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Pollinator communities on saltmarshes and dykes: comparing habitat value in agroecosystems 

 

By Terrell Trever Roulston 

 

ABSTRACT 

Pollinators that visit croplands rely on adjacent ecosystems to provide essential resources such as 

pollen, nectar and nesting habitat. However, the relative amount of pollination services 

associated with different types of habitat bordering farms in coastal environments is poorly 

understood. This study compared insect pollinator assemblages on saltmarshes and dykes, two 

habitats in coastal dykelands proximal to cropland. It was hypothesized that dykes would have a 

greater abundance and diversity of pollinators compared to saltmarshes due to greater showy 

floral abundance and diversity, and availability of nesting habitat. Pollinators from dyke and 

saltmarsh sites in the Bay of Fundy dykelands in Nova Scotia Canada were sampled using pan 

traps. Floral resources were measured using an abundance index, and flowering species were 

recorded. Average pollinator abundance was similar between the two habitats with dykes having 

slightly higher counts than saltmarsh. Average pollinator taxon richness, and standard deviation 

in richness was greater on dykes, compared to lower richness, and a smaller range on 

saltmarshes.. Floral abundance and taxon richness were significantly higher in dyke habitats. 

These results seem to contradict other studies that indicate a tight relationship between floral and 

pollinator abundance. One explanation is an underestimation of floral resources in saltmarshes. 

This is validated by a field observation of Bombus and Megachilidae bees visiting flowers of 

Spartina pectinata, a wind-pollinated saltmarsh grass that was not included in my measures of 

floral abundance. Further research is needed to understand how pollinators use saltmarshes and 

dykes (i.e. potentially visiting wind-pollinated species, and availability of nesting habitat) to 

conserve these wild pollinators and maximize their ecological and economic benefits.  
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1. INTRODUCTION 

1.1 Insect Pollinators  

1.1.1 Insect pollinator importance 

Insect pollinators such as bees, wasps, hover flies and beetles provide an essential ecosystem 

service by pollinating insect-pollinated flowering plant species (henceforth referred to as 

flowering plant species) in both agricultural and natural ecosystems. Globally, flowering plant 

species’ dependence on animal pollinators for successful reproduction is estimated at 78% in 

temperate ecosystems and 94% in tropical ecosystems, and without these pollinators the majority 

of the world’s flora would be at risk (Ollerton et al., 2011). Additionally, pollinators have 

enormous agricultural value as their pollination services globally are worth an estimated $315-

773 billion (CAD) annually, or 9.5% of the world’s agricultural economic output in 2005 

(Ollerton et al., 2011; Potts et al., 2016).  The total volume of global food production that is 

dependent on pollinators is estimated at 35% (van der Sluijs and Vaage, 2016). In Canada alone 

the value of pollination services of honey bees (Apis mellifera) for direct harvested agriculture 

(e.g. blueberry, squash, apple crops) has an estimated worth of $2.57 billion (CAD) annually, 

and when production of hybrid canola seed (and products derived from canola) is included this 

value increases to between $4.0 to $5.5 billion (Agriculture and Agri-Food Canada, 2018).    

The majority of studies researching crop pollination and pollination value have focused 

primarily on domesticated managed bee species such as the European Honey Bees (Apis 

mellifera) (Garibaldi et al., 2014; Goulson, 2003), and undervalue the contributions of wild 

pollinators. A. mellifera are native to Europe, Western Asia, and Africa, however they have been 

exported globally for use in agricultural crops (Garibaldi et al., 2014). Currently <11 species of 

the 20000 ─30000 bee species worldwide are managed for use in crop pollination (Kremen, et 
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al., 2002). The total value of pollinator (especially native pollinator) ecosystem services, both 

cultural and economic, is grossly understudied, which has  implications on conservation 

management (Goulson, 2003; Klein et al., 2007; Potts et al., 2016). Some research has shown 

that native pollinators worldwide such as bumble bees are more effective as crop pollinators then 

the non-native honey bees (Garibaldi et al., 2014). Empirical evidence of wild/native pollinators 

increasing crop yields is growing, which support crop yields globally would increase if managed 

bees such as A. mellifera were used to supplement wild pollinators instead of replace them 

(Garibaldi et al., 2014; Goulson, 2003; Isaacs and Kirk, 2010; Kremen, et al., 2002; Rader et al., 

2016; Winfree et al., 2008). This combined with the unexplained rapid decline of Apis mellifera 

colonies globally, known as colony collapse disorder (CCD), warrant more reliance on and better 

management of native pollinators (Watson and Stallins, 2016). Additionally there is evidence to 

say that the presence of non-native honey bees may be detrimental to the structure and 

functionality of native pollinator-plant systems (Do Carmo et al., 2004; Valido et al., 2019). 

Research into the contributions native pollinator provide in agriculture is gaining momentum, 

however, more is needed at the agroecosystem level to understand dynamics of wild pollinators 

surrounding cropland (Klein et al., 2007).  

1.1.2 Pollinator-plant interaction 

The symbiotic mutualistic relationship of insect pollinators and flowering plant species may be 

the most widely known example of co-evolution. Flowering plant species rely on pollinators to 

collect and spread pollen for sexual reproduction (Thomann et al., 2013). Pollen contains the 

male microgametophytes that produce sperm. In the case of cross-pollination the pollen is 

collected (or otherwise transferred) from the anther (male reproductive organ) of one individual 

plant and transferred to the stigma (female reproductive organ) of a different individual, resulting 
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in the male sperm fusing with the female ovule and completing fertilization (Abrol, 2011). 

Cross-pollination combines gametes of different individuals therefore increasing genetic 

diversity, and also increases fruit set compared to self-pollination (‘selfing’) (Hudewenz et al., 

2014). Flowering plants have evolved to attract (e.g. ultraviolet showy corollas, fragrances 

(sweet scents to vile odors), etc.) pollinators to facilitate this fertilization (Peñalver et al., 2012), 

in contrast to more wind-pollinated plant species such as gymnosperms and graminoids that rely 

on air currents and chance to achieve successful fertilization (Abrol, 2011). In return for 

pollinators facilitating cross-pollination flowering plants offer nectar (sugar), which is essential 

for sustaining adult pollinators. Moreover, these flowers provide protein/lipid rich pollen to 

pollinators that include essential nutrients for larval development (Moquet et al., 2017). In 

addition to these nutrients, there are other resources specific to different insects and their life 

histories that these plants provide. Examples of this are the phytotoxins (cardenolide) that 

Monarch butterflies (Danaus plexippus) receive from milkweed (Asclepias spp.) (Kephart, 

1983), or leaves used to construct nests by Megachilidae bees (Cane et al., 2007).  

 The insect pollinator-plant relationship has been evolving for >100 million years, with 

the first known example appearing in Mesozoic thrips (Gymnopollisthrips spp.) and gymnosperm 

form-genus Cycadopites (Peñalver et al., 2012). Today the majority of pollination services rely 

on bees (Hymenoptera: Apoidae). Bees are the have several anatomical (corbicula, scopa, etc.) 

and behavioral adaptations (diapause emergence with co-plant species) to enable their pollination 

and are dependent on flowering plants. Bee species have great phenological variability ranging 

from generalists capable of pollinating several plant genera (polylectic pollination) to specialists 

only able to pollinate a single genus and in some cases a single plant species (oligolectic 

pollination). Other orders such as Coleoptera (beetles and weevils), Diptera (flies, particularly 
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Sryhipidae), Lepidoptera (butterflies and moths), and non-bee Hymenopterans (wasp, and ants) 

also contain large numbers of pollinator species, with other insect orders containing minor 

amounts (Kevan and Baker, 1983). Non-bee pollinators are not as effective at pollination, as they 

deposit less pollen on a flower per visit. Nevertheless, their contribution to pollination services 

cannot be ignored due to their high abundance and visitation frequency (Rader et al., 2016).  For 

example, Rader et al. (2016) found that 39% of insect flower visitations globally were non-bee 

pollinators, with other works also stressing the importance of non-bee pollinators (Abrol, 2011; 

Rader et al., 2016). In some cases, the primary (or only) pollinator of a plant may be a non-bee 

species. An example of this is Catocheilus wasps and warty hammer orchids, Drakaea livida 

(Bohman et al., 2012). It is important to remember that focusing on only bees may not be 

appropriate for all landscapes, as these non-bee insects also must be considered when developing 

management and adaptation plans for conservation or agricultural applications.  

The composition of a pollinator assemblage is highly dependent on which flowering plant 

species are present within the ecosystem, with population richness typically being skewed by a 

handful of dominant pollinator species and many rare species within a given landscape (Potts et 

al., 2003). The two greatest positive predictors of pollinator population size and richness are 

floral abundance and floral species richness (Potts et al., 2003; Roulston and Goodell, 2011). It is 

also important to consider the temporal floral distribution, or how much flowering ‘overlap’ 

there is within a given habitat over time. If there are not enough flowers over an entire growing 

season then the pollinator populations cannot be sustained (Roulston and Goodell, 2011). This is 

because the summer months are important for foraging and building up overwinter food reserves 

and fat bodies, and without sufficient pollen and nectar resources local pollinator populations 

will collapse (Lonsdorf et al., 2009; Roulston and Goodell, 2011).  This is particularly relevant in 
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an agricultural context; for example, lowbush blueberry (Vaccinium angustifolium) in Nova 

Scotia which rely on pollinators for fruit set, only flower for a limited time (e.g. early June in 

blueberry) (Kinsman, 1993) leaving pollinators to find other foraging patches during the off-crop 

period (Roulston and Goodell, 2011). Research on the effectiveness of agro-ecological 

management practices, such as managing floral resources or planting of mass flowering crops 

(MFCs) along margins of agricultural crops are promising methods for facilitating and 

conserving native pollinators and the services they provide (Dicks et al., 2016; Goulson, 2003; 

Hanley et al., 2011).  Given this, pollinator-plant interactions must be evaluated at a landscape 

specific level, meaning management practices that work in one region may not work in another.  

1.1.3 Insect pollinator decline and global climate change 

A shift in agricultural and land management practices may be needed in face of declines in 

managed pollinator stocks. Many questions have been raised about the future availability of 

European Honey Bees (A. mellifera), as their populations are on the decline due to a number of 

abiotic (e.g. pesticides) and biotic (e.g. parasitism), and social factors (fewer apiculturists) 

(Goulson, 2003; Watson and Stallins, 2016). In the United States (US) the number of managed 

A. mellifera hives being lost annually due to these stressors is 50-90% since 2006 (Kulhanek et 

al., 2017; Steinhauer et al., 2014; VanEngelsdorp et al., 2010)  and other records show that 

naturally occurring colonies of A. mellifera are practically non-existent today (Requier et al., 

2020). One such stressor, an invasive ectoparasitic mite, Varroa destructor, affects honey bee 

colonies by sucking significant amounts of hemolymph from adults as well as larval brood, and 

are known to carry additional synergistic pathogens which cause secondary infection 

(Rosenkranz et al., 2010). Two of these synergistic pathogens are Deformed Wing Virus (DWV) 

and the closely related Varroa destructor virus-1 (VDV1). A report published by Ryabov et al. 
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(2017) showed an increase in VDV1 present in apiaries from 2% in 2010 (n=75) to 66.0% in 

2016 (n=240),which has been linked directly to colony loss. This along with other reports of 

VFV1 and DWV in other parts of the US and Europe suggest these pathogens are rapidly 

spreading (Ryabov et al., 2017). Today, V. destructor are found in honey bee colonies globally 

with exception to Australia. Two ectoparasiticid resistant Varroa subspecies (rVMf and rVMc) 

are known to exist and both have been documented in Canada (Rosenkranz et al, 2010; Nova 

Scotia Regulations, 2012).   In Nova Scotia the number of registered honey bee colonies 

increased from 19000 in 2012 to 25000 in 2016 (Agri-food Canada, 2018). In an effort to protect 

managed pollinator populations policy surrounding apiculture in Nova Scotia has become 

stricter. In 2019, an outright ban of importation of honey bees from other provinces was enacted 

by the Nova Scotia Department of Agriculture citing concerns over diseases and pests such as 

European foulbrood (Melissococcus plutonius), Honey bee tracheal mite (Acarapis woodi), and 

the aforementioned Varroa mite.  Poor management practices, such as the global spread of 

Varroa mite through poor exportation/importation regulation is thought to be at the root of many 

colonies suffering colony collapse disorder (Watson and Stallins, 2016).  

