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Abstract

A Flux-Flux Analysis of Spectral Variability in Markarian 335

by Hannah Ehler

submitted on April 18, 2017:

Markarian 335, a Narrow-Line Seyfert 1 Galaxy, has been one the brightest X-ray

sources in the sky until 2007 when its flux dropped to 1/10th of its previous value.

Despite this dramatic decrease, Mrk 335 still remains one of the brighter AGN in

the X-ray, and is a highly variable source. Flux-Flux Plots, a model-independent

technique, were utilized to determine the mode of spectral variability in this AGN.

Flux-Flux Plots were created using X-ray data from XMM-Newton to examine spec-

tral variability on short timescales (e.g. ≤1 day). Binning up the Flux-Flux Plots

produced different results depending on the dimension the data were binned by, indi-

cating that there is more than one varying component present. Simple models with

only varying component fit to the Flux-Flux plots were poor and nearly indistinguish-

able, further indicating that the spectral variability in Mrk 335 is more complex than

can be described by a single variable component. A Time-Resolved Flux-Flux anal-

ysis of the observation XMM-Int1 revealed a change in variability at ∼70 ks, which

corroborates previous studies. It seems that the spectral variability in Mrk 335 is

likely the result of the variation of multiple parameters simultaneously.
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Chapter 1

Introduction

1.1 Active Galactic Nuclei

1.1.1 Unified Model

Supermassive black holes reside at the centre of most, if not all, galaxies. These black

holes can have masses on the order of millions of solar masses. A small fraction of these

black holes accrete material and emit energy; these are considered “active” and so

called Active Galactic Nuclei (AGN). These objects emit radiation at all wavelengths

across the electromagnetic spectrum and are extremely bright, outshining their host

galaxy. The spectrum of an AGN typically peaks in the ultraviolet (Gallo, 2011),

though AGN emit at all wavelengths.

The unified model suggests that all types of AGN are fundamentally the same,

powered by the same central engine (Carrol and Ostlie, 2007). The basic model of

an Active Galactic Nuclei is shown in Figure 1.1. It features a supermassive black

hole at the centre of a galaxy, surrounded by an accretion disc. It is the accretion of

material from this disc onto the black hole that powers the emission of the source.

AGN are very efficient at generating radiation through the accretion process, with

an efficiency up to 40% (Gallo, 2011). Exterior to the accretion disc resides a dusty

torus, marking the outer boundary of the broad line region.
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Figure 1.1: Unified model of AGN, from Zackrisson (2005).

The broad-line region is the region close to the black hole that is affected by the

black hole’s gravity, causing emission lines in this region to be Doppler broadened.

The electron number density is between 1015 and 1018 m−3 (Carrol and Ostlie, 2007).

This number density is too large to permit forbidden transitions, so forbidden spectral

lines are not observed in the broad line region (Carrol and Ostlie, 2007). This region

is inhomogeneous and clumpy, containing partially ionised, optically thick clouds

(Carrol and Ostlie, 2007). These clouds occupy only 1% of the broad-line region’s

volume and likely exhibit a flattened distribution (Carrol and Ostlie, 2007). The

dusty torus can obscure the broad-line region depending on the orientation of the

AGN relative to our line of sight.

Outside the torus lies the narrow-line region. This region is not influenced by

gravitational effects of the black hole and so the emission lines produced in this
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region are narrow. The number density of electrons in the narrow-line region is on

the order of 1010 m−3 and so forbidden transitions are permitted (Carrol and Ostlie,

2007). The narrow-line region contains clumpy clouds like the broad line region, but

unlike the broad-line region, these clouds are likely spherical in distribution (Carrol

and Ostlie, 2007).

Our line of sight to the black hole through the obscuring torus will determine

what is observed and how the AGN is classified. Seyfert galaxies are spiral galaxies

with strong emission lines that are further classified as type I or II (or somewhere in-

between) based on properties of the emission lines in their spectra. Seyfert I galaxies

are AGN of which we have a clear line of sight to the broad-line region, and so their

spectra contain both broad and narrow lines. Seyfert II spectra bear only narrow lines,

as the torus obscures the broad-line region from our line of sight to these galaxies,

and we observe only the narrow-line region.

Some AGN have jets, containing ionised gas moving at relativistic velocities (Ry-

den and Peterson, 2010). These jets can emit at X-ray, visible, and radio wavelengths

(Ryden and Peterson, 2010) and can extend to scales larger than the host galaxy

(Gallo, 2011). An AGN that is viewed by a line of sight of parallel to the jet is clas-

sified as a quasar. Quasars have very high luminosities and are further subdivided

based on their radio emission.
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1.1.2 X-Ray Region

The AGN central engine is an accretion disc around a supermassive black hole at

the core of an active galaxy. It is the accretion of material from this disc onto the

black hole that produces emission. X-ray emission is seen to vary over timescales as

brief as hours (see Section 1.2). Because variations cannot occur faster than it takes

light to travel across the region, rapid variability indicates that the X-rays originate

from regions closest to the black hole (Gallo, 2011). The X-ray emitting region of a

supermassive black hole of mass 107 M� is approximately the size of our solar system

(Gallo, 2011). We are unable to resolve the X-ray emitting regions of AGN and so

must rely on spectral and timing analysis to further our understanding of the regions

and processes therein (Gallo, 2011).

Figure 1.2: Inner region of AGN, from Gallo (2011).

