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Modelling Dynamic Yield Curve for Canadian Bond 

Market 
By Sayan Maity  

Abstract 
 

The yield curve or the term structure of the interest has been one of the key leading 

macroeconomic indicators and forecasting the yield curve could provide vital information 

about future macroeconomic performance. Following the seminal works of Diebold & Li 

(2006a) and Diebold et. Al. (2006b)Many papers tried to evolve different techniques that 

can model the inner dynamics of the yield curve and forecast for future periods efficiently. 

This paper also followed the same path of Diebold & Li (2006) to model the inner dynamics 

of the Canadian zero-coupon yield curve and added some new structure following different 

stylized facts obtained from the factors. Primarily this paper estimated the model in a two-

step way with the factor dynamics being VAR, VECM, EGARCH and DCC-EGARCH 

along with the one-step model using Kalman filter. A grid search is performed to calibrate 

the yield curve factors and using that all the models are compared using the root mean 

square forecast error. VECM and EGARCH turned out to be the best models revealing the 

different short term and long-term dynamics and the parsimonious nature of the model. 

Furthermore, a regime-switching model is also estimated to find the changing volatility 

structure of the yield curve as indicated in the previous models. 

 

Keywords: term structure of the interest, dynamic Nelson Siegel, short-term and long-term 

dynamics 
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1. Introduction 
 

Monetary authorities around the world rely on research-based evidence to inform 

policymaking. To do so effectively, they need to have access to reliable statistical indicators 

of financial markets, including those that reflect expectations of investors and how those 

expectations respond to policy. Different monetary institutions around the world rely on 

different indicators from different market as a leading indicator to predict future 

movements in the economy. One such leading indicators are the zero-coupon yield curve. 

A zero-coupon yield curve is a specific type of yield curve that plots interest rates/ yield to 

maturity on zero-coupon bonds to different maturities. These curves enable to price 

arbitrary cash flows, fixed-income instruments, and derivatives1.    

The use of the yield curve or specifically, the slope of the yield curve as a leading indicator 

is not new. Many economists argue that the yield curve could be a better measure for 

predicting future inflation, future economic growth and recession (Bernard & Gerlach, 

1998) than other leading economic indicators like the unemployment rate, consumer 

confidence and GDP. Wright (2006) argued that the term spread measures the difference 

between real short term and expected short term interest rate. Thus, the higher the term 

spread, the greater the likelihood of  a recession in the upcoming period. 

The link between the term structure of interest rate and the zero-coupon yield curve is very 

evident. The yield to maturity is just the constant interest rate at which discounted cash 

flow of a bond  equals the price. This serves as the direct link between the zero-coupon 

 
1 (Actuarialtoolkit.soa.org, actuarialtoolkit.soa.org/tool/glossary/zero-coupon-yield-

curve.) 
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yield and the interest rate as the term structure of interest can be modelled by the zero-

coupon yield curve. 

It is well recognized that there is a feedback relationship between the macroeconomic and 

financial factors. However, this feedback relation is hard to model by both macro and 

financial economist due to their different outlook. This is very evident in the case yield 

curve and term structure modelling. Macroeconomists, financial economists, and market 

participants all have attempted to build useful models of the yield curve. But the resulting 

models are very different in form and fit, which reflects the modelling demands of 

researchers from various fields and their motives for modelling the yield curve. The yield 

curve models developed by macroeconomists focuses on the role of expectations of 

inflation and future real economic activity in the determination of the yields. On the other 

hand, a financial economist focuses on specific determinants that arise from the model itself 

that could determine the movement in the yield curve. Though this paper will not explicitly 

study the effect macroeconomics factor, there is certain usage of macroeconomics concept 

of a long and short run.  

In this paper, we build a parsimonious model of the yield curve that can capture both the 

inner dynamics of the yield curve and can forecast the yield efficiently, without explicitly 

modelling the feedback between financial and macroeconomic factors. The basis of this 

model comes from Diebold & Li (2006a) and Diebold et. Al. (2006b). These two papers 

suggested a three-factor dynamic factor model following the famous Nelson and Siegel 

(1984) model of the yield curve. The main underlying assumption was the yield curve has 

some temporal dimension in the way it propagates through time. Thus, modelling the yield 

curve dynamically could reveal different aspects of the term structure which is not evident 

from the static model. 
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In this paper, the yield curve dynamics is modelled in different ways. Using the monthly 

data set from 1986 to 2020, a series of different approaches are adopted to estimate the 

perfect factor dynamics that are present in the term structure. These models will be then 

compared against each other based on their forecast performance. The model that has better 

forecast performance should have fit the model better and can also explain different aspects 

of factor dynamics both in the long and short run. 

In the next section, the evolution of the literature from the static Nelson and Siegel (1984) 

model to dynamic Diebold & Li (2006a) and Diebold et. Al. (2006b) models will be 

discussed (Section 2). Along with that, the factor structure of the yield curve and how that 

shapes the yield curve will also be discussed. In subsequent sections, data issues (Section 

3), the estimating models along with the prediction strategy (Section 4), and the results 

(Section 5) are presented. The paper concludes by drawing implications and points to 

directions for future research (Section 6). 

2. Theory 

To provide the background to the model, we first discuss a few key concepts of the bond 

market: the discount curve, the forward rate curve, and the yield curve.  

Let us assume, 𝑃(𝜏) denote the price of 𝜏-period discount bond or the present value of $1 

receivable after 𝜏 period.  The rate of return or yield for the bond for the period 𝜏 is denoted 

by 𝑦(𝜏). Now, if we assume that the yield is compounding continuously then we can write  

𝑃(𝜏) = 𝑒−𝜏𝑦(𝜏)                                                        (2.1) 

The yield or the rate of return can be replaced by the market interest rate for any financial 

asset. So, modelling of bond yield can also be somewhat related to the modelling of the 
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interest rate. Thus, like interest rate, we can define a forward rate 𝑓(𝜏), which can be 

defined as  

 𝑓(𝜏) = −
𝑃′(𝜏)

𝑃(𝜏)
                                                          (2.2) 

So, the knowledge of the discount curve helps to find both spot and forward rate. From 

these two equations, a relationship between spot and forward rate can be defined  

𝑦(𝜏) =
1

𝜏
∫ 𝑓(𝑢) 𝑑𝑢
𝜏

0
                                                   (2.3) 

in other words, spot rates are the equally weighted average of forward rates. 

In theory, one can work with anyone of these factors to model the nature of bond yield or 

the term structure of interest rate. But in reality, none of these factors is directly observable, 

and they are generally derived from the observed bond price. To estimate this, different 

mathematical models have been established.  

The first approach to model the yield curve using the discount curve was performed by 

McCulloch (1971). He used polynomial splines to model the discount curve as 

                                                       𝑦(𝑚) = 𝑎0 +∑ 𝑎𝑗𝑓𝑗(𝑚)
𝑘
𝑗=1                                                (2.4) 

In essence, the discount rate is presented as a weighted sum of forward rates. He defined a 

different polynomial structure to define the forward rate. In the latter paper, McCulloch 

(1975), he adjusted his estimations for taxes. One of the key problems of this model is that 

due to the polynomial structure, the fitted discount curve diverges in the long run.   

This is solved by the usage of exponential splines, which is proposed by Vasicek & Fong 

(1982). Their model is closely related to the initial assumption, as represented in (2.1) 

above.  

                                                                 𝑃(𝜏) = 𝑒−𝜏𝑦(𝜏)                                                              (2.5) 
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One of the critical improvements of this model is the usage of the negative transformation 

of maturity 𝜏. For this the model yields – 

                                                               lim
𝜏→∞

𝑓(𝜏) = 𝛼                                                                 (2.6) 

where, 𝛼 is a fixed value. This means the forward rate and simultaneously, the zero-coupon 

rate both converge to a fixed value as maturity increases. This helped to model the yield 

curve in the long end accurately. But one of the overall problems of this discount rate 

modelling is that it does not ensure a positive forward rate, a problem that can be solved by 

not modelling the discount curve but modelling the forward rate itself, as shown by Fama 

& Bliss (1987). Using this we can get the famous Fama Regression which is the multiperiod 

forecast of the short rate 

                                  𝑃𝑡+𝜏(𝑛) − 𝑦𝑡(𝜏) = 𝛼 + 𝛽(𝑓𝑡( 𝑛) − 𝑦𝑡(𝜏)) + 𝜀𝑡+𝜏(𝑛)                      (2.7) 

All the values in the above regression are in logarithm, and so, this excess return of the long 

term over short term bonds can be defined as a function of forward rate. The forward rate 

constructed using this assumption of time variability of the excess return of long-term 

bonds is called "unsmoothed Fama Bliss" forward rates, which are further transferred into 

unsmoothed Fama Bliss yields through weighted averaging. This unsmoothed Fama Bliss 

yields accurately price the included bonds and are often used as raw yields to fit any model 

of the yield curve. Unsmoothed Fama-Bliss yields are one of the significant innovations in 

yield curve modelling and are still used by various central banks to estimate the term 

structure. Based on Fama Bliss yields, many researchers fit different empirical yield curves. 

