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Abstract 

Mapping and Quantifying Early Tidal Wetland Evolution 

Using Remotely Piloted Aircraft System Imagery and Object-based Image Analysis 

By Reyhan Akyol 

 

This research presents recommendations to effectively monitor the transition from former 

agricultural land back into salt marsh habitat following the dyke managed realignment at 

the Converse Marsh. For this analysis, two sets of multispectral RPAS imagery was 

collected pre- and a post-breach in September 2018 and May 2019 respectively. Both 

images were classified using Object-based Image Analysis (OBIA) and Random Forest, 

resulting in overall accuracies of 61% (Kappa 0.55) and 71% (Kappa 0.69). The results 

were compared with the Inundation Frequency to quantify classes by area and relative 

positioning. The use of OBIA is a feasible method for intertidal wetland delineation, 

however, it requires more objectivity in the process. The RGB camera and near-infrared 

sensor were missing critical sensitivity measures for radiometric calibration. The 

implementation of Random Forest proved to be a strong algorithm for intertidal habitat 

mapping. For future analysis, it is critical to have long-term tide recordings available. 
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Chapter 1: Introduction 

1.1 Project Context and Goal 

There are no accurate recordings of the historic loss of wetlands in Nova Scotia. 

Estimates show that approximately 80 percent of the salt marshes along the Bay of Fundy 

have been lost due to dyking for agricultural purposes beginning as early as in the 1700s 

(Byers & Chmura, 2007). As a consequence, the provision of ecosystem services and 

critical ecological functions decreased all across the Maritimes. The impact of human 

activities on coastal wetlands resulted in the loss of one of the most productive and 

diverse ecosystems on earth. They strengthen local biodiversity by providing food 

resources and habitat to fish, wildlife and plant populations. According to the Nova Scotia 

Wetland Conservancy Policy (Government of Nova Scotia, 2011), the Genuine Progress 

Index for Atlantic Canada assessed the remaining salt marshes in Nova Scotia and 

estimated monetary value of over 400 million Canadian Dollars per year by considering 

flood prevention, erosion control and protection of infrastructure against storm surges. 

Municipalities also show an increasing interest in conserving, constructing or restoring 

wetlands for water purification and to enhance the productivity of fisheries (Government 

of Nova Scotia, 2011; Tibbetts & van Proosdij, 2013). The province of Nova Scotia has 

developed the No Net Loss of Wetlands policy in response to the Environment Goals and 

Sustainable Prosperity Act (EGSPA) (Government of Nova Scotia, 2009). The greatest 

challenge for local jurisdictions is, however, related to the consequences of climate 

change. With the use of new technologies and advanced analysis methods, this research 

aims to develop best practice solutions to decrease costs and increase efficiency when 

monitoring tidal wetland restoration in the Bay of Fundy. 
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The consequences of climate change and greenhouse gas emissions of the past 

will impact places and citizens of coastal regions and therefore urgently calls for proper 

strategies to ensure resiliency and sustainability of vulnerable upland areas (Daigle 

Enviro, 2017). According to the latest Intergovernmental Panel on Climate Change 

(IPCC) report (Working Group 1 of the Fifth Assessment Report), the averaged global 

surface temperature showed a linear trend in the warming of the Earth’s atmosphere of 

0.85 ℃ for the period 1880 to 2012. The report further states that based on consistent 

measurements from tide-gauge and satellite altimeter data, the mean rate of global 

averaged sea-level rise was 3.2 mm per year between the period 1993 and 2010. The 

scientists continue with high confidence that since the early 1970s, 75% of the observed 

global mean sea-level rise can be lead back to glacier mass loss and ocean thermal 

expansion due to the warming climate (IPCC, 2013). It is predicted that ocean 

temperatures will increase and accelerate polar ice sheets and land glacier melting, 

resulting in the rise of global sea-levels of about one metre by 2100 (Daigle Enviro, 

2017). The rise in the global mean sea-level would bring an increase in flooding 

frequency and extent, and with that, the risk of flooding areas that are usually above the 

levels of astronomical high tides.  

The predicted extreme weather events causing storm surges is especially 

significant for Atlantic Canada’s coasts and the Bay of Fundy in particular (Shaw et al., 

1998), emphasizing the importance of regional sea-level rise scenarios to improve the 

calculated and predicted consequences of global warming for Nova Scotia. Several 

studies considered the regional implications of sea-level rise and flooding scenarios based 

on projections from the IPCC Fifth Assessment Report and incorporated the regional 

components of isostatic and eustatic sea-level rise (Singh et al., 2007; Daigle Enviro, 
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2017). More specifically, the components of vertical land movement, land glacier and ice 

sheet meltwater redistribution, dynamic oceanographic effects, land water storage and 

expected increases in the tidal range in the Bay of Fundy. These calculations are extreme 

sea level predictions of regional sea-level rise and predicted to be 0.88 m (± 0.38) at a 

95% uncertainty factor within the next century (Daigle Enviro, 2017). This number was 

calculated for the eastern part of the upper Bay of Fundy, applying to coastlines of 

Chignecto Bay, based on the Representative Concentration Pathway 8.5 (RCP8.5) 

projection of the IPCC Fifth Assessment Report (AR5) (Daigle Enviro, 2017).  

The impacts of coastal flooding and erosion by the rise of sea-levels in Atlantic 

Canada increase the sensitivity of coastlines significantly and calls for immediate 

adaptation strategies to ensure resiliency and sustainability of local communities. In 

particular, the magnitude and frequency of extreme weather events causing more 

damaging waves and storm surge, amplifying the risk of flooding for the low-lying areas 

behind dykes. Moreover, fewer winter sea ice seasons as a response to warming ocean 

temperatures will further increase damage to coastal ecosystems and structures (Duarte et 

al., 2013; Daigle Enviro, 2017).  

In Nova Scotia, dykes have been built to create and protect agricultural land. 

However now, since the low-lying coastal areas are facing more challenges, the same 

coastal defences can no longer be maintained at their current location in many areas 

around the Bay of Fundy. Dykes have to be breached and moved further back towards the 

upland to assure continuous protective functions and decrease vulnerability. One of the 

most sensitive environments on Canada’s coasts are salt marshes and intertidal habitats in 

general, which are threatened by permanent inundation, erosion, and other risks, such as 

changes in rates of marsh accretion or storm surge due to coastal squeeze. Moving present 
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coastal defences further back would allow those habitats the opportunity to respond to the 

rising sea levels (Shaw et al., 1998). As a favourable consequence, salt marsh ecosystems 

are being restored, aiding with its many functions in climate change adaptation (Duarte et 

al., 2013; Bowron et al., 2015). In particular, there are three main qualities of salt marshes 

in the Bay of Fundy relevant in their adaptive function, as outlined by Singh et al. in 

2007: 

1) The ability of salt marshes to self-adapt with sufficient sediments available, 

providing material for vertical accretion as well as the minerals to support 

plant colonization. 

2) The role of salt marsh systems in providing buffer zones between land and sea. 

3) The long-term economic efficiency of salt marshes in comparison to the 

construction and maintenance of hard structures along the coasts.  

 

The Nova Scotia Department of Agriculture (NSDA) carries the responsibility of 

maintaining 241 kilometres of dykes to protect roughly 16,000 hectares of valuable 

agricultural land in the province. While many of these dykes were topped to update their 

critical elevations in early 2000, there are still dykes at several location in the Bay of 

Fundy that are highly vulnerable to dyke overtopping caused by sea-level rise and storm 

surge (Tibbetts & van Proosdij, 2013; van Proosdij et al., 2018). The critical elevation in 

the Bay of Fundy is determined by calculating the average high tide plus approximately 

0.61 metres for exposed dykes and less for the ones located upriver (van Proosdij & Page, 

2012). 

Due to the factors mentioned earlier, the Government of Canada provided funding 

through the Coastal Restoration Fund of the Department of Fisheries and Ocean and the 
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National Wetland Conservation Fund of Environment and Climate Change Canada to the 

Making Room for Wetlands project (www.transcoastaladaptations.com), which is co-led 

by Saint Mary’s University and CB Wetlands and Environmental Specialists (CBWES 

Inc.). Within this project, academics and industry work together to find nature-based 

solutions related to promote and undertake climate change adaptation. The overall 

mission of this project is to help build climate resilient coastal communities and 

ecosystems by restoring natural processes.  

In Nova Scotia, several monitoring projects are being carried out to follow the re-

establishment of natural ecosystems and re-development of high habitat diversities in 

tidal marshlands to provide essential ecosystem services (Bowron et al., 2015). These 

efforts need strategic planning and management. With advanced knowledge of the 

evolution of tidal wetlands, these kinds of projects will provide a better understanding of 

restoring coastal salt marsh trajectories in the Bay of Fundy; they are also leading to 

greater insights for planners, consultants, and scientists, thereby contributing to higher 

success rates in future managed realignment projects.  

Reliable tools need to be developed to support the strategic planning of coastal 

land management. Notably, the quantitative assessment of vegetation and geomorphic 

recovery in restoration projects can provide important indicators about factors driving or 

limiting a recovering system. Frequent monitoring during the first few years of a breach 

event can provide key answers about the recovery of salt marsh systems in highly turbid 

macro-tidal environments and high suspended sediment concentrations (Bowron et al., 

2012). In addition, monitoring can help to better manage and alleviate the physical 

changes in intertidal systems which in turn profoundly impacts socio-economic and 

ecological components of adaptation and mitigation planning (Shaw et al., 1998).  
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In order to support restoration activities in Nova Scotia, this research study 

deployed different types of sensors mounted on a Remotely Piloted Aircraft to collect 

hyper-spatial imagery ranging across several spectral bands of the electromagnetic 

spectrum to monitor and quantify the evolution of an intertidal habitat following managed 

dyke realignment at the Converse site in the upper Bay of Fundy. The imagery was first 

collected before the dyke breach, and once again about five months after the dyke was 

breached and tidal flow was re-introduced to the previously protected fallow agricultural 

land. To further improve the accuracy and reliability of this assessment, the images were 

classified using the method of Object-based Image Analysis and machine learning 

algorithms. It further tests the feasibility of the application of RPAS imagery with an 

attached near-infrared sensor and the use of machine learning algorithms for the 

classification. The technology and methods applied in this study will further be explained 

in more detail in later chapters of this work. In sum, this research provides a framework 

and recommendations for the implementation of Object-based Image Analysis for 

quantifying the evolution of a restoring salt marsh habitat. 

1.2 Restoring Tidal Wetlands 

Currently, there is one officially recognized classification system in Canada – the 

Canadian Wetland Classification System (CWCS). A marsh is one of the five wetland 

classes identified in the CWCS and is controlled by daily, seasonally or annually 

fluctuating water levels, often due to tides. Marshes can be further subdivided into 

different forms based on the source of water and basin topography. A common form in the 

Bay of Fundy is the tidal marsh. Tidal marshes develop in sheltered intertidal areas with 

available sediments under regular tidal saltwater flooding and no significant influence of 
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freshwater. Vegetation on tidal marshes is controlled by the duration of tidal exposure, 

slope gradients, distribution of tidal channels, and salinity (Warner & Rubec, 1997). Tidal 

marshes, also referred to as tidal wetland, inhabit a specific type of ecosystem, which is 

known as a salt marsh. By definition, a salt marsh is a vegetated wetland that is flooded 

regularly by tidal water or is influenced by salt spray or seepage, such that the water and 

soil are saline or brackish. These habitats are also known to exist within a network of tidal 

channels and often have ponds present (Province of Nova Scotia, 2017). The most recent 

wetland inventory by the Nova Scotia Department of Natural Resources (NSDNR) in 

2004 indicates a total area of 17,060 hectares of salt marsh habitat in the province 

(Government of Nova Scotia, 2011). Most of it occurs in small pocket estuaries at river 

mouths or extends along existing dykes and shorelines in the Bay of Fundy (Bowron et 

al., 2012; Roman & Burdick, 2012). For the purpose of this study, tidal marshes, tidal 

wetlands, and salt marshes will be considered synonymous and used interchangeably 

throughout this work.   

The high value of services provided by tidal wetland systems has been known for 

several decades (Bartlett & Klemas, 1980). Apart from the provision of habitat for 

ecologically significant species and protection of coastal zones from storm damage and 

high erosion rates, tidal wetlands are composed of the most fertile soils and ecosystems 

worldwide and have the ability to accumulate carbon (Figure 1.1) (Connor et al., 2001; 

Singh et al., 2007; Porter et al., 2015).  
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Figure 1.1: Services and natural functions provided by salt marshes to promote coastal resilience 

against the impacts of climate change (modified after Duarte et al., 2013) (Background Photo: 

Cogmagun site; Credits: Sweeney, L., 2018) 

 

As discussed earlier, salt marshes are saline environments of the intertidal zones 

and are inhabited mainly by halophytic plant species (salt-tolerant plants). The saltwater 

inundation frequency and duration are the main drivers of patterns of salt marsh 

vegetation distributions. There are two main zones of differentiating salt marsh 

vegetation; the low marsh species formed by frequent and relatively long inundation 

times, and the high marsh species beginning just above the mean high water line 

characterized by less frequent flooding. The detailed marsh species composition within 
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each of the before named zones can vary depending on climate, soil, slope, sediment 

supply and many other factors (Tiner, 2013). In Nova Scotia, the low marsh zone is 

mainly dominated by Spartina alterniflora and the high marsh zone by Spartina patens 

(Porter et al., 2015).  

Different physical and chemical drivers are essential for the structure and function 

of salt marshes in general. These variables include not only tidal flooding, frequency and 

duration but also soil salinity and permeability. Salt marshes can be found in tidal 

environments with sediment accumulation rates equal to or higher than land subsidence 

rates and appropriate coastal protection against erosion (Mitsch & Gosselink, 2015). 

Suspended sediment concentrations are critical factors for salt marshes to be resilient 

against rising sea-levels and restoration success (Singh et al., 2007). Large areas of early 

salt marsh colonizers developed on accreting intertidal flats through sufficient supply of 

these inorganic materials providing a high restoration potential in the Bay of Fundy 

(Bowron et al., 2012). 

 

In the Maritime provinces of Atlantic Canada, salt marsh restoration is still in its 

infancy and has been focused mainly on sites with the most significant historical loss of 

salt marsh habitat – the Bay of Fundy. In Canada, there is still no provincially or federally 

specified guideline to plan, conduct and monitor salt marsh restoration projects. Before 

2005, salt marsh habitat restoration activities were rather unanticipated consequences of 

other development projects in Nova Scotia, such as the construction of a causeway 

leading to new establishment or redistribution of tidal marshes, and only some of them 

were monitored long-term and in a systematic manner (van Proosdij et al., 2009; Bowron 

et al., 2012). Later, restoration efforts were conducted with the primary goal of recreating 
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salt marsh habitats, with extensive and ongoing monitoring efforts (Bowron et al., 2012). 

Today, the total area of restored tidal wetland habitats in the province of Nova Scotia has 

reached about 320 hectares (D. van Proosdij, personal communication, Dec. 2020).  

There are three different methods of salt marsh habitat restoration that occur in the 

Bay of Fundy: a) passive restoration when a dyke is breached by natural causes and no 

human interference, b) active restoration through either a management decision to 

suspend the maintenance of a dyke, and c) planned removal or change of coastal barriers 

by modifying the site hydrology. Most of the active tidal salt marsh restoration projects in 

Nova Scotia principally build upon natural processes when they, for one, partially or 

wholly removed tidal gates, water control structures, or dykes; for another, installed 

culverts or bridges to re-introduce tidal flow to a marshland system successfully. 

Furthermore, some of the sites required more advanced restoration plans such as the 

creation of tidal channel networks and ponds to account for the heavily modified land 

morphology due to their agricultural use (Bowron et al., 2012).  

Managed Realignment 

Managed realignment, also known as a managed retreat or set back, is a relatively 

new approach in coastal management to protect against the impacts of wave energy and 

rising sea-levels (French, 2006). This approach follows the simple principle of returning 

land to the sea and with that allow the development of new salt marsh and intertidal 

mudflats behind the former barrier. For about the last two decades, coastal engineers and 

restoration practitioners have chosen this new soft engineering approach and relocated the 

land-sea line of defence landward due to landward movement of the mean low water 

mark caused by rising sea-levels and coastal squeeze. The most apparent benefits of this 
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technique come from wave attenuation and a decrease in the impacts of local sea-level 

rise, while they provide a valuable carbon sink for carbon dioxide from the atmosphere 

(Figure 1.1). Another, more common point, however, is the economic factor of choosing 

this type of nature-based approaches. Managed realignment often creates a more cost-

efficient alternative for coastal protection than compared to the more common choice of 

maintaining and strengthening existing sea defences (ibid). 

Fundamentally, the scientific technique of managed realignment builds upon the 

adaptation of intertidal environments to sea-level rise, which would eventually occur 

under natural conditions (Figure 1.2). However, by artificially creating this landward 

retreat, the salt marsh habitats are not allowed gradually to spread landward and upward 

following a natural profile along the coast. Rather, it introduces tidal waters into formerly 

protected lands in a very sudden movement. In most cases, the land to be restored had 

subsided over time and is at the time of the realignment not at the surface elevation as it 

would be under natural site conditions (French, 2006).  

 

 

Figure 1.2: Natural adaptation of coastal marshes in response to sea-level rise is realized 

through vertical growth and retreat (modified after Mitchell & Bilkovic, 2019). 
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The complex nature of salt marsh reestablishment following managed realignment 

is evident by the several other examples from Europe and North America (French et al., 

2000; Klötzli & Grootjans, 2001). The establishment of a reliable and efficient 

monitoring framework for managed realignment projects can provide more knowledge 

about constraining elements that may or may not influence a successful restoration 

outcome (Bowron et al., 2012). Advances in remote sensing and monitoring technologies 

present an opportunity to track the restoration trajectory of evolving tidal wetland 

landscapes in an innovative way.   

1.3 Remote Sensing in Wetland Assessment 

This study and its implementation rely on the discipline of remote sensing, which 

is adequately summarized and defined as: “Remote sensing is the science (…) of 

acquiring information about the Earth’s surface without actually being in contact with it. 

This is done by sensing and recording reflected or emitted energy and processing, 

analyzing, and applying that information.” (Canada Centre for Remote Sensing, 2015, pp. 

Fundamentals of Remote Sensing - Introduction). In remote sensing (RS), there are some 

critical technical terms, which need closer attention and clarification with regards to the 

“resolution” of any given image. The spatial detail of any image depends on the spatial 

resolution of the sensor and describes “the size of the smallest possible feature that can be 

detected” (Canada Centre for Remote Sensing, 2015, pp. Satellites and Sensors: Spatial 

Resolution, Pixel Size, and Scale). The spatial resolution is directly connected to an 

optical sensor’s ‘Instantaneous Field of View’ (IFOV), which is an angular cone of 

visibility captured by the sensor of the Earth’s surface at a given altitude and particular 

moment at a time. The actual area of the ground captured can then be calculated by 
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multiplying the IFOV by the distance from the surface to the sensor. The spectral 

resolution of any given image is the indicator of the width of each band of the sensor, 

showing the ability of a sensor to detect more or less reflectance values within each 

respective band (Canada Centre for Remote Sensing, 2015). With the spectral resolution, 

the importance of the radiometric resolution also comes into play. The radiometric 

resolution of an image describes the range in brightness levels on a grayscale. The finer 

the radiometric resolution, the higher the sensitivity of the sensor to record small 

variations in reflected or emitted energy. The associated brightness levels are recorded in 

binary numbers, which control the degree of detail each pixel can contain. With that, the 

maximum range of gray values in an image is dependent on the number of bits used to 

store the radiometric information. (Lavender & Lavender, 2016) (Figure 1.3).  
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Figure 1.3: Electromagnetic spectrum outlining specifications of spectral resolution and 

radiometric resolution (modified after (NASA, 2013)) 
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Already in the early years of satellite Remote sensing, the technology has been 

used in many studies to support wetland research. Several studies have previously used 

remote sensing and image analysis to identify and monitor salt marshes using different 

platforms and sensors. First, aerial photography was the primary source of synoptic 

information gathering when mapping coastal wetlands. Colour infrared photographs in 

particular were used in many studies to support the mapping and quantification of coastal 

wetland plant communities (Hardisky et al., 1986).  

