), 171-173.

Porter, C. (2013). Classification of dwarf heath plant communities on the coastal barrens
of Nova Scotia. Thesis. Master of Science. Saint Mary’s University, Halifax, Nova
Scotia.

Porter, C., Lundholm, J., Bowron, T., Lemieux, B., van Proosdij, D., Neatt, N., &
Graham, J. (2015). Classification and environmental correlates of tidal wetland
vegetation in Nova Scotia, Canada. Botany, 93(12), 825-841.

R Core Team, 2017. A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org

Sebastia, M. T. (2004). Role of topography and soils in grassland structuring at the
landscape and community scales. Basic and Applied Ecology, 5(4), 331-346.

Silvertown, J., Dodd, M. E., Gowing, D. J., & Mountford, J. O. (1999). Hydrologically
defined niches reveal a basis for species richness in plant
communities. Nature, 400(6739), 61.

Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional
topography. Geological Society of America Bulletin, 63(11), 1117-1142.

Strang, R. M. (1972). Ecology and land use of the barrens of western Nova
Scotia. Canadian Journal of Forest Research, 2(3), 276-290.

Sturdivant, E. J., Lentz, E. E., Thieler, E. R., Farris, A. S., Weber, K. M., Remsen, D. P.,
... & Henderson, R. E. (2017). UAS-SfM for Coastal Research: Geomorphic Feature
Extraction and Land Cover Classification from High-Resolution Elevation and Optical
Imagery. Remote Sensing, 9(10), 1020.

Turner, M. G. (1989). Landscape ecology: the effect of pattern on process. Annual review
of ecology and systematics, 20(1), 171-197.

Ustin, S. L., & Gamon, J. A. (2010). Remote sensing of plant functional types. New
Phytologist, 186(4), 795-816.

van der Maarel, E., & Franklin, J. (2013). Vegetation Ecology. Second Edition. Wiley-
Blackwell.

van Proosdij, D., Davidson-Arnott, R. G., & Ollerhead, J. (2006). Controls on spatial

patterns of sediment deposition across a macro-tidal salt marsh surface over single tidal
cycles. Estuarine, Coastal and Shelf Science, 69(1-2), 64-86.

167


https://www.r-project.org/

Vivian-Smith, G. (1997). Microtopographic heterogeneity and floristic diversity in
experimental wetland communities. Journal of Ecology, 71-82.

von Oheimb, G., Hardtle, W., Naumann, P. S., Westphal, C., Assmann, T., & Meyer, H.
(2008). Long-term effects of historical heathland farming on soil properties of forest
ecosystems. Forest Ecology and Management, 255(5), 1984-1993.

Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: a
review. Journal of plant ecology, 1(1), 9-23.

Zawawi, A. B. A. (2015). Terrain Analysis and Site Evaluation: Integrating a Geospatial
Approach for Subtropical Forest Management Planning (Doctoral dissertation).

Zinko, U., Seibert, J., Dynesius, M., & Nilsson, C. (2005). Plant species numbers
predicted by a topography-based groundwater flow index. Ecosystems, 8(4), 430-441.

Zweig, C. L., Burgess, M. A., Percival, H. F., & Kitchens, W. M. (2015). Use of

unmanned aircraft systems to delineate fine-scale wetland vegetation
communities. Wetlands, 35(2), 303-309.

168



Synthesis

The coastal barrens of Chebucto Head, Nova Scotia viewed from a UAV
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The coastal barrens of Halifax, Nova Scotia are patchy mosaics of plant
communities that experience harsh environmental conditions. Despite their harsh
conditions, coastal barrens are diverse ecosystems and are inhabited by rare and
uncommon species, making them a high priority for conservation (Oberndorfer and
Lundholm, 2009; Burley and Lundholm, 2010; Porter, 2013). Currently, maps have never
been made of the plant communities in the coastal barrens of Halifax, Nova Scotia, and
thus there is little knowledge of their distributions, spatial patterns and relationships, and
spatial configurations across the landscapes. The purpose of this study was to evaluate the
use of an unmanned aerial vehicle (UAV) to discriminate plant communities, map their
distributions, and to quantify the landscape structure of coastal barrens in the Halifax
region of Nova Scotia.

In 2016, a UAV was used to collect high-resolution multispectral imagery at three
coastal barrens sites in the Halifax region of Nova Scotia: Chebucto Head, Prospect Bay,
and Polly’s Cove. Ground truthing field plot data were also collected in 2016 to
document the locations of plant communities at all three sites. Plant communities were
classified at three classification levels based on the Canadian National VVegetation
Classification (CNVC, 2013): the association level, which is based primarily on floristic
criteria; the broadened association level, which was formed by merging confused classes
from the association level; and the formation class, which is based primarily on
physiognomy. Images were processed using structure from motion (SfM)
photogrammetry to create 3D models and orthomosaics of the landscapes, from which
spectral and structural indices were derived and evaluated for discriminating the plant

communities using linear discriminant analysis (LDA). All plant communities from the
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three classification levels were discriminated with 95% confidence except for one pair in
the association level classification — two very similar shrub bogs. Overall classification
accuracy for the association level classification was lower (63%) than the formation class
classification (92%); however, merging confused groups to form the broadened
association level classification improved the accuracy to 83%. It was found that most
confusion arose between plant communities that were structurally similar. These results
show that plant communities in the coastal barrens can be discriminated at different
classification levels using UAV imagery.

In the second part of this study, UAV imagery from 2016 was classified using the
support vector machines (SVM) classifier in ArcGIS to produce detailed maps of plant
community patches from the broadened association level classification based on the
CNVC as well as landscape features. Environmental factors were also mapped to further
describe landscape structure and to understand the landscape patterns of plant
communities. Sites were dominated by shrublands and dwarf heath; however, other
communities co-existed as well, including bogs, salt marshes, and tree islands.
Interestingly, the most abundant community across all sites was Gaylusaccia baccata
shrubland, which is consistent with several other studies on coastal barrens (Strang, 1972;
Matlack et al., 1993; Harper, 1995; Dunwiddie et al., 1996). Site-specifically, however,
Prospect Bay was dominated by Empetrum nigrum - Juniperus communis dwarf heath.
Each site showed complex spatial patterns of plant communities, a wide spectrum of
environmental gradients and topographic heterogeneity, and a high degree of patchiness.
Plant community patches varied in size, shape, abundance, and spatial distribution for

different types of plant communities. Landscape patterns of most plant communities were
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related to various combinations of environmental factors, including slope position,
proximity to stream networks, elevation, and distance to coastline. Furthermore, the
degree of topographic heterogeneity of the site could explain the landscape patterns of the
dominant plant communities. For example, Chebucto Head and Polly’s Cove had
similarly high levels of topographic heterogeneity and was composed of many valleys,
midslopes, flats, and ridges. As a result, most inland vegetation were shrublands with
dwarf heath and lichen inhabiting rock-exposed areas and dwarf heath and other coastal
vegetation occupying areas nearest the coastline. Conversely, Prospect Bay had very flat
at homogeneous terrain, providing habitat for bogs and dwarf heath.

The findings of this study show that plant communities in the coastal barrens can
be discriminated at different classification levels using high-resolution multispectral
imagery collected from a UAV. Classifying UAV imagery with ground truthing data
from field plots can yield highly accurate and detailed maps of plant community patches
across landscapes, offering tremendous potential for quantifying landscape patterns,
spatial interrelationships, and revealing the underlying structure of landscapes.
Applications for using UAVs as a mapping and monitoring tool for these ecosystems are
limitless: mapping disturbance regimes, stress, and health of vegetation and ecosystems;
evaluating impacts of climate change; informing conservation managers about how to
design protected areas and where to allocate resources; communicate, inform, and engage
the public using maps; quantifying interior-edge relationships for assessing habitat
fragmentation and impacts on ecosystem biodiversity; quantifying spatial distributions,
relationships, and configurations of vegetation and their patches; mapping biophysical

parameters, such as biomass, chlorophyll content in leaves, nutrient cycles, leaf water
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content, and vegetation productivity; and lastly, conducting preliminary surveys of
landscapes to evaluate types of habitats and to target field sampling efforts. These
applications of UAVs are not limited to the coastal barrens and can be applied to nearly
any terrestrial ecosystem.

