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Dawson Range, Yukon Territory, Canada: implications for a large-scale, intrusion 

related system 

 

by Mariah C.J. Williams 

 

Abstract 

 

The Revenue Au occurrence, located in Dawson Range, Yukon, Canada is a complex 

magmatic-hydrothermal system comprised of at least three styles of mineralization with 

distinct mineral assemblages and textures, though the paragenic relationship between styles 

is poorly understood. This integrated field and microanalytical study aims to characterize 

the styles of mineralization using petrography, mineral chemical analysis, and 

thermometric methods. Methods applied include SEM-BSE imaging, EMPA analysis of 

the major and minor chemical compositions of sulfides and sulfarsenides, and LA-ICP-MS 

analysis of trace elements in major sulfides. The data show that in the Blue Sky Zone of 

the Revenue granite host rock, style 1 mineralization is divided into an earlier, porphyry-

like mineralization stage (Cu-Au) which is later overprinted by a later, epithermal-like (Cu-

Ag-Au-Mo) mineralization stage. The breccia-hosted and W-Sn enriched style 2 

mineralization (Cu-Au-Mo-W) cross-cuts the early style 1 mineralization, and both early 

style 1 and style 2 mineralization are cross-cut by diatreme-hosted style 3 mineralization. 

Additionally, regional quartz-feldspar porphyry dykes are commonly associated with Au 

mineralization in the Dawson Range. This study shows that at the Revenue location there 

is evidence that these dykes formed pre- to syn- mineralization with respect to late style 1 

and style 2 mineralization, suggesting their involvement in the formation of Au 

mineralization on site.  
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1.0 Introduction 

The Dawson Range of the Tintina Gold Belt, located in west-central Yukon 

Territory, Canada, hosts numerous high-grade Au deposits (Fig. 1), including the Coffee 

and Golden Saddle deposits (MacKenzie et al., 2014; MacWilliam, 2018), and multiple Cu-

Au-(Mo) deposits and showings including the Minto and Casino systems (Tafti and 

Mortensen, 2003; Godwin, 1976) (see Appendix 2 for additional comparisons). The 

Freegold Mountain Property is located 200 km north-west of Carmacks within the Dawson 

Range, and hosts several Cu-Au occurrences. Northern Freegold Resources Ltd.  delineated 

three Au and polymetallic NI-43-101 compliant resources in the Freegold Mountain 

Property: (i) the Revenue Cu-Au-Mo-Ag- occurrence, (ii) the Nucleus Ag-Au-Bi-Cu 

occurrence, and (iii) the Tinta Hill Ag-Pb-Zn-Cu-Au vein occurrence (Northern Freegold 

Resources Ltd., 2015). The Revenue occurrence, the focus of this study, has an inferred 

resource of 80.8 million tonnes, grading 0.39 g/t Au, 3.45 g/t Ag, 0.14% Cu and 0.05% Mo 

(Northern Freegold Resources Ltd., 2015).  

The Revenue occurrence is unique compared to the other Au showings on the 

property as it contains associated Mo and W mineralization. Current geological data from 

exploration activities suggests that mineralization was formed by at least two separate 

magmatic-hydrothermal events. Three styles of mineralization have been observed in drill 

core:  

(i) Porphyry-style mineralization comprising early, granite-hosted, quartz-sulfide (pyrite, 

chalcopyrite) stockwork associated with potassic alteration (K-feldspar, biotite), and later, 

quartz-carbonate-sulfide (molybdenite, chalcopyrite, pyrite, pyrrhotite) stockwork. This 
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style of mineralization is spatially constrained to an area of the Revenue granite (the country 

rock in the area) called the Blue Sky Zone. 

(ii) Breccia-hosted mineralization comprising quartz-sulfide (pyrite, chalcopyrite, 

molybdenite) matrix with minor scheelite associated with phyllic to argillic alteration. This 

breccia is called the “WAu Breccia” by workers and is spatially related to the contact of 

the Revenue granite with a cross-cutting hypabyssal diatreme (the Revenue diatreme) and 

quartz-feldspar-porphyry dykes that cross-cut the Revenue granite. 

(iii) Replacement-style mineralization, associated with the Revenue diatreme, consisting of 

sulfide mineralization and replacement in the hydrothermal breccia along the margins of 

the diatreme (Northern Freegold Resources Ltd, 2017).  

 

The close proximity of these occurrences suggest a broad genetic link between mineralized 

styles. 

This integrated field and microanalytical study characterizes the mineralogy, 

paragenesis, and timing of the different styles of mineralization at the Revenue occurrence 

in order to better understand their genetic relationship to one another and relative timing.  

The results of this work provide new constraints for, and revisions to, the basic genetic 

model for the Revenue occurrence, with an intention to improve exploration success. 

Petrographic investigations by optical microscopy, scanning electron microscopy, and 

short-wave infrared spectroscopy (Terraspec®) was used to: (i) identify and characterize 

ore and accessory minerals, and associated alteration; (ii) examine microscopic textures to 

develop a paragenetic sequence; and (iii) determine the major and minor element 

composition of ore and alteration mineral phases. An electron microprobe analyzer 

(EMPA) was used to quantify major and minor element abundances in sulfide and 
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sulfarsenide minerals (sphalerite, pyrite, pyrrhotite, arsenopyrite, and glaucodot), allowing 

for the calculation of mineralization temperatures. Laser ablation inductively-coupled 

plasma mass spectrometry (LA-ICP-MS) was used to determine sulfide trace element 

abundances in order to characterize the chemical signatures of different mineralization 

styles.  

2.0 Geological setting 

2.1 Regional geology 

The Freegold Mountain Property is located ~200 km northwest of Whitehorse, 

Yukon Territory, Canada, in the Dawson Range and is part of the Tintina Gold Province 

(Northern Freegold Resources Ltd, 2015). This region comprises predominantly Paleozoic 

metasediments and metavolcanics of the Yukon-Tanana Terrane (YTT), and is situated 

between two major NW-SE structures, the Tintina Fault to the northeast and Denali Fault 

to the southwest (Fig. 1). The YTT sediments were originally deposited on the NW passive 

margin of ancestral North America (Laurentia) after the breakup of Rodinia (800 to 700 

Ma; Oriolo et al., 2017), with deposition lasting until the Middle Devonian (Bineli-Betsi et 

al., 2010, 2011, 2012, 2016; Allan et al., 2013). Subduction of oceanic crust under western 

Laurentia initiated during the middle Devonian (~365 Ma), producing a continental arc and 

associated back-arc basin (~360 Ma; Allan et al., 2013). Extension within the back-arc led 

to the formation of an ocean basin and the intrusion of mafic to felsic plutonic suites and 

emplacement of volcanic rock, until its closure in the late Permian through subduction 

(Allan et al., 2013). This second period of subduction led to the Klondike orogeny (~260 

to 253 Ma; Beranek et al., 2011), which resulted the accretion of the over-thickened crust 

of YTT on top of Laurentia.  
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Figure 1. Simplified regional map of plutonic and volcanic suites intruding and overlying 

the Dawson Range area, Yukon (Foster (1970, 1976); Bacon and Lanphere (1996); Gordey 

and Makepeace (2003); Gordey and Ryan (2005); Murphy et al. (2009); Ryan et al. (2010, 

2013a, b); Sánchez et al. (2013); Staples et al. (in press); Allan et al. 2013). Major faults 

are black and approximate tectonostratigraphic domain boundaries are in dashed lines. 

Lithology and structure abbreviations: BCS = Big Creek Syenite, CCG = Coffee Creek 

granite, DRB = Dawson Range Batholith, GMB = Granite Mountain batholith, JCP = Jim 

Creek pluton, SBC = Sixty Mile Butte caldera, TMB = Taylor mountain batholith, WFC = 

West Fork caldera. Fault abbreviations: DCF = Dip creek fault, KF = Kechumstuk fault, 

SPF = Sixtymile-Pika fault.  
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In the late Triassic to early Jurassic, convergence through subduction on the western 

coast of Laurentia resulted in magmatism within the Yukon-Tanana Arc and produced the 

metaluminous, mafic to intermediate intrusions of the Taylor Mountain Plutonic Suite and 

felsic intrusions of the Aishihik Plutonic Suite (Allan et al., 2013; Fig. 1). Magmatism 

ceased from the middle Jurassic to the early Cretaceous (~179 - 115 Ma), and during this 

period of inactivity the region experienced uplift and exhumation (Allan et al., 2013).  

Renewed subduction below the Yukon Tanana Arc in the Mid-Cretaceous (~98 - 

115 Ma) generated the Whitehorse Plutonic Suite, a suite of intermediate to felsic plutons, 

including the metaluminous Dawson Range Batholith (Fig. 1). In the back-arc basin, 

extensional tectonic activity led to low angle normal faults and ductile shear zone between 

the lower plate and the thrusted plate of the YTT. Following this episode of magmatism in 

the Dawson Range, a 40-million-year period of sedimentation occurred in an alluvial fan 

setting and transitioned into a shallow marine environment. Sedimentation in the back-arc 

basin was preserved as the Indian River Formation (Fig. 1). Volcanic rocks and high-level 

magmatic stocks of the Carmacks Group were emplaced over the Indian River Formation 

and a broad area of the Tintina Gold Province between 72 and 67 Ma (Allan et al., 2013 

and references therein; Fig. 1). This formation is comprised of shoshonitic, high-Mg, 

intermediate to felsic volcanic rocks.  

2.2 Property-scale geology 

The Freegold Mountain area is located the southeast Dawson Range, and contains 

three major Cu-Au (± Mo, W, Ag) occurrences (Revenue, Nucleus, and Tinta) with 11 

additional Au showings (Fig. 2; Friend et al., 2018). The property consists of the YTT 

intruded by the Big Creek Syenite of the Jurassic Aishihik Plutonic Suite, and the Dawson 
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Range Batholith of the mid-Cretaceous Whitehorse Plutonic Suite (Allan et al., 2013). The 

Dawson Range Batholith hosts small intrusions of the Casino Plutonic Suite in the late 

Cretaceous (79 to 70 Ma; Allan et al., 2013; Friend et al., 2018).  A dextral strike-slip fault, 

the Big Creek Fault, runs through the Freegold Mountain area and is oriented parallel to 

the regional-scale Tintina and Denali Faults (Northern Freegold Resources Ltd, 2015). The 

Big-Creek Fault diverges into northern and southern fault segments NW of the Revenue 

occurrence, with the Nucleus occurrence on the southern segment, west of Revenue 

occurrence, and the Tinta Hill occurrence lying on the northern segment, east of the 

Revenue occurrence (Fig. 2). Allan et al. notes that it is unclear whether the Dawson Range 

Batholith pre-dates the Big Creek fault between 107 - 100 Ma (2013).  Secondary features 

include sets of porphyritic dykes, generally striking west to east (Bineli-Betsi et al., 2010, 

2011, 2012, 2016). These dykes are spatially associated with mineralized veins and may 

also be genetically related since some host pyrite-chalcopyrite along their altered margins 

(Bineli-Betsi and Lentz, 2011).  
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Figure 2. Geological map of Triumph Gold Corp’s property in the Freegold Mountain area 

(after Eaton, 1982; Templemen-Kluit, 1984; Carlson, 1987; Friend et al., 2018). The Big 

Creek Fault is represented by the central dextral strike-slip fault (Allan et al., 2013; Bineli-

Betsi et al., 2016). 
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Figure 2 (cont’d). Legend accompanying geological map of Triumph Gold property 

(after Eaton, 1982; Templemen-Kluit, 1984; Carlson, 1987; Friend et al., 2018). Strike 

Slip faults are sections of the Big Creek Fault, which diverge around the Revenue 

occurrence (Bineli-Betsi et al., 2016; Allan et al., 2013).  
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The Revenue occurrence is located in a dilational zone between the northern and 

southern segments of the Big Creek Fault, in the Dawson Range Batholith (Fig. 2). The 

occurrence is comprised of quartz-chalcopyrite-pyrite veins and vein stockwork, and 

disseminated pyrite and chalcopyrite mineralization in the granodiorite (Northern Freegold 

Resources Ltd, 2015). Locally, Cu-Au±Mo±W mineralization is more abundant at the 

contacts with the Revenue diatreme and near porphyritic dykes (Northern Freegold 

Resources Ltd, 2015). Both the Nucleus and Revenue occurrences are intrusive, fine-

grained, intermediate to felsic monzonites to granites hypothesized to be emplaced in the 

mid Cretaceous (Bineli-Betsi et al., 2010; Allan et al., 2013, Friend et al., 2018). The 

Nucleus occurrence is situated in a fine-grained, tabular granitic intrusion with a 

microgranitic texture that was later crosscut by quartz-feldspar porphyry (QFP) dykes, and 

located ~3 km west of Revenue (Bineli-Betsi and Lentz, 2011) and 1 km north of the Big 

Creek-South fault (Fig. 2). Gold mineralization is more abundant in brecciated zones, and 

along contacts with intrusive porphyritic plugs that lie in a west-east trend (Northern 

Freegold Resources Ltd, 2015), and are hypothesized to have been emplaced within zones 

of dilation (T. Baressi, personal communication 2018). South-east of the Revenue 

occurrence, the northern segment of the Big Creek fault is terminated near a mineralized 

zone called “Stoddart” on the property, whereas the southern segment continues (Fig. 2).  

The Stoddart zone contains an abundance of deformed late Cretaceous rocks, and the shape 

of the Big Creek fault segments are more deformed in this area. The Tinta Hill occurrence 

is located approximate 15 km SE from the Revenue occurrence and is hosted in granite and 

K-feldspar-rich monzonite of the Aishihik Lake plutonic suite (Northern Freegold 

Resources Ltd, 2015) (Fig. 2). Mineralization consists of quartz-carbonate-sulfide veins 
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containing chalcopyrite, pyrite, sphalerite and galena (Northern Freegold Resources Ltd, 

2015).  

In the southeastern region of the Dawson Range batholith, calc-alkaline, high-level 

porphyry dykes and breccias are spatially associated with, and locally controlled by, the 

Big Creek Fault (Bineli-Betsi et al., 2016). These dykes and breccias intrude the Dawson 

Range batholith and crosscut, or are associated with, mineralization at the Nucleus-

Revenue locality (Bineli-Betsi et al., 2016; Allan et al., 2013).  

2.3 History of mineral exploration at the Freegold Mountain Property 

Numerous Au occurrences occur in the Freegold Mountain Property (Bineli-Betsi 

et al., 2010, 2011, 2012, 2016; Bineli-Betsi and Lentz, 2011; Allan et al., 2013) and 

exploration has been active in this area for over 80 years. It was originally prospected by 

P.F. Guder in 1930 and in 1968 Yukon Revenue Mines Ltd. laid the first claim. The 

property underwent exploration and was owned by multiple individuals and companies 

over the past 50 years (Northern Freegold Ltd., 2015). In 2006, Northern Freegold 

Resources Corp. (now Triumph Gold Corp.) purchased the property and its claim rights 

and continued exploration drilling until 2012, and again in 2017-2018 (Northern Freegold 

Resources Ltd., 2015). 

2.4 Deposit-scale geology  

The Revenue occurrence is largely hosted by a medium-grained, equigranular to 

weakly porphyritic, melanocratic, biotite-hornblende granite (herein termed Revenue 

granite) of the Dawson Range batholith, dated to 102.5±0.6 Ma (Bineli-Betsi et al., 2016; 

Northern Freegold Resources Ltd., 2017; Friend et al., 2018). On the its margin the granite 

is melanocratic, contains gneissic to schistose xenoliths, and is discontinuously altered to a 
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phyllic mineral assemblage (Northern Freegold Resources Ltd., 2015). The Revenue 

granite hosts a felsic to intermediate, pyroclastic volcanic pipe (herein termed the Revenue 

diatreme) that has been dated to ~75 Ma and east-west striking quartz-feldspar porphyry 

(QFP) dykes (Bineli-Betsi et al., 2016; Northern Freegold Resources Ltd., 2017). Two other 

granitoids, a medium-grained, equigranular leucogranite and a foliated to non-foliated, 

locally porphyritic, fine-grained leucogranite, occur in the area but do not appear to be 

genetically or spatially associated with mineralization (Bineli-Betsi et al., 2016).  

East-west trending porphyritic dykes crosscut the Revenue granite and the fine-

grained felsic granite that hosts the Nucleus occurrence (Bineli-Betsi and Lentz, 2011). 

These dyke swarms have attributed the dykes to the Casino plutonic suite (Fig. 2) and dated 

to 76-75 Ma (Allan et al., 2013; Bineli-Betsi et al., 2016; Friend et al., 2018) and may be 

spatially associated with mineralization throughout the Dawson Range (Bineli-Betsi and 

Lentz, 2011). The dykes are mainly composed of quartz-feldspar porphyry, and can be 

further subdivided based on abundance of quartz phenocrysts relative to feldspar 

phenocrysts (Bineli-Betsi et al., 2011). Quartz clasts are typically rounded, and are 

sometimes referred to as “quartz eyes”. They may be strained into elongated grains. 

Feldspar crystals are euhedral and typically altered to sericite, though epidote alteration 

may also be present (Bineli-Betsi et al, 2011). Other dykes in the area include aphanitic to 

very fine-grained aplite dykes that intrude the Dawson Range batholith at the Revenue 

granite, but do not crosscut the diatreme (Northern Freegold Resources Ltd, 2017). These 

dykes are aplitic to granophyric in texture and are composed of quartz and feldspar with 

minor muscovite and biotite (Bineli-Betsi and Lentz, 2011). Locally at the Revenue 

occurrence pegmatitic quartz-feldspar dykes and pods occur that may have formed via 
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magmatic differentiation of the Revenue granite before complete crystallization (Northern 

Freegold Resources Ltd, 2017).   

3.0 Field observations and mineralization 

During the 2017 and 2018 drill programs, the location of the three aforementioned 

mineralization types were delineated in the southeast area of the Revenue property by on-

site geologists (Fig. 3A). In this region the Revenue granite host rock is a biotite-K-spar 

monzogranite with K-spar porphyrocrysts, and contains rare pyrite-calcite stringers. Within 

the Revenue granite, a SW-NE-oriented mineralized body (herein termed the “Blue Sky 

Zone” or “BSZ”) contains zoned mineralization and alteration. The BSZ hosts the first style 

of mineralization (style 1) which is further divided into i) early quartz-sulfide veins and 

vein stockwork (early style 1) associated with intense potassic (biotite) alteration (Fig. 3B) 

and ii) late quartz-carbonate-sulfide veins and vein stockwork (late style 1) associated with 

phyllic alteration that cross-cuts early style 1 mineralization, and is located in the northeast 

region of the Revenue granite (Figs. 3A,B).  

In the Revenue granite, a breccia (herein termed the “WAu” breccia) consisting of 

angular clasts of the Revenue granite and fragments of QFP dykes in a quartz-sulfide 

matrix, with localized areas of massive sulfide or sulfide-carbonate matrix, near the south-

east edge of the Revenue diatreme (Fig. 3). This breccia body has been This breccia hosts 

the second style of mineralization (style 2) comprising of sulfides and tungstates in the 

interstices to rock fragments.  

The third style of mineralization (style 3; sulfide replacement) is hosted in the 

Revenue diatreme, interpreted to belong to the Casino suite and dated to 77 - 75 Ma (Friend 

et al., 2018) and crosscuts Revenue granite (Figs. 3A,B).  The Revenue diatreme is 
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composed of subvolcanic rock with a porphyritic texture of quartz and feldspar crystals in 

an aphanitic to visibly fine-grained, light grey groundmass. Local hydrothermal breccias 

overprint the diatreme within 30 meters of the diatreme margins, and sulfides occur 

interstitial to rounded diatreme fragments.  
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Figure 3. Aerial view and conceptual diagram of the Revenue mineral occurrence. A) 

Aerial view of the defined mineralized occurrences at the eastern Revenue property. The 

elongated yellow ellipse represents the general boundaries of the Blue Sky Zone (BSZ), 

with the early style 1 mineralization occurring in the SW end and the late style 1 

mineralization occurring NE. The WAu breccia, outlined in blue, crosscuts the BSZ. The 

Revenue diatreme mineralization, outlined in red, occurs near the contact of the diatreme 

body and the surrounding host rocks. This diatreme overhangs the WAu breccia as the body 

of the diatreme is dipping WNW (T. Barresi, communication, 2018). A transect X-Y shows 

the location of image B. B) Corresponding conceptual schematic of transect X-Y based on 

current information, adapted from internal publications of Triumph Gold Corp. (2018). 

Styles of mineralization correspond to spatial zones shown in A. Also shown are QFP 

dykes, which are pre- to syn- WAu Breccia. The brown patches represent biotite alteration 

in the BSZ. The blue patch represents phyllic alteration of the BSZ. The boxes are labelled 

one through seven and represent areas of sample collection, with some areas representing 

multiple samples, see section 5.1. Not drawn to scale. 
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4.0 Field and analytical methods 

4.1 Sampling 

Thirty-two samples of drill core were collected from seven drill holes. These 

samples are representative of key host rock types, mineralization and/or alteration styles 

(Table 1; see Fig. 3 for sample locations). Samples were cut into blocks at Saint Mary’s 

University and sent to Vancouver Petrographics Ltd. for preparation of polished thin 

sections (26 x 46 mm; 30 µm thick). Of these, 14 thin sections were further deemed 

representative of mineralization styles and underwent detailed petrographic analysis (see 

section 5.1).  
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Table 1. Sample descriptions including mineralization type, location, alteration, and assay data. 

Host Rock Sample Drill Hole Depth (m) Representative Area Mineralization style Assays (ppm) Mineralization and alteration

RG-1 RVD17-01 157.55 - 157.58 Least altered granite Barren 0.041 Au, 169 Cu, 0 Mo Disseminated sulfides, occasional carbonate-sulfide veinlets in 

weak phyllic alteration.

E-BSZ-1 RVD17-12 405.69 - 405.78 SW Blue Sky Zone Early style 1 0.024 Au, 211 Cu, 2 Mo Sulfide stringers along biotite veins and quartz veins. Biotite veins 

are crosscut by quartz veins. 

E-BSZ-2 RVD17-12 405.96 - 405.99 SW Blue Sky Zone Early style 1 0.09 Au, 334 Cu, 35 Mo Disseminated sulfides in a dense biotite stockwork.

L-BSZ-1 RVD17-13 126.54 - 126.585 NE Blue Sky Zone Late style 1 0.45 Au, 4300 Cu, 224 Mo Phyllic altered granite with sulfide stringers crosscut and offset by 

quartz-sulfide veins, occasional quartz-sulfide±molybdenite 

veins.

L-BSZ-2 RVD17-13 180.65 - 180.70 NE Blue Sky Zone Late style 1 0.024 Au, 220 Cu, 1 Mo Phyllic altered granite carbonate-quartz-sulfide vein with chlorite 

and K-feldspar halo, crosscutting pyrite stringers. 

L-BSZ-3 RVD17-13 186.205 - 186.235 NE Blue Sky Zone Late style 1 0.101 Au, 188 Cu, 11 Mo Dense potassic altered area near aplite dyke with barren quartz 

veins and biotite selvages cross-cut by quartz-sulfide veins.

WAu-1 RVD11-028 231.92 - 231.955 Quartz-sulfide breccia Style 2 0.184 Au, 1485 Cu, 2110 Mo Phyllic altered breccia with coarse-grained aggregates of 

chalcopyrite-pyrite in quartz matrix.

WAu-2 RVD11-028 212.105 - 212.13 Quartz-sulfide breccia Style 2 0.479 Au, 2970 Cu, 3340 Mo Localized area of massive chalcopyrite-pyrite-molybdenite 

matrix in breccia. Molybdenite mantles granite fragments and 

anhedral grains of scheelite-ferberite occur in the matrix.

WAu-3 RVD11-028 244.32 - 244.35 Massive sulfide breccia Style 2 0.368 Au, 1795 Cu, 669 Mo Fe-carbonate-altered fragments of granite and QFP with barren 

quartz veins crosscutting the clast of QFP. Fine-grained pyrite-

quartz-chalcopyrite matrix, molybdenite disseminated and 

mantling rock fragments. Ocassional subhedral to anhedral black 

sphalerite. 

WAu-4 RVD11-028 241.57 - 241.605 Sulfide-carbonate breccia Style 2 2.01 Au, 14500 Cu, 1060 Mo Localized area of massive galena blades in a Fe-carboante 

altered matrix within breccia.

RD-1 RVD17-10 98.17 - 98.21 Least altered diatreme rock Barren 0.059 Au, 209 Cu, 27 Mo Phyllic altered, cement-beige matrix with feldspar and  quartz 

clasts and disseminated sulfide.

RD-2 RVD17-10 348.38 - 348.41 Near diatreme-granite 

contact

Style 3 0.268 Au, 612 Cu, 80 Mo Phyllic altered diatreme-fragmented breccia with replacement 

texure sulfides. Located ~5 m from contact with granite. 

QFP-1 RVD17-12 60.52 - 60.56 Least altered dyke Barren 0.101 Au, 918 Cu, 71 Mo Medium grey-tan coloured matrix with phenocrysts (~0.1 - 0.5 

cm) of weakly altered feldspars and disseminated sulfide. 

QFP-2 RVD17-01 332.05 - 332.08 Phyllic altered dyke Barren 0.141 Au, 1040 Cu, 195 Mo Phyllic altered dyke with a zoned feldspar phenocryst, including 

pyrite grains. Disseminated sulfides in the matrix.

Revenue 

granite

Revenue 

diatreme

Quartz-

feldspar 

porphyry 

dykes
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4.2 Petrography  

Mineral identification and textural analysis was done using a petrographic 

microscope in transmitted and reflected light, in conjunction with the use of 

photomicrograph capture software. High resolution imaging and mineral identification of 

optically-ambiguous phases, and semi-quantitative analysis of major and minor elements 

in minerals was done using SEM back-scattered electron (BSE) imaging and energy 

dispersive spectroscopy (EDS), respectively. The instrument used was a TESCAN MIRA 

3 LMU VPS Field Emission Scanning Electron Microscope (SEM), equipped with an 

energy dispersive X-ray (EDS) Oxford INCA 80 mm2 silicon drift detector (SDD) capable 

of near-quantitative analysis (Saint Mary’s University, Halifax, Nova Scotia). The 

accelerating voltage was set at 20 kV, working distance to 17 mm, and EDS specta 

acquisition times to 30 seconds. The exception was sphalerite for which spectra were 

collected for 2 minutes to resolve minor concentrations of Cd, In, and Sn. Data reduction 

was done using INCA software. Compositional data reported for minerals is expressed in 

weight percent of all elements for sulfide, tungstate, and ore minerals and weight percent 

of oxides for silicates, oxides, carbonates and phosphate minerals with a detection limit of 

> 0.1 wt%.  Data was adjusted for carbon in carbonates as the carbon-coating on slides 

resulted in an overestimation of carbon content.  

4.3 Electron microprobe analysis (EMPA) 

The composition of sulfide and sulfarsenide minerals was determined for the 

purpose of constraining mineralization conditions using well-established 

thermobarometers. This required wavelength dispersive spectrometry using an electron 
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microprobe analyser (EMPA). Analyses of the sulfarsenide glaucodot ((Co0.75,Fe0.25)AsS) 

(n = 11) were performed on a JEOL JXA8200 electron microprobe at Dalhousie University, 

Halifax, Nova Scotia, using a focused beam operating at an accelerating voltage of 15 kV, 

a beam current of 20 nA, with a spot size of 1 µm. Counting times for analyses were 10s 

on each background and 20s on peaks. Samples were analyzed for S, Fe, Co, Ni, Zn, As, 

Cu, Pb, and Si using the following standards to calibrate sensitives and for peak positioning: 

pyrite (S), pyrrhotite (Po), cobaltite (Co), pentlandite (Ni), sphalerite (Zn), arsenopyrite 

(As), chalcopyrite (Cu), galena (Pb), and sanidine (Si).  

Analyses of sphalerite (n = 24), pyrite (n = 48), and pyrrhotite (n = 6), chalcopyrite (n = 6), 

and arsenopyrite (n = 21) were obtained using a JEOL JXA8230 EMPA at University of 

Toronto, Toronto, Ontario. For sphalerite, pyrite, pyrrhotite and chalcopyrite, analyses 

were performed at an accelerating voltage of 20 kV, a beam current of 20 nA, and a spot 

size of 1 µm. For pyrite-arsenopyrite pairs an accelerating voltage of 15kV was used, 

together with a beam current of 5nA, and a spot size of 1µm. Spectral counting times were 

20s (on-peak) with 10s background (off-peak) for Fe, Cu, Zn, S, and In and 40s (on-peak) 

with a 20s background (off-peak) for As, Si, Co, Ni, Pb, Sn, and Cd. Standards for 

calibration and quantification used were synthetic FeS (Fe, Kα), chalcopyrite (Cu; Kα), 

arsenopyrite (As, Lα), PbZnGlass (Si, Kα), sphalerite (Zn, Kα; S, Kα), cobaltite (Co, Kα), 

pentlandite1 (Ni, Kα), SnS (Sn, Lα), CdS (Cd, Lα), and In2Se3 (In, Lα).  

4.4 Laser ablation inductively coupled mass spectrometry (LA-ICP-MS) 

 Pyrite, pyrrhotite, and chalcopyrite trace element compositions (n = 16, n = 13, n = 

9, respectively) were determined by LA-ICP-MS at the University of New Brunswick, 

Fredericton, New Brunswick. The instrument used was a Resonetics M-50 193 nm Ar-F 
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Excimer laser system connected via nylon tubing to an Agilent 7700x quadrupole ICP-MS 

with dual external rotary pumps (McFarlane and Luo, 2012). A Laurin Technic Pty sample 

cell was used to hold samples and standards. The cell was repeatedly evacuated and 

backfilled with ultra-pure He between sample exchanges in order to remove all air from the 

cells before analysis. Measurements involved 30 seconds of gas blank followed by 30 

seconds of transient signal of the sulfide using a 24 μm laser spot size, a 3 Hz repetition 

rate, and a laser power regulated to produce a fluence of ~3 J/cm2 at the sample surface 

during ablation. Ablated material was transported in a He carrier gas at a flow rate of 300 

mL/min through the cell, mixed with N2 at 2 mL/min to enhance some analyte sensitivities, 

and Ar make-up gas at a flow rate of 930 mL/min before arriving at the ICP-torch. Oxide 

production rate was maintained at < 0.3%. Dwell times for all isotopes was 10 ms with the 

exception of Ag, Pt, and Pd which were increased to 50 ms. Internal standardization 

required ideal Fe content of each mineral (30.43 wt% Fe in chalcopyrite, 46.55 wt% Fe in 

pyrite, 62.33 wt% Fe in pyrrhotite) for quantification. Calibration was done using MASS1 

as the standard with NIT610 as a secondary standard. See Appendix 3 for additional isotope 

and calibration information. 

