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Quantifying Matrix Complexity with the Calculation of Fractal Dimensions from GC×GC 

Chromatograms – A Potential Oil Fingerprinting Technique  

By G.F Herrera  

April 1st, 2019 

 

Gas chromatograms record molecular patterns according to the spatial separation afforded 

by the analytical method used and the type of mixture being analyzed. In this respect, the 

molecular complexity recorded in a gas chromatogram may be definable through the 

calculation of its fractal dimension. Fractals are a branch of mathematics that illuminate 

statistical elements in the spatial patterns of various complex forms.  A fractal dimension 

is the measure of spatial complexity. For this thesis, the question is asked whether the 

molecular outputs recorded using gas chromatography results in a definable fractal 

dimensions? To do this, we quantified the matrix complexity of maltene fractions of various 

oils analyzed with comprehensive two-dimensional gas chromatography (GC×GC). A 

fundamental question addressed in this thesis is if fractal dimensions can be used as a new 

oil fingerprinting method? This study aims to find fractal dimensions in multiple samples 

of GC×GC chromatograms. These hypotheses are tested by analyzing a suit of oils and 

hydropyrolysates collected from various regions. These suites of oils have been previously 

determined to have different molecular complexities in their gas chromatograms, 

subsequently it is predicted that the fractal dimension of the more complex oils will be 

higher. The results of this study are fractal dimensions where calculated from the three 

different ocean bottom hydrothermal sites at Guaymas Basin, the Middle Valley and 

Escanaba Trough. The fractal dimension values did not correlate with expected trends of 

generation and maturation of sedimentary organic matter. Due to the lack of trends we 

focused the project on explaining what was wrong with the method, the program and the 

chromatograms. The results from the three different sites were inconclusive, but we expect 

that such results and analysis done can be helpful for anyone trying to relate fractal 

dimensions with oil and gas in the future. 
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1. Introduction 

Comprehensive two-dimensional gas chromatography (GC×GC) and the spatial 

complexity metric known as the fractal dimensions (FD) are two powerful tools used to 

explain different natural phenomena. GC×GC enables complex mixtures of volatile, 

organic compound to be quantitatively measured.  The FD allows for the characterization 

of patterns and shapes in nature that have order beyond the dimensionality we typically 

consider. The purpose of this project is too combine these two approaches in a way that can 

be useful in geosciences, chemistry, and engineering. To achieve this, this study combines 

the data acquired by GC×GC with a boxcounting method to calculate the FDs of different 

naturally occurring oils. The following hypotheses are addressed: 

• To what degree is the measured FD of an organic matrix sensitive to different GC 

run conditions? 

• Can FDs be used to determine differences in molecular make-up of different crude 

oils? 

• If so, are there specific FDs for oils that have been weathered by different 

processes? 

• Can the FD be used to measure changes in oil maturity? 

Following these directions of study, if the method is found to be unreliable, then we will 

discuss what factors confounded this hybridized approach. 

1.1. Gas chromatography 

Gas chromatography (GC) is a commonly used analytical technique for analyzing mixtures 

of volatile organic compounds (analytes). The mixture is first dissolved in a solvent called 



 

 

the mobile phase, which is carried though a capillary column packed with a semi-permeable 

material called the stationary phase. The separation of a mixture is based on the differential 

partitioning between the mobile and stationary phases. This is achieved by subtle 

differences in component partition coefficients that induce a retention lags on the effluent 

as the eluting matrix interacts with the stationary phase (Sparkman, Penton & Kitson, 

2011). The separated matrix is then passed to a flame ionization detector or mass 

spectrometer where it is measured as a signal intensity of carbon atoms or cations. The 

resulting separated molecular data are plotted as a 2D, x-y diagram called a chromatogram, 

where x corresponds to retention time and y indicates the signal response created by the 

analytes exiting into the GC’s detector. In optimal separation, this signal is proportional to 

the concentration of the specific analyte being separated.  

• Qualitative chromatographic analysis: The x-y plot will produce an array of 

peaks for a sample representing the analytes present in a sample eluting from the 

column at different times, different retention times represent different analytes if 

the method conditions are held constant (Sparkman, et al, 2011). 

• Quantitative chromatographic analysis: Each peak represents a different 

compound or analyte, and the area under the peak is proportional to the amount of 

analyte present in the chromatogram. By calculating the integrated area of the peak, 

the concentration of analyte in the original sample can be determined (Sparkman, 

et al, 2011). 

Comprehensive, two-dimensional chromatography (GC×GC) is a more advanced 

chromatographic technique, in which a mixture is separated by passing it through two 

different gas capillary columns, each having a unique stationary phase. The first column 



 

 

enters into a cryogenic modulator that injects parcels of the sample into the second column 

over a defined temporal cycle. The modulator freezes mixtures for a few seconds so that a 

mixture cryo-focus into a very sharp band. The modulator then fires the packet into the 

head of the second column. This is repeated for the duration of the sample run (Ong & 

Marriott, 2002). The GC×GC method offers a large increase in peak capacity, this allows 

the chromatogram to show more organic compounds. Peaks that would ordinarily be 

overprinted by coeluting bigger peaks using a traditional GC method will be sharp, clear, 

and separated using GC×GC chromatography. The chromatograms in this study are 3D 

plots with x-y-z axes.  

1.2. Introduction to fractal dimensions  

The term fractal describes geometrical objects or functions that are scale invariant and 

represent a part of an object or function that is itself similar to the whole i.e. having self-

similarity (Feder, 1988). Fractal dimensions do not belong to the common known 

dimension 1, 2, and 3; but are somewhere in-between. The calculation of a FD follows a 

simple process. For any shape, the number of objects (N) that can define the obsject 

increases with magnifying factor (r) at different dimensions (Figure 1.1) following for 

example: 

1D: a line expands linearly, according to the magnification factor 1, 2, 3… 

2D: the square expands equally as the magnification factor raised to the square 1, 4, 9… 

3D: the cube expands equally to the magnification factor raised to the cube 1, 8, 27… 

 



 

 

 

Figure 1.1 The relationship between dimension, magnifying factor (r) and the number of objects 

(N) (from: http://fractalfoundation.org). 

