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Abstract

Searching for the Signature of a Tetraneutron Resonance

by Conor Waterfield

submitted on April 21, 2021:

Many environments in the universe give rise to conditions extreme enough to allow

exotic forms of nuclear matter. Understanding how this matter interacts allows us

to better understand the nuclear forces and astronomical phenomena such as

neutron stars. A tetraneutron is an exotic nuclear form which is composed of four

neutrons. Its existence is debated, with an open question whether they can be held

together briefly in a short-lived resonant state. The existence of the tetraneutron

state would be observable in reactions with four neutrons as their end product. At

the IRIS facility at TRIUMF, an experiment involving the reaction 8He(d, 6Li)4n

was carried out by reacting a beam of 8He with a deuterium target and measuring

the kinematics of the resulting 6Li. The existence of the tetraneutron state could be

determined from the missing mass spectrum. In order to be able to interpret the

results of the experiment, the effect of the non-resonant four neutron final state must

be determined. This is done by simulating the non-resonant reaction with five-body

final state through the experimental setup. This thesis covers my work in building

this simulation using the properties of the reaction and the experimental setup.
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Chapter 1

Introduction

Over the course of the last century, our understanding of nuclear physics has allowed

us to better understand the structure of the visible matter around us. Understanding

the forces that hold together nuclei can give us insight into the structures they can

form and can be applied to new technologies and our understanding of astrophysical

phenomena. In this work, we will search for the signature of one such structure, a

tetraneutron resonance, through a transfer reaction experiment performed using the

ISAC Charged Particle Reaction Spectroscopy Station (IRIS) facility at TRIUMF in

Vancouver, BC.

1.1 Bound States and Resonances

1.1.1 Bound States

In nuclear physics, there are several states of stability for subatomic systems. The

more familiar isotopes, 4He, 12C, 16O, etc. are examples of stable systems; they do

not decay and last for long timescales. These isotopes are bound, they are a collection

of nucleons that remain together due to an attractive nuclear force. Beyond these,

there are unstable isotopes, such as 8He, 14C and 235U . These isotopes are still bound,

they are held together by the nuclear forces, but they are not energetically favorable.
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After a certain amount of time, be it on the order of milliseconds or millenia, they

will spontaneously decay into a more energetically favorable species.

Unbound systems, such as 9He, 23C and potentially the tetraneutron, are unable to

form bound states; they can never hold themselves together and decay immediately -

within around 10−20 seconds - by emitting nucleons, referred to as ‘dripping’. These

examples in particular are isotopes beyond the neutron drip line. The proton and

neutron drip lines are the boundaries for where bound nuclei can exist. If a neutron

is added to an isotope on the neutron drip line, it will not be bound in the system,

and similarly for protons at the proton drip line. The proton drip line has a very

clear culprit - the Coulomb force, which causes a repulsive force between the protons.

The inter-nucleon nuclear force is simply not strong enough to counter the Coulomb

force when there is an abundance of protons in the nucleus compared to the number of

neutrons. Therefore, the stability of nuclei with more protons can only be maintained

by also increasing the number of neutrons in order for the nuclear forces between the

protons and neutrons to overcome the Coulomb repulsion.

The neutron drip line, on the other hand, gives rise to many more interesting phe-

nomena. (1) There is no Coulomb force to push apart the neutral neutrons like there

is for protons. Naively, one may expect that a nucleus could hold arbitrarily many

neutrons, and while heavier nuclei do indeed skew towards having significantly more

neutrons than protons, the neutron drip line still appears to exist. More neutron-rich

isotopes of the same element will have smaller neutron separation energies, meaning
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that there is a diminishing return when binding more neutrons, until the incremental

binding energy goes to zero. This demonstrates that the forces keeping nuclei to-

gether are reliant on the proton-neutron attractive force to hold themselves, without

any neutron-neutron attraction.

1.1.2 Resonances

Unbound systems last for a very short time before breaking apart. They can

however have resonances, where they can be ‘quasi-bound’ for a very short time.

Resonant states have energies, like the energy of bound states. These energies are

part of the continuum at positive energy, as opposed to bound states at negative

energy. As they are very short lived, the uncertainty principle means that there is a

relationship between the lifetime of the state and its energy width. Resonances will

show up as peaks at certain energies with a certain width. The nature of resonances

will be discussed further in the section on theoretical approaches to searching for the

tetraneutron resonance.

While the nature of resonances may seem unclear, their presence in nuclear physics

phenomena make their importance apparent. A prime example of this is the Hoyle

state, a resonance formed by 8Be and 4He, derived from its necessity to allow the triple

alpha process to work. (2) The triple alpha process produces 12C, which is required

for the CNO cycle in heavy stars. Carbon is also a fundamental element in the

formation of life, and as such, its abundance must be explainable by nucleosynthesis.

It was apparent that the triple alpha was the best way to explain the abundances,
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but the short lifetime of 8Be meant that there should be no way for the formation of

12C to happen fast enough to outpace the formation of heavier elements formed out

of carbon and leave behind any amount of carbon. Hoyle made that prediction that

there was a resonant state of 8Be and 4He with a resonance energy of approximately

0.31 MeV, which would put it at the level of an excited state of 12C. Given the right

width for the resonance, this was found to be able to give the known abundance of

12C.

1.2 Tetraneutrons

1.2.1 Tetraneutrons

Given the behavior of nuclei near the neutron drip line, it could be asked what

happens in the extreme circumstance where there are no protons at all. Dineutrons

are the simplest example of such a system, though theoretical and experimental re-

search has largely ruled them out. (3) Is it then possible to form resonances, or

potentially even bound states, of higher numbers of neutrons? Trineutrons and tetra-

neutrons have both been studied extensively, but tetraneutron resonances are the

most promising candidate.

The tetraneutron resonance would involve four neutrons coming together into a

resonant state for a short time, and could be observed in principle in reactions with

four neutrons as products. It is thought that in certain nuclei with four neutrons

in halo structures outside of a stable core could form resonant structures. Through
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collisions, the core could be stripped away, leaving the tetraneutron resonance, which

would soon fall apart into the constituent neutrons. Evidence of this would be evident

in the kinematics of the other reaction product.

1.2.2 Motivation

Finding evidence for tetraneutrons and understanding the forces that hold them

together could be important in several areas in nuclear physics and astrophysics.

As covered in the section on theory, there are a broad range of predictions for the

tetraneutron resonance. On one end, it is shown that modern hamiltonians do not

predict tetraneutrons. (4) Other predictions require the introduction of new physics

such as strong three-body forces, neither of which would be consistent with our current

understanding of nuclear forces. (5) There are, however, predictions from ab initio

theory that do predict the possibility of resonant tetraneutrons with no changes to

the current understanding of nuclear forces and would therefore make it consistent

with other observations. (6) This could also potentially signify the utility of ab initio

approaches over other theoretical approaches, should the tetraneutron resonance be

found. More detail of these theoretical methods will be discussed in the section on

theory.

Another area related to the tetraneutron resonance is that of neutron stars. In

neutron stars, matter is compressed to high densities, and protons are converted to

neutrons through electron capture. This dense, neutron-rich environment could give

rise to conditions that facilitated the formation of tetraneutron resonances. Much like



Chapter 1. Introduction 6

tetraneutron resonances are predicted to be able to exist in the strong field holding

halo neutrons, so too may they exist in the strong fields inside this environment. (7)

If the tetraneutron resonance existed, it would therefore be expected to show up in

neutron stars and potentially influence their observable properties. It was demon-

strated by Ivanytskyi et al. that the presence of the resonance could lead to a more

energetically favorable state in the material where some fraction of the neutrons are

in tetraneutrons. This was found to be restricted to lower densities, though these

densities could be found in the crust of the neutron star and potentially affect the mi-

croscopic properties. Understanding the nature of the tetraneutron resonance would

be a useful tool in understanding this matter, and help to make better predictions of

the properties of neutron stars.

1.3 Experimental Searches

Given the questions posed by the potential of the existence of tetraneutrons, ex-

perimental searches would be helpful in answering them. There have been many

experiments attempting to find them, though up to this point, there have been only

two experiments claiming to have detected Tetraneutrons, with many more showing

no evidence. Many of these experiments have involved pions, such as 4He(γ, 2π+)4n,

4He(π−, π+)4n and 7Li(π−, 4He)4n, (8) and more involved only nuclei, such as 7Li(7Li, 10C)4n.

(9) The lack of evidence from these experiments demonstrate that the cross-sections

for tetraneutrons from these reactions were too low to measure. There are some po-

tential explanations for why these reactions were unable to yield tetraneutrons, as
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opposed to those that claim to have found such evidence. These will be important to

contrast with the two experiments that claim experimental evidence for tetraneutrons.

1.3.1 GANIL Experiment

In 2001, an experiment at GANIL claimed the detection of neutron clusters using

a technique involving the breakup of neutron-rich nuclei. (10) The results claim six

multi neutron cluster events from the channel of 14Be breakup into 10Be+ 4n, which

would indicate a Tetraneutron. This experiment was the first to claim a detection

of a Tetraneutron, which if affirmed would have the potential for discovery. The

experiment included many potential sources of background which could explain these

results, as well as some assumptions which may not be reliable enough to use as

evidence for the claimed observations.