Aircraft altitude, seasonality, weather conditions, and camera settings are all
important considerations for classifying UAV imagery to develop landcover maps. Flight
altitude of the aircraft determines the ground resolution/pixel size of the imagery. For this
study, 50 m altitude offered plenty of spectral and structural detail of plant communities
and landscape features and only required 1 additional flight to encompass the same study
area as compared to the 90 m altitude surveys. Surveying the sites in both the spring and
summer offered contrasting views of plant communities and their changes in phenology.
Some communities were best discriminated during the spring, such as Cladonia spp., and
others during the summer, such as coastal herbaceous vegetation. It is therefore highly
recommended to consider seasonal changes in vegetation for mapping plant communities
across landscapes. Weather conditions, such as wind, time of day, time of year, cloud
cover and illumination, and temperature, can affect the acquisition and quality of aerial
imagery collected from the UAV. For coastal environments with high winds, it is
recommended to survey earlier in the day. For illumination, cloudy skies are preferable
because the landscape is more evenly lit and surface reflectance of sunlight for water and
plant leaves is much lower. In cases where cloudy skies are infrequent, it is alternatively
best to survey in full sun with no clouds. Lastly, most problems with illumination can be
mitigated by controlling the settings of the UAV sensor(s). Setting the white balance and

exposure settings to a constant value will help keep illumination and colors constant in
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images. Another option is to collect only raw images; however, this requires much more
storage space and potentially a lot of image editing. For this study, white balance was
fixed for summer surveys but was set to automatic for the spring; consequently, colors of
vegetation were not as consistent for spring surveys, particularly at Prospect Bay, which
may have resulted in lower classification accuracies for some communities.

One of the greatest debates in ecology is whether plant communities exist as
discrete patches (Clements, 1916) or as a continuum of species along environmental
gradients (Gleason, 1926). The modern synthesis of these two views assumes that plant
species are distributed individualistically but can form associations or communities that
are in discrete and recognizable units (van der Maarel and Franklin, 2013; Porter, 2013).
The findings of this study add support to the modern synthesis of the plant community:
when field data were reviewed, it was clear that no two plant communities that were
sampled had identical compositions, which agrees with Gleason’s view of species
distributions. What was also apparent, however, was that there were trends in the field
plot data and it was clear that discrete, recurring associations existed. This was further
supported when spectral and structural indices from UAV imagery were used to
successfully discriminate 99% of plant community comparisons with 95% confidence,
indicating that there are inherent differences between plant community types.
Furthermore, for the first time classified UAV imagery showed plant communities
distributed across each coastal barrens landscape as discrete patches with various shapes,
sizes, and abundances, which can be verified by comparing the classified maps to the
original RGB imagery. Classified maps of plant community patches were highly accurate

at predicting the plant community classification from ground truthing field plot data,
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adding insurmountable evidence that plant communities in the coastal barrens can be

observed as discrete, recognizable units.

Implications and Future Work

For the first time, empirical evidence has shown that multispectral imagery
collected from UAVSs can discriminate plant communities in the coastal barrens at
different classification levels. It is also for the first time that detailed maps of plant
community patches were made for coastal barrens in Nova Scotia. Furthermore, no other
study to the author’s knowledge has revealed the structure of coastal barrens landscapes
at the level of detail of this study. This was all made possible by using novel techniques
for acquiring images with UAVs, such as using mobile applications to autonomously
control the UAV to collect sequential overlapping images and using SfM
photogrammetry to create high-resolution orthomosaics and compute 3D landscape
models. Applications of UAVs and their use for mapping and monitoring ecosystems like
the coastal barrens are limitless. Future research should continue to explore, develop, and
improve methods for acquiring and processing UAV imagery. Researchers should also
explore new spectral and structural indices to help map vegetation types and improve
methods for deriving environmental factors from 3D surfaces, such as wind exposure.
Lastly, mapping coastal barrens landscapes and documenting their species and
communities will improve our understanding of their landscape structure, function, and
dynamics — all of which can better inform land managers, conservation managers, and

policy makers.
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Tables

Table Al.1. Specifications of the unmanned aerial vehicle used in this study.

Aircraft
Model DJI Phantom 3 Professional
Aircraft Type Quadcopter
\Weight 1.280 kg
Max Speed 16 m/s or 58 km/h
Max Flight Time ~23 minutes
Operating Temperature 0° to 40°C
Satellite Positioning System  |GPS/GLONASS

Sensor 1: RGB Gimbal Camera

Sensor 1/2.3” CMOS

Effective Pixels 12.4

Lens FOV 94° 20 mm (35 mm format equivalent) /2.8 focus
at oo

ISO Range 100-3200 (video); 100-1600 (photo)

Image Size 4000x3000

Still photography modes

Single shot; Burst Shooting (3/5/7 frames); Auto
Exposure Bracketing (AEB) (3/5 bracketed frames);
Time-lapse

\Video Recording Modes

UHD: 4096x2160p 24/25. 3840x2160p 24/25/30; FHD:
1920x1080p 24/25/30/48/50/60; HD: 1280x720p
24/25/30/48/50/60

Max Video Bitrate

60 Mbps

Photo JPEG, DNG (RAW)
\VVideo MP4, MOV (MPEG-4 AVC/H.264)
Supported SD Cards Micro SD

Ground Sampling Distance

~4 ¢cm (90 m altitude); ~2 cm (50 m altitude)

Sensor 2: Sentera NIR Sensor

Sensor 1.2MP CMOS
Lens Focal Length 4.14 mm
Image Format JPEG, TIFF
Supported SD Cards Micro SD

Ground Sampling Distance

~8 cm (90 m altitude); ~4 cm (50 m altitude)
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Table Al.2. Flight times and conditions for UAV surveys from May to August in 2016.
Altitude Start

Above : End Time  Weather
Time
Ground
) i Partly
Chebucto May 25, 2016 90 m 2:05 pm 2:34pm sunny
Head ) )
August 8, 2016 50 m 9:46 am 11:01am Sunny
May 27, 2016 90 m 10:11 am 10:34am Cloudy
Prospect
Bay August 9, 2016 50m 9:34 am 11:06am Sunny
, May 29,2016 | 90m | 9:47am | 10:09am | oty
Peggy S sunny
Cove
August 5, 2016 50m 9:31am 10:46am Sunny
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Table A1.3. Full list of indices extracted from UAV imagery and the 3D point cloud.

Index Description

R Mean May

Mean of Red channel within a training polygon in May

R SD May

Standard deviation of Red channel within a training polygon in
May

R Mean August

Mean of Red channel within a training polygon in August

R SD August Standard deviation of Red channel within a training polygon in
August

Changein R Change in mean of Red channel within a training polygon from

Mean May to August

G Mean May Mean of Green channel within a training polygon in May

G SD May Standard deviation of Green channel within a training polygon in

May

G Mean August

Mean of Green channel within a training polygon in August

G SD August Standard deviation of Green channel within a training polygon in
August

Change in G Change in mean of Green channel within a training polygon from

Mean May to August

B Mean May Mean of Blue channel within a training polygon in May

B SD May Standard deviation of Blue channel within a training polygon in

May

B Mean August

Mean of Blue channel within a training polygon in August

B SD August Standard deviation of Blue channel within a training polygon in
August

Changein B Change in mean of Blue channel within a training polygon from

Mean May to August

R/B Mean May

Mean of Red channel divided by Blue channel within a training
polygon in May

R/B SD May Standard deviation of Red channel divided by Blue channel within
a training polygon in May

R/B Mean Mean of Red channel divided by Blue channel within a training

August polygon in August

R/B SD August

Standard deviation of Red channel divided by Blue channel within
a training polygon in August

Change in R/B
Mean

Change in mean of Red channel divided by Blue channel within a
training polygon from May to August

R/G Mean May

Mean of Red channel divided by Green channel within a training
polygon in May

R/G SD May Standard deviation of Red channel divided by Green channel
within a training polygon in May

R/G Mean Mean of Red channel divided by Green channel within a training

August polygon in August

R/G SD August

Standard deviation of Red channel divided by Green channel
within a training polygon in August
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(continued) Table A1.3. Full list of indices extracted from UAV imagery and the 3D

point cloud.
Index Description

Change in R/G
Mean

Change in mean of Red channel divided by Green channel within
a training polygon from May to August

G/B Mean May

Mean of Green channel divided by Blue channel within a training
polygon in May

G/B SD May Standard deviation of Green channel divided by Blue channel
within a training polygon in May

G/B Mean Mean of Green channel divided by Blue channel within a training

August polygon in August

G/B SD August | Standard deviation of Green channel divided by Blue channel

within a training polygon in August

Change in G/B
Mean

Change in mean of Green channel divided by Blue channel within
a training polygon from May to August

NIR Mean May | Mean of Near-Infrared within a training polygon in May

NIR SD May Standard deviation of Near-Infrared within a training polygon in
May

NIR Mean Mean of Near-Infrared within a training polygon in August

August

NIR SD August

Standard deviation of Near-Infrared within a training polygon in
August

Change in NIR Change in mean of Near-Infrared within a training polygon from
Mean May to August
NDVI Mean Mean of NDV/I within a training polygon in May. NDVI = ==
May NIR+R
NDVI SD May Standard deviation of NDVI within a training polygon in May.