 

A simple relationship exists between the three variables:  

                N = r D                                                    (1) 

For example, if D = 3 and r = 3, N will be equal to 27. Calculation of the number of objects 

present in an image is achieved by:  

                                log (N) = log (r D) and log (r D) = D * log (r)                                    (2) 

                                                    D = log (N) / log (r)                                                       (3) 

leaving an equation to estimate dimensions, relating the log of N and the log of r.  The same 

equation can be used to calculate the FD in multiple self-similar synthetic objects like the 

Koch snowflake (Figure 1.2) or the Sierpinski triangle (Figure 1.3).  



 

 

 

Figure 1.2 Image of Koch snowflake by multiplicative iteration of line segments showing self-

similarity (from:  https://www.shodor.org). The fractal image of the Koch curve is wigglier than a 

straight lie. It has a FD = 1.26, which is between 1D and 2D because the shape does not fill a whole 

2D plane.  

 

 

Figure 1.3 The Sierpinski triangle (from:  https://www.zeuscat.com) fits in a 2D plane, but does 

not fill the shape completely. Here the FD = 1.58 is a little more than the Koch snowflake, 

meaning that the Sierpinski triangle does a better job filling up a 2D plane.  

 

1.3. Fractal dimensions in nature  

Fractal dimensions are a common property of nature. For example, the scaler size of rock 

fragments within sedimentary successions, faults within fault zones, and the bifurcation 

pattern of the roots, stems, trunks and venation of leaves for plants and trees are well known 

to have fractal properties (see the fractal geometry of nature by Benoit B. Mandelbrot).  A 

rocky shoreline is also fractal in nature.  

https://www.zeuscat.com/
https://www.amazon.ca/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Benoit+B.+Mandelbrot&search-alias=books-ca


 

 

:  

Figure 1.4 The coastline paradox proposed by Lewis Fry Richardson, shows how the length of the 

coast of Britain apparently increases when decreasing the measure stick (from: 

http://rebloggy.com). 

 

Figure 1.4 illustrates how geographic shapes have FDs. With different unit lengths of 

measure, the total length of the coastline increases, meaning that the length of the coastline 

depends on the method in which it is measured. The paradox is that it is impossible to 

accurately measure the coastline of Britain (or any other coastline), because the coastline 

becomes progressively longer as the unit of measure is more closely tied to a more 

microscopic level of calculation.  At the most extreme level, the length of the coastline 

approaches infinity. This is illustrated in Figure 1.4 with a measure stick of 200 km (r =1), 

N the number of sticks required to cover the whole are is equal to 12, hence the length is 

approximately 2400 km.  At B, the measure stick length is divided by 2, 100 km, (r =2) the 

N number of sticks required to measure the coastline increases to 28, thus the total length 

approximately 2800 km. At C, a further division of the stick by two from B is 50 km (r = 

4) and the N number of sticks increases to 68, with the total length approximating 3400 km. 

A 
B C 



 

 

There is a mathematical pattern in the geometric quality of fractals. As the stick shrinks r 

increases and N increases too. We are interested in the rate at which the perimeter changes 

as a function of the ruler length. In order to solve this question and understand the 

relationship between N, r and stick length, results are plotted in a log graph with the log 

(N) at the y-axis and the log (r) in the x-axis: 

 

Table 1.1 Log (N) vs Log (r) of Britain’s coastline*. 

 

 

 

*data from: http://rebloggy.com 

 

Figure 1.5 Cross-plot of Log (N) versus Log (r) for the British coastline. The regression line 

indicates the relationship between the number of objects and the magnifying factor. 

 

The slope of the line that crosses the points indicates how quickly the perimeter changes 

versus the magnification factor. This slope will be equal to the change in y-value divided 
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by the change in the x-value. Hence, the slope will be equal to D.  In this particular case, 

after calculating the slope taking r = 1 and r = 4: 

D = Δlog (N)/Δlog (r)                                                            (4) 

D = 1.83 – 1.08/0.6 – 0                                                        

D = 1.25                                                                           

The final dimension is equal to 1.25, which is the actual measured FD. The lower the 

dimension the straighter and smoother the coastline. The higher the dimension the more 

wiggled and jagged the coastline (fractal foundations). Not all natural fractals are so easy 

to measure and more sophisticated methods have been proposed by to count for various 

fractal dynamics (Zmeškal,2001). 

1.4. The Hausdorff (box-counting) method 

The box-counting method is analogous to the perimeter measuring method used in the 

coastline of Britain (Figure 1.6). The coastline is covered with a grid. A count is then made 

for how many boxes of the grid cover the coastline. This is repeated using smaller boxes in 

the grid so that the structure of the coastline is more accurately captured.  

 



 

 

 

Figure 1.6 The coast of Britain is covered by boxes of a fixed size, then this size is reduced 

depending on the magnifying factor. This will have the same effect as Figure 1.4. The smaller the 

boxes, the longer the coast of Britain will be (from: https://www.researchgate.net/). 

 

A plot with the data for the number of boxes (N) against the magnification factor (r) or the 

inverse of the box size can be made, and the slope of the line crossing the plotted points 

will be equal to the dimension (D). The same equation as before (D = log (N)/log (r)) is 

used to find the slope, which will again give a number between 1 and 2, but a more accurate 

number than the last method due to an increase in the magnification factor. A steep slope 

indicates that the object has a higher FD, which means that it gains complexity as the box 

size is reduced, a flatter slope means that the object has a lower FD and the amount of detail 

does not grow as quickly with decreasing box size.  