The launch of the first LANDSAT Earth observation satellite in 1972 provided 

highly valuable technological advancements in environmental sciences. Its multi-spectral 

scanner instrument helped to obtain synoptic remotely sensed data at regular time 

intervals to obtain useful information about objects or areas of the Earth's surface 

(Alföldi, 1975; Munday Jr. & Alföldi, 1979). The use of sensors to measure 

electromagnetic radiation beyond the visible part of the spectrum supports the acquisition 

of information about environmental processes and helps to increase our understanding of 

complex dynamics on earth and monitor natural reserves worldwide (de Jong & van der 

Meer, 2004). Satellite remote sensing offers the user multispectral data in a wider variety 

of spectral wavebands, which gave scientists access to already digitally available 

radiance. In 1976 and 1979, Bartlett used spectral information of plant canopies to 

determine correlations between green biomass, percent live biomass, total biomass, 

canopy height, and Spartina alterniflora and Distichlis spicata – Spartina patens mixture. 

He further concluded that the red and near-infrared band combination delivered the most 

useful results for this type of analysis. Confirmed by other studies in those early years, the 

most significant changes in the spectral signatures of coastal wetlands can be observed in 

a decrease in red and in an increase of near-infrared due to absorption by chlorophyll and 
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leaf scattering respectively (Hardisky et al., 1986). In another example, satellite imagery 

was combined with aerial imagery to classify wetlands by making use of the higher 

spatial and temporal resolution of the latter (Guo et al., 2017). Amani et al. (2018) 

published a paper on spectral separability of five different wetland classes in 

Newfoundland and Labrador, Canada, and proved high classification accuracies by using 

various spectral indices, textural, and ratio features based on optical satellite imagery. The 

results of this study showed as well that the near-infrared band delivers the best results, 

followed by the red-edge band.  

Belluco et al. (2006) incorporated datasets obtained from different satellite and 

airborne platforms with a wide range of spatial and spectral resolutions to set a 

quantitative context for vegetation mapping in intertidal environments using the example 

of different examples of marshes in the Venice Lagoon in Italy. Their initial classification 

results showed that intertidal species could be discriminated most easily at their full 

development stage. One significant outcome of this study also proved that spatial 

resolution has a higher impact on classification accuracy than spectral resolution. The 

authors concluded that remote sensing is a useful tool for salt marsh vegetation mapping 

and their spatial distribution and recommend image classification to be considered as the 

technique of choice for salt marsh monitoring.  

The use of remote sensing to monitor natural and man-induced coastal ecosystem 

changes are getting more reliable and gaining popularity due to advances in sensor 

developments and data analysis techniques (Klemas, 2011). This is mainly represented in 

the use of hyperspectral imagery and their benefits in species mapping in coastal salt 

marshes (Silvestri et al., 2002; Schmidt & Skidmore, 2003; Belluco et al., 2006). 
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The field of active remote sensing has been rising in popularity in recent times 

also attracted the attention of wetland researchers (Zhao et al., 2018). Scientists have 

published a successful study on the use of TerraSAR-X imagery, a high-resolution space-

borne Synthetic Aperture Radar (SAR) platform, to map salt marsh habitats and tidal flats 

near the estuaries of the Hang-gang in South Korea (Yoon-Kyung et al., 2012). Van 

Beijma et al. (2014) applied a combination of optical remotely sensed imagery and 

airborne SAR imagery to map coastal salt marsh habitats on a site at the Gower Peninsula 

in Wales, UK. The combined application of different remotely sensed imagery is a 

popular approach in wetlands mapping. Jahncke et al. (2018) classified wetlands in Nova 

Scotia by using RADARSAT-2 Polarimetric SAR, optical satellite imagery (QuickBird), 

as well as LiDAR datasets. LiDAR (Light Detection and Ranging) systems provide a 

valuable source for generating high-resolution Digital Terrain Models (DTM) and Digital 

Surface Models (DSM) of intertidal landscapes. Collin and collaborators (2010) 

conducted an airborne LiDAR survey to detect intertidal vegetation, assess the salt-marsh 

zonation, and to map intertidal habitats and their adjacent coastal areas in the Gulf of St. 

Lawrence in Canada. High-resolution LiDAR datasets are also a useful tool to assess salt 

marsh restoration site suitability (Millard et al., 2013).  

Mapping and monitoring wetlands with the help of remote sensing techniques 

generally provide high potential for evaluating the effectiveness of the restoration 

processes. They are a valuable tool for scientists due to the possibility of frequent site 

assessment capabilities and the provision of timely information from often inaccessible 

places. While in-situ measurements of coastal marsh environments are highly informative 

in regards to changes in wetland functioning, environmental drivers and their 

consequences for changes on the site. However, these assessments carried out by field 
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visitation are also very laborious and time-intensive. Although remote sensing is more 

cost-efficient when compared to field-based inventories, the classification of wetlands by 

way of remotely sensed image analysis also contains challenges due to similarities in their 

spectral properties (Gallant, 2015; Amani et al., 2017; Mahdavi et al., 2017). The low 

spectral contrast present in intertidal salt marsh components depends on various factors, 

such as species composition on-site (Artigas & Yang, 2006; Sadro et al., 2007), plant 

health (Tilley et al., 2007), and observation time (Gao & Zhang, 2006). In various studies, 

scientists have always tried to develop advanced methodologies and techniques to reduce 

the pervasive challenge of similarities within spectral characteristics between different 

wetland types and land cover classes (Belluco et al., 2006; Moffett & Gorelick, 2013; 

Amani et al., 2018). Salt marshes demonstrate a particular challenging case in wetland 

mapping based on remote sensing methodologies (Moffett & Gorelick, 2013). 

Spectral differences in vegetation can be adequately captured by considering 

integration of the vegetation phenology and seasonality in the analysis (Bartlett & 

Klemas, 1980). This is very useful for identifying individual species for habitat mapping 

since the spectral signature of a plant varies throughout the season when growth impacts 

ratios of plant pigments, leaf water contents, plant height, canopy effects, leaf angle 

distribution and other structural characteristics of saltmarsh species (Ozesmi & Bauer, 

2002; Gilmore et al., 2008). One way of overcoming some of the named challenges is the 

use of newer approaches such as the Object-based Image Analysis, which will be further 

discussed in a later section. 

The spectral information content of RS images is influenced by several factors and 

processes. The position of a sensor and the orientation from which angle or direction an 

object of interest on the earth’s surface is illuminated, control how an object is perceived 
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on an image. The natural light in the atmosphere is affected by diffusion, direction, 

reflection and absorption. It shows high variations dependent on season, time of the day, 

latitude, altitude, cloud coverage, and humidity. The light can be differentiated in hard 

quality during the clear sky and mid-day hours, and soft quality light observed under 

cloudy conditions earlier or later in the day. When collecting imagery for analysis, full 

illumination and top-lighting of landscapes are preferred during mid-day to assure the 

highest lighting conditions and the least possible amount of shadows on site. Vegetation 

has one of the most complex reflectance characteristics; one part of the sunlight may 

partially reflect from the top canopy and some from the surface below by penetrating the 

canopy through the plant to the ground. Another portion of the light is scattered in 

different directions by parts of the plant structure, where further scattering, transmission 

or absorption processes may apply (Aber et al., 2010).   

1.3.1 Remotely Piloted Aircraft Systems and Sensors 

The Unmanned Aerial System, short UAS, is a term involving an unmanned 

aircraft (UA), a ground control station (GCS), and a data link to communicate with the 

UA for command and control (C2) from the control station. With increasing popularity, 

UAS became known under a wide range of names and acronyms, such as aerial robots, 

drones, or in the scientific community, the more popular term of Unmanned Aerial 

Vehicle (UAV). Whereas, the latter term only refers to the UA itself and does not include 

the system with command and control. In 2011, the new name Remotely Piloted Aircraft 

(RPA) or Remotely-Piloted Aircraft System (RPAS) respectively was introduced by the 

International Civil Aviation Organization and is now the official term inaugurated in the 

Canadian Aviation Regulations since the last update of June 2019 (ICAO, 2011; 
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Colomina & Molina, 2014). This study will be referring to the terminology of RPAS and 

RPA respectively in the following chapters of this work.  

For several decades, RPAS have been known to be successfully used in aerial 

photography acquisition for many different environmental applications having its roots in 

military activities (Klemas, 2015; Green et al., 2019). There has been a wide range of 

remotely controlled airborne platforms in the past with variations in size, type, and 

design, such as airfoils, kites, balloons, and blimps (Green et al., 2019). However, today, 

there are two main types of RPAs to be differentiated – the fixed-wing and rotary-wing 

RPA (Klemas, 2015). 

Technological advancements in the flight control systems of RPAS promoted the 

use of these instruments as a tool for scientific research and application (Hugenholtz et 

al., 2012). Significant upgrades and developments of functionalities and designs of 

hyperspectral imagers, LiDAR sensors, synthetic aperture radar, thermal imager, and 

others, have further amplified their integration in scientific applications (Klemas, 2015). 

Another significant advantage over satellite imagery or aerial photography from piloted 

aircraft is the high spatial and temporal resolution of RPAS imagery, which is controlled 

by a ground-based operator (Pande-Chhetri et al., 2017). In recent years, the application 

of Remotely Piloted Aircrafts has increased rapidly through sensor capability 

advancements, availability of software to process RPAS imagery, hardware affordability, 

and improvements in sensor technology in general. Moreover, the application of RPAs is 

a time and cost-efficient alternative to support the multi-temporal assessment of changing 

environments at a very high resolution. Their practicality for repeated monitoring and 

surveying, in particular, has contributed to their rising popularity among scientists in 

coastal environment applications (Klemas, 2015; Green et al., 2019). G. F. Tomlins 
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(1983) had applied such platforms already in the early 1980s for wildlife habitat 

assessment, site mapping, shoreline mapping, and coastal studies in general (Green et al., 

2019). The very high-resolution imagery (<10cm) and Digital Elevation Models (DEMs) 

retrieved from a RPAS surveys provide valuable sources of information for coastal 

management applications. Examples include, quantification of morphodynamic and 

sedimentary changes of the coastal fringe, monitoring cross- and long-shore sediment 

transport, providing input for hydrodynamic numerical modelling, and even allow the 

observation of coastal change and quantification of the motion of local features 

(Delacourt et al., 2009; Klemas, 2015).  

1.3.2 Object-based Image Analysis 

Object-based Image Analysis (OBIA), also referred to as Geographic Object-

based Image Analysis (GEOBIA) or Object-oriented Image Analysis (OOIA), is an 

advanced image analysis technique providing an efficient way of data retrieval and 

analysis by bridging remote sensing and geoinformatics. With the ever-improving 

technology and demands in geoinformatics sciences, this new approach offers adequate 

and automated ways of handling very high spatial resolution imagery (Blaschke et al., 

2014). Image analysis based on objects do not only considering spectral information, but 

more importantly, it allows the analyst to add spatial, textural, and topological 

components (Lang, 2008). This approach also shows high potential by facilitating the 

transformation of complex data from image scenes into ready-to-use GIS information 

(Lang, 2008). In particular, within the sector of natural resource management where there 

is a rapidly rising number of implementations of very hyper-spatial imagery captured by 

small RPAS (Watts et al., 2008).  
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Initially, digital remote sensing image classification was based on individual 

pixels as the basic unit for each analysis. With the application of supervised, 

unsupervised, or hybrid image classification techniques, each pixel is assigned to a single 

land use or land cover class. More traditional remote sensing sources come with coarser 

spatial resolutions and may contain multiple classes within a single pixel. More complex 

and advanced image classification techniques, such as the fuzzy classification and 

spectral mixture analysis, were later introduced to overcome the problem with mixed 

pixels. Before the end of the past century, and with the availability of very high-resolution 

imagery, the opposite problem was observed; higher spatial resolutions resulted in higher 

within-class variation captured by neighbouring images. With the new classification 

technique of object-based image analysis, an image object became the base of the analysis 

contrary to the conventional methods, where an individual pixel builds the base (Li et al., 

2014). Image objects are clusters of pixels created by segmenting a whole image scene 

based on statistical measures of similarity (Stuckens et al., 2000). Each image object 

forms a new entity summarizing the information of every pixel contained in that 

respective object cluster and now provides spectral, topologic, and geometric information 

for classification (Hassan et al., 2014). Other studies have been published on successfully 

delineating wetlands using high-resolution satellite imagery and object-based image 

analysis with high accuracies (Hassan et al., 2014; Mui et al., 2015).  

Object-based image analysis is relatively new within the remote sensing 

community of environmental applications. A workshop on Remote Sensing and GIS – 

new sensors, innovative methods in 2001 introduced a paradigm shift from the 

conventional remote sensing approach to the object-based image analysis with the 

synergy of computer technology, earth observation sensors, and geographical information 
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sciences. The number of papers applying object-based image analysis published from 

mainly young scientists increased rapidly in the years after – especially the publications 

in grey literature, though some of them were controversial regarding their scientific 

nature (Lang et al., 2006).  

As one of the first, Burnett and Blaschke published in a journal about the OBIA 

application in 2003, where they argue that the conventional per-pixel classification 

method does not consider the spatial concepts of neighbourhood, proximity, or 

homogeneity sufficiently. They demonstrated an alternative image processing method to 

overcome the so-called pixel-centred view. Later, Benz and her collaborators published a 

paper in 2004, describing a detailed workflow of OBIA. In Benz’s publication, they 

introduce, among others, the possibility of a multi-scale analysis in the eCognition 

software environment. Hierarchical networks of image objects allow image information 

to be represented simultaneously at different scales (Benz et al., 2004). This paper serves 

as an accessible guideline among researchers and is generally referred to as the 

‘eCognition paper’ (Lang et al., 2006). 

Previously conducted studies using OBIA in wetland research reported a 

significant increase in classification accuracy compared to conventional remote sensing 

methods, especially when working with very high-resolution imagery exhibiting large 

amounts of shadow and low spectral information as it is often observed in off-the-shelf 

sensors mounted on RPAs (Hodgson et al., 2003; Harken & Sugumaran, 2005; Yu et al., 

2006; Laba et al., 2010; Kim et al., 2011). Pande-Chhetri et al. (2017) collected RPAS 

imagery at a study site in South Florida to classify wetland vegetation using both 

methods, pixel-based and object-based, to draw a comparison between both approaches 

and concluded that OBIA outperformed the conventional analysis method. Similar 
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conclusions resulted in a study conducted on a site at the Yangtze River Estuary in China, 

where the scientists evaluated the classification performances of pixel-based and object-

based analysis to map salt marsh species using very high-resolution satellite imagery 

(Ouyang et al., 2011).  

Rokitnicki-Wojcik et al. (2011) showed that OBIA rule sets based on high-

resolution satellite imagery can successfully be transferred to other regions with similar 

spectral, spatial, and textural properties to classify coastal high marsh in Georgian Bay, 

Canada, and demonstrated with that the opportunity for standardization in wetland 

mapping using OBIA.  

After reviewing available literature and publications related to mapping salt 

marshes using OBIA, there has been a noticeable trend of fairly inconsistent choices of 

spectral and spatial resolutions, parameter settings, or even classification algorithms 

throughout. This observation is supported by an extensive review by Moffett and Gorelick 

(2013), stating the difficulty of generalizing useful approaches from past wetland OBIA 

studies from the literature. This stresses the importance of creating an OBIA framework 

to classify intertidal wetlands that employ RPAS imagery, which will provide a 

monitoring base to improve mapping quality for restoration trajectories.  

This thesis research focuses on the development of a systematized classification 

framework for tidal wetland restoration projects based on multispectral RPAS imagery 

using the methodology of object-based image analysis. With OBIA, ecologically 

meaningful information on spatial context and neighbourhood relationships can be taken 

into consideration when it comes to the identification of heterogeneous landscapes 

(Dronova, 2015).  
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1.4 Research Question and Objectives 

The process of image interpretation and classification of remotely sensed imagery 

with high temporal frequencies allows unique opportunities in deriving information from 

the natural environment (Li et al., 2014). The purpose of this research is to establish a 

classification framework for using multi-spectral RPA imagery as a tool to efficiently 

monitor the changing intertidal system after managed realignment. The overall goal is the 

development of semi-automated classification guidelines to improve the acquisition and 

monitoring approaches to understand primary processes and relationships between a 

restoration site morphology, inundation frequency, and evolution of a tidal environment. 

Other studies monitoring and quantifying restoration progress in highly turbid and 

macro-tidal systems with high suspended sediment concentrations, such as it is present in 

the Upper Bay of Fundy, are limited. In particular, monitoring at a high spatial and 

temporal resolution in a semi-automatic way has not been applied before in these 

environments. Conventional methods of coastal marsh restoration monitoring in Nova 

Scotia are constrained to yearly field deployments, focusing on a range of physical and 

biological components, such as hydrology, soils and sediments, vegetation, nekton and 

benthic invertebrates (Bowron et al., 2013); which, while successful, do not provide a 

basis to understand why or how these changes may have taken place. The outcome of this 

research builds upon the work processes of CBWES Inc. and offers a more cost and time-

efficient alternative by automating the creation of habitat maps, extracting geospatial 

attributes using image analysis and understanding factors driving restoration trajectories.  

This research uses the managed realignment project of the Making Room for 

Wetlands Project in Converse, Nova Scotia, as a case study to illustrate the use of 

Remotely Piloted Aircraft Systems and OBIA as an alternative method of data acquisition 
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and image analysis to improve our understanding of a tidal wetland restoration trajectory. 

The integration of machine learning algorithms will further help to improve image 

classification results and support the automation of the classification process.  

The overall goal is the development of semi-automated classification guidelines to 

improve the acquisition and monitoring approaches to understand primary processes and 

relationships between a restoration site morphology, inundation frequency, and evolution 

of a tidal environment. The individual objectives for this study are: 

1. Increase accuracies by establishing a semi-automated classification framework 

using multispectral RPAS imagery and Object-based Image Analysis. 

2. Improve classification outcomes by implementing machine learning 

algorithms into the analysis of hyperspatial imagery. 

3. Identify restoration progress by quantifying land-cover classes of 

multitemporal imagery. 

 

The outcomes can be used as general guidelines by scientists and analysts on how 

to use multispectral RPAS imagery to identify dominant drivers of a restoring system and 

understand the process of a changing landscape in a macro-tidal marsh environment by 

applying object-based image analysis and machine learning algorithms.   