NDVI| = SR

~ NIR+R

NDVI Mean Mean of NDVI within a training polygon in August. NDVI = ———=
AUgUSt NIR+R
NDVI SD Standard deviation of NDVI within a training polygon in August.
August NDVI = =%

Change in NDVI
Mean

NIR+R
Change in mean of NDVI within a training polygon from May to
August. NDV| = =X
NIR+R

CIVE Mean Mean of Color Index of Vegetation (CIVE) within a training
May polygon in May.

CIVE = 0.441*R — 0.881*G + 0.385*B + 18.78745
CIVE SD May Standard deviation of Color Index of Vegetation (CIVE) within a

training polygon in May.
CIVE = 0.441*R - 0.881*G + 0.385*B + 18.78745
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(continued) Table A1.3. Full list of indices extracted from UAV imagery and the 3D

point cloud.
Index Description

CIVE Mean
August

Mean of Color Index of Vegetation (CIVE) within a training
polygon in August.
CIVE =0.441*R — 0.881*G + 0.385*B + 18.78745

CIVE SD August

Standard deviation of Color Index of Vegetation (CIVE) within a
training polygon in August.
CIVE = 0.441*R — 0.881*G + 0.385*B + 18.78745

Change in CIVE
Mean

Change in mean of Color Index of Vegetation (CIVE) within a
training polygon from May to August.
CIVE = 0.441*R — 0.881*G + 0.385*B + 18.78745

Hue Mean May

Mean of Hue in degrees (0-360°) within a training polygon in
May.

Hue = COS-l (0.5*(R-G)+(R-B))

(((R-G)2+(R-B)(G-B))®%)

Hue SD May Standard deviation of Hue in degrees (0-360°) within a training
polygon in May.
— el (0.5*(R-G)+(R-B))
Hue = Cos” o+ @B
Hue Mean Mean of Hue in degrees (0-360°) within a training polygon in
August August.
_ 1 (0.5*(R-G)+(R-B))
HUe = 08 a2+ (8@ B)5)
Hue SD August | Standard deviation of Hue in degrees (0-360°) within a training

polygon in August.
— -1 __ (0.5*(R-G)+(R-B))
Hue = cos (((R-G)2+(R-B)(G-B))"5)

Change in Hue
Mean

Change in mean of Hue in degrees (0-360°) within a training
polygon from May to August.

_ el (05*(R-G)+(R-B))
HUe = 08 { Ra2+ (B)(CB)0S)

Saturation Mean
May

Mean of Saturation within a training polygon in May.
Saturation = 1- (R ihs B) *a

Saturation SD
May

Standard deviation of Saturation within a training polygon in May.
Saturation = 1- (R hhs B) *

Saturation Mean
August

Mean of Saturation within a training polygon in August.

Saturation = 1- (}HTHB) *

Saturation SD

Standard deviation of Saturation within a training polygon in

Saturation Mean

August August.
Saturation = 1- (}HTHB) *
Change in Change in mean of Saturation within a training polygon from May

to August.

Saturation = 1- (R+_G+B) %

3
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(continued) Table A1.3. Full list of indices extracted from UAV imagery and the 3D

point cloud.
Index Description

Intensity Mean
May

Mean of Intensity within a training polygon in May.
. R+G+B
Intensity =

Intensity Mean

Intensity SD Standard deviation of Intensity within a training polygon in May.
May Intensity =~ o8
Intensity Mean Mean of Intensity within a training polygon in August.
August Intensity = ~+ S+ P
Intensity SD Standard deviation of Intensity within a training polygon in
August August.
Intensity = R+G+B
Change in Change in mean of Intensity within a training polygon from May

to August.

. R+G+B
Intensity =

Vegetation
Height Mean

Mean of vegetation height calculated within a training polygon in
August. Vegetation height was calculated by subtracting the
minimum from the maximum elevation value within a 50-cm
search radius of each pixel using the 10-cm elevation model

Vegetation
Height Max

Maximum vegetation height calculated within a training polygon
in August. Vegetation height was calculated by subtracting the
minimum from the maximum elevation value within a 50-cm
search radius of each pixel using the 10-cm elevation model

Vegetation
Height SD

Standard deviation of vegetation height calculated within a
training polygon in August. Vegetation height was calculated by
subtracting the minimum from the maximum elevation value
within a 50-cm search radius of each pixel using the 10-cm
elevation model

TPl Mean 5

Mean of Topographic Position Index (TPI) within a training
polygon in August. TPI was calculated from the 10-cm elevation
model using a 5x5 pixel search window.

TPI=2,-Z

Where z, = elevation of central point, Z = mean elevation of
neighborhood

TPISD 5

Standard deviation of Topographic Position Index (TPI) within a
training polygon in August. TPI was calculated from the 10-cm
elevation model using a 5x5 pixel search window.

TPl=2,-%

Where z, = elevation of central point, z = mean elevation of
neighborhood
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(continued) Table A1.3. Full list of indices extracted from UAV imagery and the 3D

point cloud.
TPI Mean 11 Mean of Topographic Position Index (TPI) within a training
polygon in August. TPI was calculated from the 10-cm elevation

model using a 11x11 pixel search window.

TPI=2,-%
Where z, = elevation of central point, zZ = mean elevation of
neighborhood

TPISD 11 Standard deviation of Topographic Position Index (TPI) within a

training polygon in August. TPI was calculated from the 10-cm
elevation model using a 11x11 pixel search window.
TPI=2,-Z

Where z, = elevation of central point, zZ = mean elevation of
neighborhood

TPI Mean 33 Mean of Topographic Position Index (TPI) within a training
polygon in August. TPI was calculated from the 10-cm elevation
model using a 33x33 pixel search window.

TPI=2,-Z
Where z, = elevation of central point, z = mean elevation of
neighborhood

TPI SD 33 Standard deviation of Topographic Position Index (TPI) within a

training polygon in August. TPI was calculated from the 10-cm
elevation model using a 33x33 pixel search window.
TPI=2,-%

Where z, = elevation of central point, z = mean elevation of
neighborhood

TPI Mean 111 Mean of Topographic Position Index (TPI) within a training
polygon in August. TPI was calculated from the 10-cm elevation
model using a 111x111 pixel search window.

TPI=2,-Z
Where z, = elevation of central point, Z = mean elevation of
neighborhood

TPI SD 111 Standard deviation of Topographic Position Index (TPI) within a

training polygon in August. TPI was calculated from the 10-cm
elevation model using a 111x111 pixel search window.
TPI=2,-Z

Where z, = elevation of central point, z = mean elevation of
neighborhood
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(continued) Table A1.3. Full list of indices extracted from UAV imagery and the 3D

point cloud.
DEV Mean 5 Mean of Deviation of Mean Elevation (DEV) within a training
polygon in August. DEV was calculated from the 10-cm elevation

model using a 5x5 pixel search window.

DEV = ==
SD

Where z, = elevation of central point, zZ = mean elevation of
neighborhood, and SD = standard deviation of elevation values in
the neighborhood

DEV SD 5 Standard deviation of Deviation of Mean Elevation (DEV) within
a training polygon in August. DEV was calculated from the 10-cm
elevation model using a 5x5 pixel search window.

DEV = 2=
SD

Where z, = elevation of central point, zZ = mean elevation of
neighborhood, and SD = standard deviation of elevation values in
the neighborhood

DEV Mean 11 Mean of Deviation of Mean Elevation (DEV) within a training
polygon in August. DEV was calculated from the 10-cm elevation
model using a 11x11 pixel search window.

DEV =22
SD

Where z, = elevation of central point, zZ = mean elevation of
neighborhood, and SD = standard deviation of elevation values in
the neighborhood

DEV SD 11 Standard deviation of Deviation of Mean Elevation (DEV) within
a training polygon in August. DEV was calculated from the 10-cm
elevation model using a 11x11 pixel search window.

DEV = 2=
SD

Where z, = elevation of central point, Z = mean elevation of
neighborhood, and SD = standard deviation of elevation values in
the neighborhood

DEV Mean 33 Mean of Deviation of Mean Elevation (DEV) within a training
polygon in August. DEV was calculated from the 10-cm elevation
model using a 33x33 pixel search window.

DEV = 27
SD

Where z, = elevation of central point, Z = mean elevation of
neighborhood, and SD = standard deviation of elevation values in
the neighborhood
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(continued) Table A1.3. Full list of indices extracted from UAV imagery and the 3D

point cloud.
DEV SD 33 Standard deviation of Deviation of Mean Elevation (DEV) within
a training polygon in August. DEV was calculated from the 10-cm

elevation model using a 33x33 pixel search window.

