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Abstract 

 

Biological Sex as a Mediating Factor of the Auditory Mismatch Negativity 

By Erica Dawn Kew 

Abstract: The mismatch negativity (MMN) is an EEG-derived event-related potential 

(ERP) elicited by any violation of a predicted auditory ‘rule’ and is thought to reflect 

updating of the stimulus context. In MMN research, sex differences have been largely 

underreported; the few studies that report sex-based analyses have largely focused on 

phonetic sounds with emotional valence, while pure-tone stimuli have not yielded any 

significant results. This study investigated whether sex differences could be detected in a 

healthy population using a 5-deviant “optimal” multi-feature paradigm (Näätanen, 2004; 

Experiment 1) and a complex ‘missing stimulus’ pattern paradigm (Salisbury, 2012; 

Experiment 2). The only significant difference observed was that males were found to 

have enhanced left-frontal MMN amplitudes compared to females when presented with 

the location deviant of the optimal paradigm. These results suggest that the auditory 

MMN may be more characterized by sex similarities.   
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Biological Sex as a Mediating Factor of the Auditory Mismatch Negativity 

CHAPTER 1: GENERAL INTRODUCTION 

1.1. Event-Related Potentials: An Overview  

Within the fields of attention and information processing, 

electroencephalographically (EEG)-derived event-related potentials (ERPs) provide an 

exquisitely sensitive method of indexing cognition that can both complement and clarify 

behavioural observations. The ERP waveform is elicited in response to a specific 

stimulus, such as tones or light flashes, or cognitive events, such as recognition, decision 

making or response to specific stimulus events. Specifically, ERPs represent the 

characteristic neural activity that follows the presentation of a stimulus. They are 

extracted from recorded brain activity by averaging multiple EEG windows (called an 

epoch) that is time-locked to a specific stimulus or behavioural event, resulting in the 

random background noise of the EEG cancelling to zero, leaving behind a constant and 

invariant waveform. When recorded concurrently with behavioural measures of task 

performance, ERPs provide a more complete picture of the cognitive features underlying 

different arousal, mood and psychiatric states. The averaged ERP plots voltage 

(microvolts: μV) as a function of time (milliseconds: ms), with the resulting waveform 

appearing as a series of deflections or peaks. Conventionally, these components are 

described in terms of polarity (positive peaks labeled P; negative peaks labeled N), and 

sequence (ordinal position of peak) or peak latency of where the ERP typically occurs 

(Rugg & Coles, 1995). In this manner, the third positive peak in the waveform may be 

labeled the P3 or the P300, as it is expected to occur approximately 300 ms after stimulus 

onset.  

Classification of ERPs is generally divided into two types: the early-occurring 
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exogenous components, and the later endogenous components. The exogenous ERPs are 

generally those occurring within 100 ms of stimulus onset and are so named because their 

respective amplitudes and latencies are primarily determined by the properties of the 

eliciting stimulus, such as intensity and rate (Friedman & Squires-Wheeler, 1994). As 

such, they are relatively insensitive to psychological variables such as mood and attention 

(Roth, 1977). These ERPs are mainly generated in the primary sensory cortex and 

association areas of the brain (Chiappa, 1990). By contrast, the endogenous ERP 

components (latency > 100ms) are highly influenced by cognitive and psychological 

variables manifest upon the subject and are relatively independent of eliciting stimulus 

physical characteristics (Pritchard, 1986). 

ERPs are regularly used in psychological research because they can provide 

valuable insights into basic cognitive mechanisms as well as higher brain functioning 

well before the performance of an overt response (van der Stelt & Belger, 2007). Not 

only can ERPs help disentangle stimulus evaluation from response selection and 

execution processes, but certain ERPs are indices of automatic sensory perception that do 

not require any behavioural response from an individual and may not require the 

individual’s attention to the stimuli at all (Nӓӓtӓnen, 2003). Furthermore, ERPs provide a 

temporal resolution far superior to some of the more sophisticated imaging techniques 

(i.e. PET, fMRI), making this methodology more suitable for capturing rapid changes in 

information processes, such as auditory change detection. 

Within auditory cortical function there are several different types of auditory 

waveforms; the P50 waveform occurs approximately 50 ms after stimulus onset (Boutros, 

Zouridakis, Rustin, Peabody, & Warner, 1993) and acts as an index of sensory gating 
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(Potter, Summerfelt, Gold, & Buchanen, 2006); the N100 waveform occurs between 90-

200 ms following stimulus onset and represents an orienting response that matches the 

presentation of an auditory stimulus with previously experiences stimuli (Sur & Sinha, 

2009); the P300 waveform occurs approximately 300 ms following stimulus onset and is 

elicited in the process of decision making by inserting unique and highly salient (novel) 

stimuli in the pattern of repeated standard stimuli. The P300 can be divided into two 

subcomponents: the classic P300 (P3a) and the novelty P300 (P3b) (Polich, 2007). The 

P3a is elicited by deviant stimuli that are irrelevant for the task while being more 

noticeable than the targets, and the P3b is elicited by deviant stimuli that are relevant and 

attended to (Linden, 2005). Finally, the N200 waveform occurs approximately 200 ms 

following stimulus onset and creates a negative deflection (Patel & Azzam, 2005). The 

N200 can be divided into three components: the N2a, N2b, and N2c. The N2b occurs due 

to a change in the physical property of a stimulus (Sur & Sinha, 2009) and the N2c occurs 

during classification tasks (Pritchard, Shappell, & Brandt, 1991). The N2a, which is 

commonly referred to as the mismatch negativity (MMN), is the waveform we will focus 

on in this thesis and will be discussed in detail below.  

1.2. Mismatch Negativity 

The MMN is an ERP that can be elicited automatically and pre-attentively 

(Nӓӓtӓnen, 1990). Auditory change detection is indexed by the MMN (Näätanen et al., 

2012), which has been used as a marker of basic central auditory function; this has 

important “real world” applications; incorrect organization of sensory stimulation from 

the surrounding environment may result in dysfunction of later sensory processes and 

difficulty initiating appropriate responses when necessary (Jahshan et al., 2012). The 
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automatic and pre-attentive MMN is commonly generated by randomly inserting rare 

deviant sounds that may differ in many ways including frequency, duration, intensity, 

and/or location, into a train of repeating standard sounds (Nӓӓtӓnen & Alho, 1997). The 

older memory trace model of MMN posits that before detecting auditory change, the 

central auditory system first forms a sensory memory representation of the expected 

sound (or groups of sounds), and then uses this representation to compare against other 

incoming sounds; the MMN is generated when an incoming deviant does not match the 

representation, sending a signal to the executive mechanisms and interrupting current 

cognitive processes in order to shift attention towards the deviant sounds (Nӓӓtӓnen, 

Paavilainen, Rinne, & Alho, 2007). A newer prediction error model suggests that the 

auditory cortex derives a prediction of the auditory environment based on sensory 

stimulation and that deviations from this prediction elicit an error signal from primary to 

secondary cortices used to adjust the model (Winkler & Czigler, 2012). The error 

prediction model better explains how MMN can be elicited by violations of an abstract 

rule, such as omission of a sound in a pattern, which may relate only to the relationship 

between sounds, and how, in certain cases, MMN may be elicited by a repeated tone or 

the absence of an expected tone. The MMN typically occurs 100-250 ms following the 

onset of these deviant stimuli, and is superimposed upon obligatory sensory processes 

until isolated in a difference wave (a point-by-point subtraction of the standard stimulus 

waveform from the ERP to the deviant stimulus) (Nӓӓtӓnen, 1982). The resulting 

waveform is a negative peak with a frontal-topography maximum amplitude (Schröger, 

2007).  
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1.3. MMN Evocation 

Evocation of the MMN is most simply illustrated in the framework of the classic 

oddball paradigm, in which a homogenous sequence of identical repeated stimuli is 

interrupted at random and unpredictable times by a deviant stimulus possessing an altered 

physical or temporal feature (e.g. duration, pitch, intensity). In this classic oddball 

paradigm, only one type of MMN can be obtained at a time, causing very long procedure 

times when more than one deviant needs to be recorded. Nӓӓtӓnen and colleagues (2004) 

proposed a new, multi-feature paradigm that presented five types of deviants in the same 

stimulus block. The MMNs obtained in this new paradigm were equal in amplitude to 

those in the traditional oddball MMN paradigm (Nӓӓtӓnen et al., 2004), as such this new 

paradigm was referred to as the “optimal” MMN paradigm since it can record multiple 

MMNs in the same recording session. There has been some criticism however, that these 

simple stimulus-change paradigms may not elicit a true MMN. Jacobsen and Schröger 

(2001) suggested that the MMN that is typically measured in oddball paradigms with 

frequency deviants contains both the MMN and an overlapping N100 enhancement; as 

the deviant stimulus is presented much less than the standard, the N100 elicited by 

deviant tones is much larger than the refractory response that is evoked by standard tones, 

and the difference in their amplitudes is retained in the difference wave. In such cases, 

the MMN and N100 can overlap and summate, and unravelling their relative 

contributions to the difference wave is often not possible without careful control 

procedures, such as using the same sounds as both standard and deviant in subsequent 

experiments (Schirmer et al., 2008). In response to these concerns, pattern paradigms 

were explored which would probe higher order processes that the optimal paradigms does 
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not. One such complex pattern MMN paradigm was developed by Salisbury (2012). 