Such fitting smooths the unsmoothed Fama Bliss yields and gives us a smoothed yield 

curve.  
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Given the ever-changing scenario of the market, the yield curve moves a lot, and so it can 

have many different shapes. Yields can be increased at an increasing or decreasing rate, 

decreasing at an increasing or decreasing rate, flat, U-Shaped, S-shaped, humped and many 

more.  To fit all those shapes, one needs a very simple and parsimonious model which is 

flexible enough to incorporate all those shapes.  

Nelson-Siegel class of models which comes from Nelson and Siegel (1987), are the prime 

examples of such parsimonious model. According to Nelson and Siegel (1987), the key to 

parsimonious modelling lies in the solution of difference or differential equation of spot 

rates, which is forward rate. For example, if we have instantaneous forward rate 𝑓(𝜏) for 

maturity 𝜏 which can be described as a solution to a second-order differential equation with 

real and unequal roots,  𝑦(𝜏) can be described as:  

                                                      𝑓(𝜏) = 𝛽0 + 𝛽1𝑒
−𝜏𝜆1 + 𝛽2𝑒

−𝜏𝜆2                                      (2.8) 

Where 𝜆1 & 𝜆2 are constants and 𝛽0 , 𝛽1& 𝛽2 are derived from the initial condition. The 

spot rate 𝑦(𝜏) will then be the weighted average of forward rates as it is discussed earlier. 

                                                                𝑦(𝜏) =
1

𝜏
∫ 𝑓(𝑢) 𝑑𝑢
𝜏

0
                                                    (2.9) 

Here, the key to achieving the different shape of the yield curve are values of the parameters 

𝛽0 , 𝛽1𝑎𝑛𝑑 𝛽2. But Nelson and Siegel (1987) found that given various values of constants 

like 𝜆1 and  𝜆2 the model is overparameterized. So, they come up with a more parsimonious 

model with just one 𝜆.  

                          𝑓(𝜏) = 𝛽0 + 𝛽1𝑒
−𝜏𝜆 + 𝛽2𝜏𝜆𝑒

−𝜏𝜆                 (2.10) 

Solving this, the famous Nelson-Siegel yield curve can be shown to be:  

                               𝑦(𝜏) = 𝛽0 + 𝛽1 (
1−𝑒−𝜆𝜏

𝜆𝜏
) + 𝛽2 (

1−𝑒−𝜆𝜏

𝜆𝜏
− 𝑒−𝜆𝜏)     (2.11) 
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Certain properties2 of this functional form make it very useful for yield curve estimation. 

Specifically, 

                                                      lim
𝜏→0

𝑦(𝜏) = 𝑓(0) = 𝑟                                        (2.12) 

                                                      lim
𝜏→∞

𝑦(𝜏) = 𝛽0                                                  (2.13)                                                                                                         

This comes along with the parsimony and the flexibility of the curve given by its factor 

structure. Thus, for a long time Nelson–Siegel yield curves have been very popular among  

policymakers to estimate the yield curve. This idea of parsimonious modelling is followed 

by several other researchers and has led, through various extensions or restrictions, to 

different, and more flexible, variations of the same yield curve. Litterman and Scheinkman 

(1991) models yield curve by only considering the first three components of principal 

component analysis. Svensson (1994) introduces additional parameters that allow the yield 

curve to have an additional hump. These two models are very popular among the central 

banks to construct the zero-coupon yield curve. Apart from that Bjork and Christensen 

(1999) proposed a similar model to Svensson by introducing a second slope factor to the 

three factors NS model. On the other hand, Bliss (1997) proposed an alternative to make 

NS model more flexible by relaxing the restriction that the slope and curvature should be 

governed by the same decay component and allowing for two decay components which 

were present in the initial idea of Nelson & Siegel (1984). 

One of the things can be argued that the yield curve evolves dynamically, which means that 

it should contain both a cross-sectional and a temporal dimension. Although these Nelson-

Siegel class models capture the individual yield curves, they don't explain how they are 

linked can evolve over time. But with the presence of factor structure, a time dimension 

 
2 For proof check Appendix 1 
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can be introduced to explain how these different factors are interacting over the period 

resulting in the changes in the yield curve.  

Many studies introduce this time dimension in different ways. Thus, Diebold, Piazzesi, and 

Rudebusch (2005) proposed a two-factor dynamic model based on Litterman and 

Scheinkman (1991) variation of the Nelson-Siegel model. They argued that since the first 

two principal components explain nearly all variation in interest rates, a two-factor model 

may suffice to forecast the term structure. However, two factors will not be enough to fit 

the entire yield curve. The first three-factor dynamic variation of the Nelson-Siegel model 

was proposed in Diebold & Li (2002). This model is based on the original Nelson-Siegel 

model and has substantial flexibility to match the changing shapes of the yield curve.  

The models used in this paper come from the seminal papers by Diebold & Li (2006) and 

Diebold, Rudebusch and Aruoba, (2006b), and will henceforth be referred to as the 

Dynamic Nelson-Siegel (DNS) model. Much of the subsequent models in the literature are 

different variations of the model proposed in these papers.  

The basic model of both Diebold & Li (2006a) and Diebold et al. (2006b) is just the original 

Nelson Siegel Model with coefficients having an added time dimension. So, the extended 

forward rate curve is 

                                            𝑓𝑡(𝜏) = 𝛽0𝑡 + 𝛽1𝑡𝑒
−𝜏𝜆𝑡 + 𝛽2𝑡𝜏𝜆𝑡𝑒

−𝜏𝜆𝑡                                      (2.14) 

And the corresponding yield curve is : 

                                         𝑦𝑡(𝜏) = 𝛽0𝑡 + 𝛽1𝑡 (
1−𝑒−𝜆𝑡𝜏

𝜆𝑡𝜏
) + 𝛽2𝑡 (

1−𝑒−𝜆𝑡𝜏

𝜆𝑡𝜏
− 𝑒−𝜆𝑡𝜏)           (2.15) 

This equation is basically the original NS model with dynamics added to the parameter. 

Before turning to the DNS model, we explore the factor structure of the NS and DNS class 

of models.   
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These parameters with their temporal dimension can be seen as dynamic or latent factors 

which can explain the dynamics of yield at any given maturity. These factors remain 

unobserved in the yield curve and so they are called latent factors. Here the high dimension 

observed factors like many yields across maturities are driven by only three latent factors. 

This directly follows from the basic assumption of the latent factor model where a high 

dimensional set of the variable can be explained by a lower dimension set of parameters. 

This idea was also hinted in Litterman and Scheinkman (1991) where the yield curve was 

modelled by only considering the first three components of principal component analysis 

as they intuitively explain the level, slope, and curvature factor of the yield curve.  

The coefficients of these factors or the factor loadings determine the cross-section of yield. 

The parameter 𝜆𝑡, which explain the exponential decay rate of the yield curve, determine 

the factor loadings of the yield curve.  These factor loadings are nothing but the explanatory 

variables 1, (
1−𝑒−𝜆𝜏

𝜆𝜏
) , (

1−𝑒−𝜆𝜏

𝜆𝜏
− 𝑒−𝜆𝜏) with parameters 𝛽0𝑡, 𝛽1𝑡, 𝛽2𝑡. Though we are 

considering only about the dynamics of these factors, we must analyze the behaviour of the 

factor loadings to understand these factors and what determines the overall shape of the 

yield curve.  

First look at the factor loading of 𝛽1𝑡 i. e  
1−𝑒−𝜆𝜏

𝜆𝜏
. It begins at one but monotonically decays 

down to zero. This is often called "short term factor" and it mostly affects the short-term 

yields. Next, we have the factor loading of 𝛽2𝑡 i.e.  
1−𝑒−𝜆𝜏

𝜆𝜏
− 𝑒−𝜆𝜏. It begins at zero, 

increases, and then again decay down to zero. This is called "medium-term factor" and it 

affects the medium-term yields. Lastly, we have 𝛽0𝑡 which is constant at one and unlike the 

other two factors, does not decay down to zero. It is called "long term factor" as it affects 



  

14 
 

the long yields. If we fixed the value 𝜆𝑡 to a specific value for a cross-section, these features 

are visible from the graph below.  

Graph 1: Factor Loadings Over Maturity 

 

Also, these factors determine the shape of the yield curve. Such as 𝛽0𝑡 determine the level 

of the yield curve: a shift in 𝛽0𝑡shifts the yield curve parallelly. Similarly,  𝛽1𝑡 determines 

the slope of the yield curve: an increase in 𝛽1𝑡 increase the short-run yield but the long-run 

yield remains unchanged. Finally, 𝛽2𝑡 determines the curvature of the yield curve: an 

increase in 𝛽2𝑡 increase medium yield but not the short and long-run yields.  