Wetland researchers and conservation managers can refer to the results and 

conclusions to support coastal salt marsh restoration assessment and monitoring. The 

outcomes of this work are designed to be incorporated in monitoring protocols of 

intertidal wetland restoration activities using hyperspatial RPAS imagery and Object-

based Image Analysis.  
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Chapter 2: Study Site 

This study was conducted within the Converse Marsh restoration site in the upper 

Bay of Fundy in Nova Scotia, Canada. The site belongs to the larger Tantramar Marsh 

system and is located at the head of the Cumberland Basin, the north-east extension of 

Chignecto Bay. The record-breaking tides in the upper Bay of Fundy are caused by the 

unique confluence of local geology, seabed morphology, geography, and oceanographic 

factors (Desplanque & Mossman, 2004). The tidal range in this region is at times greater 

than 16 metres and falls under the classification of a hyper-tidal environment (Tibbetts & 

van Proosdij, 2013). The Higher High Water Large Tide (HHWLT) in the area of the 

Cumberland Basin is predicted to be 6.10 metres (CGVD13 vertical datum), or 13.4 

metres (Chart Datum) predicted from the station at Joggins #215 (Webster et al., 2011). In 

Atlantic Canada, there are usually two unequal high waters and two unequal low waters 

during one day, which is known as semidiurnal tides (Desplanque & Mossman, 2004).  

Suspended sediments in the tidal waters are locally still very abundant due to the 

dominance of Carboniferous, Permian, and Triassic sandstones and siltstones forming the 

relatively weak bedrock of the Cumberland Basin. The eroded material from the seabed 

help to build the salt marshes and mudflats in the region by providing extensive deposits 

of fine sediments (Simmons et al., 1984; Ollerhead et al., 2005). As a reference, it is 

estimated that historically about 25 metres of sediment was deposited over a period of 

3,000 to 5,000 years in the Aulac marsh in close proximity to Converse on the New 

Brunswick (NB) side of the Missaguash River (Simmons et al., 1984). 
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2.1 Physical Description and Characterization 

Converse Marsh belongs to the broader Tantramar Marsh System and is situated 

along the eastern shore of the Missaguash River, which forms the natural border between 

the two Atlantic Canada provinces New Brunswick and Nova Scotia (Figure 2.1). In the 

upper Bay of Fundy, suspended sediment concentrations vary seasonally due to higher 

wave energies and turbulences during the winter season, leading to greater rates of 

sediment resuspension (Poirier et al., 2017). In general, sediment deposition depends on 

the depth of the water covering the marsh surfaces during high tide and the velocities with 

which the water leaves again on the falling tide, which controls varying amounts of fine 

silts and clays resuspension.  

 

 

Figure 2.1: Overview of Converse Marsh restoration site prior to restoration. Background image 

is the Nova Scotia Provincial Orthomosaic of 2012 (Source: DDST, 2020). 
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The most common plant species in the brackish and salt marsh found in this area 

are Spartina alterniflora, Spartina patens, Spartina pectinata, rushes, sedges, and other 

halophytes such as Suaeda, Salicornia, and Plantago (Simmons et al., 1984). The 

vegetation at the site to be restored was dominated by old-field graminoids and forb 

species across the fallow agricultural land, whereas the primary drainage ditches were 

overgrown freshwater plants such as Typa latifolia, Scirpus cyperinius and Alopecurus 

geniculatus (Bowron et al., 2019). The average daily temperature ranges from -7.7 ℃ in 

January up to 18.5 ℃ in July, with the lowest averaged amounts of precipitation occurring 

in August and the highest in November ranging from 74.4 mm to 110.8 mm (Figure 2.2) 

(Environment and Natural Resources Canada, 2019). 

 

 

Figure 2.2: Temperature and precipitation graph for 1981 to 2010 Canadian Climate Normals – 

Station: Nappan CDA (Environment and Natural Resources Canada, 2019) 
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2.2 Dyke Managed Realignment Project 

The Converse Marsh is a demonstration site for managed realignment and 

restoration of tidal wetland habitat within the Making Room for Wetlands project. While 

the primary goal is to restore habitat, the project also seeks to identify issues, challenges, 

and considerations beyond the ecological and engineering aspects of managed 

realignment to help inform future tidal wetland restoration projects involving dyke 

systems in this region (Bowron et al., 2019). This site was first identified following the 

outcomes of the AgriRisk project (van Proosdij et al., 2018; https://nsfa-

fane.ca/projects/agririsk/). This project builds a vital foundation to inform and assist 

decision-makers in the process of strengthening the adaptive capacity of coastal 

communities in Nova Scotia by assigning vulnerabilities to the dykes in the province. 

Vulnerability was calculated as a function of historical and contemporary rates of lateral 

change in foreshore marsh as well as the likelihood of dykes overtopping under a range of 

present and future climate scenarios. The Converse Marsh was assigned with a high 

vulnerability (van Proosdij et al., 2018) due to significant loss of foreshore marsh and 

erosion of the dyke infrastructure. 

Maintaining and topping up the dyke in its current location was deemed to be 

unfeasible, and the risk of dyke failure was too high which would have resulted in the 

flooding of the protected land behind the dyke, sections of the access road to the ship 

railway property further south (Fort Lawrence Road), and some areas of Parks Canada 

property further north of the site (Figure 2.1). The Nova Scotia Department of Agriculture 

(NSDA) assessed the site in partnership with CB Wetlands and Environmental Specialists 

(CBWES) and developed a realignment and salt marsh restoration plan for sections of the 

land on the Converse Marsh. Later, following several months of meetings and 

https://nsfa-fane.ca/projects/agririsk/
https://nsfa-fane.ca/projects/agririsk/
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consultations with local stakeholders and rights-holders, and also after satisfying the 

regulations stated in the Nova Scotia Special Places Act, the restoration project at the 

Converse site was officially approved by all involved parties and selected as the test site 

in the frame of this research (Bowron et al., 2019). 

CBWES Inc. and engineers within Nova Scotia Department of Agriculture, Land 

Protection Section, in consultation with other experts at Saint Mary’s University, designed 

a realignment plan that would provide effective protection of dykeland infrastructure 

while providing conditions that would facilitate restoration of tidal wetland vegetation. 

Figure 2.3 shows the construction details of the project proposal for the restoration at the 

Converse Marsh site.  

 

 

Figure 2.3: Official managed realignment design plan drawn by engineers at the Nova Scotia 

Department of Agriculture (Dec. 6, 2018; Source: CBWES Inc.).  

Note: Colour signatures are explained in the text. 
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The blue section of the dyke starting on the south-eastern end was levelled to the 

elevation of the foreshore fringe marsh. The breaching of the dyke was implemented by 

removing the aboiteau construction and widening the opening by five metres in both 

directions from the centre of the aboiteau on December 12, 2018. The third and last 

section of the former dyke was levelled to the elevation of the foreshore marsh, and the 

material was used to build the new dyke, running perpendicular to it. The two red 

polygons on the bare areas mark the borrow pit, where most of the material for the new 

dyke construction was obtained. The yellow section of the dyke remained unchanged, 

serving a protective function to divert the incoming water and potentially decrease wave 

activity at high tide which might erode the newly constructed dyke inland. Further 

changes were implemented by moving the low lying section of Fort Lawrence Road 

further to the upland and building at a higher elevation. Lastly, the culvert on the path 

connecting the old dyke with the road was removed, and the ditch parallel to the river was 

carved out to allow a wider channel for the incoming tides. Figures 2.4 to 2.6 outlines the 

development stages of the restoration activities on the site with Figure 2.4 showing the 

site at its original stage, Figure 2.5 the site with most of the construction finished, but 

previous to the breach, and Figure 2.6 the site a couple of months after the dyke has been 

breached (mid-December 2018) and tidal waters have been reintroduced. The imagery in 

Figure 2.5 and 2.6 were collected as part of this thesis research for monitoring purposes 

and served as the input for the pre- and post-breach classifications.  
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Figure 2.4: RPAS orthomosaic of Converse collected on November 17, 2017 (RPA model: DJI 

Phantom 3). The survey took place as part of the feasibility and design baseline ecological 

monitoring by CBWES Inc. (Credit: Bowron, T., CBWES Inc.) 
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Figure 2.5: RPAS orthomosaic of Converse collected on September 24, 2018 (RPA model: DJI 

Phantom 3 Professional; flight altitude: 90 m). The construction on the new dyke and the road 

are finished by using material from the borrow pits. The survey took place for the pre-breach 

classification analysis. (Credit: Akyol, R., Saint Mary’s University) 
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Figure 2.6: RPAS orthomosaic of Converse collected on May 5, 2019 (RPA model: DJI Phantom 

3 Professional; flight altitude: 90 m). The breach location (BL) is visible and the levelled sections 

of the dyke in the south-eastern and most northern end. Former drainage ditches (DD) were also 

widened, and the culvert (C) was removed. More details on restoration activities are detailed in 

text. The survey took place for the post-breach classification analysis. (Credit: Akyol, R., Saint 

Mary’s University) 
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Chapter 3: Research Methodology 

This research involves several stages that build upon each other, incorporating 

both field data acquisition and image processing. This work is divided into three phases. 

Phase I describes the steps of preparations for the fieldwork component and their 

realization. Phase II illustrates the specifics of the actual image analysis within the 

software eCognition (Trimble Developer, Version 9) detailing the use of selected rulesets 

to apply the machine learning algorithms. Phase III quantifies the classification results 

and interprets the results to real-world phenomena. Phase II and Phase III further reflect 

on the wider usage of selected methods and incorporates also literature review sections by 

presenting alternative methods applied in other studies to better comprehend and justify 

the chosen approaches. The overall workflow is represented in a flowchart in Figure 3.1. 
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3.1 Phase I – Data Collection and Preparation 

Within their regulatory constraints by Transport Canada, RPAS (Remotely-Piloted 

Aerial Systems) provide a cost-effective and time-efficient survey tool for mapping and 

measuring coastal changes. Sites that are not easily accessible are especially well fitted to 

be surveyed or remotely assessed and monitored by the use of RPAS. This technology 

also opens up opportunities for data collection on sites with very constrained time 

windows due to changing water levels as it is the case within intertidal wetlands. 

This study deployed a small quadcopter RPA without an ‘on-board’ high accuracy 

GPS and required, therefore, a high-precision RTK-GNSS survey instrument (Leica® Viva 

GS14) to record accurately control monuments on the ground for proper image post-

processing. The utilization of RPAS for hyperspatial image collection ensures correct 

geolocation and high data integrity. 

Together the remotely piloted aircraft and high-precision RTK-GNSS survey unit 

(Leica® Viva GS14) made the data acquisition for this study feasible. However, RPAS 

also has to be operated legally, safely and needs to meet certain conditions and 

measurements for the data to be as accurate as possible. Details pertaining to fieldwork 

planning, preparation, and execution are presented below and outlined (Figure 3.1). 

Furthermore, the individual tasks executed during and after the data collection are 

itemized in subsequent sections.  

3.1.1 Field Work Planning and Execution 

This study deployed a DJI Phantom 3 Professional (quadcopter) with the 

complimentary RGB stock-camera (FC300X) and an additional sensor from Sentera 

attached on the side of the RPA (Figure 3.2). The DJI Phantom 3 Professional has a 
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Figure 3.2: Illustration of the RPA model DJI Phantom 3 Professional with its 

sensor payload components, a) the RGB sensor (FC300X) and b) Sentera NDVI 

Single sensor in close-up view. (Source: a) store.dji.com; b) Sentera.com) 

camera lens with a horizontal Field of View (FoV) of 81° and a vertical FoV of 66°  and 

captures images with in JPEG format measuring 4000x3000 pixels in size (DJI, n.d.). The 

Sentera sensor is a high precision NDVI Single sensor and captures light in the red band 

between 575 to 675 nm wavelength and the near-infrared (NIR) band within the 800 to 

875 nm range of the spectrum. The NDVI Single sensor has a horizontal FOV of 60° and 

a vertical FOV of 47° with a single image counting 1248x950 pixels in size (Sentera, 

n.d.). In this study, the RPA flights were conducted at an altitude of 90 metres above 

ground level (AGL), which resulted in a spatial resolution of about 4 cm for the RGB 

imagery and 8 cm for the Sentera imagery. 

 

 

 

 

 

In order to obtain the necessary information for image classification, it is essential 

to have a good understanding of the technical specifications and the capabilities of the 

a) 

b) 
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equipment, legal restrictions regarding its operation in the field, as well as the 

environmental considerations prevalent on the restoration site. 

3.1.1.1 Technical and Legal Considerations and Recommendations  

The settings of the camera sensors  

The Sentera NIR single sensor has a narrower field of view when compared to the 

FC300X camera of DJI Phantom 3 Pro leading to a smaller coverage of the ground per 

image. Images were acquired in blocks of multiple flight lines with enough overlap 

between each image to ensure full stereoscopic coverage. The desired minimum of 

forward-overlap is 60%, while the sidelap should not be less than 20-30% (Aber et al., 

2010); however, the default settings are usually set to an overlap of 80%. 

Since the Sentera sensor captures images with a smaller FoV, the speed of the 

RPAS was set to 3 metres per second at an altitude of 90 metres to assure gapless 

stereoscopic coverage of the NIR imagery. This ultimately resulted in a substantial 

overlap of RGB imagery captured by the DJI Phantom 3 Pro stock-camera with a larger 

FoV and resulted in an image forward overlap 90%.  

Furthermore, the image exposure settings of the FC300X sensor needed to be 

considered carefully in order to prevent individual images with different exposure values. 

If the sky is only partially clouded and variations of the lighting conditions are expected 

on that day, it is recommended to set the mode to manual. The manual mode requires the 

user to customize the exposure value according to specific lighting occurring on a day in 

the field. Exposure values set too low or too high will result in overly dark or bright 

images and should be adjusted before each flight. 
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Another adjustment on the camera sensor to make before any flight is the setting 

on the white balance. In an automatic mode, the camera adds different colour 

temperatures with changing light conditions, which often occurs on days with partial 

cloud coverage. On one occasion, purple-white spots across the orthoimage were 

observed, which was likely caused by the automatic white balancing during the flight. For 

this reason, the white balancing was disabled during survey flights in this study. 

Battery life and flight planning 

Other technical considerations while planning field deployment were regarding 

the battery lifespan of the RPAS. The flight grids planned and executed for this study 

were first drawn in ArcGIS Desktop (ESRI; Version 10.5). The life span of a single battery 

lasts about 15 minutes, covering an area of approximately 500 by 550 metres in length 

and width at a flight altitude of 90 metres above the ground. The battery duration applies 

only under favourable weather conditions. The battery capacities are highly sensitive to 

temperatures, close to the upper and lower limitations (0℃ - 40℃), and to strong winds 

(max. wind speeds limit of 35-45 km/h). The flight grids for this study were drawn in a 

more rectangular shape to cover a narrower path with a larger edge parallel to flight lines, 

by taking account not to exceed the maximum range of radio communication between the 

RPA and the controller. The pilot and the observer needed to be able to have visual line-

of-sight (VLOS) with the RPA at all times to be able to perform the detect and avoid 

function with respect to other aircraft (Canadian Aviation Regulations). After the grids 

were drawn across the test site, ensuring an image coverage of the area of interest (AOI), 

the constructed grid structures were then uploaded into Pix4Dcapture prior to the field 

deployments (Figure 3.3). Pix4Dcapture, installed on an android tablet, was used to 

manage and execute every flight mission with the DJI Phantom 3 Pro. Subsequent flight 
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missions were executed using pre-constructed flight plans already uploaded on the 

application.  

 

 

Figure 3.3: RPAS mission plan display, with flight grids superimposed over software basemap of 

the Converse study area. Display view provides information about flight altitude, ground sample 

distance, selected grid size with approximate flight time, relative speed and overlap settings 

(Source: Converse Project in Pix4Dcapture). 

 

Legal Requirements when piloting RPAs 

Transport Canada obliges every pilot of an RPAS to follow the rules outlined in 

the Canadian Aviation Regulations (CARs). Article 901.24 of CARs stipulates all pilots to 

be familiar with available information relevant to the intended flight. This includes the 

completion of a survey of the area, where a flight is planned to be conducted; i.e. 

boundaries of the study site need to be clearly defined, site suitability for take-off and 

landing needs to be determined, understanding of the airspace. The proximity to 
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aerodromes is another crucial point. The Converse restoration site lies just at the edge of a 

radius of 1 nautical mile (1.9 km) horizontal distance to a heliport in the town of Amherst, 

Nova Scotia.  

When the flights were conducted in September 2018, and later in May 2019, the 

regulations of Transport Canada enacted pilots of small RPAS to contact the heliport 

operators and inform them about their intentions prior to a flight mission. The new 

regulations, effective since June 1st of 2019, stipulate advanced flight certification or 

Special Flight Operation Certificates (SFOCs). These and further information can be 

obtained by consulting the Canada Flight Supplement (for aerodrome directories, 

information for flight planning) and the Designated Airspace Handbook (DAH) published 

by NAV CANADA. 

3.1.1.2 Environmental and Operational Considerations 

Water Levels and Tides 

After covering the technical and legal aspects, the site and day-specific factors 

needed to be determined. Predominant weather and environmental conditions can be hard 

limiting factors for a flight mission and its successful execution. Scheduling of was 

primarily based on the time of optimal tides. Therefore, the tide tables published annually 

by the Canadian Hydrographic Service (CHS) for the geographically closest tide station 

of Pecks Point (Tide Station No.190) were consulted. The indicated tide elevations and 

times in the respective tide tables are predicted tides based on calculations of the principal 

hydrographic station in Saint John, New Brunswick (Desplanque & Mossman, 2004).  

At Converse, pre-restoration flights were conducted during a period of neap tides, 

whereas the post-restoration flights were conducted close to spring tides (Table 1.1). The 
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exact day for the flights was decided on the optimal times of high and low tides by 

considering daylight time. Additional time needed to be scheduled to place and recollect 

ground control targets before and after flights safely and avoid the risk of being trapped 

by tides. Finally, optimal conditions are given when RPAS imagery is collected during the 

lowest tide levels possible in order to cover as much of the intertidal landscapes 

morphology as possible.  

In order to have a better understanding of the physical extent of the tide water 

levels in the field when navigating through the site, flood layers were modelled for each 

field trip. The flood maps were modelled based on the site elevation data, extracted from 

the most recent provincial LiDAR (Light Detection and Ranging) datasets, and predicted 

tide levels from the Canadian Hydrographic Services (CHS). Both datasets, the LiDAR 

images and the tide level information, were using different vertical datums and needed to 

be transformed first before modelling the flood extent.   

 

 

 

 

 

 

 

 

 

 



 

44 

 

Table 1.1: Times and heights for high and low tides at the closest tide station to Converse in 

Pecks Point (#190, CHS) predicted in Chart Datum on the left column and transformed to 

CGVD13 Datum on the right column using the offset value of -6.69 m based on tide level 

recordings (TLR). 

Pre-Breach Flight:             24/25 Sept. 2018 

predicted 

Time Height Height 

ADT (m in Chart Datum) (m in CGVD13) 

06:29 2.4 -4.29 

12:25 10.9 4.21 

18:46 2.3 -4.39 

00:41 11.2 4.51 

Post-Breach Flight:             05/06 May 2019 

predicted 

Time Height Height 

ADT (m in Chart Datum) (m in CGVD13) 

07:15 1.6 -5.09 

13:12 11.8 5.11 

19:31 1.7 -4.99 

01:28 12.2 5.51 

 

 

The vertical datum of the predicted tides indicated in Table 1.1 is referenced to 

Chart Datum. All tidal measurements and predictions published by the Canadian 

Hydrographic Services (CHS) refer to the local Chart Datum (CD), which stands for the 

Lower Low Water Large Tide (LLWLT). This measure is an average of the lowest low 

waters of 19 years of predictions and describes an elevation so low, that the tide level at 

the respective location rarely falls below it (Desplanque & Mossman, 2004); whereas the 

LiDAR dataset of the province is referenced to the current Canadian Geodetic Vertical 

Datum – CGVD 2013. After contacting the Canadian Hydrographic Services, we obtained 
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the offset value of  -7.35 m for the tide station Pecks Point, the geographically closest 

station to our test site, to transform from one datum to another.  