Based on the Gestalt principle of grouping by proximity, the paradigm is unique because 

its mismatch is the absence of a sound rather than the presentation of a new one. Using 

only one repeated tone, 330 ms apart, in groups of 6 separated by a 750 ms inter-trial 

interval, MMN was elicited by a missing 4th or 6th tone based on a violation of 

expectancy for a group of six stimuli that has been developed by primitive auditory 

intelligence. While the complex pattern MMN paradigm has been validated in healthy 

populations, one potential moderating factor that has not yet been investigated is 

biological sex.  

1.4. Sex Differences in Brain Research 

In the past, sex differences were ignored in brain research due to the idea that 

males and females only differed reproductively (Harris, 1948; Young, Goy, & Phoenix, 

1964), or females were excluded altogether because of the inconvenience of controlling 

for menstrual cycles (Petersen, Kilpatrick, Goharzad, & Cahill, 2014). Researchers began 

to move away from the narrow reproductive parameters as more studies began to report 

sex differences (Gupta et al., 2017; McCarthy, Nugent, & Lenz, 2017). These differences 

can be partly explained by sex hormones, once thought to only affect reproductive organs 

but have since been found to act through the brain (among other areas) of both males and 

females (Herting et al., 2014). They have been found to act through many cellular and 

molecular processes that can alter the brain’s structure and function, influence behaviour, 

and provide neuroprotection. Functions such as mood, blood pressure regulation, motor 

coordination, and opioid sensitivity, which were not previously regarded to have sex 

differences, have been found to be developmentally programmed by sex hormones 
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(McEwen & Milner, 2017). 

In the earliest stages of life it is determined whether a fetus will have two X 

chromosomes (female) or X and Y chromosomes (male), and this distinction determines 

how their underlying neurochemical and molecular mechanisms will differ. There are 

many important and significant sex differences within these mechanisms, however in 

most cases, sex differences are much more subtle (Joel & Tarrasch, 2014). This can lead 

to conflicting conclusions and controversy surrounding which patterns of connectivity 

and brain regional differences are involved, and how much confidence researchers have 

in their conclusions of these sex differences. Sex differences have been found to emerge 

throughout the entire lifespan, through both genetic and epigenetic mechanisms 

(McEwen & Milner, 2017), and some examples will be discussed below. 

1.3.1. Sex differences in brain anatomy. 

Female and male brains are overwhelmingly more similar than they are different, 

and those sex differences in brain anatomy that do exist have been found to vary 

depending on the age of the population (Giedd, Raznahan, Mills, & Lenroot, 2012). The 

most consistently reported sex difference in brain anatomy is of brain size, with male 

brains measuring 10% larger than female brains across all age populations (Giedd, 

Castellanos, Rajapakse, Vaituzis, & Rapoport, 1997; Goldstein et al., 2011; Reiss, 

Abrms, Singer, Ross, & Denckla, 1996) and even post-mortem data (Witelson, Beresh, & 

Kigar, 2006). The female brain tends to peak in size at 10.5 years while the size of male 

brains peak much later at 14.5 years (Giedd et al., 2012). Similarly, the volume of the 

cerebellum, the posterior brain structure involved in many brain processes such as motor 

control and emotional processing (Riva & Giorgi, 2000), has been found to be 
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consistently 10-13% larger in males, peaking around 15.6 years, while female cerebellum 

volume peaks much earlier at 11.8 years (Tiemeier, Lenroot, Greenstein, Tran, Pierson, & 

Giedd, 2010). The overall size of the caudate, involved in movement and attention 

(Sowell, Trauner, Gamst, & Jernigan, 2002), has been reported as proportionately larger 

in females than males, although numbers vary depending on participant ages and 

methodology (Filipek, Richelme, Kennedy, & Caviness, 1994; Giedd et al., 1997; Paus, 

2010; Sowell et al., 2002). This is interesting given that researchers have found reduced 

caudate volumes in male predominant disorders, such as Attention Deficit Hyperactivity 

Disorder (ADHD) and Tourette’s syndrome (Giedd, Shaw, Wallace, Gogtay, & Lenroot, 

2006). 

Sex differences can be seen in gray matter volume as well as the 

neurodevelopmental trajectories of cortical gray matter (Lenroot et al., 2007). Males have 

been found to have 9-14% larger overall volumes of cortical gray matter than females 

(Lenroot et al., 2007), which makes it interesting that females have been found to have a 

larger volume of gray matter than males in a number of different brain structures, 

including the caudate, left superior temporal gyrus, and the left superior frontal gyrus 

(Luders, Gaser, Narr, & Toga, 2009). The parietal lobe, while presenting more sex 

similarities than differences in structure, has been found to significantly decrease in 

surface area across development in females, while remaining consistent in males 

throughout the lifespan (Salinas, Mills, Conrad, Koscik, Andreasen, & Nopoulos, 2012). 

While sex differences in gray matter remain relatively consistent across the lifespan, sex 

differences in white matter increase as age increases (Paus, 2010). White matter has been 

found to develop at a greater rate in males than females, resulting in increasingly larger 
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white matter volumes than females as age increases (De Bellis et al., 2001; Lenroot er al., 

2007). These sex differences in brain structure almost certainly influence cognition, 

which is discussed below. 

1.3.2. Sex differences in cognition. 

There is compelling evidence that sex hormones are a major influence in the 

organization and maintenance of sex differences in cognition (Kimura, 2006), and that 

these differences are present at a very early age (Satterthwaite et al., 2015). Males are 

commonly found to be superior at visuospatial and motor tasks (Gur et al., 2012; Voyer, 

Voyer, & Bryden, 1995), and have been found to outperform females on arithmetic 

computation and arithmetical reasoning, which are mediated by male advantages in 

computational fluency and spatial recognition (Geary, 2000). In contrast, females are 

commonly found to be superior in areas related to social cognition and recognition 

memory (Gur et al., 2012), as well as episodic memory (Herlitz, Nilsson, & Bäckman, 

1997), verbal production (Hyde & Linn, 1988) and verbal processing (Lewin, Wolgers, & 

Herlitz, 2001). These sex differences may be due to differential connectivity between 

males and females; from as young as nine years of age, males have been found to have 

greater between-module connectivity while females have been found to have more 

within-module connections, suggesting that female brains are more functionally 

segregated than males (Satterthwaite et al., 2015). 

1.3.3. Sex differences in emotion.  

Females have been found to be more responsive to emotional stimuli than males 

(Domes et al., 2009), and self-report studies investigating sex differences in emotion have 

found females to show greater emotional abilities than males when it comes to different 
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areas, such as expression (Kring & Gordon, 1998) or awareness (Feldman Barrett, Lane, 

Sechrest, & Schwartz, 2000). One study (Fischer, Rodriguez Mosquera, Vianen, & 

Manstead, 2004) found no significant differences between sexes with regards to self-

reported emotional intensity, but did find that the two sexes differed on the number of 

times they self-reported feeling emotions regarded as powerful (e.g., anger) vs powerless 

(e.g., sadness). Males were found to report more powerful emotions while females were 

found to report more powerless emotions, however the intensity at which the two sexes 

experienced these emotions was not statistically different (Fischer et al., 2004). The 

questions raised from these sex differences are difficult to explain without knowing the 

brain mechanisms that are contributing to these sex differences, so researchers have 

stressed the importance of brain imaging techniques, such as fMRI or PET, to visually 

locate where these emotional sex differences are occurring in the brain.  