The geometry of the X-ray emitting region is depicted in Figure 1.2. This region

consists of two components: a primary emitter and an accretion disc.
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The primary emitter is the corona: an extended atmosphere of hot electrons that

resides above the black hole (Gallo, 2011). These electrons are likely dredged up

from the accretion disc during the accretion process and deposited in the corona

via magnetic reconnection (Galeev et al., 1979). When thermal ultraviolet photons

emitted from the accretion disc encounter the corona, they are up-scattered to higher

energies and re-emitted as X-rays in a process called Comptonization (Wilkins and

Gallo, 2015b). This X-ray emission from the corona constitutes the primary emission

and is represented by a power-law in the spectrum (see Figure 1.3). This power-

law has a high-energy cut-off which indicates the temperature of the corona (Gallo,

2011). The geometry of the corona remains unknown; models including point source

and extended geometries have been suggested, as well as evolving geometries (Wilkins,

2016; Gonzalez et al., in print).

The primary emission is emitted isotropically and so some of these X-rays en-

counter the accretion disc. The accretion disc, being cooler and optically thick, will

back scatter some of the primary emission, comprising the reflected emission. As the

material in the accretion disc is struck by the primary emission, the atoms become

ionized. Photons are then released as higher-level electrons transition to lower-levels

in a process called fluorescence. This produces emission lines in the reflected spec-

trum which can provide insight as to the ionisation and Comptonization of the inner

accretion disc (Gallo, 2011). Additionally, the reflected spectrum can reveal dynam-

ics of the innermost region as processes become imprinted on the spectrum (Gallo,

2011). Intrinsically narrow emission lines become broadened and shifted due to effects

of the black hole environment. Doppler broadening occurs as a result of disc rotation
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and results in a double-peaked line profile (Gallo, 2011). Special relativistic effects

produce an asymmetric profile as light toward the observer appears beamed (Gallo,

2011). General relativistic effects further redshift the emission line as photons lose

energy escaping from the gravitational potential well of the black hole (Gallo, 2011).

The observed reflection spectrum exhibits all these effects and is thus “blurred”.

The X-ray spectrum that is observed from an AGN is a combination of the primary

emission and reflected emission, as depicted in Figure 1.3.

Figure 1.3: Observed spectrum of an AGN and its primary and reflected components,
from Gallo (2011).
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1.2 AGN Variability

AGN vary in brightness on all observable time scales and at all wavelengths due the

accretion of matter from the accretion disc onto the black hole. The variation of the

two spectral constituents, the primary emitter and the accretion disc, are what give

rise to spectral variability in an AGN. However, it is far more complex than simply

a variation of two components. Variation of these components can be correlated,

anti-correlated, or uncorrelated. Additionally a range of parameters could contribute

to the variability, including ionisation, photon index, and relative brightness of each

component.

Short timescale variability is seen in the X-ray part of the spectrum, so by study-

ing the X-ray spectra of AGN it is possible to better understand the workings and

geometry of the region closest to the black hole. Over the course of mere hours, X-ray

flux in AGN can vary by factors of 2-3 and sources can transition between high and

low flux states (Wilkins, 2016).

Figure 1.4: Long-term X-ray light curve of Markarian 335 exhibiting long timescale
variability, from Wilkins (2016).

Additionally, long timescale variability occurs over the course of years, as depicted

by the light curve of Markarian 335 in Figure 1.4. This figure reveals that Mrk 335
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can vary by a factor of 15 on a yearly timescale.

Understanding the nature of AGN variability is paramount to understanding the

physics and mechanisms of the innermost black hole region, especially the central

engine.
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1.3 Flux-Flux Plots

The technique employed to examine the short-term X-ray variability of Markarian

335 (Mrk 335) is the Flux-Flux Plot (FFP). This method was utilised by Taylor

et al. (2003) to characterise a variety of AGN. It is a model-independent technique

used to distinguish between modes of spectral variability. It plots the light curves in

two energy bands against each other to see the correlation between the bands. The

relationship between the bands can indicate the mode of variability. There are three

simple modes of variability that can be identified from a Flux-Flux Plot. These are

characterized by linear, power-law, and power-law plus constant fits to a FFP.

A linear FFP indicates that one component is changing in brightness, while main-

taining constant spectral shape. This may be relative to a constant reflected com-

ponent, denoted by a positive offset on the linear fit. The linear fit is given by the

following:

y = mx+ b (1.1)

where y and x indicate the flux in given bands of the Flux-Flux Plot. A power-law

fit to a FFP implies a spectrum that pivots about some energy. Such a fit may or

may not include a constant component. The power-law fit is given by:

y = kxa (1.2)
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while the power-law plus constant is:

y = αxβ + c (1.3)

The spectra produced by these three simple modes of variability are depicted in Figure

1.5.

(a) Linear (b) Power-law (c) Power-law + constant

Figure 1.5: Spectra produced by different modes of variability identifiable by Flux-
Flux Plots.

Modes of short-term spectral variability can be determined by making these simple

fits to Flux-Flux Plots constructed from X-ray data.
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1.4 Markarian 335

Markarian 335 is Narrow-Line Seyfert 1 galaxy with a redshift of z = 0.026. At

the centre of this galaxy resides an active supermassive black hole of mass 2.6 × 107

M� (Grier et al., 2012). Historically Mrk 335 has been one of the brightest X-ray

sources in the sky, as early observations found the object in a high flux state. In

2007, observations of Mrk 335 revealed a decrease in flux by a factor of 10 from

previous observations (Grupe et al., 2007). Recent observations have found the AGN

in both intermediate and low flux states. The object exhibits extreme variability on

all observable timescales, from hours to years, making it an ideal candidate for study.

Additionally, the relatively low redshift of Mrk 335 provides adequate count rates of

the source even in low flux states (Wilkins and Gallo, 2015a). Previous work on Mrk

335 has found that the X-ray spectra are described and dominated by relativistically

blurred reflection (Gallo et al., 2013).