The experiment involved directing intermediate-energy (35A MeV) ions of 11Li,

14Be and 15B into a carbon breakup target. The ion goes through two parallel-plate

avalanche counters which measure the position the beam passes through them, then

into a thin silicon detector which identifies the particle passing through. After this,

there is a 275mg/cm2 carbon target which causes a breakup of the beam particle,

fragmenting it into constituent parts. After this, there is a position-sensitive telescope

made of silicon and cesium-iodide. Lastly, downstream from the telescope, there is

a neutron detector called DEMON that derives the energy of neutrons freed in the

reaction from time-of-flight.
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The analysis of this data involved pulse-shape discrimination to eliminate contri-

butions from gamma rays and cosmic rays, as well as quantifying energy deposited

into protons in the DEMON detector. The detector measures energy in terms of not

only the time-of-flight but also the recoil energy of protons, which are assumed to be

less the energy of the neutron. In an ideal detector, the proton energy would never

exceed the energy derived from time-of-flight, though in DEMON the limit is actually

given as 1.4 for single-neutron detections. This is expected to be exceeded in the case

of neutron clusters because the time-of-flight will be reduced due to the extra mass,

while the energy given to the proton would still be measured correctly. Multi-neutron

clusters are then identified based on whether they exceed this limit.

This analysis revealed seven counts exceeding the limiting energy ratio coming from

the breakup of 14Be, as shown in Figure 1.1. These counts all seemed to correlate

with the detection of 10Be from the breakup. There were also events found in the

breakup of 11Li, however, they did not appear to correlate with an individual expected

breakup product as in the case of 14Be into 10Be. The correlation of each of the counts

from 14Be with the expected breakup product given the detection of tetraneutrons

raised a lot of interest in this result as a potential for tetraneutron discovery. One

of the counts appeared to correlate with a low-energy 10Be detection in the cesium-

iodide detector, which would be inconsistent with the expected kinematics if this

were a neutron cluster reaction. The remaining six counts, however, were apparently

consistent with being tetraneutron counts from the breakup reaction into 10Be. The

angles between the detected neutron clusters and the 10Be product were also found
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Figure 1.1: Energy from proton scattering versus energy from time-of-flight

to be consistently close to 180◦, which would be most consistent with tetraneutron

detections, and the energy per nucleon of the corresponding 10Be were also found to

be high, consistent with what would be expected from a tetraneutron reaction.

Assuming these arguments are valid, the next potential explanation could be back-

ground. Several potential sources of background were examined. The first was neu-

tron pileup, which means that the same neutron is measured multiple times in the
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same module of the DEMON detector giving an artificially high value for the proton

energy detected. To attempt to rule this out, a Monte Carlo simulation was devel-

oped which generated expected results given pileup and compared the results to the

background measured from the other ion breakups of 15B and 11Li. The expected

background counts in the neutron cluster region were consistent with the measure-

ments from the other ion beams, with 0.3 and 3.3 background counts expected in

this region for the 15B and 11Li, which had 0 and 4 respectively. The 14Be had a

predicted background in this region of 0.2, yet had the seven counts in the neutron

cluster region. Other sources of background were ruled out based on a few arguments.

Gamma-ray sources were assumed excluded because they would be rejected due to

their time-of-flight measurements being inconsistent with neutrons from the breakup.

Another argument is that the correlation with the 10Be does not appear consistent

with background from other light charged particles, which would be expected to be

independent of the channel.

To interpret what these counts must be, one should consider the time-of-flight from

the reaction to the DEMON detector. The distances have a minimum of about 3.5

metres, and making the most conservative estimate for the time-of-flight, one would

find a value on the order of 10−8 s. The lifetimes of unbound resonances are typically

on the order of 10−20 s, meaning these detections could only correspond to bound

particles. Given this analysis, one could conclude from this experiment that there

are bound tetraneutrons. There are an abundance of theoretical predictions that the

tetraneutron should absolutely not be bound, which means that this claim should
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be taken with heavy skepticism, considering that it would go against much of our

understanding of nuclear physics.

1.3.2 Discussion on GANIL Experiment

One crucial assumption in the analysis of the GANIL experiment is that the neutron

clusters are detectable from elastic scattering with protons. More recent analysis

suggests that this is not a valid assumption, due to the expected low cross-section

of tetraneutron scattering with protons. (11) Tetraneutrons would necessarily have

very low binding energies, as explained in an earlier section. This would make the

tetraneutron very diffuse, with a large radius. As the analysis of elastic scattering

from protons can be done largely ignoring the potential inside the tetraneutron, one

can reasonably calculate this expected cross-section. The rate of detection in the

GANIL experiment would be four orders of magnitude higher than this cross-section

would give, making it very unlikely that the tetraneutron could be responsible for the

reported events.

A further analysis, taking into account this issue, turned to searching for how to in-

terpret these events as a tetraneutron resonant state. (12) The analysis had concluded

that neutron pileup was not an adequate explanation for the counts, however, this

assumed no correlation between the neutrons. If there were a resonant tetraneutron

event, the resulting neutrons would have correlation in their trajectories, possibly

leading to more counts in the DEMON detector. If this were the case, it would be

consistent with a resonant tetraneutron with a resonance energy at 0-2 MeV, with
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a width on the order of a few MeV. This would still be a good explanation for the

behavior seen, while also lining up better with theory.

1.3.3 RIKEN Experiment

In 2016, an experiment at RIKEN in Japan was claimed to have found candidate

resonant tetraneutron counts from the reaction 4He(8He, 8Be)4n. (13) The results

claim four candidate counts clustered near the threshold of decay for the four neutrons.

This experiment, in contrast to the GANIL experiment, finds evidence of a resonance

from the missing mass spectrum, as opposed to attempting to directly measure neu-

tron clusters. This allows the potential of measuring much shorter-lived particles,

resonant tetraneutrons, as opposed to the relatively long-lived particles implied by

the long time-of-flight in the GANIL experiment.

This experiment involved a high-energy (186A MeV) 8He beam reacting with 4He

in a liquid helium target, forming 8Be and four neutrons. The 8He beam is formed

from a 18O beam bombarding a beryllium target, which created a beam with 99.3%

purity. 8Be is an unstable isotope, meaning it breaks up into two alpha particles soon

after the reaction. The alpha particles go through a spectrometer which measures

their momenta. This is used to obtain a missing-mass spectrum, which gives an

indication of the amount of energy given to the four neutrons.

To measure the energies for the missing mass spectrum, the momenta of the two

alpha particles were measured. Their momenta were measured by the SHARAQ spec-
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trometer, which has a resolution of 1 MeV. The momentum of the beam also had to

be measured for each event as it had a spread of 1%, making it necessary to know

in order to correctly interpret the measurements for the alpha particles. The mea-

surement of the two alpha particles is potentially advantageous for this measurement

because it reduces the signal-to-noise ratio. From calibrating these factors with a

hydrogen beam, the systematic error was found to be 1.25 MeV.

Figure 1.2: RIKEN missing mass spectrum with tetraneutron candidate states

Twenty-seven events were observed in total. The missing mass spectrum would

be expected to have two components contributing to the counts, background and

continuum corresponding to the four neutrons breaking up. In the spectrum, however,

there are four counts very close to the threshold, in a region where the continuum

should not contribute. There was also one count at around -20 MeV, another region

where the continuum counts should be zero and only background can be expected.

This one count can therefore be assumed to be background, as it does not appear to
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have any physical significance due to restrictions from the binding energy of 8He.

To determine the significance of the four near-threshold counts, a statistical analysis

was carried out. A trial function was used with estimated background and continuum

contributions from the theoretical calculations. This allowed the calculation of bin-

by-bin goodness of fit, which gives an idea of how significantly different the bin values

are from what is expected from these contributions. The deviation from the expected

value for the near-threshold bin was very high, indicating that the number of counts

in this bin was statistically significant. The significance was given as 4.9σ, which

assuming no unknown systematic errors accounting for the statistics, would make

it a statistically significant discovery. Given the properties of the peak, this would

correspond to a tetraneutron with a resonance energy of 0.83 MeV, with a statistical

uncertainty of 0.65 MeV and the systematic uncertainty of 1.25 MeV.

Based on the resolution of the missing-mass counts, an upper limit was placed on

the FWHM of the resonance of 2.6 MeV. This is a potentially important piece of

information as the theoretical estimates for the width of the tetraneutron resonance

vary.

1.3.4 Discussion on RIKEN Experiment

This reaction was chosen because it was ideal for studying weakly bound systems

such as the tetraneutron. This experiment involves the measurement of two charged

particles, as opposed to measuring one charged particle and an uncharged particle
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in the case of the GANIL experiment. The detection methods are also more reliable

than in the GANIL experiment, which relied on tetraneutrons transferring energy

through elastic collisions with protons, which is an assumption that is likely an in-

valid explanation. The GANIL experiment could potentially be accounted for by

resonant tetraneutrons, while the RIKEN experiment, while not unexplainable by

bound tetraneutrons, is primarily explained by a tetraneutron resonance. The use of

the missing-mass spectrum reduces some of the assumptions used in the GANIL ex-

periment, and can be used to more directly detect states with much shorter lifetimes,

like the tetraneutron resonance. Despite this, the statistics are still a very low four

counts. Even given the unlikeliness of the measurement, higher statistics in further

experiments will be needed to increase the confidence in the validity of the discovery.

There is one lingering concern with the RIKEN experiment, which is that of the two

alpha particles. The analysis assumes that the reaction 4He(8He, 8Be)4n is the only

contribution, and all other reactions do not contribute to the events measured. One

alternative that may not be distinguished is the breakup of 8He in the helium target,

which would instead give the reaction 4He(8He, αα)4n, where no 8Be is formed at

all. Such an ambiguity is something future experiments would need to avoid in order

to give a clearer picture for evidence of the tetraneutron resonance.

1.3.5 Further Experimental Searches

There have been attempts to replicate the findings of these experiments. Sub-

sequent to the original experiment at GANIl, an experiment at GANIL-SPIRAL
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investigated the tetraneutron system through a 8He beam reacting in a deuterated

polypropylene target in order to react with deuterium. (14) Several different reactions

were studied, one of which was 8He(d, 6Li)4n. This experiment, failed to find any

evidence of tetraneutrons, though had a large contribution from carbon contamina-

tion in the region of the missing mass spectrum where bound tetraneutrons could be

expected. If the background were reduced, this experiment could give more evidence

of the tetraneutron resonance, or give evidence to rule out the hypothesis that the

four-neutron halo nuclei form tetraneutron resonances.