4.5 Semi-quantitative fluid inclusion microthermometry 

 Fluid inclusions from the WAu breccia and late BSZ areas were used to provide 

minimum temperatures of mineralization by estimating halite total crystal area in three 

phased fluid inclusions in order to compare and constrain temperatures obtain from sulfide 

thermometry methods. This was done using an experimentally determined relationship 

between halite area and weight percent NaCl equivalent (wt% eqNaCl). Halite area was 

measured using Image J whereby total fluid inclusion and halite crystal areas were traced 
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and measured graphically. Uncertainty is up to ±5 area % which reflects inaccuracies in 

relating halite crystal and inclusion area to halite crystal and inclusion volume for non-

isometric, non-spherical shapes. Area % halite measurements were converted into salinities 

using the equation: NaCl wt% equivalent = 10.903(area % halite)0.4793 at 25ºC (J. Hanley, 

personal communication 2019). Once bulk salinities were estimated the equivalent Ts of 

halite dissolution were determined using equations of state from Bodnar and Vityk (1995). 

Total variations of ±35 – 40ºC are associated with this approach, based on area to volume 

under or overestimations, tracing errors, and volume-salinity conversions.  

4.6 Infrared spectroscopy (IR) 

Thirteen samples were analyzed using a TerraSpec 3 infrared reflectance 

spectroscope equipped with a 6.5W, 10 mm, ASD Hi-bright contact probe. Spectra were 

constructed using ASD RS3 software. Calibration was conducted using a fluoropolymer 

“Spectralon” white reference standard to create a reflectance reference for spectral 

comparison. Spectrum averaging during referencing occurred as 60 readings for the white 

reference and dark current. A muscovite control standard with a known spectrum was 

analyzed after calibration and at the end of each sample sequence to ensure the instrument 

was recording data properly and consistently. Samples were analyzed in 10-minute blocks 

whereby samples were placed upon a clean, white sheet of paper and were analyzed 

consecutively three times in three second intervals on one or more surfaces of the sample. 

Raw data from ASD RS3 were processed using the ViewSpecPro software. Clay minerals 

in each sample were identified by comparing absorption bands and hull characteristics in 

average or ideal spectral features in the ADS spectral library database. 
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5.0 Results 

5.1 Core sample petrography 

The following list describes the studied samples and is organized according to host 

lithology: 

i) Revenue granite containing style 1 mineralization of the Blue Sky Zone (BSZ) 

Sample RG-1 was collected near the south-eastern flank of the diatreme and 

represents the least altered Revenue granite in the area (area 1 of Fig. 3B). It contains 

quartz-plagioclase-K-feldspar-biotite (Fig. 4A) and shows weak alteration of K-spar to 

white clays. Disseminated sulfides and rare calcite-sulfide stringers are also present. 

Samples E-BSZ-1 and E-BSZ-2 were chosen to represent the early style 1 mineralization 

of the BSZ stockwork, located ~650 m from late style 1 mineralization (area 2 on Fig. 3B). 

These samples contain disseminated sulfides and quartz-sulfide veins with potassic (biotite) 

altered margins and biotite veins (Figs. 4B,C). Samples L-BSZ-1, L-BSZ-2, and L-BSZ-3 

were chosen to represent late style 1 mineralization of the BSZ. This style of mineralization 

is associated with quartz-sulfide±carbonate veins and associate phyllic alteration (Fig. 4D) 

that crosscut and overprint earlier, style 1 mineralization. Sample L-BSZ-1 is representative 

of late style 1 quartz-sulfide veins and associated phyllic overprinting of the wallrock (Fig. 

4D). Local pyrite-carbonate stringers also occur in this area and are crosscut by quartz-

carbonate-sulfide and quartz-molybdenite veins (Fig. 4D). Samples L-BSZ-2 contains 

carbonate-quartz-sulfide veins hosted in a phyllic-altered granite (Fig. 4E). L-BSZ-3 is 

from a strongly biotite-altered granite with quartz-sulfide veins, which crosscut barren 

quartz veins and aplite plugs in the area (Fig. F). The late style 1 mineralization is 

represented by sample area 3 on Figure 3B. 
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Figure 4. Revenue granite core samples showing representative host rocks and 

mineralization. A) The Revenue granite, the host rock of the Revenue deposit, crosscut by 

a calcite-pyrite vein of the Blue Sky Zone style 1 mineralization. B) Early BSZ biotite 

alteration and stringers with quartz-pyrite veining. C) Early BSZ biotite alteration and 

disseminated pyrite-pyrrhotite with biotite stringers crosscut by a quartz-pyrite vein. D) 

Late BSZ with beige phyllic alteration, quartz-chalcopyrite-pyrite veins, quartz-

chalcopyrite patches, and quartz-molybdenite-chalcopyrite-pyrite veins. E) Dolomite 

infilling brecciated chalcopyrite-pyrite-quartz-molybdenite vein in the late BSZ. F) Within 

the same area of G, dense biotite alteration is crosscut by a barren quartz vein (1 - 2cm), 

which itself is crosscut and displaced by a quartz-pyrite-chalcopyrite vein (1.5cm). In both 

G and H, late dolomite stringers cross-cut features parallel to core. Sample numbers are in 

bottom left-hand corner. See Appendix 1 for list of mineral abbreviations. 
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ii) Quartz-feldspar porphyry (QFP) dykes 

Samples QFP-1 and QFP-2 represent the QFP dykes that crosscut the Revenue 

granite, Blue Sky Zone, and the WAu breccia. Sample QFP-1 represents the least altered 

dyke. It is composed of a fine-grained, grey groundmass containing phyllic-altered feldspar 

phenocrysts (0.2 - 0.7 cm) and quartz eyes (0.2 - 0.5 cm). Dendritic, fine-grained pyrite is 

disseminated throughout the sample (Fig. 5A). Sample QFP-2 was collected from a QFP 

dyke that crosscuts the Revenue granite. The dyke is porphyritic with weak phyllic 

alteration of K-feldspar phenocrysts (0.5 - 1.8 cm) and quartz eyes (0.2 - 0.9 cm) in a 

groundmass also showing phyllic alteration of feldspar. Mineralization occurs as 

disseminated pyrite (Fig. 5B). The QFP samples are represented by sample area 4 in Figure 

3B. 

 

 

 

 

 

 

 

 

 

 



24 

 

 

Figure 5. QFP core samples showing representative alteration. A) Grey-tan colored QFP 

with patches of dendritic pyrite, clay-altered K-feldspar phenocrysts and disseminated, 

fine-grain pyrite clusters. B) Strongly phyllic-altered QFP, with zoned K-feldspar 

phenocrysts containing pyrite inclusions and fine-grained molybdenite is disseminated in 

QFP groundmass. Sample numbers are in bottom left-hand corner.  
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iii) WAu Breccia 

Samples WAu-1, WAu-2, WAu-3, and WAu-4 were collected from variably high 

grade (1500 to 14500 ppm Cu, 184 to 2010 ppb Au, 23 to 8290 ppm Pb; Table 1) domains 

of the WAu breccia, and represent style 2 mineralization. Samples WAu-1, WAu-2, and 

WAu-3 contain coarse-grained, disseminated sulfides (chalcopyrite, pyrite, molybdenite) 

in a quartz matrix between clasts (< 10 cm) of phyllic-altered granite (Fig. 6A) and QFP 

fragments (Fig. 6B). Clasts of QFP may contain earlier, barren quartz veins (Fig. 6B). 

Sample WAu-4 represents a localized area of the breccia that contains massive sulfide-

carbonate matrix comprised of coarse-grained galena with massive pyrrhotite and abundant 

QFP clasts (Figs. 6C,D). These samples are represented by area 5 in Figure 3B. 
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Figure 6. WAu breccia core samples showing representative mineralization. A) 

Representative WAu breccia quartz-sulfide matrix, with clasts of phyllic altered Revenue 

granite. Pyrite is fine-grained and occurs in grey-black clots. B) WAu breccia with clasts 

of phyllic altered QFP and Revenue granite in a matrix of quartz-pyrite-molybdenite-

chalcopyrite±sphalerite. A barren quartz vein crosscuts the QFP clast. C) Localized area of 

WAu breccia containing sulfide matrix, dominantly pyrite-chalcopyrite with larger 

sphalerite grains. Fe-carbonate locally occurs in the matrix. D) Localized area of massive 

sulfide matrix comprising of coarse-grained bladed galena, surrounded by feathery textured 

Fe-carbonate. Chalcopyrite is present and contains inclusions of scheelite-ferberite. QFP 

clasts have chilled margins. Sample numbers are in bottom left-hand corner. 
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iv) Revenue diatreme 

Two samples, RD-1 and RD-2, where chosen from the mineralization style 3 

location of the Revenue diatreme. Sample RD-1 is representative of the least-altered 

diatreme, and consists of fine-grained, tan-beige-coloured matrix, containing weakly to 

moderately phyllic-altered feldspar clasts (< 2.5 cm) (Fig. 7A) and disseminated, euhedral 

pyrite crystals (Fig. 7A). This sample is represented by sample area 6 in Figure 3B. Sample 

RD-2 is comprised of brecciated diatreme with strong phyllic alteration, located ~5 meters 

from the contact with the Revenue granite. This breccia consists of rounded clasts of 

diatreme material (0.2 - 4.5 cm) with sulfides showing dendritic replacement textures (Fig. 

7B), or occurring interstitial to the clasts (Fig. 7C). Samples RD-1 and RD-2 are represented 

by sample area 7 in Figure 3B.  
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Figure 7. Revenue diatreme core samples showing representative host rocks and 

mineralization. A) Representative texture of the beige-coloured Revenue Diatreme 

containing disseminated fine-grained pyrite in sample RD-1. K-feldspar is altered to clay. 

B) An area ~10 meters from sample RD-2, where chalcopyrite and pyrite occurring as 

dendrites that replace the diatreme material. C) Chalcopyrite and pyrite with trace sphalerite 

interstitial to diatreme clasts.  
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5.2 Thin section petrography 

5.2.1 Revenue granite  

The least-altered Revenue granite (sample RG-1) is a medium- to coarse-grained, 

melanocratic monzogranite (Fig 5a). The granite is predominantly comprised of plagioclase 

(~35 vol%), quartz (25%), K-feldspar (25%), and biotite (15%). Plagioclase (1.4 - 4.3 mm) 

is pitted and partially altered to fine-grained biotite and clays that measure < 3 µm (Fig. 

8A). Quartz (~0.7 - 1.4 mm) occurs as anhedral coarse-grained crystals in polycrystalline 

patches (< 7 mm) with diffuse grain boundaries (Qtz-(i); Fig. 9A). K-feldspar is 

phenocrystic (< 1.4 cm) (Fig. 8A), pitted, and weakly altered to fine-grained biotite and 

clay minerals. Primary biotite laths (< 2.1 mm) are reddish tan in colour and show no 

consistent orientation (Fig. 8B). Accessory minerals apatite (< 150 µm), allanite (< 35 µm 

inclusions, < 640 µm crystals), and trace zircon (~50 µm) typically occur interstitial to the 

major minerals or near potassium alteration.  

Sulfide within the granite includes pyrrhotite, chalcopyrite, and pyrite that account 

for < 1 modal% (0.5% pyrrhotite, 0.1% chalcopyrite, trace pyrite) of the granite. Anhedral 

pyrrhotite (65 - 320 μm) is disseminated and shares grain boundaries with chalcopyrite (70 

- 250 μm) (Fig. 8C,D). Pyrite occurs as trace subhedral disseminated crystals (20 μm), 

veins, overgrowths on pyrrhotite (Fig. 8E) and masses. Rutile is uncommon in this 

assemblage, but may occur locally as anhedral blebs (165 μm) with pyrrhotite in K-feldspar 

or with ilmenite (Fig. 8C). Alteration minerals include fine-grained biotite, chlorite, clay, 

calcite, and trace titanite. Fine-grained biotite (< 3 - 20 μm) occurs in areas associated with 

sulfides (Fig 8D). Chlorite occurs as a pseudomorphic alteration of biotite (Fig. 8F,G), as 

anhedral blebs (15 - 110 µm) disseminated throughout alkali-feldspars, and as laths along 
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the edges of sulfides in veins. Anhedral rutile (< 50 µm) and titanite (< 10 µm) may form 

in chlorite-altered biotite grains (Fig. 8F). Calcite (< 5 - 20 µm) is associated with sulfides 

(Fig G,H) and may mantle massive sulfides in fractures within feldspar and quartz crystals 

(Fig. 8E).  
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Figure 8. Primary minerals and sulfide mineral assemblages of the least altered granite 

(sample RG-1). A) Revenue granite plagioclase, K-feldspar, and quartz (i) grains with 

secondary biotite interstitial, taken by cross-polarized light (XPL). B) Primary biotite laths 

with no specific orientation. C) A chalcopyrite dissemination partially surrounded by 

pyrrhotite and altered to rutile-ilmenite taken by reflected light (RL). D) Disseminated 

pyrrhotite with fine-grained biotite and euhedral apatite. Biotite is altered to chlorite. Image 

taken by BSE. E) Massive pyrrhotite and chalcopyrite mantled by pyrite and calcite with 

minor chlorite, taken by RL. F) Mineralization associated alteration of fine-grained biotite 

and apatite altered to chlorite and rutile, with rare titanite, taken by BSE. G) Primary biotite 

pseudomorphically altered to chlorite, with pyrrhotite, and rutile, taken by plane-polarized 

light (PPL). H) XPL image of E showing later calcite surrounding pyrrhotite.   
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Figure 9. Three texturally distinct quartz generations throughout the Revenue occurrence 

identified in XPL. A) Sample RG-1 quartz (i), where individual grains show undulose 

extinction, and grain boundaries are diffuse. B) Sample E-BSZ-2 quartz (ii) as a mosaic 

texture in cross-polarized light, grains have clear boundaries. C) Sample E-BSZ-1 quartz 

(iii), where crystals are fine-grained and boundaries are not clear.  
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5.2.2 Early style 1 mineralization, Blue Sky Zone  

Early style 1 mineralization in the Blue Sky Zone is represented by samples E-BSZ-

1 and E-BSZ-2. Mineralization is characterized by an assemblage of pyrrhotite, 

chalcopyrite, pyrite, marcasite, sphalerite and that typically occur along the margins of 

quartz (ii and iii) veins (Figs. 10A,B), with or without biotite, chlorite, rutile and local 

calcite (Figs. 10A-C). This mineral assemblage is similar to that of the sulfide associated 

assemblage in the least-altered Revenue granite; although, the abundance of pyrrhotite, 

chalcopyrite, rutile, and secondary biotite is greater (2% modal volume at 1.5% pyrrhotite, 

0.5% chalcopyrite, trace pyrite and rutile). Additionally, pyrrhotite (50 - 285 μm) is locally 

altered to marcasite on its grain boundaries, and may contain inclusions of chalcopyrite (35 

- 310 μm), pyrite (50 - 320 μm), and fine-grained rutile (~25 - 140 µm) (Figs. 10D-F). 

Chalcopyrite, and occasionally pyrrhotite, rarely have trace amounts of galena (~15 µm) 

and sphalerite (~20 μm) inclusions (Fig. 10E). Rutile commonly occurs as disseminated 

fine-grained patches (< 3 μm grains, 110 - 260 μm patches; Fig. 10E), and may show 

replacement textures with ilmenite (1.0 mm; Fig. 10G) that contain microinclusions of 

monazite (< 3 µm). The associated potassic alteration mineral assemblage is similar to that 

associated with sulfide in the least altered granite (e.g., biotite, chlorite, calcite, rutile), 

though it occurs as veins with the addition of trace ilmenite and without titanite. 

Three distinct texturally generations of quartz occurs in the BSZ (Figs. 9B,C): i) 

qtz-(i) occurs as described in the pervious section and is relict of the granite host rock, ii) 

qtz-(ii) occurs as subhedral polycrystalline masses and veins (30 - 185 μm for individual 

crystals, 0.7 to 1.8 mm for patches) with well defined grain boundaries (Fig. 9B), and iii) 

anhedral and fine-grained qtz-(iii) (10 - 70 μm) that occurs within veins or on the margin 

of coarse-grained qtz (i) or qtz (ii) (Fig. 9C). 
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Figure 10. Main mineral assemblages of the BSZ early style 1 mineralization. A) Sample 

E-BSZ-1;representative mineralized quartz (ii) vein in granite showing fine-grained biotite 

alteration of feldspar grains at the vein margin (shown as red dashes) in XPL. B) Sample 

E-BSZ-1; sulfide-quartz-biotite-calcite vein with minor chlorite alteration on biotite. C) 

Sample E-BSZ-2; late calcite associated with chalcopyrite and pyrrhotite mineralization in 

quartz (ii) patches in XPL. D) Sample E-BSZ-2; disseminated pyrrhotite with minor 

marcasite alteration surrounding chalcopyrite and galena. E) Sample E-BSZ-2; pyrrhotite 

and syn to late chalcopyrite associated with minor sphalerite and anhedral rutile.  F) Sample 

E-BSZ-2; disseminated subhedral pyrite with minor sieve textures. G) Sample E-BSZ-2; 

ilmenite crystal pseudomorphically altered to rutile.  
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5.2.3 Late style 1 mineralization, Blue Sky Zone 

Late style 1 mineralization in the Blue Sky Zone is represented by samples L-BSZ-

1, L-BSZ-2, and L-BSZ-3, and consists predominately of chalcopyrite, pyrite, and 

molybdenite with minor sphalerite and galena, trace arsenopyrite, Ag-Au, and stannite, and 

argillic to phyllic alteration characterized by white clays, muscovite and dolomite-siderite. 

The sulfide minerals are hosted in quartz (ii, iii) veins and dolomite (± quartz) veins (Fig. 

11A). Both types of veins contain chalcopyrite and pyrite-marcasite as dominant sulfides 

(Figs. 10A-D) with molybdenite and subhedral to euhedral rutile (< 200µm) on the margins 

(Fig. 11B): dolomite veins contain a greater abundance of minor and trace minerals. Two 

types of pyrite occur in the veins: i) pyrite (i) occurs as smooth to pitted, subhedral to 

euhedral (< 700 µm) crystals and may surround chalcopyrite (0.15 - 3mm) and occur as 

inclusions within later pyrite (ii) (Fig. 11C), and ii) pyrite-ii occurs as masses (< 2.5 mm) 

of fine-grained anhedral grains that may exhibit pitted or coliform textures (Fig. 11C), and 

occasionally surround pyrite (i) grains. Both types of pyrite show pseudomorphic alteration 

to marcasite. Siderite (15 - 55 μm width) occurs interstitial to, and mantling, sulfide 

aggregates (Fig. 11C). Euhedral, lath-like molybdenite (30 - 40 μm) occurs lining, and 

disseminated within, the dolomite veins and may occur as inclusions within chalcopyrite 

and pyrite masses and rutile (Fig. 11E). Subhedral apatite grains (< 300 µm) occur 

disseminated or as inclusions within chalcopyrite in carbonate veins (Fig. 11F). Late stage 

1 mineralization crosscuts early style 1 mineralization and potassic alteration, and pyrite-

dolomite stringers (Fig. 11F).  

The late style 1 mineralization has higher abundances of minor and trace minerals 

in comparison with early style 1 mineralization. Sphalerite (70 - 115 μm) may occur as 

anhedral inclusions in pyrite-marcasite or chalcopyrite (< 200 µm), as “X-shaped” 
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microinclusions in chalcopyrite, and may be enriched in Sn (Fig. 11G; see Appendix 4B). 

Galena occurs as disseminated inclusions (35 - 320 μm) and may be associated with 

chalcopyrite (Fig. 11H), arsenopyrite (< 450 µm; Appendix 4B), stannite (15 µm; see 

Appendix section 9.3.2) in carbonate veins, or interstitial to pyrite (ii) in association with 

Native Au-Ag (< 5 µm; Appendix 4B). Trace amounts of silver and electrum are found 

with galena in fractures within pyrite-(i-ii) and as interstitial blebs in masses of pyrite (i)-

marcasite (Fig. 11I).  

 

 

 

 

 

 



37 

 

 

Figure 11. Main and local mineral assemblages of the BSZ late style 1 mineralization. A) 

Sample L-BSZ-2; XPL photomicrograph of representative dolomite±quartz (ii) veins 

containing chalcopyrite. B) Sample L-BSZ-1; anhedral chalcopyrite partially surrounding 

earlier pyrite and rutile. Siderite mantles chalcopyrite, and is in turn mantled by pyrite (i). 

Red arrows indicate sphalerite inclusions in chalcopyrite. C) Sample L-BSZ-3; fine-grained 

pyrite (ii) showing colliform texture in quartz-dolomite vein with early smooth textured 

pyrite (i), chalcopyrite, and disseminated rutile. D) Fine-grained pyrite (i) and anhedral 

pyrite (ii) altered to marcasite with trace pyrrhotite inclusions. Chalcopyrite and sphalerite 

occur interstitially to pyrite. E) BSE image of molybdenite mantling rutile on vein margins. 

F) BSE image of pyrite-dolomite stringer (NW-SE) cross-cut by dolomite-chalcopyrite-

apatite-rutile vein (SW-NE). G) BSE image of Sn-enriched sphalerite inclusions occurring 

within in pyrite. H) Disseminated chalcopyrite, containing early sphalerite and galena 

within dolomite and with anhedral rutile. 
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Associated phyllic-argillic alteration includes white clays, determined to be 

dominantly illite (< 50 µm) and lesser muscovite (< 125 µm) via TerraSpec® and 

petrography (Appendix 4B), and carbonate patches of fine-grained anhedral dolomite 

replaced by subhedral and local zoned siderite (< 25 μm) (Figs. 12A,B). Fine-grained (5 

μm) rutile needles or euhedral Sn-enriched rutile (Fig. 12A) and rarely fractured pyrite 

grains (~150 µm) locally occurs in this alteration assemblage. Earlier apatite crystals (< 50 

µm) are rounded, whereas later apatite crystals (< 35 µm) are euhedral (Figs. 12A,B). This 

alteration assemblage shows textural evidence of overprinting the K-alteration assemblage 

from early mineralization as remnant apatite, chlorite and euhedral rutile are concentrated 

phyllic alteration areas (Fig. 12B) where white clay pseudomorphically replaces chlorite 

and “digests” apatite (Fig. 11C).  
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Figure 12. Alteration assemblage associated with late style 1 mineralization. A) Sample L-

BSZ-2; BSE image of associated phyllic alteration, showing euhedral rutile textural 

decomposition, acicular rutile with Sn-enrichment, and both euhedral and rounded apatite. 

Earlier apatite crystals are rounded, whereas later apatite crystals are euhedral.  B) Red 

inset of A, where chlorite is altered to illite/white clays. Anhedral and partially zoned 

dolomite is altered to pseudo-cubic and zoned siderite. F) Sample L-BSZ-1; rounded apatite 

crystal is partially surrounded by pyrite and further digested by clays (indicated by red 

arrow).  
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5.2.4 Quartz-feldspar porphyry dykes 

 Quartz-feldspar porphyry (QFP) dykes are represented by samples QFP-1 and QFP-

2. They have a matrix comprising fine-grained quartz-plagioclase with phenocrystic 

fragments of plagioclase and quartz (i, ii). Plagioclase crystals (0.25 - 2 mm), typically 

oligoclase, are pitted and strongly altered by white clays (Fig. 13A), which may occur as 

inclusions within K-feldspar phenocrysts (< 1.7cm) (Fig. 13A). Round, monocrystic 

“quartz eye” grains (~450 µm - 2 mm) are commonly disseminated throughout groundmass.  

Relatively unaltered QFP (QFP-1) contains a disseminated sulfide mineral 

assemblage of predominantly pyrrhotite (25 - 350 µm) that may contain inclusions of 

pyrite-marcasite (50 to 175 µm), anhedral rutile (60 - 140 µm), and chalcopyrite (25 - 175 

µm) (Fig. 13B). Chalcopyrite occurs in equilibrium with trace amounts of sphalerite. These 

pyrrhotite-chalcopyrite-rutile clusters are often associated with a halo of quartz (ii), 

anhedral calcite (20 - 50 µm), and fine-grained biotite grains (< 55 µm) that 

pseudomorphically altered to chlorite and rutile (Fig. 13C).  

Phyllic altered QFP (QFP-2) mineralization is dominantly disseminated, coarse-

grained subhedral pitted grains pyrite (> 450 µm) that contain inclusions of pyrrhotite (< 

10 µm; Fig. 13D). Quartz (ii)-dolomite veins (Figs. 13E,F), similar to those of the late stage 

1, containing molybdenite (40 - 120 µm) with subhedral rutile (< 5 - 70 µm), chalcopyrite, 

and subhedral apatite (10 - 100 µm), from the BSZ mineral assemblage were also observed. 

This mineral assemblage also occurs disseminated throughout the matrix. In altered K-

feldspar phenocrysts, pyrite occurs as anhedral masses (30 - 350µm) that are mantled by 

subhedral to euhedral arsenopyrite (< 5 µm) (Fig. 13G) and associated with Fe-dolomite (< 

400 µm) and chalcopyrite (< 100 µm). The associated alteration assemblage includes Fe-
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dolomite, which occurs as patches (750 µm) with fibrous white clays on the edges (Fig 

13E), or as fine-grained, “dirty” texture when lining quartz-ii veinlets (Figs. 13H,I).  
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Figure 13. Mineralization of the QFP dykes. A) Cross polarized, representative image of 

clay-altered feldspars grains in least-altered QFP groundmass. B) Disseminated 

mineralization where early pyrite (i) is partially surrounded by pyrrhotite and chalcopyrite 

with trace sphalerite in the least-altered QFP. Anhedral, fine-grained rutile may occur near 

edges. Marcasite alters the edges of pyrrhotite or earlier pyrite. C) BSE image of 

disseminated pyrrhotite with marcasite alteration, associated with calcite, fine-grained 

rutile, chlorite, and apatite in the least-altered QFP. D) BSE image of subhedral cubic pyrite 

and molybdenite grains disseminated within the phyllic-altered QFP. E) Quartz-carbonate-

sulfide veining in the phyllic-altered QFP crosscutting a quartz-eye. F) Red inset of E, 

where quartz (i-ii) is overprinted by fine-grained dolomite and clays on the margins. G) 

BSE image of euhedral arsenopyrite overgrowths on pyrite within a K-feldspar grain. H) 

BSE image of apatite associated with chalcopyrite, molybdenite, and rutile. I) BSE image 

of early rutile overprinted by molybdenite in a carbonate alteration patch.  
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5.2.5 Style 2 mineralization, WAu breccia  

The WAu breccia, which hosts style 2 mineralization, is a breccia containing a 

variable matrix from quartz- to sulfide- dominate with local carbonate supporting angular 

clasts of granite and QFP.  Mineralization style 2 is mineralogically complex, containing 

pyrite (i,ii), chalcopyrite, molybdenite, with local scheelite-ferberite, pyrrhotite, galena±Bi, 

and electrum,  and is commonly associated with phyllic and siderite-rutile alteration. In the 

quartz matrix, mineralization typically includes sub to euhedral pyrite (i) grains (10 - ~125 

µm), chalcopyrite (0.04 - 2.5 mm) and fine-grained pyrite (ii) (Fig. 14A). Chalcopyrite 

occurs as inclusions (~70 μm) within the pyrite (i,ii), interstitial (3 - 20 μm) to pyrite (i), or 

along the margins of breccia clasts (Fig. 13a). Pyrite (ii) typically has a coliform texture 

with sub to euhedral pyrite (i) crystals on its margin (5 - 50 μm) (Fig. 14A). Molybdenite 

laths (< 140 μm), may occur as inclusions within chalcopyrite and pyrite (ii) (Figs. 14A,B).  

Trace glaucodot (5 - 30 μm width) lines the edges of these fine-grained pyrite (ii)-siderite 

masses (Fig. 14B). Chalcopyrite (10 - 30 μm), molybdenite (10 - 25 μm), anhedral to 

subhedral W-zoned rutile (~30 μm), and local anhedral sphalerite (~15 μm) occur as 

disseminated grains in the quartz matrix and in localized areas of carbonate matrix (Fig. 

14C). These minerals may be disseminated as individual crystals or as clusters in the quartz 

matrix.  
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Figure 14. Main and local mineral assemblages of the WAu breccia style 2 mineralization. 

A) Colloform pyrite (ii) that partially or completely surrounds pyrite (i), chalcopyrite, and 

molybdenite. B) BSE image of pyrite (ii) aggregate with interstitial siderite and larger 

euhedral pyrite (i) on edges, later rimmed by glaucodot. C) SEM image of disseminated 

molybdenite, chalcopyrite, sphalerite, and rutile ± pyrite in a dolomite-siderite and K-

feldspar matrix. D) Massive ferberite-scheelite infilled by siderite and mantled by 

chalcopyrite, pyrite (i) and late coliform pyrite (ii). E) Early ferberite “islands” showing 

replacement by scheelite. Chalcopyrite, molybdenite and galena grains occur as inclusions 

in ferbite. F) Local massive chalcopyrite with pyrrhotite, pyrite, and minor glaucodot 

inclusions and interstitial siderite. G) BSE image of red inset in F showing euhedral 

glaucodot and small sphalerite inclusions in chalcopyrite and pyrrhotite. Pyrite infills 

fractures in pyrrhotite masses. H) Massive pyrrhotite, with sphalerite inclusions, adjacent 

to massive open-space filling pyrite (ii). Hematite and siderite occur in interstitial spaces. 