The following (Figure 3.4 & Figure 3.5) is an example of a flood model at 

Converse to visualize differences in datum and to highlight the importance of other site-

specific conditions, which play a role in data analysis.  

 

A field deployment was conducted over three days at Converse, primarily to 

measure suspended sediment concentration, water turbidity and velocities from 21st 

December to the 23rd December 2018. The secondary goal was a site visitation and 

monitoring how the highest tides of 2018 entered the site the first time after the dyke was 

breached during neap tides on 12th December 2018. It was not possible to deploy the 

RPAS on either of the three days in the field due to low cloud base on Day 1, heavy 

precipitation on Day 2, and below zero degrees Celsius temperatures on Day 3. With the 

RTK-GNSS on site it was possible to survey the farthest extent of the high water line on 

Day 1 (see Figure 3.4; purple line). Figure 3.4 shows the modelled high water extent 

calculated for the afternoon of Dec. 21, 2018 (Day 1), as well as the surveyed high water 

extent (purple line).  

The high water level for that afternoon was predicted to be 12.3 m (Chart Datum) 

by CHS. With the given offset value of -7.35 m, the high water level was calculated to be 

at an elevation of 4.95 m in CGVD13 (Figure 3.4). 
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Figure 3.4: Modelled water extent based on the predicted tide of 4.95 m (12.3 m CD) for the 

Converse study site, using the offset value of CHS (-7.35) to convert from CD to CGVD13. The 

surveyed high tide extent is also indicated on the map. (Credit: Akyol, R.) 

 

When comparing the modelled water extent and the surveyed high water line of 

Day 1 in Converse, it is evident that there is a high discrepancy between modelled water 

extent and measured water line. There can be several reasons for this observation:  

a) Considerable differences in spatial distance impact between station and site affecting 

the extent of tide levels predicted for the station at Pecks Point and the tide levels on our 

site at Converse; b) Inaccuracies with the CHS offset value assigned to the station; c) 
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Inaccuracies in LiDAR dataset; d) Site-specific characteristics affecting the expansion of 

tidal inundation. 

 

In the fall of 2017, a separate deployment was conducted by CBWES Inc. at the 

Converse study site, where actual tide levels were recorded for the duration of 33 days 

(Sept. 9 – Oct. 12, 2017) with a Tide Level Recorder (TLR) installed on site. With the use 

of this recording, it was possible to calculate a site-specific datum offset value of -6.39 m 

for a transformation from Chart Datum (Station: Joggins #215) to CGVD13 at Converse. 

The flood extent modelling was repeated using the predicted high water level of Pecks 

Point, but this time, with the datum offset value of CBWES. This resulted in a corrected 

high water level of 5.91 m in CGVD13 for Dec. 21st, 2018 (Figure 3.5).  

With the new offset value, the modelled water extent was in accordance with the 

surveyed high water line, which further amplifies the need for improved and permanent 

long-term tide level recordings.  
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Figure 3.5: Modelled water extent based on the predicted tide of 5.91 m (12.3 m CD) for the 

Converse study site, using the offset value of CBWES (-6.39) to convert from CD to CGVD13. The 

surveyed high tide extent is also indicated on the map. (Credit: Akyol, R.) 

 

After having clarified the tide water levels on site, the optimal days to conduct the 

pre-restoration flights could be identified. In the next step, the weather on a targeted day 

needed to fulfil mandatory criteria as detailed in the following section.  

Weather Limitations 

Other than temperature and wind thresholds (40-45 km/h), as mentioned earlier, 

gusts can be very unexpected and strong in Nova Scotia, especially at Converse, requiring 

RPAS pilots to be particularly cautious. Furthermore, the DJI Phantom 3 Pro cannot 
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tolerate any precipitation, thereby requiring immediate abortion of the flight mission 

under those conditions. Finally, the cloud base is another crucial factor. Weather 

prediction models for forecasts are usually not reliable sources to indicate the cloud base. 

Therefore, the next closest aerodrome was consulted to get actual information on the 

cloud base. The Greater Moncton Roméo LeBlanc International Airport in Moncton, New 

Brunswick, measures the cloud base with radar (Radio Detection and Ranging) and was 

contacted on field days with low lying clouds at Converse. Flight missions were not 

performed when the base of the clouds was lower than 500 metres above ground for flight 

safety reasons.  

Cloud coverage, however, does not restrict the operation. It is more so relevant for 

the quality of the imagery for later analysis. Changing lighting conditions during RPAS 

surveys affects the reflectance values on the ground. Either a clear sky or complete 

overcast is the most preferred conditions during a flight mission. Even though the mid-

day and clear sky conditions in regards to image data acquisition are the most preferred 

conditions due to optimal lighting conditions and minimal shadow casting, there is a 

problem with over-exposure on a specific spot on the ground in the imagery referred to as 

hot-spot in the literature. The exact position, where the hot-spot is visible on imagery, is 

the location on the ground directly aligned with sun and sensor with congruent angles 

(Figure 3.6) (Aber et al., 2010).   
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Figure 3.6: Geometric visualization to explain the presence of hot-spots in vertical images 

(modified after Aber et al., 2010, p.43). 

 

The hot-spot is also known as the opposition effect and was being accounted for in 

this study by considering the flight date and time schedule provided by Greg Baker, the 

Research Instrument Technician at the Maritime Provinces Spatial Analysis Research 

Centre (MP_SpARC) at Saint Mary’s University. This schedule highlights the hours of 

each day throughout the field seasons of a year in Nova Scotia using the known 

astronomical information of solar zenith angle at specified time and date and under 

consideration of the horizontal and vertical field of view angle of the camera sensor. The 

weather forecast was consulted and monitored carefully on a regular basis 24 hours prior 

to the flight. 

Ground Truthing 

After the flight grids were finalized, RPAS settings were modified, and the tide 

tables and weather forecasts consulted, the field-day with all favourable conditions 

overlapping was chosen. The next step was to prepare the Ground Control Points 

Network. A Ground Control network is necessary for georeferencing and geometrically 

correcting the imagery taken after a survey flight. It consists of individual Ground Control 

Points (GCPs) laid out in a uniform distribution across the test site. A single GCP can be 
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any type of target that can be easily identified in the imagery (Aber et al., 2010). For this 

study, a slim wooden board was chosen that measures about 40 by 40 cm in dimension 

and has a small hole in the center to fix the GCP target into the ground with a long nail. 

These boards were painted in a chessboard pattern in black and white squares (Figure 

3.7). The high contrast between both colours showed an overexposure of the white parts 

on the board when trying to identify the center of the GCP later on the screen and did not 

prove as the best practice. A new design with modified colours (light-grey instead of 

white) and an alternative pattern (black triangular shapes on opposite edges) has proven 

to be more successful (Figure 3.8).  

 

 

Figure 3.7: Ground Control Target in chessboard pattern measuring 40 by 40 cm (designed by 

CBWES) (Photo Credit: Field Team). 
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Once a flight plan was created, and the RPAS mission grids were delineated, the 

establishment of a GCP network for the Converse restoration site could be started. In 

theory, an image can be georeferenced correctly with the installation of a minimum of 

three GCPs on the site. However, in most cases, more GCPs are necessary to account for 

the differences in elevation across the site and to guarantee that enough GCPs can be 

located on most of the overlapping images (Aber et al., 2010). Moreover, additional 

targets have to be installed and surveyed as Check Points (or Validation Points – VP) for 

accuracy assessment of the later processed orthomosaic and digital surface model.  

 

In Converse, eight Ground Control Points and four Check Points were deployed 

by following the tried and tested guidelines established by MP_SpARC at Saint Mary’s 

University (Figure 3.9). GCP target placement on the outer extent of footage may not be 

farther apart from one another than 1.5 times the short edge of image size, and the 

distance from one GCP to another in the interior of the whole imaging extent may not 

exceed 5 x short edge of a single image. When applying this rule of thumb, it is important 

to consider the changing length of the short edge by changing flight altitude. In order to 

Figure 3.8: Recommendation for an alternative Ground Control Target design with 

lighter colour contrast and triangular pattern (Credit: CBWES Inc.) 
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determine the number and necessary distribution of Check Points, the following rule 

proved itself in practice as a working measure: Number of GCPs times 0.5 and positioned 

in empty spots between GCPs inside the test site.  

 

 

Figure 3.9: Image map of the Converse study site indicating the location of the GCP network and 

flight grids. Field Plan for September 24, 2018. (Source background image: RPAS orthomosaic 

from November 2017 by CBWES Inc.)  

 

After placing each GCP at their planned location, the center point of each target 

was surveyed by positioning the RTK-GNSS instrument on top of the nail on the ground 
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to determine the geographic coordinates. The geometric accuracy of the images, 

processed after the flights, strongly depends on the accuracy and precision of the 

surveying technique and quality of the GCPs in the field and is very critical, especially 

when working with hyper-spatial imagery (Aber et al., 2010). For this reason, the use of 

differential GPS technology for field surveys was crucial. GNSS stands for the Global 

Navigation Satellite System and refers to a compilation of positioning and timing signals 

transmitted from a variety of satellite systems worldwide. It can provide wide-ranging 

coverage worldwide with the combined use of the three central systems NAVSTAR 

Global Positioning System (GPS) by the USA, Europe’s Galileo, the Global’naya 

Navigatsionnaya Sputnikovaya Sistema (GLONASS) from Russia. The performance of 

this system can be further improved in accuracy and reliability by correcting errors from 

signal measurements and enhancing satellite constellation information through different 

augmentation systems (European Global Navigation Satellite Systems Agency, 2019).  

In Differential GNSS, a network of ground-based reference stations broadcasts 

differential information for signal enhancement directly to the rover used in the field. The 

RTK technique is widely used for GNSS signal enhancement and was applied in this 

study. RTK uses codes for carrier measurement and data transfer corrections from so-

called base stations. The communication of the rover with the known location of RTK 

reference base stations yielded in global positioning accuracies of a few centimetres for 

our data collection on-site. However, this required a base station to be not farther situated 

then 10 to 20 km from our rover. The problem with the relative vicinity of the rover and 

base station could be overcome with network RTK using a network connection for signal 

transmission to areas outside the reach of base stations (GMV, 2011). 
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3.1.1.3 Thematic Data Preparations 

Preparations for Thematic Data Collection in the Field 

After the general plan for field survey is completed, the second part of the data 

acquisition on-site needs to be established. The collection of thematic data is, in fact, the 

most critical step in projects building upon remotely sensed imagery as this field data 

would define the end-quality of the results. The image analyst has to have adequately 

measured information on observed features of interest. To determine which method to use 

or what data to collect is a challenging process. As it is prevalent in most other projects, 

the “validity of measurements is usually a function of the objectives of the project and the 

user of the end product.” (McCoy, 2005, p. 59).  

At the beginning of each remote sensing project and before collecting actual 

measurements in the field, at first, project objectives have to be clearly defined to 

determine the extent and level of detail which will be applicable for the field 

measurements, secondly, a classification scheme with anticipated land-cover class 

categories organized in a hierarchical structure has to be established.  

Within the scope of the overall research objectives of this study, the following 

goals for field data collection was identified after consultation with supervisory 

committee members and experts of the restoration project: 

▪ Classification of broad land-cover classes has to be identified first: 

vegetation, soil, rocks and water. 

▪ Vegetation is differentiated on the general community level without 

detailed species composition. 

▪ No detailed differentiation of plant communities on dominant species for 

the fallow agriculturally used land in the upland area. 



 

56 

 

Within the scope of this study, changes of a system in its entirety are assessed and 

therefore need a larger mapping scale to gain an overall understanding of the response of 

fallow agricultural land to the introduction of tidal flow. For the classification of a 

restoration site with an area of about 18 hectares, a minimum mapping unit (MMU) of 16 

m2 was defined for a map with a scale of 1:3,000. Since the classification is also based on 

objects and not pixels, a large survey plot was chosen to be the appropriate measure to 

collect the data in the field. For this purpose, a durable survey plot was designed and 

constructed measuring an area of approximately 4 m2 (6 x 6 feet) split into four 

contiguous square parcels (Figure 3.10). The plot consists of a sturdy metal grid in the 

inside and is assembled with resilient PVC pipes for the framing. The end parts of the 

PVC pipes are held together by copper connectors. The survey plot was constructed to be 

robust enough for field deployment in wet and muddy terrain and also to resist 

transportation and usage in a salt marsh environment.  
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Figure 3.10: Land-cover class survey plot (4m2) for field sampling deployed in the pre-breach 

survey on September 24, 2018 (Credit Photo: Akyol, R.) 

 

The next step involved the establishment of a proper classification scheme by 

performing a thorough investigation and collection of ancillary data and other reference 

information about the site. A vegetation survey conducted at Converse in November 2017 

by CBWES served as the first source of information gathering about the site (Figure 

3.11).  
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Figure 3.11: Location map of vegetation survey transects for the Converse study site conducted in 

November 2017 by CBWES, indicating the differentiated vegetation communities. 

 

Based on the information available from the vegetation survey of November 2017 

and the knowledge gained by visiting established restoration sites with already matured 

salt marsh ecosystem during summer 2018, the following class hierarchy for the pre-

breach classification was established:  
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Table 3.1: The Classification scheme for the pre-breach analysis of Converse (24 Sept. 2018) 

Class Sub-class 1 Sub-class 2 

Bare Areas Bare Ground 
 

 
Borrow Pit 

 

 
Mud 

 

Marsh High Marsh Spartina patens 
  

Juncus gerardii 
  

Spartina pectinata 
 

Low Marsh Suaeda maritima 
  

Spartina alterniflora 

Fallow Land Alopecurus pratensis 
 

 
Calamagrostis canadensis 

 

 
Old Field 

 

 
Old Field low 

 

 
Low Health 

 

 
Tall Species 

 

 Shrub  
 

Pasture Pasture Grass 
 

 Pasture Grass (mowed) 

 Ditch Agrostis stolonifera 

  Wet Meadow 

Infrastructure new Dyke 
 

 Road  

Water Body River 
 

 
Pond 

 

Rocking 
  

Shadow 
  

 

 

The pre-breach flights were conducted in late September, which is why a fair 

amount of shadow was expected on the imagery due to the relatively low angle of the sun 

at that time of the year. For that reason, a shadow class was added to the hierarchy. A 

vegetation glossary was created as a reference for the field plant species identification 

listing the most commonly occurring plants at the Converse site. 
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The field day for post-breach flights and surveys took place on May 5th, 2019, 

about five months after tidal water were re-introduced into the managed realignment site 

in Converse. It was the first week of spring tide after the last snow event of the year, and 

the temperatures were just warm enough to conduct flights. The benefit of completing 

flights as early in the spring season as possible is the low canopy height of vegetation, 

allowing the most optimal physical conditions of the site to calculate a digital elevation 

model using structure from motion. Details on the pre-processing of different products 

form the RPAS flights are discussed in Chapter 3.1.2. 

Once 5th of May 2019 was identified as having favourable tide levels and weather 

conditions, a new classification scheme for the post-breach survey at Converse needed to 

be developed. Since the site was now under the influence of tidal inundation for several 

months, many of the land-cover classes changed. The restored area was mainly shaped by 

wet and muddy vegetation, a considerable amount of dead vegetative communities, 

ponding, and at some locations, sediment deposition. Every system behaves in a unique 

manner and adapts to new environmental influences at its own pace when being restored. 

This often leads to difficulties when a class hierarchy has to be established before the 

field day. After we arrived at the site and had the opportunity to assess the conditions on 

the ground, we were able to define the following classification scheme for the post-breach 

imagery: 
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Table 3.2: The Classification scheme for the post-breach analysis of Converse (05 May 2019) 

Class Sub-class 1 

Bare Areas Bare Ground  
 

Mud 
 

dry Mud 

Marsh High Marsh 
 

Low Marsh 

Restoring Areas muddy Vegetation 
 

tall Vegetation 
 

sediment Trap 
 

old Field (green) 
 

fresh Gras 
 

wet Vegetation 

 dead Vegetation 

 Shrub 

Infrastructure new Dyke 

 Road 

Water Body Pond 
 

freshwater Pond 
 

River 

Rocking 
 

 

 

Many of the different species of high and low marsh are not listed in the class 

hierarchy anymore. This is because most of the plants die-off during the winter under the 

impact of ice and snow and slowly grow after several weeks into the spring season. It is 

also important to note that individual species of marsh develop at different times with 

some of the low marsh species blooming in certain months and others shoot forth the 

earliest in the season. These phenological stadia need to be incorporated in future analysis 

when new flight plans are being scheduled to monitor restoration progress. Detecting 

change in vegetation on restoration sites makes sense when images are collected around 

the same time of the year. However, analysis to differentiate growing plants should be 

taken with more frequent flights throughout one season and incorporated in a single study.  
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Collecting Sample Data in the Field 

One set of sample data is needed for the classification of the RPAS imagery to 

train the machine learning algorithm, and the second set of validation data to assess the 

accuracy of the classification results. The vegetation sampling plot described in the 

previous section was used to identify discrete sampling locations for the classification of 

the pre-breach imagery (24 September 2018). On three separate field days (4 July, 2 Aug., 

15 Oct. 2018), random spots of vegetation were chosen based on the representativeness 

for either class. The corners of the survey plot were surveyed with differential GPS to 

register their exact geographic location. The observed species within the discrete borders 

of the survey plot were identified and recorded on a survey form (Figure 3.12, Appendix 

I). The information was then transferred into a GIS-compatible format (ArcGIS Desktop 

ESRI; Version 10.7.1) to train the classifier in eCognition (Trimble Developer; Version 9). 

This step is discussed further in section 3.1.3.  
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Figure 3.12: Sampling plot placed on different locations in Converse on Sept. 24, 2019, and 

surveyed at the corners; a) Juncus gerardii with seaside lavender and distichilis spicata, b) 

spartina patens, c) spartina alterniflora, d) young spartina alterniflora with suaeda maritima 

(Credit Photos: Sweeney, L., Akyol, R.). 

 

Collecting samples with the vegetation plot was relatively time consuming and 

required extra hands in the field to carry the plot, take pictures, identify underlying 

features and record them in the survey form. In order to speed up the process, only two 

diagonal corners of the sampling plot were surveyed during the first two days in the field. 

This was the case in 23 out of 40 survey locations. In order to calculate the two 

unrecorded corner coordinates, trigonometric functions were applied (Appendix III; 

Credits: Graeme Matheson). 