1.4 Theoretical Searches

Given the interest in the topic of tetraneutrons, along with the experiments suppos-

edly demonstrating their existence, there have been several theoretical studies looking

at how the tetraneutron may fit into modern nuclear theory. There are a few methods

that were used, some of which predicted resonances, and others predicted there could

be no tetraneutron resonances. Those that did have different resonance energies and

widths, which can be compared to the previous experiments and those in the future

to understand the predictive powers of different theoretical approaches. Consistently,

however, there are no theoretical approaches that predict bound tetraneutron states,

and they are largely ruled out by theory.
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1.4.1 Bound Tetraneutrons

A bound tetraneutron would involve a nuclear potential forming negative energy

levels, the bound states. This requires a strong attractive force between the neutrons,

which would have consequences in neutron-rich nuclei. If neutrons could be bound,

why does the neutron drip line exist, and how can nuclei form at all? An attractive

force strong enough to bind neutrons into the nucleus would necessitate that any

extra neutrons added into a nucleus would always have an incremental binding energy,

regardless of how many protons were in the nucleus; it would be able to bind to the

neutrons alone. As we know this does not happen, some limit must exist on the

binding of neutrons. This does not necessarily rule out any attractive force, simply

one that is strong enough to bind neutrons. A claim of a bound tetraneutron would

then have to explain why four neutrons can bind together in the absence of a proton,

but at the same time have the neutron drip line limiting the number of bound neutrons

in a nucleus.

There has been some theoretical analysis into the possible existence of bound tetra-

neutrons. (4) There are models, such as AV18/IL2, that can be modified to attempt

to introduce a bound tetraneutron. There are a few different ways this can be done

that involve different forces between nuclei; in this case, nucleon-nucleon (NN), 3-

nucleon (NNN) or 4-nucleon (NNNN) forces could apply to the tetraneutron. From

experiment, the NN forces are fairly well constrained, and modification in any way to

form a bound tetraneutron causes many disruptions to other nuclei with well-known

binding energies. NNN and NNNN potentials could potentially have the same issues,
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given that many nuclei will have triplets of nuclei which will be affected. One po-

tential solution is to introduce forces that only affect certain isospin channels. For

example, in a tetraneutron, all NNN forces will be between three neutrons, which

constitute isospin 3
2

triples. Nuclei like 3H and 4He have no such triples, only T=1
2

triples, meaning they would be unaffected by a force in the T=3
2

channel. While this

is adequate to form a bound tetraneutron with minimal effect on some other small

nuclei, larger nuclei like 5H and 6He will have such triples which will cause these

nuclei to be more strongly bound than seen in experiment. From this it is clear that

more forces, those that act repulsively to lower the binding energies for more massive

nuclei, would be required to allow these forces to exist with such a high strength.

There are more arguments to why a bound tetraneutron is unlikely. Limits can be

placed on the tetraneutron binding energy due to the absence of decays into tetraneu-

trons. For example, 8He is bound and does not decay into 4He and a tetraneutron,

which means that the tetraneutron must have a binding energy less than 3.1 MeV

in order for this to not be a favorable decay. (8) An even more confining decay is

5H → 3H+2n as this shows that the two neutrons are less bound to the nucleus than

the proton, which would not be the case if the four neutrons could be bound into a

tetraneutron. From this, and the failure of the modeling, it appears very clear that

theory completely rules out the bound tetraneutron.



Chapter 1. Introduction 19

1.4.2 Tetraneutron Resonances

Resonances exist in the complex energy plane, with complex energy eigenvalues.

This gives rise to the peaks - resonances - in the probability of finding a system in a

certain energy state. Resonances can be found from the complex energy plane, where

the real value corresponds to the resonance energy and the imaginary component

corresponds to half of the width. Resonances also correspond to poles in the S-matrix,

which describes the relationship between states of the system through scattering. If

one were to find the S-matrix for a given system, then the resonances could also be

derived from this. These are some of the methods used in the theoretical searches for

the tetraneutron resonance.

Following the analysis for binding a tetraneutron through modified forces, the same

can be thought of for resonant tetraneutrons. (5) This analysis, as before, starts out

with a NN force that well describes the experimental observations, then introduces

a T=3
2

NNN force, as before. This time, however, the force is allowed to be weaker

and vary over a range of strengths. This can then be used to calculate the resulting

values in the complex energy plane for the tetraneutron resonance. What is found is

that, while a weak force may give a high resonance energy with a large width, the

resonance energy that would be required to explain the experiment at RIKEN would

need to be very strong with a strength scaling of about -30 MeV. With this model,

bound states of several other nuclei would also be predicted that are known to not

exist from experiment. For example, 4H, 4He and 4Li all gain bound states in this

model that are inconsistent with experiment. This shows that this method fails as a
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method for finding the tetraneutron, even as a resonance.

Another theoretical method used to find resonances in the tetraneutron system is

ab initio theory, particularly the no-core shell model and no-core gamow shell model.

These models make some straightforward assumptions, such as each nucleon being

point-like, non-relativistic and an active part of the calculation, as opposed to there

being a ‘core’ as is typical in shell model calculations. (15) It also assumes realistic

NN and NNN interactions, as well as a harmonic oscillator basis, which simplifies

calculations though can lead to some incorrect behaviors. Using this method, a

relationship between the scattering phase shifts and the energy can be found through

convergence patterns.

Through using this method, a resonance was found in the tetraneutron system with

resonance energy of 0.8 MeV and a width of 1.4 MeV. (6) This is consistent with

the results from RIKEN, which gives some theoretical backing to the experimental

results. This method relied on use of standard realistic NN interactions along with

the methods of the NCSM and NCGSM, as opposed to the introduction of new forces

required by other theoretical approaches. This different approach and its prediction

of the tetraneutron resonance could indicate that this theoretical approach may be

valuable. Further testing this prediction for a tetraneutron resonance could further

demonstrate the merits of this theoretical approach.
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1.5 Where to search for Tetraneutrons

As we have seen, tetraneutron resonances are predicted by some theoretical ap-

proaches and suggested from some experimental results. However, there are also

theoretical approaches that do not agree with these experiments. Furthermore, both

experiments claiming resonant tetraneutrons have potential issues. The experiment

at GANIL has no direct evidence for a tetraneutron resonance besides a potential

reason for excess neutron pileup. RIKEN has more concrete evidence in the form of

the missing mass spectrum, however, the issue with the breakup channel allows some

room for error. In both cases, the statistics are low, meaning that more experimental

evidence would be valuable for demonstrating the existence of the tetraneutron res-

onance. Further experiments will need to find more statistics to support the theory

with a method that eliminates the issues in the other experiments.

There is one common element of the GANIL and RIKEN experiments, which is

the nuclei involved in the reaction. At GANIL, 14Be was used, and at RIKEN, 8He

was used - these are both examples of four-neutron halo nuclei. This is not true for

any of the reactants in the examples of reactions that did not yield evidence for the

tetraneutron resonance. There are two main reasons these types of nuclei would be

the most likely to yield a resonant tetraneutron if it were to exist. The first is that,

due to the structure of these nuclei, pickup reactions such as 4He(8He, 8Be)4n collect

the core while ejecting the four neutrons in the halo. This would leave a structure

such as a tetraneutron resonance intact. This is then related to the second reason,

being that the neutron halo would be an ideal place for the resonance to form as
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the four neutrons are confined by the field of the core. Given this, pickup reactions

involving 14Be or 8He would be ideal under this assumption.

One such candidate reaction is 8He(d, 6Li)4n. This reaction fulfills many of the

requirements as laid out. As 8He is a four-neutron halo nucleus, with the 4He core

picking up deuterium and leaving the four neutrons in the halo. If the four neutrons in

the halo were to form a tetraneutron resonance, it would be ejected from the nucleus

during the reaction. Another reason this reaction would be a candidate for searching

for the tetraneutron resonance is because, unlike with the experiment at RIKEN,

there is no ambiguity with the breakup channel 8He(d, dα)4n. Only the reaction of

interest forms the 6Li, and so if this nucleus is detected, it must have come from

a pickup reaction. This reaction has already been done at the SPIRAL facility at

GANIL. No evidence of a bound or resonant tetraneutron was found, however, there

was a large background from carbon contamination from the target. This means that

even if there were the features corresponding to a tetraneutron in the spectrum, they

would be more difficult to distinguish due to the background.

The IRIS facility at TRIUMF in Vancouver, BC would be a more ideal facility

for studying this reaction. IRIS uses solid hydrogen targets into which the beam is

directed. As the target can be pure deuterium, this avoids issues with contamination

from the target such as with the GANIL-SPIRAL experiment. In chapter 2, we will

lay out the methods used to study this reaction at the IRIS facility.
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Chapter 2

Method

2.1 The Study

This project aims to study the reaction 8He(d, 6Li)4n at the IRIS facility at TRI-

UMF. Several properties of IRIS make it an ideal facility for investigating this re-

action. Here, the experimental setup of the IRIS facility is presented in context of

studying this reaction.

2.1.1 Experimental Setup

Figure 2.1: Schematic of the IRIS components involved in studying 8He(d, 6Li)4n.
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The components of IRIS relevant to this experiment are outlined in Figure 2.1.

A 8He beam is directed to the IRIS facility, which first goes through the Ionization

Chamber (IC). After this, there is a 4.26mg/cm2 silver foil on which the deuterium

target is frozen. After the reaction, the 6Li goes into the detector, first passing

through a thin silicon detector, then a cesium-iodide detector thick enough to stop

the ion.