I) Subhedral sphalerite with Sn enrichments adjacent to pyrite (i) and pyrrhotite, occurring 

in same region of image 13H.  
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In local areas, massive sulfides dominate the matrix with local masses of dark grey 

coloured Fe-rich tungstate minerals (1.4 - 2.8 mm). The tungstate includes patches of 

anhedral to subhedral ferberite crystals (< 50 µm) that are replaced by scheelite (Figs. 

14D,E). Smaller anhedral grains of chalcopyrite (35 to 140 μm), euhedral quartz grains (40 

μm), fine-grained molybdenite (~30 µm) and galena (~40 μm) may occur as inclusions 

within the ferberite-scheelite aggregates (Figs. 14E,F). Euhedral siderite (15 - 40 μm) infills 

voids (Fig. 14E). The tungstate may be partially mantled by chalcopyrite and siderite with 

minor amounts of sphalerite (8 - 170 μm), and further surrounded by pyrite (ii) and pyrite 

(ii) masses (Fig. 14D).  

Locally, the sulfide matrix in the sulfide breccia is dominated by anhedral 

chalcopyrite (< 2.5 cm) with inclusions of pyrrhotite (140 - 830 μm), rarely pyrite (< 615 

μm), associated with siderite (40 - 260 μm; Fig. 14F). Chalcopyrite and pyrrhotite contain 

inclusions of euhedral grains of glaucodot (15 - 85 μm) and anhedral sphalerite (5 - 50 μm) 

(Figs. 14F,G). Pyrrhotite clots may contain inclusions of pyrite and rutile fracture infills 

(~5 μm in width) (Fig. 14G). This assemblage is spatially adjacent to areas of massive, 

open-space textured pyrite (i) (~2.1 mm)  and massive pyrrhotite (70 - 885 μm) with 

inclusions of chalcopyrite (35 - 215 μm) and occasionally Sn-rich sphalerite (< 65 µm) 

(Fig. 14H). Hexagonal to acicular hematite (35 - 85 μm) forms in between bands and grains 

of pyrite with siderite infilling the remaining space (see Appendix 4D). Trace assemblage 

of uraninite-zircon-barite-rutile-pyrite occur in areas of the K-feldspar-carbonate-quartz 

matrix (see Appendix 4D).  

In other localized areas within the sulfide breccia, coarse-grained galena blades ± 

Bi-Te (75 - 780 μm) occur with native Au (400 μm) and local calcite (Figs. 15A,B). 

Euhedral red sphalerite (~80 μm) containing chalcopyrite inclusions occurs interstitial 
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galena blades and coarse-grained white clays (~150 μm) surround the aggregate of minerals 

(Fig. 15C). Relict galena (0.15 - 2 mm) also occurs with massive pyrite (ii) (< 1.7mm) (Fig. 

15D) with trace amounts of chalcopyrite (~50 µm) and molybdenite (~40 µm) spatially 

associated in the siderite matrix. This assemblage was observed in sample WAu-4.  

The associated alteration assemblage occurring in the wall-rock clasts is comprised 

of pervasive fine-grained, brown-stained white clay (< 5µm), determined to be illite with 

the use of a TerraSpec3® infrared spectrometer, fine-grained brown-stained siderite grains 

(~15 μm) with Mg-rich core, euhedral to subhedral apatite grains (40 - 175 µm) and 

occasionally muscovite (430 μm) in K-feldspar and plagioclase crystals (Figs. 15E,F). 

Carbonate-rutile-apatite-K-spar alteration, which consists subhedral to euhedral rutile (70 

- 110 μm), euhedral to subhedral apatite grains (40 - 220 µm), and anhedral white clays 

may be partially or completely included in siderite crystals (20 - 240 µm) in the margins of 

quartz (ii) matrix (Figs. 15G-I). This assemblage may also occur in the embayment areas 

of fine-grained pyrite (ii) masses (Fig. 15H).  
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Figure 15. Localized mineral assemblages and associated phyllic to argillic alteration in 

the WAu breccia style 3 mineralization. A) Bladed galena partially surrounded by late Au 

and calcite. B) BSE image of electrum from A with areas of Bi-Te enrichment. C) Bladed 

galena with euhedral sphalerite in a clay-dominated area of the matrix. D) Galena with Bi-

enrichments and Bi inclusions surrounded by layered pyrite-siderite.  E) Fine-grained clay 

and anhedral siderite alteration of Revenue granite clasts within the WAu Breccia. F) BSE 

image of previous region, where quartz, illite, and siderite digest primary K-feldspar 

crystals. G) BSE image of carbonate-rutile alteration on edges of K-feldspar, where apatite 

and rutile crystals are inclusions in siderite. H) Rutile crystals form psuedo-radiating texture 

in pyrite (ii) embayment with clays and siderite interstitial. I) Muscovite occurring with 

carbonate-rutile alteration.  
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5.2.6 Style 3 mineralization, Revenue diatreme 

The Revenue diatreme hosts mineralization style 3. The diatreme has a fine-grained 

(< 5 µm) groundmass, predominantly feldspar and quartz with occasional clasts of feldspars 

(< 1 mm), rounded quartz crystals (< 500 µm), carbonate patches (< 375 µm), and white 

clays (Fig. 16A). Sulfides of the least-altered representative sample RD-1 are 

predominantly euhedral pyrite and chalcopyrite with trace amounts of galena and 

sphalerite. Pyrite (i) cubes (20 - 125 μm) occur disseminated throughout the groundmass 

and may show local sieve textures and As enrichment, or occur disseminated with 

chalcopyrite (~175 μm) in dolomite patches (40 – 700 μm) where chalcopyrite may have 

inclusions (<3 μm) of sphalerite (Fig. 16B). Molybdenite grains (~55 µm) are rare and 

disseminated within the groundmass (Fig. 16B). Coarse-grained pyrite (1.5 - 3.3 mm) may 

contain anhedral rutile (70 - 250 μm), chalcopyrite (5 - 100 μm), and pyrrhotite (< 5 - 25 

μm) inclusions (Fig. 16C). In rare occurrences, euhedral pyrite may occur with anhedral 

chalcopyrite with inclusions of galena, surrounded by sphalerite showing chalcopyrite 

disease(Figs. 16D,E). Alteration minerals associated with sulfides include rutile (~175 μm) 

which forms in fractures or partially surrounds the pyrite, and may also contain partial 

inclusions of apatite grains (~30 μm) (see Appendix Section 4E).  

 In the brecciated sample RD-2 from near the margins of the diatreme, sulfide 

mineralization predominantly occurs as creeping-net texture chalcopyrite (~500 - 800 µm) 

with inclusions of sphalerite and galena, surrounding clasts of quartz and feldspar (Fig. 

16F). This is mantled by marcasite±pyrite (~25 µm mantle, masses <350 µm; Fig. 16F), 

where pyrite may be fragmented and altered to marcasite on the edges or completely 

replaced by marcasite. Large masses of smooth to fractured marcasite (< 1 mm) also occur 

in the surrounding groundmass (Fig. 16G), spatially associated to anhedral masses of fine-
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grained rutile (< 650 µm). Trace arsenopyrite and galena occur disseminated in siderite 

lining massive chalcopyrite in this assemblage.  

The phyllic alteration assemblages associated with mineralization in both areas 

include previously mentioned clay and carbonate patches (Fig. 16A).  Rounded and 

partially digested apatite grains (< 80 µm) occur in alteration patches and are spatially 

associated with needle (<5 µm) and zoned, euhedral (<10 µm) rutile, and trace amounts of 

very fine-grained anhedral pyrite (< 5 µm; Figs. 16H,I). 
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Figure 16. Main mineral assemblages of the Revenue diatreme style 3 mineralization. A) 

Sample RD-1; representative XPL image of phyllic altered Revenue diatreme groundmass 

with quartz clasts. B) Sample RD-1; disseminated pyrite cube with later chalcopyrite in 

dolomite in the least-altered Revenue diatreme. Apatite and trace molybdenite occur 

disseminated in groundmass. C) Chalcopyrite and pyrrhotite inclusions in coarse-grained 

pyrite cubes, which may partial include rutile. D) Sample RD-1; rare aggregate of sphalerite 

containing inclusions of chalcopyrite and cubic pyrite in the least-altered Revenue 

diatreme. E) Sample RD-1; BSE image of same region in C, showing galena overprinting 

pyrite and sphalerite. Pyrite contains apatite inclusions. F) Sample RD-2; large, anhedral 

chalcopyrite and quartz mantled by marcasite-altered pyrite in the phyllic altered area of 

the Revenue diatreme. Trace sphalerite occurs as inclusions within pyrite. G) Sample RD-

2; fragmented pyrite (i) altered to marcasite with fragmented rutile. H) Sample RD-2; BSE 

image of carbonate (dolomite-siderite) and clay alteration digesting early apatite grain. I) 

Sample RD-2; BSE image of W-zonation in euhedral rutile. 
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5.3 Mineral chemistry of sulfides and sulfarsenides 

5.3.1 EMPA major and minor elements 

EMPA analysis was used to determine major and minor element composition of 

sulfides including sphalerite and arsenopyrite, and the sulfarsenide glaucodot. Mineral 

compositions are summarized in Table 2. For full dataset, see Appendix 6.  

 Analyses of sphalerite were obtained using the EMPA for samples from late BSZ 

(L-BSZ-1 and L-BSZ-2), WAu breccia (WAu-3), and the Revenue diatreme (RD-1), seen 

in Table 2. In the late BSZ, the sphalerite composition between the two samples differed in 

both Fe, Cu, and Zn abundances. Sphalerite from L-BSZ-1 (representing the quartz-vein 

assemblage; n = 3) contains near stoichiometric S (49.69±0.03 mol%), Zn (37.78±1.03 

mol%), Fe (9.88±0.27 mol%), and variable Cu (1.2 – 2.98 mol%). Trace elements for this 

sphalerite include Co (0.03 mol%), Sn (0.07 - 0.60 mol%), Cd (0.41±0.01 mol%), and In 

(0.08±0.03 mol%). In comparison, sphalerite from sample L-BSZ-2 (representing the 

quartz-carbonate vein assemblage; n = 4) contains variable S (33.11 - 49.75 mol%), Zn 

(40.18 - 56.29 mol%), Fe (5.64±0.23 mol%), and Cu (3.66±0.0.49 mol%). Minor elements 

for this sphalerite include Co (below detection limit (bdl) - 0.02 mol%), Pb (bdl – 0.02 

mol%), Sn (bdl – 0.41 mol%), Cd (0.29-1.09 mol%), and In (0.03 – 0.07 mol%). Sphalerite 

from sample WAu-3 (n = 11) contains variable S (33.34 - 49.89 mol%) with variable Zn 

(32.44 – 53.66 mol%), Fe (5.45 – 11.65 mol%), and Cu (0.11 - 5.72 mol%). Minor and 

trace elements for this sphalerite include Co (0.04±0.02 mol%), Cd (0.22 - 0.71 mol%), 

and In (0.03 - 0.53 mol%). In one analysis, Sn was detected at 2.35 mol% though all other 

analysis were below detection limits. Sphalerite from RD-1 (n = 9) contains S (49.98±0.18 

mol%) and Zn (42.64±0.41 mol%) with variable Fe (3.73 - 7.00 mol%) and Cu (0.07 - 3.50 
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mol%). Minor and trace elements from this sphalerite include Cd (0.04 - 0.29 mol%), and 

In (0.03 mol%).  
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Table 2. Normalized sphalerite composition in molecular percent (mol%) obtained from samples L-BSZ-1, L-BSZ-2, WAu-3, and RD-

1 via EMPA. bdl = below detection limits. 

Sample and point Fe Cu Zn Co S Pb Sn Cd In total

RD-1-Sp-1 3.73 3.00 43.00 bdl 50.04 bdl bdl 0.18 0.03 100

RD-1-Sp-2 3.76 2.73 43.25 bdl 50.02 bdl bdl 0.20 0.03 100

RD-1-Sp-3 3.85 3.12 42.67 bdl 50.12 bdl bdl 0.19 0.04 100

RD-1-Sp-4 3.84 3.50 42.18 bdl 50.23 bdl bdl 0.18 0.03 100

RD-1-Sp-5 5.02 2.07 42.93 bdl 49.75 bdl bdl 0.18 0.03 100

RD-1-Sp-6 6.32 1.26 42.12 bdl 50.00 bdl bdl 0.26 0.03 100

RD-1-Sp-7 6.83 0.56 42.13 bdl 50.17 bdl bdl 0.28 0.03 100

RD-1-Sp-8 7.00 0.07 42.77 bdl 49.81 bdl bdl 0.29 0.03 100

RD-1-Sp-9 4.69 2.74 42.75 bdl 49.73 bdl bdl 0.04 0.04 100

L-BSZ-1-Sp-1 10.12 1.29 38.17 0.04 49.71 bdl 0.21 0.40 0.05 100

L-BSZ-1-Sp-2 9.60 2.98 36.61 0.03 49.71 bdl 0.59 0.39 0.08 100

L-BSZ-1-Sp-3 9.94 1.22 38.56 0.03 49.66 bdl 0.07 0.41 0.11 100

L-BSZ-2-Sp-1 5.35 3.95 56.29 0.02 33.11 0.02 bdl 1.09 0.07 100

L-BSZ-2-Sp-2 5.59 4.10 40.18 0.01 49.67 bdl bdl 0.41 0.03 100

L-BSZ-2-Sp-3 5.73 3.65 40.64 bdl 49.57 bdl 0.05 0.29 0.03 100

L-BSZ-2-Sp-4 5.89 2.99 40.39 bdl 49.75 bdl 0.41 0.49 0.03 100

WAu-3-Sp-1 9.59 0.20 40.19 0.04 49.49 bdl bdl 0.30 0.18 100

WAu-3-Sp-2 9.42 0.21 40.42 0.05 49.39 bdl bdl 0.33 0.16 100

WAu-3-Sp-3 9.28 0.11 40.26 0.05 49.89 bdl bdl 0.29 0.11 100

WAu-3-Sp-4 9.91 5.72 32.44 0.05 49.23 bdl 2.35 0.22 0.03 100

WAu-3-Sp-5 9.49 0.11 40.51 0.05 49.43 bdl bdl 0.32 0.10 100

WAu-3-Sp-6 8.80 0.18 40.66 0.03 49.85 bdl bdl 0.40 0.05 100

WAu-3-Sp-7 11.65 0.11 38.90 0.05 48.89 bdl bdl 0.34 0.06 100

WAu-3-Sp-8 9.16 0.49 40.02 0.05 49.73 bdl bdl 0.33 0.21 100

WAu-3-Sp-9 10.67 0.95 53.66 0.09 33.34 bdl bdl 0.71 0.53 100

WAu-3-Sp-10 5.81 4.71 39.30 0.02 49.83 bdl bdl 0.27 0.05 100

WAu-3-Sp-11 5.45 4.06 40.29 0.02 49.84 bdl bdl 0.28 0.05 100

Element (mol%)
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Measurements of arsenopyrite were obtained for the sample QFP-2 (n=17), seen in 

Table 3. Typical arsenopyrite (n = 12) has variable S (30.32 – 38.64 mol%), Fe (32.58±0.84 

mol%), and As (29.24 – 35.48 mol%). Minor and trace elements include Co (0.06 – 1.47 

mol%), with two points reporting Ni (0.15 and 0.84 mol%) one point reporting Cu (0.25 

mol%), and points reporting below detection limits for Pb. Co-Ni-rich arsenopyrite (n=5) 

has variable S (24.54 – 38.59 mol%), As (23.25 – 41.01 mol%), Fe (11.67 – 21.80 mol%), 

Co (8.33 – 15.81 mol%), and Ni (4.09 – 9.56 mol%). Minor elements include Cu (bdl – 

0.88 mol%) and Pb (bdl – 0.11 mol%). 

Measurements of glaucodot were obtained for samples from the WAu breccia 

(WAu-2 and WAu-3), seen in Table 4. Glaucodot (n = 18) has variable Co (37.25 – 45.62 

mol%), S (27.12 – 35.91 mol%), As (08.21 – 24.41 mol%), Fe (2.99 – 8.42 mol%), and 

minor amounts of Ni (bdl – 0.70 mol%).  
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Table 3. Normalized arsenopyrite composition in molecular percent (mol%) obtained for sample QFP-2 via EMPA, University of 

Toronto. Green fields indicate values used for thermometry plot. Blue field indicate values of the Co-Ni-rich arsenopyrite grains. D.L = 

detection limit, bdl = below detection limit.  

 

 

Point Fe Fe(D.L.) Cu Cu(D.L.) As As(D.L.) Co Co(D.L.) Ni Ni(D.L.) S S(D.L.) Pb Pb(D.L.) Total

Typical arsenopyrite

QFP-2-A1-apy-1 31.64 0.12 bdl 0.19 29.24 0.08 0.32 0.06 0.15 0.07 38.64 0.07 bdl 0.04 100

QFP-2-A2-apy-1 31.98 0.12 bdl 0.16 32.38 0.08 0.25 0.06 bdl 0.08 35.39 0.07 bdl 0.03 100

QFP-2-A2-apy-2 32.47 0.11 0.25 0.18 32.84 0.08 0.15 0.07 bdl 0.08 34.29 0.08 bdl 0.03 100

QFP-2-A2-apy-3 32.35 0.11 bdl 0.21 31.99 0.08 0.09 0.06 bdl 0.07 35.58 0.07 bdl 0.03 100

QFP-2-A2-apy-4 33.60 0.13 bdl 0.18 31.93 0.08 0.19 0.05 bdl 0.07 34.28 0.07 bdl 0.03 100

QFP-2-A2-apy-5 33.09 0.15 bdl 0.18 30.86 0.08 0.14 0.05 bdl 0.08 35.91 0.07 bdl 0.04 100

QFP-2-A2-apy-7 31.44 0.11 bdl 0.15 29.30 0.08 0.24 0.05 bdl 0.07 39.02 0.07 bdl 0.04 100

QFP-2-A2-apy-8 33.93 0.12 bdl 0.19 32.99 0.08 0.07 0.05 bdl 0.07 33.01 0.07 bdl 0.03 100

QFP-2-A2-apy-10 33.23 0.14 bdl 0.18 30.19 0.08 0.12 0.05 bdl 0.07 36.47 0.07 bdl 0.03 100

QFP-2-A2-apy-12 32.00 0.12 bdl 0.19 32.12 0.08 0.12 0.05 bdl 0.07 35.76 0.07 bdl 0.03 100

QFP-2-A2-apy-13 33.42 0.14 bdl 0.18 31.22 0.08 0.06 0.05 bdl 0.07 35.30 0.07 bdl 0.03 100

QFP-2-A3-apy-1 31.82 0.14 bdl 0.18 35.48 0.08 1.47 0.05 0.84 0.08 30.39 0.07 bdl 0.03 100

Co-Ni-rich arsenopyrite

QFP-2-A3-apy-Ni-1 20.34 0.13 bdl 0.20 36.26 0.08 8.77 0.07 4.09 0.08 30.49 0.08 0.04 0.03 100

QFP-2-A3-apy-Ni-2 11.67 0.16 bdl 0.21 38.83 0.08 12.46 0.07 9.56 0.08 27.47 0.07 bdl 0.04 100

QFP-2-A3-apy-Ni-3 12.84 0.12 0.33 0.20 23.25 0.07 15.81 0.06 9.07 0.07 38.59 0.07 0.11 0.03 100

QFP-2-A3-apy-Ni-4 17.89 0.15 0.28 0.22 41.01 0.09 8.33 0.07 7.95 0.09 24.54 0.07 bdl 0.04 100

QFP-2-A3-apy-Ni-5 21.80 0.14 0.88 0.21 29.48 0.08 8.69 0.05 5.21 0.08 33.91 0.07 0.03 0.03 100
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Table 4. Normalized glaucodot composition in molecular percent (mol%), obtained from 

samples WAu-2 and WAu-3 via EMPA. 

Sample Fe S As Co Ni Total

WAu-2 2.99 29.19 22.31 45.53 bdl 100.00

WAu-2 8.42 35.91 18.21 37.25 0.22 100.00

WAu-2 4.01 27.12 23.12 45.62 0.14 100.00

WAu-2 5.77 28.27 22.93 42.54 0.50 100.00

WAu-3 6.12 28.05 23.94 41.34 0.53 100.00

WAu-3 6.09 28.68 23.70 40.99 0.53 100.00

WAu-3 5.16 28.10 23.24 42.96 0.49 100.00

WAu-3 7.41 28.31 24.63 38.99 0.66 100.00

WAu-3 6.58 28.40 23.43 40.91 0.66 100.00

WAu-3 7.30 28.45 23.83 39.81 0.62 100.00

WAu-3 7.43 28.26 23.87 39.82 0.59 100.00

WAu-3 7.44 27.87 24.71 39.27 0.70 100.00

WAu-3 6.57 27.93 24.07 40.87 0.56 100.00

WAu-3 6.44 28.25 23.71 41.10 0.44 100.00

WAu-3 6.13 28.25 23.68 41.39 0.44 100.00

WAu-3 6.64 27.87 24.01 40.80 0.60 100.00

WAu-3 6.86 27.80 24.54 40.18 0.61 100.00

WAu-3 6.54 27.49 24.29 41.08 0.62 100.00
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5.3.2 LA-ICP-MS trace element data of major sulfide minerals  

Chalcopyrite, pyrite, and pyrrhotite from the BSZ (samples E-BSZ-2 and L-BSZ-

2), the QFP (samples QFP-1 and QFP-2), WAu breccia (sample WAu-3), and Revenue 

diatreme (samples RD-1 and RD-2) were analyzed via LA-ICP-MS.  

5.3.2.1 Chalcopyrite 

Early style 1 mineralization (sample E-BSZ-2) 

Compared to other samples, chalcopyrite from sample E-BSZ-2 (n = 3) shows 

appreciable amounts of Zn (379 - 1130 ppm), Ni (5.43±1.07 ppm), moderate Se (25.4 - 

30.4 ppm), Ag (48.23±0.45 ppm), Cd (5.3 - 10.9 ppm), In (13.7±2 ppm), and low Pb (0.92 

- 2.68 ppm) (Table 5). Chalcopyrite typically contains low (< 2 ppm) Co, Ge, Sn, Sb, Au, 

and Bi. This chalcopyrite contains concentrations below detection limits for at least half or 

more analysis of As, Mo, Te, W, Pt, and Hg. In comparison to chalcopyrite from other 

samples, this chalcopyrite has the highest Co (1.613±0.105 ppm), Ni, and lowest In and Sn 

(0.165 - 0.49 ppm).  

Late style 1 mineralization (sample L-BSZ-2) 

Compared to other samples, chalcopyrite from the late BSZ (sample L-BSZ-2; n = 

5) has appreciable Zn (433 - 2200 ppm), Ag (350 - 449 ppm), Sn (295 - 352 ppm), Pb (6.25 

- 13.6 ppm) and Bi (1.87 - 5.04 ppm), relatively moderate levels of Se (13.6 - 32 ppm), Cd 

(9.3 - 49 ppm), In (20.64±27.25 ppm) (Table 5). This chalcopyrite typically contains low 

(< 2 ppm) Co, Ni, Ge, Sb, Te, Pt, and Au. This chalcopyrite contains concentrations below 

detection limits for at least half or more analysis of Ni, Ge, As, Mo, Te, W, and Hg. 

Chalcopyrite from the late BSZ has the highest values of Zn, Ag, and Pb, and lowest values 

of Co (bdl - 0.68 ppm) and Se when compared to chalcopyrite from the other locations.  
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Least altered QFP (sample QFP-1) 

Compared to other samples, chalcopyrite of the least altered QFP (sample QFP-1; 

n = 4) has relatively appreciable Ag (658 – 727 ppm) and As (bdl – 12.6 ppm), relatively 

moderate levels of Co (1.46 – 2.94 ppm), Zn (516 – 938 ppm), Se (29.3 – 40.7 ppm), Cd 

(19.1 – 28.9 ppm), In (37.6 – 42.2 ppm), and Sn (2.48 – 8.2 ppm) (Table 5). This 

chalcopyrite typically contains low (< 2 ppm) Ge, Sb, Te, Wn, Pb, and Bi. This chalcopyrite 

contains concentrations below detection limits for at least half or more analysis of Ni, As, 

Mo, Sb, Te, W, Pt, Au, and Hg. This chalcopyrite also has the highest abundance of Ag in 

comparison to others.  

Phyllic-altered QFP (sample QFP-2) 

Compared to other samples, chalcopyrite of the phyllic-altered QFP (sample QFP-

2; n = 3) has relatively appreciable Zn (494 – 1990 ppm), Ag (279 – 302.6 ppm), relatively 

moderate levels of Se (54.9 – 77.4 ppm), Cd (10.6 – 38.5 ppm), In (25.01 – 31.8 ppm), Sn 

(251.4 – 264 ppm), and Pb (4.15 – 10 ppm) (Table 5). This chalcopyrite typically contains 

low (< 2 ppm) Co, Ni, Ge, Mo, Sb, Te, Au, and Bi. This chalcopyrite contains 

concentrations below detection limits for at least half or more analysis of As, Te, W, Pt, 

Au, and Hg. The chalcopyrite analyzed in from QFP-2 is very similar to that of the late 

BSZ with the former comprising of higher Se.  

Style 2 mineralization (sample WAu-3) 

Compared to other samples, chalcopyrite from the WAu breccia (sample WAu-3; n 

= 6) has relatively appreciable Co (0.036 - 4.79 ppm), Zn (549 - 1060 ppm), Se (18.3 - 40.8 

ppm), Cd (13.7 - 29.3 ppm), In (100.3-155 ppm), and Sn (216 - 489 ppm), with relatively 

moderate levels of Ag (15.5 - 42.4 ppm), Pb (0.62 - 3.38 ppm), and variable Sb (0.11 - 2.17 

ppm) and Bi (0.135 - 2.48 ppm) (Table 5). This chalcopyrite typically contains low (< 2 
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ppm) Ni, Ge, As, Mo, Te, W, Pt, Au, and Hg. This chalcopyrite contains concentrations 

below detection limits for at least half or more analysis of Ni, Ge, As, Mo, Te, Pt, Au, and 

Hg. The chalcopyrite from this location has relatively low Co, Se, Cd, In, and Sn when 

compared to the chalcopyrite from the other locations.  

Least-altered Revenue diatreme (sample RD-1) 

Compared to other samples, chalcopyrite of the least altered Revenue diatreme 

(sample RD-1; n = 2) has anomalously high Zn (0.53 - 2.03 wt%), relatively appreciable 

Cd (960 – 4200 ppm), relatively moderate levels of Ag (15.1 – 33.3 ppm), In (34.9 – 67.3 

ppm), Sn (583 – 649 ppm), Sb (12.78 – 19.4 ppm), Hg (2.01 – 7.5 ppm), Pb (12 – 21 ppm), 

and Bi (6.51 – 14.9 ppm) (Table 5). This typically contains low (< 2 ppm) Co, Ge, and Te. 

This chalcopyrite contains concentrations below detection limits for at least half or more 

analysis of Ni, Ge, As, Se, Mo, W, Pt, and Au. The anomalously high levels of Zn, and Cd 

likely represent sphalerite inclusions.  

Style 3 mineralization (sample RD-2) 

Compared to other samples, chalcopyrite of the phyllic-altered Revenue diatreme 

(sample RD-2; n = 5) has relatively appreciable Zn (489 – 1430 ppm and one analysis of 

8600 ppm), As (bdl – 168 ppm), Sn (707 – 1404 ppm), Sb (bdl – 22.5 ppm), Pb (2.82 – 

57.4 ppm), and Bi (0.93 – 30 ppm), relatively moderate levels of Ge (2.19 – 3.6 ppm), Se 

(18.5 ppm) Ag (1.36 – 20 ppm), Cd (8 – 20.7 ppm, with one analysis of 149 ppm), and In 

(15.88 – 25.01 ppm) (Table 5). This chalcopyrite typically contains low (< 2 ppm) Co, Ni, 

Mo, Te, Au, and Hg. This chalcopyrite contains concentrations below detection limits for 

at least half or more analysis of Ni, As, Se, Mo, W, Pt, and Hg. Similar to the least altered 

Revenue diatreme, the correlations of anomalously high Sn and Cd are likely due to 
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sphalerite inclusions in the chalcopyrite. The chalcopyrite from RD-2 also contains the 

highest Sn values in comparison to chalcopyrite in other samples.  

5.3.2.2 Pyrite 

Early style 1 mineralization (sample E-BSZ-2) 

Compared to other samples, pyrite from the early BSZ (sample E-BSZ-2, n = 5) has 

appreciable As (2040 - 4660 ppm), Co (15 - 227 ppm), Se (47.8 - 58.8 ppm), Ni (0.97 - 

3.15 ppm), Te (1.29 - 3.10 ppm) (Table 6). Pyrite typically contains low (< 2 ppm) Cu, Ge, 

Sb, Au, Pb, and Bi. This pyrite contains concentrations below detection limits for at least 

half or more analysis of Zn, Mo, Pd, Ag, Cd, In, Sn, W, Pt, and Hg. One analysis has 

relatively high concentrations of some of the lesser elements, including Cu (6.7 ppm), Ag 

(2.42 ppm), Sb (23.5 ppm), Pb (82 ppm), and Bi (46.2 ppm). In comparison to the pyrite 

analyses from the other pyrites, this sample has the among the highest As readings.   

Late style 1 mineralization (sample L-BSZ-2) 

Compared to other samples, pyrite from the late BSZ (sample L-BSZ-2; n = 5) has 

appreciable amounts of Co (220 - 580 ppm), Ni (200 - 570 ppm), Pb (20.62 - 300 ppm), Ag 

(7.53 - 19.6 ppm), Se (1.2 - 30.4 ppm), W (4.17 - 6.28 ppm), Cu (0.77 - 4.2 ppm), Sb (0.81 

- 2.37 ppm), and Bi (0.68 - 3.7 ppm) (Table 6). This pyrite typically contains low (< 2 ppm) 

Zn, Ge, As, Cd, In, Sn, Pt, and Au. This pyrite contains concentrations below detection 

limits for at least half or more analysis of As, Mo, Pd, Te, Pt, Au, and Hg. This pyrite has 

among the highest levels of Ni, Wn, and Pb in comparison to pyrite from other areas.  