This works examines the nature of the short-term X-ray variability in Markarian

335. The model-independent Flux-Flux Plot technique is employed to determine the

driver of variability for each epoch. Understanding the mode of variability can bring

to light changes in the corona and accretion disc, increasing our understanding of the

mechanics needed to power the most luminous sources in the Universe.
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Chapter 2

Observations & Data Reduction

2.1 XMM-Newton

The X-Ray Multi-Mirror Newton Observatory (XMM-Newton) was launched in 1999

by the European Space Agency to study cosmic X-rays. XMM-Newton has large

collecting area telescopes that enable the collection of more photons than most X-

ray observatories. The satellite is in a highly elliptical 48-hour orbit around Earth

(Jansen et al., 2001).

Each of the X-ray telescopes on-board XMM-Newton consist of 58 nested mirrors

of the Wolter I design covered in a reflective gold coating (Jansen et al., 2001). The

diameter of the outermost mirror is 70 cm and the diameter of the innermost mirror

is 30.6 cm, while the grazing angles of these mirrors are 42’ and 17’, respectively

(Jansen et al., 2001). The telescopes have a focal length of 7.5 m and an effective

area of 1500 cm2 at 1.5 keV. (Jansen et al., 2001). The optics of XMM-Newton are

calibrated to cover a spectral range of 0.15 - 10 keV (or 83 - 1 Å).
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2.1.1 EPIC pn

A pn CCD detector is one of the cameras on the European Photon Imaging Camera

(EPIC) and is the camera used in this work. It has high detection efficiency, low noise

level, and ultrafast readout (Strüder et al., 2001). The pn consists of 12 CCD chips

arranged into four quadrants containing 3 CCDs each. Each CCD chip is 3 cm × 1

cm, creating a total collecting area of 36 cm2.

Table 2.1: Imaging modes of the EPIC-pn detector, from Strüder et al. (2001).

Mode Field of View Timing Resolution
[pixels] [ms]

(arcmin)

Full Frame
398 × 384

(27.2 × 26.2)
73.3

Extended Full Frame
398 × 384

(27.2 × 26.2)
199.2

Large Window
198 × 384

(13.5 × 26.2)
47.7

Small Window
63 × 64

(4.3 × 4.4)
5.7

Timing
199 × 64

(13.6 × 4.4)
0.03

Burst
20 × 64

(1.4 × 1.4)
0.007

The pn camera has six standard readout modes: full frame (FF), extended full

frame, large window (LW), small window (SW), timing, and burst mode (Strüder

et al., 2001). These modes utilise different numbers of CCDs and so have varying

fields of view and timing resolution, as shown in Table 2.1. Full frame and extended

full frame both utilise all 12 CCDs of the pn, while extended full frame mode has

a longer integration time, making it ideal for observing extended objects such as
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clusters of galaxies (Strüder et al., 2001). Large and small window modes employ

reduced fields of view to improve the timing resolution limit and pile-up (see Section

2.2) for bright sources (Strüder et al., 2001). Large window mode operates all four

quadrants of the CCDs while reducing the area of each chip. Small window mode

utilises the reduced area of only a single detector. Timing and burst modes both

operate a single CCD chip and are useful for observing sources with extremely high

count rates (Strüder et al., 2001). Timing mode operates in only one dimension,

collapsing the data and reading out a single row of the CCD, while burst mode yields

an even faster timing resolution at the expense of collecting light for only 3% of the

operating time.

Figure 2.1: Raw image of Markarian 335 with pn camera in full frame mode showing
the source and background extraction region used in this work.

A raw image of Markarian 335 taken by the pn camera in full frame mode is shown
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in Figure 2.1. The division of individual CCD chips on the detector are visible, as

are some bad pixels and columns. The source is centred.

All data utilised in this analysis were taken by the EPIC-pn detector to take

advantage of the large effective area of the telescope, which yields a high enough

count rate for a thorough analysis (Wilkins and Gallo, 2015a). Additionally, the use

of a single detector removes the necessity to cross-calibrate multiple detectors.
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2.2 Observations and Data Processing

For this work, five sets of archival data of Markarian 335 from the XMM-Newton pn

detector were analysed. An observation of Mrk 335 taken in 2000 in a high state

was not used in this analysis, as pileup was examined and found to be significant in

that observation. Information on the five observations analysed is listed in Table 2.2.

Good Time Interval (GTI) indicates the length of the observation for which there is

good data (i.e. no background flaring).

Table 2.2: XMM-Newton observations of Mrk 335 analysed in this paper, indicating
the name each observation will be referred to as henceforth.

Obs ID Reference Name Start Date Rev Exposure Mode Filter GTI (ks)
0306870101 XMM-High 2006-01-03 1112 133 ks SW THIN1 133
0510010701 XMM-Low1 2007-07-10 1389 22.6 ks LW THIN1 17
0600540601 XMM-Int1 2009-06-11 1741 132 ks FF THIN1 115
0600540501 XMM-Int2 2009-06-13 1742 82.6 ks FF THIN1 80
0741280201 XMM-Low2 2015-12-30 2941 140 ks FF THIN1 118

The data were downloaded from the XMM-Newton Science Archive1 as Observa-

tional Data Files (ODFs) and processed using the Science Analysis System (SAS)

software version 15.0.0 developed by the European Space Agency. The command

epchain was employed to process the ODFs and create an event list from the raw

data and spacecraft information. An event list contains information for every photon

collected during the observation, from which images, light curves, and spectra can be

created. It lists the time of arrival as well as the position and energy of each photon

detected.