To emphasize the "level, slope & curvature" factor DNS model can be rewritten as  

                                            𝑦𝑡(𝜏) = 𝑙𝑡 + 𝑠𝑡 (
1−𝑒−𝜆𝜏

𝜆𝜏
) + 𝑐𝑡 (

1−𝑒−𝜆𝜏

𝜆𝜏
− 𝑒−𝜆𝜏)                     (2.16) 

where 𝑡 = 1,… , 𝑇  ; 𝜏 = 1,… ,𝑁.  Diebold (2006b) provides a state-space representation of 

the model to work with.  

                                                                        𝑦𝑡 = Λ𝑓𝑡 + 𝜀𝑡                                                     (2.17) 

Where the variables are  
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𝑦𝑡 = (

𝑦𝑡(𝜏1)
𝑦𝑡(𝜏2)
⋮

𝑦𝑡(𝜏𝑁)

) ,                                   𝑓𝑡 = (
𝑙𝑡
𝑠𝑡
𝑐𝑡

) ,                                      𝜀𝑡 = (

𝜀𝑡(𝜏1)
𝜀𝑡(𝜏2)
⋮

𝜀𝑡(𝜏𝑁)

) 

& the parameter matrix Λ 

Λ =  

(

 
 
 
 
 
1

1 − 𝑒−𝜆𝜏1

𝜆𝜏1

1 − 𝑒−𝜆𝜏1

𝜆𝜏1
− 𝑒−𝜆𝜏1

1
1 − 𝑒−𝜆𝜏2

𝜆𝜏2

1 − 𝑒−𝜆𝜏2

𝜆𝜏2
− 𝑒−𝜆𝜏2

⋮ ⋮ ⋮

1
1 − 𝑒−𝜆𝜏𝑁

𝜆𝜏𝑁

1 − 𝑒−𝜆𝜏𝑁

𝜆𝜏𝑁
− 𝑒−𝜆𝜏𝑁

)

 
 
 
 
 

 

where, 𝑡 = 1,… , 𝑇 . The stochastic errors 𝜀𝑡(𝜏) are idiosyncratic or depends on the maturity 

𝜏. Hence each yield is driven by both common and idiosyncratic factors.  

Next, the transition equation is used to describe common factor dynamics. The following 

VAR (1) model is used for this purpose:   

                                                          (𝑓𝑡 − 𝜇) = 𝐴(𝑓𝑡−1 − 𝜇) + 𝜂𝑡                                     (2.18) 

where the variables are  

𝑓𝑡 = (
𝑙𝑡
𝑠𝑡
𝑐𝑡

)  , 𝜂𝑡 = (
𝜂𝑡
𝑙

𝜂𝑡
𝑠

𝜂𝑡
𝑐

) 

and the parameter vector & matrices are  

𝜇𝑡 = (
𝜇𝑙

𝜇𝑠

𝜇𝑐
)  , 𝐴 = (

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

)  

Here 𝜇 is the factor mean and A governs factor dynamics. 

The standard assumptions are made in this connection are that the white noise transition 

and factor disturbances are orthogonal to each other and the initial state: 
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(
𝜂𝑡
𝜀𝑡
)~ 𝑊𝑁 ((

0
0
) , (

𝑄 0
0 𝐻

))  

and the initials states are:  

𝐸(𝑓0𝜂𝑡́) = 0 

𝐸(𝑓0𝜀𝑡́) = 0 

Moreover, the Diebold-Li model is formulated such that the state equation factor 

disturbances ηt are correlated, and therefore the corresponding covariance matrix Q is non-

diagonal. However, the model imposes diagonality on the covariance matrix H of the 

observation equation disturbances 𝜀𝑡 such that deviations of observed yields at various 

maturities are uncorrelated. 

The dynamic factor Nelson Siegel model has much flexibility, and  many researchers have 

tried to improve upon this using different factor dynamics or different estimation 

techniques altogether.  Hautsch & Yang (2012) used a stochastic volatility Bayesian 

inference model to compute the factor dynamics. Different factor dynamics like VECM 

and GARCH was introduced in Tsui & Wu (2013). Also, the regime-switching model is 

applied by Xiang & Zhu (2013) which is a very frequently observed phenomenon in 

macroeconomic parameters. In this study, many of these techniques are incorporated to 

achieve a parsimonious model fit and a good forecast performance. 

3. Data 
 

The Bank of Canada zero-coupon yield curve data will be used for all these models. The 

zero-coupon yields are constructed using the methodology of Bolder, Johnson & Metzler 

(2004). In that paper, they sought to assess which model would be preferable for the 

estimation of the zero-coupon yield of the Canadian bond market. Bolder and Gusba (2002) 
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compared several estimation algorithms using Canadian government bond data. All these 

algorithms can be classified into three broad categories: spline-based and functional-based. 

Bolder and Gusba (2002) concluded that the Merrill Lynch exponential spline (MLES) 

model, as described by Li et al. (2001), is the most desirable term-structure estimate model 

when evaluated against the criteria of goodness of fit, the composition of pricing errors, 

and computational efficiency. Thus, this MLES method is used to build this database. 

The data for government bond yields is monthly, running from 1986 January to 2020 June, 

and is obtained from the Bank of Canada. Also, all the daily yields are calculated for the 

maturity of 300 months or 25 years and sometimes up to 30 years. Working with this data 

directly has some advantages and disadvantages. First, using the daily yield with all 300 

months of maturities could provide more data point, with increasing variability the noise in 

the data will be pretty high and the general trend of the factors will remain unseen. This 

could be a huge challenge. Also, if all 300 months of maturity are used, this large volume 

of data raises significant difficulties in devising  feasible regression strategies.  To get rid 

of any confusion the structure of Diebold et. al. (2006) is followed and only 120 months of 

maturities are taken. Also, mainly for the ease of operation and feasibility of regression all 

the daily data are converted into a monthly average. 

At the other end of the maturity spectrum, any maturity under three months is not 

considered for estimation.  the volatility of yields might be significantly higher for bonds 

with a residual maturity of only a few months. It has been claimed that these bonds do not 

display normal behaviour vis-à-vis market interest rates and would be a source of bias in 

yield curve estimation. Thus, they should be excluded from the analysis.  

Before we turn to estimation, we provide some summary statistics of this data in Table 1 

below for all given maturities, i.e. from three months to 120 months.  
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Table 1: Summary Statistics of Yield Curve 
Maturities Mean SD Min Max ACF (1) PACF (1) 

3 0.0412 0.0334 0.00136 0.132 0.9913 0.9937 

6 0.0417 0.0327 0.00210 0.129 0.9913 0.9941 

9 0.0422 0.0323 0.00333 0.129 0.9912 0.9942 

12 0.0427 0.0319 0.00413 0.129 0.991 0.9942 

15 0.0432 0.0316 0.00408 0.128 0.991 0.9942 

18 0.0437 0.0313 0.00390 0.128 0.9909 0.9942 

21 0.0441 0.0311 0.00379 0.127 0.9908 0.9942 

24 0.0446 0.0309 0.00374 0.126 0.9907 0.9942 

27 0.0450 0.0307 0.00376 0.125 0.9906 0.9943 

30 0.0454 0.0306 0.00386 0.124 0.9906 0.9944 

33 0.0458 0.0304 0.00401 0.123 0.9906 0.9945 

36 0.0462 0.0303 0.00422 0.122 0.9906 0.9946 

39 0.0466 0.0302 0.00445 0.121 0.9906 0.9947 

42 0.0469 0.0301 0.00462 0.121 0.9906 0.9948 

45 0.0473 0.0300 0.00482 0.120 0.9906 0.9949 

48 0.0476 0.0299 0.00504 0.119 0.9906 0.995 

51 0.0480 0.0298 0.00528 0.119 0.9906 0.9951 

54 0.0483 0.0297 0.00553 0.119 0.9906 0.9952 

57 0.0486 0.0296 0.00580 0.118 0.9906 0.9953 

60 0.0489 0.0295 0.00609 0.118 0.9906 0.9953 

63 0.0492 0.0294 0.00638 0.117 0.9906 0.9954 

66 0.0495 0.0294 0.00668 0.117 0.9906 0.9955 

69 0.0498 0.0293 0.00685 0.117 0.9906 0.9956 

72 0.0500 0.0292 0.00703 0.116 0.9906 0.9956 

75 0.0503 0.0291 0.00722 0.116 0.9905 0.9957 

78 0.0505 0.0291 0.00742 0.116 0.9905 0.9957 

81 0.0508 0.0290 0.00763 0.115 0.9905 0.9958 

84 0.0510 0.0289 0.00786 0.115 0.9905 0.9959 

87 0.0512 0.0288 0.00800 0.114 0.9905 0.996 

90 0.0514 0.0288 0.00806 0.114 0.9905 0.996 

93 0.0517 0.0287 0.00813 0.114 0.9905 0.9961 

96 0.0519 0.0286 0.00820 0.113 0.9905 0.9961 

99 0.0521 0.0286 0.00828 0.113 0.9905 0.9962 

102 0.0522 0.0285 0.00835 0.112 0.9905 0.9963 

105 0.0524 0.0284 0.00843 0.112 0.9905 0.9963 

108 0.0526 0.0284 0.00851 0.112 0.9905 0.9964 

111 0.0528 0.0283 0.00859 0.111 0.9905 0.9965 

114 0.0530 0.0282 0.00868 0.111 0.9906 0.9966 

117 0.0531 0.0282 0.00877 0.111 0.9906 0.9966 

120 0.0533 0.0281 0.00885 0.110 0.9906 0.9967 

 