Least altered QFP (sample QFP-1) 

Compared to other samples, pyrite from the least altered QFP (sample QFP-1, n = 

3) has appreciable Cu (1.58 – 1210 ppm), Zn (bdl – 62 ppm), and As (2340 - 3240 ppm), 
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relatively moderate levels of Co (13.11 – 105 ppm), Ni (1.12 – 19.4 ppm), Se (11.8 – 17.9 

ppm), Ag (bdl – 8.4 ppm), Sb (0.94 – 11.7 ppm), Te (1.53 – 2.76 ppm), and variable levels 

of Sn (bdl – 19.2 ppm), W (bdl – 25 ppm), Pb (9.1 - 97.2 ppm), and Bi (0.96 – 32.1 ppm) 

(Table 6). This pyrite typically contains low (< 2 ppm) Ge, Mo, Cd, In, Sn, and Au. This 

pyrite contains concentrations below detection limits for at least half or more analysis of Pt 

and Hg. This sample has among the highest values of As, and has the highest value of Sn 

in the analyzed pyrite, though the values were variable and likely due to an inclusion or 

heterogeneous grain.  

Phyllic-altered QFP (sample QFP-2) 

Compared to other samples, pyrite from the phyllic-altered QFP (sample QFP-2, n 

= 3) has relatively moderate levels of Ni (107 – 143 ppm), As (250.3 – 752 ppm), Se (16.5 

– 24.9 ppm), and variable levels of Co (6.74 – 472 ppm), Pb (0.235 – 2.7 ppm), and Bi 

(0.47 – 7.2 ppm) (Table 6). This pyrite typically contains low (< 2 ppm) Cu, Ge, Ag, Sb, 

Te, Au, and Pb. This pyrite contains concentrations below detection limits for at least half 

or more analysis of Zn, Mo, Cd, In, Sn, Sb, W, Pt, and Hg.  

Style 2 mineralization (sample WAu-3)  

Compared to other samples, pyrite from the WAu breccia (sample WAu-3; n = 6) 

has appreciable Co (675 - 1140 ppm), with relatively moderate Ni (14.6 - 86.4 ppm), Se 

(21.3 - 46.9 ppm), W (0.72 - 26.2 pm), Ag (0.096 - 2.06 ppm), and Pb (1.06 - 2.81 ppm) 

(Table 6). This pyrite typically contains low (< 2 ppm) Cu, Ag, Ge, Mo, Cd, In, Sn, Sb, Te, 

Pt, Au, Hg, and Bi. This pyrite contains concentrations below detection limits for at least 

half or more analysis of Zn, As, Mo, Pd, Cd, In, Sn, Te, Pt, Au, and Hg. One analysis has 

relatively high As (41.7 ppm) in comparison with other analysis in this sample. This pyrite 

was also the only one with relatively appreciable Mo (< 0.144 ppm). 



62 

 

Least altered Revenue diatreme (sample RD-1) 

Compared to other samples, pyrite from the least altered Revenue diatreme (sample 

RD-1, n = 7) has appreciable Co (4.93 – 3030 ppm), Ni (117 – 525 ppm), As (177 – 2970 

ppm), with relatively moderate levels of Cu (0.72 – 162 ppm), Se (bdl – 11.8 ppm), and 

variable Zn (bdl – 101.2 ppm), Ag (bdl – 5.27 ppm), Sb (bdl – 43.4 ppm), Te (0.25 -20.5 

ppm), Pb (0.09 – 113.8 ppm), and Bi (0.342 – 38.9 ppm) (Table 6). This pyrite typically 

contains low (< 2 ppm) Ge, Mo, Cd, In, W, Pt, and Au. This pyrite contains concentrations 

below detection limits for at least half or more analysis of Zn, Mo, In, Sb, W, Pt, and Hg. 

The pyrite of sample RD-1have the highest and generally consistent values of Co and Ni, 

as well as As, Pb, and Bi. Some analyses also report the highest values of Sb, and Te, 

though they are variable.   

Style 3 mineralization (sample RD-2) 

Compared to other samples, pyrite from the phyllic-altered Revenue diatreme 

(sample RD-2, n = 4) has appreciable Cu (165 – 546 ppm), Zn (10.14 – 19.6 ppm), Ag 

(31.3 – 52 ppm), Au (2.306 – 4.46 ppm), and Pb (126-532 ppm), with relatively moderate 

levels of Co (2.3 – 11.92 ppm), Ni (1.94 – 64.7 ppm), Ge (2.88 – 3.82 ppm), and variable 

As (bdl – 37.5 ppm), Sb (0.5 – 5.06 ppm), and Bi (0.216 – 37.7 ppm) (Table 6). This pyrite 

typically contains low (< 2 ppm) Se, Mo, Cd, In, Sn, Te, W, and Hg. This pyrite contains 

concentrations below detection limits for at least half or more analysis of Cd and Pt. The 

Cu, Zn Ag, Au, and Pb values of this pyrite were the highest in comparison to others and 

generally consistent between analyses.   

5.3.2.3 Pyrrhotite  

Early style 1 mineralization (sample E-BSZ-2) 
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Compared to other samples, pyrrhotite from the early BSZ (Sample E-BSZ-2; n = 

5) has appreciable Co (338.4±10.64 ppm) and Ni (435 - 517 ppm), relatively moderate Se 

(27.2 - 32.8 ppm) and Pb (2.43 - 5.91 ppm), variable Cu (0.88 - 2.6 ppm), and Bi (0.7 - 2.12 

ppm) (Table 7). This pyrrhotite typically contains low (< 2 ppm) Ge, Mo, Ag, In, Sb, and 

W. This pyrrhotite contains concentrations below detection limits for at least half or more 

analysis of Zn, As, Mo, Pd, Cd, In, Sn, Te, W, Pt, Au, and Hg. In comparison to pyrrhotite 

in other samples,  

Late style 1 mineralization (sample L-BSZ-2) 

Compared to other samples, pyrrhotite from the late BSZ (sample L-BSZ-2; n = 3) 

has appreciable amounts of Mn (0.8 - 14.9 ppm), Ni (216 - 1540ppm), and variable Pb (2.5 

- 4700ppm), Co (0.066 - 127.5 ppm), Cu (4.5 - 260 ppm), Ag (1.33 - 48 ppm), Bi (0.3148 

- 86 ppm), Ge (1.38 - 2.31 ppm), and relatively low Cu (4.65±0.21 ppm), Ag (1.33 - 7.4 

ppm), Se (6.7 - 10.6 ppm), and Pb (2.5 - 5.2 ppm) (Table 7). This pyrrhotite typically 

contains low (< 2 ppm) in Zn, Ge, As, Mo, Pd, Cd, In, Sn, Sb, Te, W, Pt, Au, and Hg. This 

pyrrhotite contains concentrations below detection limits for at least half or more analysis 

of Zn, As, Pd, Cd, In, Sn, Sb, W, Pt, and Hg. Additionally, this pyrrhotite has the highest 

concentration of Ni, Cu, and Ag, and the lowest abundances of Co, and Se in comparison 

to the pyrrhotite from other areas. One of the analysis, L-BSZ-2, is likely an inclusion due 

to the large Pb, Bi, and Ag values (Table 6).  

Least altered QFP (sample QFP-1) 

Compared to other samples, pyrrhotite from the least altered QFP (sample QFP-1; 

n = 4) has appreciable Co (712 - 762 ppm), Pb (2.07 – 85 ppm), and Bi (bdl – 13.56 ppm), 

with moderate levels of Ni (142.4 – 159.7 ppm), Cu (bdl – 6.3 ppm), Se (27.4 – 39 ppm), 

and Ag (0.247 – 5.56 ppm) (Table 7). This pyrite typically contains low (< 2 ppm) Ge, Sb, 
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Te, and Au. This pyrrhotite contains concentrations below detection limits for at least half 

or more analysis of Zn, As, Cd, In, Sn, Sb, W, Pt, Au, and Hg. One analysis (QFP-1 – Po 

– 1) has relatively high Ag, Pb, and Bi (Table 7), which is likely due to an inclusion.  

Style 2 mineralization (WAu-3) 

Compared to other samples, pyrrhotite from the WAu breccia (sample WAu-3; n = 

5) has the highest value of Co (4.72 - 602 ppm) and Se (28.4 - 48.4 ppm), relatively 

moderate Cu (2.5 - 15 ppm), Ag (0.43 - 5.56 ppm) and Pb (0.38 - 5.85ppm), and relatively 

low Ni (33.9 - 45.6 ppm) (Table 7). This pyrrhotite typically contains low (< 2 ppm) Zn, 

Ge, As, Mo, Ag, Sb, Te, Au, and Bi. This pyrrhotite contains concentrations below 

detection limits for at least half or more analysis of Zn, As, Pd, Cd, In, Sn, Sb, W, Pt, Au, 

and Hg. This sample had the highest values for Co and Se, and lowest values for Ni in 

comparison to the pyrrhotite from other locations.  

 In all cases, there is a strong relation between Ag, Pb, Bi, and Sb enrichments 

occurring together. These may be the result of inclusions, as they do not always occur 

together in the same sample analyses, though the regular pattern occurs in all three minerals.  
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Table 5. Trace element composition of chalcopyrite for samples E-BSZ-2, L-BSZ-2, QFP-1, QFP-2, WAu-3, RD-1 and RD-2 obtained 

from LA-ICP-MS. Values reported are elemental ppm. bdl = below detection limits. 

 

Sample / Analysis Mg24 Al27 Ti47 Mn55 Co59 Ni60 Zn66 Ge72 As75 Se82 Mo95 Pd105 Ag107 Pd108 Cd111 In115 Sn118 Sb121 Te125 W182 Pt195 Au197 Hg202 Pb208 Bi209

E-BSZ-2-Ccp - 1 36 120 bdl bdl 1.61 4.2 379 1.01 bdl 25.4 0 1610 48.2 19.8 5.3 11.4 0.165 0.66 bdl bdl bdl 0.041 bdl 0.92 0.89

E-BSZ-2-Ccp - 2 56 100 15 bdl 1.72 6 709 0.87 bdl 28.4 bdl 1530 47.8 35 7.3 15 0.34 0.33 bdl bdl bdl 0.041 bdl 2.68 0.8

E-BSZ-2-Ccp - 3 1710 2070 21 bdl 1.51 6.1 1130 bdl bdl 30.4 bdl 1340 48.7 59 10.9 14.7 0.49 0.49 0.78 bdl bdl 0.027 bdl 1.73 0.8

L-BSZ-2-Ccp - 1 1410 2000 11 bdl 0.142 bdl 563 bdl bdl 13.6 0 1100 423 32 9.3 20.4 349 1.43 2.1 bdl bdl 0.27 2 6.25 3.24

L-BSZ-2-Ccp - 2 1250 1300 20 bdl 0.11 bdl 433 bdl bdl 26 0 1090 350 25 11.3 20.1 331 0.95 bdl bdl bdl 0.21 bdl 9.5 1.87

L-BSZ-2-Ccp - 3 880 940 bdl bdl bdl bdl 850 bdl bdl 32 0 1130 404 62 17.3 19.1 295 1.72 bdl bdl bdl 0.179 bdl 9.9 2.19

L-BSZ-2-Ccp - 4 360 1300 25 bdl bdl 0.99 930 bdl bdl 26 bdl 1250 384 72 17.2 21.9 352 1.17 bdl bdl bdl 0.073 bdl 7.2 1.99

L-BSZ-2-Ccp - 5 1700 2000 14 bdl 0.68 bdl 2200 bdl bdl 16 0 830 449 150 49 21.7 298 0.7 bdl bdl bdl 0.146 bdl 13.6 5.04

QFP-1 - Ccp - 1 219 580 31 bdl 1.46 bdl 560 1.76 11.5 29.3 bdl 9.7 658 0.46 19.1 37.6 3.89 bdl 0.45 0.077 bdl bdl bdl 1.36 0.87

QFP-1 - Ccp - 2 180 280 34 bdl 2.71 bdl 938 1.5 bdl 40.7 0 11.43 703 0.7 28.9 41.27 3.43 0.58 0.6 bdl bdl bdl bdl 1.46 1.19

QFP-1 - Ccp - 3 297 310 59 bdl 2.94 bdl 516 2 12.6 35.6 bdl 10.3 727 0.68 24.5 41.5 8.2 bdl bdl 0.29 bdl bdl bdl 1.59 1.16

QFP-1 - Ccp - 4 1830 2230 52 bdl 2.73 bdl 671 1.77 bdl 38 0 10.4 680 0.38 25.3 42.2 2.48 0.52 bdl bdl bdl bdl bdl 2.19 2.1

QFP-2 - Ccp - 1 390 680 31 bdl 0.7 0.73 816 1.38 bdl 65 0.079 11.17 279 0.4 16.9 28.93 264 0.77 0.99 bdl bdl bdl bdl 4.15 1.61

QFP-2 - Ccp - 2 570 330 45 bdl 1.2 0.82 1990 2.45 bdl 77.4 0 11.5 302.6 1.29 38.5 31.8 251.4 0.47 bdl bdl bdl bdl bdl 10 1.89

QFP-2 - Ccp - 3 38 300 66 bdl 0.335 0.54 494 1.39 bdl 54.9 bdl 10.17 279.6 0.26 10.6 25.01 258.1 0.48 bdl bdl bdl 0.0043 bdl 5.81 1.79

WAu-3-Ccp - 1 bdl bdl 2.8 bdl 3.9 bdl 900 bdl bdl 35.4 0 1390 16.8 95 24.4 152 385 0.168 0.78 bdl bdl 0.023 bdl 1.68 0.17

WAu-3-Ccp - 2 bdl 13 2.6 bdl 3.7 bdl 782 bdl bdl 33.8 bdl 1738 15.5 126 19.5 135 242 0.202 bdl bdl bdl 0.021 0.36 1.31 0.135

WAu-3-Ccp - 3 32 bdl 12 bdl 4.79 bdl 783 0.67 bdl 40.8 0 1630 16.7 84 19 155 448 bdl bdl bdl bdl 0.022 0.49 2.6 0.222

WAu-3-Ccp - 4 44 200 12 bdl 0.036 bdl 840 0.82 bdl 38.9 0 1520 17.8 101 17.8 104 251 0.11 1.03 bdl bdl bdl bdl 0.62 0.5

WAu-3-Ccp - 5 2110 58 bdl bdl 0.109 bdl 549 bdl bdl 18.3 0 1223 42.4 66 13.7 113.3 489 2.17 bdl bdl bdl bdl bdl 3.38 2.48

WAu-3-Ccp - 6 38 156 16 bdl 0.276 bdl 1060 0.81 1.46 34.3 0 1550 27.1 173 29.3 100.3 216 0.263 0.68 bdl bdl bdl 0.67 1.04 0.63

RD-1 - Ccp - 1 6900 10100 80 72 2.75 bdl 203000 1.57 bdl bdl bdl 12.1 33.3 119 4000 67.3 649 19.4 1.6 bdl bdl bdl 7.5 21 14.9

RD-1 - Ccp - 2 112 140 27 15.8 0.76 bdl 52000 bdl bdl bdl bdl 11.62 15.1 29 960 34.9 583 12.78 1.57 bdl bdl bdl 2.07 12 6.51

RD-2 - Ccp - 1 330 1180 710 bdl 0.038 bdl 1430 3.6 bdl 18.5 bdl 12.23 5.14 1.06 20.7 19.69 1366 2.14 0.48 bdl bdl 0.063 bdl 6.91 4.08

RD-2 - Ccp - 2 299 190 38 bdl bdl bdl 639 bdl bdl bdl bdl 11.31 1.36 0.18 8 15.88 707 bdl bdl bdl bdl 0.0042 bdl 2.82 2.49

RD-2 - Ccp - 3 520 1700 42 bdl 0.035 0.63 489 2.19 144 bdl bdl 11.9 20 0.24 12 20.93 945 22.5 0.41 bdl bdl 0.202 bdl 50.3 30

RD-2 - Ccp - 4 141 180 29 bdl bdl bdl 1043 3.4 14.5 bdl bdl 11.58 7.31 0.48 14.3 23 1404 6.05 1.01 bdl bdl 0.191 1.03 8.88 0.93

RD-2 - Ccp - 5 174 460 37 bdl 0.2 bdl 8600 2.6 168 bdl 0.062 11.8 17 4.8 149 25.01 1388 14.4 bdl bdl bdl 0.237 1.68 57.4 14.44

Element and Isotope (ppm)
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Table 6. Trace element composition of pyrite from samples E-BSZ-2, L-BSZ-2, QFP-1, QFP-2, WAu-3, RD-1 and RD-2 obtained from 

LA-ICP-MS. Values reported are elemental ppm. bdl = below detection limits. 

 

Sample/Analysis Mg24 Al27 Ti47 Mn55 Co59 Ni60 Cu65 Zn66 Ge72 As75 Se82 Mo95 Pd105 Ag107 Pd108 Cd111 In115 Sn118 Sb121 Te125 W182 Pt195 Au197 Hg202 Pb208 Bi209

E-BSZ-2-Py - 1 4300 99000 12 bdl 37.9 12.2 6.7 bdl 1 2040 47.8 bdl bdl 2.42 0 bdl 0.0081 0.73 23.5 3.1 bdl bdl 0.53 bdl 82 46.2

E-BSZ-2-Py - 2 54 340 9.7 bdl 15 0.97 0.55 bdl bdl 2750 58.8 0 bdl bdl 0 bdl bdl bdl bdl 2.13 bdl bdl 0.031 bdl 0.168 0.144

E-BSZ-2-Py - 3 130 45 260 bdl 158 4.92 0.61 bdl 1 2680 49.8 0 bdl 0.041 0 bdl bdl bdl 0.132 1.29 bdl bdl 0.224 bdl 0.98 1.63

E-BSZ-2-Py - 4 95 1000 10.2 bdl 227 3.15 0.82 bdl 1.5 4660 63 0 bdl bdl 0 bdl bdl bdl bdl 2.3 bdl bdl 0.33 bdl 0.154 0.168

E-BSZ-2-Py - 5 90 99000 6.6 bdl 71 1.09 1.04 bdl 0.87 3850 57.7 0 bdl bdl 0 bdl 0.0024 bdl 0.22 1.62 bdl bdl 0.253 bdl 0.85 1.3

L-BSZ-2 -Py - 1 30000 300 14 6.7 481 448 3.9 1.37 1.52 1.7 20.2 0 bdl 19.6 1.9 0.49 0.031 1.29 2.37 bdl 6.28 bdl bdl bdl 300 3.7

L-BSZ-2 -Py - 2 160 310 7.1 bdl 580 570 3.28 1.14 1.76 bdl 30.4 0 bdl 11 2.5 0.6 0.035 1.41 1.63 bdl 4.5 bdl bdl bdl 215 0.95

L-BSZ-2 -Py - 3 61 280 8 bdl 220 200 0.77 0.83 1.7 bdl bdl 0 bdl 7.53 0 0.91 0.043 1.15 1.1 bdl 4.17 bdl bdl bdl 218.8 0.068

L-BSZ-2 -Py - 4 113 104 7 bdl 335 336 1.55 0.72 1.56 bdl 7.8 0 bdl 3.05 0 bdl 0.01 0.337 0.64 bdl 6.26 bdl bdl bdl 20.62 0.09

L-BSZ-2 -Py - 5 67 bdl 21 bdl 430 332 4.2 0.59 1.84 bdl 23.9 0 bdl 13.8 0 bdl 0.0076 bdl 0.81 bdl 5.94 bdl bdl bdl 148 1.01

QFP-1 - Py - 1 134000 608000 231000 3.8 74 14.7 730 35.2 1.9 2340 11.8 0.204 0.034 8.4 0.016 0.73 0.088 19.2 11.7 2.76 25 bdl 0.675 bdl 58.8 32.1

QFP-1 - Py - 2 450 690 77 bdl 13.11 1.12 1.58 bdl 1.88 3240 18.4 bdl bdl 0.04 bdl bdl bdl bdl 0.94 1.53 bdl bdl 0.315 bdl 9.1 0.96

QFP-1 - Py - 3 155 5200 4900 bdl 105 19.4 1210 62 1.67 2430 17.9 1.16 0.027 1.48 bdl 1.09 0.045 0.73 10.21 2.64 0.141 bdl 0.559 bdl 97.2 12.44

QFP-2 - Py - 1 4700 101000 78 bdl 46.5 143 1.03 bdl 1.67 497 16.5 bdl bdl 0.49 bdl bdl bdl bdl 0.7 1.38 bdl bdl 0.051 bdl 2.7 7.2

QFP-2 - Py - 2 1220 7600 75 bdl 472 119 0.89 bdl 1.92 752 24.9 bdl 0.0102 0.101 0.078 bdl bdl bdl bdl 0.67 bdl bdl 0.0083 bdl 1.11 3.87

QFP-2 - Py - 3 270 550 109 bdl 6.74 107 0.45 bdl 1.73 250.3 24.5 bdl bdl 0.014 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 0.235 0.47

WAu-3-Py - 1 141 19 9.1 0.53 794 60.3 1.26 bdl 1.46 bdl 21.3 0 bdl 1.36 0 bdl bdl bdl 0.262 bdl 2.73 bdl bdl bdl 1.06 0.69

WAu-3-Py - 2 29 114 28 bdl 675 50.7 2.3 bdl 1.42 bdl 30.3 bdl bdl 1.03 0 bdl bdl bdl 0.289 bdl 3.16 bdl bdl bdl 1.28 0.781

WAu-3-Py - 3 87 97 bdl bdl 1079 86.4 1.3 bdl 1.14 41.7 46.9 0 bdl 2.06 0 bdl 0.0023 bdl 0.89 bdl 26.2 bdl bdl bdl 1.92 0.62

WAu-3-Py - 4 7100 bdl bdl 3.1 877 67.8 0.57 bdl 1.24 bdl 41.3 0.076 bdl 0.233 0 bdl bdl bdl 0.189 0.54 1.74 bdl bdl 0.47 2.04 1.45

WAu-3-Py - 5 46 24 16 bdl 275 14.6 0.55 bdl 1.01 6 31.8 0.086 bdl 0.145 0 bdl bdl bdl 0.212 bdl 0.72 bdl bdl bdl 2.16 0.4

WAu-3-Py - 6 49 41 9.2 bdl 1140 84.8 0.41 bdl 1.13 bdl 44.5 0.144 bdl 0.096 0 bdl 0.0027 bdl 0.424 bdl 5.29 bdl bdl bdl 2.81 0.623

RD-1 - Py - 1 5300 7200 380 bdl 3030 525 39.8 23.9 2.02 2970 3.3 bdl bdl 1.82 bdl 0.076 bdl 0.36 17.4 1.32 0.017 0.0082 1.3 bdl 111 14.5

RD-1 - Py - 2 2770 43200 301 0.94 50.6 219 93.3 bdl 2.22 1575 11.8 1.03 bdl 5.27 bdl 0.085 0.0145 1.15 0.45 20.5 1.06 bdl 0.109 bdl 113.8 66

RD-1 - Py - 3 28 450 59 bdl 2880 117 1.9 4.2 1.86 1245 bdl bdl bdl 0.111 bdl 0.109 0.0048 bdl bdl 13.3 bdl bdl 0.168 bdl 8.1 2.17

RD-1 - Py - 4 75 111 72 bdl 4.93 253 7.1 0.29 1.88 177 4 bdl bdl 0.125 bdl bdl bdl bdl bdl 8.2 bdl bdl 0.0105 bdl 2.33 10.9

RD-1 - Py - 5 2820 5500 1260 bdl 2250 390 162 101.2 1.96 2580 6.3 0.6 bdl 5.58 bdl 0.59 bdl 4.88 43.4 0.82 1.75 bdl 0.79 bdl 273 38.9

RD-1 - Py - 6 137 149 51 bdl 1850 246 0.72 bdl 1.9 2369 3 bdl bdl bdl bdl bdl bdl bdl bdl 0.25 bdl bdl 0.067 bdl 0.086 0.342

RD-1 - Py - 7 102 1340 166 bdl 2710 425 0.37 bdl 1.72 1830 bdl bdl bdl 0.041 bdl bdl bdl bdl bdl 1.67 bdl bdl 0.067 bdl 0.237 1.08

RD-2 - Py - 1 10000 17900 107 10.41 2.3 64.7 544 19.6 3.63 37.9 0.5 0.019 0.0112 51.4 bdl 0.254 0.255 0.365 5.06 0.34 0.88 bdl 2.68 0.86 126 37.7

RD-2 - Py - 2 148 99 109 6.62 8.11 22 546 11.97 3.51 bdl bdl 0.0046 0.0114 52 bdl 0.117 0.511 1.53 0.79 0.28 0.451 bdl 2.679 0.52 403 9.4

RD-2 - Py - 3 375 207 87 11.63 6.26 1.94 165 17.19 3.82 6.5 2.1 0.042 bdl 31.3 bdl bdl 0.4 1.42 0.5 0.28 0.826 bdl 2.306 bdl 532 0.216

RD-2 - Py - 4 190 1460 159 6.24 11.92 15.2 368 10.14 2.88 bdl 1.8 bdl 0.017 50.2 bdl bdl 0.656 0.36 4.01 0.19 0.66 bdl 4.46 0.46 406.3 6.6

Element and Isotope (ppm)
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Table 7. Trace element composition (in ppm) of pyrrhotite from samples E-BSZ-2, L-BSZ-2, QFP-1 and WAu-3, obtained from LA-

ICP-MS. Values reported are elemental ppm. bdl = below detection limits. 

 

Sample/Analysis Mg24 Al27 Ti47 Mn55 Co59 Ni60 Cu65 Zn66 Ge72 As75 Se82 Mo95 Pd105 Ag107 Pd108 Cd111 In115 Sn118 Sb121 Te125 W182 Pt195 Au197 Hg202 Pb208 Bi209

E-BSZ-2-Po - 1 120 460 11.1 bdl 349 461 2.6 bdl 1.25 bdl 28.7 0.012 bdl 0.96 0 bdl 0.0015 bdl 0.26 bdl bdl bdl bdl bdl 3.32 1.22

E-BSZ-2-Po - 2 13 68 20 bdl 350 436 0.88 bdl 1.68 bdl 32.8 0 bdl 0.37 0 bdl bdl bdl 0.41 bdl bdl bdl bdl bdl 3.85 1.53

E-BSZ-2-Po - 3 60000 80000 1310 3.1 330 435 1.28 bdl 1.8 bdl 27.2 0 bdl 0.73 0 bdl bdl bdl 0.25 bdl 0.011 bdl bdl bdl 2.43 0.7

E-BSZ-2-Po - 4 bdl 24 15 bdl 336 495 0.86 bdl 1.48 bdl 31.4 0 bdl 0.35 0 bdl bdl bdl bdl bdl bdl bdl bdl bdl 3.09 1.36

E-BSZ-2-Po - 5 160 570 18 3.5 327 517 2.6 bdl 1.55 bdl 29.5 0 bdl 0.41 0 bdl bdl 0.113 0.46 bdl 0.021 bdl bdl bdl 5.91 2.12

L-BSZ-2-Po - 1 44000 6800 bdl 14.9 bdl 806 4.8 bdl 1.38 bdl 10.6 0.044 bdl 1.33 0 bdl bdl bdl bdl bdl bdl bdl bdl bdl 5.2 0.318

L-BSZ-2-Po - 2 3370 2500 16 3.5 1.5 1540 4.5 bdl 1.43 bdl 6.7 0.07 bdl 7.4 0 bdl bdl bdl bdl 0.15 bdl bdl bdl bdl 2.5 0.413

L-BSZ-2-Po - 3 370 110 bdl bdl 127.5 216 260 bdl 2.31 bdl 8.6 0 2.9 48 0 bdl bdl bdl bdl 0.17 bdl bdl 0.191 bdl 4700 86

QFP-1 - Po - 1 990 5800 43 bdl 712 142.4 1.6 bdl 2.71 bdl 31.6 0.094 bdl 5.56 bdl bdl bdl bdl bdl 0.22 bdl bdl bdl bdl 85 13.56

QFP-1 - Po - 2 29 41 33 bdl 729 149.5 6.3 bdl 1.93 bdl 27.4 0 0.021 0.43 bdl bdl bdl bdl bdl 0.87 bdl bdl 0.0027 bdl 3.92 1.26

QFP-1 - Po - 3 38 73 44 bdl 728 154.6 1.5 bdl 1.67 bdl 28.9 0 bdl 0.247 bdl bdl bdl bdl bdl 0.17 bdl bdl bdl bdl 2.07 bdl

QFP-1 - Po - 4 960 600 24 bdl 762 159.7 bdl 2.66 3.5 bdl 39 0 bdl 1.09 bdl bdl bdl bdl 2.22 0.43 bdl bdl bdl bdl 23.8 5.79

WAu-3-Po - 1 36 bdl 11.1 bdl 567 39.6 1.75 bdl 2 bdl 40.1 bdl bdl 0.241 0 bdl bdl bdl 0.53 bdl bdl bdl bdl bdl 2.75 0.86

WAu-3-Po - 2 12 76 5.6 bdl 602 38.8 2.5 bdl 1.51 bdl 48.4 0.021 bdl 0.225 0 bdl bdl bdl 0.8 bdl bdl bdl bdl bdl 5.85 1.93

WAu-3-Po - 3 27 86 8.3 bdl 559 34.7 1.67 bdl 0.98 bdl 46.5 0 bdl 0.234 0 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 0.255

WAu-3-Po - 4 0 bdl 11.5 bdl 504 33.9 3.3 bdl 1.49 bdl 28.4 0 bdl 0.71 0 bdl bdl bdl bdl bdl bdl bdl bdl bdl 0.79 0.104

WAu-3-Po - 5 114 86 8 bdl 472 45.6 15 1.07 bdl bdl 41.9 0 bdl 1.83 0 bdl 0.037 bdl bdl bdl bdl bdl bdl bdl bdl 0.086

Element and Isotope (ppm)
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6.0 Discussion  

Preliminary models for the Revenue mineralized systems following the hypothesis 

that of the early style 1 mineralization was over- printed by the late style 1 mineralization, 

then intruded by a breccia containing style 2 mineralization, and further crosscut by a 

diatreme that may have remobilized elements or may have developed its own 

mineralization. Consequently, following this evolution of mineralized systems, it is 

expected that distinct differences in the trace element chemistry and thermometry of 

mineral assemblages would be recognized, and/or that mineral chemistry of earlier events 

may be inherited or preserved in later generations of mineralization impacted by 

remobilization, reheating, or overprinting., possible trends in compositions or distinct 

groupings were expected. The involvement of QFP dykes in the development of 

mineralization styles were also questioned, as sources studies in the Dawson Range have 

spatially associated the mineralization with porphyritic dyke emplacement (Bineli-Betsi 

and Lentz, 2011; AMC 2018). Samples for both least altered and phyllic altered in the QFP 

and Revenue diatreme were used to determine the significance of phyllic-altered areas 

compared to relatively unaltered states and possible relations to other mineralization styles. 