Native pollinators are also being threatened world wide (van der Sluijs and Vaage, 2016). 

One species of bumble bee, the Rusty Patched Bumble Bee (Bombus affinis) native in range to 

Southern Ontario has now become virtually extinct and is listed as an endangered species in both 

the US and Canada (Colla and Packer, 2008; Lambe, 2018). Other bumble bee populations are 

being threatened as well, which will have cascading affects on flora and fauna alike (Colla and 

Packer, 2008; Goulson, 2003; Kerr et al., 2012). A number of factors are contributing to the 

decline of wild native pollinators.  The rampant use of pesticides, such as neonicotinoids, 

globally in a multitude of contexts including agriculture has threatened native pollinators 
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(Goulson, 2003; Morandin et al., 2005; Watson and Stallins, 2016). Insecticides can cause 

pollinator mortality directly with intoxication (Morandin et al., 2005), and herbicides affect 

pollinator populations indirectly by decreasing floral resource availability (Gabriel and 

Tscharntke, 2007; Holzschuh et al., 2008), as well other sublethal affects of pesticides are known 

(Morandin et al., 2005). Additionally, ground nesting pollinators within agroecosystems are 

threatened by tilling or other such disturbances, which is alarming as  70% of bee species nest in 

the ground (Roulston and Goodell, 2011). Currently how these disturbances affect population 

dynamics are not well studied, but some research has shown that just providing floral resources 

is not enough to sustain these pollinators (Sardiñas et al., 2016; Sardiñas et al.,2016) 

These risks, combined with changes in habitable range due to global climate change as 

well as changes in land use such as urbanization are threatening wild pollinator populations 

worldwide, particularly in North America and Europe (Kerr et al., 2012; Kremen et al., 2002).  

Global climate change also has indirect negative effects on wild pollinator populations due to 

changes in plant communities (Roulston and Goodell, 2011). There is an urgent need for research 

of native pollinators globally as the decline in plant species is directly linked to decline in 

pollinators, and vice versa (Thomann et al., 2013). Plant species will need a rapid evolutionary 

response of new reproductive strategies less reliant on pollination services in order to cope with 

declines of pollinator diversity (Thomann et al., 2013). 

1.1.4 Native insect pollinators in Nova Scotia 

A review by Sheffield et al. (2003) compiled all documented species of Apoidae in Nova Scotia 

(NS).  They found 157 indigenous bee species (and two additional recent arrivals), from 26 

different genera of six families. Many of these species are known to exhibit polylectic and 

several oligolectic relationships with plant species. This review also identified a lack of research 
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on the reproduction of native plant communities within NS, including the relationships with 

Nova Scotian indigenous bees. Solitary bees in NS spend the majority of the year in an 

overwintering stage (diapause), some overwinter in adult stages, while some overwinter as pupae 

(matured larvae). In temperate climates the majority of bees overwinter as pupae (Stephen et al., 

1969). In contrast, Sheffield et al. (2003) reported that 73% of NS bee species overwinter as 

adults. Emergence from diapause typically occurs in early spring (when daily temperatures reach 

>14 ˚C) with flight periods of bees spanning from June into the summer and autumn – however, 

this varies by species. Other non-bee pollinators can have very different life histories, and their 

emergence and pollination periods can vary greatly (Abrol, 2011). However, in general these 

pollinators’ flight periods in temperate regions closely reflect those of their bee counterparts 

(Abrol, 2011). 

Only a handful of pollinator studies have been completed in Nova Scotia. Population 

surveys of native pollinator does not exist for many parts of Nova Scotia. There is some 

population data for managed bees (Apis mellifera, Agriculture and Agri-food Canada, 2018), and 

anecdotal reports of A. mellifera population decline have been made in NS. Potts et al. (2010) 

criticize the value of such reports for informing status of honey bee populations, as the number 

of bee keepers globally (and in Canada) has declined as well (Potts et al., 2010). It is important 

to note that previous research completed in the Annapolis Valley, and Nova Scotia in general has 

focused primarily on bees, so little is known about non-bee pollinators, despite their importance. 

When examining the number of bee species that pollinate two staple agricultural crops in 

NS it is clear that it is inappropriate to only consider Apis mellifera as pollinators of these crops; 

42 species pollinate apples (Malus domestica) and 78 species (40 shared with apple) pollinate 

lowbush blueberry (V. angustifolium) (Sheffield et al., 2003). Many other fruit and vegetable 
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crops are also grown within the Annapolis Valley which include pears, plums, cherries, bramble, 

peaches, strawberries, grapes, highbush blueberry, and squash (Sheffield et al., 2003). Research 

into the contribution of native pollinators of blueberry crops has shown that native bumble bees 

are typically more abundant and effective pollinators of these crops compared to A. mellifera 

(Garibaldi et al., 2014; Isaacs and Kirk, 2010; Winfree et al., 2008), which is important to 

consider as Nova Scotia is the second largest global producer of lowbush blueberries (Kinsman, 

1993). Unfortunately high pesticide use and poor management practices has led to native 

pollinator population decline and an increased reliance on managed pollinators which is likely 

limiting crop yields (Goulson, 2003; Isaacs and Kirk, 2010). The value of these native pollinators 

and their services in Nova Scotia has been overlooked, and studies in agroecosystems such as the 

Bay of Fundy dykelands are needed.  

1.2 Bay of Fundy dykelands 

1.2.1 Dykeland communities  

The Bay of Fundy dykelands are spread along coastal regions of the Bay of Fundy in Nova 

Scotia and New Brunswick (Figure 1). These dykes were originally made by the Acadians (early 

French settlers) starting in the late 16th century to protect their crops from saltwater intrusion 

(Landscape of Grand Pré, n.d.). The creation of these dykes drastically changed the landscape 

behind the dykes and allowed for more agricultural land; as well the dykes provided irrigation 

systems for the fields and crops (Desplanque, 1982). Tidal saltmarsh reclamation continued to 

convert saltmarshes around the Bay of Fundy to agricultural land into the mid-twentieth century, 

and today approximately 77% of Nova Scotia’s natural tidal saltmarsh has been lost due to 

dyking (MacDonald et al., 2010; Wollenberg et al., 2018). Tidal saltmarshes are unique but 

stressful intertidal wetland habitat characterized by predictable periodic inundation of salt (or 
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brackish) waters, which connects the marsh to the water body (Broome and Craft, 2015; 

Pennings and Bertness, 2001). These marshes are highly productive ecosystems that support a 

number of species and provide a number of water quality and hydrological functions (Pennings 

and Bertness, 2001). The Bay of Fundy dykelands remain a region of high agricultural activity, 

with the majority of agriculture taking place in the Annapolis Valley in Nova Scotia, which has a  

regional economy largely dependent on the success of its agriculture (Van Proosdij et al., 2018; 

Sheffield et al., 2003). The dykes also protect land important for other agricultural activities such 

as hay fields that are producing feed for cattle and other livestock, or even grazing areas for this 

livestock. These Nova Scotian dykes are now regulated under the Agricultural Marshland 

Conservation Act 2000, c. 22, s. 1 (Nova Scotia Legislature, 2000). The Nova Scotia Department 

of Agriculture (NSDA), Land Protection Section is responsible for maintaining 241 km of dykes 

along Nova Scotia’s coasts and waterways, protecting 16,139 Ha of agricultural marshland 

behind them (van Proosdij et al., 2018) . In addition to protecting agricultural land these dykes 

protect a number of coastal communities and infrastructure. 

 Unfortunately, the sustainability of the Bay of Fundy dykelands is now being called into 

question due to increasing rates of sea level rise (SLR), as well as the possibility of increased 

storm severity due to effects of climate change on the region. Policy makers and other 

stakeholders have begun to reconsider the long-term cost effectiveness associated with 

maintaining dykes (Wollenberg et al., 2018). Additionally these dykes are vulnerable to 

overtopping events under current and future sea level rise and storm scenarios; 2100 SLR 

scenarios show that dyke tracts in Annapolis, Digby, Hants, and Kings counties are at extreme 

risk of dyke overtopping and erosion (Van Proosdij et al., 2018). In response to the rising costs 

and questions of dyke sustainability, coastal managers and researchers have turned to the 
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potential managed realignment of these dykes. The managed realignment process is a nature-

based adaptation which includes breaching, removal, and/or realignment of the dyke further 

inland (French et al., 2000). This process allows for the natural intertidal habitat including tidal 

saltmarsh to be restored (Bowron et al., 2011; French et al., 2000; Garbutt et al., 2006). Tidal 

saltmarshes have been shown to provide a number of ecosystem services including climate 

regulation services such as wave action attenuation, protection against storm surge, and carbon 

sequestration (Gallant et al., 2020; McKinley et al., 2018). Additionally, saltmarshes benefits 

wild species (particularly bird and fish) diversity and other cultural services (Bowron et al. 2011; 

McKinley et al., 2018). Today there are several ongoing managed realignment and coastal 

restoration projects in the Bay of Fundy region (van Proosdij et al., 2018; Wollenberg et al., 

2018; Fisheries and Oceans Canada, 2019).  

1.2.2 Saltmarsh versus dyke 

Although the restoration of tidal saltmarsh has great potential as a nature-based adaptation to 

protect coasts and provide ecosystem services along the Bay of Fundy, there are potential 

negative trade-offs for removing or disturbing dykes. Restoration of saltmarsh will require that 

valuable agricultural land be forfeited, which has implications for policy makers and 

stakeholders alike. Additionally, managed realignment has the potential to negatively affect 

native pollinator populations. The dykes as well as the land behind the dyke provide freshwater 

habitat for many flowering plants species, which cannot tolerate seawater; <0.25% of 

angiosperms are salt tolerant (Bromham, 2015). Many of the flowers on dykes are non-native 

naturalized species such as Medicago sativa, Sonchus oleraceus, Daucus carota, Trifolium spp. 

and Taraxacum spp. Nevertheless, there are some native species such as Solidago spp., and 

Symphyotrichum novi-belgii. The dykes also may be providing nesting habitat for ground nesting 
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bees and other insects both behind the dyke as well as on the dyke itself (Sardiñas and Kremen, 

2014). By comparison tidal saltmarshes are composed of primarily wind pollinated graminoids 

(e.g. Carex palacea, Juncus gerardii, Spartina patens and Spartina alterniflora), with a low 

abundance and diversity of insect pollinated species (e.g. Solidago sempervirens, Limonium spp, 

and Tripolium pannonicum) compared to those on dykes (Bowron et al., 2011). Additionally, 

there is little to no viable nesting habitat in saltmarsh, due to wave intrusion during high tide 

causing the marsh to become flooded periodically. There is a limited amount of research and 

literature investigating pollinators on saltmarsh. Davidson et al. (2020) in the United Kingdom 

did complete a study that showed that pollinators (mainly A. mellifera, and Bombus spp.) are 

accessing these habitats. They also found that grazing of saltmarsh meadows negatively affects 

pollinator abundance and diversity by reducing the flower cover of Tripolium pannonicum and 

Limonium spp. However, more research is needed to properly understand how pollinators may be 

utilizing saltmarshes to better predict how dykeland restoration will affect agriculture in the Bay 

of Fundy. 