The data were then checked for background flaring and pileup. High background

1http://nxsa.esac.esa.int/

http://nxsa.esac.esa.int/


Chapter 2. Observations & Data Reduction 17

radiation, solar radiation, and the Earth’s radiation belts can all contribute to flaring

in the background that can diminish data quality (Figure 2.2). Pile-up occurs when

more than one photon strikes a pixel before a read-out cycle of the CCD can be

completed. If this occurs, two photons of a lesser energy can be mistaken for a single,

higher-energy photon. The spectrum will appear harder than it is and the count rate

will be underestimated if this occurs frequently throughout an observation 2.

Figure 2.2: Histogram of the background light curve for XMM-High, showing periods
of flaring at the start and end of observation. These segments are omitted in analysis.

To check for these effects, first the source and background regions had to be

extracted. This was done visually using the program SAOImage DS9 3. For each

observation, source spectra were extracted from a circular region 35 arcsec in diameter

and centred on the source. Background spectra were extracted from a circular region

50 arcsec in diameter in order to achieve a high signal-to-noise ratio (Kammoun

et al., 2015). The background annuli were taken from the same chip as the source,

as close to the source as possible while avoiding contamination from the source and

2SAS Cookbook: http://heasarc.gsfc.nasa.gov/docs/xmm/abc/node9.html
3ds9.si.edu/

http://heasarc.gsfc.nasa.gov/docs/xmm/abc/node9.html
ds9.si.edu/
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the readout streak. Figure 2.1 displays the background and source extraction regions.

The background light curves were examined for flaring and such periods were omitted

in the analysis (see Figure 2.2).

Pileup in the five analysed observations was also found to be negligible (see

Figure 2.3). Background-corrected light curves were created using the command

epiclccorr, subtracting the background from the source, ignoring any periods of

background flaring as well as bad pixels, and considering only single and double

events.

Figure 2.3: Data compared to pileup models, indicating a good fit.

Source and background spectra were created from the event list using the same

extraction regions, again considering only single and double events and omitting bad

pixels. EPIC response matrices were generated using the sas tasks arfgen and rm-

fgen to construct the ancillary response matrices (ARF) and photon redistribution

matrices (RMF), respectively. The energy channels were binned using grppha such

that each bin contained a minimum of 20 counts in order to apply Poisson statistics.
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Chapter 3

Analysis & Results

3.1 Selecting Appropriate Energy Bands

To construct a Flux-Flux Plot one must first choose the energy bands to compare.

These bands can be chosen such that they represent different components contributing

to the AGN spectrum. The Flux-Flux Plots constructed by Kammoun et al. (2015)

compared an energy band representative of the continuum emission to non-continuum

emission at higher and lower energies. This method was adopted for this work, and

so the first step was to identify the energy band that best represented the continuum

emission. To do this, the spectra of the first four observations (XMM-High, XMM-

Low1, XMM-Int1, XMM-Int2) were loaded into the X-ray spectral modelling software

xspec 1. Because the continuum emission arises from Comptonisation and takes the

form of a power-law, the spectra were each fit with an absorbed power-law using

the model tbabs*powerlaw. Galactic absorption was considered, with a hydrogen

column density to Markarian 335 of NH = 3.56 × 1020 cm−2 (Kalberla et al., 2005).

Figure 3.1 shows the absorbed power-law model fit to 1 - 2 keV and extrapolated

between 0.3 - 10 keV for each of the first four observations. The bottom panel shows

the residuals of the fits. From the residuals, it is clear that the energy band from 1 -

1https://heasarc.gsfc.nasa.gov/xanadu/xspec/

https://heasarc.gsfc.nasa.gov/xanadu/xspec/
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2 keV is well-fit with an absorbed power-law, while the model deviates at higher and

lower energies. As such, 1 - 2 keV was chosen to be representative of the continuum

emission for Markarian 335. Additionally, other energy ranges (e.g. 1.1 - 3 keV) were

fit with the absorbed power-law model, and all ranges tested indicated that 1 - 2 keV

was the band that best represented the continuum emission. The continuum emission

is indicated in Figure 3.1 by the yellow band.
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Figure 3.1: First four XMM spectra (black, red, blue, green, respectively) fit with an
absorbed power-law from 1 - 2 keV and extrapolated from 0.3 - 10 keV. Energy bands
indicating the soft excess, continuum, and hard excess are shown in green, yellow,
and red respectively.

The soft band to use in the Flux-Flux Plots was chosen such that it represented

the soft excess of Markarian 335. The soft excess is the low-energy regime which
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exhibits higher flux than can be obtained from merely a power-law. This component

can be attributed to relativistically blurred reflection from the disc (Ross and Fabian,

2005), a second Comptonisation layer (Done et al., 2012), or modified spectral shape

from an ionised absorber (Gierliński and Done, 2006).

Uttley et al. (2004) and Ponti et al. (2006) note that having well-separated bands

when constructing a Flux-Flux Plot reveals the most spectral variability. As such,

when identifying the soft and hard bands to be used in this analysis, they were chosen

such that there was a gap between these bands and the continuum band. From the

spectral fits shown in Figure 3.1, 0.4 - 0.8 keV was chosen as the soft band (green

strip Figure 3.1). The hard band was chosen to be 4 - 8 keV (red strip Figure 3.1).
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3.2 Binning in Flux and Time

3.2.1 Flux-Flux Plot Binning

When constructing a Flux-Flux Plot from two light curves, there can be a lot of scatter

present in the data. Figure 3.2 shows a Flux-Flux Plot for XMM-High constructed

from light curves binned at 500s (grey data points), and the scatter is apparent.

Flux-Flux Plots are typically binned-up after being constructed in order to reduce

scatter, improve the signal to noise ratio, and better examine fit statistics (Taylor

et al., 2003). The binned-up data are denoted by the black markers in Figure 3.2.

Figure 3.2: Soft vs Continuum FFP for XMM-High constructed from light curves
binned at 500s (grey). The black circles denote the binned-up data with at least 20
points per bin.