DEV = ==
SD

Where z, = elevation of central point, zZ = mean elevation of
neighborhood, and SD = standard deviation of elevation values in
the neighborhood

DEV Mean 111 | Mean of Deviation of Mean Elevation (DEV) within a training
polygon in August. DEV was calculated from the 10-cm elevation
model using a 111x111 pixel search window.

DEV = 2=
SD

Where z, = elevation of central point, zZ = mean elevation of
neighborhood, and SD = standard deviation of elevation values in
the neighborhood

DEV SD 111 Standard deviation of Deviation of Mean Elevation (DEV) within
a training polygon in August. DEV was calculated from the 10-cm
elevation model using a 111x111 pixel search window.

DEV = 22
SD

Where z, = elevation of central point, zZ = mean elevation of
neighborhood, and SD = standard deviation of elevation values in
the neighborhood

Curvature Mean | Mean of Curvature Index (concavity/convexity) within a training
polygon in August. Curvature Index was calculated from the 10-
cm elevation model using the Curvature tool with the Profile
setting within the DEM Surface Tools toolbox in ArcGIS.
(http://www.jennessent.com/arcgis/surface area.htm)

Curvature SD Standard deviation of Curvature Index (concavity/convexity)
within a training polygon in August. Curvature Index was
calculated from the 10-cm elevation model using the Curvature
tool with the Profile setting within the DEM Surface Tools
toolbox in ArcGIS.
(http://www.jennessent.com/arcgis/surface area.htm)

Slope Mean Mean of Slope in degrees (0-90°) within a training polygon in
August. Slope was calculated from the 10-cm elevation model
using the Slope (Spatial Analyst) tool in ArcGIS.

Slope SD Standard deviation of Slope in degrees (0-90°) within a training
polygon in August. Slope was calculated from the 10-cm elevation
model using the Slope (Spatial Analyst) tool in ArcGIS.
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(continued) Table A1.3. Full list of indices extracted from UAV imagery and the 3D

point cloud.
Index Description

3D Surface Area | 3D Surface Area — Planimetric Area ratio within a training
Ratio polygon in August.
3D Surface Area of triangulated point cloud
2D Planar Surface Area
Point Cloud Density of 3D point cloud (per m?) within a training polygon in
Density August
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Table A1.4. Final list of indices after redundant and multicollinear indices were identified

and removed using variance inflation factor (\VIF) analysis.
Index Description

R Mean May | Mean of Red channel within a training polygon in May
R SD May Standard deviation of Red channel within a training polygon in May
Change in R | Change in mean of Red channel within a training polygon from May
Mean to August
R/B Mean Mean of Red channel divided by Blue channel within a training
May polygon in May
R/B Mean Mean of Red channel divided by Blue channel within a training
August polygon in August
R/G Mean Mean of Red channel divided by Green channel within a training
May polygon in May
R/G SD May | Standard deviation of Red channel divided by Green channel within a

training polygon in May
R/G SD Standard deviation of Red channel divided by Green channel within a
August training polygon in August
G/B SD May | Standard deviation of Green channel divided by Blue channel within a

training polygon in May
NIR Mean Mean of Near-Infrared within a training polygon in May
May
NIR SD May | Standard deviation of Near-Infrared within a training polygon in May
NIR Mean Mean of Near-Infrared within a training polygon in August
August
NDVI Mean | Mean of NDVI within a training polygon in May. NDVI = ~=x
May NIR+R
NDVI SD Standard deviation of NDVI within a training polygon in May. NDVI
May _ NIR-R

NIR+R
NDVI Mean | Mean of NDVI within a training polygon in August. NDVI = ~———
August NIR+R
NDVI SD Standard deviation of NDVI within a training polygon in August.
August NDVI = SRR
NIR+R

CIVE Mean | Mean of Color Index of Vegetation (CIVE) within a training polygon
August in August.

CIVE = 0.441*R - 0.881*G + 0.385*B + 18.78745
CIVE SD Standard deviation of Color Index of Vegetation (CIVE) within a
August training polygon in August.

CIVE = 0.441*R - 0.881*G + 0.385*B + 18.78745
Hue Mean Mean of Hue in degrees (0-360°) within a training polygon in May.
May Hue = cos: (0.5*(R-G)+(R-B))

(((R-G)2+(R-B)(G-B))%%)
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(continued) Table Al.4. Final list of indices after redundant and multicollinear indices
were identified and removed using variance inflation factor (VIF) analysis.

Hue SD May | Standard deviation of Hue in degrees (0-360°) within a training
polygon in May.

— -1 __(0.5*(R-G)+(R-B))
Hue = Cos”  RaP+@B©EBYS)
Hue SD Standard deviation of Hue in degrees (0-360°) within a training
August polygon in August.
— -1 __(0.5*(R-G)+(R-B))
Hue = Cos”  RaP+@BGCBYS)
Saturation Standard deviation of Saturation within a training polygon in May.
SD May Saturation = 1- (R+§+B) *a

Saturation Standard deviation of Saturation within a training polygon in August.
SD August Saturation = 1- (—R+§+B) *3

Vegetation Standard deviation of vegetation height calculated within a training
Height SD polygon in August. Vegetation height was calculated by subtracting
the minimum from the maximum elevation value within a 50-cm
search radius of each pixel using the 10-cm elevation model

TPl Mean5 | Mean of Topographic Position Index (TPI) within a training polygon
in August. TPI was calculated from the 10-cm elevation model using a
5x5 pixel search window.

TPI=2,-%
Where z, = elevation of central point, zZ = mean elevation of
neighborhood
TPI Mean Mean of Topographic Position Index (TPI) within a training polygon
111 in August. TPI was calculated from the 10-cm elevation model using a
111x111 pixel search window.
TPI=2,-Z
Where z, = elevation of central point, Z = mean elevation of
neighborhood

DEV Mean 5 | Mean of Deviation of Mean Elevation (DEV) within a training
polygon in August. DEV was calculated from the 10-cm elevation
model using a 5x5 pixel search window.

DEV = Zo-Z
SD

Where z, = elevation of central point, Z = mean elevation of
neighborhood, and SD = standard deviation of elevation values in the
neighborhood
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(continued) Table Al1.4. Final list of indices after redundant and multicollinear indices
were identified and removed using variance inflation factor (VIF) analysis.

DEV SD 5 Standard deviation of Deviation of Mean Elevation (DEV) within a
training polygon in August. DEV was calculated from the 10-cm
elevation model using a 5x5 pixel search window.

DEV = ==
SD

Where z, = elevation of central point, Z = mean elevation of
neighborhood, and SD = standard deviation of elevation values in the
neighborhood

DEV Mean Mean of Deviation of Mean Elevation (DEV) within a training

33 polygon in August. DEV was calculated from the 10-cm elevation
model using a 33x33 pixel search window.

DEV = 2=
SD

Where z, = elevation of central point, zZ = mean elevation of
neighborhood, and SD = standard deviation of elevation values in the
neighborhood

DEV SD 33 Standard deviation of Deviation of Mean Elevation (DEV) within a
training polygon in August. DEV was calculated from the 10-cm
elevation model using a 33x33 pixel search window.

DEV = 22
SD

Where z, = elevation of central point, zZ = mean elevation of
neighborhood, and SD = standard deviation of elevation values in the

neighborhood
DEV Mean Mean of Deviation of Mean Elevation (DEV) within a training
111 polygon in August. DEV was calculated from the 10-cm elevation
model using a 111x111 pixel search window.
DEV = =~

Where z, = elevation of central point, Z = mean elevation of
neighborhood, and SD = standard deviation of elevation values in the
neighborhood

DEV SD 111 | Standard deviation of Deviation of Mean Elevation (DEV) within a
training polygon in August. DEV was calculated from the 10-cm
elevation model using a 111x111 pixel search window.

DEV = 27
SD

Where z, = elevation of central point, Z = mean elevation of
neighborhood, and SD = standard deviation of elevation values in the

neighborhood
Curvature Mean of Curvature Index (concavity/convexity) within a training
Mean polygon in August. Curvature Index was calculated from the 10-cm

elevation model using the Curvature tool with the Profile setting
within the DEM Surface Tools toolbox in ArcGIS.
(http://www.jennessent.com/arcgis/surface area.htm)
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(continued) Table Al.4. Final list of indices after redundant and multicollinear indices
were identified and removed using variance inflation factor (\VIF) analysis.
Index Description

Slope SD Standard deviation of Slope in degrees (0-90°) within a training
polygon in August. Slope was calculated from the 10-cm elevation
model using the Slope (Spatial Analyst) tool in ArcGIS.
3D Surface 3D Surface Area — Planimetric Area ratio within a training polygon in
Area Ratio August.