 

 

a) b) 

c) d) 
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After having used sample polygons to train the classifier of the pre-breach 

imagery as detailed above, particular complications were identified regarding the nature 

of the underlying dataset and the total number of samples. Based on objects, the imagery 

was segmented into many image objects of different forms and sizes. Using training 

polygons to identify overlapping objects and assign them the respective class information 

led to inaccurate training of the objects. The polygonal nature of the sampling method 

applied does not allow the number of training samples to be controlled for each given 

class (Figure 3.13). Moreover, the time necessary to survey the location in the field using 

the plot resulted in an insufficient number of samples to train machine learning algorithms 

properly. Therefore, for the pre-breach classification random points were created across 

the image scene for training and validation purposes. Points created within the surveyed 

vegetation plots in the field were used for validation (160 pts.) and all other location 

points to train (302) the classifier (Fig. 3.14 & 3.15). For the post-breach classification, a 

different sampling methodology was used to collect the samples. 
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Figure 3.13: Difficulties to create correct training objects in eCognition using polygon samples to 

differentiate high marsh (bright green) from low marsh (dark green); a) sample polygon with 

divided classes, b) image objects created with segmentation, c) overlay of sample polygon and 

image objects, d) class assignment based on overlap between polygon and object.  

 

a) b) 

c) d) 
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Figure 3.14: Number and distribution of training sample dataset for pre-breach classification. 

Sampling method: Random Points. 

 

302 Training Samples 
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Figure 3.15: Number and distribution of validation sample dataset for pre-breach classification. 

Sampling method: Random Points within surveyed vegetation plots. 

 

Due to the difficulties related to the sampling approach based on polygons (area) 

for the pre-breach imagery, a point-based approach was chosen for the post-breach 

sampling. The RTK-GNSS was used to collect point locations of significant classes in the 

field. The RTK from Leica has the option to create a code-list in the attributes of each job, 

which allowed a fast surveying method by measuring a point at any desired location and 

assign the respective class code to each recorded point. Each point location needed to be 

160 Validation Samples 
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chosen within a distinct patch clearly distinguishable from other land-cover classes 

around that particular patch to avoid mis-assignment of training data.  

The sampling method for the post-breach classification was stratified random. A 

total of 125 sample points was collected and surveyed for the post-breach image analysis 

in the field on 5 May 2019 - the same day, the flights were conducted. Additional points 

were created digitally for training (245 pts.) and validation (120 pts.), following a 

stratified random sampling approach (Fig. 3.16 & 3.17).   
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Figure 3.16: Number and distribution of training sample dataset for post-breach classification. 

Sampling method: Stratified Random Points from field survey complemented with digitally 

created points. 

 

245 Training Samples 
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Figure 3.17: Number and distribution of validation sample dataset for post-breach classification. 

Sampling method: Stratified Random Points from field survey complemented with digitally 

created points. 

 

3.1.2 Pre-Processing of RPAS Imagery 

The RPAS imagery collected from Converse first needed to be prepared for the 

analysis in Phase II of the project. The photogrammetry software Pix4Ddiscovery (Pix4D; 

Version 4.2) was used to create an orthomosaic and a digital surface model (DSM) with 

structure from motion (SfM) for each flight mission, pre- and post-breach, as well as for 

both camera sensors, RGB and multispectral imagery.  

120 Validation Samples 
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3.1.2.1 Processing RGB Imagery 

Pix4Ddiscovery (Pix4D; Version 4.2) is an image processing software 

programmed to automatically find thousands of common points between images, 

described as keypoints. Each group of correctly matched keypoints from at least two 

different images creates a point with three-dimensional information. The more significant 

the overlap between neighbouring images is, the more keypoints can be generated; hence, 

the accuracy of the orthomosaic and the DSM increases (Pix4D, 2017).  

For each image, taken with the FC300X and Sentera’s Single NIR camera sensor, 

one JPEG image file is saved with the values for each band. In addition to that, an EXIF 

meta data file is saved accordingly with each image containing further details such as the 

date and time the picture was taken, exposure time, camera name, sensor model, and GPS 

coordinates. Once the images were uploaded into Pix4Ddiscovery (Pix4D; Version 4.2) 

and a project was created, the first initial processing was executed with the use of the 

EXIF file information (Figure 3.18). 
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Figure 3.18: Schematic representation of individual and gridded RPA imagery for the Converse 

study site after initial processing in Pix4Ddiscovery. Each green point stands for one image 

picture taken at that location during the flight. Green lines forming squares underneath the green 

points show camera tilt and orientation at the moment of capture. The eight different flight grids 

can be visually distinguished, as well as the exact flight paths within each grid (Source: 

Pix4Ddiscovery).  

   

The position of image capture with the information about camera tilting and 

orientation was extracted by Pix4Ddiscovery (Pix4D; Version 4.2) from the EXIF file. 

Since the GPS coordinates recorded during the flight have accuracies up to a couple of 

metres in horizontal and several more in vertical positioning, the reference information 

from the GCP network deployed and surveyed in the field was uploaded and used to 

improve the accuracy of the geographic location up to a couple of centimetres. Therefore, 
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the individual GCP targets needed to be identified in images and their known surveyed 

coordinates assigned to their central position within Pix4Ddiscovery (Pix4D; Version 4.2) 

(Figure 3.19). 

 

 

Figure 3.19: Overview of GCP location and the assignment of coordinates to captured images. 

Index box (bottom left) shows an example of the RayCloud view in Pix4D to check the center 

point of a GCP target (Source: Pix4Ddiscovery).  

 

Once the GCP coordinates were uploaded and the targets identified on individual 

images, the re-optimization in Pix4Ddiscovery (Pix4D; Version 4.2) could be executed. 

Finally, the processing of Steps 2 and 3 could then be started to calculate the orthomosaic 

and DSM from the imagery. The resulting orthomosaic contained values of red, green, 

and blue in digital numbers but no reflectance values due to missing sensitivity values of 

the camera sensor of each band for the electromagnetic spectrum.  
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3.1.2.2 Processing Multispectral Imagery 

The processing of the multispectral imagery revealed unexpected challenges. 

Before the orthomosaic with multispectral information could be processed in 

Pix4Ddiscovery (Pix4D; Version 4.2) following the steps as outlined before, the images of 

Sentera’s camera needed to be prepared first. The Single NIR sensor has a problem with 

overlapping spectral responses in band 1 and band 3 (Figure 3.20).  

 

 

Figure 3.20: Approximate trend of the spectral response of Sentera Single NIR sensor (modified 

after Sentera, 2017) 

 

Within the band 1, the portion of red light and also a portion of the near-infrared 

(NIR) is contained. Band 2 is indicated as unused by Sentera, even though it includes 

some unknown information. Band 3 of the sensor comprises the light in the NIR portion 

and is almost precisely aligned with band 1 in the 800 to 875 range. 
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In order to extract useful information on the additional information captured in the 

near-infrared area, the electromagnetic light recorded in both bands needed to be 

separated properly. The band isolation equations published by Sentera account for the 

difference in sensitivity for both bands (Sentera, 2017): 

 

𝑅𝐸𝐷 = 1.0 × 𝐷𝑁𝑏𝑎𝑛𝑑1 − 1.012 ×  𝐷𝑁𝑏𝑎𝑛𝑑3 

𝑁𝐼𝑅 = 6.403 ×  𝐷𝑁𝑏𝑎𝑛𝑑3  − 0.412 ×  𝐷𝑁𝑏𝑎𝑛𝑑1 

 

Furthermore, there was a need to account for the unequal light irradiance coming 

from the sun and sky, impacting the values measured on the earth’s surface for band 1 and 

band 3. After the published technical document by Sentera (2017), the irradiance of red 

light varies between 1.3 to 1.7 times the irradiance of NIR. By taking an average of 1.5, 

the values recorded in the NIR band could then be normalized to the power of the red 

light using the following equations: 

 

𝑁𝐼𝑅 =  1.5 ×  (6.403 × 𝐷𝑁𝑏𝑎𝑛𝑑3  − 0.412 ×  𝐷𝑁𝑏𝑎𝑛𝑑1) 

𝑁𝐼𝑅 =  9.605 × 𝐷𝑁𝑏𝑎𝑛𝑑3 − 0.618 ×  𝐷𝑁𝑏𝑎𝑛𝑑1  

 

After having applied these equations with batch processing in ArcGIS Desktop 

(ESRI; Version 10.7.1), the imagery could not be used within the software 

Pix4Ddiscovery (Pix4D; Version 4.2) for further processing. Any calculations on RPAS 

images in the GIS environment lead to the loss of the EXIF file information of the 

imagery, which made all images useless for any further analysis.  
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For this reason, a customized Python script was developed to isolate the red and 

NIR light information by taking account of light irradiance and maintaining the EXIF file 

information (Appendix II). In the first version of this python script, band 1 contained the 

values for the red light, band 2 was left untouched, and band 3 contained the values for 

the NIR light only. However, this caused problems later when trying to process the 

orthomosaic. Pix4Ddiscovery (Pix4D; Version 4.2) seemed to have problems with the 

calculated values in the bands. After several trials of different versions of the python 

script, we concluded that Pix4Ddiscovery (Pix4D; Version 4.2) does not accept values in 

only two of the three bands when trying to create the orthomosaic. In the end, the final 

version of the script with band 1 and band 2 both containing the new corrected red values, 

and band 3 the corrected NIR values did allow the process to continue without any further 

error messages in Pix4Ddiscovery (Pix4D; Version 4.2).  

However, the band separation led to a reduction of the image quality and a slight 

corruption of the actual values through the lossy compression associated with JPEG file 

formats (Figure 3.21).  
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Figure 3.21: Close-up view of a single image in two different versions taken with the Sentera 

Single NIR sensor on 5 May 2019 in Converse. The left image is the original version with light 

signs of lossy compression; the right image is band separated version modified with a python 

script showing strong signs of lossy compression (Source: ArcGIS Desktop v. 10.7.1).  

 

The lossy compression creating these block formations in the images and the 

abundance of the colour blue after the band separation has been applied made it very 

difficult to accurately identify GCP targets for the multispectral imagery in 

Pix4Ddiscovery (Pix4D; Version 4.2) (Figure 3.22). 
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Figure 3.22: Overview of initially processed multispectral imagery in Pix4Ddiscovery; small 

index box in bottom right depicts the identification of a GCP target in RayCloud view (Source: 

Pix4Ddiscovery).  

 

After the GCPs were selected as accurately as possible, the re-optimization step 

was run, and processing of the final products could be initiated. In the processing options 

of the last step in Pix4Ddiscovery (Pix4D; Version 4.2), the user can define the output file 

format for the orthomosaic to be created, set specific parameters to filter and smooth the 

point cloud for the DSM generation, and control other settings. The most important one 

being the setting for the radiometric calibration. Taking a picture of a radiometric 

calibration target in the field provides the reflectance properties of the light captured by 
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the camera sensor. The user can account for the illumination conditions at the day, time 

and location when and where the images were collected with the picture taken of the 

target in the field (Figure 3.2323).  

 

 

Figure 3.23: Images were taken of the calibration target in the field on 24 Sept. 2018 (left) and 5 

May 2019 (right) with the Sentera Single NIR sensor (Source: ArcGIS Desktop v. 10.7.1).  

 

On both field days, images of the calibration target were taken manually and in 

close proximity. The image of the calibration target on the left in Figure 3.2323 was 

successfully used as an input to calibrate the values of the multispectral orthomosaic from 

24 September 2018; however, the image of the calibration target on the right in Figure 

3.2323 brought up the following error message: 

 

Error]: Unable to compute radiometric target calibration for NIR_1.2MP-

GS-0001_4.14mm-0001_0006_4.1_1248x950 (RGB) with D:/(…)/329ad80ce100-

FW00198.jpg: Too many invalid pixels (99.7004% > 5%) for band 1 

 

Pix4Ddiscovery (Pix4D; Version 4.2) has trouble executing the calibration on the 

image if the calibration target is over-exposed. When comparing both images in Figure 

3.2323, it is evident that the image on the right was not only taken from a farther distance 



 

80 

 

but also included the darker vegetation in the background surrounding the target, which 

likely had led to the longer exposure time on the right image from 5 May 2019. In order 

to overcome this issue, the exposure of the calibration target image was slightly decreased 

by 5 %. This avoided the error message and allowed the process to continue; however, it 

is critical to note at this point that the calibration does not provide absolute reflectance 

values anymore. This modification made it impossible to compare the data of different 

flights or cameras to each other. It is critical in future mission to take a close-up capture 

of the calibration target possibly on a bright background to avoid long exposures. 

3.1.3 Preparation of Training and Validation Datasets  

The sample data available for this study were gathered from various sources to 

increase the number of training samples necessary for machine learning classifications. 

The primary source was the sample data collected in the field. These were the random 

points created within the sampling plot locations collected for the pre-breach imagery, 

and the sample points collected in the field for the post-breach imagery. Both training 

datasets were augmented by manually selecting training points on the base of higher 

resolution imagery and with knowledge from the extensive field notes taken from the 

many visits on site. Additionally, the vegetation survey conducted by CBWES Inc. in the 

fall of 2017 was also added to the dataset of the pre-breach samples.  

 

Classifications based on machine learning algorithms rely strongly on training 

samples. In fact, Huang et al. (2002) found that the number of training samples has a 

more considerable impact on classification accuracy than the algorithm used. Thus, it was 
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important to have training samples with an equal distribution across the site and with a 

proper type of sampling method.  

In preparation for the classification, the sample data were transformed into the 

format acceptable for the eCognition software environment, and the class naming 

convention was adapted to merge all different sources of training data. In the next step, 

the sample points were organized and adjusted to fit a stratified random sampling method 

by partitioning the whole population into classes with unequal sizes according to their 

likelihood of occurrence. Lastly, the sample datasets were sub-divided into training 

samples (70 per cent) and validation samples (30 per cent) (Corcoran et al., 2015). 

3.2 Phase II – Data Analysis 

In Phase II of this research project, the pre-processed imagery, together with the 

landcover samples, were imported into the image analysis software environment 

eCognition (Trimble Developer, Version 9) for classification. The object-based 

classification process followed the general two-step approach of Object-based Image 

Analysis (OBIA). It started with the partitioning of the image scene into objects with 

segmentation algorithms and proceeded with the classification of the individual image 

objects using a machine learning algorithm. The following section details the steps of this 

process and outlines accuracy assessment method.  

3.2.1 Segmentation 

The process of object-based image analysis is, in generally, an iterative two-step 

approach, which starts with the initial segmentation and is followed by image 

classification in a second step. Segmentation means the partitioning of an image in 

discrete homogeneous image regions. A successful image segmentation provides 
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meaningful image objects matching geographical features on the earth's surface. 

Moreover, it provides the base for the subsequent image classification. This emphasizes 

the importance of proper segmentation to obtain satisfying classification results. A 

successful classification is directly influenced by the quality of the segmentation outcome 

in the first step of the object-based image analysis (Meinel & Neubert, 2004; Mesner & 

Ostir, 2014). There is a wide selection of segmentation algorithms for image analysis in 

the field of remote sensing; however, only a small selection is being made commercially 

available. Meinel and Neubert (2004) presented a variety of segmentation programs and 

evaluated different results by visual comparison. In their publication, the authors 

concluded to have received the best results from the software eCognition 2.1 resp. 3.0 

(Definiens Imaging GmbH, Munich, Germany) and pointed out the high potential of it in 

regards to its multi-scale segmentation capabilities. The multiresolution segmentation in 

eCognition (Trimble Developer, Version 9) is one of the most popular algorithms and 

starts with individual pixels and grows with the bottom-up region-merging technique by 

grouping neighbouring pixels into image objects until it reaches the heterogeneity 

threshold defined by the scale parameter (Benz, et al., 2004; Drǎguţ et al., 2010). The 

creation of homogenous image objects following the region growing algorithm can be 

controlled by several user-defined parameter settings, as follows.  

 

While the scale parameter in the segmentation algorithm defines the size and 

number of segments to be created, eCognition provides the option to specify the 

weighting of colour, smoothness and compactness of each segment to be calculated. 

These three parameters alter the spatial component, whereas the coherency of image 

objects depends on input features, such as spectral information. The scale parameter is 
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one of the most critical parameters in the image segmentation process (Hay et al., 2005). 

Most commonly the choice of an appropriate scale parameter in relevant studies is the 

first challenge when using object-based image analysis (Kavzoglu et al., 2016). Since the 

scale parameter is not directly correlated to a specific object size, it is a new challenge to 

find a proper value for the parameter without some trial-and-error attempts for every new 

image. It is derived by multiple trial-and-error test runs, visual analysis or automated 

tools or algorithms to evaluate the best parameter which are still in development or their 

infancies in object-based image analysis. Finding an optimal scale parameter for any 

given image segmentation has always been a significant point of concern and scientists 

have since been trying to develop techniques to extract this parameter in an automized 

way (Flanders et al., 2003; Kim et al., 2008; Drǎguţ et al., 2010).  

 

Woodcock and Strahler proposed in 1987 a concept to measure Local Variance 

(LV) as the value of standard deviation (SD) in a small moving window to obtain the 

mean value of all the SDs measured in the entire image. The calculated mean SD value 

serves as an indicator for the local variability in the image and finds the appropriate pixel 

resolution to capture certain real-world objects. The measured SDs between the 

neighbouring windows are similar in case the image resolution is smaller than the real-

world object. This will result in a low LV; whereas a high LV is evidence for pixel 

resolutions containing the real-world object (Woodcock & Strahler, 1987; Drǎguţ et al., 

2010). 

Kim et al. (2008) took the concept of Woodcock and Strahler (1987) further and 

applied it to object-based image analysis. They build a relationship between the image 

object variance and the scale following the same principle and propose that this idea 
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provides the optimal scale parameter for the segmentation. The optimal scale is defined as 

“one that is not over-segmented, with an excessive number of segments that are on 

average too small, and also not under-segmented, with too few segments that are on 

average too large” (Kim et al., 2008, p. 293). So unlike Woodcock and Srahler (1987), 

who used a small moving window to obtain mean SD of the image, Kim et al. (2008) 

applied image objects from the segmentation step.  

Both of the introduced concepts, however, focus on the extraction of that one 

optimal scale parameter, which is not appropriate for most of the environmental 

problems, requiring more than one scale parameter to cover different levels of landscape 

structures. Drǎguţ et al. (2010) developed the ESP tool to extend this concept of Local 

Variance to multiscale analysis in OBIA. The ESP tool allows a fast estimation of scale 

parameters for multiresolution segmentation in eCognition (Drǎguţ et al., 2010). 

 

In this study, a hierarchical structure following the bottom-up approach was 

chosen within the eCognition (Trimble Developer, Version 9) software due to the number 

of samples available to train the classifier. Two different segmentation algorithms were 

chosen and applied to the imagery consecutively. For the initial segmentation, the 

multiresolution segmentation algorithm was used. It locally minimizes image object 

heterogeneity for a defined scale. This first segmentation was executed on the pixel level. 

The bottom-up algorithm starts with individual pixels across the image and compares its 

pixel values with that of pixel neighbours to merge. If the comparison between both 

pixels is mutually homogenous, both pixels will be combined into one image object. The 

procedure continues until the predefined homogeneity criteria are met (Definiens AG). 
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The parameters in the multiresolution segmentation algorithms were set to 0.3 for shape 

and 0.9 for compactness; which automatically meant that colour was weighted with 0.7 

and smoothness with 0.1 respectively. The near-infrared band was doubled weighed in 

comparison to the remaining bands red, green, blue, and elevation. The scale parameter 

was set to 10 to keep the image objects created at the first level as small as possible.  