While binning-up the data for Markarian 335 it was noted that the shape of the

data differed depending on if it was sorted by the x-dimension or the y-dimension.
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Sorting by different dimensions when binning the data produced different shapes of

the data and so conflicting fit parameters. Figure 3.3 compares the 500s-binned light

curve data for XMM-High binned-up by sorting the x-dimension first (blue circles)

and sorting the y-dimension first (red squares). Linear fits to the data binned in each

dimension yield parameters that do not agree with one another within uncertainty

(fit parameters shown in Figure 3.3).

Figure 3.3: XMM-High FFP showing data binned-up by different axes and the fits
obtained for each binning approach.

To further examine the implications of binning-up the FFPs, simulations were run

using xspec. A simple power-law model was created using cpflux*po. cpflux was

employed in order to keep the integrated flux constant. Since the photon index and

normalisation are intrinsically linked, the variation of one of these parameters affects

the other and so must be taken into account when varying parameters. A script was

written to vary a single parameter of the power-law, either photon flux (in lieu of
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normalisation) or photon index. A Gaussian random number generator was used to

vary between physical values of these parameters, and the flux in the three chosen

bands was output. From this, FFPs were created that result from the variation of a

single parameter in a power-law model.

Figure 3.4a displays the FFP resulting from varying only the normalisation (or

photon flux, when using cpflux) of a simple power-law model. The resulting FFP,

shown in grey is linear, as is expected. The data were then binned-up by sorting the x-

dimension first. They were also binned up by sorting in the y-dimension. Comparison

of the two sets of binned-up data reveals that they are identical.

The same was found when only the photon index was varied in the power-law

model, as shown in Figure 3.4b. Varying only the photon index produces a power-

law shaped FFP, as expected, which is identical whether binned-up by the x- or

y-dimension.

(a) Varied Normalisation (b) Varied Photon Index

Figure 3.4: FFPs resulting from varying a single parameter of a power-law model,
binned up by both x- and y-dimensions. Varied normalisation is shown in panel A
while panel B depicts varied photon index.

Next, both the normalisation and photon index parameters of the power-law model
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were varied independently. The resulting FFP, shown in Figure 3.5 exhibits clear

scatter. When the data were binned-up by sorting the x-dimension, the result was

clearly different than that obtained by sorting the y-dimension.

Figure 3.5: FFPs resulting from varying both photon index and normalisation of a
simple power-law model, binned-up by both x- and y-dimensions.

If the FFP is well-represented by a linear or power-law distribution (i.e. only one

model component is varying), then binning the data up in the FFP is not affected

by the dimension it is binned by. However, if there is more than one model compo-

nent varying independently, the resulting FFP exhibits scatter and so yields different

results when binned by different dimensions.

Since the FFP made for Mrk 335 clearly showed different results when binning-up

by different dimensions, it can be concluded that there is more than one parameter

independently varying over the course of the observations.

As such the FFPs were not binned-up in the flux domain, and the data were

binned only in time by binning-up the light curves prior to constructing the FFPs.
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3.2.2 Light Curve Binning

Since the data were only to be binned in time by binning-up the light curves, finding

the optimal time-binning of the light curves was an important consideration. To

determine what time-binning to use, many FFPs were constructed using light curves

of different time-binning. Light curves of 100s, 500s, 1ks, and 2ks were investigated.

Figure 3.6 shows the FFP of the continuum band vs. soft band for XMM-High

constructed using light curves of different time-binning. Linear fits were made to

the plots in order to compare the light curves of different time binning. As the fit

parameters in Figure 3.6 show, the different binned light curves agree within uncer-

tainty with the exception of the 100s binned data. The same trend was seen in all

observations for both hard and soft bands.

Figure 3.6: FFP of XMM-High comparing the effects of light curve binning.
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From these comparisons, it was determined that 1ks time-binned light curves

would be utilised for the investigation. This was optimised to achieve a good signal-

to-noise ratio while retaining resolution of short-term variability in the light curve.

The 1ks-binned light curves used to construct the FFPs are shown for each obser-

vation in Figures 3.7-3.11.

Figure 3.7: Light curves of the hard, continuum, and soft bands for XMM-High.
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Figure 3.8: Light curves of the hard, continuum, and soft bands for XMM-Low1.

Figure 3.9: Light curves of the hard, continuum, and soft bands for XMM-Int1.
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Figure 3.10: Light curves of the hard, continuum, and soft bands for XMM-Int2.

Figure 3.11: Light curves of the hard, continuum, and soft bands for XMM-Low2.
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3.3 Flux-Flux Plots

Flux-Flux Plots were constructed of the soft band against continuum and the hard

band against continuum for each observation of Mrk 335. The continuum flux was

plotted as the independent variable in order to see the changes in both the hard and

soft bands relative to the continuum. Linear, power-law and power-law plus constant

fits were made to each plot to determine if these simple modes of variability fit the

data well. Observations were fit independently to investigate whether the mode of

variability is correlated to the overall flux state of the source. FFPs with fits and

residuals for hard and soft bands of each epoch are shown in Figures 3.12-3.21.