Brain imaging studies are elucidating the specific regions involved with specific 

emotions or the processes that characterize, amplify, change, or maintain emotional states 

(Goldstein, 2006). Significant sex differences in brain activity have been demonstrated 

regarding memory for negative emotional material and inducing negative emotions, with 

women demonstrating greater aversive cues than men (Asthana and Mandal, 1998). As 

well, sex differences in laterality effects have been found for emotional processing in 

general. Females are found to show enhanced activity of the amygdala in response to 

negative pictures (Domes et al., 2009), greater and more significant brain activity in the 

anterior cingulate gyrus, left insula, and right orbitofrontal cortex when expressing 

negative vs positive emotions (George, Ketter, Parekh, Herscovitch, & Post, 1996), and 

greater brain activity in the left anterior insula for mood induction in general (Damasio et 
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al, 2000). 

1.3.4. Sex differences in pain. 

Important sex differences exist at all levels in the signalling systems involved in 

pain processing, suggesting sex differences in the operation of pain mechanisms (Cahill, 

2006), including potentially different signaling pathways (Sorge et al., 2015), as well as 

behavioural responses to pain (Bartley & Fillingim, 2013). Associative learning related to 

pain is mediated in part by the cerebellum, and there is a difference seen in the functional 

connectivity in cerebellar lobules between males and females; female’s lobules represent 

mostly somatomotor networks while male’s lobules show enhanced neural activation that 

is representative of frontoparietal and ventral attention networks (Labrenz, Icenhour, 

Benson, & Elsenbruch, 2015).  

In chronic pain conditions, such as irritable bowel syndrome (IBS), allodynia (a 

form of pain hypersensitivity), and migraines, females tend to have a higher prevalence 

than males (Gupta et al., 2017; Labrenz et al., 2015; Sorge et al., 2015), which could be 

due to the sex differences seen in the cerebellum and its involvement in associative 

learning processes of conditioned anticipatory safety from pain (Labrenz et al., 2015). 

Female chronic pain patients also show more structural and functional alterations in 

primary sensorimotor cortices than male chronic pain patients (Gupta et al., 2017).  

Pain mediation can also be dependent on biological sex, as pain reduction 

medications, such as morphine (Loyd & Murphy, 2014) and microglial inhibitors (Sorge 

et al., 2015) are less potent in females than males in alleviating pain. Sorge and 

colleagues (2015) argued that this sex-specific response depends on testosterone levels.  

 



BIOLOGICAL SEX AND AUDITORY MISMATCH NEGATIVITY                           12 
 

1.3.5. Sex differences in psychiatric illness. 

Developmental brain conditions such as autism, attention deficit hyperactivity 

disorder (ADHD), oppositional defiant disorder, conduct disorder, stuttering, and 

dyslexia, are more common in males than females (McCarthy et al., 2017). Males are 

four to five times more likely to develop autism and experience more social impairments 

than females who develop autism (Halladay et al., 2015). Males are two to three times 

more likely to develop ADHD, and experience more hyperactivity, externalizing and 

impulsivity than females, while females experience more internalizing, inattention and 

intellectual impairment than males (Arcia & Conners, 1998; Gaub & Carlson, 1997). 

Males are three times more likely to develop oppositional defiant disorder or conduct 

disorder, and will experience earlier onset and more externalizing symptoms than females 

(Loeber, Burke, Lahey, Winters & Zera, 2000; Trepat & Ezpeleta, 2011). Finally, 

stuttering is also found to occur twice as often in males than females, with adolescent 

onset being four times higher in males (Craig, Hancock, Tran, Craig & Peters, 2002). 

While males are generally more likely to develop neurological developmental 

conditions, most neuropsychiatric conditions are found to be more common in females 

with the exceptions of alcoholism (or substance abuse) and schizophrenia (McCarthy et 

al., 2017). Females are two times more likely to have a major depressive disorder 

(Kessler, 2003), post traumatic stress disorder (PTSD; Breslau, Davis, Andreski, 

Peterson, & Schultz, 1997), and/or generalized anxiety disorder than males (McLean, 

Asnaani, Litz, & Hofmann, 2011); are 2.5 times more likely to have a panic disorder than 

males (McLean et al., 2011); 1.5 times more likely to have obsessive compulsive disorder 

(OCD) than males (Bogetto, Venturello, Albert, Maina, & Ravizza, 1999); three or four 
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times more likely to develop an eating disorder such as anorexia nervosa or bulimia 

(Hudson, Hiripi, Pope, & Kessler, 2007; Raevuori, Keski-Rahkonen, & Hoek, 2014); and 

are more likely to develop bipolar II than males (though males experience earlier onset 

than females; Arnold, 2003). As mentioned above, alcohol or substance abuse is more 

commonly found among males than females, however females typically experience 

earlier onset and progress to addiction more quickly than males (Ceylan-Isik, McBride, & 

Ren, 2010). Additionally, schizophrenia is a very complex brain disease that has a higher 

prevalence and earlier onset in males (Aleman, Kahn, & Selten, 2003), with more 

language disruption (Walder et al., 2006), positive symptoms (e.g. hallucinations and/or 

delusions), and a more severe course of illness and prognosis than females (Bergen et al., 

2014). Early-onset schizophrenia is diagnosed when symptoms begin in childhood or 

adolescence (normally prior to age 16) and late-onset schizophrenia is diagnosed when 

symptoms appear after the age of 45. Males are more likely to develop early-onset 

schizophrenia than females, while females are more likely to develop late-onset 

schizophrenia than males (Aleman et al., 2003).  

Neurodegenerative or autoimmune diseases are not as consistent in regards to sex 

differences, compared to neurodevelopmental and neuropsychiatric conditions. While 

multiple sclerosis (MS) and Alzheimer’s disease are more commonly found in females, 

Parkinson’s disease and amyotrophic lateral sclerosis (ALS) are more commonly found 

in males (McCarthy et al., 2017). Females are two times more likely to develop MS (with 

the exception of primary progressive MS) and experience earlier onset than males (Orton 

et al., 2006), however, males will typically experience a more severe form of MS than 

females (Beeson, 1994). Females are 2 times more likely to develop Alzheimer’s disease 
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and experience earlier onset than males (Barnes, Wilson, Bienias, Schneider, Evans, & 

Bennett, 2005). Males are 1.5 times more likely to develop Parkinson’s disease and three 

times more likely to develop ALS than females, and typically have an earlier onset for 

both diseases when compared to females (Haaxma et al., 2007; McCombe & Henderson, 

2010). 

1.5. MMN and Sex Differences 

In MMN research, sex differences have been largely underreported, with the few 

studies that report sex-based analyses having largely focused on emotional or phonetic 

stimuli where the standard and deviants are made up of phonetic sounds with emotional 

valence rather than pure tones. Phonetic MMN studies have found females to have larger 

MMN amplitudes when compared to males; Aerts, Van Mierlo, Hartsuiker, Santens, and 

De Letter (2015) investigated sex differences using the phoneme /b/ as the standard 

sound and phonemes /g/, /p/, and /m/ as the deviant sounds. Participants were instructed 

to ignore the auditory stimuli and to focus their attention on a silent movie. Auditory 

phoneme discrimination found MMN amplitudes of females to be significantly greater 

than the MMN amplitudes of males, while MMN latencies were found to be significantly 

shorter in females compared to males (Aerts et al., 2015). Fan, Hsu, and Cheng (2013) 

compared the vocal sound “dada” to an acoustically matched non-vocal sound and found 

MMN amplitudes to be significantly greater in females than males with the vocal sound, 

but no difference was found for the non-vocal sound. Similarly, Hung and Cheng (2014) 

used the same vocal sound “dada” but presented it to participants in three different 

emotional tones: fearful, happy, and neutral, along with an acoustically matched non-

vocal sound. MMN amplitudes were found to be significantly higher in females than 
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males for the vocal sounds, specifically the fearful tone, but no difference was found for 

the non-vocal sound (Hung & Cheng, 2014).  

Areas related to phonological and sub-lexical processes, such as Broca’s area and 

the superior temporal cortex have been found to be proportionally larger in females than 

males (Harasty, Double, Halliday, Kril & McRitchie, 1997), and females have been 

found to have increased cortical thickness in posterior temporal regions (Sowell et al., 

2007) and a higher percentage of gray matter volume when compared to males (Gur et 

al., 1999). The increased gray matter in these key regions in women might help to explain 

the computational advantage females have in phonetic MMN studies, however Sowell 

and colleagues (2007) suggested that that the emotional side of language may play the 

biggest role in this sex difference due to their findings of thicker cortices most 

prominently in the right hemisphere (non-dominant for language). 