In this table, the main summary statistics like mean, standard deviation maximum and the 

minimum value are reported. Overall, we can see the mean yield is increasing with 

maturity. Also, the yield is less volatile as maturity increases, as we can from decreasing 

standard deviation. A similar story can be told from maximum and minimum values, as the 

gaps between the two narrows as maturity rises. Finally, autocorrelation and partial 

autocorrelation function for one lag for all the maturities are also reported. We can see a 

decreasing autocorrelation and increasing partial autocorrelation for the maturities. 
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Furthermore, all these yields are represented using a mesh plot of yield which is presented 

below.  

Graph 2: Mesh Plot of Yields 

 
 

A very interesting feature can be observed from this graph. During the 90's we can see a 

high expectation for the short-term yield from the presence of an inverted yield curve. This 

is a clear representation of the high volatility in the yield in the early decade, although this 

volatility decreases thereafter. Though the direct increase in the yield is not visible here, 

this can be seen in the median and interquartile plot of the yield for every maturity in the 

following chart. This indicates a still almost flat but positive hump increasing yield curve 

Graph 3: Median and Interquartile Yield 
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4. Estimating Models  

The main two purposes of the modelling are in-sample modelling and out of sample 

forecast.  

4.1 In Sample Modelling 

There are two main different ways that this model can be fitted to the yield curve. these 

models are broadly classified as one-step and two-step models.  

4.1.1 Two-Step Modelling 

The main idea of the fitting yield curve of two-step modelling is first, fit the individual 

cross-sectional daily NS yield curve using OLS. This gives a 3-dimensional time series of 

estimated coefficients {𝑙𝑡, 𝑠̂𝑡, 𝑐̂𝑡}𝑡=1
𝑇  and corresponding n-dimensional series of residual 

pricing errors. {𝜀𝑡̂(𝜏1), 𝜀𝑡̂(𝜏2),… , 𝜀𝑡̂(𝜏𝑁)}𝑡=1
𝑇 . Thus, according to the standard state-space 

model, an N-dimensional time series of yields boils down to a 3-dimensional time series of 

yield factors.   

The next step is to build dynamics from the estimated coefficients. For this Diebold & Li 

(2006) used both univariate AR(1) and Vector Auto-regression (1) specification, where in 

the equation 

                          𝑦̂𝑡+1(𝜏) = 𝛽̂0,𝑡+1 + 𝛽̂1,𝑡+1 (
1−𝑒−𝜆𝑡𝜏

𝜆𝑡𝜏
) + 𝛽̂2,𝑡+1 (

1−𝑒−𝜆𝑡𝜏

𝜆𝑡𝜏
− 𝑒−𝜆𝑡𝜏)        (4.1.1) 

the individual factors are of the following form in the AR(1) and VAR(1) specifications 

respectively: 

                                   𝛽̂𝑖,𝑡+1 = 𝑐̂𝑖 + 𝛾𝑖𝛽̂𝑖𝑡                                                                    (4.1.2)      

                                    𝛽̂𝑡+1 = 𝑐̂ + Γ̂𝛽̂𝑡                                                                            (4.1.3) 
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Both specifications are used in the analysis, although, VAR tends to produce poor forecasts 

due to the potential for sample overfitting in the presence of interaction between the factors.  

Apart from these two specifications, other specifications, such as VECM, E-GARCH, 

DCC-EGARCH and the Markov Switching Vector Autoregression Model, can be used to 

test the factor dynamics. The purpose of using different specification is to check whether 

the sample forecast can be improved by retaining the interactions between the factors and 

minimizing the in-sample overfitting generated by VAR. 

The VECM model for lag one can be specified like this 

                                      Δ𝛽̂𝑡+1 = 𝑐̂ + Γ̂Δ𝛽̂𝑡 + 𝛾𝐸𝐶𝑇𝑡                                                                   (4.1.4) 

Where, Δ𝛽̂𝑡 = 𝛽̂𝑡 − 𝛽̂𝑡−1 and 𝐸𝐶𝑇𝑡 is the error correction term of this model. The 

usefulness of an error correction specification is that allows us to model and test the 

existence of long-run relationships between variables, but also to examine short-run 

dynamics, which represent the adjustment to the long run equilibrium relationships. In this 

model the coefficient of Δ𝛽̂𝑡 indicates the short-run dynamics between the factors. The 

𝐸𝐶𝑇𝑡 represents the long-term cointegrating relation. 𝛾 is the speed at which the variables 

return to their long-run values from the short-run deviation. Thus, VECM could capture the 

short and long-run dynamics of the yield curve. This can be very crucial for both 

macroeconomic and term structure modelling. In this paper, the Johansen MLE method 

(Johansen (1988)) is used to estimate the VECM model. 

The next two models belong to the  GARCH class of models. There are three main reasons 

for using such models of time series processes:  volatility clustering, fat-tails of 

distributions and volatility mean reversion, which represent the so-called stylized facts 

frequently visible in the high volume of financial data. Although two-step DNS in itself 
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reduces the dimension of the data with the factor structure employed, some of these features 

can still be observed. A popular specification is GARCH (1,1), since it provides a good fit 

to many financial time series, given its ability to  model both volatility persistence and the 

momentum within the system. Also, this model is very parsimonious at it can capture long 

lags of shocks with very few parameters. For this paper, a slightly different structure of 

GARCH is used to model every factor individually. Instead of using a linear specification, 

the conditional variance is modelled exponentially, as initially proposed by Nelson (1991), 

and also used by Christofi (1998) for fitting  the NS yield factors.  

For individual coefficients, 𝛽̂𝑖,𝑡+1 = 𝑐̂𝑖 + 𝛾𝑖𝛽̂𝑖𝑡                                   ∀𝑖 = 1(1)3            (4.1.5) 

And, for the conditional variance: 

 ln (𝜎𝑖,𝑡
2 ) = 𝜔 + 𝛼𝑖𝑍𝑖,𝑡−1 + 𝛿𝑖{|𝑍𝑖,𝑡−1| − 𝐸(|𝑍𝑖,𝑡−1|)} + ηiln(𝜎𝑖,𝑡−1 

2  ) ∀𝑖 = 1(1)3     (4.1.6)        

 𝜎𝑖𝑗,𝑡 = 𝜌𝑖𝑗𝜎𝑖,𝑡 𝜎𝑗,𝑡                                              ∀𝑖, 𝑗 = 1(1)3, 𝑖 ≠ 𝑗  &  𝑍𝑖,𝑡 =
𝜀𝑖,𝑡 

𝜎𝑖,𝑡 
  

This exponential GARCH or EGARCH model was proposed by Nelson (1991). This is an 

extension of the general GARCH model. This type of EGARCH models is really helpful to 

model the asymmetries and shocks in the financial market. The  𝛿𝑖 represents the ARCH 

effect and the ηi represents the standard GARCH effect. The 𝛼𝑖, which represents the 

asymmetric effect, is one of the most factors of interest. If 𝛼𝑖 = 0 then the model is 

symmetric but when it is negative it suggests higher volatility through negative shock.  

Given the nature of yield factors, such a structure of conditional variance can be useful for 

modelling the varying volatility associated with different factors. The exponential GARCH 

or EGARCH model was used in Christofi(1998) for fitting on the NS yield factors.  