1.3 Objectives 

This study is a novel comparison of pollinator assemblages (abundance and diversity) found on 

tidal saltmarsh and dykes. Additionally, surveying of pollinators in either habitat not been done 

in the Bay of Fundy dykelands. This research aimed to understand differences in these habitats 

for supporting pollinators, in part to inform their relative value for pollination services to 

proximal crops. This work also began addressing a gap in the literature surrounding how 

pollinators access saltmarsh. This work will inform potential ecosystem service trade-offs 

between saltmarsh and dykes, which will help stakeholders make informed agro-ecological land 

management decisions. For example, this study may provide insight into how dyke realignment 



 

 

13 

 

and/or breach may negatively impact pollinators – by potentially disrupting ground nesting bees 

and the floral resources dykes offer. 

As little work has been done on surveying of wild native pollinators in the Annapolis 

Valley as well as Atlantic Canada, this study will be used in future studies to track pollinator 

population changes. Most importantly, this research will further our understanding of what insect 

pollinator species are present on saltmarshes and dykes and potentially assist managers making 

species-specific conservation decisions/tools within the Bay of Fundy dykelands agroecological 

landscape. 

 I predicted that dykes will support greater abundance and diversity of pollinators 

compared to saltmarsh, as dykes typically have greater insect pollinated floral diversity and 

abundance, as well dykes have greater amounts of potential ground nesting habitat.   

2. METHODS 

2.1 Study sites 

Insect pollinators were sampled from eight saltmarshes and eight dykes in the Annapolis Valley 

(Figure 1, Table 1, Appendix 1-13). The Annapolis Valley is in western Nova Scotia and is 

characterized by two mountains that form a valley parallel to the Bay of Fundy. The valley 

facilitates a microclimate which produces relatively mild temperatures compared to the rest of 

mainland Nova Scotia. This paired with fertile glacial sedimentary soils makes the area suitable 

for agriculture. Average monthly high temperatures range from the -1.3 °C in January to 24.9 °C 

in July (Environment Canada, 2020). The Annapolis Valley has an average annual precipitation 

off 1181 mm (Environment Canada, 2020). The highest temperature during the study period was 

37 °C (July 21st, 29th and 31st), and the lowest was 17 °C (July 9th). 
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 Saltmarsh and dyke sites were initially selected using satellite images and were 

confirmed to be appropriate upon initial visits. All sites were located near agricultural land (< 1 

kilometres), with crop and management type varying. Saltmarsh sites were selected to include 

high (upper), middle, and lower marsh vegetation zones to ensure sites were representative of 

natural ecosystems (Foster et al., 2013; Porter et al., 2015). However, due to logistical 

limitations, the Newport Marsh South and Belcher Street Marsh sites were included but did not 

include have any high marsh vegetation. Dyke sites were chosen based off proximity to 

agricultural land, as well as ease of access from near by roadways. Most dyke sites had some 

fringe saltmarsh on the foreshore side of the dyke, however, these zones did not exceed > 15 

metres, with the exception of the Newport Dyke site which had approximately 100 metres of 

saltmarsh on the foreshore side of the dyke. Experimental sites varied in their position in the tidal 

frame, with some sites being located in or near the Minas Basin (e.g. Kingsport Marsh, Noel 

Dykes) and other sites located further up the tidal frame (e.g. Belcher Street Marsh and Dyke).  
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Table 1. List of the study sites.  

No. Site Name Coordinates (DD) Habitat 

1 Belcher Street Reference N45 04.390' W064 28.626' Saltmarsh 

2 Belcher Street Restoration N45 04.430' W064 28.338' Dyke 

3 Kingsport N45 09.508' W064 22.202' Saltmarsh 

4 Starr's Point North N45 07.629' W064 24.143' Dyke 

5 Starr's Point South N45 06.231' W064 22.384' Dyke 

6 Elderkin Creek Dyke N45 00.252' W064 09.399' Dyke 

7 Newport Marsh North N45 01.264' W064 07.904' Saltmarsh 

8 Newport Marsh South N45 00.429' W064 07.432' Saltmarsh 

9 Newport Dyke N45 00.445' W064 07.380' Dyke 

10 Cogmangun Other N45 04.595' W064 07.946' Saltmarsh 

11 Cogmangun Restoration N45 04.692' W064 07.879' Saltmarsh 

12 Cogmangun Reference N45 05.107' W064 06.987' Saltmarsh 

13 Bramber N45 10.323' W064 09.211' Saltmarsh 

14 Noel West N45 18.342' W063 45.273' Dyke 

15 Noel Northeast N45 18.765' W063 43.357' Dyke 

16 Noel Southeast N45 18.464' W063 43.021' Dyke 
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Figure 1. Map of study sites. See Table 1 for site coordinates. BoF = Bay of Fundy. 
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2.2 Pollinator and floral surveying 

2.2.1 Pan traps and sampling regime 

Sampling of insect pollinators began on June 26th, 2020 and continued until October 5th, 2020. 

To capture temporal changes in the pollinator assemblages, each site was sampled approximately 

every ten days (minimum seven days, maximum fourteen days). An exception to this condition 

was sampling completed between October 1st and October 5th which occurred thirty days after 

the pervious sampling event. Several sites were visited on each day and all sites were sampled 

within five days of each other to flowering plant species were consistent. Sampling only went 

ahead on sunny days when maximum temperatures reached or were above 15 °C, to ensure 

pollinators had suitable flight conditions.  

Pollinators were sampled using passive pan traps placed at ground level on all saltmarsh 

and dyke sites. Pan traps were UV-bright blue, yellow and white plastic bowls (15 cm diameter, 

12 oz; Polar PartyWare) – the three colours known to be commonly attractive to a range of 

pollinators (Saunders and Luck, 2013). On each site these traps were laid between 08:00 and 

10:00 hr and were collected after a six-hour period. All specimens were stored in 95% ethanol at 

room temperature until pinning.  

2.2.2 Transect placement 

On each site, three parallel transects spaced 30 metres apart were laid perpendicular to the 

waterway (Figure 2). Pans were placed in alternating colours (e.g. blue, white, yellow, blue, etc.) 

in transects of 10 pans each spaced ~ 3 metres apart. Once placed, bowls were filled ¾ full of 

soapy water to ensure the surface tension was broken. Soapy water was made by adding three-to-

six drops of Blue Original Dawn soap to 5 litres of water. Coordinates for the ends of each 

transect were taken using a handheld GPS to ensure location of transects were consistent during 
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the study. On saltmarsh sites transects were placed in the mid marsh zone, between the low/mid 

marsh edge and the high marsh vegetation. One exception to this was Cogmangun Restoration 

where 1-2 traps per transect were placed in the high marsh zone in order to maintain transect 

spacing. No pan traps were laid in low marsh areas as tidal inundation would have disrupted the 

traps over the surveying period. On dyke sites transects were laid between the foreshore base of 

the dyke footprint – up and over the dyke-proper – stopping before the landward dyke footprint. 

Due to area constraints transects at Noel Northwest, Noel Southwest, Starr’s Point North, and 

Starr’s Point South had 1-2 traps were placed in the fringe marsh. Again, this was done to 

maintain transect spacing.  

 

Figure 2. Transect map. Example of pan trap transects on saltmarsh (left) and dyke (right) sites. 

To maintain transect spacing, the range of trap placement varied (see text above) from site-to-site 

due to area constraints. Diagram not to scale.  

2.2.3 Floral survey 

During each visit to a site the abundance of floral resources was estimated using a visual index 

ranging from 0-to-3. Grasses and other wind-pollinated species were excluded from floral 
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surveys – only showy flowers were included. A score of 0 represented no floral resources (no 

flowering individuals), 1 represented very low to low abundance of resources (~ 1-10 individual 

plants), 2 represented low to intermediate abundance of resources (~ 11-20 individual plants), 

and 3 represented high to very high abundance (~ 21+ individual plants). Flowering species were 

noted on each site to measure floral species richness. 

2.3 Specimen preparation and identification 

All specimens were cleaned and prepared before being pinned. Cleaning involved removing 

vegetation and other debris from all samples before segregating bees and wasps (Superfamily 

Apoidea), syrphids (Family Syrphidae), (Order Coleoptera), and butterflies (Order Lepidoptera) 

from other non-pollinator invertebrate by-catch. Insects in by-catch were classified to order, and 

other invertebrate by-catch was classified by phylum before being disposed. The remaining 

pollinator specimens were lightly rinsed and transferred to soapy water bath, where they were 

swirled for 60 seconds to removed dirt and other debris. The specimens were gently rinsed again 

and replaced into a clean water bath and swirled for another 60 seconds to remove any soap 

residue. Specimens and small pieces of dry paper towel were then placed into a plastic vial with 

mesh covering both ends. A hair dryer (Conair 1875 Watt Full Size Tourmaline Ceramic Hair 

Dryer) was then used to dry the specimens. Following cleaning, specimens were pinned using 

BioQuip No. 0, 1, and 2 gauge insect pins and stored at room temperature in collection boxes 

until identification. 

 All bee specimens were identified to genus with the exception of a several easily 

identifiable species (e.g. Apis mellifera, Agapostemon virescens, and Halictus ligatus) Bee 

specimens were identified using Discover Life keys by Polistes Foundation, Inc. (2020), and 
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“The Bee Genera of Eastern Canada” by Laurence Parker et al. (2007). Syrphids, lepidopterans, 

and wasps were recorded to morphospecies.  

2.4 Statistical analysis  

All statistical tests were performed in R v 3.5.1 (The R Project for Statistical Computing, 

http://www.rproject.org/), using RStudio interface v 1.2.5033. Bee richness were calculated as 

the total number of genera or species. Syrphid, lepidoptera, and wasp richness was left as each 

respective morphospecies. Pollinator abundance was the total number of specimens collected in 

each habitat for each respective taxon. Means (rounded to nearest whole number) and standard 

errors were calculated for pollinator abundance and richness. Statistically significant results were 

considered α = 0.05. A Welch’s two-sample t-test were used to compare mean pollinator 

abundance and richness between habitats, using the base R function ‘t.test’. Homoscedasticity of 

residuals was verified before continuing analysis. A generalized mixed linear effects model with 

Poisson fit and site random effect was used to model pollinator abundance between habitats over 

the sampling period. This was then analysed using a Type II ANOVA (Wald chisquare test). 

Bray-Curtis dissimilarity coefficients (quantifies differences in assemblages between sites, 

considering abundance and richness) from pollinator abundance data was calculated using the 

‘vegan’ package function ‘vegdist(method=”bary”)’. This data was then used in a Non-metric 

multidimensional scaling (NMDS) ordination to visualize variation in bee community 

composition across site types, using the ‘NMDS’ function in the ‘vegan’ package. Means 

(rounded to nearest whole number) and standard deviations were calculated for floral abundance 

and standard errors richness. A Welch’s two-sample t-test were used to compare mean floral 

abundance and richness between habitats, using the base R function ‘t.test’. A linear model was 

used to measure floral abundance scores over the sampling period. This was then analysed using 

http://www.rproject.org/
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a Type I ANOVA (F test). A linear regression (base R, ‘lm’) was used to explore the relationship 

between pollinator abundance by mean floral abundance, and pollinator richness by floral 

richness, which was then alaylsed using a Type I ANOVA (F test).  Other supplementary 

packages ‘dplyr’, ‘ggplot2’, ‘ggdendro’, ‘ggsignif’ and ‘esmeans’ were used for data 

manipulation and visualization.  