Oils are known to be the most complex naturally occurring organic mixtures on Earth. Most 

of these molecules in oil arise by covalent bonding of just five different elements C, H, O, 



 

 

N, and S and of these C and H are by far the most abundant. Due to constraints in the bond 

angles and the processes by which organic compounds are formed a considerable amount 

of symmetry should theoretically exist within organic mixture. This symmetry is also 

further ordered when passed through a gas chromatograph. As such, the molecular 

complexity of oils could be compared based on the FD that is produced from their gas 

chromatograms. 

For this study, we hypothesize that if a FD can be accurately calculated from GC×GC 

chromatograms, this technique can provide a new method for calculating molecular 

complexity that can be used to fingerprint different types of oils or other complex mixtures. 

This hypothesis is tested with a suit of oils and hydropyrolysates that have been previously 

determined to have different complex mixtures of hydrocarbons.   

 

2. Methods  

2.1. Preparation of chromatographic images  

The hypothesis was tested with three different sample sets (Table 2.1) gathered by 

Professor Todd Ventura. The first sample set, referred to as Cathedral Hill, is a 

hydrothermal vent site in the Guaymas Basin, Gulf of California. The second sample set is 

composed of hydropyrolysates derived from homogenized, ambient sediments collected 

near a hydrothermal vent site called Middle Valley, which is off axis the Juan de Fuca 

Ridge, off the coast of Washington State and Oregon, USA. A third site is the Escanaba 

Trough near the Gorda Ridge, which is also in the northeastern end of the Pacific Ocean. 



 

 

These samples have different molecular complexities, they come from different sites that 

show different oil forming conditions and sources of organic matter. 

The organic matter was solvent extracted from their sediments, and the maltene fraction 

was isolated by flash chromatography. The maltene fractions were then analyzed with a 

GC×GC-FID (a comprehensive two-dimensional gas chromatograph linked to a flame 

ionization detector). The samples for this project where selected to test various geochemical 

processes and to evaluate the effectiveness of the complexity metric to resolve changes in 

molecular composition of each maltene sample.  After the maltene samples were analyzed 

with GC×GC and the molecules of the sample matrix were separated and plotted in a 3D 

graph as peaks represented in a 2D plane; the sample chromatogram was exported as a 

JPEG image (Figure 2.1). 

Table 2.1 Maltene samples, collection site, and expected experimental test. 

Sample set Test Sample number 

Middle Valley, 

hydrothermal vent field 

Hydropyrolysis, time and 

temperature controlled 

experiments 

37 samples 

Guaymas Basin, 

hydrothermal vent field  

Complexity due to thermal 

gradient  

34 samples 

Escanaba Trough, 

hydrothermal vent field  

Spot samples, difference in 

source material 

3 samples 

 



 

 

 

Figure 2.1 GC×GC-FID chromatogram of a maltene fraction of an oil.  

 

The chromatogram in Figure 2.1 has well resolved molecules (black dots) that do not 

converge on one another. For the Guaymas Basin samples, the FD of sample extracts from 

four push cores were analyzed. The cores were labeled: core 3, 5, 6, and 8. Approximately 

10 chromatograms were produced from each core spanning the shallowest surface 

sediments to the more deeply buried sediments at the bottom of the core with the depth of 

the sediment extracted representing the sample name. Fractal dimensions were also 

measured for all the samples from Middle Valley, which account for 34 of 66 different 

chromatograms. An additional 14 samples from the Escanaba Trough where also analyzed. 

Various samples from Middle Valley and Escanaba Trough sites were omitted from FD 

analysis if they showed notable chromatographic artifacts due to excessive column bleed 

or the presence of contaminants in the GC×GC-FID chromatogram (see Figure 2.2 and 

Figure 2.3). Figure 2.2 and 2.3 illustrates the two most common errors produced by bad 

sample runs.   



 

 

 

 

Figure 2.2 A blank GC×GC-FID chromatogram. Black dots at the bottom of the chromatogram are 

septa bleed. Streaking along the bottom is the solvent peak. Arching lines across the right-hand side 

of the plot is column bleed. These chromatographic artifacts represent interferences that complicate 

the calculation of chromatographic complexity using fractal dimensions. 

 

 

Figure 2.3 A noisy blank GC×GC-FID chromatogram. These chromatograms were omitted from 

box counting analysis.  

 



 

 

FIJI and FracLac software were used to measure the FDs in our study. FIJI is a program 

created only for image analysis. FracLac is a plug for FIJI that is a medical tool for 

calculating FD and lacunarity in images. Even though FracLac was designed for image 

analysis in the medicine field, it appeared to be the best option for the purpose of this study 

because is a tool focused on finding D and human created images. Standard operating 

procedures of FIJI and FracLac can be found in Appendix 1.  

2.2. Post-data processing of chromatographic images 

The goal of image preparation is to make sure that every chromatogram looks the same to 

in order to reduce image interferences that can create errors in the calculation of an FD. 

The box count algorithm in FracLac works in the same way as a simple counting 

algorithm, dividing the image in either 1 or 0, it either exist or is absent.  

 

Figure 2.4 Notice that the image is composed of a background and foreground. In this case, the 

foreground represents the area of interest or the black peaks that are present in the chromatogram, 

on the other hand the background is the white regions of the chromatogram.  