Schirmer and colleagues (2008) considered the role estradiol, the primary female 

sex hormone, may have on MMN amplitudes; using the vocal sound “dada” presented in 

two different emotional tones: very angry and neutral, researchers measured estradiol 

levels and MMN amplitudes. Female MMN amplitudes were found to be significantly 

larger than those of males when the emotional tone presented was very angry. No 

difference was found between the two sexes in regards to the neutral emotional tone, and 

only females showed a significantly smaller MMN amplitude to the neutral emotional 

tone when compared to the very angry emotional tone. The authors found that estradiol is 

associated with listener sensitivity to the unattended and unexpected change in speaker 

prosody that MMN is elicited by, and that estradiol may directly or indirectly reduce 

sensitivity to neutral (unemotional) information (Schimer et al., 2008). 
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In most cases, pure tone MMN studies yield similar results to emotionally neutral 

or non-vocal sounds, often finding no significant differences between sexes. There have 

been reports of sex differences in healthy populations, but only with regards to visual 

stimuli; Yang et al. (2016) investigated sex differences in pre-attentive processing of 

duration information using a deviant-standard reverse oddball paradigm for auditory and 

visual mismatch negativity. For the auditory task, participants were instructed to focus 

their attention on a self-selected, sub-titled, silent film while ignoring auditory stimuli 

presented binaurally through headphones. For the visual task, participants were instructed 

to focus their attention on a black cross in the center of a screen while ignoring two solid 

black squares that were simultaneously presented for 50 or 150 ms in the periphery of the 

screen. In this visual task, participants also had to press one of two buttons to indicate 

“big” or “small” as quickly and accurately as possible when the size of the cross changed. 

Results found MMN amplitudes to be significantly higher in males when compared to 

females during the visual MMN task, but found no difference between the two sexes 

during the auditory MMN task (Yang et al., 2016). Other studies investigating sex 

differences in auditory MMN have also been unsuccessful in finding a significant 

difference between female and male participants (Nagy, Potts, & Loveland, 2003; 

Tsolaki, Kosmidou, Hadjileontiadis, Kompatsiaris, & Tsolaki, 2015).  

One study (Qiao et al., 2015) used auditory mismatch negativity to investigate sex 

differences in major depressive disorder (MDD) using a deviant-standard reverse oddball 

paradigm. Participants were instructed to focus their attention on a self-selected, sub-

titled, silent film while ignoring auditory stimuli presented binaurally through 

headphones. Results found MMN amplitudes to be significantly smaller in female MDD 



BIOLOGICAL SEX AND AUDITORY MISMATCH NEGATIVITY                           17 
 

patients when compared to male MDD patients, however no difference was found 

between the two sexes in the control groups, suggesting that the sex difference in this 

case was due to neural changes associated with the illness. Another study (Light et al., 

2015) investigated MMN in schizophrenia patients using a duration-deviant auditory 

oddball paradigm. The paradigm was presented to participants binaurally through 

headphones while they watched a silent cartoon movie, and results reported male patients 

had significantly smaller MMN amplitudes compared to female patients (Light et al., 

2015). 

It should be noted than these pure tone MMN studies have all used the traditional 

oddball paradigm, the most simplistic MMN paradigm that only probes basic auditory 

change detection function and only accounts for one of several different types of 

deviants. However, the optimal MMN paradigm, which presents five different types of 

deviants in the same stimulus block, and the complex pattern MMN paradigm, which 

may be more comparable to the computational complexity of the emotional MMN 

paradigms, may be more appropriate to investigate sex-based differences. 

1.6. General Objectives 

It is important to consider that the optimal (Fisher, Campbell, Abriel, Ells, 

Rudolph, & Tibbo, 2018; Thönnessen et al., 2008) and the complex pattern MMN 

paradigm (Rudolph et al., 2015) are used in psychiatric research to investigate illnesses 

with documented biological sex differences. Therefore, it is essential to investigate if 

these paradigms have sex differences in healthy populations in order to determine if 

biological sex has an impact on MMN in unaffected controls. Experiment 1 compared 

MMN data between healthy biological females and healthy biological males using the 
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optimal MMN paradigm. Experiment 2 compared MMN data between healthy biological 

females and healthy biological males using the complex pattern MMN paradigm. Based 

on previous research, it is hypothesized that MMN amplitudes will be significantly 

enhanced in biological females when compared to biological males, but only with the 

complex paradigm. 
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CHAPTER 2: MISMATCH NEGATIVITY IN FEMALES AND MALES AS 

MEASURED BY A MULTI-FEATURE MMN PARADIGM (Experiment 1) 

2.1. Introduction 

Prior to the development of the “optimal” multi-feature MMN paradigm 

(Nӓӓtӓnen et al., 2004), traditional oddball paradigms could only record one deviant at a 

time, so it was not easy to obtain data for multiple types of deviants with the same 

participants. The multi-feature MMN paradigm developed by Nӓӓtӓnen and colleagues 

(2004) is referred to as the “optimal” MMN paradigm because of its ability to record 

multiple MMN deviant types in the same recording session. The authors tested the multi-

feature paradigm’s reliability by comparing MMN amplitudes between the traditional 

oddball paradigm and two paradigms in which five types of deviants (different from the 

standard in one of the following ways: gap, pitch, location, intensity, or duration) 

occurred within the same sequence (denoted as “Optimum-1” and “Optimum-2”). The 

“Optimum-1” paradigm consisted of a sequence where every standard tone was followed 

by one of the five deviants and the “Optimum-2” paradigm consisted of a sequence where 

three standard tones were presented before one of the five deviants. In all three 

conditions, deviants elicited MMNs that peaked around 150 ms from stimulus onset, and 

MMN amplitudes were found to be largest in the “Optimum-1” condition and smallest in 

the “Optimum-2” condition (p < 0.05 for all combinations; Nӓӓtӓnen et al., 2004). The 

five-deviant “Optimum-1” paradigm obtained MMN amplitudes as large as those 

obtained in the traditional one-deviant oddball paradigm, albeit in a fraction of the time, 

leading the research team to propose this paradigm as the “optimal” MMN paradigm. 

While the “optimal” MMN paradigm has been used extensively in many areas of 

research since it was introduced in 2004, including schizophrenia (Fisher et al., 2008; 
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2018), autism (Lepistö, Kujala, Vanhala, Alku, Huotilainen, & Näätänen, 2005) and 

dyslexia (Kujala, Lovio, Lepistö, Laasonen, & Näätänen, 2006) it has been not been used 

to probe sex differences in a healthy (or clinical) population. Based on previous research 

reporting no sex differences when pure tone stimuli are used in healthy populations 

(Nagy et al., 2003; Qiao et al., 2015; Tsolaki et al., 2015; Yang et al., 2016), it is 

hypothesized that there will not be a sex difference in regards to MMN amplitudes. 

2.2. Methods 

 2.2.1. Participants. 

Thirty-three right-handed, cis-gendered participants (18 female, 15 male) self-

reporting negative psychiatric, medical, neurological and alcohol/drug abuse histories, 

and non-use of medications were recruited from the general public via online 

advertisements and word-of-mouth. Male and female participants were matched as 

closely as possible; no significant between-group differences were observed for age (p = 

.54) or National Adult Reading Test (NART; used as a proxy for intelligence) score (p = 

.17). See Table 1. 

Table 1 

Mean (± SD) age and NART scores for female and male participants (Experiment 1). 

 Female Male 

Age 23.22 (4.35) 24.13 (4.00) 

NART 34.22 (9.78) 38.67 (8.16) 

 

2.2.2. ‘Optimal’ multi-feature MMN paradigm. 

This study employed a multi-feature MMN paradigm, regularly used in our lab in 

the assessment of the MMN in schizophrenia and early-phase psychosis. The stimuli 

were identical to those used by Näätanen and collegues (2004). Briefly, within this 

paradigm every second tone is a standard (P = 0.5) and every other one is one of the five 
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deviants (P = 0.1 each); standard tones are made up of sinusoidal partials of 500, 1000, 

and 1500 Hz which are 75 ms in duration (including 5 ms rise and fall times), and the 

deviant tones differ from the standard tones in frequency (± 10%), duration (50 ms), 

intensity (± 10 dB), perceived location of sound origin (90%) or contained a gap (7 ms) 

in the middle of the tone. Except where stated, the deviants are identical to the standards. 