Elemental groups (Co-Ni, Ag-Au-Te, and W-Sn) for minerals determined similar relations 

between one or two zones and distinct mineralization events with no or little clear 

correlation from one phase to the other.  The following discussion tests these ideas by 

evaluating data types gathered in this study, reconciled with preliminary models for deposit 

development and magmatic-hydrothermal evolution.  
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6.1 Trace element data for main sulfide minerals  

Trace elements in chalcopyrite, pyrite, and pyrrhotite (present in all styles of 

mineralization) provide a means to differentiate mineralization styles or mineralizing 

events that may be otherwise ambiguously related to one another.  LA-ICP-MS data (Tables 

5, 6 and 7) are summarized on ternary diagrams with the apices Co-Ni (mafic affinity), Ag-

Au-Te (epithermal-porphyry affinity), and W-Sn (porphyry-skarn affinity).  

Chalcopyrite demonstrated the most diverse and distinct compositional groupings 

between areas (Fig. 17).  Early style 1 mineralization in the BSZ (sample E-BSZ-2) shows 

a enrichment in Co-Ni relative to W-Sn, hinting at a mafic magmatic influence on the fluid 

chemistry. In contrast, late style 1 mineralization in the BSZ (sample L-BSZ-2) shows a 

strong Au-Ag-Te affinity with some influence of W+Sn. Chalcopyrite from the QFP-1 

sample shows enrichment in Ag-Au-Te relative to W+Sn, whereas chalcopyrite from 

sample QFP-2 shows very similar to, and nearly overlapping chemical composition with, 

late style 1 mineralization. This is in agreement with petrographic work showing that the 

vein crosscutting the QFP sample shared textural characteristics with the quartz-dolomite 

veins of late style 1 mineralization. Chalcopyrite from style 2 mineralization of the WAu 

breccia at locality of sample WAu-3 shows two separate compositional fields, both 

generally enriched in W+Sn, but with one field favouring the Co-Ni enrichment and the 

other favouring the Ag-Au-Te enrichment. This suggests two phases of chalcopyrite 

mineralization. The style 3 mineralization in the Revenue diatreme also show a W-Sn 

affinity, with the least altered samples occurring in a field between the two style 2 

mineralization fields, and the style 3 mineralization occurring the furthest in the W+Sn 

section.  
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The genetic relations between styles of mineralization and the separate influence of 

QFP emplacement show that the early and late style 1 mineralization were derived from 

different fluids, with the former being more mafic magmatic in affinity and the latter being 

more similar to epithermal-porphyry precious metal systems. Additionally, the QFP dykes 

have similar compositions to the late style 1 mineralization, supporting the preliminary 

hypothesis that QFP dyke emplacement was genetically associated with Au mineralization. 

Differences between the two may be due to different scales or mechanisms of rock-water 

interaction affecting the mineral’s chemical composition throughout crystallization. The 

increase in W-Sn abundance from style 2 to style 3 suggests a similar fluid source that was 

enriched, or became enriched, in these elements over time. Other noted features with 

respect to trace element composition include a general increase in Zn, Cd, and In abundance 

in chalcopyrite from the WAu breccia and Revenue diatreme, in comparison to the other 

locations which may be attributed to the sphalerite inclusions within chalcopyrite. The 

elements Pb and Ag are highest in chalcopyrite from the late BSZ location, supported by 

the occurrence of Ag-associate galena infilling fractures in the area (see Appendix 4B).  
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Figure 17. Chalcopyrite trace element compositions of samples analysed via LA-ICP-MS. 

Values bdl were treated as 0 ppm.  
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Pyrite demonstrates weaker compositional distinctions and illustrates a possible 

trend in the trace element that also follows the original hypothesis (Fig. 18). The early style 

1 mineralization is shows enrichments in both Co-Ni and Ag-Au-Te along the Co-Ni to 

Ag-Au-Te join, tending towards the epithermal-porphyry apex. The late style 1 

mineralization forms a distinct compositional domain in the center of the ternary that 

slightly favours the Ag-Au-Te affinity relative to other element enrichments. The QFP 

pyrite compositions are generally distinct with the least altered QFP (sample QFP-1) 

showing a large spread in data between the Ag-Au-Te and the W-Sn affinities. The large 

spread appears to be due to the presence of inclusions in pyrite (therefore not dissolved, 

homogeneously distributed elements in pyrite), though the number of data points may not 

be enough to state this conclusively. In comparison, the QFP-2 sample of cubic pyrite 

shows a compositional range of analyses along the Co-Ni and Ag-Au-Te segment with 

proximity to the Co-Ni apex. Pyrite from style 2 mineralization of the WAu breccia occurs 

in a field tending towards the Co-Ni apex, with one possible outlier occurring closer to the 

W-Sn apex. The disseminated pyrite of the least altered Revenue diatreme (RD-1) shows a 

compositional span along the Co-Ni to Ag+Au+Te join, with the majority closest to the 

Co-Ni apex. The style 3 mineralization of the Revenue diatreme shows pyrite occurring in 

a small field near the Ag-Au-Te apex.  

A weak trend from early and late style 1 mineralization, as well as style 2, suggests 

a fluid source that evolved from an epithermal affinity to a mixed source and then to a Co-

Ni dominant fluid (mafic magmatic association ?) over the course of mineralization. Style 

2 mineralization appears similar to the least altered Revenue diatreme pyrite composition, 

though style 2 pyrite mineralization differs greatly from style 3 mineralization of the 
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Revenue diatreme sample RD-2, which has an epithermal-porphyry precious metal-like 

signature (the Au-Ag-Te association).  
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Figure 18. Pyrite trace element compositions of samples analysed by LA-ICP-MS. Values 

bdl were treated as 0 ppm. 
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The analyses of pyrrhotite showed less variation (Fig. 19). In the early style 1 

mineralization, the analyses show a spread from the W-Sn and Co-Ni to the Co-Ni and the 

Ag-Au-Te segments. The late style 1 mineralization shows a spread along the Co-Ni to Ag-

Au-Te segment, with one analysis occurring near the Ag-Au-Te apex. The QFP sample that 

contained pyrrhotite (sample QFP-1) shows a similar spread along the same region, though 

concentrated more in the Co-Ni region. Like the QFP sample, style 2 mineralization 

occurred on the Co-Ni and Ag-Au-Te segment with the analyses concentrated towards the 

Co-Ni end-members. Pyrrhotite occurs only in trace amounts in late style 1 mineralization, 

and the preference towards Au-Ag-Te demonstrates that this pyrrhotite is not remobilized 

from the early style 1 mineralization. Alternatively, the spread-out data may represent Au-

Ag nugget effect in the late style 1 mineralization. Other notes from the trace element 

abundances show the late BSZ having the least amount of Se and Sn, and the highest 

amounts of Au. The results show the early style 1 mineralization occurring from a 

magmatic to skarn type of fluid, with all other mineralization deriving from a magmatic-

epithermal fluids.  More analyses would help constrain relationships and determine outliers.  
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Figure 19. Pyrrhotite trace element compositions of samples representing the early style 1 

mineralization, late style 1 mineralization and style 3 mineralization. Values bdl were 

treated as 0 ppm. 

 

 

 

 

 

 

 

 

 

 

 



77 

 

Throughout the analyses, the early style 1 is dominantly (early BSZ) magmatic in 

origin, the late style 1 mineralization (late BSZ) demonstrates a varying epithermal to 

magmatic origin, and the style 3 (WAu breccia) is influenced by skarn-type conditions 

when compared with each other. This may indicate that the mineralization style 1 has two 

metal and fluid sources that each have distinct chemical compositions, or that one source 

has changed in composition between mineralization events. Late style 1 mineralization 

crosscuts the phyllic-altered QFP. Style 2 and 3 share similar compositions in chalcopyrite, 

which may suggest a similar fluid source, with a separate overprinting fluid source related 

to pyrite deposition. The topic is discussed further in the paragenesis section.  

6.2 Thermometry and barometry 

6.2.1 Sphalerite thermometry  

Thermometric determinations using the FeS content of sphalerite in equilibrium 

with pyrrhotite and/or pyrite was obtained from the late BSZ (L-BSZ-1) and from the WAu 

breccia (WAu-3). By plotting the calculated mole % of FeS obtained by EMPA on the 

composition-temperature plot from Scott (1983) for the Fe-Zn-S system (Fig. 20), the late 

BSZ yielded crystallization temperatures for sphalerite from 601-611°C whereas the WAu 

breccia yielded temperatures from 610 - 647°C.   
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Figure 20. Sphalerite thermometry plot. Sphalerite grains in equilibrium with pyrite and 

pyrrhotite in the late style 1 mineralization (sample L-BSZ-1) and style 2 mineralization 

(sample WAu-3) yield compositions indicative of temperatures 601 - 611°C and 610 - 

647°C, respectively. Adapted from Scott, 1983. 
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The sphalerite grains that yield the reported temperature range are texturally and 

compositionally similar in that they are subhedral to anhedral, and contain Sn-rich zones or 

inclusions. Bulk values of Sn determined by EMPA from sample WAu-3 range from bdl – 

5.602 wt% Sn and values determined by SEM-EDS from three points in late BSZ sample 

L-BSZ-1 range from 0.17 – 1.43 wt%, and another point with a value of 0.98 wt% from 

late BSZ sample L-BSZ-2.  

Similarly, SEM analysis of sphalerite in equilibrium with pyrrhotite and/or pyrite 

show Sn-rich areas with up to 11 wt% Sn in the late BSZ (L-BSZ-1) (Fig. 11G), 7.1-20.2 

wt% Sn in sphalerite grains of the WAu breccia sample WAu-3, and one spot with 0.8 wt% 

Sn in Revenue diatreme sample RD-1. The high concentrations of Sn are restricted to 

specific spots and are likely areas containing Sn-rich microinclusions, or possibly some Sn 

in solid solution (e.g., as the mineral stannite occurring in solid solution with sphalerite; 

Cook et al., 2009). Overall, the Sn in the sphalerite does not appear to be homogeneous 

given the exsolution textures (Figs. 21AB) and the range in wt% composition. More 

thorough analysis via LA-ICPMS may be able to resolve the nature of its enrichment and 

homogeneity if transient count rates for Sn are continuous and without concentration 

“spikes” in signal intensity (Cook et al., 2009).  

Both the sphalerite from L-BSZ-1 (Fig. 21A) and WAu-3 (Fig. 21B) are subhedral 

to anhedral and have diffuse boundaries with the pyrite and pyrrhotite. This may represent 

a disequilibrium texture, rending the temperatures calculated erroneous. In comparison, 

sphalerite grains elsewhere in sample WAu-3 are euhedral to subhedral (Fig. 21C), have 

distinct boundaries (Fig. 21D), and occur on the edges of chalcopyrite and/or massive pyrite 

grains, showing better textural evidence for equilibrium. These sphalerite grains do not 

report Sn in their trace mineral composition when analysed via SEM-EDS, nor show the 
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brighter greyscale areas typical of concentrated Sn when imaged in SEM-BSE (Fig. 21D). 

Unfortunately, microprobe analysis of the non-Sn-enriched sphalerite did not yield FeS 

values that could be used for thermometric estimates due to FeS values too low as a result 

of high Cu content (see Appendix 6).  
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Figure 21. Comparison of sphalerite grains used in thermometry. A) SEM image of the 

analyzed sphalerite grain with heterogeneous concentrations of Sn in equilibrium with 

pyrite in the late BSZ, sample L-BSZ-1. B) SEM image of an analyzed sphalerite grain 

with concentrated enrichment of Sn surrounded by pyrite and pyrrhotite in the WAu 

breccia, sample WAu-3. C) Euhedral to subhedral sphalerite grain partially included in 

massive chalcopyrite, and smaller inclusions of sphalerite in massive chalcopyrite, sample 

WAu-3. D) SEM image of a sphalerite grain similar to that of C, showing distinct 

boundaries with pyrite and no enrichment of Sn, sample WAu-3.  
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Enrichments in Sn have been documented in sphalerite, particularly by Ono et al.  

(2003) in the epithermal polymetallic Suttsu deposit, Japan, that have a temperature range 

of . In that deposit, In-enriched sphalerite also shows minor amounts of Sn in the range of 

1.8-4.3 wt%. Cook et al. (2009) document high levels of Sn (598-11703 ppm) in In-rich 

sphalerite from the Toyoha epithermal vein deposit, Japan (2009). The work of Cook et al. 

(2009) shows that from a range of deposit types, Sn in sphalerite is more enriched in 

epithermal deposits compared to skarn and stratabound (carbonate replacement deposits, 

VMS) deposits.  

The enrichment of Sn in sphalerite commonly has a positive correlation to In, Ag, 

and Cu (Cook et al., 2009). Tin and Ag occur in solid solution at near equal proportions 

and are likely incorporated via a coupled substitution, with mechanisms that may involve 

vacancies depending on the oxidation state of Sn (Cook et al., 2009). Ohta (1995) notes the 

complexities of solid solutions in the Toyoha deposit involving the Ag-Cu-(Fe)-Zn-In-Sn-

S system (Cook et al., 2009), leading to the identification sphalerite-stannite solid solution, 

a system that may be relevant to the samples in this study showing highly elevated Sn 

contents in sphalerite  

To date there is no robust correlation between Sn composition in sphalerite and 

thermometry from Sn-enriched sphalerite in the Fe-Zn-S system, though Shimizu and 

Shikazono have proposed sphalerite and stannite (Cu2FeSnS4) as a means for thermometry 

(1985) where later studies have used this method with success (Kolodziejczyk et al., 2016). 

Unfortunately, the sole occurrence of stannite found in this study does not occur with 

sphalerite, but instead with galena and chalcopyrite (Appendix 4B).  
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6.2.2 Arsenopyrite thermometry 

 Arsenopyrite in equilibrium with pyrite from the sample QFP-2 was analyzed by 

EMPA and the determined As atomic % composition was used to estimate arsenopyrite 

crystallization temperature in equilibrium with pyrite using temperature-compositional data 

for the Fe-As-S system from Scott (1983). The temperature range for this mineralization 

was estimated to be between ~370 – 480 °C (Fig. 22). Multiple studies (Bineli-Betsi and 

Lentz, 2011; Northern Freegold Resources Ltd., 2015; Bineli-Betsi et al., 2016) propose 

that the breccia bodies located at the Revenue localitywere emplaced during the same 

events of the QFP dyke emplacements, and so the temperature of mineralization for these 

minerals may be compared, or used as a proxy for the temperature of mineralization for the 

Revenue diatreme. 
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Figure 22. Arsenopyrite thermometry plot. Phase relations of the Fe-As-S system 

determined by the atomic percent (at %) of arsenopyrite grains, analyzed by electron 

microprobe. 12 analyses from QFP-2 were used to determine a window of temperatures 

along the arsenopyrite-pyrite equilibrium isopleth. Adapted from Scott, 1983. 
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6.2.3 Sulfarsenide thermometry 

Plotting relative mole percent CoAsS-FeAsS-NiAsS compositions for arsenopyrite 

and glaucodot on an isothermal section ternary diagram for sulfarsenides (Klemm, 1965) 

(Fig. 23) provides a semi quantitative temperature constraint for mineralization from 

samples L-BSZ-2, QFP-2, WAu-2, WAu-3, and RD-2 representing the L-BSZ, QFP, WAu 

breccia, and Revenue diatreme respectively. Arsenopyrite from the L-BSZ-2 sample, 

analyzed by the SEM, yields temperatures of < 304°C. Arsenopyrite from the RD-2 sample, 

analyzed by SEM, yields a temperature of < 300°C. Typical arsenopyrite from the QFP-2 

sample yield temperatures of < 300°C with some of the Co-Ni-rich arsenopyrite analysis 

yielding a higher T range from 387 to 644°C, with less confidence in the later due to wide 

spread in chemical composition. Glaucodot from the WAu-2 and WAu-3 samples, analyzed 

by Dalhousie microprobe, yields temperatures of 300 - 462°C. The plotted values are 

compared to field from sulfarsenides in various deposit settings (Fig. 23).  
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Figure 23. Sulfarsenide thermometry plot. Sulfarsenide ternary using mole % Fe-Ni-Co, 

adapted by Klemm, 1965. Arsenopyrite grains from L-BSZ-2 and RD-2 were analyzed by 

SEM. Arsenopyrite grains from QFP-2 were analyzed by Toronto microprobe. Glaucodot 

from WAu-2 and WAu-3 samples were analyzed by Dalhousie microprobe. Sulfarsenide 

compositions from various types of deposits are compared with this studies results as fields, 

(Acosta-Góngora et al., 2015; Burke 2019; Dare et al., 2010; Fanlo et al., 2014; Godel et 

al., 2012; Grorud et al., 1997; Hanley 2007; Ixer et al., 1979; Klemm 1965; Nimis et al., 

2014; Vander and Andre 1991). Values bdl were treated as 0 ppm. Note that arsenopyrite 

analyses detected via SEM from samples L-BSZ-2 and QFP-2 may appear obscured by 

sample labels for RD-2 arsenopyrite analyses.  



87 

 

Those that show compositional (and therefore, thermometric) similiary to the 

glaucodot of this study include the Scar Crag polymetallic arsenide-sulfarsenide vein in 

English Lake District (Ixer et al., 1979) and Fe-Cu-W-skarn of the Traversella deposit, Italy 

(Nimis et al., 2014). The Scar Crag occurrence is situated in lower Ordovician marine 

sediments of the Skiddaw slates and loosely classified as related to stratabound vein 

deposits (Stanley and Vaughan, 1982; Shepherd and Waters, 1984), though little 

documentation has been done to resolve the origin of the Scar Crag occurrence. More 

broadly, the English Lake District comprises multiple type of mineralization, including 

barite-fluorite vein mineralization, Carboniferous-age Zn-Pb vein mineralization, and 

tungstate-mineralization associated with peraluminous granites intruding deep marine 

sediment (Stanley and Vaughan, 1982; Shepherd and Waters, 1984). The English lake 

district is located roughly 50 km SE of the stratabound Alston Block mineralization of the 

Northern Pennines Orefield (Bouch et al., 2008), and may be genetically related (Ixer et al., 

1979). The Traversella deposit have temperatures from 300 - 450°C using composition data 

from arsenopyrite and cobaltite mineralization from the sulfidation stage (Nimis et al., 

2014), though the authors firmly note that there is no trace of glaucodot or gersdorffite 

found in samples. Additionally, authors make note of cobaltite paragenesis being further 

confined to ~300°C based on Fe-poor composition of monoclinic pyrrhotite, of which has 

temperature estimates of 225°C to 315°C (Nimis et al., 2014). Though mineralization styles 

from porphyry-style, polymetallic, and magmatic-derived Ni-Cu deposits were not plotted 

in similar locations, this may be a result of lack of studies in this region of work, or lack of 

accessible published literature.   
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6.2.4 Semi-quantitative fluid inclusion microthermometry  

Fluid inclusions from late style 1 mineralized veins appear to comprise different 

generations. In the quartz-sulfide veins of sample L-BSZ-1, the dominant types of fluid 

inclusions were two phase (liquid “L” and vapour bubble “V”; at room T) generally 

rounded in shape, < 5 - 12 µm in diameter, with a ~25 to 40 vol.% vapour bubble, and 

showing some evidence of post-entrapment modification (stretching /necking down). These 

inclusions typically occur in trails, constituting secondary assemblages (Fig. 24A) or as 

“fields” of unclassified origin within grains. Primary or fluid inclusions (Fig. 24B) in quartz 

grains are 7 - 15 µm in size, and are three phase (L+V+ halite crystal “S1”) or four phase 

(L+V+S1+dark solid particle “S2”). Vapour bubbles comprise 1 - 5 vol.% and salt crystals 

range from 4.8 - 33.8 area% (see Appendix 6). The corresponding salinities range from 

23.5 - 57.8 wt% NaCl equivalent. The average temperature of halite dissolution, 

corresponding to an average salinity of 40.8±9.0 wt% NaCl eq., indicates a minimum 

trapping temperature of ~333°C.    

 

 

 

 

 

 

 

 

 

 

 

 

 



89 

 

 

Figure 24. Fluid inclusion assemblages of samples L-BSZ-1 and WAu-3, observed in the 

late BSZ and the WAu Breccia respectively. A) Sample L-BSZ-1, Assemblage 3 FI#1; a 

four phase fluid inclusion with a salinity of 48.74 wt% NaCl eq and a trail assemblage of 

two phase (V+ L) fluid inclusions in the mineralized quartz vein. B) Sample L-BSZ-1, 

Assemblage 5 FI#2; a (primary) four phase fluid inclusion depicting a vapour bubble (V), 

a salt crystal (S1), a dark sulfide solid (S2) and a liquid (L) phase with a salinity of 32.16 

wt% NaCl eq within the mineralized quartz vein. C) Sample L-BSZ-2; two phased (V+L) 

fluid inclusion assemblage within a quartz crystal suspended in the quartz dolomite vein. 

D) Sample L-BSZ-2; negative crystal shaped, three phase (L+S2+S3) fluid inclusion 

dominated by hexagonal sulfide grain (S1) and unknown transparent grain (S3). E) Sample 

WAu-3, Assemblage 3 FI#6; four phase fluid inclusion with a salinity of 46.86 wt% NaCl 

eq. F) Sample WAu-3; three phase (V+L+S1) fluid inclusion assemblage within a 

hydrothermal apatite crystal in the quartz matrix. See Appendix 6 for data sets. 
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 In the late style 1 mineralization sample L-BSZ-2, quartz grains are included in the 

mineralized dolomite veins. These quartz grains are characterized by two phase (L+V) fluid 

inclusion assemblages containing inclusions that are generally < 10 µm, rounded, with 

vapour bubbles comprising ~30 to 60 vol.% occurring in trails of secondary origin or 

“fields” of unknown origin (Fig. 24C), and may demonstrate necking down. Rarely, quartz 

grains have fluid inclusions that show negative crystal phase and contain sulfides and other 

unknown solid phases (S3) within the liquid (Fig. 24D). There are no three phase fluid 

inclusions in the quartz-sulfide veins of sample L-BSZ-2.  

Fluid inclusions assemblages found in the WAu breccia sample WAu-3 are 

predominantly hosted in quartz (i) of the matrix and rarely in apatite grains. Assemblages 

of interest are three phase (L+V+S1), or four-phase  (L+V+S1+S2) (Fig. 24E). Fluid 

inclusions of the anhedral quartz are composed of two phase secondary and 

pseudosecondary inclusion assemblages, and primary, three to four phase inclusions 

(L+V+S1+S2). The primary inclusions typically have high salt crystal volumes and so 

thermometry work can be approximated using the salt volume proportion compared to 

experimental equations for high salinity brines (J. Hanley, communication, 2018). Primary 

fluid inclusions measure 3 - 15 µm and may show negative crystal shape. Bulk halite area% 

range from 4.6 - 21.7 area%, with an average of 11.4±4.4 area%. Using the equation below, 

salinity yield 22.4 - 46.9 wt% NaCl eq, with an average of 34.0±6.3 wt% NaCl eq. Using 

the calibration of Bodnar and Vityk (1995) temperature of final halite dissolution related to 

salinity the average 34.0 wt% NaCl eq converts into a minimum entrapment temperature 

(from halite dissolution) of ~240°C.  

Fluid inclusion assemblages may contain sub-µm-sized grains of an opaque solid, 

possibly sulfides (Figs. 24E). Other occurrences of large solid phases are noted in 
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assemblages 2 and 7, where a > 25 area% salt “mass” was observed. This is caused by salt 

crystals present in the cooling fluids being accidentally trapped within fluid inclusions, and 

then additional salt precipitating onto them as the inclusions cool, leading to an 

anomalously large salt crystal volume at room temperature. The estimated minimum 

trapping temperatures (> 445°C) for these inclusions were not included in the thermometry 

study, as their bulk salinity compositions do not reflect the true nature of the fluid at the 

time of entrapment.  

In euhedral apatite, represented by WAu-3 assemblage #5 (Fig. 24F), fluid 

inclusions are three phase (L+V+S1) and may be pinched in some areas. Of the two 

measured inclusions, salt crystals account for 6.7 and 8.5 vol% salt, corresponding to 27.3 

and 30.3 wt% NaCl eq. Minimum entrapment temperatures for these inclusions are range 

from 73 to 171°C, based on halite size and corresponding halite dissolution temperatures. 

On the other end of the apatite grain, an assemblage of two phase (L+V) fluid inclusions 

are more uniform in phase ratios and show relatively high V:L ratios.  

6.2.5 Comparisons of thermometry 

The various thermometry methods are summarized in Figure 25 below. Sphalerite 

derived temperatures are very high in comparison to the sulfarsenide thermometry in the 

mineralized zones BSZ and WAu Breccia, up to 300 °C difference for sample L-BSZ. As 

for arsenopyrite data, the QFP area may show a temperature constrained between 363°C 

and 381°C using the sulfarsenide and arsenopyrite-pyrite methods together (Fig. 22), 

though the temperatures for the Co-Ni-enriched arsenopyrite are very high, ranging from 

387 to 644°C with some analysis falling out of range of the plot (Fig. 23). Glaucodot 

thermometry from the WAu breccia was further constrained using fluid inclusion salinity-
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T estimates (for halite dissolution), constraining mineralization in the range from 300 to 

394°C. 
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Figure 25. Thermometry summary plot of various zones using sphalerite, arsenopyrite, and 

glaucodot analyzed from three different methods, and fluid inclusion proxies with error 

bars. Sulfide data collected from EMPA unless otherwise stated. 
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6.2.6 Sphalerite barometry  

 Using sphalerite thermometry derived from mole% FeS and pairing data with 

Scott’s barometry diagram (1983), a pressure constraint is applied for the late style 1 and 

style 2 mineralization of the BSZ and the WAu breccia, respectively, at deep emplacements 

of < 10 km (Fig. 26).  

 

 

 

 

 



95 

 

 

Figure 26. Sphalerite barometry plot relating molee% FeS to temperature and pressure in 

kbar. Red box is representative of the mole % FeS in sphalerite in addition to the 

thermometry derived form same sphalerite grains for L-BSZ-2 and WAu-3. Modified from 

Scott, 1983.  
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6.3 Paragenetic sequence 

6.3.1 Summary of petrography  

In summary, the host Revenue granite is a biotite monzogranite with predominantly 

disseminated sulfides accounting for ~1% modal volume sulfides. The early style 1 

mineralization is dominantly biotite-altered stockwork associated with quartz (ii)-sulfide 

veins (~2% vol) and trace galena, sphalerite, and ilmenite. In both the host rock and early 

style 1, pyrrhotite is the dominant sulfide with lesser chalcopyrite, and minor amounts of 

pyrite. The associated alteration is dominated by fine-grained biotite and anhedral rutile.  

The QFP dykes show variable intensities of mineralization associated with differing 

alteration intensities. Mineralization associated with the relatively unaltered areas is similar 

to early mineralization style 1, in that sulfides are disseminated and predominantly 

comprised of pyrrhotite  pyrite  chalcopyrite with chlorite-rutile alteration in the 

groundmass and some alteration of pyrrhotite to marcasite. The strongly altered sample 

mineralization is dominated by quartz (ii)-carbonate-chalcopyrite-molybdenite-rutile veins 

in a phyllic-altered host, which is similar to the late mineralization style 1. Chalcopyrite 

trace element compositions confirm that the QFP was crosscut by late style 1 

mineralization.  

The later mineralization style 1 consists of quartz (ii)-dolomite-sulfide veining that 

is dominated by chalcopyrite, lesser pyrite that is altered to marcasite, and trace to no 

pyrrhotite. Pyrite is categorized by pyrite (i) being smooth faced and sub-euhderal and 

pyrite (ii) being anhedral masses that show “picked” textures or masses of very fine-grained 

pyrite crystals that show colloform textures. While galena and sphalerite abundancy 

increases, molybdenite and arsenopyrite are introduced to the system. Trace Ag and 
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electrum occur with galena as fracture infill in pyrite masses. Sphalerite may show 

enrichment of Sn. Petrography shows two types of veining in this area: i) quartz-

chalcopyrite-pyrite±molybdenite±rutile veining, and a later dolomite-chalcopyrite-pyrite-

molybdenite±sphalerite±galena± trace minerals arsenopyrite, stannite, and electrum which 

crosscut quartz crystals from earlier veining. This sulfide assemblage is associated with 

phyllic alteration in the wallrocks and breakdown of euhedral rutile, chlorite, and apatite 

forming white clays, dolomite, siderite, and Sn-rich rutile needles.  

Mineralization style 2, located in the WAu breccia, occurs in a quartz-carbonate-

sulfide matrix. Alteration assemblages are more advanced than those seen in late style 1 

mineralization. Plagioclase crystals are completely replaced by fine-grained white clays 

and turbid, anhedral siderite. Carbonate-rutile-K-spar-hydrothermal apatite assemblages 

occur on the margins of the quartz matrix. Mineralization is predominantly comprised of 

pyrite (ii) infilling spaces between pyrite (i), chalcopyrite and molybdenite, with localized 

ferberite-scheelite and glaucodot, and areas with coarse-grained bladed galena, Bi-enriched 

galena, electrum, and euhedral sphalerite.  