3D Surface Area of triangulated point cloud

2D Planar Surface Area
Point Cloud | Density of 3D point cloud (per m?) within a training polygon in
Density August
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Table A1.5. List of plant species identified and their frequencies from field plot sampling.

Plant Species Name Common Name Fr;qlngtr;cy
Abies balsamea Balsam fir 9
Acer rubrum Red maple 22
Achillea millefolium Common yarrow 4
Agrostis capillaris Colonial bent grass 3
Alnus viridis Green alder 124
Amelanchier spp Serviceberry 51
Ammophila breviligulata American beach grass 1
Andromeda polifolia Bog rosemary 2
Aralia nudicaulis Wild sarsaparilla 62
Arctostaphylos uva-ursi Common bearberry 37
Arethusa bulbosa Dragon orchid 19
Betula papyrifera Paper birch 19
Calamagrostis canadensis Bluejoint reed grass 10
Calamagrostis pickeringii Pickering's reed grass 44
Calopogon tuberosus Tuberous grass pink 24
Calystegia sepium Hedge false bindweed 2
Campanula rotundifolia Common harebell 4
Carex bullata Button sedge 2
Carex exilis Coastal sedge 12
Carex folliculata Northern long sedge 3
Carex nigra Smooth black sedge 64
Carex pauciflora Few-flowered sedge 3
Carex stricta Tussock sedge 2
Carex trisperma Three-seeded sedge 18
Carex vesicaria Inflated sedge 1
Chamaedaphne calyculata Leatherleaf 18
Cladonia spp Cladonia lichen 115
Clintonia borealis Yellow bluebead lily 7
Corema conradii Broom crowberry 78
Cornus canadensis Bunchberry 132
Danthonia spicata Poverty oat grass 9
Deschampsia flexuosa Wavy hair grass 31
Dicranum spp Dicranum Moss 3
Drosera intermedia Spoon-leaved sundew 7
Drosera rotundifolia Round-leaved sundew 55
Eleocharis spp Eleocharis 1
Empetrum eamesii Red crowberry 11
Empetrum nigrum Black crowberry 131
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(continued) Table AL1.5. List of plant species identified and their frequencies from field

plot sampling.

Plant Species Name

Common Name

Frequency

(# plots)

Eriophorum vaginatum Tussock cottongrass 23
Eriophorum virginicum Tawny cottongrass 11
Festuca rubra Red fescue 20
Fragaria virginiana Wild strawberry 5
Gaultheria procumbens Eastern teaberry 104
Gaylussacia baccata Black huckleberry 182
Gaylussacia bigeloviana Dwarf huckleberry 71
Glaux maritima Sea milkwort 5
Hudsonia ericoides Pinebarren golden heather 3
Ilex glabra Inkberry 15
Ilex mucronata Mountain holly 94
Ilex verticillata Common winterberry 18
Iris spp Iris 21
Juncus balticus Baltic rush 12
Juncus gerardii Black-grass rush 3
Juniperus communis Common juniper 185
Juniperus horizontalis Creeping juniper 24
Kalmia angustifolia Sheep laurel 188
Kalmia polifolia Pale bog laurel 35
Larix laricina Tamarack 19
Lathyrus japonicus Beach pea 5
Ledum groenlandicum Common labrador tea 95
Ligusticum scoticum Scotch lovage 2
Limonium carolinianum Sea lavender 1
Linnaea borealis Twinflower 1
Liverwort spp Liverwort 1
Lonicera villosa Mountain fly honeysuckle 10
Luzula multiflora Common woodrush 1
Lycopodium spp Club moss 8
Maianthemum canadense Wild lily-of-the-valley 76
Maianthemum stellatum Starry false solomon's seal 1
Maianthemum trifolium Three-leaved false soloman's 52
seal
Melampyrum lineare Narrowleaf cow wheat 12
Morella pensylvanica Northern bayberry 126
Myrica gale Sweet gale 39
Oclemena acuminata Whorled wood aster 34
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(continued) Table AL1.5. List of plant species identified and their frequencies from field

plot sampling.

Plant Species Name

Common Name

Frequency

(# plots)

Osmunda cinnamomea Cinnamon fern 62
Panicum spp Panicum 3
Photinia melanocarpa Black chokeberry 113
Picea glauca White spruce 5
Picea mariana Black spruce 48
Pinus banksiana Jack pine 3
Pinus strobus Eastern white pine 6
Plantago maritima Seaside plantain 9
Potentilla anserina Silverweed cinquefoil 3
Prenanthes trifoliolata Lion's paw 39
Prunus pensylvanica Pin cherry 12
Pteridium aquilinum Bracken fern 118
Rhododendron canadense Rhodora 102
Rhynchospora alba White beakrush 10
Ribes spp Gooseberry 2
Rosa virginiana Virginia rose 14
Rubus allegheniensis Alleghaney blackberry 38
Rubus chamaemorus Bake apple 8
Sagina nodosa Knotted pearlwort 1
Sarracenia purpurea Northern pitcher plant 66
Scutellaria galericulata Marsh skullcap 1
Sibbaldiopsis tridentata Three-toothed cinquefoil 42
Sisyrinchium montanum Mountain blue-eyed-grass 2
Solidago bicolor White goldenrod 23
Solidago puberula Downy goldenrod 31
Solidago rugosa Rough-stemmed goldenrod 5
Solidago sempervirens Seaside goldenrod 17
Solidago uliginosa Northern bog goldenrod 42
Sorbus aucuparia European mountain ash 2
Spartina pectinata Prairie cord grass 3
Sphagnum spp Sphagnum moss 94
Spiraea alba White meadowsweet 9
Symphyotrichum novi-belgii New York aster 17
Thalictrum pubescens Tall meadow-rue 3
Toxicodendron radicans Poison ivy 2
Triadenum fraseri Fraser's marsh St John's-wort 1
Trichophorum caespitosum Tufted clubrush 63
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(continued) Table AL1.5. List of plant species identified and their frequencies from field

plot sampling.

Plant Species Name

Common Name

Frequency

(# plots)

Trifolium repens White clover 1

Triglochin maritima Seaside arrowgrass 1

Vaccinium angustifolium Late lowbush blueberry 140
Vaccinium macrocarpon Large cranberry 50
Vaccinium oxycoccos Small cranberry 31
Vaccinium vitis-idaea Mountain cranberry 22
Viburnum nudum Northern wild raisin 109
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Table A1.6. Full list of classes from the association level plant community classification
across all three sites from field plot sampling.

Association Level Classification Frequency
(# plots)
Empetrum nigrum - Ammopbhila brevigulata dwarf heath 1
Empetrum nigrum - Juniperus communis dwarf heath 40
Empetrum nigrum dwarf heath 14
Juniperus communis - Corema conradii dwarf heath 2
Juniperus communis dwarf heath 18
Juniperus horizontalis dwarf heath 8
Alnus viridis shrubland 3
Gaylussacia baccata shrubland 79
Gaylussacia bigeloviana shrubland 7
Ilex glabra shrubland 8
Lonicera villosa shrubland 1
Morella pensylvanica shrubland 4
Mixed tall shrubs 22

Spiraea alba shrubland 2
Abies balsamea tree island 5
Acer rubrum tree island 7
Betula papyrifera tree island 9
8
5

Larix laricina tree island
Picea glauca tree island
Picea mariana tree island 26
Pinus strobus tree island 2
Carex exilis - Gaylussacia bigeloviana bog
Carex nigra - Carex bullata bog

Carex nigra bog

Carex vesicaria bog

Eriophorum russeolum bog

Gaylussacia baccata shrub bog
Gaylussacia bigeloviana shrub bog
Gaylussacia shrub bog

Iris spp. - Carex nigra bog

Maianthemum trifolium bog

Morella pensylvanica shrub bog

Open bog 13
Trichophorum caespitosum bog 11
Festuca rubra brackish marsh 1
Juncus balticus brackish marsh 7
Spartina patens salt marsh 4
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(continued) Table A1.6. Full list of association level plant community classification
across all three sites from field plot sampling.

Association Level Classification Frequency
(# plots)
Spartina pectinata brackish marsh 3
Liverwort spp. seep 1
Osmunda cinnamomea seep 13

Calystegia sepium coastal lithomorphic 1
Corema conradii lithomorphic 5
Empetrum eamesii lithomorphic 1
2
1

Festuca rubra coastal lithomorphic
Hudsonia ericoides lithomorphic
Juniperus communis - Corema conradii lithomorphic 25
Lathyrus japonicus coastal lithomorphic 2
Plantago maritima coastal lithomorphic

Solidago sempervirens coastal lithomorphic

Trichophorum caespitosum coastal lithomorphic

Cladonia spp.