The stimuli was presented in 3 blocks of 5 minutes each (1845 stimuli) for a total of 15 

minutes (5535 stimuli); the first 15 stimuli of each block were standards. Deviants were 

presented in a pseudorandomized order so that no deviant type was presented 

consecutively. Rest intervals of ~1 minute were inserted between each of the test blocks 

of the MMN paradigm. See Figure 1. 

S   –   D3  –   S  –  D1  –  S  –  D4  –  S  –  D2  –  S  –  D5  –  S  –  D4  –   S  … 
Fig 1. Schematic illustration of the “optimal” multi-feature MMN paradigm (adapted from Näätanen, 2004) 
 

2.2.3. EEG recording and ERP computation 

Electrophysiological recordings were conducted onsite at the BIOTIC 

Neuroimaging Research Laboratory, located at the QEII Health Sciences Centre. ERPs 

were extracted from EEG activity recorded from an electrode cap with active Ag+/Ag+-

Cl- electrodes at sixty-four sites according to the 10-10 system of electrode placement, 

including: three midline sites (frontal [Fz], central [Cz], parietal [Pz]); three left 

hemisphere (frontal [F3], central [C3], parietal [P3]) and three right hemisphere (frontal 

[F4], central [C4], parietal [P4]) scalp sites; and bilateral mastoid activity. Electrodes were 

also placed on the mid-forehead to serve as ground. Bipolar recordings of horizontal 

(HEOG) and vertical (VEOG) electro-oculogram activity was taken from supra-/sub-

orbital and external canthi sites, respectively. All electrode impedances were kept below 

10k. Electrical activity was recorded with an amplifier bandpass of 0.1 and 100 Hz, 
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digitized at 500 Hz, and stored on hard-disk for later offline analysis.  

Electrical activity was separately averaged for each stimulus type (standard and 

deviants) and was digitally filtered offline with a bandpass of 0.5-20 Hz. Electrical 

epochs (350 ms duration, beginning 50 ms pre-stimulus) were corrected for residual eye 

movement and eye blink activity using an algorithm operating in the time and frequency 

domain (Gratton et al., 1983) and then baseline corrected using a 50 ms window of pre-

stimulus activity. Those epochs with EEG or EOG voltages exceeding ± 75 µV were 

excluded from the analysis and the remaining artifact-free epochs were averaged 

according to stimulus type.  

MMN difference waveforms were derived by digital point-by-point subtraction of 

the standard stimulus values from those elicited by the deviant stimulus. MMN peaks 

were assessed by quantifying peak negative amplitudes (± 4 ms; relative to average pre-

stimulus baseline activity) within an analysis window custom-tailored for each paradigm 

based on visual inspection (80-270 ms). MMN latency measurements were measured at 

Fz, the site of maximum amplitude.  

2.2.4. Procedure 

Participants attended the laboratory for one morning (9:30am-11:30am) test 

session, and were required to abstain from illicit drugs and alcohol beginning at midnight 

of the previous day. Participants were not required to abstain from tobacco-use as this 

could promote withdrawal symptoms that could interfere with ERP recordings. 

Additionally, acute nicotine administration (e.g. smoking prior to data collection) appears 

to have minimal effects on MMN amplitudes (Fisher et al., 2012; Inami et al., 2005; 

Inami et al., 2007). Upon arrival at the laboratory and following informed consent 
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procedures, participants completed the NART (Nelson, 1982; Nelson & Willison, 1991) 

before EEG electrodes were applied to scalp and face sites. Afterwards, participants were 

assessed with a neurophysiological battery of established MMN paradigms, during which 

they were instructed to view a silent, neutral video of their choosing and to ignore the 

presented auditory stimuli. Neutral videos were determined to be absent of humorous or 

aversive stimuli. Procedures were carried out following clearance by the relevant research 

ethics boards, including those of the Nova Scotia Healthy Authority, Saint Mary’s 

University, and Mount Saint Vincent University.  

2.2.5. Data analysis. 

Statistical analyses were carried out using the Statistical Package for the Social 

Sciences (SPSS; IBM Corp., Armonk NY). Difference waves from each deviant type 

were analyzed separately, and then all deviants were analyzed together as a “combined” 

deviant. MMN amplitudes for each deviant were subjected to repeated-measures analysis 

of variance (ANOVA) procedures with a between-group (sex [male, female]) and two-

within group factors (laterality [left, midline, right], and frontality [limited to the frontal 

(F) and central (C) regions]). Analysis of MMN latency was similar, but ANOVAs did 

not contain a site factor because MMN processes occur at the same time for all electrodes 

of interest. Planned pairwise comparisons were conducted to test interactions involving 

group. Additionally, we calculated effect size using Hedges’ g (Hedges’ g = (M2 - M1) ⁄ 

SDpooled, where SDpooled = √((SD1
2 + SD2

2) ⁄ 2)). 

2.3. Results 

2.3.1. MMN amplitude. 

All MMN amplitudes at Fz were significantly different from zero. The amplitudes 
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(± SE) and 2-tailed one sample t-test statistics are summarized in Table 2. MMN 

amplitudes for each deviant type are discussed below. See Table 3 for mean (±SD) MMN 

amplitudes at Fz for all deviants.  

Table 2 

Mean amplitudes (± SE) at FZ plus t-statistic and significance values resulting from 2-

tailed comparison of means against zero for all deviants of the optimal paradigm. 

 

Table 3 

Mean (± SD) MMN amplitudes (µV) at Fz for the five deviant types of the optimal 

paradigm, and a combination of all five deviants. 

 

2.3.1.1. Duration deviant. 

Results showed a main effect of region, F(1,31) = 14.04, p = .001, due to 

significantly larger MMN amplitudes at frontal (vs. central) sites. While there are no 

group x region x site interactions, F(2,30) = 1.00, p = .38, planned pairwise comparisons 

for the duration deviant revealed a trend for females (M = -4.99 V, SD = 1.84) to have 

larger MMN amplitudes than males (M = -3.76 V, SD = 1.57) at electrode C3 (p = .066; 

Hedges’ g = 0.66), and for females (M = -4.96 V, SD = 1.96) to have larger MMN 

amplitudes than males (M = -3.76 V, SD = 1.57) at electrode C4 (p = .066; Hedges’ g = 

 Mean amplitude (± SE) t Significance 

Duration -5.29 µV (0.36) -14.46 p < 0.001 

Gap -3.49 µV (0.28) -12.46 p < 0.001 

Intensity -3.26 µV (0.35)  -9.35 p < 0.001 

Location -1.56 µV (0.15) -10.13 p < 0.001 

Pitch -3.72 µV (0.30) -12.33 p < 0.001 

Combined -2.98 µV (0.21) -13.96 p < 0.001 

 Female Male p Hedges’ g 

Duration -5.76 (1.99) -4.73 (2.16) .12 0.50 

Gap -3.37 (1.68) -3.64 (1.56) .89 0.16 

Intensity -3.79 (2.12) -2.63 (1.72) .11 0.60 

Location -1.40 (1.04) -1.75 (0.62) .085 0.40 

Pitch -4.04 (1.87) -3.32 (1.52) .22 0.40 

Combined -3.12 (1.17) -2.80 (1.30) .70 0.26 

https://www.sciencedirect.com/science/article/pii/S016787601000752X#t0005


BIOLOGICAL SEX AND AUDITORY MISMATCH NEGATIVITY                           25 
 

0.67). See Figure 2. 

Fig 2. Grand averaged MMN difference waves for female (F) and male (M) participants at frontal (F3, Fz, 

F4) and central (C3, Cz, C4) electrode sites for the duration deviant. There was no significant difference 

between the groups at any sites (p > .05)  
 

 2.3.1.2. Gap deviant. 

 Results showed a main effect of region, F(1,31) = 12.33, p = .001, due to 

significantly larger MMN amplitudes at frontal (vs. central) sites. There were no group x 

region x site interactions, F(2,30) = 0.81, p = .46. See Figure 3. 

Fig 3. Grand averaged MMN difference waves for female (F) and male (M) participants at frontal (F3, Fz, 

F4) electrode sites for the gap deviant. There was no significant difference between the groups at any sites 

(p > .05). 

2.3.1.3. Intensity deviant. 

Results showed a main effect of region, F(1,31) = 6.58, p = .015, due to 

significantly larger MMN amplitudes at frontal (vs. central) sites. While there are no  
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group x region x site interactions, F(2,30) = 0.31, p = .74, planned pairwise comparisons 

for the intensity deviant revealed a trend for females (M = -3.45 V,  SD = 1.85) to have 

larger MMN amplitudes compared to males (M = -2.63 V, SD = 1.72) at electrode Cz (p 

= .067; Hedges’ g = 0.66). See Figure 4. 