The parameters of the fits to each Flux-Flux Plot, as well as the goodness-of-fit

statistics, are displayed in Tables 3.1-3.5. Parameters correspond to the constants

described in Equations 1.1, 1.2, and 1.3.
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Figure 3.12: FFP with fits to soft band against continuum for XMM-High, as well as
residuals for linear (top), power-law (middle), and power-law plus constant (bottom)
fits.
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Figure 3.13: FFP with fits to hard band against continuum for XMM-High, as well as
residuals for linear (top), power-law (middle), and power-law plus constant (bottom)
fits.
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Figure 3.14: FFP with fits to soft band against continuum for XMM-Low1, as well as
residuals for linear (top), power-law (middle), and power-law plus constant (bottom)
fits.
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Figure 3.15: FFP with fits to hard band against continuum for XMM-Low1, as well as
residuals for linear (top), power-law (middle), and power-law plus constant (bottom)
fits.
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Figure 3.16: FFP with fits to soft band against continuum for XMM-Int1, as well as
residuals for linear (top), power-law (middle), and power-law plus constant (bottom)
fits.
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Figure 3.17: FFP with fits to hard band against continuum for XMM-Int1, as well as
residuals for linear (top), power-law (middle), and power-law plus constant (bottom)
fits.
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Figure 3.18: FFP with fits to soft band against continuum for XMM-Int2, as well as
residuals for linear (top), power-law (middle), and power-law plus constant (bottom)
fits.
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Figure 3.19: FFP with fits to hard band against continuum for XMM-Int2, as well as
residuals for linear (top), power-law (middle), and power-law plus constant (bottom)
fits.
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Figure 3.20: FFP with fits to soft band against continuum for XMM-Low2, as well as
residuals for linear (top), power-law (middle), and power-law plus constant (bottom)
fits.
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Figure 3.21: FFP with fits to hard band against continuum for XMM-Low2, as well as
residuals for linear (top), power-law (middle), and power-law plus constant (bottom)
fits.
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Table 3.1: Fit parameters for XMM-High FFPs.

Band vs Continuum Model Parameters χ2 DoF χ2
ν

soft linear m = 1.80 ± 0.01 1784.31 131 13.62
b = 1.1 ± 0.1

power-law k = 2.37 ± 0.04 1772.15 131 13.53
a = 0.900 ± 0.009

PLc α = 44.672 ± 0.009 1729.86 130 13.31
β = 0.17 ± 15.01
c = −48.46 ± 0.01

hard linear m = 0.119 ± 0.005 289.93 131 2.21
b = 0.09 ± 0.03

power-law k = 0.17 ± 0.02 291.64 131 2.23
a = 0.88 ± 0.04

PLc α = 0.001 ± 1.414 276.26 130 2.13
β = 2.951 ± 0.008
c = 0.533 ± 0.003

Table 3.2: Fit parameters for XMM-Low1 FFPs.

Band vs Continuum Model Parameters χ2 DoF χ2
ν

soft linear m = 0.1 ± 0.4 28.66 15 1.91
b = 0.7 ± 0.1

power-law k = 0.8 ± 0.2 28.64 15 1.91
a = 0.06 ± 0.18

PLc α = 0.4± 0.1 28.64 14 2.05
β = 0.1 ± 0.2
c = 0.4 ± 0.1

hard linear m = 0.5 ± 0.2 11.06 15 0.74
b = 0.04 ± 0.07

power-law k = 0.5 ± 0.2 11.03 15 0.74
a = 0.8 ± 0.3

PLc α = 4.713 ± 0.004 10.92 14 0.78
β = 0.03 ± 14.95
c = −4.331 ± 0.004
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Table 3.3: Fit parameters for XMM-Int1 FFPs.

Band vs Continuum Model Parameters χ2 DoF χ2
ν

soft linear m = 2.18 ± 0.03 872.98 110 7.94
b = −0.18 ± 0.02

power-law k = 2.06 ± 0.01 793.11 110 7.21
a = 1.20 ± 0.01

PLc α = 1.62 ± 0.02 521.34 109 4.78
β = 2.44 ± 0.08
c = 0.61 ± 0.02

hard linear m = 0.26 ± 0.01 179.41 110 1.63
b = 0.056 ± 0.007

power-law k = 0.308 ± 0.005 176.15 110 1.60
a = 0.74 ± 0.03

PLc α = 0.5 ± 0.03 174.41 109 1.60
β = 20.4 ± 0.3
c = −0.2 ± 0.3

Table 3.4: Fit parameters for XMM-Int2 FFPs.

Band vs Continuum Model Parameters χ2 DoF χ2
ν

soft linear m = 2.09 ± 0.02 646.09 79 8.18
b = 0.02 ± 0.02

power-law k = 2.105 ± 0.007 644.38 79 8.16
a = 0.98 ± 0.01

PLc α = 3.7 ± 0.6 616.56 78 7.90
β = 0.53 ± 0.09
c = −1.6± 0.6

hard linear m = 0.171 ± 0.009 150.89 79 1.91
b = 0.091 ± 0.008

power-law k = 0.264 ± 0.002 145.94 79 1.85
a = 0.62 ± 0.03

PLc α = 173.103 ± 0.002 141.56 78 1.81
β = 0.0009 ± 14.9392
c = −172.837 ± 0.002
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Table 3.5: Fit parameters for XMM-Low2 FFPs.

Band vs Continuum Model Parameters χ2 DoF χ2
ν

soft linear m = 2.17 ± 0.03 566.41 136 4.16
b = 0.026 ± 0.005

power-law k = 2.21 ± 0.03 583.06 136 4.29
a = 0.973 ± 0.009

PLc α = 2.46 ± 0.05 492.26 135 3.65
β = 1.36 ± 0.04
c = 0.16± 0.01

hard linear m = 0.23 ± 0.01 263.40 136 1.94
b = 0.106 ± 0.003

power-law k = 0.29 ± 0.01 255.51 136 1.88
a = 0.38 ± 0.02

PLc α = 0.345 ± 0.002 255.33 135 1.89
β = 0.276 ± 0.004
c = −0.063 ± 0.001
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The fit parameters for each observation were compared to determine whether they

were consistent between observations and whether the overall state of the source could

be considered. Figure 3.22 plots the fit parameters of the linear and power-law fits

for each observation.