Calamagrostis canadensis coastal vegetation

Carex nigra - Festuca rubra coastal vegetation

Carex nigra coastal vegetation

Festuca rubra - Solidago sempervirens - Trifolium repens
disturbed coastal vegetation

Juncus balticus - Rosa virginiana coastal vegetation

Photinia melanocarpa coastal vegetation

Rubus allegheniensis - Morella pensylvanica coastal vegetation
Thalictrum pubescens coastal vegetation

Toxicodendron radicans coastal vegetation
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Table A1.7. Plant community groupings for the association level classification,
broadened association level classification, and formation class classification.
Association Level Broadened Association Level Formation Class

Classification Classification Classification
Gaylussacia baccata shrubland

Gaylussacia bigeloviana Gaylussacia shrubland
shrubland
Mixed tall shrubs Mixed tall shrubs
Alnus viridis shrubland Alnus viridis shrubland
Ilex glabra shrubland Ilex glabra shrubland
Morella pensylvanica

shrubland Rubus allegheniensis - Morella
Rubus allegheniensis - Morella | pensylvanica coastal vegetation
pensylvanica coastal vegetation

Acer rubrum tree island
Betula papyrifera tree island
Abies balsamea tree island
Larix laricina tree island Tree island
Picea glauca tree island Coniferous Tree Island
Picea mariana tree island

Shrubland

Broadleaf Tree Island

Corema conradii lithomorphic
Empetrum nigrum - Juniperus
communis dwarf heath
Empetrum nigrum dwarf heath
Juniperus communis - Corema | Empetrum nigrum - Juniperus
conradii lithomorphic communis dwarf heath

Juniperus communis dwarf
heath

Juniperus horizontalis dwarf
heath

Cladonia spp.

Dwarf heath

Cladonia spp. Lichen

Gaylussacia baccata shrub bog
Gaylussacia bigeloviana shrub
bog

Gaylussacia shrub bog

Carex exilis - Gaylussacia
bigeloviana bog

Gaylussacia shrub bog Bog
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(continued) Table Al1.7. Plant community groupings for the association level
classification, broadened association level classification, and formation class
classification.

Association Level Broadened Association Level  Formation Class

Classification Classification Classification
Carex nigra bog

Juncus balticus brackish marsh

Open bog Grass/Sedge/Open Bog Bog
Trichophorum caespitosum

bog

Maianthemum trifolium bog Maianthemum trifolium bog Bog
Osmunda cinnamomea seep Osmunda cinnamomea seep Seep
Spartina pectinata brackish Spartina pectinata brackish Brackish marsh
marsh marsh

Spartina patens salt marsh Spartina patens salt marsh Salt marsh
Calamagrostis canadensis Calamagrostis canadensis

coastal vegetation coastal vegetation Other
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Table A1.8. Full list of indices sorted by their “score” of importance in relation to their
contribution to the linear discriminant analysis (LDA) model for each plant community
classification. The score was determined by summing the weighted contributions of each

Classification

index for each discriminatory axis from the LDA model.
Association Level

Broadened Association

Level Classifica

Formation Class

Classification

Index Score Index Score Index Score

R mean May 0.98 | R mean May 1.10 | R mean May 1.24

Slope SD 0.68 | Slope SD 0.75 | Slope SD 0.88

Saturation SD 0.53 | R G mean May 0.51 | R G mean May 0.55

May

CIVE SD 0.50 | Saturation SD May 0.47 | change R mean 0.40

August

change R mean 0.50 | change R mean 0.45 | CIVE mean 0.37
August

R G mean May 0.50 | TPI'mean5 0.44 | CIVE SD August 0.37

Hue SD August | 0.42 | CIVE mean August 0.39 | TPImean5 0.36

CIVE mean 0.39 | NIR mean May 0.35 | R B mean May 0.29

August

TPI mean 5 0.37 | R B mean May 0.33 | TPI mean 111 0.28

R B mean May 0.35 | CIVE SD August 0.32 | NIR mean May 0.28

R G SD August | 0.34 | Hue SD August 0.29 | R G SD August 0.28

R B mean 0.32 | R G SD August 0.28 | RG SD May 0.25

August

NIR mean May 0.31 | R G SD May 0.26 | Saturation SD 0.21
May

R G SD May 0.26 | R B mean August 0.23 | Point Density 0.20

DEV mean 111 0.25 | Curvature mean 0.22 | Saturation SD 0.19
August

Point Density 0.24 | NDVI mean May 0.22 | DEV mean5 0.19

Veg SD 50cm 0.24 | DEV mean 111 0.21 | DEV mean 33 0.19

DEV mean 33 0.23 | DEV mean 33 0.20 | DEV mean 111 0.19

NDVI mean 0.20 | Point Density 0.19 | Veg SD 50cm 0.18

May

Curvature mean | 0.20 | TPl mean 111 0.18 | RSD May 0.16

Hue SD May 0.19 | DEV mean 5 0.15 | NIR mean August | 0.16

DEV mean 5 0.18 | NIR mean August 0.15 | Curvature mean 0.16

TPl mean 111 0.18 | Hue SD May 0.15 | Hue SD May 0.15
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(continued) Table A1.8. Full list of indices sorted by their “score” of importance in
relation to their contribution to the linear discriminant analysis (LDA) model for each
plant community classification. The score was determined by summing the weighted
contributions of each index for each discriminatory axis from the LDA model.

Association Level Broadened Association Formation Class
Classification Level Classificati Classification
Index Score Index Score Index Score

Saturation SD 0.16 | R SD May 0.14 | Hue SD August 0.15
August

R SD May 0.15 | DEV SD 33 0.14 | RB mean August | 0.14
NDVI SD 0.15 | NIR SD May 0.14 | NDVI mean 0.14
August August

NIR SD May 0.15 | Veg SD 50cm 0.13 | DEV SD 33 0.14
NIR mean 0.15 | NDVI mean August | 0.13 | NDVI mean May 0.13
August

DEV SD 111 0.14 | Saturation SD 0.12 | NIR SD May 0.12

August

G B SD May 0.14 | G B SD May 0.12 |DEVSD 111 0.10
NDVI mean 0.13 | Surface Area 0.11 | GB SD May 0.10
August

DEV SD 33 0.13 | NDVI SD August 0.11 | Surface Area 0.09
DEV SD 5 0.11 | DEV SD 111 0.10 | NDVI SD May 0.09
Surface Area 0.09 | DEVSD5 0.10 | NDVI SD August | 0.07
NDVI SD May 0.08 | NDVI SD May 0.08 | Hue mean May 0.04
Hue mean May 0.06 | Hue mean May 0.04 | DEV SD5 0.03
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Table A1.9. Classification accuracies of the linear discriminant analysis (LDA) model for
the association level plant community classification.
Association Level

Accuracy (%)  Majority of Misclassifications

Classification

Ilex glabra shrubland 100 None
Maianthemum trifolium bog 100 None
Spartina patens salt marsh 100 None
Cladonia spp. Juniperus communis - Corema

o conradii lithomorphic

Picea mariana tree island 85 Betula papyrifera tree island
Gaylussacia baccata shrubland 80 Gaylussacia bigeloviana

shrubland
Osmunda cinnamomea seep 77 Mixed tall shrubs
Alnus viridis shrubland 67 Larix laricina tree island
Spartina pectinata brackish 67 Morella pensylvanica shrubland
marsh
Empetrum nigrum - Juniperus 65 Empetrum nigrum dwarf heath
communis dwarf heath
Trichophorum caespitosum bog 64 Carex nigra bog
Juniperus horizontalis dwarf Empetrum nigrum - Juniperus
heath 63 communis dwarf heath
Open bog 62 Trichophorum caespitosum bog
Mixed tall shrubs 59 Gaylussacia baccata shrubland
Juniperus communis - Corema 56 Juniperus communis dwarf heath
conradii lithomorphic
Carex exilis - Gaylussacia 50 Gaylussacia bigeloviana shrub

bigeloviana bog bog
Gaylussacia baccata shrub bog Gaylussacia bigeloviana shrub

50

bog
Juniperus communis dwarf heath 50 Juniperus communis - Corema

conradii lithomorphic
Carex nigra bog 46 Trichophorum caespitosum bog
Betula papyrifera tree island 44 Larix laricina tree island
Gaylussacia bigeloviana shrub 44 Carex exilis - Gaylussacia
bog bigeloviana bog
Acer rubrum tree island 43 Gaylussacia baccata shrubland
Abies balsamea tree island 40 Picea mariana tree island
Larix laricina tree island 38 Picea mariana tree island
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(continued) Table A1.9. Classification accuracies of the linear discriminant analysis

Association Level

Classification
Calamagrostis canadensis

(LDA) model for the association level plant community classification.