 



 

 

FracLac in this case focuses the box counting algorithm in the black peaks (or foreground) 

of the image; but this image will give an error if is analyzed just like it is above, due to the 

x-y axis black bars, where the black peaks are spread. In this case, FIJI has the best solution 

for cutting the image down to minimize the error that the x-y axis could cause during the 

run. At the same time, while editing the chromatogram FIJI also allows users to create 

macros in order to record operations and redo them without having to reset the edition 

process.  

This feature of FIJI was very important during the project, allowing to edit and cut the x-y 

axis of all the chromatograms used for the project in the exact same shape.  This feature 

ensures that every chromatogram look the same, reducing the error than any different 

edition could cause to the calculation of an FD.  

 

Figure 2.5 Example of a GC×GC chromatogram after edition with FIJI with black bars at the left 

side and base of the chromatogram removed. 

 

After the edition is over the chromatograms look exactly like Figure 2.5; now without the 

x-y axis the chromatograph is ready for analysis. 



 

 

Two methods where used in order to test our chromatograms to get a FD. First, a run was 

done using the option of grayscale box count. Second, a run was then done using a binary 

box count; the details about the difference between each method and how to configurator 

FracLac for the different runs can be found in Appendix 1. 

 

 

3. Results  

3.1. Fractal analyses using a greyscale method (3D box count) 

The first method used was a greyscale box count, which should be suited for 

chromatogramic plots having 3 data axes.  This is because the greyscale method assumes 

images exist in a pseudo-3D space. In the case of its application to GC×GC chromatograms 

it is assumed that molecular intensity can be calculated as a component of molecular 

complexity.  The grayscale scan was performed on Guaymas Basin cores 3, 5, 6 & 8, and 

its results of the calculation are providing in Table 3. The FD of the core samples did not 

significantly vary even though the chromatograms have substantial molecular 

compositional differences (Table 3). This result even extended to a blank chromatogram 

for testing, which yielded an FD of 2.6. The method was therefor found unreliable for the 

purpose of the project and the Middle Valley and Escanaba Trough sample sets were not 

analyzed.  

 

 

 



 

 

 

 

 

 

Table 3.1 Results differential greyscale box count analyses for the Guaymas Basin push core 

transect. 

Core depth 

(cm) 

Core 5 

(closest to vent) 

Core 6 

(slightly farther 

from vent) 

Core 8 

(further from 

vent) 

Core 3 

(outside of vent) 

FD§ SD* FD SD* FD SD* FD SD* 

0-2cm 2.665 0.0043 2.6530 0.0034 2.6231 0.0060 2.6205 0.0052 

2-4cm 2.645 0.0029 2.6395 0.0032 2.6141 0.0056 2.6477 0.0069 

4-6cm 2.628 0.0032 2.6879 0.0043 2.6061 0.0049 2.6175 0.0043 

6-8cm 2.645 0.0027 2.7035 0.0041 2.6351 0.0048 2.6614 0.0040 

8-10cm 2.625 0.0031 2.6862 0.0036 2.6573 0.0080 2.6562 0.0051 

10-12cm 2.673 0.0041 2.6750 0.0044 2.6566 0.0048 2.6556 0.0056 

12-15cm 2.678 0.0035 2.6746 0.0052 2.6602 0.0056 2.6461 0.0055 

15-18cm 2.696 0.0038 2.6693 0.0051     

18-21cm 2.688 0.0043 2.6597 0.0039     

Avg. SD* 0.026 0.0035 0.0190 0.022 0.0220 0.0057 0.018 0.0057 

*The reason behind the importance of the standard deviation, lies in the experimentation done 

through the analysis, the standard deviation allows scientist to have an error margin, but also 

allows scientist to find best fits while comparing variables in a graph. Standard deviation is the 

error that comes along with the experiment and in this case is produced by the program that 

performs the box counting algorithm FracLac. 

 

§FD = fractal dimension 

*SD = standard deviation 

Avg. SD = average standard deviation 

 

 

Cores, 3, 5, 6 and 8 represent a very interesting set of oils for this project because there is 

a defined change in molecular complexity with depth due to the migration of petroleum 

forming compounds that are likely being cracked out of the sedimentary organic matter at 

a window in between 8cm to 12cm depth. Depth then was an important variable to test in 

this set of cores, Table 4 represents the relationship between FD and depth in grayscale. 

 



 

 

 

Figure 3.1 Grayscale analysis cross-plot of core depth vs FD. 

 

The comparison of FD versus depth of core samples in Figure 3.1 does not have a 

significant trend and it does not represent the increase in complexity experience by these 

oils when cracked out from the kerogen. This lack of relationship was likely due to two 

errors. First, because of the way a GC×GC chromatogram is plotted, it was not possible to 

accurately reflect the Z dimension (or Psuedo-3D). The color change to either a mountain 

or bulls eye GC×GC chromatogram plot automatically creates a color contrast that scales 

from dark to light back to dark at the highest signal intensity. Therefore, FracLac cannot 

relate the intensities of a peak to a third dimension for an FD calculation. The spatial 

complexity is substantially biased in favor of greater complexity (or a higher FD) than 

actually present on the chromatogram.  

3.2.  Fractal analyses using a binary method (2D box count) 
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The binary method at first did not seem to be especially useful for the project, because it 

analyzes the chromatogram with a 2D box count algorithm, meaning that the magnitude of 

the peaks cannot be calculated.  However, after the greyscale scan did not give reliable 

results, this alternative method was explored (see Appendix 1 for more information about 

the binary option in FracLac). The binary results were more promising than the greyscale 

scan with variations in FDs that range between 0.87 (Figure 3.2) from a blank 

chromatogram to 1.62 (Figure 3.3) for a complex chromatogram.  

 

Figure 3.2 GC×GC-FID chromatogram of sample S18. This sample recorded the lowest FD by 

FracLac, belongs to Middle Valley sample set, and represents a hydropyrolysate heated at 250˚C 

for 72 hours.  