Figure 3.22: Comparison of parameters of linear (left two columns) and power-law
(right two columns) fits for each observation. Parameters fit to soft band vs continuum
FFPs are shown in top row while bottom row shows fit parameters for hard band vs
continuum FFPs.

Since the fit parameters between the observations are not in agreement with one

another, the epochs cannot be merged and so must be examined individually rather

than analysing the overall state of Mrk 335. This indicates that different mechanisms

are responsible for the variability in each epoch and so the epochs must be analysed

separately.
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3.4 Time-Resolved Flux-Flux Plots

Flux-Flux Plots do not preserve timing information from the light curves, so in order

to employ timing analysis, Time-Resolved Flux-Flux Plots were created (TRFFPs).

These involve breaking the light curves up into sections and constructing a Flux-Flux

Plot of each segment. Changes in fit goodness and parameters can indicate changing

modes of variability during the course of an observation. The light curves were broken

up into segments of ∼20 ks (as shown in Figure 3.23), and fits made to each segment

individually.

Figure 3.23: Broad-band (0.3 - 10 keV) light curve of XMM-Int1, showing segments
used to construct TRFFPs.

This was done primarily to examine XMM-Int1 to determine if a single mode of

variability is dominant throughout the observation, as that is the only observation
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for which the residuals clearly differ between fits (see Figure 3.16). Soft band against

continuum TRFFPs for XMM-Int1 are shown in Figure 3.24. Residuals of the linear fit

to these plots are shown in Figure 3.25, while residuals of the power-law plus constant

fit are displayed in Figure 3.26. Table 3.6 displays parameters and goodness-of-fit

statistics for the fits to the Time-Resolved Flux-Flux Plots.
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Figure 3.24: Time-Resolved Flux-Flux Plot of soft band vs continuum for XMM-Int1.
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Figure 3.25: Residuals of linear fit to soft band vs continuum Time-Resolved Flux-
Flux Plots of XMM-Int1.
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Figure 3.26: Residuals of power-law plus constant fit to soft band vs continuum
Time-Resolved Flux-Flux Plots of XMM-Int1.
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Table 3.6: Fit parameters for XMM-Int1 soft against continuum TRFFPs.

Segment Model Parameters χ2 DoF χ2
ν

0 - 21 ks linear m = 1.2 ± 0.1 49.56 20 2.48
b = 0.32 ± 0.05

power-law k = 1.43 ± 0.05 48.85 20 2.44
a = 0.65 ± 0.05

PLc α = 102.076 ± 0.007 47.86 19 2.52
β = 0.006 ± 1.414
c = −100.743 ± 0.007

22 - 43 ks linear m = 1.0 ± 0.1 40.51 20 2.03
b = 0.37 ± 0.08

power-law k = 1.34 ± 0.07 40.72 20 2.04
a = 0.60 ± 0.08

PLc α = 1.0 ± 0.5 40.13 19 2.11
β = 2.60 ± 2.33
c = 1.0 ± 0.5

44 - 65 ks linear m = 1.6 ± 0.1 121.78 20 6.09
b = 0.17 ± 0.07

power-law k = 1.75 ± 0.05 122.07 20 6.10
a = 0.86 ± 0.06

PLc α = 1.26 ± 0.09 120.73 19 6.35
β = 2.13 ± 1.05
c = 0.7 ± 0.2

66 - 87 ks linear m = 2.17 ± 0.05 136.78 20 6.84
b = −0.11 ± 0.03

power-law k = 2.10 ± 0.02 123.09 20 6.15
a = 1.12 ± 0.02

PLc α = 1.57 ± 0.04 52.20 19 2.75
β = 2.3 ± 0.2
c = 0.64 ± 0.04

88 - 110 ks linear m = 2.87 ± 0.08 95.74 22 4.35
b = −0.67 ± 0.06

power-law k = 2.22 ± 0.02 93.94 22 4.27
a = 1.41 ± 0.04

PLc α = 2.2 ± 0.4 93.92 21 4.47
β = 1.5 ± 0.3
c = 0.05 ± 0.36
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3.5 Models

To investigate what varying parameters could produce the scatter in the Flux-Flux

Plots seen here, a model of XMM-Int1 constructed by Gallo et al. (2013) was utilised.

Time-resolved spectroscopy performed by Gallo et al. (2013) on XMM-Int1 found that

for the first 70 ks of the observation, the photon index of the power-law as well as the

normalisation of the reflection component were constant, after which they began to

vary. Power-law normalisation was found to be variable during the entire observation.

The model of XMM-Int1 created by Gallo et al. (2013) was loaded into xspec

and a script was implemented to vary the parameters of power-law photon index,

power-law flux, and reflection flux in accordance with the trends of the parameters

determined by Gallo et al. (2013). The flux from 0.4 - 0.8 keV and 1 - 2 keV was

output after each variation, and this data used to construct a Flux-Flux Plot, shown

in Figure 3.27.
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Figure 3.27: FFP constructed from varying three parameters (power-law photon in-
dex, power-law flux, reflection flux) of XMM-Int1 model constructed by Gallo et al.
(2013).
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Chapter 4

Discussion

It was shown (Section 3.2.1) that the shape of the binned-up Flux-Flux Plots for

Mrk 335 differ depending on the dimension the data are binned by. Tests revealed

that binning dimension was indifferent to the variation of a single parameter, but

the variation of multiple uncorrelated components produced a scattered FFP which

was sensitive to binning dimensions. Because the FFPs for Mrk 335 were sensitive

to binning dimensions, this indicates that the short-term variability observed in Mrk

335 is likely a result of multiple parameters changing simultaneously.

Examination of fits to individual epochs (Section 3.3) revealed that fit parameters

did not agree between epochs (Figure 3.22). This prohibits the fitting of all epochs

together and indicates that different modes of variability are in effect at different

times. This has been observed previously in Mrk 335 (Gallo et al., 2013; Wilkins and

Gallo, 2015a).