Accuracy (%)

Majority of Misclassifications

Osmunda cinnamomea seep

. 33

coastal vegetation

Empetrum nigrum dwarf heath 29 Empetrum nigrum - Juniperus
communis dwarf heath

Gaylussacia bigeloviana 29 Gaylussacia baccata shrubland

shrubland

Juncus balticus brackish marsh 29 Carex nigra bog

Morella pensylvanica shrubland 25 Gaylussacia baccata shrubland

Rubus allegheniensis - Morella o5 Morella pensylvanica shrubland

pensylvanica coastal vegetation

Gaylussacia shrub bog 14 Gaylussacia bigeloviana shrub
bog

Corema conradii lithomorphic 0 Empetrum nigrum - Juniperus
communis dwarf heath

Picea glauca tree island 0 Picea mariana tree island
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Table A1.10. Classification accuracies of the linear discriminant analysis (LDA) model
for the broadened association level plant community classification.
Broadened Association Level

Accuracy (%)  Majority of Misclassifications

Classification

Ilex glabra shrubland 100 None

Maianthemum trifolium bog 100 None

Spartina patens salt marsh 100 None

Cladonia spp. 97 Empetrum nigrum - Juniperus
communis dwarf heath

Empetrum nigrum - Juniperus 96 Gaylussacia shrub bog

communis dwarf heath

Coniferous tree island 84 Broadleaf tree island

Gaylussacia shrubland 84 Gaylussacia shrub bog

Osmunda cinnamomea seep 77 Spartina pectinata brackish
marsh

Grass/Sedge/Open bog 73 Gaylussacia shrub bog

Gaylussacia shrub bog 69 Grass/Sedge/Open bog

Broadleaf tree island 69 Gaylussacia shrubland

Alnus viridis shrubland 67 Coniferous tree island

Spartina pectinata brackish 67 Gaylussacia shrub bog

marsh

Mixed tall shrubs 59 Gaylussacia shrubland

Rubus allegheniensis - Morella 38 Gaylussacia shrubland

pensylvanica coastal vegetation

Calamagrostis canadensis 33 Osmunda cinnamomea seep

coastal vegetation
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Table A1.11. Classification accuracies of the linear discriminant analysis (LDA) model
for the formation class plant community classification.
Formation Class

Accuracy (%) Majority of Misclassifications

Classification

Salt Marsh 100 None
Lichen 97 Dwarf heath
Dwarf heath 96 Lichen
Shrubland 91 Dwarf heath
Bog 90 Shrubland
Tree island 88 Shrubland
Seep 77 Shrubland
Brackish Marsh 67 Bog

Other 33 Dwarf heath
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Figures
Axis 1

Figure Al.1. 95% confidence intervals for the mean linear discriminant analysis (LDA)

scores of plant communities from the association level classification for each

discriminatory axis.
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Figure Al.2. 95% confidence intervals for the mean linear discriminant analysis (LDA)
scores of plant communities from the broadened association level classification for each
discriminatory axis.
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Figure A1.3. 95% confidence intervals for the mean linear discriminant analysis (LDA)
scores of plant communities from the formation class classification for each
discriminatory axis.
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Tables

Table A2.1. List of spectral and structural indices derived from UAV imagery and the 3D

point cloud to classify plant communities.
Index Description

R May Red channel in May
G May Green channel in May
B May Blue channel in May
R/B May Red channel divided by Blue channel in May
R/G May Red channel divided by Green channel in May
G/B May Green channel divided by Blue channel in May
NIR May Near-Infrared in May
NDVIMay | NDVIin May. NDVI = onx
NIR+R
CIVE May Color Index of Vegetation (CIVE) in May.
CIVE = 0.441*R — 0.881*G + 0.385*B + 18.78745
Hue May Hue in degrees (0-360°) in May. Hue = cos™ < (R(_OSZSFR('}S_)};EE:QO_S)
Saturation Saturation in May. Saturation = 1- (R Rk B) *a
May
R August Red channel in August
G August Green channel in August
B August Blue channel in August
R/B August Red channel divided by Blue channel in August
R/G August Red channel divided by Green channel in August
G/B August Green channel divided by Blue channel in August
NIR August Near-Infrared in August
NDVI August | NDVI in August. NDVI = X
NIR+R
CIVE August | Color Index of Vegetation (CIVE) in August.
CIVE = 0.441*R — 0.881*G + 0.385*B + 18.78745
Hue August Hue in degrees (0-360°) in August. Hue = cos™ T (R(_O(Lj:iﬁ_)];g:l;;o_s)
Saturation Saturation in August. Saturation = 1- (—R A B) *a
August 3
Change R Change in Red channel from May to August
Change G Change in Green channel from May to August
Change B Change in Blue channel from May to August
Change R/B Change in Red channel divided by Blue channel from May to August
Change R/G Change in Red channel divided by Green channel from May to
August
Change G/B Change in Green channel divided by Blue channel from May to
August
Change NIR Change in Near-Infrared from May to August
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(continued) Table A2.1. List of spectral and structural indices derived from UAV

imagery and the 3D point cloud to classify plant communities.
Index Description

Change NDVI | change in NDVI from May to August. NDVI = gll:;

Change CIVE | Change in Color Index of Vegetation (CIVE) from May to August.
CIVE =0.441*R — 0.881*G + 0.385*B + 18.78745
Change Hue Change in Hue in degrees (0-360°) from May to August.
Hue = cogt OS5 RO+RB))
(R-0)2+(R-B)(G-B)*5)
Change Change in Saturation from May to August. Saturation = 1-

Saturation (R+G+B) %5
3

Vegetation Vegetation height in August. Vegetation height was calculated by
Height subtracting the minimum from the maximum elevation value within a
50-cm search radius of each pixel using the 10-cm elevation model
TPI5 Topographic Position Index (TPI) in August. TPl was calculated
from the 10-cm elevation model using a 5x5 pixel search window.
TPl=2,-%Z

Where z, = elevation of central point, z = mean elevation of
neighborhood

TPI 11 Topographic Position Index (TPI) in August. TPl was calculated
from the 10-cm elevation model using an 11x11 pixel search
window.

TPI=2,-Z

Where z, = elevation of central point, Z = mean elevation of
neighborhood

TPI 33 Topographic Position Index (TPI) in August. TPl was calculated
from the 10-cm elevation model using a 33x33 pixel search window.
TPl=2,-%
Where z, = elevation of central point, Z = mean elevation of
neighborhood

TPI 111 Topographic Position Index (TPI) in August. TPl was calculated
from the 10-cm elevation model using a 111x111 pixel search
window.
TPI=2,-Z
Where z, = elevation of central point, Z = mean elevation of
neighborhood
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(continued) Table A2.1. List of spectral and structural indices derived from UAV

imagery and the 3D point cloud to classify plant communities.

Index Description
DEV 5 Deviation of Mean Elevation (DEV) in August. DEV was calculated
from the 10-cm elevation model using a 5x5 pixel search window.
DEV = =~
Where z, = elevation of central point, Z = mean elevation of
neighborhood, and SD = standard deviation of elevation values in the
neighborhood
DEV 11 Deviation of Mean Elevation (DEV) in August. DEV was calculated

from the 10-cm elevation model using an 11x11 pixel search
window.

DEV = 2%
SD

Where z, = elevation of central point, z = mean elevation of
neighborhood, and SD = standard deviation of elevation values in the
neighborhood

DEV 33 Deviation of Mean Elevation (DEV) in August. DEV was calculated
from the 10-cm elevation model using a 33x33 pixel search window.

DEV = 2=
SD

Where z, = elevation of central point, Z = mean elevation of
neighborhood, and SD = standard deviation of elevation values in the
neighborhood

DEV 111 Deviation of Mean Elevation (DEV) in August. DEV was calculated
from the 10-cm elevation model using a 111x111 pixel search
window.

DEV = 22
SD

Where z, = elevation of central point, Z = mean elevation of
neighborhood, and SD = standard deviation of elevation values in the
neighborhood

Curvature Curvature Index (concavity/convexity) in August. Curvature Index
was calculated from the 10-cm elevation model using the Curvature
tool with the Profile setting within the DEM Surface Tools toolbox
in ArcGIS. (http://www.jennessent.com/arcgis/surface area.htm)
Slope Slope in degrees (0-90°) in August. Slope was calculated from the
10-cm elevation model using the Slope (Spatial Analyst) tool in
ArcGIS.
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Table A2.2. Confusion matrix of plant communities from the broadened association level classification at Chebucto Head.