The Ionization Chamber is a gas-filled detector used primarily for beam identifica-

tion. Inside is isobutane gas kept at a certain pressure, for this experiment 19.5 Torr.

At each end of the chamber, there is a window through which the beam passes. Being

able to detect the incoming beam particle is in general important to do because it

can be used to distinguish between events corresponding to the species of interest as

opposed to contaminants in the beam. This may be especially important for exper-

iments where the isotope of interest does not constitute the majority of the beam,

which can be the case for some radioactive isotopes. The gas contributes to angular

broadening of the beam, as well as energy loss and energy straggling.

The silver foil is a thin foil downstream from the IC. It changes between experi-

ments, each time requiring the thickness to be measured. This process involves taking

small sample areas of the foil and weighing them to get a measurement for the thick-

ness. In this experiment, the thickness was found to be 4.26mg/cm2, or 4.06µm.

The silver foil contributes to angular straggling, energy loss and energy straggling.
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One of the novel features of the IRIS setup is the use of frozen hydrogen and

deuterium targets. The main chamber of IRIS is brought to a vacuum, and the silver

foil is cooled to 4 Kelvin. Either hydrogen or, in this case, deuterium gas is sprayed

onto the cooled silver foil, forming a target. The foil is cooled in order to freeze

the gas into a solid, which allows the target to be composed entirely of deuterium.

The thickness can vary, typically between 50µm to 100µm. The target thickness is

measured during the experiment by measuring beam transmission; a thicker target

scatters more particles out of the beam. The reaction between the 8He and the

deuterium in the target forms the 6Li product. In the target, both 8He and 6Li are

affected by angular straggling, energy loss and energy straggling in different amounts

based on their energies.

From the target, the 6Li can hit the silicon detector. This detector is several

centimetres downstream, which gives the 6Li distance for the scattering from the

reaction and other effects to spread out. It has an inner radius of 5 cm and an outer

radius of 13 cm. The distance can be varied between experiments, though in this

experiment it is at 25 cm from the target, corresponding to angle coverage from 11.3◦

to 27.5◦. The primary component of the silicon detector is 100µm thick silicon, split

into 16 rings 0.5 cm and into 8 azimuthal sectors. As the 6Li passes through this

detector, it will deposit some or all of its energy into one of these sections. The

detector is able to determine which of these angular bins was hit, and how much

energy was deposited. The energy measured will have a broadening based on energy

straggling and the resolution of the detector.
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The final component is the cesium-iodide detector, behind the silicon detector.

Any 6Li that make it through the silicon will deposits its remaining energy into this

detector. Any that do not are not counted, as they are unable to be identified through

the two layers. As all of the remaining energy will be deposited, energy straggling will

not be present in this detector, though it still has energy resolution. In combination

with the silicon detector, the total energy of the 6Li can be determined, within some

resolution resulting from each detector, and an angular bin corresponding to a section

of the silicon detector.

2.1.2 Missing Mass Method

The missing mass method is used to study the properties of certain nuclear reac-

tions. It is used particularly when there is a ‘missing mass’ involved that is unable to

be measured directly and can only be inferred from the reaction kinematics that are

able to be measured. In this section, the principles behind this method will be dis-

cussed. More in-depth calculations are included in Appendix A. One useful concept

in studying reaction kinematics is the concept of the Centre-Of-Momentum (COM)

frame, as opposed to the laboratory frame. The COM frame is the frame in which

the total momentum is zero, and also has the lowest total energy of any frame, called

the invariant mass. In comparison, the laboratory frame in this experiment is the one

in which the target is stationary. The ‘beam energy’ refers to the kinetic energy of

the beam in this frame, which is 8A MeV or 64 MeV total for 8He.
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Figure 2.2: Demonstration of the COM frame (a) and the laboratory frame (b)

The type of reaction particularly of interest is the reaction with two products (‘2-

body’), as shown in Figure 2.2. As the momentum is zero in the COM frame, the

two products must have equal and opposite momenta, with an equal magnitude pc

and equal angle θ. For given masses of these products, the corresponding COM

energies and pc are fixed by the total energy in the COM frame. This means that all

reactions with these two products and available energy will have the same energies

and momenta for each product, with only the angle θ varying. In Figure 2.2, ‘particle

4’ corresponds to the ‘missing mass’. If the other three masses are assumed to be

fixed, and so is the beam energy, then the COM energies will be fixed.

Varying the missing mass will mean a different partition of energy between the

products, and a different value of pc. The energy and momentum of the ‘known mass’,

(‘particle 3’) will therefore be dependent on the missing mass, keeping everything else

equal. As the laboratory frame is the most important in the context of experiments,

the kinematics of particle 3 boosted into the laboratory frame are most interesting.

In this frame, as shown in Figure 2.2, this particle will have an energy and angle
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measurable by detectors in the laboratory frame. These will correspond directly with

the angle and energy in the COM frame.

Keeping the ‘missing mass’ the same, a different θ will give different values of energy

and angle in the laboratory frame that follow a locus through phase space. Points

along that locus will be parameterized by θ, but all points along that locus correspond

to the same missing mass. Different values of the missing mass will give a different

COM energy and therefore a different locus. Any combination of energy and angle in

the laboratory frame can therefore be used to find the corresponding missing mass.

Figure 2.3: Phase space loci for different reaction Q-values
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The way this is represented is using the Q-value. For any reaction, the mass is not

generally conserved, with the amount of mass-energy released represented by Q. The

Q-value is calculated from the equation:

Q = (mi −mf )c
2 (2.1)

Where mi is the sum of the initial masses and mf is the sum of the final masses.

As the initial masses m1 and m2, and in the 2-body case the ‘known mass’ is m3,

the Q-value will be dependent on the missing mass m4 in the equation Q = (m1 +

m2 −m3 −m4)c2. Different values of the missing mass, and corresponding Q-value,

correspond to different loci, as demonstrated for 8He(d, 6Li)X in Figure 2.3, where

X is the missing mass defined such as to give the varying values of Q.

One application of this method is the comparison between 2-body and higher body

reactions. The missing mass in a higher body reaction could be several particles,

each with some fraction of the mass. Unlike in the 2-body case, there are more free

variables allowing a different partition of energy to the known mass. The energy

partition in the 2-body case is an extreme case of the higher body case, where all of

the unknown masses have the exact same momentum, which has a very low likelihood.

All other cases give the known mass a lower COM energy, which would correspond

to a higher missing mass (or an excitation energy) in the 2-body case. The different

configurations will give different COM energies for ‘particle 3’ ranging from the energy

partition for the known mass of the 2-body case as a maximum and zero energy as
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a minimum. This gives a continuous distribution in the missing mass spectrum, as

opposed to the delta peak in the 2-body case.

2.1.3 Studying the Reaction

Applying the principles of the missing mass method to the reaction of interest, it

can be seen whether or not this is a valid method for studying the reaction. For the

four-neutron breakup channel, 8He+d→ 6Li+n+n+n+n, the Q-value is−2.15MeV .

This is also true for a reaction resulting in a tetraneutron with zero resonance energy,

which is to say, one particle with the mass of four neutrons. Studying this reaction

at IRIS, the 6Li is the only product that would be detected - the four neutrons are

missing from the system.

Using the ROOT (16) function TGenPhaseSpace, the phase space of the reaction

can be generated showing the distributions one may expect for the measured prop-

erties of the 6Li in the lab, as shown in Figure 2.4. In this figure, plots in red are

the resonant reaction, while the blue are the non-resonant reaction. All angles and

energies are in the laboratory frame. It can be seen that there are distinct regions

for the energy and angle curves, as seen in c), and a delta peak for the Q-value of

the resonant reaction, with a range of values at lower Q-values for the nonresonant

reaction, as shown in d).

It becomes clear from these figures why the missing mass method is the right tool to

use for studying this reaction. If the energy and angle can be measured with enough
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Figure 2.4: Results of phase space generation in ROOT TGenPhaseSpace

accuracy, and the Q-value spectrum can be found from those measurements, it should

be possible to identify events corresponding to the resonant tetraneutron reaction as

opposed to the non-resonant breakup reaction. While one can determine in principle

that this method would be suited to this study, the experimental setup required to

make the measurements will always introduce background and uncertainty that must

be understood to be able to interpret the results.

As the Q-value is derived from the laboratory angles and energies of 6Li, the effect

of processes changing these values are indistinguishable from the reaction having

a different Q-value. This ambiguity means that the Q-value spectrum will include

broadening from different effects. Studying how the experimental setup of IRIS affects
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the resolution of the measurement of the Q-value spectrum for this reaction will be

the aim of this work.

2.1.4 Advantages of the IRIS Setup

One of the primary reasons this facility is able to study this reaction is due to

the solid deuterium target. The primary issue in the GANIL-SPIRAL study of this

reaction was the background from reactions with carbon in the target. This is not an

issue in this experiment, as the only material in the target is deuterium. This is one

of the advantages of the solid hydrogen targets as compared to target materials used

in other experimental setups.

Identifying an event as coming from 8He from the Ionization Chamber and resulting

in 6Li as identified in the detector can only correspond to the 8He(d, 6Li)4n reaction.

This is an advantage over the experiment at RIKEN, where the breakup reaction

would also give two alpha particles alongside the reaction of interest. As the detector

has two layers, the energy deposited into each layer allows identification of the isotope,

meaning that only reactions giving 6Li can contribute, and the only such reaction is

the one of interest.

2.2 Simulation

A study of the reaction 8He(d, 6Li)4n using the missing mass method at the IRIS

facility has the potential to be an effective search for the tetraneutron. Given the
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absence of background from other reactions, the primary concern for this setup would

be broadening effects from the experimental setup. As noted, the distinguishability

of the resonant peak in the Q-value spectrum is vital for being able to determine if

events are candidate tetraneutron resonant states.