The Revenue diatreme has variable mineralization depending on the intensity of 

alteration, which may be related to the distance from Revenue diatreme-granite contact. In 

the least altered sample, mineralisation is dominantly cubic pyrite (possible As-enriched 

zones; see Appendix 4E) with rutile, and rarely pyrite-sphalerite-galena-chalcopyrite-rutile. 

In a sample closer to contact, net-textured chalcopyrite mantled by pyrite-marcasite is 

dominant with inclusions of galena, sphalerite, rutile, as well as massive, fractured 

marcasite patches. Both locations have carbonate-rutile alteration, with W zonation in new 

rutile.  
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6.3.2 Mineral paragenesis  

A summary paragenetic scheme of mineralization is shown in Figure 27, comparing 

relative mineral precipitation timing within each style of mineralization. Common 

paragenetic sequences show pyrrhotite, molybdenite, and sphalerite occurring relatively 

early in the sequences. Chalcopyrite, galena, and some sphalerite form throughout 

mineralization, as they appear as earlier than pyrite but may also form interstitial to pyrite 

suggesting multiple generations. In general, pyrite and rutile form relatively late in all styles 

of mineralization. Marcasite forms late, similar to pyrite, or may occur as a later alteration 

of pyrite and pyrrhotite when the system is under different conditions. Carbonate minerals 

occur late in the sequences with respect to mineralization, as they typically form 

crosscutting veins and fracture infills. When present Au occurs late in the sequence as 

electrum (Ag+Au) in the late style 1 and style 2 mineralization, with the latter being 

accompanied by calcite.  
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Figure 27. Comparison of mineral paragenesis of each mineralization style. Dashed lines 

representing uncertainties in time placement.  
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6.3.3 Sequence of mineralization events   

 Field observations show that the early style 1 mineralization of the BSZ in the 

Revenue granite is crosscut by the WAu breccia. Both the WAu breccia and the style 1 

mineralization are then crosscut by the Revenue diatreme. This provides a preliminary basis 

for paragenesis of early style 1, followed by style 2, followed by style 3.  

 The early style 1 mineralization in the BSZ is associated with potassic alteration. 

This potassic alteration is overprinted by chlorite, rutile, and in some cases sulfides and 

calcite replacing predominantly biotite crystals. The alteration of biotite to chlorite±rutile 

is also observed in the least-altered QFP dyke, which strengthens theargument of the  timing 

of QFP occurring after early style 1 mineralization, and before other mineralization and 

associated alteration.  

Timing of QFP dykes are interpreted from petrographic and field observations. In 

the petrographic study, mineralization similar to late style 1 is found to vein through a QFP 

sample, though no chemical analyses has yet to confirm the possible genetic relation. If 

they are of similar mineral chemistry, this would establish QFP dykes as pre- to syn- style 

1 mineralization. Additionally, fragments of QFP found in the WAu breccia suggest  that 

the QFP dykes are pre- to syn- brecciation. Under this hypothesis, the QFP dykes would 

have formed likely before, or during, the early formation of both late style 1 and style 2 

mineralization. 

In the BSZ, late style 1 mineralization and associated alteration crosscuts the early 

style mineralization (Fig. 4D-F). The associated alteration shows a sequence where chlorite 

is altered to white clays, fine-grained anhedral dolomite is overprinted by more cubic 

siderite, rutile and apatite crystals are digested, and new rutile needles and euhedral apatite 
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crystals form. This demonstrates a previous chlorite-including alteration altered to a phyllic 

alteration assemblage overprinted by an argillic (illite+carbonate) assemblage.  

In the WAu breccia, style 2 mineralization is associated with pervasive argillic 

(illite-carbonate-rutile-apatite) alteration, with no remnant textures observed in thin 

section. The intense alteration suggests a later timing relative to late style 1 mineralization, 

or fluid chemistry that has a larger alteration effect.   

  The diatreme and associated mineralization style 3 clearly crosscuts mineralization 

style 2, but shows no connection to the late style 1 mineralization. Alteration assemblages 

remain dominated by phyllic alteration, comparable to that of the WAu breccia. 

6.4 Global mineralization comparison 

 The Revenue occurrence is currently classified as a Co-Au±Mo porphyry deposit 

as it demonstrates sheeted vein base-metal mineralization closer to the apparent core and 

epithermal-like polymetallic mineralization as an outwards extension into the BSZ, with 

associated potassic alteration overprinted by phyllic and then argillic alteration 

assemblages. Additionally, the Revenue occurrence is located in geological settings of 

island arc and extensional tectonics, like the Cu-Au porphyry deposits of the Dawson 

Range and in British Columbia (Kirkham and Sinclair, 2016; and references therein). The 

previously mentioned early pyrite-potassic alteration assemblages overprinted by later 

polymetallic epithermal type mineralization and associated phyllic alteration suggest that 

the Revenue occurrence is a telescoped system in which continuous uplift during porphyry 

development allowed for epithermal fluids to crosscut and mineralize as overprints to the 

earlier phases as it became shallowly emplaced.  
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Brathwaite et al. (2001) report a telescoped Cu-Mo-Au porphyry occurrence in the 

Thames District of New Zealand, where quartz-magnetite veins associated with hypersaline 

(50 – 84 wt% NaCl equivalent, corresponding to 450 to >600 °C) fluids and magnetite-K-

feldspar potassic alteration are overprinted by propylitic and intermediate argillic alteration 

composed of quartz-chlorite-epidote-rutile-pyrite-calcite. Phyllic alteration associated with 

pyrite-chalcopyrite-molybdenite mineralization overprints earlier phases as veins and 

disseminated. This assemblage includes characteristic Cu-Mo-Au porphyry minerals such 

as bornite, chalcocite, and covellite, molybdenite, and inclusions of sphalerite in the 

dominant pyrite (Brathwraite et al., 2001; Kirkham and Sinclair, 2016). Final 

mineralization of quartz-sulfide-gold-anhydrite veins associated to argillic alteration cross-

cut all earlier phases, contain sphalerite and galena, have temperatures from 190 to 320°C 

from comparisons with similar occurrences in the area (Brathwaite et al., 2001). Late 

carbonate as calcite or siderite with kaolinite infill fractures with. The Revenue deposit 

shares similarities in terms of frequent overprinting of mineralization and alteration 

assemblages in a similar order, with an absence of magnetite and anhydrite. 

Porphyries with an absence of magnetite and anhydrite and occurrence of pyrrhotite 

as a major sulfide may be categorized as a subclass of porphyry deposits called reduced 

porphyry deposits (Rowins, 2000). These porphyries develop through reduced magmatic 

oxidation states, and are associated with ilmenite-bearing, reduced I-type granitoids with 

fluid inclusions rich in CH4. Proposed mechanisms of reduced I-type granitoid formation 

involve magmas that were originally generated as I-type partial melts but that became 

strongly contaminated (and thus reduced) during assimilation of graphitic metasedimentary 

rocks during ascent (Auge and Brimhall, 1988; Rowins, 2000). Metal transportation 

involve Cu and Au transported by vapour phases following fluid boiling and subsequent 
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transport of metals up to several kilometers away from source porphyry magmas (Rowins 

2000). This provides a possible mechanism for overprinting mineralization types in a small 

extent. Rowins (2000) describes 17 Mile Hill (Australia) which has similar mineralization 

as in the study area consisting of pyrite, pyrrhotite, chalcopyrite, marcasite, and rare 

sphalerite and galena in the center of quartz±carbonate±K-feldspar veins or disseminated 

in wallrocks in the absence of magnetite, hematite, and anhydrite. Fluid inclusion data from 

Rowins et al. (1993) report salinities up to 38 wt% NaCl equivalent, and mineralization 

temperatures ranging from 142° - 611°C, with an average at 350°C. This is comparable to 

fluid inclusion data in this study, with salinities up to 46.9 wt% NaCl equivalent and 

average temperatures around 238°C. Liberty Bell, Fort Knox, and Shot Gun porphyry 

deposits located in the Alaskan region of the Tintina Gold belt are also likely reduced 

porphyry deposits (Rowins 2000). Hart (2007) also makes note of Dublin Gulch deposit in 

Yukon as a reduced intrusion-related gold system.  

6.5 Possible fluid sources involved at the Revenue occurrence 

The small spatial extent of varying mineralizing events and their position in relation 

to a dilation zone within the Big Creek Fault originally suggested a genetic link between 

mineralization styles.  In actuality, the fluid sources are diverse responsible for 

mineralization styles considering the contrasting trace element chemistry in conjunction 

with differing fluid inclusion salinities between style 1 and style 2 mineralization. 

Differences in the trace element composition of early and late style 1 mineralization may 

be explained by a common magmatic source undergoing changes in the composition during 

fluid exsolution. Alternatively, it is also possible that the two styles were sourced from 

different magmas entirely given the contrasting mineralogy.  
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If the system is interpreted to be a reduced porphyry, fluids associated to the late 

style 1 epithermal polymetallic mineralization were derived from a distant porphyry source, 

having travelled through the Big Creek Fault or structures associated with QFP dykes. The 

skarn-porphyry-affinity style 2 mineralization crosscuts the early style 1 mineralization at 

the center of the Revenue Granite, rather than on the flanks of the pluton like most skarn 

deposits. This suggests that the fluids responsible for mineralization style 2 are derived 

from an unknown pluton either at depth or distal to the WAu breccia location. 

7.0 Conclusion 

Petrograpahic, thermometric, and trace element compositional studies of the 

mineralization styles of the Revenue occurrence illustrate a multiphase overprinting 

porphyry system with main characteristics summarized below: “WAu”  

1) There are 3 distinct mineralization styles 

o Style 1: an early phase represented by quartz-base metal sulfide veins 

associated with potassic alteration and a later, quartz-dolomite-polymetallic 

sulfide veins associated with phyllic alteration  

o Style 2: massive polymetallic + W mineralization in a quartz±carbonate 

matrix associated with pervasive argillic alteration in the “WAu” breccia 

o Style 3: replacement-style mineralization near contact of Revenue diatreme 

and host granite  

2) Thermometry constrained mineralization conditions consistent with a high T (~400 

– 600°C) porphyry environment: 
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o Sphalerite-pyrite-pyrrhotite thermometry gave temperatures from 601 to 

611 °C for late style 1 mineralization in the BSZ and from 610 to 647 °C for 

mineralization style 2 in the WAu breccia zone.  

o Arsenopyrite-pyrite equilibrium thermometry gave temperatures from ~370 

to 480°C for late style 1 mineralization in a phyllic-altered QFP dyke.  

o Sulfarsenide ternary thermometry, indicating temperatures of < 300°C for 

phyllic-altered QFP, < 304°C for late style 1 of the BSZ, 300 to 462°C for 

style 2 in the WAu breccia, and < 300°C for style 3 in the Revenue diatreme.  

o High salinity fluid inclusion temperature proxies for late style 1 and style 2 

mineralization constrain temperatures to minimum of 485°C and < 394°C, 

respectively.  

3) The results of the main trace element chemistry allow differentiation of early and 

late style 1 and style 2 mineralization whereby early style 1 has mafic magmatic 

(Co-Ni) affinities, late style 1 has epithermal-porphyry precious (Ag-Au-Te) metal 

affinities, and style 2 has skarn-porphyry (W-Sn) affinities relative to each other.  

4) Paragenesis 

Early style 1 mineralization in the BSZ of the Revenue granite was crosscut 

by QFP dykes, and subsequent late style 1 veining in the BSZ and style 2 in 

the WAu breccia. The emplacement of the Revenue diatreme and associated 

mineralization style 3 are the final major events in the Revenue occurrence.  

This study has provided a framework for the paragenesis of three major mineralization 

styles, supported by thermometry, mineralogical and textural studies, and trace element 

fingerprinting of major sulfides. To gain a deeper understanding of the Revenue 

occurrence, further studies on a variety of themes would be beneficial. Detailed fluid 
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inclusion work on quartz phases from various styles of mineralization would strengthen the 

mineral thermometry of each style of mineralization and constrain more robust barometric 

values for mineralization. Decrepitate mound fluid inclusion analyses on L-BSZ-1 and 

WAu-3 may reveal the identity of unknown solid phases and confirm that the high salinity 

fluid inclusions are the mineralizing fluids rich in ore metals. Additional trace element work 

on style 1 mineralization may determine a sub-mineralization style differentiating quartz-

sulfides veins from quartz-dolomite-sulfide veins. Investigations into the sources and 

mechanisms of Sn-enrichment in sphalerite observed in the late style 1 and style 2 

mineralization may provide a stronger connection between the two mineralization events. 

Lastly, isotopic studies of sulfur, in conjunction with additional laser ablation mapping,  

would constrain sources of mineralizing fluids and better explain genetic and temporal 

relationships between mineralization styles. 
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Appendices 

Appendix 1: list of abbreviations for mineralized zones and minerals 

 

Minerals Abbreviation

albite ab

allanite aln

andesine andes

anorthoclase ano

apatite ap

arsenopyrite apy

barite brt

bioite bt

carbonate cb

calcite cal

cassiterite cst

chalcopyrite ccp

chlorite chl

dolomite dol

electrum el

ferberite frb

galena gn

glaucodot glc

hematite hem

illite ilt

ilmenite ilm

kaolinite kln

K-feldspar kfs

marcasite mrc

molybdenite mol

monzanite mnz

muscovite ms

oligoclase olg

plagioclase pl

pyrite py

pyrrhotite po

quartz qz

rutile rt

scheelite sch

siderite sd

sphalerite sp

stannite stn

thorite thr

titanite ttn

urainite urn

xenotime xtm

zircon zrn
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Appendix 2: Regional mineralization comparison  

 As previously stated in the introduction, the Revenue occurrence is located in the 

Dawson Range portion of the Tintina Gold belt adjacent to the Carmacks Copper Belt. 

Deposits in the area are commonly located along the Big Creek Fault, or off-shoots of the 

dominant fault, and may have QFP dykes of the Casino Pluton cross-cutting properties and 

associated to mineralization (Allan et al., 2013; Betsi et al., 2016). Below are five 

recognized mineral occurrences and deposits situated in the Dawson Range, organized 

spatially closest to Revenue to further away in the NW direction.  

Nucleus 

 The Nucleus deposit, situated ~3 Km west of Revenue, is defined as a “superposed 

Ag-Au-Bi-Cu mineralized system” that has two non-genetic mineralization styles of i) 

skarn and sulfide replacement (~182 - 191 Ma) and ii) vein-controlled, breccia and 

disseminated mineralization (75.8 - ~76.2 Ma; Bineli-Betsi et al., 2013, 2016). The skarn 

mineralogy and abundance of pyrrhotite in both skarn and vein-controlled mineralization 

share characteristics with reduced Au skarns and reduced Au-Co porphyries (Bineli-Betsi 

et al., 2016). Skarn mineralization has been compared to the Minot Cu-(Au) deposit aged 

at 182 ± 1 Ma, and is interpreted to have a blind intrusions as fluid sources. Bineli-Betsi et 

al. justify the vein-controlled mineralization style to be a low sulfidation deposit formed at 

levels between classic porphyry and epithermal deposits owing to the mineralization 

textures and mineral chemistry (2016). Key characteristic of the Nucleus deposit are shared 

with the Revenue deposit for example, arsenopyrite thermometry in the vein-controlled 

mineralization has nearly the same temperature range as the QFP in this study at 340-

491°C, native Au grains may be associated with Bi and depletion in Ag, and elevated Fe 
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content in sphalerite (Bineli-Betsi et al., 2016). Mechanisms of mineralization are attributed 

to precipitation upon cooling and neutralization of magmatic-hydrothermal fluids in the 

skarn mineralization and cooling of hydrothermal fluids in vein-controlled mineralization 

(Bineli-Betsi et al., 2016).  

 

Klaza  

 The Klaza Project, located ~20 km south of the Revenue deposit (Fig. 1), is an Au-

Ag breccia/sheeted vein classified as a Carbonate Base Metal deposit, subclass of 

epithermal deposits (AMC Consulting, 2018). The Klaza deposit is closely related and 

situated immediately north of the Mount Nansen Camp. Host rocks of the Dawson Range 

Batholith and Mount Nansen Volcanic are later cross-cut by west oriented Casino Plutonic 

suite volcanic, which are hypothesized to be the heat source for hydrothermal cells 

associated to mineralization and dated to 78.2 – 76.3 Ma by Mortensen et al. (2002). Like 

Revenue, mineralization occurs in veins and breccias with strong associated and possibly 

controlled by QFP dykes. Here, the mineralization shows weak zonation of a Cu-Mo 

porphyry core extending to sheeted veins and breccias that host base metals and precious 

metals including disseminated to semi-massive pyrite, arsenopyrite, galena, sphalerite, 

stibnite, jamesonite, and precious metals as native Au and electrum and gangue minerals 

include quartz, carbonates, and barite (AMC Consulting, 2018). Mineralization in 

hydrothermal channels are associated to potassic and sericitic alteration, with weak argillic 

alteration occurring in the host rocks (AMC Consulting, 2018). Magnetite is replaced by 

sulfides in mineralized structures. The CBM deposit models include processes of rising 

mineralized fluids mixing with colder bicarbonate waters (AMC Consultants, 2018).  
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Minto and Carmacks Copper 

 The Minto and Carmakcs Copper (formally Williams Creek) deposits lie north of 

the Revenue occurrence ~33 km (Fig. 1) and are situated in intrusive plutons age dated to 

198-197 Ma (Tafti and Mortensen, 2003). The Minto mine is a loosely defined as a Cu-Au 

porphyry deposit, with characteristics that are shared with alkali porphyry copper, 

magnetite skarn, and iron-oxide copper gold deposits (SKR Consulting, 2008). 

Mineralization at Minto is predominantly chalcopyrite with zones enriched in bornite and 

Au-Ag associated to potassic alteration consisting of magnetite and biotite (Tafti and 

Mortensen, 2003; SKR Consulting, 2008). Mineralization is associated with occurs as 

disseminate grains, along foliation planes in gneiss host rocks, or as semi-massive textures 

intergrown with silicate minerals (Tafti and Mortensen, 2003). At Carmacks Copper, Cu 

mineralization is predominantly supergene Cu-oxides (SKR Consulting, 2008). 

Mineralization at this site also includes rare amounts of molybdenite and pyrrhotite, posing 

an unknown source of sulfide minerals (Tafti and Mortensen, 2003). Authors hypothesize 

the deposit formed as an early-stage porphyry deposit due to Cu mineralization associated 

with potassic alteration, but suggest that “porphyry system development was arrested due 

to deep (~8.5 km) conditions based on magmatic epidote occurrences” (Tafti and 

Mortensen, 2003). Occurrences of pyrrhotite continue to be unexplained with suggestions 

of forming syngenetic to schist in the area (SKR Consulting, 2008).   
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Casino  

The Casino Deposit, located 95 km WNW (Fig. 1), has similar history and 

mineralization to the Revenue complex. The complex is characterized by supergene and 

hypogene mineralization, with a focus on hypogene porphyry-style mineralization and 

intrusive contact-breccia mineralized zones (M3 Engineering & Technology Corporation, 

2013). Both hypogene mineralization (porphyry and breccia) are genetically linked to 

hydrothermal fluids from the Casino Plutonic Suite (M3 Engineering & Technology 

Corporation, 2013), dated to ~74. 4+/-0.28 Ma. Mineralization is postulated to be affected 

by the dominant Casino Creek Fault that runs through the property and a parallel fault, 

called the Patton Fault (M3 Engineering & Technology Corporation, 2013).  

Like Casino, Revenue-Nucleus areas have remnant oxide cap present, though at a 

much less extent than that of Casino due to erosion (M3 Engineering & Technology 

Corporation, 2013). The main comparison in this study is between the mineralization style 

and associated alterations of the hypogene and associated intrusive breccia. Hypogene 

mineralization includes an early mineralization of disseminated pyrite-chalcopyrite-

molybdenite+/-sphalerite+/-bornite, associated with potassic biotite-K-Feldspar-magnetite 

alteration (M3 Engineering & Technology Corporation, 2013). Differing from that, the 

Revenue occurrence includes major pyrrhotite and trace galena rather than molybdenite 

and bornite in the early mineralization and does not include magnetite in the alteration, 

instead rutile. The later mineralization event includes increased Au, Cu, molybdenite, and 

W values in the surrounding phyllic altered section (M3 Engineering & Technology 

Corporation, 2013), which is comparative to late style 1 mineralization at Revenue. 

Additionally, phyllic alteration at Casino includes tourmaline which is not present at 

Revenue. The intrusive breccia mineralization has similar mineralogy to the WAu breccia, 
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with the addition of bornite and tetrahedrite (M3 Engineering & Technology Corporation, 

2013). Both breccia locations have increased pyrite:chalcopyrite phases, abundant 

sphalerite and galena, and introduction of coarse-grain Native Au and bismuth bearing 

minerals and local geochemical anomalies in W (M3 Engineering & Technology 

Corporation, 2013). Alteration of breccias differ, where the intrusive breccias of the Casino 

complex are potassically altered and the breccias at Revenue are pervasively phyllic to 

argillic altered. Additionally, the intrusive breccias at Casino are large in extent and 

volume, whereas the WAu breccia at Revenue is mapped to relatively small based on 

current knowledge. The Casino complex deposit model follows the hydrothermal fluids in 

the Casino Plutonic Suite mobilized through structures from the intrusive breccias at the 

contact zone of pluton and host rocks, resulting in highest grade mineralization 

characterized by chalcopyrite nad molybdenite in the contact breccias and lower grades 

characterized by dominant pyrite as one moves towards the core porphyry zone and into 

the host rock (M3 Engineering & Technology Corporation, 2013).  

The Casino Complex and Revenue occurrence share similarities in paragenesis and 

mineralization, though there are discrete differences in mineralogy and implied 

hydrothermal and mineral sources, where porphyry mineralization event, intrusion breccia 

mineralization, and then explosive breccias crosscutting previous units. Differently, late 

porphyry dykes cross-cut all units, where at Revenue QFP dykes occurred earlier in the 

sequences.  

 



119 

 

Coffee  

The Coffee Project/ Coffee Gold Deposit is an Au deposit located ~125 km NW of 

Revenue occurrence (Fig. 1). The deposit formed ~98 Ma, soon after the emplacement of 

the Coffee Creek granite during the mid-cretaceous extension tectonics in the region. 

Extension activated dextral strike-slip faults hat are considered splays of the regional 

dominant Big Creek Fault. Mineralization occurs predominantly in the Sulphur Creek felsic 

gneiss and biotite schist, with strong spatial associations with fracture cross-cutting 

Carmacks Groups dacite and andesite dykes. Here, mineralization is structurally controlled 

fracture and polyphase breccia deposit where Au occurs associated to arsenian pyrite 

predominantly in matrixes to polyphase breccias, as fine-grained disseminations, or as 

biotite replacement. Mineralization is associated to illite, Fe-carbonate, and silica 

alteration. Arsenian pyrite forms from CO2-As-Sb fluids.  

Revenue occurrence shares few similarities to the Coffee complex, though the 

occurrence of sulfide-carbonate-rutile replacement of biotite are recorded in the Revenue 

granite host rock (Fig. 8G,H), illite-Fe-carbonate also occur in mineralization styles of high 

Au (late style 1, style 2), and breccias with sulfide matrices, though the composition of 

sulfides differs greatly.  

 

 In summary, there are broad similarities in terms of mineralization assemblages and 

associated phyllic alteration, and most deposits are described as being within the porphyry-

family. It is interesting that Klaza is so close and has the same geology associated to 

mineralization, and yet this type of porphyry shows “normal” characteristic of porphyries 

including magnetite in potassic alteration, whereas Revenue does not have magnetite but 

instead pyrrhotite. Revenue also does not include bornite in the samples collected for this 
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study, though this Cu-rich mineral is regularly mentioned in technical reports and research 

papers on regional deposits. Additionally, most of the occurrences have magnetite and or 

biotite that is being replaced by sulfides. Similar alteration of biotite to sulfides is observed 

at Revenue in the least altered granite sample. Like Casino, increased Au±W occurs in 

strong phyllic altered section like that of the WAu breccia at Revenue. 
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Appendix 3: Data collection parameters for LA-ICP-MS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LA

Model Resonetics RESOlution M-50 with S-155 Laurin Technic cell

Wavelength 193 nm

Pulse duration (FWHM) 20ns

Repetition rate 3.0 Hz

Spot diameter 24 μm

Energy density ~3 J/cm2

ICP-MS

Model Agilent 7700x with dual external rotary pumps

Forward power 1500W

Sampling depth 4.0 to 5.0 mm

Gas flow rates:

Carrier (He) 300 mL/min

Make up (Ar) 930 mL/min

ThO+/Th+ <0.1

U+/Th+ (NIST 610) 1.05

Data acquisition and reduction parameters

Total sampling time 30s background, 30s transient signal

Detector mode Dual mode

Data reduction software Iolite platform on Igor Pro 6

Internal standardization Fe wt% (from SEM-EDS)

Primary (calibration) standards MASS-1

Secondary (QC) standard NIST610, Po724

Isotopes determined (dwell time in ms)

56Fe, 24Mg, 27Al, 32S, 33S, 47Ti, 55Mn, 57Fe, 59Co, 60Ni, 65Cu, 

66Zn, 72Ge, 75As, 82Se, 95Mo, 105Pd, 107Ag, 108Pd, 111Cd, 

115In, 118Sn, 121Sb, 125Te, 182W, 195Pt, 197Au, 202Hg, 208Pb, 

209Bi. 

Quadrupole settling time 5 ms

Analysis time background (30s), ablation (10s, 50s), washout (5s)
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Appendix 4: Additional descriptions from petrography section 

Appendix 4A: Early style 1 mineralization, Blue Sky Zone  

Fine-grained biotite occurs much like in the Revenue granite assemblage (Fig. A-

4A-A) though as denser concentrations of stockwork stringers or line boundaries between 

quartz (ii) and plagioclase crystals (Figs. A-4A-A,B,C). These patches are typically 

spatially associated with chlorite, rutile, apatite and zircon (Fig. A-4A-D,E,F), and partially 

or completely surround metallic minerals (Fig. A-4A-F). Chlorite is anhedral and may 

partially surround metallic minerals in association with calcite, and partially alters biotite 

grains (Fig. A-4A-E,F).  

 

Figure A-4A. Alteration and minor minerals of the BSZ early style 1 mineralization. A) 

Representative potassic biotite alteration occurrence in the early BSZ, where biotite forms 

in patches adjacent to quartz-sulfide veins. B) Secondary biotite lining quartz-sulfide areas. 

C) Quartz (ii) veining in the early BSZ, associated with the mineralization. D) Zircon 

crystals and fine-rained rutile occurring in fine-grained biotite. E) SEM image of fine-

grained biotite including apatite and fine-grained anhedral rutile. F) SEM image fine-

grained biotite altered to chlorite and clay, partially including pyrrhotite and apatite.  
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Appendix 4B: Late style 1 mineralization, Blue Sky Zone 

 

Figure A-4B-1. Trace minerals of the BSZ late style 1 mineralization. A) Sample L-BSZ-

1; BSE image of X-shaped sphalerite microinclusions within anhedral chalcopyrite. B) 

Sample L-BSZ-2; BSE image of disseminated trace arsenopyrite mantled by galena. H) 

Sample L-BSZ-2; trace stannite occurring with galena and chalcopyrite. I) Sample L-BSZ-

2; trace Ag-Au and galena occurring in fractures and interstitial to pyrite (i-ii). 

 

 

Figure A-4B-2. Alteration assemblage of the BSZ late style 1 mineralization. A) SEM 

close-up of clay alteration, in which illite crystals overprint primary plagioclase and K-

feldspar. Some K-feldspar may have Ba-enrichment. B) Alteration assemblage apatite 

grains included by coarse-rained muscovite and anhedral siderite. Rutile needles form 

adjacent. 
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Appendix 4C: Quartz-feldspar porphyry dykes 

 

Figure A-4C. Additional petrography from the QFP dykes. A) Calcite and a quartz (ii) halo 

completely or partially surrounding sulfides. B) Chlorite partially or completely 

surrounding rutile. C) Biotite altered to chlorite on edges of mineralization. D) Pyrrhotite 

occurring post marcasite and anhedral rutile. E) Rare disequilibrium texture of pyrite and 

hematite. F) Small inclusions of pyrrhotite within subhedral pyrite. G) Chalcopyrite 

disseminated in QFP matrix, forming along quartz-eye margin.  
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Appendix 4D: WAu breccia  

 

Figure A-4D. Additional petrography in the WAu breccia style 2 mineralization. A) Sphalerite 

and chalcopyrite forming between massive pyrite (ii) and ferberite-scheelite, suspended din 

siderite lining. B) Acicular hematite interstitial to massive pyrite in siderite infill. C) Late barite 

in matrix after K-feldspar and rutile. D) Disseminated trace pyrite and uraninite with REE 

mineral.  

Appendix 4E: Revenue diatreme  

 

Figure A-4E. Trace mineral occurrences in the Revenue diatreme. A) As-enrichment in 

pyrite cubes. B) Late galena fracture infilling pyrite.  
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Appendix 5: Clay alteration mineralogy 

The use of infrared hyperspectral imaging with a TerraSpec3® was used for mineral 

identification of clays in representative rocks. Clay mineralization from previous reports 

identified much of the clay content at the Revenue occurrence as illite and smectite 

(Northern Freegold Resources Ltd., 2015; 2017) with lesser amounts of kaolinite, biotite, 

and chlorite.  

 

Appendix 5A: Revenue granite 

In the Revenue granite host rock, clay composition is an intimate mixture of 

smectite, kaolinite, and biotite depicted in Figure A-5-1. These peaks do not coincide 

perfectly with reference material, though the deep water feature of ~1910 nm is 

characteristic of smectite and the tail end resembles that of kaolinite. This reading is not 

concurrent with petrographic work in conjunction with SEM data, as the white clay content 

is descriptive of illite. The doublet absorption bands at ~2201 and 2250 nm are 

characteristic of Al-OH and Mg-OH bonds, respectively. The presence of magnesium 

indicates biotite and/or chlorite, which is consistent in the petrographic works of this study 

though neither biotite nor chlorite have dominant signature in this sample. 