Fig 4. Grand averaged MMN difference waves for female (F) and male (M) participants at frontal (F3, Fz, 

F4) and central (C3, Cz, C4) electrode sites for the intensity deviant. There was no significant difference 

between the groups at any sites (p > .05). 

 

2.3.1.4. Location deviant. 

No significant group x region x site interactions, F(2,30) = 1.05, p = .36, however 

planned pairwise comparisons for the location deviant revealed MMN amplitudes to be 

significantly higher MMN amplitudes in males (M = -1.82 V, SD = 0.93) compared to  

females (M = -1.06 V, SD = 0.94), specifically at electrode F3 (p = .025; Hedges’ g = 

0.81). The pairwise significant difference was followed up with an independent samples 

Mann Whitney U test, which also reported a significant sex difference at electrode F3 (U 

= 69, p = .016). See Figure 5.  
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Fig 5. Grand averaged MMN difference waves for female (F) and male (M) participants at frontal (F3, Fz, 

F4) and central (C3, Cz, C4) for the location deviant. There was a significant difference between groups at 

electrode site F3 (p < .05). 

 

2.3.1.5. Pitch deviant. 

Results showed a main effect of region, F(1,31) = 34.08, p < .001, due to 

significantly larger MMN amplitudes at frontal (vs. central) sites. While there are no 

group x region x site interactions, F(2,30) = 0.74, p = .49, planned pairwise comparisons 

for the pitch deviant revealed a trend for females (M = -3.46 V, SD = 1.58) to have 

larger MMN amplitudes than males (M = -2.46 V, SD = 1.36) at electrode C4 (p = .062; 

Hedges’ g = 0.68). The pairwise significant trend was followed up with an 

Fig 6. Grand averaged MMN difference waves for female (F) and male (M) participants frontal (F3, Fz, F4) 

and central (C3, Cz, C4) electrode sites for the pitch deviant. There was no significant difference between 

the groups at any sites (p > .05). 
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independent samples Mann Whitney U test, which also reported a significant sex 

difference at electrode C4 (U = 201, p = .016). See Figure 6.  

2.3.1.6. Combined optimal deviant. 

 There were no main effects involving sex. There were no group x region x site 

interactions, F(2,30) = 0.34, p = .71. See Figure 7. 

Fig 7. Grand averaged MMN difference waves for female (F) and male (M) participants frontal (F3, Fz, F4) 

and central (C3, Cz, C4) electrode sites for the combined optimal deviant. There was no significant 

difference between the groups at any sites (p > .05). 

 

2.3.2. MMN latency. 

There was no significant difference between groups for MMN latency for any 

deviant type. See Table 4. 

Table 4 

Mean (± SD) MMN latency times (ms) for the five deviant types of the optimal paradigm 

and the combined optimal deviant. 

 

2.3.3. Correlations. 

Participant age was positively correlated with duration MMN amplitudes (i.e. as 

 Female Male p Hedges’ g 

Duration 167.56 (17.34) 163.60 (11.79) .46 0.28 

Gap 171.89 (18.81) 177.07 (18.90) .44 0.27 

Intensity 192.89 (36.37) 180.13 (33.86) .31 0.36 

Location 167.67 (41.30) 185.33 (46.68) .26 0.40 

Pitch 161.22 (20.55) 169.73 (23.88) .28 0.38 

Combined 176.33 (20.57) 173.07 (20.45) .65 0.16 
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age increases, MMN decreases) at sites F3 (ρ = .40, p = .022), F4 (ρ = .38, p = .032), and 

Fz (ρ = .38, p = .031). See Figure 8. 

Figure 8. Scatterplots of correlations between duration MMN amplitudes and participant age at electrode 

sites F3 (left), Fz (middle), and F4 (right). 

 

2.4. Discussion 

It was hypothesized that we would not find a sex difference in MMN amplitudes 

in biological females compared to biological males using the “optimal” MMN paradigm. 

Overall, our results supported this hypothesis; the only statistically significant difference 

observed was that males were found to have enhanced MMN amplitudes compared to 

females when they were presented with the location deviant. One explanation for why we 

found the opposite effect with the location deviant could stem from an evolutionary 

perspective; when we think back to our ancestors, while females were often tasked with 

taking care of the home and children, it was males who were responsible for tasks outside 

of the home, such as hunting. Hunting requires many tracking skills, such as the ability to 

use sound localization to animal calls. Therefore, the fact that males were better at 

detecting an auditory change to a location deviant may be the result of an adaptive ability 

to detect changes in localization relative to females. Researchers have found evidence to 

support this theory using manual pointing tasks, verbal-response tasks, as well as 

assessing ERP patterns. In one study (Zündorf, Karnath, & Lewald, 2011), five 
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loudspeakers were arranged around the participants at 0°, 45°, and 90° angles while a 

target sound (one of five possible sounds including a cuckoo clock, laughter, a baby 

crying, a dog barking, or a telephone ringing) was presented from one of the five 

loudspeakers in a single-source condition and all five sounds were presented 

simultaneously in a multi-source condition. Participants operated a swivel-mounted hand 

pointer to indicate the location of the target sound in a manual pointing condition, or read 

out tag numbers (-90, -45, 0, 45, 90) in a verbal response task. Results indicated males 

were better at localizing the target sounds in a multi-source sound environment, and 

females were found to make more left-right errors in this condition (Zündorf et al., 2011). 

Another study (Lewald & Hausmann, 2013) replicated the study, but instead used an 

array of 91 loudspeakers ranging from -90° to 90° in a constant distance of 1.5 m from 

the participant. Participants were presented with one target and one distractor sound 

simultaneously and used the same swivel-mounted hand pointer to indicate the location 

of the target sound. Results found that females were more likely to experience the 

“pulling” effect (a bias to target localization toward that of the distractor sound), and 

males were found to have consistently better performance in target localization with the 

distractor sound (Lewald & Hausmann, 2013). An ERP study delivered an oddball 

sequence of pink noise bursts (50 ms, at 76 dB) by two loudspeakers to the left and the 

right of the participant (with a 60 cm distance from participant in each direction) while 

EEG data was recorded from 162 scalp sites. The results found males to be more accurate 

in detecting target sound locations and to have significantly higher P3 amplitudes 

compared to females during task performance (Simon-Dack, Friesen, & Teder-Sälejärvi, 

2009). Similarly, in visual-spatial research, females were found to have a less developed 
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ability to localize a visual object than males when participants were asked to point to the 

location of a white or red light in a box, and females also made significantly more 

pointing errors than males (Sandström, 1953). 

We found that participant’s ages were positively correlated with MMN 

amplitudes in regards to the duration deviant. This means that as people get older, their 

ability to detect an auditory change in duration is lower, and this is consistent with 

previous research (Kiang, Braff, Sprock, & Light, 2009). 

Although we only found one significant sex difference in only one of the deviant-

types, the number of trends (accompanied by medium-to-large effect sizes) suggest that 

there may be biological differences in the way females and males process auditory 

change, as indexed by the MMN, although further research would need to be conducted. 

While the deviants used in this study are all pure tone deviants, it can be argued that the 

way we perceive duration, intensity, and pitch deviants can be related to the way we 

perceive these types of changes in language. Females are often regarded as superior in 

detecting language changes in both monolingual (Coates, 2016; Eckert, 1989; Eckert & 

McConnell-Ginet, 2003) and bilingual settings (Shin, 2013) with one author even arguing 

that women are an entire generation ahead of men in their ability to detect linguistic 

changes (Labov, 2001). Thus, it is not surprising that the trends we found showed 

females to be better at detecting an auditory change than males with these deviants. 

However, more research should be done in this area as the current study does not provide 

enough evidence to conclude an overall sex difference. 
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CHAPTER 3: MISMATCH NEGATIVITY IN FEMALES AND MALES AS 

MEASURED BY A COMPLEX PATTERN MMN PARADIGM (Experiment 2) 

 

3.1. Introduction 

 It has been argued that MMN paradigms like the “optimal” MMN paradigm are 

not complex enough to elicit group differences when there is a subtle alteration in 

function between two groups (Rudolph et al., 2015). Some researchers have investigated 

traditional oddball MMN paradigms using a missing stimulus as a deviant (instead of the 

use of deviant tones differing in gap, intensity, duration, location, or pitch) and have been 

unable to elicit MMN unless the tones were played very rapidly (Yabe, Tervaniemi, 

Reinikainen, & Nӓӓtӓnen, 1997). This, along with the problem demonstrated by Schröger 

(2001) that frequency deviants may contain an overlapping N100 enhancement, led 

researchers to investigate more complex forms of MMN paradigms that address these 

issues. Pattern paradigms are purported to probe higher order processes not engaged with 

the simple MMN paradigms, and can also easily record MMN data in one recording 

session.  