The multiresolution segmentation algorithm was used to create the first level of 

small objects. At this point, a couple of million objects were created, who served as input 

for the next segmentation level. Once the level 1 objects were created, the next 

segmentation was continued with the spectral difference segmentation algorithm. The 

spectral difference algorithm helps to refine the existing segmentation created in the 

previous step by merging spectrally similar image objects adjacent to each other into a 

new object. The user specifies a value called mean spectral difference (here: 2) and 

defines the layer weights for the calculation (here: equal). The segmentation algorithm 

then merges all neighbouring image objects whose difference in mean layer intensities is 

below the given value by the operator. The spectral difference segmentation algorithm 

was executed a couple of times with varying mean spectral difference values until the 

image segmentation resulted in satisfying outcomes.  

3.2.2 Classification 

Other than the problem of finding the proper scale parameter for the best 

segmentation to optimize the best possible segmentation for any given image and 

purpose, the second biggest challenge with OBIA comes with the right choice of suitable 

features for the classification. Most object-based image analysis software, especially 

eCognition, offer the user a wide selection of spectral, spatial, and contextual features to 
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choose from. This step often requires a visual assessment of the imagery with prior expert 

knowledge to make a decision, which integrates a subjective component into the analysis 

(Laliberte & Rango, 2009). eCognition Developer offers a variety of algorithms and 

processes to classify image objects. There are basic classifications following membership 

values defined by the analyst. The software also offers some advanced classification 

techniques which implement different machine learning algorithms.  

 Machine learning algorithms show great potential to effectively and efficiently 

classify remotely sensed imagery. Their strength lies most notably in handling data with 

high dimensionality and in their ability to model complex class characteristics. With 

machine learning algorithms, it is possible to input a variety of data sources without the 

need to consider the source data distribution (Maxwell et al., 2018). The success of these 

classifiers was presented in many publications, which found higher accuracies in 

comparison to parametric classifiers (Hansen et al., 1996; Huang et al., 2002; Pal, 2005). 

Parametric classifiers, such as maximum likelihood (ML), are still the most commonly 

used method, although machine learning algorithms provide notably higher accuracies 

(Maxwell et al., 2018). This trend can, for one, be attributed to the lack of implementation 

of advanced algorithms into standard image-processing software packages (Yu et al., 

2014), and for another, to wide-reaching uncertainties towards the effective use and 

implementation of machine learning techniques (Maxwell et al., 2018).  

In eCognition, there are four different machine learning algorithms to choose 

between: support vector machine (SVM), decision tree (DT), random forest (RF), and k-

nearest neighbour (KNN). 

The Support Vector Machine algorithm aims to identify the optimal boundary 

within the feature space between two classes based on the position of the support vectors 
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(= training samples). This algorithm creates a linear class boundary, known as hyperplane, 

and sometimes needs to be projected to higher dimensions due to the complexity of the 

input data. There are many different transformations known in the literature and are 

referred to as kernel tricks (Maxwell et al., 2018). eCognition provides two different 

kernels, the polynomial kernel and the radial basis function (RBF) kernel, both examples 

of commonly used kernels within remote sensing (Huang et al., 2002). The Decision Tree 

algorithm is very intuitive, computationally fast, and makes no statistical assumptions. It 

follows a sequential approach based on a chain of simple decisions and forms a set of 

branches with nodes and leaves. Training data are being split into homogenous subsets 

based on tests applied to different feature values (Pal & Mather, 2003). Random Forest is 

known to result in significant improvements in classification accuracy. This classifier is 

an ensemble algorithm using a large number of decision trees and making a majority vote 

with all the trees for the most popular class (Breiman, 2001). Lastly, the k-nearest 

neighbour. The k-nearest neighbour classifier differs from all the other before mentioned 

classifiers that it does not create a model based on the training samples provided. The 

algorithm makes a direct comparison of each image object to the nearest known samples 

and assigns the class label of the most common class of the nearest neighbours in the 

feature space. The higher the value of k, the greater is the generalization of the 

classification outcome and vice versa (Maxwell et al., 2018).  

The comprehensive literature review in previous sections was carried out in order 

to better understand the individual algorithms and their performances. It was not possible 

to establish a clear ranking due to a wide range of results in the broader literature. This 

conclusion is in alignment with the very extensive review paper of Maxwell et al. (2018) 

and the detailed study of Lawrence and Moran's (2015), who compared different 
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classification algorithms and their performances concluding that there is no single method 

to achieve the most accurate results in every case. The performances are more dependent 

on the dataset and are case-specific; and although ensemble classifiers seem to be more 

effective methods, the results will likely be impacted by the classes to be mapped, the 

training samples available, and the predictor variables (Maxwel et al., 2018). Both papers 

recommend analysts to experiment with multiple classifiers to determine an optimal 

outcome for a specific classification project.  

 

In this study, both pre- and post-breach imagery were initially classified using the 

same training samples but with six different classification algorithms in eCognition: 

Decision Tree, Random Forest, Support Vector Machine with linear kernel, Support 

Vector Machine with RBF kernel, Bayes, and k-nearest neighbour classifier. 

First, each one of these classifiers was run repeatedly with changing parameter 

settings. The best results were then re-assessed in the second step, by making a visual 

comparison of the classification results between the different algorithms. While all 

classifiers delivered results with varying accuracies, the k-nearest neighbor classifier did 

not succeed in providing an output with any validity (Appendix IV). 

The outcomes of the different classifier were compared based on their most 

optimal ability to delineate the mud from the river class, their best performance in picking 

up channel features in the former agriculturally used land, and distinguishing the upland 

vegetation species from the high marsh species on the foreshore platform. The Random 

Forest classifier was identified as the best performing algorithm for the given number of 

training samples and data sets. The parameter settings for the Random Forest classifier 

are listed in Table 3.3: 
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Table 3.3: Parameter settings for Random Forest classifier in eCognition. 

Parameter Setting 

Type Random Trees 

Depth 151 

Min Sample Count 0 

Use surrogates No 

Max categories 16 

Active variables 0 

Max Tree Number 500 

Forest accuracy 0.01 

Termination criteria type Both 

 

 

The most important parameter settings were the tree depth and the maximum tree 

number. Discussions with expert analysts recommended 500 for the number of the trees 

and an uneven number of sample counts (R. Jahncke, personal communication, January 

2019). 

The input data for the RF classifier were the training samples created in the 

previous step. The sample dataset was uploaded into eCognition to assign their class 

values to the image objects within which each of the training sample points was 

positioned. Once all the image objects were assigned classes associated with the training 

points, the sample statistics could be calculated based on the features selected, which 

served as input for the classifier. 

The resulting classification outcome underwent minor refinements by manual 

modification. There are some tools available to work on some changes in the 

classification results within eCognition. The first algorithm applied was Remove Objects 

for generalization purposes and to decrease the number of image objects. First, the mode 

“merge by shape” was run to merge the image objects with their respective neighbouring 

object with which they are sharing the largest border in common. Next, the mode “merge 
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by colour” was run to merge the image objects with their neighbouring objects with the 

smallest layer value difference. Another useful tool for simplification purposes is the Find 

enclosed by tool. Here the analyst can set rules to apply for the merge of two or more 

objects. This helped to remove redundant or misclassified objects of small sizes across the 

scene, such as the shadow class. Due to the low lighting conditions prevalent at both 

survey dates, a large amount of shadow was cast across the image. The high resolution led 

to a large number of small image objects to be misclassified as such. The Find enclosed 

by tool was used to select image objects smaller than a certain threshold and with the 

class label “shadow” to be re-classified and merged with its surrounding class.  

Lastly, the Pixel-based object resizing tool was run to smooth class boundaries by 

simplifying the image object shapes. Uneven depression can be removed by adding some 

pixels to the object's boundary with the function “growing”; and the same way, unevenly 

sharp edges can be smoothed by removing pixels with the function “shrinking”. It is 

recommended to use those functions back to back by growing the objects first and then 

shrinking.  

Finally, once all manual modifications and refinements were finished, the objects 

were exported as shapefiles into a GIS software environment for further analysis.  

3.2.3 Accuracy Assessment 

The accuracy of the segmentation results was assessed first and the classification 

outcomes later following a qualitative approach at the interim stages of this study. This 

section focuses on the accuracy assessment following a quantitative approach based on 

the final classification products and the imagery used for the classification. With the 

emergence of more complex satellite imagery and advanced image classification 
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techniques, there is growing interest to find proper measures for mapping certainty 

(Grenier et al., 2008). Nowadays, the validation of classification outcomes is considered 

to be an integral part of every remote sensing project (Mowrer & Congalton, 2000). Error 

estimation or accuracy assessment of classification outcomes do not only provide a 

quantitative evaluation and clarification about potential error, but also offer an assessment 

about how suitable a map is for its designated purpose (Zimmerman et al., 2013).  

It is critical for any researcher or analyst working on a classification of remotely 

sensed data, to have a clear understanding of the appropriate techniques used for the 

accuracy assessment as well as a strong knowledge about the factors to be considered 

when using a particular assessment method (Congalton, 1991). One of the most 

commonly used techniques to represent the accuracy of any classification is the error 

matrix (Stehman & Wickham, 2011). Many scientists recommend this technique and ask 

it to be adopted as the standard reporting convention (Congalton, 1991), which is why the 

error matrix was chosen for the accuracy assessment of both classification outcomes in 

this study. 

The error matrix expresses the number of elements classified to a particular class 

relative to the actual class verified on the ground. This is represented by columns, which 

contain the reference data, and by rows, which indicates the class information. There are 

three different spatial units known to be used to conduct a comparison between a map and 

reference data; pixels, blocks of pixels, and polygons (Stehman & Wickham, 2011). In 

this study, the accuracy was assessed with the use of the error matrix and was based on 

pixels as a spatial unit for the assessment. Furthermore, the reference sampling scheme 

was stratified random points based on a summary of field data, and office interpretation of 

remotely sensed images as reference data source, and other thematic maps (for pre-breach 
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only). The sample points for validation were collected the same way as the samples for 

training purposes and were split in a ratio of 2:1. This resulted in a total of 141 validation 

points for the pre-breach classification assessment and a total of 112 points for the post-

breach assessment.  

While the error matrix delivers a mathematically calculated reliability, it also 

includes indications to commission and omission errors (Congalton, 1991). The first 

descriptive statistic of the error matrix is the Overall Accuracy (OA). The OA is 

calculated by the sum of all correctly classified points, divided by the total number of 

validation points available for the assessment. Other descriptive statistics of the error 

matrix are the Producer’s Accuracy (PA) and the User’s Accuracy (UA). The former 

serves as a measure to inform the map producer (image analyst) about how well certain 

classes were classified on the map by providing the probability of a reference point to be 

correctly classified and represents the omission error of the classification. PA is calculated 

by dividing the sum of correctly classified points of a particular class and dividing it by 

the total of available reference points for that respective class. The UA represents the 

measure of commission errors and is calculated similarly to PA by dividing the total 

number of correctly classified points of a class by the total number of points that were 

classified as that class. This measure gives the user an indication of how representative a 

classified location on the map is in comparison to the actual situation on the ground 

(Congalton, 1991).  

Another strong parameter is the Kappa coefficient. The Kappa coefficient 

determines if the accuracies calculated in the error matrix are significantly better or worse 

than a random result (Congalton, 1991). The value of the kappa coefficient ranges from 0 

to 1, with 0 indicating the accuracy assessment occurred by chance, and a value of 1 
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indicating the lowest probability of chance agreement. In some cases, the kappa can result 

values as low as -1. A negative kappa coefficient indicates an agreement, which is worse 

than random (Sim & Wright, 2005).  

Another part of the accuracy assessment involved the calculation of the positional 

accuracy. The geolocational accuracy of the imagery was assessed with the help of 

validation targets, which were placed on the field in addition to the GCP targets before the 

flights. Three different measurements are subject to error and were assessed in this study 

for both imagery; for the horizontal component, the x- and y-coordinates and for the 

vertical the z-coordinates.  

For this purpose, the center coordinates of four different validation targets 

measured on the imagery were compared to the actual surveyed center points of the 

targets in the field. Equally, the measured elevation at the center point of the validation 

targets was compared to the surveyed elevation. The positional error of the imagery is 

expressed through the Root Mean Squared Error (RMSE) and is defined as followed: 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑥𝑖 − 𝑥𝑐)𝑛

𝑖=1
2 

 

While the RMSE represents the standard error of the given coordinate direction, 

the N stand for the sample size, xi is the coordinate measured off of the imagery, and xc is 

the actual coordinate location extracted from the validation survey points.  

3.3 Phase III – Quantification and Interpretation 

In Phase III of the project, the validated classification results were imported into 

ArcMap (ArcGIS Desktop 10.7.1) for further analysis. The main objective of this step 
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was to quantify the areal extents of classes and perform an analysis to correlate the class 

distribution with the inundation frequency on the site. Both provide essential information 

in understanding the changing landscape and potential drivers influencing the evolution 

of the salt marsh at Converse. 

For this purpose, a frequency inundation map was calculated for the restoration 

site to understand aspects of the local hydrology and relate this information with the 

classes present at specific locations. A macro-enabled Microsoft Excel spreadsheet was 

provided by CBWES Inc., to calculate inundation statistics for Converse. The calculation 

required information about the tidal signal and site-specific data points in order to output 

the inundation frequency. The date range for the analysis was set from December 22, 

2018, until May 5, 2019, looking at the period from the first high tides entering the site 

after the breach, until the day of last observation, when the survey flights were conducted. 

The tide signal input data consisted of all the predicted high and low tide levels published 

by the CHS, starting from the first to the last tide of the date range. These data were 

transformed from the chart datum into a local datum corresponding to the DSM available 

for the analysis before they were entered in a select format with the exact date and time. 

Another crucial input parameter was the time interval (in minutes). The analysis used a 

373 minute time interval, which represents the averaged time difference between tides 

over the given date range.  

Lastly, the hydrographic information needed to be set in relation to specific 

elevations at given locations on-site in order to output the statistics of inundation 

frequency. The specified point locations with corresponding elevation data were entered 

by creating random points across the site at different altitudes. The DSM, from May 5, 

2019, was classified into a large number of equidistant classes starting from the lowest 
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point of elevation on-site up until to the highest point in 5-centimetre increments. Within 

each of these classes, a random point was created to extract an elevation value as input for 

the inundation frequency calculations. Finally, the total of all the inputs resulted in the 

hydrographic statistics including the inundation frequency at Converse. This included the 

dates and times, the heights of the tides from a specific station over a user-defined period 

of time, relative to a specified local datum under consideration of site elevation points.  

In the last step, all the elevation-classes with the same inundation frequency were 

merged to represent a gradual rise in the frequency of inundation in 5 to 10% increments 

on a map. The finalized inundation frequency map was ultimately used to compute a 

geometric intersection with the classification outcomes within ArcMap in order to see the 

prevalent classes present within an area of specific inundation frequencies.   
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Chapter 4: Results and Discussion 

This thesis presents semi-automated classification guidelines to improve the 

acquisition and monitoring approaches to understand primary processes and relationships 

between a salt marsh restoration site’s morphology, inundation frequency, and evolution 

of an intertidal landscape. For this purpose, RPAS imagery were collected with 

multispectral information initially on September 24, 2018, before the managed 

realignment at the Converse Marsh and later on May 5, 2019, about five months after 

tidal waters were reintroduced at the site and active restoration was ongoing. For the 

analysis, object-based image analysis was used, and the machine learning algorithm 

Random Forest was implemented to improve automation and accuracies. The 

classification results were then used to calculate areal coverage of detected land-cover 

classes and correlate those with changing inundation frequencies at the Converse 

managed realignment site.  

This chapter presents the results of the analysis and discusses their coherency and 

success for the overall project. First, the results of the positional accuracies of the 

underlying imagery are shown using the formula outlined in 3.2.3 Accuracy Assessment. 

The following section demonstrates the classification results with an assessment of their 

accuracy on the basis of an error matrix. In the last section of this chapter, the result of the 

inundation frequency analysis and the class intersections by area and flooding frequency 

is described and outlined. The chapter concludes with a discussion on the overall 

effectiveness of the application of the Sentera sensor and Object-based Image Analysis at 

a managed realignment site and provides guidelines for future efforts in semi-automated 

vegetation classification.  
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4.1 Positional Accuracy of the RPAS Imagery 

In order to assess the reliability and success of the classification results, it is 

essential to have a clear understanding of the underlying data sources used for the 

analysis and their accuracy first. The positional error in any direction of the image can 

have a critical impact on the accuracy assessment of the classification outcome and need 

to be known and understood. 

The statistical measure of Root Mean Square Error (RMSE) is used to indicate the 

positional error of the generated orthomosaics. It is derived by comparing the specific 

information of the elevation measured from the center point of the targets visible on the 

orthomosaic in relation to that surveyed center point elevations surveyed in the field 

(Table 4.1). The overall accuracy of the GNSS signal during the survey was less than 1 

cm for both acquisition days in September 2018 and May 2019. The RMSEz for the 

vertical positioning is 16 cm and 13 cm for the imagery collected in September 2018 and 

in May 2019, respectively. The RMSEx,y for the horizontal positioning resulted in an error 

of 10 cm for both images (Table 4.2).   
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Table 4.1: Vertical accuracy calculation of elevation (z). Coordinates in CGVD13. 

Acquisition 

Date 

Point  

ID 

z-coord. 

measured 

z-coord. 

surveyed 
diff. in z (diff. in z)2 

Sept. 2018 VP01 5.837 m 5.903 m -0.066 0.004356 

(pre-breach) VP02 5.612 m 5.850 m -0.238 0.056644 

 VP03 ---  ---        --- --- 

 VP04 5.921 m 5.807 m 0.114 0.012996 

    Average 0.0247 

    RMSE 0.157 m 

      

May 2019 VP01 5.508 m 5.476 m 0.032 0.001024 

(post-breach) VP02 5.739 m 5.901 m -0.162 0.026244 

 VP03 9.024 m 8.991 m 0.033 0.001089 

 VP04 5.975 m 5.785 m      0.19  0.036100 

    Average 0.016 

    RMSE 0.127 m 
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Table 4.2: Positional accuracy calculated for the horizontal locations (x,y).  

Coordinates in NAD 1983 CSRS, UTM Zone 20 North. 
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The elevation of the marsh platform and surface topography (i.e. creek networks) 

are critical elements for sediment availability and transport on a site, which influence the 

vegetative recovery of a restoring salt marsh system (Crooks et al., 2002).   

The most common tool for elevation assessment on intertidal salt marshes is Light 

Detection and Ranging (LiDAR). The accuracies of LiDAR deployments range from 7 

cm (Montané & Torres, 2006), over 15 cm (Chassereau et al., 2011), up to 30 cm in low 

and high marsh zones (Millard et al., 2013) depending on their point densities. Other 

studies have used RPAS within similar environments and reported favorable comparisons 

between dataset values and surveyed control points and often yielded in higher accuracies 

than achieved with LiDAR technology. Kalacska et al. (2017) found an averaged 

horizontal displacement of 1.0 to 2.9 cm and an averaged vertical elevation difference of 

2.7 cm (± 1.7 cm) calculated on three different salt marsh environments in Eastern 

Canada. Gonçalves and Henriques (2015) used orthomosaics and DSMs from RPAS 

surveys to monitor topographical changes in beaches and sand dunes reporting horizontal 

errors of about 3 cm and vertical errors under 5 cm. Long et al. (2016) deployed RPAS in 

monitoring the changing topography of tidal inlets in France and calculated RMS errors 

between 10 and 17 cm for the elevation accuracy. These findings are more consistent with 

the values report in Table 4.1. However, there are several factors that have influenced the 

accuracy of DSMs in this thesis. 