Pseudoreflectance for different readings yield slightly higher values than reference material 

with a maximum hull nearing 0.285 compared to the reference 0.25.  The second complete 

peak in the spectra shows a greater reflectance than the main hull, which may be indicative 

of an intimate mixture of clay compositions. The samples show nearly the same signature 

with the same absorption bands but a difference in pseudoreflectance. The difference in 

pseudoreflectance between the two samples may be due to analysis for one analysis coming 
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from a rounded part of the sample block, thus the reflected light may have dispersed and 

not detected.  

 

 

 

 

 

 

 

 

 

 



128 

 

 

Figure A-5A. TerraSpec® spot analysis of Revenue granite (sample RG-1) obtained two 

sides of the sample block. Both analysis show a similar signature but with different 

pseudoreflectance values. A doublet of absorption bands at 2201 nm and 2250 nm is the 

most distinct feature. Wavelength measured in nanometers (nm). Pseudoreflectance 

measured out of 1.    
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Appendix 5B: Early style 1 mineralization, Blue Sky Zone 

In the early BSZ, clay minerals are identified to be a mix of illite and biotite (Fig. 

A-5B). This is consistent with the petrographic work in this study and findings in Northern 

Freegold Resources Ltd., 2015, 2017). The signature is similar to that of sample RG-1 

(Figure 16) with a deep water feature, a doublet absorption band at ~2201 and ~2250 nm, 

and a jagged tail end, though the depth of absorption bands ~2205 nm is deeper in these 

samples. The doublet absorption bands do not show similar reflectance ratios with respect 

to each other and may be a result of intimately mixed clay compositions. Readings E-BSZ-

2 show similar pattern though the absorption bands are different widths, resulting in the 

spectral analysis overlapping in one area. This may be due to slightly different clay 

compositions from one area to the next. The pseudoreflectance of these readings were half 

that of reference figures, with maximum amplitudes reaching 0.24 instead of the expected 

0.36 to 0.55. 
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Figure A-5B. TerraSpec® spot analysis of early BSZ (samples E-BSZ-1 and E-BSZ-2) 

with two analyses per block due to differing reflectance and signatures past 2400 nm. 

Prominent absorption bands were plotted and colour-coded to the corresponding signature. 

All analyses show a doublet of absorption bands near 2205 nm and 2251 nm. Wavelength 

measured in nanometers (nm). Pseudoreflectance measured out of 1.    
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Appendix 5C: Late style 1 mineralization, Blue Sky Zone 

The late BSZ has similar clay mineral compositions as the low-grade porphyry with 

a primary illite signature and lesser amounts of possible biotite (phlogopite) observed at the 

2249 nm absorption band in sample L-BSZ-3 (Fig. A-5C). These mineral identifications 

are consistent with those report by on-site geologists (Northern Freegold Resources Ltd., 

2015, 2017). A water spectral feature is again observed near 1916 nm absorption band, 

which suggests the presence of smectite in the clay assemblage, or that the illite-biotite 

clays are extremely hydrous. Low pseudoreflectance may be a result of poor placement the 

TerraSpec probe on a rounded surface. 
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Figure A-5C. TerraSpec® spot analysis of late BSZ (samples L-BSZ-1, L-BSZ-2, and L-

BSZ-3). Prominent absorption bands 1411 nm, ~1910 nm, 2210 nm, and 2349 nm are 

labeled in the same colour of corresponding analysis, with an additional absorption band at 

2249 nm recorded for sample L-BSZ-3. Wavelength measured in nanometers (nm). 

Pseudoreflectance measured out of 1.    
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Appendix 5D: QFP dykes 

The QFP dykes have clay compositions that are primarily illite and chlorite for 

QFP-1 and illite for QFP-2 (Fig. A-5D). These findings are consistent with reference 

material, in which chlorite was abundant in QFP-1 samples and plagioclase phenocrysts of 

both samples were altered. Slight variation in the trough of absorption bands differ 10 nm 

in width, as exemplified in the ~1410nm feature.  
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Figure A-5D. TerraSpec® spot analysis for QFP using sample QFP-1 (pseudoreflectance 

on right axis) and QFP-2 (pseudoreflectance on left axis). Samples show prominent 

absorption bands that differ slightly between 2206 and 2355 nm, where QFP-1 has 

additional dip at 2256nm. Sample QFP-1 also shows a minor absorption band doublet at 

2206 nm and 2256 nm whereas QFP-2 does not show a doublet. Wavelength measured in 

nanometers (nm). Pseudoreflectance measured out of 1.    
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Appendix 5E: Style 2 mineralization, WAu breccia 

The WAu breccia, represented by samples WAu-1 and WAu-2, is characterized by 

illite-muscovite signatures with minor kaolinite signatures at wavelengths 2300-2400 nm 

(Fig. A-5E). The absorption band ~1406 nm is shallow from 2 - 7 % pseudoreflectance 

which may be a mixture of clay compositions. This is consistent with pertrogrpahic work 

where coarse-grained muscovite occurs with dolomite-siderite in the groundmass (Figs. 15 

E-I). In the Northern Freegold Resources Ltd. technical reports (2015, 2017) the WAu 

breccia is described to be altered by silicification and sericitization of kaolinite-illite, 

though no prominent signature for silica is present.  
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Figure A-5E. TerraSpec® spot analysis analysis of WAu breccia (samples WAu-1 and 

WAu-2). Prominent absorption bands are labeled in the same colour of corresponding 

analysis, with 1406 nm, ~1910 nm, ~2205 nm and 2350 nm acting as indicator absorption 

bands. Wavelength measured in nanometers (nm). Pseudoreflectance measured out of 1.    
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Appendix 5F: Style 3 mineralization, Revenue diatreme 

The Revenue diatreme, represented by RD-1 and RD-2, has clay compositions that 

are primarily illite with secondary kaolinite or muscovite features occurring in readings 

RD-2 on the tail end (Fig. A-5F). These findings are consistent were in line with reference 

material (Northern Freegold Resources Ltd., 2015, 2017). No Mg-OH absorption band is 

present, which is consistent with petrographic work in this study. Slight variation in the 

trough of absorption bands differ 2 to 9 nm in width, as exemplified in the water feature 

near ~1910 nm and the Al-OH feature ~2210 nm. Again, the difference in 

pseudoreflectance is likely a result of poor placement of the TerraSpec probe on an uneven 

surface during analysis.  
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Figure A-5F. TerraSpec® spot analysis for Revenue diatreme (samples RD-1 and RD-2). 

Samples show prominent absorption bands that differ slightly with RD-2 absorption bands 

occurring 2 to 9 nm higher. Sample RD-2 also shows a minor absorption band doublet at 

2352 nm and 2383 nm whereas RD-1 does not show a doublet. Wavelength measured in 

nanometers (nm). Pseudoreflectance measured out of 1.    
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Between all analysed areas the infrared spectra reflectance has prominent peaks that 

do not exactly match reference material for suspect minerals, has low pseudoreflectance 

values for the clay mineral composition, and had deep water features (Fig. A-5G). Many 

readings also show absorption bands at ~2205 nm, ~2250 nm, and ~2350 nm. All samples 

show an absorption band near ~1405 to ~1415 that corresponds to hydroxyl. Readings also 

show absorption bands at ~1910 nm denoting the presence of water, meaning that the all 

clay compositions include smectite or illite, or are extremely hydrous. 

The loss of biotite, marked by the Mg-OH absorption band at ~2250 nm suggests 

that the early, early BSPZ, characterized by dense potassic alteration in the form of biotite 

stock-work, was overprinted by later illite-kaolinite-muscovite alteration. The 

characteristic absorption bands for biotite (pholophite) from reference material include 

2245 nm, 2322 nm, 2378 nm, and 2439 nm, which all respond to the Mg-OH molecular 

group. No analysed absorption bands are exactly in line with the reference material, though 

a common absorption band of ~2250 nm. 

Variances in psuedoreflectance may be a result of different placement on the probe 

from each analysis, with some samples having an irregular and curved surface, which may 

have decreased the amount of light reflected.  
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Figure A-5G. Summary Terraspec spectra using representative samples from Revenue 

granite, BSZ, QFP, WAu breccia, and Revenue diatreme.  
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Appendix 6:  Mineral chemistry (EMPA, LA-ICP-MS, fluid inclusions) 

Table A6-1. Chemical analysis of sphalerite in contact with pyrite and/or pyrrhotite in wt% for samples L-BSZ-1, L-BSZ-2, WAu-3, 

and RD-1. Obtained from EMPA. D.L. = detection limit. bdl = below detection limit.  

 

 

Sample and point Fe Fe(D.L.) Cu Cu(D.L.) As As(D.L.) Si Si(D.L.) Zn Zn(D.L.) Co Co(D.L.) Ni Ni(D.L.) S S(D.L.) Pb Pb(D.L.) Sn Sn(D.L.) Cd Cd(D.L.) In In(D.L.) Total 

RD-1-Sp-1 4.209 0.037 3.859 0.052 bdl 0.035 bdl 0.011 56.846 0.040 bdl 0.014 bdl 0.020 32.446 0.018 bdl 0.060 bdl 0.029 0.408 0.065 0.07 0.038 97.858

RD-1-Sp-2 4.297 0.036 3.546 0.052 bdl 0.035 bdl 0.011 57.85 0.040 bdl 0.015 bdl 0.020 32.81 0.017 bdl 0.060 bdl 0.030 0.454 0.065 0.069 0.038 99.035

RD-1-Sp-3 4.386 0.036 4.051 0.050 bdl 0.034 bdl 0.011 56.95 0.040 bdl 0.015 bdl 0.020 32.808 0.018 bdl 0.060 bdl 0.029 0.437 0.065 0.088 0.038 98.728

RD-1-Sp-4 4.355 0.034 4.511 0.051 bdl 0.034 bdl 0.011 55.978 0.040 bdl 0.014 bdl 0.020 32.696 0.018 bdl 0.060 bdl 0.030 0.417 0.065 0.08 0.038 98.059

RD-1-Sp-5 5.695 0.035 2.666 0.050 bdl 0.036 bdl 0.011 56.994 0.040 bdl 0.014 bdl 0.020 32.392 0.017 bdl 0.060 bdl 0.029 0.418 0.064 0.08 0.038 98.257

RD-1-Sp-6 7.162 0.035 1.622 0.051 bdl 0.035 bdl 0.011 55.875 0.040 bdl 0.014 bdl 0.020 32.531 0.017 bdl 0.059 bdl 0.029 0.583 0.064 0.071 0.037 97.858

RD-1-Sp-7 7.807 0.037 0.733 0.050 bdl 0.035 bdl 0.011 56.346 0.039 bdl 0.014 bdl 0.020 32.906 0.018 bdl 0.059 bdl 0.030 0.637 0.065 0.075 0.038 98.505

RD-1-Sp-8 7.953 0.034 0.09 0.050 bdl 0.035 bdl 0.011 56.89 0.039 bdl 0.014 bdl 0.020 32.492 0.018 bdl 0.060 bdl 0.029 0.669 0.064 0.079 0.037 98.194

RD-1-Sp-9 5.354 0.037 3.559 0.051 bdl 0.035 bdl 0.011 57.138 0.040 bdl 0.014 bdl 0.020 32.594 0.018 bdl 0.060 bdl 0.029 0.096 0.064 0.09 0.037 98.842

L-BSZ-1-Sp-1 11.614 0.036 1.681 0.052 bdl 0.035 bdl 0.011 51.27 0.039 0.045 0.014 bdl 0.020 32.75 0.020 bdl 0.061 0.512 0.030 0.929 0.065 0.115 0.041 98.926

L-BSZ-1-Sp-2 10.918 0.037 3.862 0.050 bdl 0.034 bdl 0.011 48.755 0.040 0.04 0.014 bdl 0.020 32.462 0.021 bdl 0.061 1.432 0.031 0.887 0.066 0.178 0.043 98.54

L-BSZ-1-Sp-3 11.337 0.038 1.582 0.051 bdl 0.034 bdl 0.011 51.498 0.039 0.038 0.014 bdl 0.020 32.53 0.021 bdl 0.061 0.17 0.030 0.942 0.065 0.249 0.039 98.349

L-BSZ-2-Sp-1 5.335 0.000 3.938 0.000 bdl 0.004 bdl 0.000 56.157 0.000 0.023 0.005 bdl 0.000 33.034 0.000 0.021 0.000 bdl 0.000 1.084 0.010 0.07 0.000 99.769

L-BSZ-2-Sp-2 6.314 0.034 5.266 0.052 bdl 0.035 bdl 0.011 53.122 0.040 0.017 0.014 bdl 0.021 32.202 0.020 bdl 0.061 bdl 0.030 0.927 0.065 0.061 0.039 97.916

L-BSZ-2-Sp-3 6.408 0.034 4.642 0.052 bdl 0.034 bdl 0.011 53.197 0.040 bdl 0.014 bdl 0.020 31.82 0.021 bdl 0.059 0.127 0.030 0.653 0.066 0.058 0.039 96.936

L-BSZ-2-Sp-4 6.671 0.035 3.849 0.052 bdl 0.035 bdl 0.011 53.564 0.040 bdl 0.015 bdl 0.021 32.363 0.021 bdl 0.059 0.978 0.030 1.12 0.066 0.065 0.042 98.678

WAu-3-Sp-1 10.963 0.035 0.257 0.052 bdl 0.035 bdl 0.011 53.771 0.039 0.047 0.014 bdl 0.020 32.477 0.020 bdl 0.060 bdl 0.031 0.695 0.065 0.432 0.037 98.649

WAu-3-Sp-2 10.749 0.035 0.272 0.011 bdl 0.039 bdl 0.014 53.967 0.020 0.055 0.021 bdl 0.061 32.339 0.031 bdl 0.065 bdl 0.038 0.767 0.000 0.383 0.000 98.536

WAu-3-Sp-3 10.63 0.035 0.138 0.052 bdl 0.034 bdl 0.011 53.979 0.039 0.062 0.014 bdl 0.020 32.801 0.021 bdl 0.061 bdl 0.030 0.673 0.065 0.259 0.038 98.548

WAu-3-Sp-4 11.111 0.035 7.297 0.012 bdl 0.040 bdl 0.014 42.563 0.020 0.055 0.021 bdl 0.060 31.678 0.033 bdl 0.067 5.602 0.054 0.505 0.000 0.061 0.000 98.904

WAu-3-Sp-5 10.832 0.035 0.137 0.051 bdl 0.035 bdl 0.011 54.137 0.040 0.059 0.014 bdl 0.020 32.398 0.021 bdl 0.060 bdl 0.030 0.734 0.064 0.24 0.038 98.539

WAu-3-Sp-6 10.091 0.035 0.23 0.011 bdl 0.039 bdl 0.014 54.599 0.020 0.042 0.021 bdl 0.060 32.829 0.030 bdl 0.064 bdl 0.038 0.919 0.000 0.129 0.000 98.858

WAu-3-Sp-7 13.269 0.034 0.137 0.050 bdl 0.035 bdl 0.011 51.858 0.039 0.055 0.014 bdl 0.020 31.967 0.020 bdl 0.059 bdl 0.030 0.789 0.064 0.148 0.038 98.229

WAu-3-Sp-8 10.39 0.033 0.636 0.052 bdl 0.034 bdl 0.011 53.165 0.039 0.061 0.014 bdl 0.020 32.397 0.021 bdl 0.059 bdl 0.031 0.759 0.065 0.479 0.038 97.899

WAu-3-Sp-9 10.513 0.000 0.938 0.000 bdl 0.004 bdl 0.000 52.846 0.000 0.091 0.005 bdl 0.000 32.833 0.000 bdl 0.000 bdl 0.000 0.696 0.010 0.521 0.003 98.489

WAu-3-Sp-10 6.623 0.034 6.104 0.050 bdl 0.035 bdl 0.011 52.417 0.040 0.018 0.015 bdl 0.020 32.596 0.021 bdl 0.060 bdl 0.029 0.628 0.064 0.114 0.038 98.509

WAu-3-Sp-11 6.19 0.035 5.247 0.053 bdl 0.036 bdl 0.011 53.528 0.040 0.026 0.014 bdl 0.020 32.482 0.020 bdl 0.059 bdl 0.030 0.642 0.065 0.107 0.038 98.226
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Table A6-2. Sphalerite thermometry data using mol% Fe from EMPA to determine mol% 

FeS. Values in yellow indicate samples with < 2 wt% Cu and values in green are those 

plotted for sphalerite thermometry in this study.  

 

 

 

 

 

 

 

Sample and point Fe FeS

RD-1-Sp-1 3.726 7.453

RD-1-Sp-2 3.761 7.521

RD-1-Sp-3 3.846 7.693

RD-1-Sp-4 3.841 7.681

RD-1-Sp-5 5.021 10.042

RD-1-Sp-6 6.319 12.638

RD-1-Sp-7 6.832 13.664

RD-1-Sp-8 6.999 13.997

RD-1-Sp-9 4.689 9.378

L-BSZ-1-Sp-1 10.120 20.239

L-BSZ-1-Sp-2 9.597 19.193

L-BSZ-1-Sp-3 9.936 19.871

L-BSZ-2-Sp-1 5.347 10.694

L-BSZ-2-Sp-2 5.590 11.181

L-BSZ-2-Sp-3 5.730 11.460

L-BSZ-2-Sp-4 5.887 11.774

WAu-3-Sp-1 9.590 19.180

WAu-3-Sp-2 9.424 18.848

WAu-3-Sp-3 9.281 18.561

WAu-3-Sp-4 9.912 19.823

WAu-3-Sp-5 9.487 18.973

WAu-3-Sp-6 8.796 17.593

WAu-3-Sp-7 11.649 23.297

WAu-3-Sp-8 9.155 18.311

WAu-3-Sp-9 10.674 21.348

WAu-3-Sp-10 5.812 11.624

WAu-3-Sp-11 5.453 10.905
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Table A6-3. Normalized trace arsenopyrite composition in mol %, obtained for sample QFP-2 via EMPA, University of Toronto.  

 

 

 

 

 

 

Point Fe Fe(D.L.) Cu Cu(D.L.) As As(D.L.) Co Co(D.L.) Ni Ni(D.L.) S S(D.L.) Pb Pb(D.L.) Total

Typical arsenopyrite

QFP-2-A1-apy-1 31.64 0.12 bdl 0.19 29.24 0.08 0.32 0.06 0.15 0.07 38.64 0.07 bdl 0.04 100

QFP-2-A2-apy-1 31.98 0.12 bdl 0.16 32.38 0.08 0.25 0.06 bdl 0.08 35.39 0.07 bdl 0.03 100

QFP-2-A2-apy-2 32.47 0.11 0.25 0.18 32.84 0.08 0.15 0.07 bdl 0.08 34.29 0.08 bdl 0.03 100

QFP-2-A2-apy-3 32.35 0.11 bdl 0.21 31.99 0.08 0.09 0.06 bdl 0.07 35.58 0.07 bdl 0.03 100

QFP-2-A2-apy-4 33.60 0.13 bdl 0.18 31.93 0.08 0.19 0.05 bdl 0.07 34.28 0.07 bdl 0.03 100

QFP-2-A2-apy-5 33.09 0.15 bdl 0.18 30.86 0.08 0.14 0.05 bdl 0.08 35.91 0.07 bdl 0.04 100

QFP-2-A2-apy-7 31.44 0.11 bdl 0.15 29.30 0.08 0.24 0.05 bdl 0.07 39.02 0.07 bdl 0.04 100

QFP-2-A2-apy-8 33.93 0.12 bdl 0.19 32.99 0.08 0.07 0.05 bdl 0.07 33.01 0.07 bdl 0.03 100

QFP-2-A2-apy-10 33.23 0.14 bdl 0.18 30.19 0.08 0.12 0.05 bdl 0.07 36.47 0.07 bdl 0.03 100

QFP-2-A2-apy-12 32.00 0.12 bdl 0.19 32.12 0.08 0.12 0.05 bdl 0.07 35.76 0.07 bdl 0.03 100

QFP-2-A2-apy-13 33.42 0.14 bdl 0.18 31.22 0.08 0.06 0.05 bdl 0.07 35.30 0.07 bdl 0.03 100

QFP-2-A3-apy-1 31.82 0.14 bdl 0.18 35.48 0.08 1.47 0.05 0.84 0.08 30.39 0.07 bdl 0.03 100

Co-Ni-rich arsenopyrite

QFP-2-A3-apy-Ni-1 20.34 0.13 bdl 0.20 36.26 0.08 8.77 0.07 4.09 0.08 30.49 0.08 0.04 0.03 100

QFP-2-A3-apy-Ni-2 11.67 0.16 bdl 0.21 38.83 0.08 12.46 0.07 9.56 0.08 27.47 0.07 bdl 0.04 100

QFP-2-A3-apy-Ni-3 12.84 0.12 0.33 0.20 23.25 0.07 15.81 0.06 9.07 0.07 38.59 0.07 0.11 0.03 100

QFP-2-A3-apy-Ni-4 17.89 0.15 0.28 0.22 41.01 0.09 8.33 0.07 7.95 0.09 24.54 0.07 bdl 0.04 100

QFP-2-A3-apy-Ni-5 21.80 0.14 0.88 0.21 29.48 0.08 8.69 0.05 5.21 0.08 33.91 0.07 0.03 0.03 100
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Table A6-4. Glaucodot compositions in mole % obtained from EPMA at Dalhousie 

University.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Fe S As Co Ni Total

WAu-2 2.99 29.19 22.31 45.53 bdl 100.00

WAu-2 8.42 35.91 18.21 37.25 0.22 100.00

WAu-2 4.01 27.12 23.12 45.62 0.14 100.00

WAu-2 5.77 28.27 22.93 42.54 0.50 100.00

WAu-3 6.12 28.05 23.94 41.34 0.53 100.00

WAu-3 6.09 28.68 23.70 40.99 0.53 100.00

WAu-3 5.16 28.10 23.24 42.96 0.49 100.00

WAu-3 7.41 28.31 24.63 38.99 0.66 100.00

WAu-3 6.58 28.40 23.43 40.91 0.66 100.00

WAu-3 7.30 28.45 23.83 39.81 0.62 100.00

WAu-3 7.43 28.26 23.87 39.82 0.59 100.00

WAu-3 7.44 27.87 24.71 39.27 0.70 100.00

WAu-3 6.57 27.93 24.07 40.87 0.56 100.00

WAu-3 6.44 28.25 23.71 41.10 0.44 100.00

WAu-3 6.13 28.25 23.68 41.39 0.44 100.00

WAu-3 6.64 27.87 24.01 40.80 0.60 100.00

WAu-3 6.86 27.80 24.54 40.18 0.61 100.00

WAu-3 6.54 27.49 24.29 41.08 0.62 100.00
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Table A6-5. Endmember composition for sulfarsenide ternary using glaucodot 

compositions obtained from EPMA at Dalhousie University. Values bdl were treated as 

“0”.  

 

 

 

 

 

 

 

 

 

 

 

 

Sample Fe Co Ni 

WAu-2 6.16 93.84 0.00

WAu-2 18.34 81.18 0.00

WAu-2 8.06 91.65 0.00

WAu-2 11.83 87.16 0.01

WAu-3 12.76 86.14 0.01

WAu-3 12.79 86.09 0.01

WAu-3 10.62 88.38 0.01

WAu-3 15.74 82.86 0.01

WAu-3 13.66 84.97 0.01

WAu-3 15.29 83.41 0.01

WAu-3 15.53 83.24 0.01

WAu-3 15.70 82.83 0.01

WAu-3 13.68 85.14 0.01

WAu-3 13.43 85.65 0.01

WAu-3 12.78 86.31 0.01

WAu-3 13.81 84.94 0.01

WAu-3 14.40 84.32 0.01

WAu-3 13.56 85.16 0.01
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Table A6-6. Fluid inclusion temperature proxies for sample WAu-3 using salt volume, 

estimated salinity using halite area % vs salinity calibration, and temperature calculations 

(after Bodnar and Vityk, 1995).  

  

***Standard deviations and associated temperature are calculated through Excel and are 

not representative of Bodnar and Vityk (1995) temperatures. 

 

 

 

Sample WAu-3 Halite Area % Salinity (eq NaCl wt%) Ts Minimum Salinity Ts min Maximum Salinity Ts max

Assemblage 1

FI 1 19.10 44.11 368 41.34 338 46.89 395

FI 2 5.36 24.16 NA 21.12 NA 27.19 69

FI 3 9.97 32.42 210 29.53 147 35.30 259

FI 4 8.13 29.43 144 26.50 29 32.36 209

FI 5 6.57 26.61 37 23.62 NA 29.58 148

FI 6 6.46 26.40 20 23.41 NA 29.38 143

Assemblage 3

FI 1 9.29 31.36 189 28.46 116 34.26 243

FI 2 12.91 36.64 279 33.81 235 39.48 326

FI 3 17.41 42.22 348 39.43 316 45.01 377

FI 4 11.82 35.14 257 32.29 208 38.00 298

FI 5 13.18 37.00 284 34.17 242 39.83 321

FI 6 21.69 46.86 394 44.10 368 49.61 419

FI 7 19.71 44.79 375 42.02 346 47.55 401

FI 8 8.15 29.46 145 26.53 31 32.39 210

FI 9 15.19 39.58 318 36.77 280 42.39 350

FI 10 13.91 37.97 297 35.14 257 40.79 332

FI 11 11.03 34.01 239 31.14 185 36.87 282

FI 12 12.68 36.33 275 33.49 230 39.17 312

Assemblage 5

FI 1 6.93 27.29 73 24.31 NA 30.25 164

FI 2 8.78 30.53 171 27.62 87 33.44 229

Assemblage 6.1

FI 1 12.06 35.48 262 32.63 214 38.33 302

FI 2 11.51 34.71 250 31.85 200 37.56 292

FI 3 7.37 28.10 104 25.14 NA 31.04 183

FI 4 11.60 34.84 252 31.98 202 37.69 293

Assemblage 6.3

FI 1 8.41 29.90 156 26.98 58 32.82 218

FI 2 13.83 37.85 296 35.03 255 40.68 331

FI 3 8.13 29.43 144 26.50 29 32.36 210

FI 4 15.49 39.95 322 37.14 286 42.75 354

FI 5 4.57 22.41 NA 19.32 NA 25.48 NA

Average 11.42 33.96 238 31.08 183 36.84 282

Stdev.s*** 4.40 6.26 102 6.34 104 6.19 87

Max 21.69 46.86 394 44.10 368 49.61 419

Min 4.57 22.41 NA 19.32 NA 25.48 NA
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Table A6-7. Fluid inclusion temperature proxies for sample L-BSZ-1 using salt volume, 

estimated salinity using halite area % vs salinity calibration, and temperature calculations 

(after Bodnar and Vityk, 1995).  

  

***Standard deviations and associated temperature are calculated through Excel and are 

not representative of Bodnar and Vityk (1995) temperatures. 
 

 

 

 

 

 

 

 

 

 

 

Sample L-BSZ-1 Halite Area  % Salinity (eq NaCl wt%) Ts Minimum Salinity Ts min Maximum Salinity Ts max

Assemblage 1

FI 1 7.77 28.81 127 25.87 NA 31.75 176

FI 2 19.70 44.77 374 42.00 346 47.54 401

FI 3 21.45 46.62 392 43.86 365 49.37 417

FI 4 17.57 42.41 350 39.62 318 45.19 378

FI 5 18.85 43.84 365 41.07 335 46.62 392

Assemblage 2

FI 1 21.98 47.15 397 44.40 371 49.91 422

FI 2 5.07 23.54 NA 20.48 NA 26.58 35

FI 3 33.78 57.81 485 55.10 464 60.51 505

FI 4 14.50 38.72 307 35.90 269 41.53 340

FI 5 6.17 25.83 NA 22.83 NA 28.82 94

FI 6 10.52 33.26 226 30.39 168 36.13 272

FI 7 22.82 48.01 405 45.26 379 50.75 429

Assemblage3

FI 1 23.57 48.74 412 45.99 386 51.48 438

FI 2 15.95 40.51 323 37.71 294 43.31 360

Assemblage 4

FI 1 21.55 46.72 393 43.96 366 49.47 418

FI 2 15.54 40.02 323 37.21 287 42.82 354

Assemblage 5

FI 1 20.68 45.81 385 43.05 357 48.57 410

FI 2 9.80 32.16 205 29.27 140 35.04 356

Average 17.07 40.82 333 38.00 298 43.63 363

Stdev.s*** 7.26 8.97 90 9.07 83 8.88 124

Max 33.78 57.81 485 55.10 464 60.51 505

Min 5.07 23.54 NA 20.48 NA 26.58 35
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Appendix 7: Additional mineral chemistry (SEM) 

Appendix 7A: Metallic and ore minerals  

Major metallic and opaque minerals include chalcopyrite, pyrrhotite and pyrite with 

minor minerals of sphalerite, galena, molybdenite, arsenopyrite, glaucodot, and ferberite-

scheelite. Trace minerals include electrum and stannite. Average mineral composition 

averages are shown in Table 1.  