 

 

 

Figure 3.3 GC×GC-FID chromatogram of sample Core8, 6-12cm. This sample recorded the highest 

FD recorded by FracLac, belongs to Guaymas Basin, Core 8 sample set from an oil found at 6cm 

to 8cm.  

 

Table 3.2 summarizes the results from the binary scans of the Guaymas Basin. Table 3.2 

shows the relationship between depth and FD. Tables 3.3 and 3.4 summarize the results 

from the Middle Valley hydropyrolysis experiments and Escanaba Trough samples.  

 



 

 

Table 3.2 Results of the binary analysis for a Guaymas Basin push core transects. 

Core depth 

(cm) 
Core 5 

(closest to vent) 

 

 

Core 6 

(slightly farther   from vent) 

Core 8 

(further from vent) 

 

 

 

Core 3 

(outside of vent) 

 

 

FD SD PD* Peak#§ FD SD PD* Peak§ FD SD PD* Peak# FD SD PD* Peak§ 

0-2cm 1.5783 0.0233 95.4 4533 1.5909 0.0254 96.1 4564 1.6656 0.0103 70.9 3368 1.6498 0.011 92.3306 4387 

2-4cm 1.5810 0.0227 126.0 5986 1.5853 0.0111 86.2 4094 1.6306 0.0283 101.1 4804 1.6647 0.0141 50.9323 2420 

4-6cm 1.5636 0.0221 124.5 5917 1.6231 0.0186 90.2 4288 1.6543 0.0107 78.6 3742 1.6018 0.0078 53.7946 2556 

6-8cm 1.5795 0.0203 127.6 6063 1.5763 0.0238 101.8 4837 1.6852 0.0328 139.4 6623 1.6067 0.0219 125.879 5981 

8-10cm 1.2160 0.0208 125.8 5975 1.5925 0.0238 131.8 6264 1.6718 0.0261 140.9 6694 1.5966 0.0217 101.991 4846 

10-12cm 1.3395 0.0071 109.1 5184 1.3438 0.0269 103.9 4939 1.6750 0.0305 139.0 6604 1.6158 0.0307 104.369 4959 

12-15cm 1.4153 0.0279 104.9 4982 1.5402 0.0307 115.2 5474 1.5986 0.0309 76.8 3648 1.5719 0.0266 80.5235 3826 

15-18cm 1.4786 0.0302 89.6 4256 1.4917 0.0159 126.4 6004         

18-21cm 1.4814 0.0232 88.5 4306 1.5228 0.0206 127.48 6051         

Avg. 1.4700 0.0220 110.2 5245 1.540 0.022 108.8 5168 1.6544 0.0242 106.7 5069 1.4174 Avg. 1.47 0.0220 

SD 0.1270 0.0220   0.084 0.022   0.030  SD 0.127 0.0220   0.084 

  

* PD = Peak Density 

§Peak# = Peak Number 

 

 

  



 

 

 

Figure 3.4 Binary cross-plot of FD vs depth for Guaymas Basin. For the 8-12cm window of cores 

5 and 6 the FDs is lower and then gradually increases with deeper sediment depth. For cores 3 and 

8 the FD stays nearly constant. 

 

Cores 3 and 8 are very similar oils with respect to their molecular composition. The same 

results are obtained for cores 5 and 6. Compared with the greyscale analyses, these results 

shows a better predictive trend. However, the oil window within the Guaymas Basin 

samples, where vent temperatures were high enough to crack the sedimentary organic 

matter to form oil is found by the FD analyses to produce an opposite complexity response. 

The expected result was an increase in FD at 8cm-12cm across this window followed by a 

downward FD trend in the deeper sediment depths. The FD of the cores was plotted against 

peak density (Figure 3.5) and against peak number (Figure 3.6). The lack of a positive 

correlation between peak number/density and FD, suggests that the FD was not being 

calculated through the amount of peaks or its intensities. 
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Figure 3.5 Cross-plot of FD vs peak density for all push core samples. 

 

Figure 3.6 Cross-plot of FD vs peak number of all push core samples. 

 

A final comparative study was performed on the cores by comparing their FDs against the 

recorded thermal gradients of the sediments that were extracted (Figure 3.7). Fractal 
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dimension versus thermal gradient was compared in order to detect whether changes in 

temperature affect the the FD, keeping in mind the oil window and the similarities between 

cores 3 and 8 and cores 5 and 6. The FD does not seem to be affected by the thermal 

gradient, there are low FD values in high temperature samples as well as there are high FDs 

with low temperatures, in fact the relationship between FDs and thermal gradient almost 

mimics the relationship between FD and depth. 
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Figures 3.7 Results of the different cores when compared with their thermal gradients, notice that 

even though they are similar to Figure 15, there is not a clear relationship between FD and thermal 

gradient. 

 

Table 3.3 Binary box count results of the Middle Valley hydropyrolysis experiment (the three 

error slides (S63, S66 and S67) represent chromatograms having granularity). 