The difference in the vertical accuracies of the orthomosaics from September 2018 

and May 2019 were likely impacted by plant canopies, which were abundant in the 

former and at a minimum at the latter. In addition, there are several other factors that can 

influence the accuracy of RPAS datasets. Flight altitude, image overlap, and camera 

specifications can have an impact.  Furthermore, the GCP configuration and number, 



 

101 

 

which is highly case sensitive, has shown to have a larger influence on the accuracy 

(Jeong et al., 2018). Other systematic and technical factors impacting the error values 

were not assessed in this research. 

4.2 Classification Results and their Accuracy Assessment 

Hyperspatial RGB imagery with an additional band in the near-infrared were 

analyzed using image objects and the random forest algorithm. This resulted in two 

landcover classifications of the restoration site at Converse: a pre-breach classification 

from September 24, 2018, and a post-breach classification from May 5, 2019.  

The first classification was based on the pre-breach imagery from September 24, 

2018, and shows the initial land cover classes and their conditions on-site prior to the 

restoration (Figure 4.1). The accuracy of the pre-breach classification was assessed by 

validating the outcome with an error matrix using a total of 141 validation points (Table 

4.3). The overall classification accuracy was 61% with a Kappa of 0.55.  

Due to the fact that there was no specific requirement in differentiating upland 

vegetation communities, some classes were summarized into one single category. The 

category Fallow Land contains the sub-classes of Alopecurus pratensis, Calamagrostis 

canadensis, Old field, Old field low, and Tall Species. The Pasture category contains both 

classes Pasture Grass and Pasture Grass mowed classes.  
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Figure 4.1: Classification result of pre-breach imagery (24 Sept. 2018) using Random Forest. 
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Table 4.3: Error Matrix of pre-breach classification. 
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Different plant species were differentiated within the Fallow Land category, which 

was formerly used as Agricultural Land. The Sentera sensor was able to detect species 

with varying plant structures, chlorophyll and water content otherwise not detectable 

within the visible light of the electromagnetic spectrum. Similar results were observed by 

Hardisky et al. (1986) when they reported significant changes in the spectral response of 

varying plants caused by high absorption of red by chlorophyll and an increase in 

reflectance values within the near-infrared due to intra- and interleaf scattering.  

The greater challenge came with the differentiation of the high marsh class 

Spartina patens from the upland classes, such as Old Field and Calamagrostis 

canadensis. Equally, the other high marsh species Juncus gerardii was also difficult to 

separate from species in the Low Health class or even the other high marsh species 

Spartina patens due to strong spectral and structural (textural) similarities caused by the 

lack of chlorophyll within those species that late in the season (Ozesmi & Bauer, 2002; 

Moffett & Gorelick, 2013). For this reason, the spatial component was added to the 

classifier in addition to the spectral features. This resulted in the successful separation of 

high marsh species from vegetation classes in the upland. 

 

The most considerable misclassification occurred for Spartina pectinata. As 

observed in the field, Spartina pectinata occupied a few small patches along the dyke at 

the back of the fringe marsh. On the classified map, however, it appears along half of the 

old dyke including the remnant Acadian dyke on the foreshore fringe where it was not 

actually present. Another point to mention here is the over-estimation of the freshwater 

plant species in the category ‘Ditch’. According to the classification result, Agrostis 

stolonifera grows in the immediate vicinity of ditches and water saturated ground, which 
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is also confirmed by field observations. However, the coverage on the classification map 

seems to be denser than it was actually observed on the ground and should contain a 

larger variety of upland classes (Figure 4.2).  
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Figure 4.2: Close-up view to an area with large coverage of Agrostis stolonifera class. Top image 

shows RGB orthomosaic in true colour, bottom image shows an overlay of the the RGB-

orthomosaic and the classification outcome with selected class. 
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The main ditch in particular along the dyke road is largely overestimated by 

including the dyke road with mixed upland class. One potential explanation could be the 

fact that water strongly absorbs light within the near-infrared channel. This results in 

measurements showing very significant differences within those plants when comparing 

to drier vegetation classes. Another explanation could be the adverse effects of the 

refinement tools applied at the end of the classification process. The “growing” function 

and “merge by shape” tool can cause areas to overgeneralize, while other classes 

experience the opposite effect (Gao & Mas, 2008). The areas classified as Old Field and 

Old Field low, for example, are correctly identified as such even though there is high 

variability within the respective classes. 

 

Following a visual comparison of all the classification outcomes from the different 

machine learning algorithms, the random forest outcome performed the best in detecting 

the Mud class (Appendix IV). However, minor issues can still be detected within the 

River class. A few objects within the River were assigned to the Mud class, which is 

likely caused by the high sediment content in the water (> 500 mg/l) or not enough 

training samples to get a more explicit spectral response.  

 

Low marsh species and high marsh species were successfully separated, except for 

the very small population of Suaeda maritima, whose occurrence is less frequent than 

other classes, and its existence is geographically localized to one section of the foreshore 

marsh. Moreover, the species transitions into the very sparse population of Spartina 

alterniflora (Figure 4.3 & Figure 4.4). When the RPAS imagery where collected for the 

pre-breach classification (Sept. 24, 2018) the Suaeda maritima species was already green 
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and partially even slowly dying off due to the time of the season. This situation led to 

similar spectral responses between the Suaeda maritima and the Spartina alterniflora 

classes, particularly in the transitioning zones, causing difficulties in the classification, 

thus, the underrepresentation of the former (Figure 4.5). 

 

 

Figure 4.3: Suaeda maritima in earlier development stage (red species) with young Spartina 

alterniflora (green). Picture was taken on foreshore platform on July 4, 2018 (Reyhan Akyol) 
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Figure 4.4: Suaeda maritima in a later development stage (small green) with young Spartina 

alterniflora (taller green leafs). Picture was taken on foreshore platform about a month later than 

the previous on August 2, 2018 (Reyhan Akyol). 
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Figure 4.5: Close-up view to an area with Suaeda maritima. Top image shows RGB orthomosaic 

in true colour with locations of pictures taken indicated with blue points. Bottom image shows an 

overlay of the the RGB-orthomosaic and the classification outcome with selected class. 

 

Figure 27 

Figure 28 
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There are no validation points available for the classes Pond, River, New Dyke, 

Road, and Borrow Pit due to accessibility difficulties and prioritization. Out of 13 classes 

used in the accuracy assessment, five of the classes show a user’s accuracy of 94% and 

100%. The best results are in the classes Bare Ground, Pasture, Wet Meadow, and Low 

Health. Juncus gerardii has a user’s accuracy of 94%. The classes with the lowest user’s 

accuracy are Mud, Suaeda maritima, and Rocking. The low UA for those classes were 

expected due to the fact that there were no sample points provided. One sample point of 

Spartina patens got incorrectly classified as mud, and two bare ground samples were 

incorrectly classified as rocking, which explains the 0% accuracy in both of these classes. 

Suaeda maritima also has a UA of 0%. This is due to the fact that there was only one 

validation point available for this class, and that point was incorrectly classified as 

Spartina alterniflora.  

 

The second classification provides an assessment of the restoration site in May 

2019 after the snow had melted and temperatures allowed us to safely fly after the breach 

in December (Figure 4.6). The greatest challenge of this classification was the relatively 

low spectral variability across the whole scene. Almost all the vegetation on site was dead 

due to the winter, except for fresh grass which started growing earlier in the season and 

the Old Field (green) class, which includes sections of the Old Field class starting to 

green up.  

Most of the classes were labelled with reference to the actual observations made 

on-site. Some of the class labels are further described for clarification in Table 4.4. The 

accuracy was assessed by means of an error matrix (Table 4.5) and included 112 

validation sample points.  
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Figure 4.6: Classification result of post-breach imagery (5 May 2019) based on the Random 

Forest classification algorithm. 
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Table 4.4: Selection of post-classification class description. 

Class name Description 

Pond Ponding and stagnation of tidal water on 

depressions at the site 

wet Vegetation Vegetation that is not entirely submerged, but is 

situated in very shallow water so much that the 

bottom of the vegetation is not dry 

muddy Vegetation Vegetation that is still noticeable, however, 

covered with a significant amount of mud 

sediment Trap Vegetation that is covered with dried sediments on 

its leave blades and stems, which got 

deposited/trapped in plant structure at times of 

inundation. 

dead Vegetation Vegetation with very low chlorophyll content 

tall Vegetation Vegetation with very dense and long-reaching 

leave blades situated at a higher elevation than 

surrounding classes and is as such less often 

inundated. Does not show any signs of sediments 

trapped in its structure. 

 

 

The accuracy assessment of the post-breach imagery resulted in higher accuracies 

when compared to the pre-breach imagery. With a total number of 112 validation points 

across 19 different landcover classes, the overall accuracy resulted in 71% with a Kappa 

value of 0.69 (Table 4.5). 
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Table 4.5: Error Matrix of post-breach classification. 
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The classification outcome of May 2019 already provides an initial view of the 

changing system by providing indications about inundation frequency and extent across 

the study site. The Mud class indicates areas of most frequent flooding, followed by the 

wet Vegetation, muddy Vegetation, and sediment Trap, forming a visible zonation 

between classes. The western section of the study site is widely covered with wet and 

muddy Vegetation, indicating that this section does not drain as fast and successfully as 

the north-eastern areas. This is in strong accordance with field observations (Figure 4.7). 

 

 

Figure 4.7: Field pictures of examples of the muddy vegetation class (left) and the wet vegetation 

class (right) (NA, August 1, 2019). 

 

The first sprouts of grass growing on the site appear on the farthest edge of the site 

where there has been no tidal inundation according to predictions and models. Another 

point to mention is the old section of the road, which is almost non distinguishable at the 

classification outcome and appears to be now covered by mud (Figure 4.8).  

A further interesting observation is the missing low marsh class at the fringe 

marsh (Figure 4.9). As spectral separability between marsh species can be challenging 
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depending on the season. The disappearance of the class can also be an indication for the 

die-off of Spartina alterniflora during the winter or massive ice shear processes. 

 

 

Figure 4.8: Close-up view of the old dyke road covered by mud. 

m 
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Figure 4.9: Close-up view north-western section of the foreshore marsh platform showing the 

difficulties of the classifier to detect Spartina alterniflora on the May 2019 imagery. 

 

The classes fresh Grass, Shrub, New Dyke, freshwater Pond, and River have a 

user’s accuracy of 100%. Only the Road class has a UA of 0%. The classes muddy 

Vegetation and wet Vegetation have UA of 63% and 67%, respectively. The Mud class has 

a UA of 47%, while the PA resulted in 88%. The UA is so much lower than the PA 

because muddy vegetation class points were incorrectly classified as Mud. Dead 

Vegetation has a UA of 50%, caused by falsely classified points belonging to dry Mud, 

sediment Trap, and Old Field (green).   
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There are a number of factors that can influence the accuracy of classification 

results. The accuracies indicated in the error matrices are presented with the knowledge 

that the ground truth data is correct and accurate with the use of the RTK-GNSS 

instrument. The impact of human error and judgment was minimized by the use of pre-

determined code-lists in the RTK-GNSS instrument and the implementation of the 

double-check system while recording and transferring field notes (Carlotto, 2009).  

There are some other factors, which can influence the accuracy of maps created by 

Object-based Image Analysis, which cannot be separately quantified but will be outlined 

to explain the accuracy assessment results of the error matrix. As discussed in earlier 

chapters of this work, there are many benefits of the use of RPAS imagery in tidal salt 

marsh restoration monitoring (Klemas, 2015; Zweig et al., 2015). However, in the process 

of this study, some of the disadvantages of the specific RPAS and camera sensor used in 

this study emerged and need more attention before future analysis (Kelcey & Lucieer, 

2012). Digital cameras mounted to Remotely Piloted Aircraft offer the high spatial 

resolution to investigate these highly complex and diverse systems in the intertidal zones, 

however, missing information to transform Digital Numbers (DNs) into reflectance units 

by radiometric calibration limits how the data can be applied to monitoring changes and 

measuring development on a restoration site (Smith & Milton, 1999). In particular, the 

insufficient sensor quality and the missing camera specifications deployed in this project 

do not meet the requirements to successfully automatize a classification process. Other 

studies have observed similar constraints in low-cost sensors reporting low radiometric 

data qualities low signal-to-noise capabilities of smaller systems, which compromise data 

reproducibility (Anderson & Gaston, 2013; Pande-Chhetri et al., 2017). The geometric 

stability and vibration effects of the RPA can also have an impact on the data quality. This 
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is particularly relevant for the Sentera sensor which did not have a gimbal mount, 

therefore low data quality was suspected to be caused by unrealistic values observed 

during the processing and analysis stages.  

One additional source of error influencing the final classification results can 

happen during the initial segmentation step. When image objects are being created with 

trial-and-error approaches, the results are highly sensitive to subjectivity and 

inconsistency by the hands of the analyst (Arvor et al., 2013). The over- or under-

segmentation are the two types of errors that can be introduced in the segmentation step. 

Under-segmentation causes a large number of objects that results in very long processing 

times in eCognition. Likewise, over-segmentation introduces too large varieties within 

objects and do not provide image objects representative of real-world objects. Both of 

these errors can reduce the classification accuracy if not chosen appropriately (Liu & Xia, 

2010). Another crucial point is the use and parameter settings of the algorithms used for 

the classification, as well as the features included in the classification process. The greater 

the number of the features selected for a given classification, the higher the 

dimensionality for the classification and, with that, the complexity of the analysis itself 

(Ma et al., 2017). A third factor is the sampling unit chosen to run the accuracy 

assessment itself. Since a per-pixel based approach as the unit of assessment for the 

accuracy, the sensitivity of a pixel to positional errors plays another important role 

(Stehman & Wickham, 2011; Ye et al., 2018). Lastly, the accuracy of the classification 

results can be impacted by the high sensitivity of the Random Forest classifier to training 

data characteristics, sample size, class proportion and spatial autocorrelation as it was 

demonstrated in Millard & Richardson (2015). 
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The effectiveness of remote sensing projects has seen considerable advancements 

by incorporating non-parametric statistical classifiers, such as the Random Forest. As 

discussed earlier, the RF algorithm is based on a defined number of decision trees and has 

the advantage of being able to incorporate data of multiple sources and different scales 

with high computational efficiencies (Timm & McGarigal, 2012). Other studies tested 

different scenarios of parameter settings for the RF algorithm and reported minimal to no-

change in accuracy with a larger size of Random Forest of 500 trees (Timm & McGarigal, 

2012; Corcoran et al., 2015). Corcoran et al. (2015) tested three different methods to train 

the Random Forest classifier with a) point samples with single pixel values, b) a buffer 

area sample using the average value of all the pixels within the window of 5x5 pixels 

around the reference point, and lastly, c) statistical values of image polygons intersecting 

with a reference points. For all those three methods sample points were collected 

following the stratified random principle and split into unequal parts of training data 

(75%) and validation data (25%). The results showed the highest overall accuracies for 

the classification outcome with based on objects and reported an overall accuracy of 77% 

(Kappa = 0.72) at one site and 93% (Kappa = 0.92) at another. These results show the 

high potential of using OBIA with Random Forest for wetland mapping. Correll et al. 

(2019) classified eight broad classes in a tidal marsh system on the east coast of the 

United States using three different machine learning algorithms in comparison. Their 

results showed that Random Forest outperformed the other classifier with an overall 

mapping accuracy of 90% and found mean classification accuracies of 94% for the class 

of high marsh and 76% for low marsh delineation. Pande-Chhetri et al. (2017) compared 

the performance of different machine learning algorithms by using RPAS imagery and 

OBIA and achieved an overall accuracy of 70.8% using Support Vector Machine.  
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The implementation of Random Forest to classify intertidal wetlands using 

complex datasets is a valid approach. However, it requires input datasets with higher 

quality in order to provide results with higher accuracies and reliability. The near-infrared 

band of the Sentera sensor did not provide the actual spectral resolution information. 

Moreover, the lossy-compression format contributed to the loss of important spectral 

information in pixel values with every pre-processing step applied. 

4.3 Inundation Frequency Map and Landcover Class Distribution 

The validated classification maps could now be interrelated with the inundation 

frequency map to identify potential correlations and find any conclusions from the results. 

The frequencies range from 0% up to 100% and describe how, and where, areas got 

inundated and how often between December 21, 2018, and May 5, 2019 (Figure 4.10).  

The mudflats along the shoreline of the Missaguash River, together with the 

breach location, are the areas that were inundated for 100% of the defined time interval 

(373 minutes). The whole extent of the borrow pit was inundated with every high tide 

about one-third of the time. The majority of the restoration site only got inundated for 

20% of the time. Whereas the areas on the western part of the site, which were identified 

to be wetter in both pre- and post-breach classification results, got inundated a bit more 

frequently, 25-30% of the time. The foreshore marsh platform was less frequently 

inundated, with values ranging between 10 and 15%. Most of the sections of the old dyke, 

which have been levelled, were never or only 5 to 10% of the time inundated.  

 



 

122 

 

 

Figure 4.10: Frequency Inundation Map of Converse Marsh. Inundation frequencies in percent 

with respective elevations within each class indicated in metres (CGVD13). Calculations based 

on post-breach DSM (May 5, 2019) and high tide level predictions of CHS (Pecks Point CD to 

CGVD13 offset value = 6.69 m) for the time between Dec. 21, 2018, and May 5, 2019. 

Background image: Orthomosaic May 5, 2019 (DJI Phantom 3 Pro). 

 

With the help of the intersect tool in ArcMap, all classes of the post-breach 

classification outcome that fell under the respective inundation frequency classes were 

quantified in a separate dataset. The datasets were then used to identify potential 

relationships and coherences between land cover classes and inundation frequencies 

(Figure 4.11).  
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In the case of the post-breach classification, areas with the lowest frequency of 

inundation contain mainly plant species from the fallow agricultural land. The high marsh 

species occupy almost half of the total area in the 10% inundated frequency class. 

 

 

 

Figure 4.11: Proportion of classes present with rising inundation frequency in percentage.  
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As the inundation frequency continues to increase, the high marsh species and dry 

Mud class decrease in area, while the sediment Trap and muddy Vegetation classes take 

over more space. High marsh species, such as Spartina patens for example, are known to 

occupy predominantly the intermediate elevations belonging to the higher end of the tidal 

frame with their inability to tolerate longer inundation times (Millard et al., 2013; Porter 

et al., 2015). At 50% of inundation frequency, more than half of the area is classified as 

Mud and the other half with ponding water. The areas inundated up to 95 and 100% of the 

time mainly consist of Mud and River (Figure 4.11).  

An overview of all classes apportioned to the area inundation frequencies is given 

in Figure 4.12. The largest extent of inundation on the site happened only 25% of the time 

between Dec. 21, 2018, and May 5, 2019, indicating that only a small area of the 

restoration site has been inundated frequently. 

In Figure 4.13, the classes are proportional to the total of the area within each 

inundation frequency class plotted. The Mud class in the post-breach classification shows 

an unusual pattern. At 95% of inundation frequency, the Mud class takes up almost all the 

area and continues with a falling trend until 45% inundation frequency, with the exception 

at 65% inundation frequency, where it shows an increase of about 15% in area coverage. 