Chalcopyrite composition from the BSZ and the WAu breccia were collected using 

the EMPA and chalcopyrite composition from the least altered host granite, the QFP dyke, 

and the Revenue diatreme were collected using the SEM-EDS with a total average 

composition in Table 1. Chalcopyrite in the early BSZ (sample E-BSZ-2; n = 3) has S 

(34.41±0.20 wt%), Fe (29.73±0.15 wt%), and Cu (33.77±0.11 wt%). Chalcopyrite in the 

late BSZ stockwork (sample L-BSZ-2; n = 3) has S (33.92±0.11 wt%), Fe (29.52±0.16 

wt%), and Cu (33.93±0.36 wt%). Chalcopyrite in the WAu breccia (sample WAu-3; n = 3) 

has S (34.08±0.15 wt%), Fe (30.49±0.17 wt%), and Cu (34.65±0.05 wt%). Chalcopyrite in 

the Revenue granite (sample RG-1; n = 13) has S (39.18±2.18 wt%), Fe (28.96±0.75 wt%), 

and Cu (31.71±1.40 wt%). Chalcopyrite in the QFP (samples QFP-1 and QFP-2; total n = 

6), has S (40.07±1.20 wt%), Fe (28.55±0.37 wt%), and Cu (31.10±1.12 wt%). Microprobe 

analyses from QFP-1 (n = 1) shows chalcopyrite having S (35.10 wt%), Fe (29.69 wt%), 

and Cu (34.62 wt%). Chalcopyrite in the Revenue diatreme (samples RD-1 and RD-2; total 

n = 14) has S (38.56±1.08 wt%), Fe (29.12±0.38 wt%)e, and Cu (32.20±0.91 wt%). In 

sample MW14, the chalcopyrite occurs with sphalerite, in which there is sphalerite 

dissolution in chalcopyrite and chalcopyrite disease within sphalerite. For this reason, 
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chalcopyrite in RD-1 region may have Zn (< 2.27 wt%), which results in lower Fe and Cu 

wt%.  

 Pyrite composition from the Revenue granite, the BSZ, the WAu breccia, and the 

Revenue diatreme were collected using the EMPA and pyrite composition from the QFP 

dykes were collected using the SEM-EDS with a total average composition in Table 1. 

Pyrite in the Revenue granite (Sample RG-1; n = 4) has S (51.61±0.42 wt%) and Fe 

(47.13±0.45 wt%). Pyrite from the early BSZ (sample E-BSZ-2; n = 3) has S (53.36±0.11 

wt%) and Fe (46.80±0.13 wt%). Pyrite from the late BSZ (sample L-BSZ-2; n=10) has S 

(52.17±1.12 wt%) and Fe (47.52±0.54 wt%). Pyrite from the WAu breccia (sample WAu-

2 and WAu-3; total n = 12) has S (51.92±1.36 wt%) and Fe (47.92±0.38 wt%). Pyrite from 

the Revenue diatreme (sample RD-1; n = 10) has S (53.04±0.32 wt%) and Fe (46.38±0.25 

wt%). Pyrite from the QFP (samples QFP-1 and QFP-2; total n = 23) has S (53.40±1.33 

wt%) and Fe (45.72±1.24 wt%). 

 Pyrrhotite composition from the Revenue granite, BSZ, and the WAu breccia were 

collected using the EMPA and pyrrhotite composition from the QFP dykes were collected 

using the SEM-EDS with a total average composition in Table X. Pyrrhotite in the Revenue 

granite (Sample RG-1; n = 4) has S (39.35±0.24 wt%) and Fe (60.44±0.26 wt%). Pyrrhotite 

in the early BSZ (Sample E-BSZ-2; n = 3) has S (39.35±0.21 wt%) and Fe (60.51±0.17 

wt%). Pyrrhotite in the late BSZ pyrrhotite (sample L-BSZ-2; n = 3) has S (38.88±0.11 

wt%) and Fe (59.22±0.03 wt%). WAu Breccia pyrrhotite (n=10) reports 39.01±0.12 wt% 

S and 59.70±0.36 wt% Fe. Pyrrhotite in the QFP (sample QFP-1; n = 2) has S (39.35±0.24 

wt%) and Fe (59.51±0.15 wt%).  

 Sphalerite composition from the BSZ, the WAu breccia, and the Revenue diatreme 

were collected using the EMPA with a total average composition in Table 1. Sphalerite 



150 

 

from the late BSZ (sample L-BSZ-2; n = 5) has near-stoichiometric S (32.46±0.20 wt%), 

with variable Zn (48.76-51.64 wt%), Fe (6.31-11.61 wt%), and Cu (1.58-5.27 wt%). In this 

area, sphalerite may have trace amounts of Sn (1.61-2.96 wt%). Sphalerite of the WAu 

breccia (sample WAu-3; n = 10) contains 32.48±0.26 wt% S and 53.49±0.87 wt% Zn, with 

variable Fe (6.19-13.27 wt%) and Cu (0.14-6.10 wt%). Sphalerite of the Revenue diatreme 

(RD-1; n = 9) has S (32.63±0.18 wt%), Zn (56.76±0.61 wt), with variable Fe (4.21-7.95 

wt%), and Cu (0.09-4.51 wt %). 

Galena composition from the BSZ, QFP, WAu breccia, and Revenue diatreme were 

collected using the SEM-EDS with total average composition in Table 1. Galena in the 

early BSZ (sample E-BSZ-2; n = 1) has Pb (86.64 wt%), S (11.98 wt%), and minor Fe (1.38 

wt%).  Galena in the late BSZ (sample L-BSZ-2; n = 13) has Pb (87.52±0.29 wt%) and S 

(12.48±0.29 wt%). Galena in the QFP (QFP-X; n = 2) has Pb (85.10±0.57 wt%) and S 

(14.90±0.57wt%). Galena in the WAu breccia (WAu-4; n = 8) has Pb (84.49±0.14 wt%) 

and S (15.51±0.14 wt%). In a localized zone of the WAu breccia, galena (sample WAu-4; 

n = 23) has variable Pb (32.17-51.52 wt%), Bi (22.74-50.70 wt%), S (17.40±0.30 wt%), 

and Sb (1.78-8.34 wt%). In these locations, areas of galena surround anhedral grains (n = 

6) of variable Bi (58.09-100 wt%) and Te (< 41.92 wt%). Galena in the Revenue diatreme 

(RD-2; n = 2) has Pb (84.90±0.54 wt%) and S (14.84±0.14 wt%).  

Molybdenite was analysed from the late BSZ, the QFP, and the WAu breccia using 

the SEM-EDS, with a total average composition in Table 1. Molybdenite in the BSZ 

(sample L-BSZ-2; n=2) has Mo (58.79±1.28 wt%) and S (40.92±1.23 wt%). Molybdenite 

in the QFP (QFP-1; n = 3) has Mo (60.00±0.47 wt%) and S (39.77±0.56 wt%). Molybdenite 

in the WAu breccia (samples WAu-1, WAu-2, and WAu-3; total n = 28) has Mo 

(60.06±1.25 wt%) and S (38.87±1.16 wt%).  
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Glaucodot composition from the WAu breccia (samples WAu-2 and WAu-3) was 

collected form the EMPA with total average compositions in Table 1. Glaucodot (n=18) 

has As (33.74-43.05 wt%), Co (25.42-31.74 wt%), S (20.74-28.48 wt%), Fe (4.12-11.63 

wt%), and minor Ni (< 0.96 wt%).  

 Arsenopyrite composition from the QFP dykes were collected using the EMPA and 

arsenopyrite composition from the late BSZ and Revenue diatreme were collected using 

the SEM-EDS with a total average composition in Table 1. Arsenopyrite from the QFP 

(sample QFP-2; n = 9) has As (44.10±1.84 wt%), S (20.86±1.71 wt%), and Fe (33.91±1.13 

wt%). Arsenopyrite in the late BSZ (sample L-BSZ-2; n = 4) has As (43.88±0.68 wt%), S 

(23.42±0.67 wt%), and Fe (32.48±0.48 wt%). Arsenopyrite from the Revenue diatreme 

(sample RD-2; n = 1) has As (43.69 wt%), S (23.93 wt%), and Fe (32.38 wt%).  

  Tungstate composition from the WAu breccia (samples WAu-2 and WAu-4) were 

collected using the SEM-EDS. Scheelite (n = 14) has W (61.18±0.96 wt%), O (26.94±1.43 

wt%), Ca (10.77±1.42 wt%), and Fe (< 5.14 wt%). Ferberite (n = 10) has W (58.60±0.62 

wt%), O (26.43±1.53wt%), Fe (4.87±0.98wt%) and Mn (0.11±0.23 wt%).  

Precious metals of electrum were found in the late BSZ and WAu breccia, 

respectively, using SEM-EDS. Electrum in the late style 1 mineralization (sample L-BSZ-

2; n = 3) has Ag (68.11-70.81 wt%) and Au (31.89-29.19 wt%) which translates to 3.90- 

4.43 Ag : Au and in the WAu breccia (sample WAu-4; n = 2) has Au (92.63-94.85 wt%) 

and Ag (5.1-7.37 wt%) which translates to 6 Au : 10 Ag. Stannite composition from the 

late BSZ (sample L-BSZ-2; n = 1) was collected from SEM-EDS, shown in Table 1. 

Stannite has S (30.73-32.83 wt%), Sn (22.19-26.31 wt%), Cu (24.33-26.58 wt%), Fe (7.23-

12.43 wt%), Zn (2.06-8.39 wt%) and O (< 4.78 wt%).  



152 

 

Table 1. Mineral compositions of metallic minerals obtained via SEM-EDS in wt%. 

 

 

 

 

 

 

 

 

cpp py po sp gn gn-Bi Bi±Te

n=10 n=46 n=23 n=24 n=27 n=14 n=6

Element (Wt%) Avg 1 σ Avg 1 σ Avg 1 σ Avg 1 σ Min Max Avg 1 σ Avg 1 σ Min Max Avg 1 σ Min Max

O - - - - - - - - - - - - - - - - - - - -

S 34.23 0.39 52.74 1.18 39.20 0.29 32.53 0.22 31.97 32.91 13.80 1.47 14.40 0.30 16.90 18.01 - - - -

Ca - - - - - - - - - - - - - - - - - - - -

Mn - - - - - - - - - - - - - - - - - - - -

Fe 29.89 0.44 46.69 1.20 59.92 0.52 8.17 2.85 4.21 13.27 - - - - - - - - - -

Co - - - - - - - - - - - - - - - - - - - -

Ni - - - - - - - - - - - - - - - - - - - -

Cu 34.17 0.45 - - - - 2.35 2.01 0.09 6.10 - - - - - - - - - -

Zn - - - - - - 54.37 2.33 48.76 57.85 - - - - - - - - - -

As - - - - - - - - - - - - - - - - - - - -

Se - - - - - - - - - - - - - - - - - - - -

Mo - - - - - - - - - - - - - - - - - - - -

Ag - - - - - - - - - - - - - - - - - - - -

Au - - - - - - - - - - - - - - - - - - - -

Sb - - - - - - - - - - - - - - - - - - - -

Te - - - - - - - - - - - - - - - - - - - -

W - - - - - - - - - - - - - - - - - - - -

Au - - - - - - - - - - - - - - - - - - - -

Sb - - - - - - - - - - - - 5.79 1.86 1.78 8.34 - - - -

Te - - - - - - - - - - - - - - - - 17.62 20.42 0.00 41.92

Bi - - - - - - - - - - - - 32.24 4.94 22.74 50.70 82.38 20.42 58.09 100.00

Pb - - - - - - - - - - 86.12 1.46 44.83 3.12 32.17 51.52 - - - -

Total 98.29 0.93 100.00 0.88 99.38 0.64 98.42 0.35 97.86 99.04 100.00 0.00 100.00 0.00 100.00 100.00 100.00 0.00 100.00 100.00

Metallic and Ore Minerals
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Table 1 cont’d. Mineral compositions of metallic minerals obtained via SEM-EDS in wt%.  

 

 * Electrum analysed form the late style 1 mineralization in the sample L-BSZ-2 

   ** Electrum analysed form the style 2 mineralization in the sample WAu-4

mol glc apy sch frb electrum* electrum**

n=33 n=18 n=14 n=14 n=10 n=3 n=2

Element (Wt%) Avg 1 σ Avg 1 σ Avg 1 σ Avg 1 σ Avg 1 σ Avg 1σ Avg 1 σ

O - - - - - - 26.94 1.43 26.43 1.53 - - - -

S 39.07 1.23 21.78 1.75 1.92 - - - - - - - -

Ca - - - - - - 10.77 1.42 - - - - - -

Mn - - - - - - - - 0.11 0.23 - - - -

Fe - - 8.38 1.67 33.39 1.16 1.95 1.72 14.87 0.98 - - - -

Co - - 27.39 1.68 - - - - - - - - - -

Ni - - 0.68 0.26 - - - - - - - - - -

Cu - - - - - - - - - - - - - -

Zn - - - - - - - - - - - - - -

As - - 41.72 2.07 44.01 1.49 - - - - - - - -

Se - - - - - - - - - - - - - -

Mo 60.61 0.19 - - - - - - - - - - - -

Ag - - - - - - - - - - 69.46 30.54 6.26 1.59

Au 1.91 1.91 93.74 1.59

Sb - - - - - - - - - - - - - -

Te - - - - - - - - - - - - -

W - - - - - - 61.18 0.96 58.60 0.62 - - - -

Au - - - - - - - - - - - - - -

Sb - - - - - - - - - - - - - -

Te - - - - - - - - - - - - - -

Bi - - - - - - - - - - - - - -

Pb - - - - - - - - - - - - - -

Total 99.96 0.10 99.15 1.03 99.69 0.96 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00

Metallic and Ore Minerals
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Appendix 7B: Silicate minerals  

Silicate minerals include plagioclase series, alkali (K) feldspar, biotite, chlorite, 

white clay assemblages, zircon, titanite, and rarely allanite. The average composition of 

these minerals are shown in Table 2. Trace silicate minerals including zircon, thorite, 

allanite, and titanite have detailed compositions and locations in Table 2.   

Feldspars were determined from the SEM for all zones in the Revenue occurrence 

and where identified as albite (n=16), oligoclase (n=17), andesine (n=15), anorthoclase 

(n=1), and alkali feldspar (n=101).    

 Biotite from the Revenue granite host rock, the early and late BSPZ (total n = 34) 

has variable SiO2 (39.75-46.46 wt%), Al2O3 (13.98-29.00 wt%), FeO (13.88-22.08 wt%), 

MgO (6.17-20.83 wt%), K2O (2.53-10.19 wt%), and TiO2 (0.52-0.32 wt%).  

 Chlorite was analysed from the Revenue granite, the early and late BSZ, and QFP. 

An average composition (n = 37) has SiO2 (34.36±1.14 wt%), 23.43±1.26 wt% Al2O3 

(23.43±1.26 wt%) with variable FeO (18.59-28.08 wt%) and MgO (15.37-22.30 wt%).  

White clay assemblages from the late BSZ, phyllic altered QFP, WAu breccia, and 

Revenue diatreme were determined to be illite-kaolinite±muscovite via infrared 

spectroscopy (See Appendix 4). Using the SEM, white clays (n=79) have variable 

compositions of SiO2 (36.83-64.28 wt%), Al2O3 (16.14-42.89 wt%), FeO (0.30-31.67 

wt%), MgO (0.35-16.48 wt%), K2O (0.22-12.68 wt%), and TiO2 (0.32-1.68 wt%).  
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Table 2. Mineral compositions of silicate minerals obtained via SEM-EDS in wt%.  

 

 

 

 

 

 

 

 

ab olg andes k-fds bt chl clay

n=16 n=17 n=15 n=150 n=34 n=37 n=104

Oxide (wt%) Avg 1 σ Avg 1 σ Avg 1 σ Avg 1 σ Avg 1 σ Min Max Avg 1 σ Avg 1 σ Min Max

SiO2 67.31 1.40 62.66 1.14 60.34 0.35 66.23 1.39 42.58 1.15 39.75 46.46 34.36 1.14 55.02 2.00 46.98 63.28

TiO2 - - - - - - - - 1.77 0.90 bdl 4.32 - - bdl 0.21 bdl 0.58

Al2O3 20.01 1.17 23.97 1.73 25.33 0.40 18.02 1.02 16.58 4.05 13.98 29.00 23.43 1.26 32.82 3.02 24.64 42.69

FeO - - - - - - - - 15.92 1.80 13.88 20.97 22.46 2.57 1.39 1.64 bdl 9.01

Fe2O3 bdl - bdl - bdl - bdl - - - - - - - - - - -

MnO - - - - - - - - - - - - - - - - - -

ZnO - - - - - - - - - - - - - - - - - -

MgO - - - - - - - - 14.94 2.63 6.17 18.04 19.60 1.85 2.04 1.86 0.50 10.78

CaO 0.85 1.10 4.31 1.67 6.58 0.89 bdl - - - - - - - bdl 0.37 bdl 0.45

Na2O 11.21 0.86 8.47 1.01 7.42 0.27 0.85 0.99 - - - - - - - - - -

K2O 0.50 0.55 0.56 0.83 0.25 0.54 14.07 1.49 8.10 2.22 2.53 10.19 - - 8.28 2.30 bdl 11.78

P2O5 - - - - - - - - - - - - - - - - - -

ZrO2 - - - - - - - - - - - - - - - - - -

La2O3 - - - - - - - - - - - - - - - - - -

Ce2O3 - - - - - - - - - - - - - - - - - -

ThO2 - - - - - - - - - - - - - - - - - -

UO3 - - - - - - - - - - - - - - - - - -

F - - - - - - - - - - - - - - 0.34 0.74 bdl 2.38

Total 100.02 0.03 100.01 0.02 100.01 0.03 99.55 1.31 99.89 0.12 99.70 100.01 99.93 0.23 99.98 0.06 99.61 100.10

Silicate Minerals
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Table 2 cont’d. Mineral compositions of silicate minerals obtained via SEM-EDS in wt%.  

zrn aln thr

n=22 n=14 n=5

Oxide (wt%) Avg 1 σ Avg 1 σ Min Max Avg 1 σ Min Max

SiO2 31.70 0.51 41.05 0.79 39.68 42.27 19.12 0.60 18.57 19.87

TiO2 - - - - - - - - - -

Al2O3 - - 17.78 1.49 16.21 22.54 - - - -

FeO - - 11.21 0.78 9.38 13.06 - - - -

Fe2O3 - - - - - - - - - -

MnO - - - - - - - - - -

ZnO - - - - - - - - - -

MgO - - 1.49 0.19 1.18 1.89 - - - -

CaO - - 11.71 0.89 11.18 14.68 1.76 0.17 1.46 1.87

Na2O - - 0.18 0.36 0.00 0.88 - - - -

K2O - - - - - - - - - -

P2O5 - - - - - - - - - -

ZrO2 68.25 0.52 - - - - - - - -

La2O3 - - 4.98 0.48 3.95 6.65 - - - -

Ce2O3 - - 8.94 0.79 7.97 10.99 - - - -

ThO2 - - 2.74 1.30 bdl 4.13 67.95 12.29 52.75 77.66

UO3 - - 9.17 12.67 bdl 25.37

F - - - - - - 0.62 0.85 bdl 1.55

Total 100.00 0.01 100.00 0.02 99.97 100.03 100.00 0.00 100.00 100.00

Silicate Minerals
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Appendix 7C: Oxide minerals 

Oxides found at all mineralization styles of the Revenue occurrence include rutile 

(W and Sn variance), ilmenite, uraninite and hematite. Average mineral compositions of 

oxides are shown in Table 3. Rutile from the early BSZ (n = 7) area has TiO2 (98.18±0.14 

wt%) and FeO (1.82±0.14 wt%). Rutile form the late BSZ (n = 9) has TiO2 (99.62±0.71 

wt%), FeO (0.14±0.26 wt%), variable WO3 (<1.5 wt%) and CaO (0.15±0.25 wt%). Rutile 

from the QFP (n = 8) has TiO2 (99.30±0.42 wt%), FeO (0.08±0.16 wt%), and CaO 

(0.55±0.31 wt%).  Rutile from the WAu breccia (n = 28) has TiO2 (98.30±1.57 wt%), FeO 

(0.38±0.23 wt%), CaO (0.12±0.40 wt%), WO3 (and < 3.53 wt%), and SnO2 (< 1.98 wt%). 

Rutile from the Revenue diatreme (n = 30) has TiO2 (97.56±2.50 wt%), WO3 (< 6.18 wt%), 

and minor FeO (0.20±0.36 wt%). Two analyses in this area had Cr2O3 (0.66 and 0.73 wt%) 

in the analysis associated with highest WO3. Accessory oxides include ilmenite, hematite, 

and uraninite, where compositions are detailed in Table 3.   

 

Table 3. Normalized oxide mineral compositions in wt%, derived from SEM analysis.  

 

 

rt ilm urn hem

n=82 n=1 n=18 n=4

Oxide (wt%) Avg 1 σ Min Max Avg 1 σ Avg 1 σ Avg 1 σ

TiO2 98.37 1.97 92.66 100.00 52.99 - - - - -

Al2O3 bdl 0.04 bdl 0.40 - - - - -

FeO 0.31 0.46 bdl 1.97 45.73 - - - 100 0

MnO - - - - 1.28 - - - - -

CaO 0.18 0.36 bdl 1.58 - - - - - -

K2O bdl 0.20 bdl 0.41 - - - - - -

Cr2O3 bdl 0.11 bdl 0.73 - - - - - -

SnO2 bdl 0.25 bdl 1.98 - - - - - -

WO3 1.08 1.63 bdl 6.18 - - - - - -

UO3 - - - - - - 96.25 3.33 - -

ThO2 - - - - - - 6.43 0.52 - -

Total 100.00 0.00 99.98 100.02 100.00 0.00 100.00 0.01 100.00 0.00

Minerals
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Appendix 7D: Carbonate minerals  

Carbonate minerals are a common gangue mineral, present in all samples that were 

studied in depth. The carbonate phases present are calcite, Fe-dolomite, and a siderite phase 

with variable composition. Carbonates were analysed via SEM, and proportions were 

calculated in molecular percent (mol.%) using cation oxide data (Table 4). Due to 

occasional trace amount of MnO, FeO+MnO were grouped together in the calculations and 

ternary graphics, though the amount of MnO in Fe-dolomite and siderite phases are usually 

negligible when determining mineral identification (<3.30 mol.% in each analysis, usually 

<1 mol%.). Calcite occurs in the Revenue granite host, early BSZ, least altered QFP, and 

in the WAu breccia, where it’s average composition (n = 20) has CaO (99.20±0.86 mol%), 

MgO (< 1.09 mol%), and FeO+MnO (< 2.12 mol%). Fe-dolomite occurs in the late BSZ, 

phyllic altered QFP and Revenue diatreme, and in the WAu breccia where it’s average 

composition (n = 68) has variable CaO (49.67±2.38 mol%), MgO (18.03 - 40.52 mol%), 

and FeO+MnO (11.99 - 31.91 mol%). The range in compositions show that the WAu 

breccia and late BSZ generally have higher FeO content, and analyses from the phyllic 

altered QFP dyke typically are lower-FeO content, though analyses for samples show 

similar ranges. Siderite occurs in the late BSZ, WAu breccia, and both least altered and 

phyllic altered Revenue diatreme. Siderite (n = 73) has variable FeO+MnO (47.20 - 100.00 

mol%), MgO (< 48.0 mol%), and CaO (< 13.79 mol%). Like the Fe-dolomite, the 

compositions in each mineralized zone varies although general trends of FeO-dominant 

siderite occur in the WAu breccia, whereas the lower FeO content siderite occurs in the 

Revenue diatreme and the late BSZ composition ranging throughout.  
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Table 4. Normalized molecular proportions of carbonate phases in the Revenue occurrence, derived from SEM analysis. 

 

 

cal dol sd

n=20 n=67 n=73

Oxides (Mol %) Avg 1σ Min Max Avg 1σ Min Max Avg 1σ Min Max

CaO 99.20 0.86 97.21 100.00 49.67 2.38 45.48 57.23 1.82 2.48 bdl 13.79

MgO bdl 0.24 bdl 1.09 31.35 5.11 18.03 40.52 14.12 14.91 bdl 48.00

FeO+MnO 0.75 0.76 bdl 2.12 18.98 4.23 11.99 31.91 84.07 15.69 47.20 100.00

Total 100.00 0.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 0.00 100.00 100.00

Carbonate Minerals
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Appendix 7E: Phosphates and trace minerals  

Phosphates including apatite, xenotime, and monazite, and other minerals including barite and cassiterite, have average mineral 

compositions condensed in Table 5 and 6, respectively.  

 

Table 5. Phosphate mineral compositions in wt% oxide for apatite, monazite and xenotime.  

 

 

 

ap mnz xtm

n=60 n=8 n=3

Oxide (wt%) Avg 1 σ Max Min Avg 1 σ Min Max Avg 1 σ Min Max

CaO 49.33 2.51 54.44 46.34 - - - - - - - -

P2O5 45.41 1.06 47.57 40.40 39.10 4.52 34.34 45.85 41.63 1.04 40.83 42.80

La2O3 - - - - 12.89 10.70 bdl 21.53 - - - -

Ce2O3 - - - - 30.15 5.00 21.24 34.58 - - - -

Nd2O3 - - - - 16.57 10.77 8.26 32.92 - - - -

Y2O3 - - - - - - - - 47.00 2.31 45.20 49.60

Gd2O3 - - - - - - - - 2.76 0.50 2.19 3.10

Dy2O3 - - - - - - - - 5.31 0.83 4.50 6.15

Yb2O3 - - - - - - - - 1.31 3.02 bdl 5.23

ThO2 - - - - 0.15 0.42 bdl 1.19 1.58 2.74 bdl 4.75

F 4.66 2.79 7.82 bdl 1.00 2.09 bdl 5.80 - - - -

Cl 0.11 0.15 0.45 bdl - - - - - - - -

Total 100.00 0.01 100.02 99.99 100.00 0.01 100.00 100.02 100.02 0.02 100.00 100.03

Phosphate Minerals
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Table 6. Additional mineral chemistry in oxide wt% for barite and cassiterite.  

 

 

 

 

 

 

 

 

 

 

 

 

 

brt cst

n=6 n=1

Oxide (wt%) Avg 1 σ Avg 1 σ

SO3 37.77 0.14 10.79 -

FeO - - 7.44 -

BaO 61.69 1.05 -

CuO - - 2.08 -

SnO2 - - 79.69 -

SrO 0.64 0.99 -

Total 100.00 0.00 100.00 0.00

Trace Minerals
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Appendix 8: Revenue occurrence model 

The current deposit model involves a telescoping porphyry intruded by QFP dykes, 

resulting in skarn-like breccia, where a later pressure-release event resulting in the Revenue 

diatreme intruding to shallow depths, where mineralization may have been remobilized 

upon expanding dilation zone (T. Baressi, communication, 2018). The hypothesis of the 

fault system growing over-pressured as a result of the late-Cretaceous emplacements 

(located SE of the Revenue occurrence, Fig. 2) blocking and deforming the fault’s passage 

may have led to an increase in pressure in the property (T. Baressi, communication, 2018). 

This “over-pressured” system could result in migrating hydrothermal fluids, multiple 

generations of mineralization, and breccia formations, and a final event of the diatreme (T. 

Baressi, personal communication 2018).  

The Revenue granite pluton, emplaced ~105 Ma, hosts a porphyry of a later date of 

~75 Ma, where early mineralization style 1 formed in association with calcite and potassic 

alteration including biotite and minor K-feldspar. This mineralization derived reduced 

fluids (Rowins, 2000), where pyrrhotite is dominant in the main mineralization and 

magnetite is absent in alteration assemblage. Possible oxidation or other changes in 

condition and chemistry allowed rutile±ilmenite to alter pyrrhotite (Fig. 8A). Therefore the 

main mineralization sequences was dominant in pyrrhotite, then pyrite and chalcopyrite. 

The source magma is implied to be mantle derived based on the Co-Ni affinity in trace 

element composition. The magma chamber would then cool, ending this mineralization 

event.  

After, shallowly emplaced QFP dykes of the Casino Plutonic Suite, at similar age 

of ~75 Ma swarmed the region (Friend et al., 2018; Betsi et al., 2010 2011, 2013). These 

dykes are oriented W-E across the property, cross-cutting the Revenue granite and BSZ. 
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An alteration process dominant in chlorite pseudomorphically altering biotite with rutile± 

sulfide occurred throughout the region.  

Another surge of magmatism onset the development of the late style 1 

mineralization, in which similar structures were used to transport polymetallic-bearing 

hydrothermal fluids and cross-cut older base metal-biotite altered veins. The magma source 

produced oxidized, epithermal-type hydrothermal fluids, as implied by trace element 

composition and lack of pyrrhotite. These new fluids have a large carbonate component 

present as dolomite instead of calcite, and a shift in dominant sulfides to pyrite-chalcopyrite 

and introduction of molybdenite and arsenopyrite. Mineralization occurred in at least two 

phases, the first with an early quartz-dominated mineralization and later dolomite phase. 

Given the trace geochemical data in conjunction with petrographic observations, the 

mineralization style 1 is clearly split into two events that may share the same magma and 

hydrothermal fluid source, though the composition and conditions of the source would have 

differed between the two veining (quartz vs dolomite) events. This late style 1 

mineralization and alteration affected QFP dykes in the region, as seen by the similar late 

style 1 mineralization cross-cutting crystals in the sample QFP-2.  

 At a similar time, shortly after and likely associated to QFP dyke emplacement, a 

breccia system occurred in the near the SW region of the BSZ area. Revenue granite and 

QFP fragments, showing chilled margins, are suspended in a quartz-carbonate-sulfide 

matrix, which characterizes style 2 mineralization. Yet another source, characterized by 

saline hydrothermal fluids, carried increased amounts of W and Sn in conditions that 

favoured siderite, of which precipitated in open spaces. Ferberite-scheelite masses and 

coarse grain galena suggest long mineralization times under preferable conditions, with 

late-phase pyrite (ii) shows boiling, open-space filling textures which may imply a sudden 
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shift in decreased pressure possibly related to uplift. Trace element compositions of major 

sulfides, in conjunction with W and Sn mineralization imply skarn-like influences for this 

mineralization.  

 Lastly, a diatreme intrudes the Revenue complex as a final pressure release from 

the over pressured system (T. Barressi, personal communication 2018). The initial high 

pressure and temperature may have caused previous mineralization to remobilize and 

become attenuated near the contacts of the diatreme with the Revenue granite and early 

BSZ mineralization, which characterizes mineralization style 3. Alternatively, a similar 

fluid source from the formation of the style 2 mineralization may be responsible for the 

metal carrying hydrothermal fluids for style 3 mineralization. No mineralization is 

recognized in the Revenue area afterwards.  

 