Slide Number 

Hydropyrolysis Experiment 

FD SD Time (hrs.) Temperature (ºC) 

S2 Initial 2% Initial 2% 1.5800 0.0160 

S3 24 100 1.6058 0.0160 

S4 48 100 1.5023 0.0195 

S5 72 100 1.4952 0.0165 
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1.56

1.58

1.6

1.62

1.64

1.66

1.68

0 10 20 30 40 50 60

FD

Thermal Gradient 

Core 3 - FD vs Thermal Gradient 

y = -0.0004x + 1.661
R² = 0.015

1.59

1.6

1.61

1.62

1.63

1.64

1.65

1.66

1.67

1.68

1.69

0 5 10 15 20 25 30

FD

Thermal Gradient

Core 8 - FD vs Thermal Gradient 



 

 

S6 96 100 1.2030 0.0191 

S7 120 100 1.1949 0.0239 

S16 24 250 1.1083 0.0238 

S17 48 250 1.2569 0.0177 

S18 72 250 0.9678 0.0175 

S19 Blank Blank 0.8791 0.0244 

S22 48 250 1.2932 0.0143 

S24 Exxon Valdez Exxon Valdez 1.3761 0.0209 

S29 24 100 1.5846 0.0134 

S30 48 100 1.5673 0.0133 

S31 72 100 1.5792 0.0127 

S32 96 100 1.4154 0.017 

S33 120 100 1.104 0.0129 

S35 Initial 4% Initial 4% 1.3354 0.0058 

S36 24 150 1.4801 0.0052 

S37 48 150 1.5232 0.0129 

S38 72 150 1.4623 0.0249 

S39 120 150 1.5530 0.1290 

S40 24 200 1.4978 0.3160 

S44 24 250 1.5636 0.0056 

S45 48 250 1.6109 0.0079 

S46 72 250 1.3058 0.0097 

S47 96 250 1.1965 0.0244 

S48 24 350 1.1924 0.024 

S49 48 350 1.115 0.0165 

S50 72 350 1.1908 0.0144 

S51 96 350 1.1299 0.0182 

S52 Initial 7% Initial 7% 1.3068 0.0092 

S63-error -- -- 1.6083 0.0239 

S64   1.1287 0.0088 

S65   1.1706 0.0237 

S66-error -- -- 1.6817 0.0235 

S67-error -- -- 1.5772 0.0273 

.  

The Middle Valley hydropyrolysis experiment used a single homogenized ambient 

sediment sample that was divided into a large number of sample splits. Each split was 

pyrolyzed at a different temperature over a specific time interval to artificially generate oil. 

The oil extract was measured using GC×GC-FID. The highest FDs for the Middle Valley 



 

 

samples are S3 (1.6058), S29 (1.5846) and S45 (1.6109). Samples S3 & S29 belong to a 

hydropyrolysis experiments accomplished by heating the mixture to 100˚C for 24 hours, 

whereas S45 belongs to a hydropyrolysis experiment heated to 250˚C for 48 hours. The 

lowest recorded FD where S16 (1.1083), S18 (0.9678), S33 (1.104), S49 (1.115) and S51 

(1.1299). S16, S18, S49 and S51 underwent hydropyrolysis at temperatures over 200˚C, 

and S33 was heated at 100˚C for 24 hours. A comparison of hydropyrolysis reaction time 

versus FD depending on temperature was compared for this suit, trying to find a 

relationship between the intensity of the FD when the oil is heated at different temperatures, 

but because no specific trend showed up, the relationship cannot be verified.  

 

Figure 3.8 Cross-plot of FD vs time, as the Middle Valley sediments are pyrolyzed at different 

temperatures over different periods of time.  

 

An important discovery in the Middle Valley experiment using binary analysis was that the 

way a chromatogram is created affects the FD result. Some chromatograms have high FD 

values, while their molecular complexities are not appreciably high. This was discovered 

to occur as a result of a fine-pixelated defect on the image. The granularity was identified 
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using CorelDraw by zooming the chromatogram to the point that one pixel occupied the 

entire screen (Figure 3.8). The granularity spread across all of some of the Middle Valley 

chromatograms. The granularity was not visible with the naked eye. It appears that the 

presence of granularity in the chromatographic image causes the FracLac program to 

assume that the whole picture was cover with peaks as though the molecular complexity of 

the sample was higher. This image artifact produces erroneous FD values.  

 

Figure 3.9 GC×GC-FID chromatogram presenting granularity, the granularity in the chromatogram 

is caused by either a bad run in the GC×GC test or by interference of other elements during the test; 

granularity makes the fractal dimension increase.  

 

Table 3.4: Result binary analysis of Escanaba Trough. 

Escanaba 

Trough FD SD 

Peak 

Number 

S60 1.5471 0.0188 5,034 

S61 1.6224 0.0293 6,344 

S62 1.3592 0.0173 4,360 

 

For Escanaba Trough, a set of only three samples was analyzed. The low number was due 

to the amount of image artifacts found on the locality’s sample chromatograms. These three 



 

 

samples did not display granularity and the FDs followed our hypothesis that the more 

complex the sample the higher it’s FD.  

 

 

 

4. Discussion 

Fractal dimensions (geometry/mathematics) in chromatography has been applied 

successfully before; Fractal Considerations in Chromatography (Guillaume, Robert, 

Peyrin & Guinchard, 2000) uses the fractal geometry to study surface irregularities; articles 

such as Fractal Chromatography: a new phase in separation science (Edge, 2014) uses 

fractal geometry to analyze fractal particles identified by chromatography.  Fractal 

dimensions in two-dimensional chromatography has never been applied before and this 

project is the first paper relating these two topics. However, the FDs gathered did not show 

specific trends as expected. This was likely due to issues caused by the preparation of the 

chromatograms. In figure 3.4 at the 8-12cm sediment depth for cores 5 and 6 we observed 

very low FDs. This was follow by an up turn in FD values until the bottom of the core. The 

observed pattern was the opposite scenario expected based on the number of peaks in each 

chromatogram. This was likely caused by an error in a lack of continuity of data transfer 

from one program to another. The visual display and export data values from ChromaToF 

are interpreted differently between the FracLac software program.   

The ChromaToF software was not monochromatic. Subsequently, instead of going from 

light to dark with increasing peak intensity, the program generates a trend of light to dark 



 

 

to light again.  In this visualization scheme, the most abundant molecules in the sample 

have a light peak apex (peak center) producing a donut-shaped monochromatic image of a 

high-intensity peak. The donut-shaped peaks add false spatial complexity to the image 

(Figure 4.1).  