This model can be extended to a multivariable context to capture the inner dynamics 

between the factors [see Christofi (1998) for this type of VAR-EGARCH process]. For this 
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paper, the dynamic control correlation or DCC-GARCH model will be used to fit the 

multivariable model following the methods of Engel and Sheppard (2001). In this model, 

for 𝛽𝑡 with variance 𝑆𝑡, we can write: 

                                                                      𝑆𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡                                                         (4.1.7) 

Here, 𝑅𝑡 is the matrix of the varying correlations and 𝐷𝑡 is the diagonal matrix of the time-

varying standard deviation from the E-GARCH  model. This is such that- 

𝜎𝑖,𝑡  = √𝑒𝑥𝑝[𝜔 + 𝛼𝑖𝑍𝑖,𝑡−1 + 𝛿𝑖{|𝑍𝑖,𝑡−1| − 𝐸(|𝑍𝑖,𝑡−1|)} + ηiln(𝜎𝑖,𝑡−1 
2  )]                        (4.1.8) 

All the GARCH parameters are obtained by minimizing log-likelihood function which can 

be written as  

𝐿(Θ) =
1

2
 [𝑁𝑇 ln(2𝜋) − ∑ (ln|𝑆𝑡| +  𝜀𝑡

′𝑆𝑡
−1𝜀𝑡)

𝑇
𝑡=1 ]                                                                      (4.1.9) 

All these models are compared against each other in terms of model fitting and forecast 

ability, with the model with the lowest forecast error being preferred over the others. 

4.1.2 One Step Modelling 

The one-step algorithm to estimate DNS yield curve in Diebold et al (2006b) was an 

improvement on Diebold and Li (2006). In this method, the state space structure of the 

DNS is utilized. This helps to estimate all the parameters simultaneously. This model is 

explained in the equation from (2.16) to (2.18). 

Now, the error covariance at time t for the factors in  𝑓𝑡 can be written as- 

                                         𝑃𝑡 = 𝐸(𝑒𝑡𝑒𝑡
′) = 𝐸 [(𝑓𝑡 − 𝑓𝑡̂)(𝑓𝑡 − 𝑓𝑡̂)

′
]                                   (4.1.10) 

where, 𝑒𝑡 = (𝑓𝑡 − 𝑓𝑡̂) and 𝑓𝑡̂ is the estimated value of 𝑓𝑡. Let us assume the prior estimate 

of 𝑓𝑡̂ is 𝑓𝑡̂
𝑝
. The idea is that every time the algorithm runs, this estimation about the factors 

has been updated. This is done by combining old estimates with the measurement data – 
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                                                          𝑓𝑡̂ = 𝑓𝑡̂
𝑝
+ 𝐾𝑡(𝑦𝑡 − Λ 𝑓𝑡̂

𝑝
)                                         (4.1.11) 

Here 𝐾𝑡 = Kalman Gain and (𝑦𝑡 − Λ 𝑓𝑡̂
𝑝
) is called the innovation or the measurement 

residual. 

This equation can be expanded such as – 

                                                         𝑓𝑡̂ = 𝑓𝑡̂
𝑝
+ 𝐾𝑡(Λ𝑓𝑡 + 𝜀𝑡 − Λ 𝑓𝑡̂

𝑝
)                                            

                                                        𝑓𝑡̂ = 𝑓𝑡̂
𝑝
+ 𝐾𝑡Λ(𝑓𝑡 − 𝑓𝑡̂

𝑝
) − 𝐾𝑡𝜀𝑡                             (4.1.12) 

Now the error term for 𝑓𝑡  will  be  

𝑒𝑡 = 𝑓𝑡 − 𝑓𝑡̂ = 𝑓𝑡 − 𝑓𝑡̂
𝑝
− 𝐾𝑡Λ(𝑓𝑡 − 𝑓𝑡̂

𝑝
) + 𝐾𝑡𝜀𝑡 

                                                       𝑒𝑡 = (𝐼 − 𝐾𝑡Λ)(𝑓𝑡 − 𝑓𝑡̂
𝑝
) + 𝐾𝑡𝜀𝑡                              (4.1.13) 

and the error covariance would be  

                                      𝑃𝑡 = 𝐸(𝑒𝑡𝑒𝑡
′) = (𝐼 − 𝐾𝑡Λ)𝑃𝑡

𝑝(𝐼 − 𝐾𝑡Λ)
′ + 𝐾𝑡𝐻𝑡𝐾𝑡

′                (4.1.14) 

 which can be expanded as 

                                       𝑃𝑡 = 𝑃𝑡
𝑝 − 𝐾𝑡Λ𝑃𝑡

𝑝 − 𝑃𝑡
𝑝Λ′𝐾𝑡

′ + 𝐾𝑡(Λ𝑃𝑡
𝑝Λ′ + 𝐻𝑡)𝐾𝑡

′          (4.1.15)                                                       

Now, all these matrices are known except 𝐾𝑡. The 𝐾𝑡 needs to be such the error variance is 

minimized.  If 𝒯𝑡 is the error variance matrix such that  

                                         𝒯𝑡 = 𝐸 [||𝑒𝑡||
2
] = 𝐸[𝑒𝑡

′𝑒𝑡] = 𝐸[𝑇𝑟(𝑒𝑡𝑒𝑡
′)] = 𝑇𝑟(𝑃𝑡)        (4.1.16) 

Then the minimization problem can be written as - 

                                                               min
𝐾𝑡
𝒯𝑡 = min

𝐾𝑡
𝑇𝑟(𝑃𝑡)                                             (4.1.17) 

Which gives the updated 𝐾𝑡 as  

                                                              𝐾𝑡 = 𝑃𝑡
𝑝Λ′(Λ𝑃𝑡

𝑝Λ′ + 𝐻𝑡)                                      (4.1.18) 

Now using this the covariance update equation becomes-  
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                                                       𝑃𝑡 = (𝐼 − 𝐾𝑡Λ)𝑃𝑡
𝑝
                                              (4.1.19) 

The priori projection in the next period is achieved using – 

(𝑓𝑡+1 − 𝜇) = 𝐴(𝑓𝑡 − 𝜇) 

                                                      𝑓𝑡+1 = 𝜇 +  𝐴(𝑓𝑡 − 𝜇)                                                      (4.1.20) 

And the priori error would be – 

𝑒𝑡+1
𝑝 = 𝑓𝑡+1 − 𝑓𝑡+1 

= [𝜇 +  𝐴(𝑓𝑡 − 𝜇) + 𝜂𝑡] − 𝜇 +  𝐴(𝑓𝑡 − 𝜇) 

                                             = 𝐴𝑒𝑡 + 𝜂𝑡                                                                                           (4.1.21) 

And subsequently, the priori error covariance would be  

                                                 𝑃𝑡+1
𝑝 = 𝐸[𝑒𝑡+1

𝑝 𝑒𝑡+1
𝑝 ′
] = 𝐴𝑃𝑡𝐴

′ + 𝑄                                   (4.1.22) 

This completes the algorithmic loop 3 

4.2 Out of Sample Forecasting 

In assessing a model's forecast ability, we need to evaluate not only its within-sample 

performance also its ability to forecast beyond the sample period. In this paper, forecast 

accuracy is measured using the root mean square error of forecasts based on a comparison 

of test sample and the model's forecasts of yield. The test sample includes the yields from 

May 2019 to May 2020. To calculate the yields the subsequent factors are forecasted for 

each model. Using those factors, the forecasted yields are calculated. These forecasted 

yields are then compared with the test sample yields by calculating the root mean square 

error between original and forecasted yields. The lower the root mean square error the better 

will be the accuracy. 

 
3 For detail steps of the proof check Appendix 2 
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The basic assumption was that there is a degree of randomness in the way the yield curve 

moves along the time. So, any model outperforming the random walk model would be a 

valid response to model the yield curve.  

Three primary random walk models are used as the base model these are. 

Random walk of yield (with a drift):   𝑦𝑡+1 = yt + 𝑑 + 𝜀𝑡                                                          (4.2.1) 

Random walk of factors(without a drift):  𝛽𝑖𝑡+1 = 𝛽𝑖𝑡 + 𝜂𝑡                                        (4.2.2) 

Random walk of factors(with a drift):  𝛽𝑖𝑡+1 = 𝛽𝑖𝑡 + 𝑑𝑖 + 𝜂𝑡                                              (4.2.3) 

These are the models that model the yield curve. each of this model is expected to 

outperform random walk to some degree. 