 One such pattern paradigm, the simple pattern MMN paradigm, was developed by 

Sculthorpe and Campbell (2011). With this paradigm, stimuli consisted of two pure tones 

(A and B) that were tested in two different conditions: an alternating pattern or an oddball 

sequence. In the pattern condition, the standard sequence consisted of an alternating 

pattern (e.g. ABABAB) while the deviant was a sequence where either the A or B tone 

repeated itself (e.g. ABABBA). In the oddball condition, the A tone served as the 

standard while the B tone served as the deviant (e.g. AAAABA). Results found that the 

MMN amplitudes were significantly more negative for the deviants in both conditions, 

however, the authors highlighted the possibility that the classic inverse relationship 
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between MMN amplitude and deviant probability is a consequence of N100 enhancement 

seen in previous research (Sculthorpe & Campbell, 2011).  

 A two-tone pattern paradigm may be too simple to observe subtle differences 

between groups; indeed, a recent study reported such a paradigm was only able to elicit 

differences between early phase psychosis patient and healthy controls later in illness 

progression, but not at first episode (Ells et al., 2018). A more complex pattern MMN 

paradigm was developed by Salisbury (2012) where the deviant is the absence of a sound 

rather than the presentation of a deviant one. An auditory task using one stimulus was 

presented in groups of six pure tones (50 ms duration, 330 ms stimulus onset asynchrony, 

400 trials) with an intertrial interval of 650 ms while subjects watched a silent video; 

following Gestalt principles of proximity, the six tones were perceived as a single unit of 

sound. Occasionally, a deviant group would be presented with either a missing 4th or 

missing 6th tone, and both missing tones evoked a robust MMN (Salisbury, 2012). These 

results validated the use of this complex pattern MMN paradigm in a healthy control 

population. The complex pattern MMN paradigm has also been found to be sensitive 

enough to detect significant MMN deficits in highly sensitive populations like early-

phase psychosis (Rudolph et al., 2015), something the simple two-tone pattern paradigm 

was not able to do (Ells et al., 2018). 

These conclusions suggest that the complex pattern MMN paradigm may be more 

appropriate to investigate sex-based differences due to the relatively complex 

computation and comparison of auditory gestalt of grouping that may be more sensitive 

to subtle changes between groups. Based on previous research, it is hypothesized that 
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MMN amplitudes will be significantly larger in biological females when compared to 

biological males using the complex pattern MMN paradigm. 

3.2. Methods 

 3.2.1. Participants. 

Thirty-three participants (18 female, 14 male) self-reporting negative psychiatric, 

medical, neurological and alcohol/drug abuse histories, and non-use of medications were 

recruited from the general public. Participants were identical to those in Experiment 1, 

however data from one male was removed due to technical issues. Male and female 

participants were statistically equivalent to each other for age (p = .19) and NART scores 

(p = .22). See Table 5. 

Table 5 

Mean (± SD) age and NART scores for female and male participants (Experiment 2). 

 Female Male 

Age 22.33 (6.80) 25.14 (4.56) 

NART 34.94 (9.61) 39.00 (8.36) 

 

3.2.2. Complex Pattern MMN paradigm. 

Replicating Salisbury’s (2012) and Rudolph’s (2015) methodology, participants 

were presented with auditory patterns consisting of 500 standard patterns (six 1000 Hz 

50ms tone pips in a row; p = .8) and one of two deviant patterns (missing 4th tone or  

Fig 9. Schematic illustration of the complex pattern MMN paradigm (adapted from Salisbury, 2012) 
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missing 6th tone; p = .1 each). All stimuli were presented at an intensity of 75 dB SPL, 

with SOAs within patterns of 330ms and inter-pattern intervals of 750 ms. See Figure 9. 

3.2.3. EEG recording and ERP computation. 

EEG recording was identical to Experiment 1. Computation of MMN differed in 

that for the deviants, electrical epochs were time locked to the trigger emitted at the 

expected onset of the missing stimuli. Unlike typical MMN paradigms, no difference 

waves (e.g. deviant-minus-standard) were generated as the MMN was elicited by 

the absence of sound, negating the need for such a subtraction as there is no afferent 

activity from non-adapted sensory cells to account for. 

3.2.4. Procedure. 

Study procedures were identical to Experiment 1. 

3.2.5. Data analysis.  

Data analyses were identical to Experiment 1. 

3.3. Results 

 3.3.1. MMN amplitude. 

All MMN amplitudes at Fz were significantly different from zero. The amplitudes 

(± SE) and 2-tailed one sample t-test statistics are summarized in Table 6. There was no 

significant main or interaction effects found for MMN amplitudes elicited by either the 

missing 4th or missing 6th stimulus. See Table 7. 

Table 6 

Mean amplitudes (± SE) at FZ plus t-statistic and significance values resulting from 2-

tailed comparison of means against zero for all deviants of the complex paradigm. 

 

 Mean amplitude (± SE) t Significance 

Missing 4th -2.26 (0.44) -5.13 p < .001 

Missing 6th -1.53 (0.43) -3.55 p = .001 

Combined  -1.29 (0.32) -4.00 p < .001 

https://www.sciencedirect.com/science/article/pii/S016787601000752X#t0005
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Table 7 

Mean (± SD) MMN amplitudes (µV) at Fz for the two deviant types of the complex 

paradigm and the combined complex deviant. 

 Female Male p Hedges’ g 

Missing 4th -1.86 (2.42) -2.76 (2.57) .72 0.36 

Missing 6th -1.18 (2.23) -1.98 (2.71) .69 0.33 

Combined -0.96 (1.86) -1.72 (1.75) .65 0.42 

 

 3.3.1.1. Missing 4th deviant. 

 Results showed a main effect of region, F(1, 30) = 21.45, p < .001, due to 

significantly larger MMN amplitudes at frontal (vs. central) sites. There were no group x 

region x site interactions, F(2,29) = 0.67, p = .52. See Figure 10.  

Fig 10.  Grand averaged MMN difference waves for female (F) and male (M) participants at frontal (F3, Fz, 

F4) and central (C3, Cz, C4) electrode sites for the missing 4th deviant. There was no significant difference 

between the groups at any sites (p > .05). 

 

3.3.1.2. Missing 6th deviant.  

Results showed a main effect for region, F(1,30) = 11.23, p = .002, due to 

significantly larger MMN amplitudes at frontal (vs. central) sites. There were no group x 

region x site interactions, F(2,29) = 0.81, p = .46. See Figure 11. 

3.3.1.3. Combined complex deviant. 

Results showed a main effect of region, F(1,30) = 13.221, p = .001, due to 

significantly larger MMN amplitudes at frontal (vs. central) sites. There were no group x 

region x site interactions, F(2,29) = 1.12, p = .34. See Figure 12. 
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Fig 11.  Grand averaged MMN difference waves for female (F) and male (M) participants at frontal (F3, Fz, 

F4) and central (C3, Cz, C4) electrode sites for the missing 6th deviant. There was no significant difference 

between the groups at any sites (p > .05). 

Fig 12.  Grand averaged MMN difference waves for female (F) and male (M) participants at frontal (F3, Fz, 

F4) and central (C3, Cz, C4) electrode sites for the combined complex deviant. There was no significant 

difference between the groups at any sites (p > .05). 
 

3.3.2. MMN latency. 

 There were no significant differences between groups for MMN latency for the 

missing 4th, missing 6th, or combined stimuli. See Table 8. 

Table 8 

Mean (± SD) MMN latency times (ms) for the two deviant types of the complex paradigm 

and the combined complex deviant. 

 Female Male p Hedges’ g 

Missing 4th 157.33 (30.59) 169.57 (34.22) .30 0.38 

Missing 6th 172.11 (50.54) 143.71 (35.19) .071 0.64 

Combined 166.78 (41.78) 158.86 (36.04) .58 0.20 
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3.3.3. Correlations. 

Participant age was negatively correlated with missing 6th MMN amplitudes (i.e. 

as age increases, MMN increases) at site F3 (ρ = -.38, p = .030). See Figure 13. 