In order to do this, I have developed a simulation to generate the distributions of

results as expected from the experimental setup. This simulation was built in Python

using monte carlo methods. Beam events are generated in NumPy arrays, and as

such all calculations are done on the entire array simultaneously. (17) This allows for

faster calculations which facilitate large statistics necessary for generating continuous

distributions with minimal fluctuation. With these arrays, each successive step in the

process is applied as if it were a single value, using random number generation where

applicable.

2.2.1 Reaction Phase Space

The most fundamental aspect of the simulation is the generation of the reaction

phase space. This calculation is done in the COM frame for the simplicity of the

calculation, before being boosted back into the laboratory frame. Given the masses of

the reactants and available COM energy, the momenta of the products are calculated

following conservation of momentum and conservation of energy. As discussed, the

phase space becomes significantly more complicated to calculate as the number of

products increases. The general reason for this is that there are many more free

variables, and each product must have a momentum that is dependent on all the
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others to maintain conservation of momentum.

For a monte carlo simulation, the ideal phase space generator would be based on a

set of independent random numbers generated over fixed ranges, which is to say the

same for each generation, each giving physically allowable results. Furthermore, it

would be ideal to have the generated results follow the correct physical distribution,

ie. even distribution in phase space. Some method for weighing the results is required

to match this distribution. As has already been seen, the TGenPhaseSpace function

ROOT already succeeds in doing this.

The TGenPhaseSpace function uses some simplifying assumptions to facilitate this

calculation. (18) The first is to assume the reactants come together to form a single

nucleus with mass equal to the invariant mass, which has mass-energy equal to the

total energy in the COM frame. This nucleus is then assumed to break up into

each product in successive two-body decays. This introduces the primary source of

simplification, as the two-body decay is a process dependent only on the available

energy, the masses of the products and a random angle. This mass will be greater

than the total masses of the products, with the remaining energy difference to be

divided up into the kinetic energy of the products. This is a deviation from the ‘true’

two-body decay, which has a fixed energy partition. This is due to the momentum

conservation requirements, which are not relevant here as the final result will result

in energy and momentum conservation between all the products, even if they are not

maintained at every step throughout the proccess.
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This method does not generate results evenly distributed in phase space. The

results are generated with the cosine of the COM angle chosen from a uniform distri-

bution, giving a uniform distribution in the laboratory energy. This is independent

from spacing in phase space, though uniform distribution in both phase space and

the laboratory energy are optimal. The weighting in phase space will be determined

based on the products of the magnitudes of the momenta. By assigning a weighting

to each of the results, an algorithm is used to filter the results in such a way as to fit

better to the phase space distribution. The formula used is:

fi =
wi
wm
− ri (2.2)

Where wi is the weight for a specific result, wm is the highest weighting calculated

out of all of the results, ri is a random number uniformly generated between 0 and

1 assigned to the specific result, and fi is a resulting number that may be greater

than or less than zero. If fi is less than zero, the result is cut, else it remains. This

formula allows a greater chance of lower weighted results to be removed and gives

more highly weighted results a greater chance of remaining. This will then leave the

remaining results distributed evenly in phase space.

This code was implemented in the simulation based heavily on the ROOT (16)

function, though modified to meet many requirements needed in this simulation. As

ROOT code runs in C or C++, there are higher speeds running loops compared to

Python. This means that many of the steps in the function needed to be suited for use
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with arrays as is done in the rest of the simulation. With these modifications made,

the code is able to run quickly and generate phase space for many-body reactions,

and is entirely relativistic, making it useful for a broad range of applications.

2.2.2 Multiple Scattering

Any material that a charged particle moves through will contribute some scattering.

This will cause small deflections to the particle’s trajectory for each nucleus it passes

by. The primary cause of this is elastic scattering by atomic nuclei as the particle

passes through a material. This effect is described by Rutherford scattering. (19)

While Rutherford scattering can be applied to scattering through close passes by the

nucleus, the majority of interactions will be weaker long range interactions that add

up to greater cumulative scattering.

There has been study of theoretical calculations of multiple scattering. Molière

theory describes in general terms how to calculate multiple scattering from a given

scattering differential cross section. (20) Rutherford scattering is typically the differ-

ential cross section used in this case, however, there are some complications from this.

Rutherford scattering is based on the Coulomb force, which has a strength inversely

proportional to the distance. Given a relatively straight path through a thin target,

the number of scatterers at a given distance goes with the square of the distance.

This means that the differential cross section diverges, and so too would the multiple

scattering broadening from an increasingly large number of nuclei.



Chapter 2. Method 37

The one factor not taken into account in Rutherford scattering is electrons. Ruther-

ford scattering can only apply when the particle gets close to a nucleus, but as it

passes by at a larger distance, the repulsion from electrons will screen the electric

field, causing less deflection. This is how one is able to get a convergent differential

cross-section and find a multiple scattering expression that can be used to describe

this process. Particles may still pass close to the nucleus and be deflected at very

large angles, and there are still many small deflections that add up, but they converge

on a distribution of fixed width.

The form of Molière theory is somewhat complex, and not suitable for straight-

forward calculations such as required in this simulation. (20) Some work has been

done on finding a semi-empirical form for multiple scattering using the Molière the-

ory and measurements. The most modern such form is the Highland formula, which

approximates the central 98% of the angular scattering distribution with a Gaussian

distribution. (21) As there are many scattering events with particles passing closer

to the nucleus and being deflected at high angles, the tails of the distribution fall off

slower than for a Gaussian, meaning that only the centre of the distribution can be

approximated, though this is generally valid.

Angular straggling is present in any material that an ion passes through. In IRIS,

this is assumed to be the Ionization Chamber, the silver foil and the deuterium target.

As the silicon detector is where the angle is measured, it is not necessary to consider

the contribution to broadening. To calculate the multiple scattering for the IC and
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silver foil, the physical calculator from the LISE++ program (22) is used to generate

Gaussian widths for angular straggling that are hardcoded into the program. This

is convenient because the beam will always be 8He through these materials in this

simulation, though another reaction would require new hardcoded values. In the

deuterium target, there is a transition from angular straggling affecting the 8He to

affecting the 6Li. These two isotopes will be affected differently. As a result, a built-in

Highland formula function is required to take this into account.

2.2.3 Energy Loss

As well as broadening, all materials that a particle passes through will take some

of its energy. In this case, the most significant cause is electronic stopping power, as

opposed to nuclear stopping power. The differential of energy lost over distance is

the stopping power, which is dependent upon energy. This adds some complication

to the calculations for total energy lost. At higher energies or with thinner targets,

the change in energy will be minimal and as a result, the stopping power can be

integrated in a fairly straightforward manner. At lower energies or with relatively

thicker targets, the change in energy can introduce either large errors or significantly

increased computation time due to the more precise computation needed to maintain

accuracy.

Similar to the case of angular straggling, energy loss is fairly consistent for the

IC and silver foil. As the energy lost in both of these materials is low enough, they

can be hardcoded with specific energy losses for the beam. However, as the energy
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loss in the target is considered to be more significant, and the particle of interest

changes from a 8He to a 6Li, there are more significant effects. The 6Li particle has

a higher stopping power in the same material compared to 8He, so the energy loss

calculations will have to be done twice in the target - one for the distance 8He goes,

one for the distance 6Li goes. As the distance through the target where the reaction

happens is assumed to be random, each separate beam event will have to have a

corresponding distance covered by 8He and 6Li. Furthermore, the amount of energy

the 6Li has after the reaction can vary widely, which makes the possible energy loss

for 6Li much broader than for 8He. This means that there must be some built-in

energy loss function to account for different beam energies entering the target and

different distances covered by 8He and 6Li.

While LISE++ (22) has energy loss in the physical calculator, it is also possible

to generate stopping power tables for a given interaction. This allows calculations

with varying energy and thickness, though with extra computation required. An

interpolator is made and an integration function is used to calculate all the energy

losses. As the energies are in an array, integration must be done on the entire array

at once to allow reasonable computation time given the high number of counts.

The integration limits, determined by the distance through the target traversed,

are not able to be unique for each event and therefore may not be considered on an

event-by-event basis. To overcome this, the integration must be done with different

distance ’bins’, with 1µm bins used in the simulation. First, all events are considered
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and integrated together. At each step, events with an associated distance equal to

that bin (for instance, after the 50th bin for a 50µm distance) are taken out of the in-

tegration. This way, each event can be integrated over a distance approximately equal

to the distance they cover, sacrificing some accuracy to maintain some computational

efficiency.

For the deuterium target, this process works because the energy will never be near

the threshold energy for total energy loss. As only a small amount of energy is lost

to the IC and silver foil, the energy lost to the target never approaches the threshold.

The integration method works on its own in this case, even with maximal energy loss

from a reaction at the start of the target. After the target, the 6Li goes towards

the detector, in which it must pass through 100µm of silicon. This thickness of

silicon combined with the lower energy for some of the 6Li particles gives a significant

fraction of events where the particle does not have enough energy to make it through

the entire layer. As the energy gets closer to zero, the stopping power changes much

more dramatically. The integration method used is gaussian quadrature using an

in-built SciPy function. (23) This method requires picking a number of points to do

the integration in order to meet a certain accuracy. In this function, when integrating

an array, the points are the same even though the integrals themselves are different.

When approaching the threshold energy, which is the minimum energy required to

traverse the material, the stopping power begins to vary significantly and is invalid

once the particle reaches zero energy. This means that the integration becomes too

unwieldy to be useful.
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The solution to this is to find the threshold energy and remove all events from the

array that have less than that energy. To do this, a root-finding function is employed

to find the threshold energy. First, it takes the highest and lowest values in the array

and carries out the energy loss integration. If the highest and lowest are both able

to be integrated, ie. above the threshold, then the entire array can be integrated.