3. RESULTS 

3.1 Pollinator assemblages 

3.1.1 Pollinator abundance 

A total of 2386 pollinator specimens were collected across both habitats, with the total dyke 

catches equalling 1355, and total saltmarsh catches equalling 1031. Of pollinators sampled on 

dyke sites there were 1070 bees, 233 wasps, 26 syrphids, and 26 Lepidopterans, and on saltmarsh 

sites there were 756 bees, 200 wasp, 58 syrphids, and 17 Lepidopterans (Figure 3). The dyke 

sites Starr’s Point South and Belcher Restoration had the two greatest total counts with the next 

greatest being a saltmarsh site, Cogmangun Reference (Table 2). The least total count was on 

dyke site, Noel West, with Kingsport (saltmarsh) and Noel Southeast (dyke) having the next least 

(Table 2). The mean abundance of pollinators was greater for dyke sites (169 ± 34.01 SE) then 

the saltmarsh sites (129 ±  14.11 SE) (Figure 4, Table 2). However, a Welch's two-sample t-test 

reported this result was non-significant (t(9.34) = 1.11, p = .2989). The number of pollinators 

captured in both habitats slightly increased later into the sampling period, with the five greatest 

single day catches occurring between Aug 20th and September 5th 2020 (Figure 5). The type II 

ANOVA (Wald chi-square test) reported a strong effect of time (χ2(28) = 613.606, p<<0.001), 

and a significant interaction between habitat and date (χ2(14) = 436.258, p<<0.001). However, 
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habitat alone did not affect pollinator abundances over the study period (p=0.3075) (Appendix 

14). 

 

 

Figure 3. Pollinator assemblage. Total proportion of pollinator groups found in both dyke and 

saltmarsh sites. Pollinators were sampled using pan traps laid at ground level, see Figure 2 for 

example of sampling transects. 

 

Table 2. Pollinator abundance. Total count of pollinator catches by site. Total catches were 

greater in dykes however, both habitats did have a few outlying samples. ‘SE’ = standard error. 

 

Site Dyke Abundance Saltmarsh Abundance 

Belch Restoration 253  
Starr's Point North 143  
Starr's Point South 361  
Elderkin Dyke 110  
Newport Dyke 176  
Noel Northeast 153  
Noel Southeast 93  
Noel West 66  
Belch Reference 110 

Kingsport  81 

Newport Marsh North 122 

Newport Marsh South 132 

Cogmangun Other  219 
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Cogmangun Reference  117 

Cogmangun Restoration 134 

Bramber  116 

Mean ± SE 169 ± 34.01 129 ± 14.11 

 

 

Figure 4. Mean pollinator abundance. Dyke sites had a greater mean (169 ± 34.01) abundance 

of pollinators then saltmarsh (129 ± 14.11). Specific site abundances values can see in Table 2. 

Large dot represents the means, the lower and upper hinges correspond to the first and third 

quartiles, the upper and lower whiskers extend to the largest/smallest value no further then 1.5 

interquartile range (IQR) beyond the hinges, dots are outliers that values that fall outside of this 

range. Welch’s two sample t-test: t(9.34) = 1.11, p = 0.2989. ‘NS.’ = non-significant. 
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Figure 5. Temporal pollinator abundance. Pollinator abundances increased slightly in both 

habitats starting in August and continued into September. Regression (±) shown is a generalized 

mixed linear effects model with logistic Poisson fit and site random effect (deviance = 1123.6). 

A type II ANOVA reported significant interaction between habitat and time (χ2(14) = 436.258, 

p<<0.001) and indicated a significant time effect on pollinator abundance (χ2(28) = 613.606, 

p<<0.001), but no effect of habitat on pollinator abundance (χ2(1) = 1.042, p=0.3075) (Appendix 

14). 

 

3.1.2 Pollinator field  observations 

At all sites bees and other pollinators were seen visiting showy flowers within the area’s of the 

transects. No observations of bees nesting on or within either habitat were made however it 

should be noted that several dyke sites had suitable ground nesting soils (exposed, sunny, sloped) 

in addition to vegetation (such as cone flowers) and dead wood suitable for cavity nesting bees. 

On saltmarsh sites lepidopterans were found commonly resting on Spartina patens in July and 

August. Paper wasp (Family:Vespidae) nests were found on the Elderkin Creek and Noel West 
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dyke sites. Most notably, bees believed to be Bombus spp. and Family:Megachilidae were seen 

visiting a wind-pollinated saltmarsh grass, Spartina pectinata. This was observed at Bramber and 

Cogmangun Restoration sites on several occasions. It appeared Bombus bees were pollinating S. 

pectinata, by hanging onto the flowering stem. Additionally, Megachilidae were specifically 

observed removing sections of S. pectinata leaves and flying away with them. Although not 

directly measured in this study, S. pectinata can be found on all saltmarsh sites, as well as several 

dykes sites (Personal observations, T. T. Roulston and Evan McNamara – MSc. student). 

3.1.3 Bee taxa 

The majority (92.4%) of bee catches were wild native Nova Scotian species, with the remaining 

proportion (7.6%) of catches including 58 Apis mellifera (non-native; managed), three Anthidium 

manicatum and six Anthidium oblongatum (both non-native; wild) 72 Bombus impatiens (non-

native; wild/managed). The most abundant bee taxa in both habitats was genus was 

Lassioglossum, with 325 and 460 sampled in saltmarshes and dykes, respectively. The next most 

abundant genera were Bombus with 97 on saltmarsh and 126 on dyke, and Agapostemon with 72 

on saltmarsh and 111 on dyke sites. Rare taxa (≤ 10 total individuals) included: Anthidium, 

Coelioxys, Heriades, Hoplitis, and Osmia. See Table 2 for a complete list of all bee taxa. 

 Bee nesting biology was found to be similar in both habitats (Table 3, Figure 6). Cavity 

nesting bee taxon composed 36% and 35% in dykes and saltmarshes respectively. Ground 

nesting pollinators were found in similar portions of 33% and 31%, again respectively. Two 

genera of nest parasites were found, Sphecodes and Coelioxys on both habitats, however a 

greater abundance was found on dykes.  
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Table 3. Bee taxa. Bee specimens were identified to genus, and species depending on difficulty of identification. Note that rows with 

‘─’ indicates those specimens were not identified to species. *Sphecodes species parasitize mainly Family:Halictinae; along with some 

Andrena; Calliopsis; Perdita; and Collets. Nesting biology described by (Packer et al., 2007)1, (Colla et al., 2012)2, (Sheffield et al., 

2011a)3, (Sheffield et al., 2011b)4, (Sheffield et al. 2003)5. 

Family Genus Species Nesting biology 

Dyke 

abundance 

Saltmarsh 

abundance 

Total 

abundance 

Megachilidae Anthidium manicatum Cavity1 2 1 3 

  oblongatum Cavity1 4 2 6 

  psoraleae Cavity1 1  1 

 Coelioxys modestus Megachile nest parasite1 
1  1 

  moestus Megachile nest parasite1  1 1 

  octodentatus Megachile nest parasite1 2  2 

  rufitarsis Megachile nest parasite1 1  1 

  sayi Megachile nest parasite1 1  1 

 Heriades carinatus Cavity1 2  2 

 Hoplitis producta Cavity1 2  2 

 Megachile centuncularis Cavtity/ground 3  3 

  frigida Cavity/rotten logs4 1 2 3 

  inermis Cavity/rotten logs4 4 1 5 

  latimanus Ground4 2  2 

  melanophaea Ground4 3  3 

  relativa Cavity/rotten logs4 
 1 1 

  ─ ?Cavity/ground4 
 1 1 

 Osmia ─ Cavity1 4 2 6 

Apidae Apis mellifera Colony hive1 19 39 58 

 Bombus impatiens Colony underground2 40 32 72 

  borealis Colony underground2 20 12 32 

  vagans 

Colony2 

Underground/surface2 11 13 24 

  fervidus Colony surface2 7 6 13 
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  rufocinctus Colony underground/surface2 18 3 21 

  ternarius Colony underground2 29 30 59 

  perplexus Colony surface/trees & logs2 1 1 

  terricola Colony underground2 1  1 

 Ceratina dupla Cavity1 20 5 25 

  mikmaqi Cavity1 34 2 36 

  calcarata Cavity1 11 4 15 

  ─ Cavity1 4  4 

 Melissodes ─ Ground1 62 61 123 

Andrenidae Calliopsis adreniformis Ground1 20 2 22 

 Perdita ─ Ground1 24 14 38 

Halictidae Agapostemon virescens Ground1 111 72 183 

 Augochlorella aurata Ground1 53 19 72 

 Halictus ligatus Ground1 8 29 37 

  rubicundus Ground1 3 1 4 

  confusus Ground1 1  1 

  ─ Ground1 33 51 84 

 Lasioglossum ─ Ground1 460 325 785 

 Sphecodes ─ Ground nest parasite*5 13 1 14 

Colletidae Colletes ─ Ground1 28 16 44 

 Hylaeus ─ Cavity3 7 7 14 

Total       1070 756 1826 
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Figure 6. Bee nesting biology. Proportion bee tax with respective nesting biology by habitat. 

Specific taxon preferences reported in Table 3. 

 

3.1.4 Pollinator richness 

In total 47 different taxa were collected across both sites, with 43 taxa found on dyke sites and 

34 taxa found on saltmarsh sites. Between the two habitats 30 taxa were shared – including all 

bee genera sampled in this study. Dyke sites, Belcher Restoration and Starr’s Point South were 

tied for the greatest richness across both habitats, with another dyke site Starr’s Point North 

having the third greatest taxa richness (Table 4). The lowest richness was found on Kingsport, 

with another saltmarsh site Cogmangun Other and dyke site Noel West tied for second lowest 

taxa richness (Table 4).  Mean pollinator richness on dyke sites (22 ± 1.51 SE) was significantly 

greater compared to saltmarsh sites (16 ± 0.86) (Figure 6). A Welch’s two sample t-test reported 

mean pollinator richness significantly differed between habitats (t(11.99)=2.78, p =0.0166). 

Table 4. Pollinator richness. Total taxon richness per site – bees identified to genera/species, 

and wasps, lepidopterans, and syrphids identified to morphospecies. ‘SE’ = standard error. 

 

Site Dyke Richness Saltmarsh Richness 

Belch Restoration 26  
Starr's Point North 25  
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Starr's Point South 26  
Elderkin Dyke 22  
Newport Dyke 17  
Noel Northeast 24  
Noel Southeast 19  
Noel West 15  
Belch Reference 17 

Kingsport  11 

Newport Marsh North 18 

Newport Marsh South 19 

Cogmangun Other  15 

Cogmangun Reference 17 

Cogmangun Restoration 17 

Bramber  17 

Mean ± SE 22 ± 1.51 16 ± 0.86 

 

 

Figure 7. Mean pollinator taxon richness. Dyke sites had a greater mean richness, as well as a 

larger range in richness then the saltmarsh sites. Specific site richness values are specified in 

Table 4. Welch’s two sample t-test: t(11.99)=2.78, p =0.0166. ‘*’ = p ≤ 0.05. 
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3.1.5 Bray-Curtis dissimilarity 

Pairwise Bray-Curtis (Bc) dissimilarity values among sites ranged from 0.79 – 0.27, with mean 

Bc value of 0.49. Sites showed no predictable patterns of hierarchical clustering based on the Bc 

index, and sites of classified of the two habitats often were grouped with sites of the different 

habitat type (Figure 7). NMDS ordination of site Bc indexes showed no apparent clustering of 

habitats or genera/species (k=2, stress=0.169), indicating similar differences in pollinator 

assemblages (abundance and richness) across all sites and habitats (Figure 8A/B).  NMDS 

ordination repeated for site by date Bc indexes showed some clustering of habitat (k=2, 0.269) – 

indicating pollinator assemblages on both habitats similar for a given time. Overall, no apparent 

clustering is observed, meaning pollinator assemblages were different in both habitats on any 

given sampling day (Figure 9A). Some clustering of species within a given genera was seen, 

meaning genera accessing these habitats were similar for a given day (Figure 9B.).   

 

Habitat 
Dyke 
Saltmarsh 
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Figure 8. Bray-Curtis site dendrogram. Complete hierarchical clustering of sites from 

respective Bc dissimilarity scores. Interpreting dissimilarity index (1 – BC) – scores of 1 indicates 

perfect dissimilarity, scores of 0 indicates perfect similarity.  Sites show no predictable pattern of 

clustering. Orange text = dyke sites, blue text = saltmarsh sites. 