— o
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S S =29 | 3T = Sz =3 = 25 X =
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Broadleaf tree island 0 0
Calamagrostis canadensis coastal 0 0
. Vegetation |
| Calystegia sepium coastal lithomorphic SR 0 0 | 0 0 0 | 0 0
Cladonia spp. 0 0 90 0 0 0 0 0 0 0
Coniferous tree island 1 0 93 1 0 3 0 0 0
Empetrum nigrum - Juniperus communis 0 0 0 89 0 2 8 0 0 0
dwarf heath
Gaylussacia baccata shrubland 3 0 138 4 0 15 0 0
Gaylussacia shrub bog 0 0 0 0 0 4 3 52 0 0 1 0
Juniperus communis - Corema conradii 0 0 0 2 0 6 4 6 122 0 0 0
lithomorphic

Mixed tall shrubs [ 0 0 0 0 0 11 0 0 22 0 0
open bog I 0 0 0 0 0 0 1 0 0 29 0
Osmunda cinnamomea seep [ 0 0 0 0 0 3 0 0 2 0 34
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Table A2.3. Confusion matrix of plant communities from the broadened association level classification at Prospect Bay.

ontalis dwarf heath

Inus viridis shrubland

uncus balticus brackish marsh
smunda cinnamomea seep
partina pectinata bracki
oxicodendron radicans coastal

Empetrum nigrum - Juniperus communis
uniperus

Coniferous tree island
Eriophorum russeolum bog
Gaylussacia baccata shrubland
Gaylussacia shrub bog
Lonicera villosa shrubland
Maianthemum trifolium bog
Morella pensylvanica shrubland

[SWlBetula papyrifera tree island
Mixed tall shrubs

P=3l Grass/Sedge/Open bog

I=3ll Cladonia spp.

Alnus viridis shrubland

Betula papyrifera tree island

Cladonia spp.

Coniferous tree island

Empetrum nigrum - Juniperus communis dwarf
heath

Eriophorum russeolum bog

Festuca rubra - Solidago sempervirens - Trifolium
repens disturbed coastal vegetation

Gaylussacia baccata shrubland

Gaylussacia shrub bog

Grass/Sedge/Open bog

Juncus balticus brackish marsh

Juniperus horizontalis dwarf heath

Lonicera villosa shrubland

Maianthemum trifolium bog

Mixed tall shrubs

Morella pensylvanica shrubland

Osmunda cinnamomea seep

Spartina pectinata brackish marsh

Toxicodendron radicans coastal vegetation
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Table A2.4. Confusion matrix of plant communities from the broadened association level classification at Polly’s Cove.

izontalis dwarf

pensylvanica coastal
m pubescens coastal

Carex nigra - Festuca rubra
coastal vegetation
Empetrum nigrum - Juniperus

communis dwarf heath
Trichophorum caespitosum

Broadleaf tree island
Calamagrostis canadensis
coastal vegetation

Carex nigra bog

Carex vesicaria bog
Cladonia spp.

Coniferous tree island
Gaylussacia baccata
shrubland

Gaylussacia shrub bog
llex glabra shrubland
Juncus bal

Juniperus

heath

Mixed tall shrubs

Rubus allegheniensis -
More

Spartina patens salt marsh
bog

Broadleaf tree island

Calamagrostis canadensis coastal
vegetation

Carex nigra - Festuca rubra coastal
vegetation

Carex nigra bog

Carex vesicaria bog

Cladonia spp.

Coniferous tree island

Empetrum nigrum - Juniperus communis
dwarf heath

Gaylussacia baccata shrubland

Gaylussacia shrub bog

Ilex glabra shrubland

Juncus balticus brackish marsh

Juniperus communis - Corema conradii
lithomorphic

Juniperus horizontalis dwarf heath

Mixed tall shrubs

Osmunda cinnamomea seep

Rubus allegheniensis - Morella
pensylvanica coastal vegetation

Spartina patens salt marsh

Thalictrum pubescens coastal vegetation

Trichophorum caespitosum bog




Figures

Figure A2.1. Elevation above sea-level at A) Chebucto Head, B) Prospect Bay, and C)

Polly’s Cove.
A) B) C)
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Figure A2.2. Distance from the coastline at A) Chebucto Head, B) Prospect Bay, and C)

b
Polly’s Cove.
A)
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Figure A2.3. Wind exposure at A) Chebucto Head, B) Prospect Bay, and C) Polly’s
Cove.
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Figure A2.4. Stream orders of stream networks at A) Chebucto Head, B) Prospect Bay,
and C) Polly’s Cove.
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Figure A2.5. Incoming solar radiation at A) Chebucto Head, B) Prospect Bay, and C)
Polly’s Cove.
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Figure A2.6. Slope positions at A) Chebucto Head, B) Prospect Bay, and C) Polly’s
Cove.
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Figure A2.7. Local surface ruggedness at A) Chebucto Head, B) Prospect Bay, and C)
Polly’s Cove.
A) B)
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Figure A2.8. Global surface ruggedness at A) Chebucto Head, B) Prospect Bay, and C)
Polly’s Cove.
A) B C)
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Figure A2.9. 95% confidence intervals for the area-weighted mean elevation of plant

communities at Chebucto Head.
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Figure A2.10. 95% confidence intervals for the area-weighted mean distance from the

coastline for plant communities at Chebucto Head.
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Figure A2.11. 95% confidence intervals for the area-weighted mean wind exposure of

plant communities at Chebucto Head.
Figure A2.12. Most frequent (area-weighted) stream order for plant communities at

Chebucto Head.
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Figure A2.13. 95% confidence intervals for the area-weighted mean incoming solar

radiation received by plant communities at Chebucto Head.
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Figure A2.14. Most frequent (area-weighted) slope position classifications for plant

communities at Chebucto Head.
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Figure A2.15. 95% confidence intervals for the area-weighted mean local surface

ruggedness of plant communities at Chebucto Head.
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Figure A2.16. 95% confidence intervals for the area-weighted mean global surface

ruggedness of plant communities at Chebucto Head.
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Figure A2.17. 95% confidence intervals for the area-weighted mean elevation of plant

communities at Prospect Bay.
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Figure A2.18. 95% confidence intervals for the area-weighted mean distance from the

coastline for plant communities at Prospect Bay.
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Figure A2.19. 95% confidence intervals for area-weighted the mean wind exposure of

plant communities at Prospect Bay.
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Figure A2.20. Most frequent (area-weighted) stream order for plant communities at

Prospect Bay.
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Figure A2.21. 95% confidence intervals for the area
radiation received by plant communities at Prospect Bay.

uoneIpey Jejog Buiwodu|

uonejaban
|BISB0D SUBJIPEI UOIPUSPOIIND |

ysrew
ysipoeiq ejeunoad eunieds

doas BSLIOWIRUID BPUMLSQO

pue|gnIys eaiueAlAsusd Bjjeiopy

SQNIYS 12} PEXIN

Boq wwmijopn wnweyueeyy

PUBIQNIUS BSOJjIA BISOIUCT

sy
Lemp siyejuozLoy snisdiun

USIBLW USINDEIq SNIREY SITouf

Boq uadp/abpag/sseln

Boq gnuys eroessnifes

PUEIGNIUS BJEOB] BIOESSNIABD

uonelefon [elSe0d paginisip
suadalwinijopil] - SusIBAWLISS
OBEPIOS - BIGNI BONISSH

Boq tnjosssni winioydousy

sy Jemp SItLLIo
snusdiung - wiibiu wnpadw3

pUEJSI 331} SNOJBJILOTY

“dds BiIOPBID

pue|si a1} eiepuAded ejmeg

PUBIGNIYS SIDLIA SIUY

Figure A2.22. Most frequent (area-weighted) slope position classifications for plant

communities at Prospect Bay.
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Figure A2.23. 95% confidence intervals for the area-weighted mean local surface

ruggedness of plant communities at Prospect Bay.
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Figure A2.24. 95% confidence intervals for the area-weighted mean global surface

ruggedness of plant communities at Prospect Bay.
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Figure A2.25. 95% confidence intervals for the area-weighted mean elevation of plant

communities at Polly’s Cove.
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Figure A2.26. 95% confidence intervals for the area-weighted mean distance from the

coastline for plant communities at Polly’s Cove.
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Figure A2.27. 95% confidence intervals for the area-weighted mean wind exposure of

plant communities at Polly’s Cove.
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Figure A2.28. Most frequent (area-weighted) stream order for plant communities at

Polly’s Cove.
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Figure A2.29. 95% confidence intervals for the area

radiation received by plant communities at Polly’s Cove.
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Figure A2.30. Most frequent (area-weighted) slope position classifications for plant

communities at Polly’s Cove.
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Figure A2.31. 95% confidence intervals for the area-weighted mean local surface

ruggedness of plant communities at Polly’s Cove.
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Figure A2.32. 95% confidence intervals for the area-weighted mean global surface

ruggedness of plant communities at Polly’s Cove.
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