If it were that neither could be integrated, the entire array would not need to be

integrated as none of them would make it through the material. If, however, the

upper bound is above the threshold but the lower bound is not, the root-finding

algorithm is employed. At each stage, the mid-point between the last two points

is tested and selecting the next points in order to close in on the threshold energy,

stopping when the desired accuracy is reached. The values in the array below this

value are removed, as these events are not counted, and the rest are integrated to find

their energy loss.

The cutoff energy may be different depending on the distance through the target.

To take this into account, the process for finding a cutoff energy is done for each

distance bin. The cutoff energy at the high end of the bin is found, and all events

in that bin with a lower energy than the cutoff are removed. This maintains some

accuracy in the cutoff, as setting a high limit may cut out a significant fraction of

events that would have made it through. This is particularly true in the silicon

detector, where the highest distances of about 108µm are set by higher angles, but

particles with energy less than the cutoff energy at this angle may not be cut off at

a lower angle, only going through about 100µm.
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2.2.4 Energy Straggling

There will be some variation in the exact amount of energy lost for each particle,

called energy straggling. This is simply assumed to be a Gaussian around the mean

energy loss. Near the threshold energy, going below the threshold just sends the value

to zero. As before, the IC and silver foil can get values from the LISE++ physical

calculator (22) as they are assumed to vary very little between beam events.

Energy straggling is similar to angular straggling, coming from the interactions

with many different constituents in the material, however, in this case, electrons are

considered the primary source as opposed to the nuclei. The most basic approximation

to this is the Bohr formula for energy straggling, (24) given by:

σ2 = 4πZ2
1Z2k

2e4nx (2.3)

Where Z1 and Z2 are the ion and material atomic numbers respectively, n is the

number density of the material, and x is the thickness. The equation gives the

standard deviation of the Gaussian, σ. Comparing this formula to the values given

by the LISE++ calculator shows that it is most accurate at moderate energies for the

materials in use, from a bit higher than the threshold energy up to the GeV range.

However, as many of our events will be near the threshold, this formula is inadequate.

As with energy loss, finding a table to interpolate from, such as from LISE++,

would be ideal. However, no such table can be generated directly in the region of

interest with a high enough resolution to generate accurate results. The physical
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calculator is an indirect way this can be done. As seen in equation 2.3, there will

be a proportionality of the straggling standard deviation with the square root of the

distance. This relationship is maintained with the physical calculator, so if one were

to find energy straggling for one energy and one thickness, it could be found for a

different thickness. The only relationship not easily determined is energy, so if the

relationship between energy straggling and energy at one thickness were found, such

as for 100µm, it could be used for any thickness and any energy covered by the

relationship.

Figure 2.5: LISE++ physical calculator values compared to Bohr formula

By determining energy straggling at different points in the region of interest down

to the threshold energy from the LISE++ calculator, these can be put in a file for the
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simulation to interpolate from. A demonstration of this is shown in Figure 2.5. In

this figure, the red points are samples of values for energy straggling from LISE++

compared to the Bohr formula for different values of energy for 6Li going through

100µm of silicon. This needs to be done manually for all interactions in the sim-

ulation, those being 8He through 2H, 6Li through 2H and 6Li through 28Si. By

combining the interpolation over different energies with the variation of thickness

through the deuterium, the simulation can get a reasonably accurate value for energy

straggling for each energy loss event.

2.2.5 Detector Resolution

The detector measures two aspects of incident particles - the energy deposited and

the angular segment it hits. The energy measured comes from the energy deposited

into the material through energy loss, which will be affected by energy straggling.

The exact physical energy is assumed to be given by these two effects for each event,

then measured by the detector with some resolution. Resolution is determined for

each of the silicon and cesium-iodide detectors by:

σE = R
√
EDet × ERef (2.4)

Where R is the resolution scalar, EDet is the true physical energy deposited and ERef

is the reference energy. The resolution is assumed to be Gaussian, with σE as the

standard deviation. The reference energy is some energy at which the detector’s

resolution was measured to be R using an alpha source. The true resolution at a
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given energy scales with the square root of the energy, as equation 2.4 suggests.

Figure 2.6: Detector energy deposit signature of 6Li

To calculate the measured energy of all beam events, the energy loss and energy

straggling are found for the silicon. The cesium-iodide is then assumed to take the

remaining energy, meaning that no energy loss or energy straggling calculations need

to be done for this material. Each event is then given a resolution based on its energy,

and this resolution is then used to generate a value from a Gaussian distribution with

the width for that beam event. The silicon detector has a resolution with a sigma of

0.25% and a reference energy of 5MeV . The cesium-iodide detector has a resolution

with a sigma of 3% and reference energy of 1.5MeV . The two measured values from
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the different detectors can be combined to get a total measured energy. One can also

generate a curve comparing the energy detected in the silicon detector compared to

the total measured energy. A curve like this allows distinguishability between different

species, and so should allow one to determine if an event is a 6Li event compared to

another isotope like 7Li based on the curve. An example of this curve is shown in

Figure 2.6.

2.2.6 Detector Angles

The detector covers only a subset of angles due to the detector geometry, and gives

information on the angles only to within certain segments. The angles covered by

the detector are determined based on the radii of the inner and outer rings of the

detector and the distance from the target to the detector. This distance may vary

slightly based on where the reaction happens in the target. If the reaction happens

at the start of the target, it has more distance to broaden giving it a higher angle,

while a reaction at the far end of the target will not broaden as much and as a result

go at a slightly smaller angle. Events where the 6Li angle is too high or too low to hit

the detector will not be counted. The rings on the detector are spaced 0.5 cm apart,

a total of 16 rings, with detection of angle only possible to within one of those bins -

the exact location in the bin is not measured.

Determining the angle that a 6Li particle hits the detector and determining in which

bin it is measured will give discrete values, which means a continuous distribution

would not be possible. However, a continuous distribution can be generated in the
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same way it could be for real data by randomizing within an angular bin. This

smooths out peaks associated with a single angular value one would see with using

the mean value of the bin. The detector geometry will cut off a large section of

the Q-value spectrum for the non-resonant reaction, as some of the lower values

for Q correspond to small angles, less than the inner angle cutoff. The broadening

can be somewhat significant from this effect, as an ion with a lower angle in a bin

corresponding to a certain energy could be randomly given an energy on the higher

end of the bin. This causes broadening that comes in steps, corresponding to each

angular bin.

2.2.7 Beam Properties

Some of the last effects come from the initial conditions of the beam. The beam is

assumed to have some lateral broadening, meaning it is centered around some point

and spread out by a Gaussian. This is assumed to have a full-width-half-maximum

of 2mm. This is a potentially significant effect, as it will vary the angle from the

centre of the detector. For comparison, the detector angular bins are 5mm across,

which indicates that this effect could shift a significant portion of events into different

angular bins. This is implemented with the angular straggling from the IC and silver

foil, as these effects change which point in the plane of the target the reaction happens

alongside the change in the angle. As angle on the detector is based around the centre

point of the target, the lateral broadening will have an effect on the angle as it will

take the reaction further off-axis.
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The energy of the beam is also assumed to have some spread to it, about 0.15%.

This is a much less significant effect compared to the broadening from effects like

energy straggling, but still relevant to generating an accurate simulation. When the

beam events are first generated, they are generated in an array with an assumed

energy, 8A MeV, broadened by a Gaussian with the given resolution.

2.2.8 Putting It Together

All of these effects are taken into account in the simulation such that each effect

adds to the next in the order they should to represent the true physical process. The

initial beam energies are set based on the energy width, then the energy loss from the

IC and silver foil are applied along with the corresponding energy straggling. After

this, there is the energy loss and straggling for the 8He through the deuterium. At

this point, the reaction phase space is calculated taking into account the energies. The

position in the target where the reaction happens is determined taking into account

the lateral and angular spread from the beam width and multiple scattering in the IC,

silver foil and target. These are used to modify the angles at which the 6Li particles

leave the reaction. The angular straggling, energy loss and energy straggling for the

6Li are taken into account at this point. Finally, the angles and energies deposited

in the detector layers are calculated.

With the angles and energies in the detector, the Q-value can be calculated. Every

part of the simulation will have some effect on the calculated Q-value, either broad-

ening it or shifting the spectrum. The primary difference between the resonant and
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non-resonant reaction is the phase space, with every other effect remaining the same.

Assuming that the simulation is an accurate representation of the real IRIS setup,

these distributions should mimic the Q-value spectrum from the experiment.
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Chapter 3

Results

In this chapter, the results of a systematic study of the simulation will be presented.