 

 

Figure 4.1 Top: GC×GC-FID chromatogram from core 6 at 8-10cm. Bottom: GC×GC-FID 

chromatogram from core 6 at 10-12cm, the bottom chromatogram should have more peaks than the 

chromatogram at the top, but due the visualization program the whole area looks white, making the 

FD go down to the point that it becomes the lowest in the entire core.  

 

Area lost due to extremely high intensities. 



 

 

The lack of a trend between peak density and peak number with FD can be explained by 

excessive co-elution, chromatographic co-elution is a well-known phenomenon in 

chromatographic science and defined by the Encyclopedia of Astrobiology is “when two or 

more compounds do not chromatographically separate due to the fact that both species have 

retention times that differ by less than the resolution method” (Dworkin, 2011).  Excessive 

co-elution results in concentrating high numbers of peaks into various clusters that together 

have the appearance of lower spatial complexity in the chromatographic image. The result 

is that elevated clustering will result in a lower FD as their will be more background (white 

space) left in the image. Alternatively, the presence of a complex mixture can also result in 

an overall rise in the 1st and 2nd dimension baseline, meaning that the amount of space 

becomes more uniformly dominated by one number. This signal may not be fully removed 

using standard baseline subtraction methods in the chromatographic software. The results 

of a large baseline artifact on the GC×GC chromatographic image is a patchier distribution 

that should result in a lower FD.  

A potential resolution to this problem could be to produce a greyscale calculation, however, 

when this was done the image pixilation becomes complex at the baseline r value because 

the program’s default decreases as small as 1 pixel. This means that if there are more than 

2 peaks that overlap on a single pixel, FracLac will only count it as one, resulting in 

erroneous molecular complexity estimates. To evaluate this possibility, an experiment was 

conducted to minimalize the pixels per box parameter r (see equation 1).   We expect the 

larger foreground patches can be analyzed together giving another perspective about how 

the algorithm functions. However, the results were only a decrease in FDs for all four 

experimental case (Table 4.1). The results again look more random than equally distributed, 

the change in pixels does not present a big difference in data gathering.  



 

 

 

 

 

 

 

 

 

Table 4.1: Result of different minimum pixel per box. 

Complexity Sample 

1 

PIXEL 

2 

PIXELS 

4 

PIXELS 

10 

PIXELS 

20 

PIXELS 

40 

PIXELS 

Low 

complexity 

  

S18 0.9678 0.8738 0.8477 0.8520 0.8662 1.0337 

S19 0.8791 0.7868 0.7685 0.7485 0.7578 0.8075 

Medium 

complexity 

  

S7 1.1949 1.1385 1.1195 1.1118 1.1438 1.1790 

S17 1.2569 1.1869 1.1676 1.1733 1.2126 1.2319 

High 

Complexity 

  

Core 8 (6-8cm) 1.6852 1.6439 1.6280 1.6098 1.5967 1.5849 

Core 8 (10-12cm) 1.6750 1.6364 1.6203 1.6002 1.5904 1.5775 

 

Under saturation equally causes an inadequate representation of an FD calculation because 

baselines and peak number decreases, this can be caused due to low injection concentration 

on post data processing of the images prior export.  

FracLac also has a multifractal scanner. Multifractals defined by the programmer of 

FracLac’s multifractal scanner © are fractal systems in which a single exponent D (fractal 

dimension) is not enough for describing its dynamics. Multifractals are common in nature.  

Imbedded in a multifractal system is lacunarity. Lacunarity is the space in between the 

patterns with its fractal distribution (Figure 4.2).  



 

 

 

Figure 4.2 A multifractal electronic eigenstate (wave equations) at the Anderson localization 

transition system with 1367631 atoms (https://en.wikipedia.org/wiki/Multifractal_system). 

 

The multifractal has been proposed in various fields like medicine, finance and geography. 

In geology the concept has been successfully applied to geophysics; in scale, scaling and 

multifractals in geophysics (Lovejoy & Schertzer, 2007), explains how fractals and 

multifractals have helped to develop our knowledge in geophysics helping scientist to 

organize chaos. Multifractal measures specially for the geophysicist (Mandelbrot, 1989) 

explains how multifractals and self-similarity are related to the distribution of rare minerals.  

It is likely that 3D GC×GC chromatograms could display mulitfactal qualities that may 

related to the way that molecules are distributed in oils. 

 

5. Conclusions 

The results from the three study areas produced inconclusive results. For the greyscale 

analyses, the results did not produce definitive predictable trends, which require other 

options to be explored. The binary scan proved more promising due to trends noticed in 

https://en.wikipedia.org/wiki/Multifractal_system


 

 

figure 3.4 with the Guaymas Basin sample set. However, after comparing the FD against 

peak number and density it was realized that the method also has problems. The Middle 

Valley hydropyrolysis sample set showed reasonable results according to the FD and the 

complexity of the chromatograms, but other problems were creating errors in our 

chromatograms, the presence of granularity and the lack of specialization for FracLac to 

analyze chromatograms was the main problems here. Finally, the Escanaba Trough samples 

did not have granularity and the results followed our hypothesis that organic matrices with 

greater complexities will have higher FDs.  

We have to conclude that further research must be done for the FD method to be a useful 

oil fingerprint technique. Specifically, a better result must be achieved relating different 

variables that affect complexity in oils. The ideal algorithm will create a 3D grid around 

not the JPEG chromatogram, but around the 3D chromatogram generated from the raw data 

coming from the two-dimensional chromatograph. This direct application will allow for 

co-eluted peaks to be counted and will minimize image artifacts common in the 2D JPEG 

files. Additionally, the multifractal extension of this technique should be further explored. 