Figure 13. Scatterplot of correlation between missing 6th MMN amplitudes and participant age at electrode 

site F3 (left). 

 

3.4. Discussion 

 It was hypothesized that MMN amplitudes would be significantly enhanced in 

biological females when compared to biological males using the complex pattern MMN 

paradigm. Our results did not support this hypothesis and we found no significant sex 

differences for the missing 4th nor the missing 6th deviant. This could mean that the 

paradigm itself may not be appropriate to detect such sex differences. We had 

hypothesized that this paradigm could potentially be useful to detect sex differences as 

the complexity could be comparable to emotional MMN paradigms and it has been found 

to be sensitive enough to detect MMN deficits in highly sensitive clinical populations, but 

perhaps the sex differences in higher order brain processes are not robust enough to be 

detected as easily as MMN deficits in a declining population. Alternatively, it is possible 

that there are no biological sex differences in the way missing stimuli from a pattern are 

pre-attentively processed in the brains of healthy participants. In regards to clinical 

populations, sex differences in MMN have yet to be characterized (Riel, Lee, Fisher, & 

Tibbo, 2019); if the complex pattern paradigm is able to detect sex differences (as 
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exploratory analysis in our lab detected in early psychosis patients; Rudolph et al.’s 2015 

data set, although not included in publication due to small sample sizes between 

biological sex groups), it would suggest that these differences are related to the disease, 

such as those seen in MDD (Qiao et al., 2015), and not due to biological sex differences 

at baseline. If in the future researchers are able to collect comparable size groups between 

sexes, it would be important to see if this paradigm is indeed able to detect biological sex 

differences in sensitive clinical populations, such as early phase psychosis and 

schizophrenia. 

 Participant ages were found to be negatively correlated with MMN amplitudes, 

meaning that as age increased, participants were found to actually be better able to detect 

auditory changes to the missing 6th stimulus. This finding is interesting because it is 

opposite to what we found in Experiment 1. While Kiang and colleagues (2009) had 

found that MMN got progressively smaller as age increased, the most dramatic decline 

was found after age 40. There were only four participants in our data set that were over 

the age of 30, with the oldest being 34, so it is possible that our data set did not have a 

large enough age range to detect such an MMN decline. Although, this theory does not 

explain why we found MMN amplitudes to increase as age increased, nor does it explain 

why we found the correlation to be in the opposite direction in Experiment 1. One 

possibility is that the “optimal” paradigm used in experiment 1, much like the oddball 

paradigm used by Kiang and colleagues (2009), probes basic cognitive processes centred 

around auditory cortices that may decline more rapidly with age than higher order (i.e. 

prefrontal) processes probed by our complex pattern paradigm. The complexity of brain 

dynamics have been found to increase with age (Anokhin, Birbaumer, Lutzenberger, 
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Nikolaev, & Vogel, 1996) so it’s possible that the higher order brain processes being 

probed by a missing stimulus deviant may actually improve as age increases, at least up 

to age 34, causing MMN amplitudes to increase as age increases in complex paradigms.  
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CHAPTER 4: GENERAL SUMMARY 

It was our overall goal to determine if sex differences occur in central auditory 

processing, specifically in auditory change detection as indexed by MMN. We had 

hypothesized that we would find a significant sex difference: that MMN amplitudes will 

be significantly enhanced in biological females when compared to biological males, but 

only with the complex paradigm. The “optimal” multi-feature MMN paradigm, a 

paradigm with a better signal-to-noise ratio than the traditional two-tone oddball 

(Thönnessen et al., 2008), is thought to probe the more basic mechanisms associated with 

auditory change detection. It was thought that a complex pattern MMN paradigms, such 

as those proposed by Salisbury (2012), may be more appropriate to investigate sex-based 

differences due to the relatively complex computation and comparison of auditory gestalt 

of grouping that may be more sensitive to subtle changes. Overall, we report no sex 

differences with either the optimal MMN paradigm, or the complex pattern MMN 

paradigm. While trends for females to show larger MMN amplitudes were observed in 

response to the “optimal” MMN paradigm, the only statistically significant difference 

observed was that males were found to have enhanced location MMN amplitudes when 

compared to females. As this was only found at one site and for one deviant type, this 

suggests greater similarities than differences in auditory change detection of pure tones. 

Within our two experiments, we found that as participant’s age increased, they 

were found to be worse at detecting pure-tone deviants but better at detecting missing-

tone deviants. While the basic cognitive mechanisms are found to decline with age 

(Kiang et al., 2009), higher order cognitive mechanisms have been found to improve with 
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age (Anokhin et al, 1996), and our results were able to provide support for these two 

theories. 

The biggest limitation to our study was that we were not able to recruit equal 

numbers of biological males and females to compare sex differences. Power analyses 

conducted prior to testing determined at least eighteen participants were needed in each 

group, however we came up short in recruiting biological males; we only collected data 

for fifteen biological males in experiment 1, and fourteen biological males in experiment 

2 due to one male’s data having to be removed because of technical issues. Since we 

were underpowered, the probability of finding true significance is lessened. It is possible 

that with greater sample sizes we could be able to detect subtle sex differences that we 

were not able to identify in the current study. Though, it is important to note that all of 

our sex difference effect sizes (using Hedges’ g) were always calculated to be in the 

moderate range. Thus, while we were unable to find statistical significance, this moderate 

effect size should encourage further investigations of sex differences as far as auditory 

change detection of pure tones goes.  

Another limitation to this study was the decision to investigate sex differences 

without controlling for the female menstrual cycles. Females have often been excluded 

from research studies due to the complexity of controlling for menstrual cycles. Female 

hormone levels, such as estradiol, fluctuate greatly depending on the phase of the 

menstrual cycle, so females would have to be recruited and booked during a specific 

week of their cycle. It is often very difficult to differentiate where each phase begins and 

ends within a cycle, because without something to regulate the cycle (e.g. birth control 

pills) it is typically unique to each female. Using hormonal birth control adds another 
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complication as it causes alterations to the hormone levels of estradiol and progesterone. 

To our knowledge, no research has yet been done to investigate the influence that 

menstrual cycles may have on MMN. Without controlling for (and testing across) 

menstrual cycles, it would be difficult to conclude that a sex difference is or is not 

present.  

Another possible future research direction would be to look at individuals who 

identify as transgender (particularly those who identify with the opposite gender of their 

assigned biological sex); we only included cis-gendered (a person who identifies with 

their assigned biological sex) individuals in this study but it would be very important to 

investigate the potential differential impact of sex and gender, how taking exogenous 

hormones (trans males on testosterone and trans females on estradiol) can affect 

biological sex differences in the brain, as well as MMN occurrence in non-binary 

gendered individuals.  

In conclusion, this is the first study to our knowledge that investigated sex 

differences in a healthy population using a paradigm considered to be more complex than 

a two-tone oddball paradigm. We were not able to find enough evidence to conclude sex 

differences in MMN, suggesting that auditory change detection may be more 

characterized by sex similarities. In regards to clinical research, this study suggests that 

any observed sex differences in the MMN could be due to the illness itself (or the 

interaction of sex and illness) instead of biological sexual dimorphism.  
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Appendix 

National Adult Reading Test (NART; Nelson, 1982; Nelson & Willison, 1991) 

National Adult Reading Test  

  
Participant: ____________          Date: __________  
   

DEBT           SUBPOENA  

DEBRIS          PLACEBO  

AISLE           PROCREATE  

REIGN           PSALM  

DEPOT           BANAL  

SIMILE           RAREFY  

LINGERIE         GIST  

RECIPE           CORPS  

GOUGE           HORS D’OEUVRE  

HEIR            SIEVE  

SUBTLE          HIATUS  

CATACOMB        GAUCHE  

BOUQUET         ZEALOT  

GAUGE    

COLONEL  

      PARADIGM  

FAÇADE 
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CELLIST                    LEVIATHAN  

INDICT           PRELATE  

DETENTE                   QUADRUPED  

IMPUGN          SIDEREAL  

CAPON                     ABSTEMIOUS  

RADIX           BEATIFY  

AEON           GAOLED  

EPITOME          DEMESNE  

EQUIVOCAL        SYNCOPE  

REIFY           ENNUI  

INDICES          DRACHM  

ASSIGNATE        CIDEVANT  

TOPIARY          EPERGNE  

CAVEAT          VIVACE  

SUPERFLUOUS       TALIPES  

              SYNECDOCHE  
 