 

 
Figure 9. NMDS site plot. Bray-Curtis dissimilarity site scores inputted into a two-dimensional 

NMDS ordination (k=2, stress=0.169). Greater distance between points indicates greater 

A) 

B) 
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dissimilarity. A) Site scores. B) Species scores. No apparent clustering is observed – indicating 

difference in pollinator assemblages across all sites. No apparent clustering of genera/species 

was observed.  

 

 
Figure 10. NMDS habitat by date plot. Bray-Curtis dissimilarity site by date scores inputted 

into a two-dimensional NMDS ordination (k=2, stress=0.269). Greater distance between points 

A) 

B) 
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indicates greater dissimilarity. A) Temporal habitat scores. B) Temporal species scores Some 

temporal clustering of habitats was observed – indicating pollinator assemblages within a both 

were similar at a given time. Overall, no apparent clustering is observed for habitats. Some 

cluster of genera is seen, indicating species within a genera are accessing these habitats at similar 

times. 

 

3.2 Floral resources 

3.2.1 Floral abundance 

Floral abundance index scores were much higher on dyke sites compared to saltmarsh sites 

(Table 5). Over the sampling period floral abundance on dykes were consistently scoring 2 or 3 

with a few outliers (0 or 1) due to the tops of dykes being mowed (Figure 11). Dykes were 

mowed on 21 Jul, Starr’s Point South and Starr’s Point North; 28 Jul, Newport Dyke; 13 Aug, 

Starr’s Point South; 24 Aug, Noel Northeast and Noel West; 02 Sep, Noel Southeast. Floral 

abundance on saltmarsh sites was low at the beginning of the study and increased later into the 

season (Figure 11). However, the majority of scores were 0, with only two sampling events 

reaching a score of 3 (Bramber; 09 Jul and 02 Oct) (Figure 11). This increase of floral abundance 

which began in mid August is explained by the flowering of Seaside goldenrod (Solidago 

sempervirens) which continued to flower into October. Mean floral abundance was greater on 

dykes compared to saltmarshes, with means of 1.982 and 0.569 respectively (Figure 10, Table 5). 

A Welch’s two sample t-test reported significant differences in average abundance between 

habitats (t(108.52)= 9.57, p <<0.001). The standard deviations of floral abundance were similar 

between habitats (Table 5). A type I ANOVA on a linear model of indexed abundance by date 

(Multi R2 = 0.451), reported a significant effect of habitat over time (F(1) = 92.08, p<<0.001) 

(Figure 11, Appendix 15). 

 

 



 

 

34 

 

Table 5. Floral abundance.  Floral abundance index scores ranged from 0-3 (see methods). 

Floral abundance was greater on dyke sites then saltmarsh. ‘SD’ = standard deviation. 

  

Site Dyke Mean  Dyke SD Saltmarsh Mean Saltmarsh SD 

Belch Restoration 2.286 0.756   

Starr's North 2.286 0.756   

Starr's South 1.571 0.535   

Elderkin Dyke 2.857 0.378   

Newport Dyke 1.143 0.690   

Noel Northeast 1.857 0.690   

Noel Southeast 1.714 1.113   

Noel West 2.143 0.690   

Belch Reference   0.571 0.535 

Kingsport   0.429 0.535 

Newport Marsh North   0.286 0.488 

Newport Marsh South   0.500 0.837 

Cog Other   0.571 0.535 

Cog Reference   0.222 0.441 

Cog Restoration   0.375 0.518 

Bramber   1.714 0.951 

Total 1.982 0.842 0.569 0.728 
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Figure 11. Mean floral abundance. Floral index was used to measure floral abundance (see 

methods). Dyke sites had a greater mean abundance, as well as a larger range in abundance then 

the saltmarsh sites. Each site’s average (± SD) values are specified in Table 5. Welch’s two 

sample t-test: t(108.52)= 9.57, p <<0.001. ‘***’ = p ≤ 0.001. 
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Figure 12. Temporal floral abundance. Floral abundance measured using index, ranging from 

0-3 (see methods). Floral abundance was greater on dykes during the entire study. Floral 

abundance on saltmarshes increased as time went on, associated mainly to flowering of Solidago 

sempervirens. Regression (± SD) shown is a linear model (Multi R2 = 0.451). A type I ANOVA 

reported significant effect of habitat (F(1) = 92.08, p<<0.001) (Appendix 15). Note points are 

jittered to prevent data overlap. 

 

3.2.2 Floral richness 

In total 38 flowering (morpho)species were recorded in this study (Table 7). Most flowering 

individuals observed in this study were herbaceous perennial species, apart from Rosa spp. Floral 

richness was much greater on dykes, ranging from 10-21 unique species observed on a given site 

(Table 6). This is contrasted by much lower floral richness on saltmarshes, which ranged from 1-

10 for a given site, with 10 unique species being an outlier from the Bramber site (Table 6). 

Three flowering species were seen on all dyke sites, Daucus carota, Sonchus spp. 

(morphospecies), and Trifolium pratense. Other genera Trifolium, Taraxacum officinale and 

Vicia cracca were common on dyke sites. Solidago sempervirens was common across most sites 

in both habitats, as it was only absent from Noel Southeast, Noel West, and Kingsport sites. On 
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dyke sites S. sempervirens was always found on the waterway side of the dyke footprint along 

the fringe marsh. Not including Bramber, only six unique species were observed across all 

saltmarsh sites.  Limonium carolinianum was the second most common taxon found in 

saltmarshes, with occurrences in Kingsport, Newport Marsh South, Cogmangun Other, and 

Cogmangun Restoration. Limonium carolinianum was only found on a single dyke site, Newport 

Dyke. Like S. sempervirens, Limonium carolinianum was located on the dyke footprint/fringe 

marsh boundary. The mean floral richness on dykes was greater than saltmarshes (Figure 12, 

Table 6). A Welch’s two sample t-test reported significant differences in mean richness between 

habitats (t(12.15)= 6.37, p <<0.001). 

Table 6. Floral richness. Floral taxon richness measures as the total unique flowering species 

(or genera) observed on each site. See table 7 for list species found on each site. 

 

Site Dyke Richness Saltmarsh Richness 

Belch Restoration 18  
Starr's North 20  
Starr's South 12  
Elderkin Dyke 21  
Newport Dyke 10  
Noel Northeast 11  
Noel Southeast 14  
Noel West 12  
Belch Reference  3 

Kingsport  1 

Newport Marsh North  2 

Newport Marsh South  2 

Cog Other  3 

Cog Reference  2 

Cog Restoration  2 

Bramber  10 

Mean ± SE 15 ± 1.52 3 ± 1.01 
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Figure 13. Mean floral taxon richness. Mean richness is the total mean of unqiue species 

across all sites for a given habitat. Dyke sites had a greater mean richness, as well as a larger 

range in richness then the saltmarsh sites. Each site’s mean (± SE) values are specified in Table 

6, and flowering species are listed in Table 7. Welch’s two sample t-test: t(12.15)= 6.37, p 

<<0.001. ‘***’ = p ≤ 0.001. 
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Table 7. Flowering species. All showy flowering taxon found within the area of the transects were identified in the field or later using 

photos taken. Some photos were unable to be identified to species and were left to genus level. ‘BS’ = Belcher Restoration, ‘SN’ = 

Starr’s Point North, ‘SS’ = Starr’s Point South, ‘ED’ = Elderkin Creek Dyke, ‘ND’ = Newport Dyke, ‘NNE’ = Noel Northeast, ‘NSE’ 

= Noel Southeast, ‘NW’ = Noel West, ‘BF’ = Belcher Reference, ‘KS’ = Kingsport, ‘NMN’ = Newport Marsh North, ‘NMS’ = 

Newport Marsh South, ‘CO’ = Cogmangun Other, ‘CF’ = Cogmangun Reference, ‘CS’, Cogmangun Restoration, ‘BM’ = Bramber. 

 

 Dyke site Saltmarsh site 

Flowering Species BS SN SS ED ND NNE NSE NW BF KS NMN NMS CO CF CS BM 

Agalinis maritima             x    

Chamaenerion angustifolium x               

Cichorium intybus x   x            x 

Cirsium arvense x x x x             

Convolvulus arvensis x x   x          x 

Daucus carota x x x x x x x x x       x 

Dianthus armeria       x          

Epilobium spp.   x     x         

Erigeron annuus    x    x         

Hieracium spp.       x          

Hypericum perforatum  x x  x x x         

Leaucanthemum vulgare   x   x          

Limonium carolinianum     x     x  x x  x  

Linaria vulgaris  x   x            

Lotus corniculatus x x  x  x x x         

Medicago sativa x x               

Melilotus albus    x  x x          

Oenothera biennis x x               

Persicaria sagittata  x               

Rosa spp.    x            x 

Solidago canadensis x x  x    x        x 

Solidago sempervirens x x x x x x   x  x x x x x x 

Solidago spp. x   x   x          
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Sonchus canadensis x x               

Sonchus spp. x x x x x x x x x       x 

Spiraea alba  x               

Spiraea tomentosa    x             

Symphyotrichum novi-belgii x   x x  x x   x   x  x 

Symphyotrichum spp. x                

Tanecetum vulgare  x x              

Taraxacum officinale x x x x  x  x         

Trifolium aureum        x         

Trifolium hybridum    x             

Trifolium pratense x x x x x x x x        x 

Trifolium repens x x  x x            

Trifolium spp.  x x  x  x          

Vicia cracca x x  x x x x x        x 

Vicia spp. x   x x   x x                   
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3.3 Pollinator-plant relationship 

Combined habitat data showed pollinator abundance increased slightly with mean floral 

abundance (Figure 14, Appendix 16). However, this result was weak and not statistically 

significant (F(1,14)= 0.1854, p= 0.6733). Combined pollinator richness increased with floral 

richness, with floral richness having a significant positive effect (F(1,14) = 12.88, p = 0.00296) 

(Figure 15, Appendix 17). 

 

Figure 14. Pollinator and floral abundance. Linear regression of pollinator abudance (n=16) 

by mean showy floral abudance (n=16). Multiple R2= 0.01307. Shaded area = +/- standard 

deviation of regression.   
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Figure 15. Pollinator and floral richness. Linear regression of pollinator richness (n=16) by 

mean showy floral abudance (n=16). Multiple R2 = 0.4792. Shaded area = +/- standard deviation 

of regression.   

4. DISSCUSION 

4.1 Dyke versus saltmarsh habitat 

4.1.1 Pollinator community 

As predicted dykes supported a greater mean abundance of pollinators compared to 

saltmarshes (Figure 4). Although, the result of the abundance comparison was not statistically 

significant, the signal of a great abundance was clear. This non-significant result can be 

explained by the low sample size, as well needing to use a nonparametric test t-test, both factors 

in reducing statistical power. Given that, the abundance of pollinators found on saltmarshes was 

surprising. This is because the amount of showy floral resources in comparison is low on 

saltmarshes, and thus I expected the number of pollinators to reflect this difference (Dicks et al., 

2015; Roulston & Goodell, 2011). However, the relationship between floral abundance and 
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pollinator abundance was weak (Figure 14). The differences in abundance in this study rather 

may be explained by some other factor then floral abundance (further discussion in next section). 

Results of temporal abundance also show that pollinators are accessing these habitats 

simultaneously (Figure 5) – which eliminates any temporal access differences over the season. 

This result is still interesting as pollinators are not changing foraging strategies as the season 

goes on – which can inform the habitat management regimes.  