AR(1): Given the AR(1) model as: 𝛽̂𝑖,𝑡+1 = 𝑐̂𝑖 + 𝛾𝑖𝛽̂𝑖𝑡 the forecast would be – 

                                                       𝛽̂𝑖,𝑡+ℎ = 𝑐̂𝑖(∑ 𝛾𝑖
𝑗ℎ−1

𝑗=0 ) + 𝛾𝑖
ℎ𝛽̂𝑖,𝑡                                       (4.2.4) 

where 𝛽̂𝑖,𝑡 is the estimated value at time t 

VAR(1): Given the VAR(1) specification 𝛽̂𝑡+1 = 𝑐̂ + Γ̂𝛽̂𝑡, the forecast would be – 

                                                      𝛽̂𝑡+ℎ = 𝑐̂ (∑ Γ̂ℎ−1
𝑗=0

𝑗
) + Γ̂ℎ𝛽̂𝑡                                            (4.2.5) 

VECM(1): Given the VECM(1) specification, Δ𝛽̂𝑡+1 = 𝑐̂ + Γ̂Δ𝛽̂𝑡 + 𝛾𝐸𝐶𝑇𝑡 the forecast 

would be 𝛽̂𝑡+ℎ = 𝛽̂𝑡 + ∑ Δ𝛽̂𝑡+𝑖
ℎ−1
𝑖=0  such that - 

                                  Δ𝛽̂𝑡+𝑖 = 𝑐̂(∑ Γ̂𝑗𝑖−1
𝑗=0  ) + Γ̂𝑖Δ𝛽̂𝑡 + 𝛾(∑ Γ̂𝑘𝐸𝐶𝑇𝑡+𝑖−1−𝑘

𝑖−1
𝑘=0 )          (4.2.6) 

E-GARCH(1,1): The conditional variance:   ln (𝜎𝑖,𝑡
2 ) = 𝑎𝑡−1 + ηiln(𝜎𝑖,𝑡−1 

2  )  where, 

at−1 = 𝜔 + 𝛼𝑖𝑍𝑖,𝑡−1 + 𝛿𝑖{|𝑍𝑖,𝑡−1| − 𝐸(|𝑍𝑖,𝑡−1|)}. The h period ahead forecast is calculated 

as ln (𝜎𝑖,𝑡+ℎ
2 ) = ∑ 𝑎ℎ−1−𝑚𝜂𝑖

𝑚ℎ−1
𝑚=0 + ηi

hln(𝜎𝑖,𝑡
2  )                                                               (4.2.7) 
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5. Results 

The main goal of this paper is to compare different models to see which one is better in 

terms of in-sample modelling and how much it can improve on out of sample forecast 

5.1 Two-Step Model 

For two-step modelling, the first task is to fix the value of 𝜆. In the original paper, Diebold 

& Li (2006) fixed this value to  0.0609 which was estimated from Diebold et.al. (2002). 

But that estimation was based on the US market and so that may not be the best value to 

use here. To find a feasible value for 𝜆, a grid search is performed using the whole Two-

step with VAR model discussed below. The data from the  first 400 dates are used for the 

estimation and called train set. The prediction is performed on the rest of the data which is 

called test set. The model is trained for the whole train set for each value of 𝜆. A prediction 

is generated for the next 13 periods, which will be compared with the test data. The goal is 

to find the 𝜆 that minimizes the root mean squared prediction error when compared to the 

test set. Our results from the algorithm indicate that the mean squared prediction error is 

minimized at 𝜆 = 0.106 . This is shown in the graph below 

Graph 4: Optimal value for Lambda 
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Using this value of 𝜆, the cross-sectional yield regressions can be performed. This would 

give out the estimates of the three coefficients in the DNS model, β1, β2, and β3. The 

summary statistics below gives a good idea about some basic nature of these factors. Apart 

from the standard measures like mean and standard deviation, the auto-correlation function 

for one month, 12 months and 30 months and the partial autocorrelation are reported. Also, 

augmented Dicky-Fuller statistics are reported for all three coefficients. Given the ADF 

values, the null hypothesis that the factors are non-stationary can be rejected. 

Table 2: Summary Statistics of the factors 

Factor Mean Std. Dev Min Max ACF (1) ACF (12) ACF (30) PACF(1) ADF 

β1 0.05616 0.0276 0.0106 0.1101 0.9905  0.9046 0.7775 0.9882 -4.104*** 

β2 -0.01165 0.0160 -0.0461 0.0402 0.9707 0.4419 0.0402 0.9467 -3.438** 

β3 0.02431 0.0218 -0.0836 0.0447 0.9322 0.4030 0.1802 0.9244 -5.080***   

*** p<0.01, ** p<0.05, * p<0.1 

 

Now, the next step of the two-step DNS model is to figure out the dynamics between the 

factors, using the VAR model, which is the primary model for factor dynamics. Diebold 

and Li (2006a) used a VAR(1) specification for the sake of parsimony and transparency. 

Though lag selection measures are indicating differently, we choose the VAR (1) model. 

Also, the factor dynamics without the intercept is found to perform better in terms of out 

of sample forecast as we see later.   

Table 3: Estimated VAR coefficients 

Variables β1 β2 β3 

L.β1 0.9980*** 0.0056 0.0035 

 (0.0023) (0.0079) (0.0052) 

L.β2 0.0031 0.9459*** 0.0374*** 

 (0.0037) (0.0125) (0.0082) 

L.β3  -0.126*** 0.123*** 1.156*** 

 (0.0438) (0.0436) (0.0592) 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

 Also, the VAR(1) model, is the starting point for all two-step and one step estimations 

models. So, the validity of the model is very important. One of the basic assumptions of 
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the DNS is the normality assumption for the factors. Much of the estimation approaches 

are  built upon the assumption of normality of the error of the factor dynamics, so we test 

that assumption using the Jarque-Bera test, as well as tests for skewness and kurtosis. The 

null hypothesis is that the VAR disturbance term is normally distributed. Unfortunately, all 

three tests reject the null hypothesis. This can be dealt with by working with alternative 

factor dynamic specifications. Apart from this, the CUSUM test is also performed to check 

the eigenvalue stability of the VAR. The null hypothesis is that a factor coefficient is stable, 

and it is only rejected when the coefficient exceeds the unit value. For individual 

coefficients, we find that all of them lie inside the unit circle, and so  the null hypothesis 

cannot be rejected. 

Table 4: VAR Normality Test 

Jarque-Bera 

test 

chi2 1892.9 

df 6 

Prob > chi2 0 

Skewness 

test 

chi2 79.827 

df 3 

Prob > chi2 0 

Kurtosis 

test 

chi2 1813 

df 3 

Prob > chi2 0 

 
Graph 5: VAR Stability Test 
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Overall, we can be said that the VAR specification for the yield factors is stable and can be 

used for in sample modelling to some degree. But another goal of this study is to improve 

the out of sample forecast. The first alternative model to the VAR(1) is the VECM(1) 

model. 

 

 

Table 5: Estimated VECM Coefficient 

Variables Δβ1 Δβ2 Δβ3 
L.Δβ1 0.1885** 0.2498** 0.2033 

 (0.0579) (0.0854) (0.1931) 

L.Δβ2 -0.0121 0.3950*** -0.0571 

 (0.0364) (0.0538) (0.1215) 

L.Δβ3  0.0298 0.0271 0.3184*** 

 (0.0152) (0.0225) (0.0507) 

ECT 0.0004 -0.0068*** 0.0161*** 

 (0.0009) (0.0014) (0.0031) 

Intercept -0.0002 0.0010*** -0.0022*** 

 (0.0002) (0.0003) (0.0006) 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

A vital feature of the VECM model is that it captures both long-run and short-run dynamics. 

The short-run factor dynamics are captured by the coefficient matrix of Δβt. In line with 

expectations, we find that the individual Δβt have a significant relationship with their 

lagged counterparts. On the other hand, cross dynamics between the factors appear to be 

mostly absent, which somewhat solves the problem of overparameterization and gives a 

very parsimonious dynamic structure. 

The error correction term shows the long-term Granger Causality such that when it  is 

significant it shows a granger causality from dependent to the lagged independent factors, 

which indicates a long-run factor dynamics. As discussed in the section 4.1.1, the 

coefficient of error correction term measures the speed of convergence in the long run. So, 
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if the coefficient is zero (insignificant), there is no convergence or, in other words, no long-

run factor dynamics.  For a long run convergence to exist, the coefficient should be less 

than zero and greater than -1. In any other case, the relationship becomes explosive and 

never converges to a long-run value.  The level factor does not have any long-run factor 

dynamics as the coefficient of the error correction term is not significant.  It remains overall 

stable in the long run and only changes with the change in the intercept. On the other hand, 

both short and medium run factors seem to have some factor dynamics as the coefficient of 

the error correction term is significant. This is because they represent the slope and the 

curvature of the yield curve, respectively, which change in short and medium run resp. 

Given the negative sign, the short-term slope factor is converging, but the positive sign for 

the medium-term curvature factor implies divergence. The short-term factor is converging 

at a speed of 0.68 %, where the medium-term factor is diverging at 1.61%. Overall, the 

short-term factor and has a long-run relationship, which is converging in nature, and the 

medium-term factor has a diverging long-run relationship. 