Each effect in the simulation is isolated and studied for the resonant reaction with a

resonance energy and width of zero. The full simulation result is then presented for

both the resonant and non-resonant reactions.
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3.1 Beam

3.1.1 Energy Spread

Figure 3.1: Comparing beam energy spread
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3.1.2 Beam Width

Figure 3.2: Comparing beam width
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3.2 Ionization Chamber

3.2.1 Energy Loss

Figure 3.3: Comparing energy loss from the IC
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3.2.2 Energy Straggling

Figure 3.4: Comparing energy straggling from the IC
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3.2.3 Angular Straggling

Figure 3.5: Comparing angular straggling from the IC
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3.3 Silver Foil

3.3.1 Energy Loss

Figure 3.6: Comparing energy loss from the silver foil
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3.3.2 Energy Straggling

Figure 3.7: Comparing energy straggling from the silver foil
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3.3.3 Angular Straggling

Figure 3.8: Comparing angular straggling from the silver foil
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3.4 Deuterium Target

3.4.1 8He Energy Loss

Figure 3.9: Comparing 8He energy loss from the target
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3.4.2 8He Energy Straggling

Figure 3.10: Comparing 8He energy straggling from the target
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3.4.3 8He Angular Straggling

Figure 3.11: Comparing 8He angular straggling from the target
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3.4.4 6Li Energy Loss

Figure 3.12: Comparing 6Li energy loss from the target
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3.4.5 6Li Energy Straggling

Figure 3.13: Comparing 6Li energy straggling from the target
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3.4.6 6Li Angular Straggling

Figure 3.14: Comparing 6Li angular straggling from the target



Chapter 3. Results 65

3.4.7 Angle Broadening

Figure 3.15: Comparing angle broadening from target thickness
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3.5 Detectors

3.5.1 Silicon Detector

Figure 3.16: Comparing silicon detector resolution
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3.5.2 Cesium Iodide Detector

Figure 3.17: Comparing cesium iodide detector resolution
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3.5.3 Angular Segmentation and Geometry

Figure 3.18: Comparing effect of angular segmentation
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3.6 Final Results

Figure 3.19: Final results of simulation for resonant and non-resonant reaction
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Chapter 4

Discussion

In chapter 3, the results of a systematic study of the simulation were presented. In

this chapter, the results will be examined to determine if the effects in the simulation

reflect the real physics in the experimental setup. The limits from the random number

generation as well as the expected results from variations in energy and angles will

be discussed.

4.1 Computational Uncertainty

When generating distributions with the simulation, as random numbers are used,

there will be some random variation in the exact number of counts at different values.

In the histograms generated to demonstrate results, the number of counts needs to be

high enough for the number of bins in order to accurately represent the distribution

to be demonstrated. The expected variation in a bin can be calculated using the

Poisson distribution. If a uniform distribution is assumed over some range, with a

certain number of bins, one can determine the number of counts needed in order to

reach some desired precision:

λ =
Nr

d
, σ =

√
λ (4.1)
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N λ σ σ
λ

104 50 7.07 14%
105 500 22.4 4.5%
106 5000 70.7 1.4%
107 50000 224 0.45%

Table 4.1: Computational uncertainty compared to counts

Where N is the number of counts, r is the range, d is the number of bins, λ is the

expected number of counts per bin and σ is the standard deviation per bin assuming

a Poisson distribution and large λ. For a relative variation, σ
λ

= 1√
λ
. As an example,

if one assumes r = 1 and d = 200, one can see how increasing the number of counts

decreases the variation between bins in Table 4.1 and Figure 4.1.

Figure 4.1: The decreasing variation between bins as the number of counts increases.
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An increased uncertainty of less than 1% would be desirable, though an increase in

counts leads to a longer computation time. For comparison, the full simulation takes

approximately 5 minutes for 106 counts, making this the most reasonable tradeoff

between computation time and computational uncertainty in generating the results

for this study.

4.2 Variations in Energy

All effects in the simulation will affect the simulation through either a change

in the angles or the energies. There may be shifts (energy loss), randomizations

(angular bins), or broadening (energy straggling), each of which will affect the Q-

value distribution in a certain way. Here the expected results from variations in

energy will be compared to the results from the systematic study of the simulation.

In order to get a first-order approximation of the relationship between Q and the

energy, the first derivative can be found, referencing equations A.10, A.11 and A.12

derived in the appendix:

∂Q
∂m4

= −1, ∂m4

∂(p24)
= −1

2m4
,

∂(p24)

∂(p3)
= 2p3 − 2p1cos(φ),

∂p3
∂E3

= E3

p3
, ∂m4

∂E4
= E4

m4
, ∂E4

∂E3
= −1, ∂E3

∂K3
= 1

∂Q
∂K3

= ∂Q
∂m4

( ∂m4

∂(p24)

∂(p24)

∂p3

∂p3
∂E3

∂E3

∂K3
+ ∂m4

∂E4

∂E4

∂E3

∂E3

∂K3
)

∂Q

∂K3

= (−1)(
−1

2m4

(2p3 − 2p1cos(φ))
E3

p3

+
E4

m4

(−1)) =
E3(1− p1

p3
cos(φ)) + E4

m4

(4.2)
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This equation uses values that can be extracted from the simulation or from

the phase space locus. Some numerical examples can be used to deduce the ex-

pected distributions for results from the simulation. The values typically used are

m1 = 7484MeV , m2 = 1876MeV , m3 = 5603MeV , and K1 = 64MeV . For a

tetraneutron with a resonance energy of 0MeV , there will be m4 = 3759MeV and

Q = −2.15MeV . All other values are derived from these wherever needed in the

following sections using relativistic relationships.

4.2.1 Energy Straggling

One common effect in the simulation is energy straggling. The most general concept

is that the initial energy, Ei, will be randomized by some normal distribution with

standard deviation σE to some energy Ef . The straggling is presumably relatively

small, meaning that first order approximations can be used to estimate the resulting

distribution. The straggling distribution is given by some Gaussian function:

f(∆E) ∝ exp(
(∆E)2

2σ2
E

) (4.3)

Transforming to the resulting ∆Q Gaussian:

∆Q = ∂Q
∂E

∆E, f(∆Q) ∝ exp( (∆Q)2

2σ2
E( ∂Q

∂E
)2

)

f(∆Q) ∝ exp(
(∆Q)2

2σ2
Q

), σQ =
∂Q

∂E
σE (4.4)

The normalization of the distribution will be a function of the distribution of the

energy, which is typically uniform. This process can be applied to several points along
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K3 (MeV) φ(◦) ∂Q
∂E σQ(MeV )

12.00 1.75 -1.48 0.14
17.00 18.26 -0.68 0.065
22.00 21.37 -0.24 0.023
27.00 21.93 0.033 0.003
32.00 21.25 0.22 0.021
37.00 19.78 0.36 0.035
42.00 17.65 0.46 0.045
47.00 14.83 0.55 0.053
52.00 11.00 0.61 0.059
57.00 4.21 0.67 0.064

Table 4.2: Samples of Q-value sigma for energy straggling

the locus to demonstrate the variation of the width over different energies. For exam-

ple, beam energy width is 0.15% at 64MeV , giving σE = 0.096MeV . Corresponding

values of σQ are shown in Table 4.2.

From this table, it appears there will be a range of more broad and less broad

Gaussian distributions in superposition. There is a bias towards the lower values of

σQ, which means the distributions should be thin with a short, flat base, as opposed

to the bell shape of a regular normal distribution. Looking at examples in Chapter

3, effects such as beam energy spread, IC energy straggling and silver foil energy

straggling show this shape. It also shows up in the detector resolutions, as a similar

effect is applicable with some added complication from σE being a function of energy.

4.2.2 Energy Loss Before the Target

The same principle as used in studying energy straggling applies to energy loss,

the change in energy can be converted to a first-order approximation of the change
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in Q-value. By looking at the shape of the phase space locus, as energy is lost, the

points at higher energy move to a locus associated with a lower Q-value, while points

at the lower energies move to a locus with a higher Q-value.

Figure 4.2: The effect of energy loss on the phase space locus

This lines up with the values calculated in section 4.2.1, as the partial derivatives

are negative at low energy (energy loss increases Q) and positive at high energy

(increases Q) and at the tip of the locus, change in energy moves along the locus,

meaning a minimal change in Q.

From Chapter 3, there is a clear difference between energy loss from the material

before the target (IC and silver foil) compared to energy loss in the target. The energy

loss through the IC and silver foil is applied to each beam event equally, as they are

assumed to be almost exactly equal. This is a slight error as there will be minor

variations based on the effective angle, energy straggling and energy spread, though

these effects are very minimal. As this is practically a variation in beam energy,

the Q-value should in fact be insensitive to this effect on its own, as the Q-value is
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independent of the beam energy. The variation seen in Q-value is purely an artifact

from how the Q-value is defined.

In the Q-value calculations, there is some dependence on beam energy. In the

simulation, some standard value of K1 must be used that is standard for all events,

as the energy going into the reaction is not measured for each event. One should

therefore define the base K1 to minimize this change, the ideal such energy being ’the

centre of the target’. If one defines K1 as the incoming beam energy (64MeV ), the

energy loss from the IC and silver foil will give some corresponding change to the

Q-value, following a similar procedure to what gave equation 4.2:

∂Q
∂E1

= ∂Q
∂m4

( ∂m4

∂(p24)

∂(p24)

∂p1

∂p1
∂E1

+ ∂m4

∂E4

∂E4

∂E1
)

∂Q

∂E1

=
E1(1− p3cos(φ)

p1
)− E4

m4

(4.5)

From this, one can find how the corresponding ∆Q will be different for different values

of K3 by using p3cos(φ) = p3x and using the relationship from relativistic boosting

to the COM frame (25):

E3c = γ(E3 − vcp3x), vcp3x = E3 − E3c

γ

∂p3x

∂E3

=
1

vc
,

∂2Q

∂E1∂E3

=
∂2Q

∂E1∂p3x

∂p3x

∂E3

=
−E1

p1m4vc
= ξ (4.6)

As this result is independent from the energy K3, the resulting ∆Q = ξ∆E1∆E3

is linear with K3. As we know from the locus, there will be no change in Q at

the maximum angle (approximately 21.9◦) with an energy of Km = 26.3MeV . The
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change in Q-value corresponding to a certain K3 will then be given by:

∆Q = ξ∆E1(K3 −Km) (4.7)

This means that a specific value of K3 transforms linearly to a value of Q, and as K3

is evenly distributed coming out of the reaction, an even distribution is seen for the

IC energy loss and silver foil energy loss. Changing this reference value of the beam

energy to take into account energy loss from the IC (and silver foil, where relevant)

will give a value of ∆E1 = Eref − E1 = 0, where E1 has the constant energy loss

subtracted for all beam events, which would eliminate this broadening entirely. The

reason ∆E1 is defined this way is that Eref is the value used for E1 when calculating

Q-values in the simulation, meaning that the error introduced into Q comes from how

this value varies from the true value of E1. As this is the ’error’ in E1, the ’error’ in

Q will change in relation to this.