 However, the observations of Bombus spp. and Family:Megachilidae bees visiting 

Spartina pectinata does suggest I may have underestimated the relative value of saltmarshes to 

pollinators. A review by Saunders (2018) reported a number of pollinators visit wind pollinated 

plant taxa, as well it is known that Megachilidae bees use sections of leaves to build nests as well 

protect food stocks for immatures (Cane et al., 2007). Although no reports of bees visiting S. 

pectinata could be found in the literature, one previous study has noted Bombus spp. visiting 

wind pollinated saltmarsh graminoids in Western Canada (Pojar, 2008). Pojar (2008) argued that 

the relationship between these pollinators and plants was opportunistic. Notably high rainfall 

made for poor conditions wind pollination on the studied saltmarsh, and pollen was thus 

available to be distributed by pollinators, and these bees chose to pollinate these flowers due to 

their high abundance. Pollinators typically visit a nearer flowering patch of less nutritional 

quality then a further patch of greater quality, however these depends on specific life histories, 

sex and age of pollinator(Harder, 2001; Motro & Shmida, 1995; Ne’eman et al., 2006). Bees and 

other pollinators may be visiting saltmarsh graminoids due to opportunity or may be accessing 

specific resources on this habitat (e.g. nesting material, nesting habitat, immature life stage, etc.) 

(Abrol, 2011; Mader, 1972). Further research into pollinators visiting wind pollinated taxa, 
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particular within the Bay of Fundy system due to its unique local conditions (intense water 

intrusion) is needed to understand the ecology of pollinators in these habitats.   

Pollinator richness was greater on dykes then saltmarshes, which follows the original 

prediction. The positive relationship between pollinator richness and floral richness is well 

understood, and the results of this study is no different (Potts et al., 2003; Roulston and Goodell, 

2011) (Figure 15). However, it is important to not overlook the makeup of a given community – 

as some mono/oligophilic plant-pollinator relationships may exist. Specialist bee taxa were rare 

in this study, and were found both on habitats, and thus no clear relationship between a given 

habitat’s ability to support these specialist taxa could be made.  The Bray Curtis dissimilarity 

allowed some insight (or rather lack thereof) into the community composition pollinators 

between habitats. No clear clustering of sites by habitat were seen (Figure 8 and 9A). Similarly, 

no clustering of genera for species scores summed for the entire study was seen indicating again 

that these communities are vastly different locally (Figure 9B). This information tells us that 

these pollinator communities are most likely specific to site – the potential reasons for these 

differences will be discussed bellow in section 4.2. No clear changes in pollinator assemblages 

on each site was seen over the study period (Figure 10A). Interestingly thought, when looking at 

species scores as a function of time some groupings of species within a given genera are seen 

(Figure 10B) – indicating these species are accessing both habitats at the same time. However, 

this result is not very clear as overall no clustering was seen, and the stress level of the NMDS is 

rather weak to be making such claims. 

4.1.2 Plant community 

Plant communities are vastly different between these two habitats. The dykes offer freshwater 

habitat, suitable to many graminoids and ruderal showy flowering species (Table 7). This is 
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contrasted by the saltmarsh where the majority of plants are wind pollinated graminoids (e.g. 

Spartina spp., Juncus spp., etc.) with only a handful of flowering species (Table 7). This study 

showed that mean floral abundance is much high of dykes compared to saltmarshes (Figure 11), 

otherwise greater availability of floral resources which pollinators need to sustain themselves 

(Roulston & Goodell, 2011). As well results showed that floral abundance on dykes was stable 

across the growing season, whereas floral abundance only increased on saltmarshes into the fall 

(Figure 12). This has important implications for conservation of wild bees, as dykes are offering 

not only greater amounts of flowers to pollinators but also more sustained resources. In 

agroecosystems providing sustained off crop floral resources is important for sustaining healthy  

pollinator populations for crop pollination (Dicks et al., 2016, 2010; Roulston and Goodell, 

2011). 

 Floral richness was also found to be higher on dykes then saltmarshes (Figure 13). This is 

a important result as more diverse floral communities are known to support more diverse 

pollinator communities (Dicks et al., 2015; Potts et al., 2003). A number of different weedy non-

native weedy species such as clover and alfalfa were seen on the dykes. There may be some 

influence of cover crops blowing onto the surrounding dykes.  Only a handful of flowering 

species were seen on saltmarshes, with only a single species seen on all saltmarsh sites except 

Kingsport, Solidago sempervirens (Table 7).  

4.1.3 Nesting habitat 

Although I did not directly quantify nesting habitat in this study I can make some anecdotal 

statements on the relative value of each habitat for nesting resources. Ground nesting bee species 

typically prefer small grain densely compacted soils, with majority of species preferring exposed 

soils while some prefer surrounding ground cover (Sardiñas and Kremen, 2014). One notable 
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characteristic of a number of dykes in this study (as well as dykes in general in the Bay of 

Fundy) is many are made of sandy soils – which pollinators are known to nest in (Sardiñas and 

Kremen, 2014). Additionally the bank of the dyke is most suitable to ground nesting bees, as 

bees are known to prefer slopes (particularly those south facing) (Mader, 1972). Given this, I 

believe dykes are offering significant amount of nesting habitat to bee ground nesters. This is 

contrasted by the saltmarshes were the sediment (mud and clay) is typically unsuitable for most 

ground nesters, however some Megachile spp. prefer muddy soils which they then line with 

leaves (Buschini, 2006). However it should be noted that the majority of a saltmarsh is 

periodically inundated with water (Foster et al., 2013; McKinley et al., 2018), and as such nests 

would be destroyed during flooding which would severely disrupt pollinators (Roulston and 

Goodell, 2011). However, it is possible pollinators are nesting in the furthest upper reaches of the 

saltmarsh in the high marsh zone. More research is needed into both habitats ability to support 

nesting habitat, with dyke habitats in particular likely to reveal the most potential to support 

pollinators. 

 Cavity nesting habitat within both habitats is rather limited in comparison to hedgerow or 

forest edges. However, several Asteraceae species were seen on the dyke which a handful of bee 

species nest in (Potts et al., 2003). Other pollinators nest in vegetation found on dykes as well, 

with many wasp species nesting in paper nests built in amongst dense grass (Steffan-Dewenter, 

2003). Overall dykes are more likely to support a greater amount of nesting habitat in 

comparison to saltmarshes.   
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4.2 Landscape and site context 

4.2.1 Landscape context 

As any ecological study, landscape characteristics and site locations are likely to have an effect 

on the pollinator assemblages found between habitats and also have effects at the site level 

(Herrera, 1995; Edwards et al., 2019). This is exemplified by the results of the Bray Curtis 

dissimilarity, which showed no apparent clustering of sites by proximity of site or habitat type 

(Figure 7 and 8). A multidate of biotic and abiotic influences makes it difficult to tease apart 

themes at a site level, however trends can appear on a macro-landscape scale such as focused in 

this work (Goulson et al., 2015). Its important to note that saltmarsh and dyke habitats in Nova 

Scotia (specifically in Annapolis, Kings, Hants, Colchester, and Cumberland counties) and are 

natural and semi-natural habitat respectively, which both occur in close proximity to intensely 

managed crops which can (dependant on crop area, and quality of adjacent habitat) fragment bee 

populations (Gabriel & Tscharntke, 2007; Goulson, 2003). Crop intensification has threatened 

native bees globally (Kremen et al., 2002), and also threatened other pollinators (Abrol, 2011). 

These farms have averse effects on pollinators not only from fragmentation, but also through 

incidental risks such as pesticide exposure, increase pest and parasites, and tillage (Dicks et al., 

2015; Goulson, 2003; Klein et al., 2007; Roulston and Goodell, 2011). These adjacent natural 

and semi-natural habitats are known to be important for supporting wild pollinators that offer 

there services to crops (Garibaldi et al., 2014; Goulson, 2003; Roulston and Goodell, 2011).  

In the case of saltmarshes, these habitats are largely fragmented in the province. Today 

approximately 77% of Nova Scotia’s natural tidal saltmarsh has been lost due to dyking 

(MacDonald et al., 2010; Wollenberg et al., 2018). In Nova Scotia > 241 km of dykes along run 

along coasts and waterways, protecting 16,139 Ha (161 km2) of agricultural marshland behind 
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them (van Proosdij et al., 2018). All dyke sites in this studied are owned, monitored and 

maintained by the Nova Scotia Department of Agriculture. Maintenance regimes of dykes often 

include frequent mowing of dyke tops, as will de discussed later. Alternatively, in some cases 

agreements have been made so the tops of dykes will be hayed by the landowner adjacent to the 

dyke. As will be discussed later this has implications on potential management strategies which 

may support wild pollinators in these habitats. In regards to saltmarsh numbers, no estimates of 

private landownership can be found, however it is known that 86% of Nova Scotia’s coastline is 

privately owned (Soomai et al., 2011). 

4.2.2 Saltmarsh sites 

All Cogmangun sites were proximal (<100 m for Cogmangun Other and Restoration; ~600 m for 

Reference) to a no-spray organic farm – therefore the influence of pesticide exposure can largely 

be ignored on these sites. However, it is likely that pollinators visiting these sites may also be 

visiting the flowering crops, which may influence pollinator abundance by offering floral 

resources. This farm grows a multitude of diverse crops which may be attracting the diverse 

pollinator assemblages seen on these sites as greater diversity of floral resources is known to 

attract more diverse pollinator communities (Roulston and Goodell, 2011). However previous 

research has shown that the small scale and mixture of crop to semi-natural habitat (spatial 

heterogeneity in vegetation and intensity of management) is what drives pollinator diversity 

within these organic farms, and not crop diversity (Hass et al., 2018). These sites also had dense 

woodland within 100 meters of the sampling transects, which is important to consider as it is 

known woodland habitats support pollinators by offering diverse niches for a range of pollinators 

(Mallinger et al., 2016). These saltmarshes are found further from the coast of the Minas Basin, 

along the Cogmangun River. As such the wind as well as exposure to salinity influences (less 
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frequent tidal inundation, lower soil salt content) are lesser compared to the coast, which could 

potentially stress pollinators (Roulston & Goodell, 2011). These factors may help explain why 

abundance of pollinators captured on the Cogmangun Restoration and Reference sites were 

relatively higher than saltmarsh sites without these influences. However, it is unclear why 

Cogmangun Other had a much greater abundance than all saltmarsh sites given that the other 

Cogmangun Restoration was only a few hundred meters away, and shared the mentioned 

environmental features. Differences in floral abundance between Cogmagun Other (Index score 

= 0.571, Table 5) and Cogmangun Restoration (Index score = 0.375, Table 5) may explain the 

discrepancy in pollinator abundance. However, floral index scores similar to Cogmagun Other at 

other saltmarsh sites like Belcher Reference did not translate to the same abundance as 

Cogmangun Other – leading back to some other unmeasured site influence. Although not the 

focus of this work, it is interesting to note the pollinator abundance and richness were 

comparable between the Restoration site (restoration completed in 2010) and Reference site.  

Both Newport saltmarsh sites were located within 300 m of intensively managed and 

pesticide spray crops (hay and corn). There is potential of pesticide drift onto these habitats 

which would influence pollinator assemblages (Kremen et al., 2002; Roulston and Goodell, 

2011). That being said we see comparable pollinator abundances to Cogmangun sites. These 

sites are located along the Saint Croix river, and like Cogmangun sites are further from the coast 

and thus have lower coastal stressors. 

Belcher Reference and Bramber saltmarsh sites are the unique among the saltmarsh sites, 

as these two are the highest in elevation and consequently more brackish-fresh water 

communities exist nearby and to some extent on the sites themselves – making these sites more . 

This difference is reflected in the higher floral abundance scores seen on these two sites (Table 
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5), as well as a higher plant taxon richness at Bramber (Table 6).  Belcher Reference is the only 

saltmarsh site which had heavy urbanization within its proximity (~200 m). The effects of 

urbanization on pollinators varies greatly depending on life histories and location, however 

overall pollination services are not disrupted (Wenzel et al., 2020).  