The next two models of consideration are the GARCH class of models. From the VAR(1) 

model, is it evident that there are many rooms for improvement in terms of the variance 

stricture of the DNS yield factors? There is enough evidence that would support the 

presence of a GARCH structure in the variance structure of yields. As mentioned earlier, 

GARCH models are useful in the presence of volatility clustering, which can be seen from 

Graph 2 as a small change of volatility is followed by a small change and large change of 

volatility is followed by another large change.  
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Graph 6: Volatility clustering of individual DNS factors 

 
Beta 1 

 
Beta 2 

 

 
Beta 3 

Another supporting piece of the GARCH structure is the presence of fatter tails, which is 

evident from every kleptocratic nature of the distribution of the DNS factors 
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Graph 7: Distribution of the factors 
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Beta 3 
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The final evidence for GARCH is through the presence of mean reversion. Any mean-

reverting time series can be represented by an Ornstein-Uhlenbeck stochastic differential 

equation –  

                                                       𝑑𝛽𝑡 = 𝜃(𝜇 − 𝛽𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡                                               (5.1) 

Here, 𝜃 is the rate of reversion and 𝑊𝑡 is a Weiner process. This is a very common feature 

in financial time series specifically term structure of interest rate models. Many famous 

interest rate models such as Vasichek and CIR models uses a similar structure. So, the 

assumption of mean reversion is not out of context. This is also supported by the augmented 

dicky fuller statistics as all of them are significant rejecting the null hypothesis of no mean 

reversion. Given all these stylized facts the usefulness of the GARCH class of models 

become more evident. To maintain the parsimonious nature of DNS, the first model is the 

EGARCH model with AR(1) specification. 

Table 6: Estimated EGARCH(1,1) Coefficient 

Coefficients β1 β2 β3 

𝜇𝑖 0.1011*** -0.0007 -0.0219***  
(0.0013) (0.0022) (0.0037) 

𝛾𝑖 1*** 0.9798*** 0.9665***  
(0.0037) (0.0134) (0.0181) 

𝜔𝑖 -3.3075 -0.0721*** -0.1701  
(5.4537) (0.0070) (0.2556) 

𝛼𝑖 0.06845 -0.0298*** -0.0337  
(0.0602) (0.0079) (0.0902) 

ηi 0.7283 0.9937*** 0.9822***  
(0.4467) (0.0005) (0.0259) 

𝛿𝑖 0.3148 0.1464*** 0.2315***  
(0.2936) (0.0476) (0.0533) 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

For both β1 (level) and β3 (curvature) the model is symmetric as for both the factors the 

asymmetric effects or the 𝛼𝑖 is insignificant or not different from zero. But in case of 

β2(slope) or the short-term factors this coefficient is negative and significant. This implies 
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that the negative shock can create higher volatility in the short run.  

Next specification is the DCC-EGARCH specification which is just the multivariate 

representation of the EGARCH model. For better prediction accuracy, an ARMA (2,1) 

specification is used with this model. 

 

Table 7: Estimated DCC-EGARCH Coefficient  
β1 β2 β3 Joint 

𝜇𝑖 0.1016*** 0.0108** -0.0238**   
(0.0018) (0.0050) (0.0008)  

𝛾1 0.6485*** 0.9651*** 0.9851***   
(0.0026) (0.0201) (0.0254)  

𝛾2 0.3535*** 0.0252** -0.1015***  

 (0.0036) (0.3635) (0.0015)  

𝜍𝑖 0.6074*** 0.3663*** 0.2640***   
(0.0329) (0.0572) (3.9304)  

𝜔𝑖 -0.0830*** -0.0092 0.0471***   
(0.0030) (0.0398) (0.0029)  

𝛼𝑖 0.0139 -0.0521 0.0810***   
(0.0311) (0.0389) (0.0006)  

ηi 0.9933*** 0.9993*** 0.9956***  

 (0.000005) (0.0035) (0.2085)  

𝛿𝑖 0.0394*** 0.1253*** -0.0480  

 (0.00034) (0.0455) (0.0296)  

dcca1    0.0543  
   (0.9015) 

dccb1    0.9334** 

    (0.3946) 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

One of the interesting outcomes of this specification is the significance of the ARMA(2,1) 

coefficients. This gives a clear picture of the innovation or the dynamics of the error term. 

This is also evident from the stylized fact of the yield factors. A difference from the 

previous model is that in this specification there is no asymmetric evidence for slope factor. 
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5.2 One Step Modelling 

The one-step models use the state-space structure of the DNS to estimate parameter 

dynamics through Kalman filter. To begin the loop for Kalman filter, initial parameter 

dynamics, factor mean, and the decay factor are set at the level of the two-step VAR model. 

The initial disturbance loading is calculated from the initial VAR disturbance covariance 

matrix. The mean square error variance is minimized through maximizing the likelihood 

function of the DNS factors using Marquart & Berndt-Hall-Hall-Hausman algorithm. The 

algorithm loops for 25000 times which helps for faster calculation while maintaining the 

smoothness of the estimators. The estimated factor dynamics and disturbance loading is 

presented below. 

Table 8: State-Space Model 

 𝐿𝑡 St Ct 
Parameter Estimates 

    

Lt−1 0.988797 0.01507 0.030347 

St−1 0.008715 0.961461 -0.01494 

Ct−1 0.017485 0.026293 0.895154 

𝜇 0.061574 -0.01609 -0.01056 

    

Estimated B Matrix (Disturbance Loading) 

    

Lt 0.00355   

St -0.0018 0.004306  

Ct -0.00675 -0.00317 0.007359 

    

As expected from all the previous models, the own dynamics of the factors are 0.99,0.96 

and 0.89. The cross dynamics are small and not that important. Factor means are somewhat 

close but not similar to the two-step factor means. The disturbance loading seems 

increasing from level to slope to curvature factor.  Overall, the two-step and the one-step 

factors seem to move very closely as seen in the following graphs 
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Graph 8: DNS Factors-   Two-step vs State Space 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The estimated decay rate from the state-space model is  𝜆 = 0.03147  which translates to 

nearly 57 months of maturity and is very different from the two-step fixed level of 0.106.  

The parameter 𝜆 determines at which point the curvature of the yield curve is maximized. 

From the two-step model, the curvature is maximized at the maturity of almost 17 months. 
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This indicates that the short-term yield (maturing in 1 to 4 year) is more valuable than the 

long-term (20+ year since maturity) yield. Graph 9 below plots the curvature factor loading 

obtained for the values of the decay parameter, against maturity.  

Graph 9: Loading on Curvature 

 

5.3 Forecast Performance 

All these models have some advantages in terms of parsimony, and volatility structure 

serving as a good explanation of the underlying dynamics. But a model of such kind can 

only be useful if it has better predictive powers. As mention earlier, the sample is divided 

for train and test set and the model is built upon the train set which is for 400 periods 

starting from January 1986 and ends at April 2019. The test set for the next 13 months 

which ends in June 2020. The goal is to choose the model which has a minimum mean 

square error.  Also, another relevant issue is how any model compares to the random walk 

models. These calculated root-mean-square-errors are presented in a bar diagram. 
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Graph 10:  Root Mean Square Error for different models  

 
 

All the models have successfully outperformed the pure random walk of yield, which is 

expected. This is also a piece of very strong evidence in favour of the structural model or 

DNS. The root-mean-square errors of two other random walks of factors (with and without 

drift) are also presented as a base case. In the case of the no drift assumption EGARCH, 

AR, DCC-EGARCH and VECM all outperform the corresponding random walk, and AR, 

DCC-EGARCH and VECM still outperform the random walk with the drift assumption. 

Overall, hence, VECM and DCC-EGARCH appear to be the best models.   

Two interesting facts can be derived from this. Firstly, the univariate dynamics generally 

performs better than multivariate dynamics. Only the multivariate model which has better 

theoretical justification for the inner dynamics can perform better than the univariate model. 

This overall shows the parsimonious nature of yield curve dynamics. Secondly, unlike all 

the two-step specifications, the state space models performed very poorly in terms of 

predictions. This may be caused by the initial values obtained from VAR which has its own 
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problems, such as the violation of assumptions (for example, the presence of  non-

normality). 

Though the one-step model cannot outperform other models, its state space structure allows 

us to do simulations which would be very useful and will be accurate if the initials values 

are derived from the strong models like VECM or DCC-EGARCH. For this paper, the basic 

VAR estimations are used to simulate the yield. In the following two graphs, these 

simulations are presented along with the standard error using Monte Carlo and minimum 

MSE simulations. Both of these methods are showing an upward rising yield with similar 

error structure.  

Graph 6: Yield Curve Simulation through MCMC and RMSE 
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5.4 Structural Break: Regime Switching Model 

Though the var stability test indicates a stable model over the full period of observation, 

the mean reversion and the volatility clustering of the factors indicate otherwise. Given all 

the evidence, some structural breaks can be expected in the overall yield curve dynamics 

as well as in its factor structure. As argued by Xiang & Zhu (2013), the no-arbitrage 

restriction disadvantage for DNS as it cannot capture the effect of the different regime. 