The fits of the linear, power-law and power-law plus constant models to each

observation yielded poor fit statistics that were indistinguishable between the models.

This indicates that the mode of variability of Mrk 335 cannot be described by a

simple model. Models which result from the variation of only a single parameter are

inadequate to represent the short-term variability that is seen in this object. It is

likely then, that the variability exhibited by Mrk 335 results from a more complicated
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system in which multiple components are varying simultaneously.

The residuals for the three models fit were identical for each observation, with

the exception of XMM-Int1. It was for this reason that Time-Resolved Flux-Flux

Plots were created for this observation, in order to investigate whether there was a

time-dependence to the variability.

The Time-Resolved Flux-Flux Plots for XMM-Int1 reveal a change of fit in the

fourth segment (66 - 87 ks). The previous three segments of the TRFFP show no

distinction between the linear and power-law plus constant fit in the residuals (Figures

3.25 & 3.26), and the fit statistics were comparable between the two models. In

the fourth segment, however, the power-law plus constant fit shows a significant

improvement over the linear fit. This indicates that there is some change in the mode

of variability around this time. The better fit statistics of the power-law plus constant

model imply that the variability in this segment results from a change in the photon

index with the presence of some constant spectral component (see Section 1.3).

This result is in agreement with spectral analysis of XMM-Int1 and XMM-Int2

performed by Gallo et al. (2013). Their time-resolved spectroscopy found that during

XMM-Int1, the photon index of the power-law component was constant for the first

70 ks of the observation, after which it began to vary. The normalisation of the

power-law was found to be variable for the duration of the observation. Both the

photon index and normalisation of the power-law were found to vary for XMM-Int2.

Additionally the normalisation of the reflection component was found to be constant

for the first 70 ks of XMM-Int1, variable for the remainder of the observation, and

variable for XMM-Int2. These model-dependent results are consistent with the model-
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independent analysis yielded by the TRFFPs.

Analysis of the light curve of XMM-Int1 (Figure 3.23) shows that a flare in the light

curve begins at ∼70 ks, which is when the TRFFPs reveal the change in variability

mode. This indicates that this changing mode of variability could be related to events

occurring in the light curve.

The FFP constructed by varying three parameters of the XMM-Int1 model created

by Gallo et al. (2013) (Figure 3.27) closely resembles the trend seen in the actual

data (Figure 3.16). This indicates that the variability exhibited during this epoch

may be due to variations of these parameters (power-law photon index, power-law

flux, reflection flux) in the manner determined by Gallo et al. (2013).
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Chapter 5

Conclusions

The model-independent method of Flux-Flux Plots was employed to investigate the

nature of short-term spectral variability in the X-ray spectrum of Markarian 335.

Light curves in two energy bands were plotted against one another and simple physical

models fit to the data to determine whether they could account for the spectral

variability observed.

Energy bands used to construct Flux-Flux Plots were chosen by fitting spectra

with an absorbed power-law and identifying the continuum, soft excess and hard

excess.

The Flux-Flux Plots were binned-up and the results were found to be sensitive to

the primary axis the data was binned by. Tests found that binning dimension had

no effect on models in which only one parameter was varying, but was significant in

tests where more than one parameter was varying. Because the Flux-Flux Plots of

Mrk 335 are sensitive to binning dimension, it was determined that there are multiple

varying parameters contributing to the spectral variability in this AGN.

For the analysis, the data were not binned up after constructing the Flux-Flux

Plots due to the conflicting results from selected binning dimension. The light curves

were binned in time by 1 ks, chosen to optimise signal-to-noise ratio while maintaining

timing resolution.
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Linear, power-law and power-law plus constant fits were made to the Flux-Flux

Plots and found to be poor fits to the data. The three fits were also indistinguishable

from one another (with the exception of XMM-Int1), yielding comparable fit statistics

and identical residuals. This indicates that the mode of variability in Mrk 335 cannot

be described by a simple model with only one varying parameter.

It was found that for the observation XMM-Int1, the power-law plus constant

fit was significantly better than the linear and power-law fits. This was the only

observation for which the fits were distinguishable. To investigate whether this fit

improvement was time-dependent, Time-Resolved Flux-Flux Plots were created, for

which the observation was broken up into five segments of ∼ 20 ks each. Flux-

Flux Plots were made for each segment and the three simple models fit to each

plot. It was found that in the 66 - 87 ks segment the power-law plus constant fit

becomes significantly better, indicating that there is some change in the mode of

variability around this time. This is in agreement with results from time-resolved

spectroscopy performed by Gallo et al. (2013). Additionally, this segment of the

TRFPP corresponds to a flare in the light curve that begins at ∼ 70 ks, indicating

that the change of variability could be related to events occurring in the light curve.

Varying multiple parameter of a model of XMM-Int1 yielded a Flux-Flux Plot

that simple fits could not accurately represent. The scatter exhibited by this plot

resembled that seen in the observational data.

The short-term spectral variability exhibited by Markarian 335 cannot be ade-

quately described by simple models in which only one parameter is varying. It is

likely that the variability results from a more complicated model with multiple pa-
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rameters varying independently.
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P. Holl, J. Kemmer, H. Soltau, R. Stötter, U. Weber, U. Weichert, C. von Zan-
thier, D. Carathanassis, G. Lutz, R. H. Richter, P. Solc, H. Böttcher, M. Kuster,
R. Staubert, A. Abbey, A. Holland, M. Turner, M. Balasini, G. F. Bignami, N. La
Palombara, G. Villa, W. Buttler, F. Gianini, R. Lainé, D. Lumb, and P. Dhez.
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