Kingsport was certainly the most coastal of all saltmarsh sites, as it is located in a inter 

tidal zone along the Minas Basin. Wind conditions were often more extreme on this site, which 

may negatively affect pollinator visitations (Crall et al., 2019). Wind directly effects pollinators  

increased flight costs (Kevan and Baker, 1983), as well indirectly by disrupting scent plumes 

from flowers that attracts pollinators (Murlis and Jones, 1981). This may explain why this site 

had the lowest pollinator abundance and taxon richness as conditions on this are unfavorable to 

pollinators. This site is very frequently inundated by tidal flow, and even the upland reaches of 

this marsh experience high water stress. The vegetation on this site was frequently flattened or 

broken after tidal events. This may explain why the floral resources were so low, as Kingsport 

also scored lowest in the floral index (Table 5) and only a single showy plant species was 

recorded (Table 6). Of course the low availability may be the driving factor of the low pollinator 

abundance and richness (Roulston and Goodell, 2011). Some buildup of drift wood, and other 

dead vegetation was seen on the upper region of this marsh which may offer potential nesting 

habitat (Sheffield et al., 2003). There are several crop types located within 500 m of this site, 

with both organic no-spray and conventional (spraying of pesticides) managed fields proximal. 

This again may have some influence on the pollinators seen on this site. In this case it appears 

these farms are more attractive, and or possibly too far away for pollinators to frequent this site. 
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4.2.3 Dyke sites 

The Noel dyke sites were the farthest East of all study sites, and were the only sites located in the 

Cobequid Bay, specifically in the Noel Bay inlet. Wind on all three of these sites was typically 

greater compared to other dykes due to the proximity to the open bay, which as discussed above 

can have adverse effects on pollinators. All other these dykes are relatively narrow with a steep 

grade (slope incline). Noel West was the only in this study to not have any foreshore fringe 

marsh, as the dyke was directly in front of the bay. The landward side of this site was dense 

hedgerow which transitions into forest. A conversation with a nearby landowner revealed this 

dyke had been directly sprayed with herbicide the year prior, to eliminate a poison hemlock 

(Conium maculatum) infestation. This may have negatively affected the pollinator population the 

year prior, and thus may explain why pollinator abundance was less compared to other Noel sites 

(Haines et al., 2019). This claim however cannot be substantiated by this study; rather is a 

potential hypothesis. The two remaining Noel sites had intensely managed agricultural corn 

crops, but no pollinator facilitated crops were proximal. Given these conventionally managed 

fields it is possible that these sites may have a negative pesticide influence (Klein et al., 2007; 

Roulston and Goodell, 2011). Additionally, the Noel Northeast site had substantial buildup of 

drift wood and other dead vegetation which may offer some nesting habitat (Cory S. Sheffield et 

al., 2003). Overall, there are no clear non-vegetative discrepancies between these sites to explain 

why pollinator abundance was so much lower on the Noel West sites compared to the other two 

Noel sites. 

The two Starr’s Point sites are located on the Wellington Dyke, which is one of the 

longest dykes in the province, protecting approximately 3,000 acres (12 km2) of farmland 

(Whitelaw, 1997). This dyke follows the Canard River, which is fed by the Minas Basin. The 



 

 

52 

 

Starr’s Point South pollinator counts were more then double that of the Starr’s Point North site. It 

is somewhat unclear why this is the case. An apiculture (honey bee) farm is located ~1.5 km 

from the South site, and ~5 km from the North site and thus may have some potential influence 

as this is well within the foraging range of Apis mellifera (Beekman and Ratnieks, 2000). 

However, these sites did not see greater numbers of A. mellifera compared to other sites. Honey 

bees can disrupt wild bee pollination networks, and can damage native plant ecosystems through 

inadequate pollination (Do Carmo et al., 2004; Valido et al., 2019). This is seemingly 

counterintuitive as Starr’s Point South site had the greatest pollinator abundance in this study. 

The effects of honey bees on wild pollinators in these agroecosystems is still poorly understood, 

and likely there are landscape specific circumstances (Do Carmo et al., 2004; Lonsdorf et al., 

2009). The main difference between these two sites were their proximity to adjacent crops. 

Starr’s Point North was immediately flanked by a legume crop and other surrounding fields 

included corn crops likely being sprayed with pesticides. The South site was surrounded by 

fallow fields and hay fields. Also there is a U-Pick farm (conventionally managed) with apple, 

pumpkin, squash, and other berry crops located <1 km from the site. These crops may be helping 

to attract more pollinators in comparison to the North site, however further research is needed to 

understand the movement of pollinators between crops and these habitats.  

Elderkin Creek and Newport Dyke sites were located on opposite sides on the Saint Croix 

River which implies they should have almost perfectly similar local weather conditions. When 

comparing pollinator abundances between these two sites they are similar, however Elderkin 

Creek did have slightly fewer counts. The Elderkin Creek site is flanked by foraging crops, for 

cattle. Whereas the Newport Dyke is surrounded by hay fields, with a number of hedgerows as 

well as nearby forest that may offer more resources for pollinators (Dicks et al., 2015; Roulston 
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and Goodell, 2011). These dykes also differ in that the Newport Dyke has approximately 100 m 

of foreshore marsh, compared to only 5-10 m of fringe marsh at the Elderkin Creek site. This 

potentially implies that pollinators visiting the Newport Dyke are also attracted being attracted to 

the nearby expansive marsh body, indicating this site supports more pollinators locally (Roulston 

and Goodell, 2011). This claim is supported by the flowering of Solidago sempervirens on 

Newport Marsh South (located immediately next to the Newport Dyke site) in mid-August into 

the fall, as well potential of pollinators visiting wind pollinated grasses. Pollinators moving 

between dyke and fringe marsh, and other nearby saltmarsh will be discussed in more detail in 

another section below. 

Belcher Restoration is unique among the dyke sites, as it was recently realigned in May 

2018 when the previous dyke was breached and tidal flow was reintroduced to the current day 

foreshore fringe marsh. This dyke is also wider and has a shallow grade (slope of bank) in 

comparison to other dyke sites. This dyke is also particularly different for the amount of exposed 

soil it has, as it is not currently being hayed like a number of dyke sites, and weedy ruderals 

seem to have not completely colonized. This bare soil may offer more nesting habitat to ground 

nesters, as some ground nesters only nest in exposed soils without vegetation (Cane et al., 2007; 

Sardiñas and Kremen, 2014). Given that this dyke was realigned in 2018, it is possible ground 

nesters could return as at least one undisturbed foraging season had passed (2019 season) prior to 

sampling in this study (Tonietto and Larkin, 2018). However, the effects on pollinator 

communities, (particularly ground nesters as they are most at risk) of dyke realignment are not 

currently well understood.  
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4.3 Pollination services and disservices  

4.3.1 Crop pollination 

Wild pollinators globally are believed to be on decline (Potts, Biesmeijer, et al., 2010). This is 

worrying, as diverse bee communities are needed to support sufficient pollination of crops, and 

reliance on honey bees is a dangerous gamble (Klein et al., 2007). Pollinators are essential in the 

global food security equation (van der Sluijs and Vaage, 2016), and without these pollinators 

approximately a third of global food production would be lost (Ollerton et al., 2011) Additionally 

research has shown wild pollinators increase crop yields in comparison to honey bees, and 

heavier utilization on wild pollinators for crop should be favoured (Dicks et al., 2016; Winfree et 

al., 2008). It is essential to understand how pollinators access adjacent natural and semi-natural 

habitat to ensure their health for pollination services (Dicks et al., 2016, 2010; Winfree et al., 

2008). 

The results of this study showed that the majority of pollinators visiting saltmarsh and 

dykes were in native species, and only three unmanaged (wild) non-native species. This shows 

that these habitats are valuable to wild Nova Scotian species, and should be considered when 

accounting ecosystem services of these spaces.  Bees made up the majority of pollinator catches 

in both habitats in this study, however it is important to consider the pollination services of the 

non-bee taxa as well. In some cases these non-bee taxa are in fact more efficient pollinators of 

some plant species (Rader et al., 2016). A study looking at nocturnal Vaccinium angustifolium 

(lowbush blueberry) pollination found a high abundance Dipteran and Lepidopteran taxa visiting 

these flowers, suggesting these insects contribute significantly to V. angustifolium pollination 

(Cutler et al., 2012). This is relevant locally, as Nova Scotia’s largest agricultural productivity 

comes from blueberry production, with the annual 2010 production reported as $22,278,000 
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(CAD) (NS Agri, 2010). Of course bee pollinators typically contribute the most to overall 

pollination services (Garibaldi et al., 2014; Goulson, 2003), which has also bee seen in Nova 

Scotian lowbush blueberry fields (Cutler et al., 2015). As low bush blueberry is native to Nova 

Scotia, it is most likely that Nova Scotian native pollinators are the most effective pollinators due 

co-evolution of these taxa (Potts et al., 2003), with previous work in the province indicating wild 

bees are the most effective (Javorek et al., 2002).  

Bee taxa are particularly important for apple pollination, which in Nova Scotia makes up 

the second most crop productivity (after blueberry) with a value of $12,178,000 (NS Agri, 2010). 

Osmia spp. are among the most efficient pollinators of apples, and in some cases as few as 100 

females per Ha are needed (Porter et al., 2015), compared to 10-15 colonies (10000-15000 bees 

per colony) of Apis mellifera over that same area (Colwell et al., 2017).  Already Osmia tersula 

and O. lignaria have been proven as a viable option for apple pollination in the province 

however their commercial adoption has yet to been tested (Sheffield et al., 2008; Sheffield, 

2014). Prior to the introduction of honeybees in the province, wild bee Andrena spp. and 

Halictus spp. were among the most common wild pollinators of apple orchards, and were 

thought to offer adequate services (Gooderham, 1933). However, it is not known if current wild 

pollinator stocks are enough to support crop pollination without supplementary honeybee 

colonies in the province. In total there are 42 species of bees known to visit apples in Nova 

Scotia compared to 78 bee species which visit lowbush blueberry (40 shared species) (Sheffield 

et al., 2003). Given this, apple pollination in the province is more vulnerable to pollinator decline 

compared to lowbush blueberry (Goulson, 2003; van der Sluijs & Vaage, 2016). It should also be 

noted that only apple, blueberry, and haskap (Lonicera caerulea) crop pollination has been 
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studied in Nova Scotia, and surveys of other crop’s pollinators are desperately needed to 

understand crop vulnerability in the province. 

Conservation of wild pollinators in agroecosystems such as the Bay of Fundy dykelands 

offers a two-sided benefit, offering a biocultural approach to their conservation (Hill et al., 2019; 

van der Sluijs and Vaage, 2016). First conserving these species are a service to farmers and their 

crops, as well to the surrounding terrestrial ecosystems that rely on these pollinators (Klein et al., 

2007; Ollerton et al., 2011). In addition to the above-mentioned benefit of potential increases in 

crop yields, using wild pollinators can decrease crop production cost if fewer A. mellifera and B. 

impatiens (increasing use in NS) colonies need to be rented. A increase in crop profitability (in 

crop yield) despite costs (loss of productive land) of setting aside land for floral crops or natural 

habitat in order to support pollinators, is seen compared to crops with no set aside land (greater 

comparable productive land) (Albrecht et al., 2020; Dicks et al., 2015; Morandin & Winston, 

2006). In tandem these benefits increase crop profitability (Goulsons, 2003). Secondly many 

pollinator species are on decline, and are in imminent need of conservation efforts (Potts, 

Biesmeijer, et al., 2010). It is believe intervention in agroecosystems offer a great opportunity to 

conserve wild pollinator species, and has already shown promise in the United Kingdom (Dicks 

et al., 2016, 2010). Although its not always clear if conservation of species for ecosystem 

services (ES) is the same as conservation of biodiversity as focus on ES can oversimplify and 

ignore key ecosystem relationships (Mace et al., 2012); it is at least a starting point for the 

conservations of wild pollinators (van der Sluijs & Vaage, 2016). 