They proposed an alternative Regime Switching DNS using the reversible jump Markov 

chain Monte Carlo (RJMCMC)  process. The model is mostly the same as normal VAR 

with regime dependent intercept and normally distributed disturbance term. Switches 

between regimes are governed by a discrete Markov chain with transition probability 𝑝𝑖𝑗 =

𝑃(𝑟𝑒𝑔𝑖𝑚𝑒 = 𝑗|𝑟𝑒𝑔𝑖𝑚𝑒 = 𝑖)  (∀ 𝑖 ≠ 𝑗). For this paper, the number of regimes kept at two 

which can be labelled as high and low volatility regimes respectively. This is not a bad 

assumption as in most of the financial literature maximum three volatility regimes are 

observed. This paper limits the study only for the modelling of the factors and finding 

evidence for the presence of any regime like structures in the factor. The factors are 

modelled using the estimated regime and the following graphs show the presence of 

difference regimes. These regimes indicate the changing Volatility of the yield curve.  This 

was also indicated through the volatility clustering and mean reversal nature of the yield 

curve. In the graphs we can see that for a long time the yield curve factors are volatile but 

for last couple of years they became less volatile than before.  
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Graph 7: Different Regimes from regime-switching model Beta 

 

 
  

 
 

 



  

43 
 

6. Conclusion 

The primary goal for this paper was to model the yield curve, with both good in-sample 

modelling as well as out of sample forecasting. As postulated earlier, the models which 

have better theoretical backing, like VECM or EGARCH, would be expected to have a 

better forecast performance. The yield curve or term structure of interest rates generally 

shows both long term and short-term dynamics. Both models incorporate these elements 

very well. This somehow connects back to the feedback loop between macro and financial 

parameters and how they can be modelled. This type of model turns out to be very 

parsimonious and thus can reveal many aspects of the macroeconomy through its factor 

structure and error variance.  

As explained earlier, there are factor structures other than NS factors that can incorporate 

some of the temporal behaviour of the yield curve. In Cochrane and Piazzesi (2008), they 

integrate different factor structures different from NS or DNS. The affine model of yield 

curve using the bond structure premia used by Cochrane and Piazzesi (2008) can still 

outperform DNS in terms of forecasting. However, in terms of macro-finance models, these 

are the best specifications allowing for expansion. 
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Appendix 1: Limit of the yield curve  
 

lim
𝜏→0

𝑦(𝜏) = lim
𝜏→0

[𝛽0 + 𝛽1 (
1−𝑒−𝜆𝜏

𝜆𝜏
) + 𝛽2 (

1−𝑒−𝜆𝜏

𝜆𝜏
− 𝑒−𝜆𝜏)]  

               = β0+𝛽1lim
𝜏→0

(
1−𝑒−𝜆𝜏

𝜆𝜏
) + 𝛽2lim

𝜏→0
(
1−𝑒−𝜆𝜏

𝜆𝜏
− 𝑒−𝜆𝜏)    (betas are constant)  

               = β0+𝛽1lim
𝜏→0

(
𝜆𝑒−𝜆𝜏

𝜆
) + 𝛽2lim

𝜏→0
(
𝜆𝑒−𝜆𝜏

𝜆
) − 𝛽2lim

𝜏→0
 𝑒−𝜆𝜏 (l' hospital rule) 

               = β0+𝛽1 
               = 𝑓(0) = 𝑟   (instantaneous short rate) 

 

lim
𝑛→∞

𝑦(𝜏) = lim
𝑛→∞

[𝛽0 + 𝛽1 (
1−𝑒−𝜆𝜏

𝜆𝜏
) + 𝛽2 (

1−𝑒−𝜆𝜏

𝜆𝜏
− 𝑒−𝜆𝜏)]  
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                 = β0+𝛽1 lim
𝑛→∞

(
1−𝑒−𝜆𝜏

𝜆𝜏
) + 𝛽2 lim

𝑛→∞
(
1−𝑒−𝜆𝜏

𝜆𝜏
− 𝑒−𝜆𝜏)      (betas are constant) 

                 = β0+𝛽1 lim
𝑛→∞

(
𝜆𝑒−𝜆𝜏

𝜆
) + 𝛽2 lim

𝑛→∞
(
𝜆𝑒−𝜆𝜏

𝜆
) − 𝛽2 lim

𝑛→∞
 𝑒−𝜆𝜏 (l' hospital rule) 

                 = 𝛽0 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Appendix 2: Kalman Filter for the One-step DNS model 

 𝑃𝑡 = 𝐸(𝑒𝑡𝑒𝑡
′) = 𝐸 [(𝑓𝑡 − 𝑓𝑡̂)(𝑓𝑡 − 𝑓𝑡̂)

′
] 

where, 𝑒𝑡 = (𝑓𝑡 − 𝑓𝑡̂) and 𝑓𝑡̂ is the estimated value of 𝑓𝑡. Now, let's assume the prior 

estimate of 𝑓𝑡̂ is 𝑓𝑡̂
𝑝
. The idea is that every time the algorithm runs, this estimation about 

the factors has been updated. This is done by combining old estimates with the 

measurement data – 

 𝑓𝑡̂ = 𝑓𝑡̂
𝑝
+ 𝐾𝑡(𝑦𝑡 − Λ 𝑓𝑡̂

𝑝
) 

Here 𝐾𝑡 = Kalman Gain and (𝑦𝑡 − Λ 𝑓𝑡̂
𝑝
) is called the innovation or the measurement 

residual. 

This equation can be expanded such as – 

 𝑓𝑡̂ = 𝑓𝑡̂
𝑝
+ 𝐾𝑡(Λ𝑓𝑡 + 𝜀𝑡 − Λ 𝑓𝑡̂

𝑝
) 

 𝑓𝑡̂ = 𝑓𝑡̂
𝑝
+ 𝐾𝑡Λ(𝑓𝑡 − 𝑓𝑡̂

𝑝
) − 𝐾𝑡𝜀𝑡 

                                         

𝑃𝑡 = 𝐸(𝑒𝑡𝑒𝑡
′) = 𝐸 [{(𝐼 − 𝐾𝑡Λ)(𝑓𝑡 − 𝑓𝑡̂

𝑝
) + 𝐾𝑡𝜀𝑡} {(𝐼 − 𝐾𝑡Λ)(𝑓𝑡 − 𝑓𝑡̂

𝑝
) + 𝐾𝑡𝜀𝑡}

′

]  

𝑃𝑡 = 𝐸 [(𝐼 − 𝐾𝑡Λ)(𝑓𝑡 − 𝑓𝑡̂
𝑝
)(𝑓𝑡 − 𝑓𝑡̂

𝑝
)
′
(𝐼 − 𝐾𝑡Λ)

′ + (𝐼 − 𝐾𝑡Λ)(𝑓𝑡 − 𝑓𝑡̂
𝑝
)𝜀𝑡
′𝐾𝑡
′ +

𝐾𝑡𝜀𝑡(𝐼 − 𝐾𝑡Λ)(𝑓𝑡 − 𝑓𝑡̂
𝑝
) + 𝐾𝑡𝜀𝑡𝜀𝑡

′𝐾𝑡
′]  

𝑃𝑡 = (𝐼 − 𝐾𝑡Λ)𝐸 [(𝑓𝑡 − 𝑓𝑡̂
𝑝
)(𝑓𝑡 − 𝑓𝑡̂

𝑝
)
′

] (𝐼 − 𝐾𝑡Λ)
′ + (𝐼 − 𝐾𝑡Λ)𝐸[(𝑓𝑡 − 𝑓𝑡̂

𝑝
)𝜀𝑡
′𝐾𝑡
′]  +

𝐸 [𝐾𝑡𝜀𝑡(𝑓𝑡 − 𝑓𝑡̂
𝑝
)
′
(𝐼 − 𝐾𝑡Λ)

′] + 𝐾𝑡𝐸(𝜀𝑡𝜀𝑡
′)𝐾𝑡

′  
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𝑃𝑡 = (𝐼 − 𝐾𝑡Λ)𝑃𝑡
𝑝(𝐼 − 𝐾𝑡Λ)

′ + 𝐾𝑡𝐻𝑡𝐾𝑡
′  

𝑃𝑡 = 𝑃𝑡
𝑝 − 𝐾𝑡Λ𝑃𝑡

𝑝(𝐼 − 𝐾𝑡Λ)
′ ++𝐾𝑡𝐻𝑡𝐾𝑡

′  

𝑃𝑡 = 𝑃𝑡
𝑝 − 𝐾𝑡Λ𝑃𝑡

𝑝 − 𝑃𝑡
𝑝Λ′𝐾𝑡

′ + 𝐾𝑡Λ𝑃𝑡
𝑝Λ′𝐾𝑡

′ + 𝐾𝑡𝐻𝑡𝐾𝑡
′  

 𝑃𝑡 = 𝑃𝑡
𝑝 − 𝐾𝑡Λ𝑃𝑡

𝑝 − 𝑃𝑡
𝑝Λ′𝐾𝑡

′ + 𝐾𝑡(Λ𝑃𝑡
𝑝Λ′ + 𝐻𝑡)𝐾𝑡

′ 

 