Within the area of 50% inundation frequencies, the Mud class takes up nearly half of the 

total area inundated. At 35% inundation frequencies, the mud coverage within that area 

shows a very sudden increase up to almost 90%, only to continue to decrease slowly with 

frequencies of less than 30%. The observed anomaly of a jump in the mud class at 65% 

and 35% inundation frequencies likely indicates a rapid deposition of sediments from the 

flooding tide at the upper edge of the creek bank and the thalweg of the creek respectively 

(Figure 4.14).  
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Figure 4.12: Correlating area of pre-breach classes (left) with the area of post-breach classes 

(right) by their occurrences in certain inundation frequency levels. 
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Figure 4.13: Correlating proportional area of pre-breach classes (left) with the proportional area 

of post-breach classes (right) by their occurrences in certain inundation frequency levels. 

 

P
o

st
-B

re
ac

h
 C

la
ss

e
s 

P
re

-B
re

ac
h

 C
la

ss
e

s 



 

127 

 

 

 

 

Figure 4.14: Cross-section of main channel at Converse highlighting significant sediment 

deposition at 35% and 65% inundation frequencies and indicating 30% mark, where inundation 

beyond these frequencies and elevation moves outside the channel reaching the marsh platform. 
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High suspended sediment concentrations increase flocculation rates, which leads 

to an increase of the clearance rate in a water column, and with that, the time to form 

flocs decreases subsequently initiating the settling (Kranck, 1980, as cited in Poirier et al., 

2017). Other studies focused on suspended sediment dynamics and deposition patterns 

showing notable water clearance and settling during calm flow conditions (Milligan et al., 

2007; O’Laughlin et al., 2014). These conditions are present usually at maximum tidal 

amplitude and where an increase of sediment deposition is observed.   

 

Between 20% and 25% inundation frequencies, the muddy Vegetation and the wet 

Vegetation class show their largest extent (Figure 4.12) and take up together almost more 

than half of the total area associated with those frequency levels (Figure 4.13). When 

compared back with the inundation frequency map (Figure 4.10), it is evident that the 

areas between 20% and 25% mainly include the drainage ditches connected to the 

channels. Tidal channels and drainage ditches are essential in understanding the control of 

delivering sediment-laden waters into the marsh system. Drainage ditches, in particular, 

have wide-ranging impacts on restoring marshes, such as influencing and changing 

vegetation patterns on-site by providing a resuspension sink for sediments to be retained 

(Corman et al., 2012; Pieterse et al., 2017). For these reasons, a fundamental principle of 

restoration in these marshes is restoring hydrology (Poirier et al., 2017).  

A well-designed morphology influences the hydrology of a site, which in turn 

provides the substrate and the surface for new vegetation to come in and colonize. The 

establishment and retention of tidal salt marshes is highly dependent on the sediments 

supplied from the creeks, while sediment deposition rates decrease with increasing 

distance to tidal creek networks (Christiansen et al., 2000; Temmerman et al., 2003; 
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Poirier et al., 2017). Because there is such a strong relationship between plant zonation, 

sedimentation with inundation frequency, morphology and distance to tidal creeks, we 

can expect to see changes within those particular areas in future site assessments (Coco et 

al., 2013).  

 

Due to technical limitations, the results of this work are too premature at this stage 

to give any indications about plant colonization. However, it is anticipated based on the 

preliminary pattern that exists, pioneering salt marsh plant occupation will likely first 

occur in the particular spaces where there are the muddy Vegetation and wet Vegetation 

classes, which is mostly in the western and north-eastern sections of the site (Figure 4.6). 

The Sentera sensor already delivered promising results, yet this type of analysis requires 

an upgraded RPA system and qualitatively higher multispectral sensor products, for more 

robust and reliable results. A more advanced sensor providing measurements within the 

near-infrared in a single or multiple individual bands, would deliver more spectral 

information yielding in clearer results of the surface patterns at a restoration site.  
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Chapter 5: Conclusions 

The overall goal of this research was the development of guidelines for semi-

automated classification to improve the acquisition and monitoring approaches to 

understand primary processes and relationships between a restoration site morphology, 

inundation frequency, and evolution of a tidal environment. This goal was realized by 

establishing a framework (Figure 3.1) and implementing relatively new image analysis 

methods with RPAS technology and Random Forest classifier. The classification results 

served then as an input for further analysis to assess and understand processes using the 

example of the Converse salt marsh restoration site. 

 

The application of RPAS imagery with a multispectral sensor to monitor and 

quantify intertidal salt marsh restoration progress 

Data analysis with RPAS imagery proved their advantages of high spatial and 

temporal resolution, flexibility in designing image survey missions, and cost- and time-

efficiency when compared to other space or airborne platforms. However, the 

implementation of RPAS technology in further salt marsh restoration monitoring projects 

is constrained by the quality of the camera sensors due to the direct impact of image data 

quality to classification results. One of the challenges in working with RPAS imagery is 

its high sensitivity to environmental conditions. Atmospheric conditions such as cloud 

coverage, high contents of water vapour and aerosols in the atmosphere can have an 

impact on reflectance values acquired through the sensors mounted on the RPA and result 

in different reflectance values and have not been investigated to this date. 
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Moreover, a varying amount of noise in image values can be detected in the data 

due to lens distortions, systematic errors of data acquisition from the sensor, and camera 

sensitivity (Mafanya et al., 2018). Those impacts on the spectral response limit the quality 

and validity of the raw spectral data stored as digital numbers to an unknown degree 

(Minarik et al., 2019). Hence, the conversion of the raw digital numbers to reflectance 

values in physical units does provide the conditions required to analyze and compare data 

acquired at different times of the day or season for change detection. Furthermore, it 

offers the opportunity to make comparisons with alternative sensors or even different 

study sites. The process of radiometric calibration allows the spectral characterization of 

any given feature and can only be performed with technical information about the camera 

sensors, which were not available for this study after requesting this information from 

RPA manufacturer for the RGB stock-camera FC300X (Kelcey & Lucieer, 2012). The 

image taken of a calibration target in the field is also subject to changing exposure values 

from the camera and sensor and leads to processing errors in Pix4D discovery. In future 

missions, it is critical to take a close-up capture on a bright background of the target to 

avoid long exposures in order to execute a successful radiometric calibration. 

The use of multispectral information was very crucial in separating classes within 

the pre- and post-breach imagery and should be incorporated in salt marsh restoration 

monitoring (Ozesmi & Bauer, 2002). The sensor quality of Sentera, however, created 

significant challenges and obstacles for a potentially better classification outcome in this 

study. Pande-Chhetri et al. (2017) made similar observations and concluded that RPAS 

provide a great potential in wetland mapping, however, solutions to improve image 

quality are necessary to improve classification performances. The difficulties in 

recognizing features on the multispectral imagery after the band-separation impacted the 
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positional accuracy. Furthermore, during the analysis steps for the classification, the 

actual pixel values of the near-infrared seemed to be defective and showed abnormal 

behaviours at certain features across the dataset. For future projects, a sensor upgrade 

with additional bands within the near-infrared is recommended.  

The RPAS model DJI Phantom 3 Professional for environmental remote sensing 

purposes brought up some challenges with high sensitivity to weather variations, low 

battery durability, and small areal coverage. Newer models can cover larger areas with 

improved battery efficiency, and also include onboard differential GPS technology to 

reduce the number of GCPs necessary on the field. An upgraded model of the camera and 

sensor mounted on the RPAS will also decrease technological difficulties and 

consequently result in a greater efficiency necessary for a semi-automated framework.  

 

The use of Object-based Image Analysis to analyze hyperspatial imagery 

Object-based Image Analysis offers a promising classification method to map the 

very heterogenous cover types of tidal wetlands with the opportunity to integrate 

ecologically meaningful information on spatial context (Dronova, 2015). Although other 

studies reported successful implementation of OBIA in wetland classification (Gao & 

Mas, 2008; Kim et al., 2011), it is still unknown to what extent technical and conceptual 

constraints of this approach impact the success of this method and thus speaks for the 

development of solutions in future studies (Moffett & Gorelick, 2013; Dronova, 2015).  

Segmentation algorithms are susceptible to variations in parameter settings, to the 

choice of hierarchical order, and also to the image criteria used for the analysis, such as 

the size of image and bit depth. This consequently results in a high degree of subjectivity 

exerted by the analyst, which is further amplified by the trial-and-error approach used in 
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the segmentation step (Meinel & Neubert, 2004). For future projects, it is highly 

recommended to implement an algorithm that calculates ‘optimal’ scale parameter 

(Drǎguţ et al., 2010; Ming et al., 2015) or to conduct a more extensive study on ensemble 

methods testing the most optimal segmentation parameter settings for a given sensor 

platform and site characteristics. Furthermore, the shift from a single- to a multi-scale 

segmentation approach provides higher accuracies in the classification outcomes, 

especially for complex evolving landscapes such as in tidal wetland restoration sites (Kim 

et al., 2011).  

Object-based image analysis relies heavily on expert knowledge of the applied 

software algorithms, image interpretation skills, technical knowledge of remotely sensed 

data, understanding of the site to be assessed, time invested in trial and error for 

parameter settings, and computer capacities (Corcoran et al., 2015). For the purpose of 

the highest degree of automation possible, the classification was applied on the single 

most suitable segmentation level and later improved with manual modifications. 

However, for future applications, it is recommended to conduct a step-wise classification 

on several levels (Kim et al., 2011). The first classification outcome should only 

distinguish major landcover classes, and the subsequent classifications should be based 

within each of the main landcover classes for further separation (Barker & King, 2012).  

The accuracy of wetland classification outcomes and the separation of wetland 

classes from other landcover classes can often be improved by incorporating multi-

temporal imagery (Ozesmi & Bauer, 2002). Future post-breach monitoring tasks can be 

aided by collecting several imageries throughout the season and merging the outcomes 

from each classification. 
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The application of OBIA allows a simple way of extracting classification results 

into a GIS environment in a vector file format. This reduced several steps of data 

transformation to be able to correlate classified information with other datasets for further 

analysis. The restoration progress could quickly be identified by calculating extent and 

creating graphs of the landcover classes and their coverage on site. The intersection of 

this information with an inundation frequency map resulted in a quantitative assessment 

of developments and processes on the restoration trajectory at Converse. There is more 

potential for further analysis with the classification results by applying statistical 

measures to correlate landcover class, elevation, inundation frequency and duration would 

provide an even better understanding of the site. The associated feature values of the 

classified image objects can also provide further information to incorporate into the 

analysis and can help to create a base for a site-specific spectral library to support 

continuing monitoring efforts at Converse by the means of remote sensing. 

 

Quantifying and correlating class area with hydrological analysis to interpret 

classification results and understand implications for the evolving landscape 

The intersection of frequency inundation and class distribution is a fast solution to 

assess an evolving tidal marsh quantitatively and get a better idea of the coinciding 

conditions at a restoration site. In continuation of the monitoring process at Converse, it is 

recommended to implement information of the hydroperiod (length of time a particular 

location is covered in water) in addition to the frequency inundation, and statistically 

correlate this information with suspended sediment concentrations and elevation across 

the study site. The results of the statistical analysis considering the aforementioned factors 



 

135 

 

will give further insight into ongoing processes and will help predict potential 

development paths in a more reliable way. 

Within the scope of this research, the frequency inundations were calculated based 

on long term predictions considering only the high tide values and does not represent a 

continuous inundation throughout a whole tidal cycle. The water levels of the predicted 

high tides were transformed to the local datum (CGVD13) by using the calculated offset 

value of 6.69 m. This value was based on a relative short-term recording (33 days) in 

October 2017 and does not necessarily provide the optimal offset value applicable to 

transform datums throughout the whole year. In particular, since the short-term 

deployment recorded tide levels in the fall, which is the season of the highest tides of a 

year. For repeated analysis, it is recommended to repeat the frequency inundation 

calculations based on an offset value calculated from long-term tidal recordings of water 

levels optimally measuring different seasons of a site.  

 

Future directions and recommendations 

For future applications, to be able to talk about a framework and a semi-automated 

classification process, certain topics need to get more attention before successfully 

implementing them; for example sample design, sample selection and size (Foody, 2002; 

Rougier et al., 2016), feature selection (Laliberte et al., 2012), classification technique 

(Maxwell et al., 2018), accuracy assessment (Stehman & Wickham, 2011; Ye et al., 

2018).  

OBIA is a strong method to analyze hyper-spatial data for complex environmental 

applications and has already proven to be successful in various other studies (Laliberte et 

al., 2010; Pande-Chhetri et al., 2017). However, in order to establish a reliable framework 
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for restoration monitoring, the individual steps of the framework have to be assessed and 

standardized with the help of case studies. Finally, more research has to be conducted on 

the choice of a proper accuracy assessment method for object-based image analysis due to 

the fact that many factors may influence the accuracy of OBIA results, such as the quality 

of the segmentation, the choice of features for the classification, and the incorporation of 

errors due to the analysts themselves. All these factors need to be assessed beyond simple 

reference point statistics and currently, many publications differ in their approaches of 

covering before named factors (Ye et al., 2018). 

 

Based on this thesis, a series of key recommendations for future deployments 

were made (Table 5.1).  

 

Table 5.1: Key recommendations summarizing the considerations for future salt marsh 

restoration site assessment and monitoring projects gained of the results of this research. 

Concepts & 

Applications 

Key Recommendations 

OBIA • Should be applied when using very high resolution RPAS 

imagery in highly heterogenous environments 

• Should be performed with a multi-scale analysis for 

general site-assessment 

• Segmentation step should use algorithms to extract 

optimal scale parameter for increased objectivity of the 

process 

• Consider other environments to perform object-based 

image analysis outside of eCognition, such as R 

Pixel-based approach • Should be applied for change detection analysis 

RPAS model • Should have PPK capability to assure higher positional 

accuracies with fewer GCP targets 

• For absolute reflectance values, RPAS camera specifics 

(band width and sensitivity) should be known 
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Camera and sensor 

model 
• High quality multispectral sensor critical 

• Choose sensors with a larger the number of bands and 

narrower band widths 

• Should have spectral sensitivity factor disclosed in order 

to apply radiometric correction 

• Deploy cameras with larger Instantaneous Field of View 

(IFOV) to cover more ground areas in less time 

Machine Learning 

Algorithm 
• Use ML classifiers for image analysis 

• Random Forest is very recommended for the intertidal 

landscape at Converse using RPAS imagery and OBIA 

• Support Vector Machine has great potential; however, the 

analyst should have a profound understanding of different 

parameter settings and their impact on the end results 

• The creation of a spectral signature library for intertidal 

wetland classes is recommended in order to further 

improve classifier in repeated site assessments 

• Different packages and modules available in R and Python 

may be used to execute machine learning algorithms  

Landscape 

Interpretation 
• Frequency Inundation calculations should be performed on 

a higher timescale for long-term periods 

• Hydroperiod is important to incorporate and should be 

considered in the analysis 

• Elevation and suspended sediment concentrations are also 

critical for salt marsh establishment and should be 

considered in statistical correlations with other elements 

 

 

On the condition of implementing a multi-scale analysis approach, Object-based 

Image Analysis is an effective method and will provide great potential for restoration site 

assessment when working within widely heterogenous landscapes, such as tidal wetlands, 

and when using very high resolution RPAS imagery. The method of pixel-based image 

analysis was not tested within the scope of this research to allow direct comparison with 

the object-based approach, which could have provided more suggestive conclusions in 

this context. However, when conducting a follow-up project at Converse, it is suggested 

to use a combined approach by first classifying imagery using the object-based approach 
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and afterwards re-classifying areas of individual landcover classes by using the pixel-

based approach within the object for change detection.  

The implementation of machine learning algorithms is highly recommended and 

should be tested in broader scale, provided that high-grad multispectral sensors are 

available. Lastly, for the assessment and interpretation of dominant drivers on-site, more 

factors influencing a tidal salt marsh establishment need to be considered in correlation to 

one another in order to draw rigorous conclusions on the status of the restoration success. 
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Appendix II 

from PIL import Image 
from PIL import ImageFilter 
import os 
 
origin='C:\\Users\\arman\\Desktop\\Reyhan\\MS_05052019\\Sentera_MS\\' 
destination='C:\\Users\\arman\\Desktop\\Reyhan\\MS_05052019\\Sentera\\BandIsolated1\\' 
 
os.makedirs(destination) 
for x in range (9,17): 
    folder='imagery_' 
    for d in range (4-len(str(x))): 
        folder=folder+'0' 
    folder=folder+str(x) 
    os.makedirs(destination+folder) 
    for file in os.listdir(origin+folder): 
        if file.endswith('.jpg'): 
            im=Image.open(origin+folder+'\\'+file) 
            exif=im.info['exif'] 
            img=im.load() 
            [xs,ys]=im.size 
            for x in range (xs): 
                for y in range (ys): 
                    [r,g,b]=img[x,y] 
                    newR=1.0*r-1.012*b 
                    newB=9.605*b-0.618*r  
                    img[x,y]=(int(newR),int(newR),int(newB)) 
 
            #im=im.filter(ImageFilter.SMOOTH) 
            im.save(destination+folder+'\\'+file, exif=exif) 
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Appendix III 

Calculating distance following the Pythagoras Theorem: 

𝑋 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 [𝑿 𝑫𝒊𝒇𝒇] = 𝑋𝑃1 − 𝑋𝑃3   

𝑌 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 [𝒀 𝑫𝒊𝒇𝒇] = 𝑌𝑃1 − 𝑌𝑃3  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(𝑋 𝐷𝑖𝑓𝑓)2 + (𝑌 𝐷𝑖𝑓𝑓)22

  

𝑆𝑖𝑑𝑒 = (sin  
(45 × 𝜋)

180
 ) × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

 

Calculate Bearing with the use of ARCTAN: 

𝐵𝑒𝑎𝑟𝑖𝑛𝑔 (𝑅𝑎𝑑) [𝑩𝑹] =  tan−1 𝑋 𝐷𝑖𝑓𝑓

𝑌 𝐷𝑖𝑓𝑓
    

𝐵𝑒𝑎𝑟𝑖𝑛𝑔 (𝐷𝑒𝑔)[𝑩𝑫] =  𝐵𝑅 ×  
180

𝜋
 

𝐵𝑒𝑎𝑟𝑖𝑛𝑔 𝑆𝑖𝑑𝑒 1 [𝑩𝑺𝟏] = 𝐵𝐷 − 45 

𝐵𝑒𝑎𝑟𝑖𝑛𝑔 𝑆𝑖𝑑𝑒 2 [𝑩𝑺𝟐] = 𝐵𝐷 + 45 

 

 

Calculate missing coordinates: 

𝑿𝑷𝟐 =  (𝑆𝑖𝑑𝑒 × (sin   
(𝐵𝑆1×𝜋)

180
 )) + 𝑋𝑃1   𝑿𝑷𝟒 =  (𝑆𝑖𝑑𝑒 × (sin   

(𝐵𝑆2×𝜋)

180
 )) + 𝑋𝑃1 

𝒀𝑷𝟐 =  (𝑆𝑖𝑑𝑒 × (cos   
(𝐵𝑆1×𝜋)

180
 )) + 𝑌𝑃1   𝒀𝑷𝟒 =  (𝑆𝑖𝑑𝑒 × (cos   

(𝐵𝑆2×𝜋)

180
 )) + 𝑌𝑃1 
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Appendix IV 

 

Figure AIV.1: Overview of post-breach orthomosaic in true colour composite. 
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Figure AIV.2: Classification output of Decision Tree algorithm. 
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Figure AIV.3: Classification output of Support Vector Machine algorithm with linear kernel. 
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Figure AIV.4: Classification output of Support Vector Machine algorithm with RBF kernel. 
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Figure AIV.5: Classification output of the Bayes algorithm. 