4.3.2 Dyke management and re-alignment/breach  

Although not directly researched in this study a few predictions can be made regarding 

the potential disservices dyke realignment and or breach will have on pollinator communities 
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accessing this habitat. Pollinator abundance was seen to be greater on dykes, so if dyke habitat is 

completely removed during salt marsh restoration pollinator abundance may be aversely 

affected. Saltmarsh restoration will take away more abundant and diverse showy plant 

communities, which are valuable for supporting pollinators (Roulston and Goodell, 2011). The 

relationship between plant community and pollinator community is mutualistic, and if one is 

changed then the other will follow suit (Potts et al., 2003; Thomann et al., 2013). However, more 

research is needed to understand how pollinators are accessing these saltmarsh before this habitat 

is deemed poor pollinator habitat. As seen in this study saltmarsh may offer other benefits 

(discussed above) to pollinators (Saunders, 2018), and the benefits of this habitat for pollinators 

may be currently overlooked in the literature (Davidson et al., 2020). Although it is possible that 

pollinators are visiting these saltmarshes simply because they are available and are not preferable 

foraging habitat of pollinators (in cited study bumble bees) (Pojar, 2008). A likely negative effect 

to pollinators during dyke disturbance will be to ground nesting pollinators (Sardiñas and 

Kremen, 2014), as many bee species’ broods are located near the surface (<30 cm deep) 

(Roulston and Goodell, 2011). This is perturbing, as many bee species in Nova Scotia are known 

to be ground nesters (Cory S. Sheffield et al., 2003). Even realignment of a dyke will in short 

term disrupt ground nesters, if present, before they are to re-establish themselves in the new 

dyke. Additionally, floral resource, valuable particularly during off-bloom of crops, may be 

disrupted. However, given that many of the flowering species seen on dykes were non-native 

weedy species, floral resources are likely to return quickly (possibly within first year) after dyke 

breach. More research is needed to understand how pollinators access this habitat. Specifically, 

studies quantifying nesting habitat these dykes will prove valuable to stakeholders weighting the 

cost-benefit of dyke re-alignment. 
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I believe dykes offer an opportunity to provide management intervention for wild 

pollinators. These interventions will help conserve these pollinators which have the above-

mentioned benefits. Currently the tops of dykes are frequently mowed by NSDA to prevent pest 

species from establishing. Although understandable, often the floral resources were destroyed on 

these events, and subsequent pollinator abundances (catches) were affected soon after these 

mowing events. Sowing of showy flowering species on tops of dykes after realignment will 

provide valuable floral resources (Dicks et al., 2015; Hanley et al., 2011; Roulston and Goodell, 

2011). This practice would be similar to planting of flowering crops in fields, or hedgerows 

(Albrecht et al., 2020; Sardiñas, Tom, et al., 2016) which have shown to increase crop 

pollination, and limit pollinator habitat fragmentation (Gabriel & Tscharntke, 2007; Holzschuh et 

al., 2008). It may be beneficial to use of native showy flower species (such as Asteraceae 

species), or if not available non-native naturalized species (Trifolium spp., Medicago sativa, 

Lotus corniculatus, etc.) or allow dyke tops to grow fallow (Hanley et al., 2011; Mallinger et al., 

2016; Cory S. Sheffield et al., 2013). This flowering species would also offer nesting habitat to 

cavity nesters who nest in pithy stems (Requier et al., 2020; Cory S. Sheffield et al., 2008). In 

fact the density of the grass monoculture vegetation often seen on dykes is likely a disservice to 

many ground nesting pollinators who require exposed soil (Cane et al., 2007; Williams et al., 

2010). Nesting habitat could also be facilitated by removing colonizing plants within a set aside 

section of bare substrate, however this would likely prove tedious. Other artificial nests could be 

implemented on these dykes, however these nests can be costly (Mader, 1972). 

4.4 Limitations 

Unfortunately, due to COVID-19, this study was delayed and sampling begin after the 

desired start of late-April/early-May. A review by Sheffield et al., (2003) reported 73% of bee 
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species in Nova Scotia emerge in early spring (mid April). As such this study failed to capture 

pollinator assemblages that emerge in early spring, into May and June. Depending on individual 

bee (and other pollinator) life histories species may only forage for a short period after 

emergence, and abundances may decrease drastically as summer goes on (Kevan & Baker, 

1983). This study may have failed to capture temporal changes in pollinator assemblages over 

the entire foraging season as a result.  

Sampling was also limited by the time of day which pollinators were sampled, as 

pollinators particularly those that fly at (or before) dawn are missed (Drummond, 2016). Having 

several collection periods scattered at times throughout the day could provide a better 

representation of the pollinator communities in each of these habitats. Additionally, pollinators 

were only sampled using a single method, pan trapping. Although generally effective at sampling 

a wide range of pollinators, these traps typically underestimate abundance of larger pollinators 

who can more easily escape the traps (Grundel et al., 2011; Prendergast et al., 2020; Saunders & 

Luck, 2013). 

This study is also limited in that not all pollinators were identified to species. This leaves 

information ‘on the table’ regrading potential assemblage differences between these two habitats. 

For non-bee taxa in-particular this study is somewhat flawed, as potential specimens included as 

pollinators may in fact be non-pollinators which were caught as non-targeted by-catch, as groups 

such as wasps have a range in ecological specializations. Further identification may change 

relative pollinator taxon richness between the two habitats, which to some degree may change 

some conclusions from this work. For example, hover fly taxa were identified further it is likely 

given the greater abundance, that species richness of hover flies is greater on dykes compared to 

saltmarsh. This is because as abundance of a particular group of pollinators increases, their 



 

 

60 

 

species richness also tends to increase (Herrera, 1995; Potts et al., 2003). Further identification is 

also important in the context of crop pollination, to identify what pollinators (especially 

specialists species) accessing these habitats may also be visiting crops (Garibaldi et al., 2014; 

Klein et al., 2007).  

Despite these several limitations the results obtained in this study were still important for 

accessing the relative value of each habitat for supporting wild pollinators, particularly in the 

context of agroecosystems. 

5. CONCLUSION 

This study is the first to examine pollinator assemblages on saltmarshes and dykes in the 

Bay of Fundy dykelands. This research aimed to understand differences in these habitats for 

supporting pollinators, in part to inform their relative value for pollination services to proximal 

crops. This work also began addressing a gap in the literature surrounding how pollinators access 

saltmarsh.  

The results of this study indicate that dykes support a greater abundance and richness of 

pollinators compared to saltmarshes. However, abundance of pollinators caught on saltmarshes 

was higher then expected. Bees were the most abundant group of pollinators on both habitats, 

with wasps being the second most. This study supports previous work that shows bees are 

typically the most dominate pollinator in a landscape. However, it is important to consider other 

non-bee taxa. Of the bee taxa Lassioglossum spp. were most abundant, with Bombus spp. being 

the second most abundant on both habitats. No patterns of community differences (measured as 

Bray Curtis dissimilarity) were seen consistently between these two habitats, likely due to two 

factors a) that pollinators observed in this study are probably moving between these two systems 

and b) several taxa were only encountered on certain sites leading to considerable community 
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difference among sites within a habitat type. Additionally, no strong temporal trends in 

abundance or dissimilarity were seen, again supporting that these pollinators are accessing these 

habitats simultaneously during this study. 

Differences in pollinator abundance and richness are likely driven by differences in floral 

resources (Potts et al., 2003; Roulston and Goodell, 2011), as dykes were shown to have a 

greater abundance and richness of showy floral species. Interestingly, and perhaps one of the 

most important results of this study, Bombus and Family:Megachilidae bees were seen visiting a 

saltmarsh wind-pollinated species Spartina pectinata. Although no reports of bees visiting 

Spartina pectinata could be found in the literature, similar reports on Bombus spp. visiting other 

saltmarsh graminoids have been published from Western Canada (Pojar, 2008). Additionally, 

Megachildae bees were seen removing sections of S. pectinata leaves which this family uses to 

build nests and keep immatures food moist. Further research is needed on pollinators on 

saltmarshes is needed to understand how they access this habitat. These observations at least 

suggest that saltmarsh does provide resources for bees. 

Dyke realignment/breach in order to restore saltmarsh may be an ecosystem disservice to 

pollinators and local crop pollination. Disturbance of the dyke is likely to disrupt ground nesting 

pollinators, which will have effects of on populations if progeny are destroyed. Sowing of showy 

floral species could be used on dykes after realignment in order to support wild pollinators. 

Additionally, nesting habitat could be facilitated on dykes to help facilitate pollinators. 

Conservation of these wild pollinators is important in the face of their (trending) global decline, 

as well to crop yield and profitability and support local/global food security.  Stakeholder’s may 

use this study to weight cost-benefits of dyke realignment and saltmarsh restoration in the region. 
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7. APPENDIX 

7.1 Satellite imagery of each site 

Appendix 1 Satellite image of Kingsport. The blue highlight is the approximate sampling area. 
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Appendix 2 Satellite image of Starr’s Point North. The blue highlight is the approximate 

sampling area. 
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Appendix 3 Satellite image of Starr’s Point South. The blue highlight is the approximate 

sampling area. 

 



 

 

80 

 

 

Appendix 4 Satellite image of Belcher Street Restoration and Reference. The blue highlight 

is the approximate sampling area. 
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Appendix 5 Satellite image of Elderkin Creek Dyke. The blue highlight is the approximate 

sampling area. 
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Appendix 6 Satellite image of Newport Dyke and Newport Marsh South. The blue highlight 

is the approximate sampling area. 
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Appendix 7 Satellite image of Newport Marsh North. The blue highlight is the approximate 

sampling area. 
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Appendix 8 Satellite image of Cogmangun Restoration and Cogmangun Other. The blue 

highlight is the approximate sampling area. 
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Appendix 9 Satellite image of Cogmangun Reference. The blue highlight is the approximate 

sampling area. 
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Appendix 10 Satellite image of Bramber. The blue highlight is the approximate sampling area. 
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Appendix 11 Satellite image of Noel West. The blue highlight is the approximate sampling 

area. 
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Appendix 12 Satellite image of Noel Northeast. The blue highlight is the approximate 

sampling area. 

  



 

 

89 

 

 

Appendix 13 Satellite image of Noel Southeast. The blue highlight is the approximate 

sampling area. 

7.2 Supplementary statistics 

Appendix 14 Temporal pollinator abundance type-II ANOVA. GLMER model with Poisson 

distribution, Wald Chi Square test was used to measure significance. Significant p-values (p < 

0.05) are bolded. 

  Type-II SS 

  Chisq Df Pr(>Chisq) 

Habitat 1.0415 1 0.3075 

Date 613.606 28 0.0001 

Habitat:Date 436.258 14 0.0001 

 

 

 



 

 

90 

 

 

Appendix 15 Temporal floral abundance type-I ANOVA. LM model with a Gaussian 

distribution, F-test was used to measure significance. Significant p-values (p < 0.05) are bolded. 

  Type-I SS 

  Df Sum Sq Mean Sq F value Pr(>F) 

Habitat 1 56.90 56.90 92.08 0.0001 

Residuals 112 69.21 0.62     

 

Appendix 16 Pollinator – plant abundance type-I ANOVA. LM model with a Gaussian 

distribution, F-test was used to measure significance. Significant p-values (p < 0.05) are bolded. 

  Type-I SS 

  Df Sum Sq Mean Sq F value Pr(>F) 

Floral 

Abundance 1 1078.00 1078.20 0.1854 0.6733 

Residuals 14 81410 5815     

 

Appendix 17 Pollinator – plant richness type-I ANOVA. LM model with a Gaussian 

distribution, F-test was used to measure significance. Significant p-values (p < 0.05) are bolded. 

 

  Type-I SS 

  Df Sum Sq Mean Sq F value Pr(>F) 

Floral Richness 1 136.55 136.55 12.883 0.003 

Residuals 14 148.39 10.599     

 

 

 

 