As oil is a naturally occurring substance and is composed of molecules with multiple carbon 

atom linked chains, it is likely a multifractal distribution of oil forming compounds can be 

detected with the proper implementation of this technique. Such a direction may improve 

understandings of the distribution of molecules in naturally occurring substrates.    
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7. Appendix A – Porgramming FIJI and FracLac  

 

1. Introduction to FIJI and FracLac 

ImageJ is a public domain, Java-based image processing program developed at 

the National Institutes of Health.  

ImageJ was designed with an open architecture that provides extensibility via 

Java plugins and recordable macros. Custom acquisition, analysis and processing plugins 

can be developed using ImageJ's built-in editor and a Java compiler. User-written plugins 

make it possible to solve many image processing and analysis problems, from three-

dimensional live-cell imaging to radiological image processing, multiple imaging system 

data comparisons to automated hematology systems. ImageJ's plugin architecture and 

built-in development environment has made it a popular platform for teaching image 

processing.  

 

ImageJ is a software mostly used by biologists and doctors, but because biologist and 

doctors had previous thought about fractality in nature and human body, it makes this 

software the best choice for the purpose of this project. It comes equipped with a boxcount 

option, which is not very useful due to its limitations on bits and pixels per image, but 

which was very accurate when calculating fractal dimensions in different known geometric 

objects, a square, a circle, a line and a dot.  

Some of the most useful features of ImageJ for this project, were the ability to create macros 

in order to re-do an operation multiple times, and the possibility to add plugins in order to 

achieve more specific goals; one of this plugins was FracLac which is a fractality-lacunarity 

calculator specialized for neuroscience.  

FracLac software possess a much better boxcount option than the option at ImageJ, and 

provides a much better view of fractal dimension calculations. ImageJ was the program 

where this project was done and FracLac was the plugin that allowed all the calculations. 

https://en.wikipedia.org/wiki/Public_domain_software
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/National_Institutes_of_Health
https://en.wikipedia.org/wiki/Open_architecture
https://en.wikipedia.org/wiki/Extensibility
https://en.wikipedia.org/wiki/Plugins
https://en.wikipedia.org/wiki/Radiology
https://en.wikipedia.org/wiki/Hematology


 

 

 

    

The basic box counting algorithm was originally modified from ImageJ's box counting 

algorithm and H. Jelinek's NIH Image plugin, and was further elaborated based on 

extensive research and development. FracLac has more than one way to calculate fractal 

dimensions, 6 different options are present in the menu, boxcount, sliding boxcount, 

connected set, mass vs distance, particle analyzer, rectangular array and random scans, and 

finally the complex multifractal scan; it can also process more than one type of images, 

greyscale images, as well as binary images.  

 The image below shows the menu that will appear after selecting one of such methods 

from the FracLac plugin, is very complex due to the multiple things you can do when 

analyzing images here.  

 



 

 

 

 

 

2. Chromatogram processing  

Image processing has some specifics steps to follow before the boxcount scan can workout, 

FracLac Sample 1. Shows the whole configuration for the multiple scans the program can 

do; the multifractal options, data processing and sub scan options don’t have any relevance 

for the purpose of this project.  

i. Image type: Data was processed with two different methods, first by 

a greyscale differential scan, and then, by a binary scan, this is 

selected from the image type window.  

1. Binary analysis: can only be done with binary images, if the image is not 

binary the auto convert to binary option has to be selected, this analysis will 



 

 

give a fractal number between 1 and 2, because is assumed to be represented 

in a 2D plane. 

2. Greyscale analysis: is more complex than binary, even though the data 

gathering method is the same the data measuring is not; here images exist in 

a pseudo 3D plane where a pixel is not always either on or off but 

somewhere else along a scale from 0 or white to 255 or dark black, this 

method provides a way to measure texture if we think in 3D and let the grey 

value be a proxy for volume, the result will give a fractal dimension between 

2 and 3.  

 

ii. Grid design: FracLac has multiple steps when configuring the grid 

design. 

1. Positions: this option allows the boxcount scan to start from different 

positions, so no data is missing because the boxes didn’t fully cover the 

whole image, then FracLac averages it and gets a fractal number for the 

image; for this option the max number of positions was set (12) in order to 

cover all different positions that could give erroneous numbers.  

2. Series: this option allows the user to select different types of boxcount, 

including linear series, power series, scaled series, relative series, odd series 

and block series. For grayscale scans the block series is set as default by 

FracLac, this will scan a square block within an image using a series of grids 

calculated from the block size. In the other hand for binary power series was 

used; here the base is raised to the exponent added to itself to make 

successive sizes.  

3. Sizes: The boxes will start from bigger sizes towards small ones, we can 

also configure how many pixels will have the starting boxes and how many 

pixels will have the end boxes. For the sake of this project a max number of 

pixels was equal to 45 and the smallest was equal to 1, the reason to do it 

this way was that 45 pixels was recommended by the programmers and 1 

pixel was the minimum number of pixels allowed by FracLac.  

4. Options: options were only available when selecting slide scans, which 

means that this option was not used.  



 

 

 

iii. Files: This option allowed the user to get extra information on the 

data that was processed, for the project grid data was selected in 

order to see differences in FD when different starting positions of 

the boxes happened.  

 
 

5.  Graphic options: in graphic options two of the options were selected in 

order to know more about the program, the grid and the boxcounting 

algorithm.  

5.1.Draw grids will create a GIF image showing the multiple boxes drawn through the 

picture and how they get smaller and smaller.  

5.2.Regression will create the regression line showing the relationship between the log 

of box size against the log of caliber.  

 

After all this process is, FracLac is ready to scan the previously edited chromatograms.  

 



 

 

 

 

 

 