Figure 4.3: IC energy loss with different reference energy before reaction
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Using the values referenced previously, and taking the hardcoded value from the

simulation of ∆E1 = Eref − E1 = 0.351MeV , one can get an estimate for ∆Q:

E1 = m1 +K1 = 7548MeV , p1 =
√
E2

1 −m2
1 = 980.8MeV ,

vc = p1
K1+m1+m2

= 0.104 ξ = −0.0197 ξ∆E1 = −0.00691

∆Qmax = (−0.00691)(12.0− 26.3) = 0.099, Qmax = −2.15 + 0.099 = −2.05MeV

∆Qmin = (−0.00691)(57.8− 26.3) = −0.218, Qmin = −2.15− 0.218 = −2.37MeV

This gives the approximate values seen in the results when using the beam energy as

the reference energy.

4.2.3 Energy Loss of 8He in the Target

The energy loss in the target may not be adjusted for on an event-by-event basis,

meaning this is a true inherent broadening effect. There is further complication due

to the randomness of which depth in the target the reaction happens. This means

that each 8He and 6Li will experience a variety of energy losses based on where in

the target the reaction happens. At each energy, the energy lost for the specified

isotope will range from zero to the amount lost through the entire effective thickness.

For 8He, the effective thickness will just be the depth into the target of the reaction,

while for 6Li it will be based on the angle coming out of the reaction, which will be

directly related to the energy.

As 8He passes through the target with a constant energy of 64MeV between events

in the generated results, and the energy lost is relatively small compared to the total

energy, the 8He energy loss can be modelled as having constant stopping power. Both
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the simulation and LISE++ (22) confirm a stopping power of dE
dx

= −0.0018MeV
µm

, this

can be used as the constant stopping power. Equation 4.5 can be used in this case,

as the energy loss will be a change in E1:

E1 = Eref + Sd, S = dE
dx

, ∆E1 = Eref − (Eref + Sd) = −Sd

∆Q = −ξSd(K3 −Km) (4.8)

Where S is the stopping power and d is the distance through the target. As the

distance will be randomized from 0µm to 100µm, each value of K3 will have a

corresponding range of Q-values.

To interpret how this will appear as a histogram, the distribution can be considered

for a single distance. The energy K3 is assumed to be uniformly distributed, and

the ∆Q distribution for an individual value of d will also be uniformly distributed.

Comparing the distributions for different values of d, higher values corresponding to

higher ∆Q will cover a broader range. As the distribution in d is assumed to be

uniform, a larger range of ∆Q will spread the distribution thinner compared to a

small range. The shape a histogram will take is each of these distributions added on

top of each other, with the short, broad shape on the bottom, moving up towards

tall, thin shapes on the top. This leads to a wide base curving up to a thin peak.

This method has been used in Figure 4.4 to replicated the histogram seen for 8He

energy loss in the target. As a first order approximation, it lines up well. The expected

maximum and minimum values can be approximated using the same method as used

for energy loss before the target. The maximum ∆Q will be at the maximum distance,
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Figure 4.4: Expected histogram distribution with ∆d = 1

d = 100µm, going from the minimum value of Q at the highest K3 of 57.8MeV to

the highest value at the lowest K3 at 12.0MeV .

ξ = −0.0197, S = −0.0018, d = 100, ∆Q = −ξSd(K3 −Km)

∆Qmax = −(−0.0197)(−0.0018)(100)(12.0− 26.3) = 0.0507MeV ,

∆Qmin = −(−0.0197)(−0.0018)(100)(57.8− 26.3) = −0.112MeV

Qmax = −2.15 + 0.0507 = −2.10MeV , Qmin = −2.15− 0.112 = −2.26MeV

The values of the highest broadening line up, and the distribution of the histogram

takes the expected shape, meaning that the energy loss for 8He in the target appears

as expected.
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4.2.4 Energy Loss of 6Li in the Target

When calculating the energy loss for 6Li in the target, there are a few more con-

siderations to take into account. The energy loss can not be assumed to be constant,

as there will be a broader range of energies. Furthermore, as the angles reach up to

approximately 20◦, there will be a slightly increased effective width at these angles

meaning more energy loss.

Figure 4.5: Energy loss of 6Li in the target

Using equation 4.2, an approximation for ∆Q for the maximum distance at each

energy can be calculated. Using the same method as for 8He, the distance can then

be assumed to be uniformly distributed and the histogram can be replicated. Using
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K3 (MeV) φ(◦) ∆K3
∂Q
∂K3

∆Q(MeV ) | 1
∆Q| (x, y)

12.0 1.14 -1.30 -1.49 1.93 0.518 (1.93, 0.518)
17.0 18.27 -1.04 -0.681 0.709 1.41 (0.709, 1.93)
22.0 21.40 -0.862 -0.243 0.210 4.77 (0.210, 6.70)

27.0 21.97 -0.718 0.032 -0.023 42.9 (-0.023, 72.5)
32.0 21.30 -0.622 0.222 -0.138 7.25 (-0.138, 29.6)
37.0 19.82 -0.544 0.360 -0.196 5.11 (-0.196, 22.3)
42.0 17.70 -0.479 0.465 -0.223 4.49 (-0.223, 17.2)
47.0 14.88 -0.430 0.547 -0.235 4.25 (-0.235, 12.7)
57.0 4.22 -0.352 0.669 -0.235 4.25 (-0.235, 8.44)
52.0 11.04 -0.389 0.614 -0.239 4.19 (-0.239, 4.19)

Table 4.3: Approximating Q-value histogram from 6Li energy loss in target

LISE++ (22) to find energy losses, the values can be calculated and the corresponding

points on the replicated histogram can be plotted. The ordering goes back on the

largest ∆Q, hence the slight reordering:

This gives some idea as to how the histogram should appear. There is some min-

imum value of ∆Q at an energy slightly below the maximum, as the energy loss

decreases at a greater rate than ∂Q
∂K3

increases. This leads to several energies where

∆Q is changing very slowly, and as a result gives a high slope. This can be seen in the

(x, y) points, where there is very little change in x but a large increases in y. While

these points were plotted manually with reference to LISE++, as they agree with

the predicted energy loss given by the simulation, the function from the simulation

can be used to calculate energy loss for more points and plot the distributions with

a larger number of points:
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Figure 4.6: Replicated 6Li histogram with more points

These plots replicate the histogram for 6Li energy loss in the target from the

simulation.

4.3 Variations in Angle

Much like in the case of energy, the expected effect of variation in the angle can

be studied to compare to the generated results. These effects show up at angular

straggling, bin randomization and detector geometry cuts. The first-order relationship

between Q and φ will be here, as it was with K3:

∂Q
∂φ

= ∂Q
∂m4

∂m4

∂(p24)

∂(p24)

∂cos(φ)
∂cos(φ)
∂φ

= (−1)( −1
2m4

)(−2p1p3)(−sin(φ))

∂Q

∂φ
=
p1p3sin(φ)

m4

(4.9)

4.3.1 Angular Straggling

Following the same procedure as for energy straggling, angular straggling can be

modelled as a Gaussian distribution. The effect from the straggling itself is not in
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the angle from the reaction, which itself will be unchanged, but in the angle going

into or coming out of the target. All angular straggling effects are before the target

a distance d or in the target at d = 0, with detectors a distance l from the target, as

demonstrated in Figure 4.7. With a change in angle of θe, the particle will enter the

target at a different position, ∆ye, and come out at an angle φ + θe. As measured

from the centre of the target, the resulting angle measured on the detector will be

φm.

Figure 4.7: Effect of angle broadening on measured angle

Finding φm for a given θe, using a small angle approximation for θe:

∆ye = d tan(θe) ' d θe, ∆yφ = l tan(φ+ θe)

tan(φ+ θe) ' tan(φ) + dtan(φ)
dφ

θe = tan(φ) + sec2(φ) θe

tan(φm) =
l tan(φ) + (d+ l sec2(φ))θe

l
= tan(φ) + (

d

l
+ sec2(φ)) θe (4.10)
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This can be related to the Q-value through Equation 4.9:

∂Q
∂θe

= ∂Q
∂φm

∂φm
∂θe

, ∂tan(φm)
∂θe

= ∂tan(φm)
∂φm

∂φm
∂θe

, ∂φm
∂θe

= cos2(φm)∂tan(φm)
∂θe

∂Q

∂θe
=
p1p3sin(φ)

m4

cos2(φ)(
d

l
+ sec2(φ)) =

p1p3sin(φ)

m4

(1 +
d

l
cos2(φ)) (4.11)

With the approximation that φm ' φ, which is true when θe is small, as has been

assumed. When the broadening happens in the target, this reduces to 4.9 as d
l
' 0,

which is to be expected as the only effect comes from the change of the measured

φ, with no contribution from the change in position. (∆ye = 0) The exact same

procedure used for energy straggling can be used assuming a Gaussian distribution

in θe with standard deviation σθ:

f(∆Q) ∝ exp(
(∆Q)2

2σ2
Q

), σQ =
∂Q

∂θe
σθ (4.12)

In the case of IC angular straggling, there is a hardcoded standard deviation of

σθ = 0.869mrad with d = 52 cm and l = 25 cm. Using the other standard values for

the relevant variables, the values of σQ can be calculated over the range of energies,

as demonstrated in Table 4.4.

As with energy straggling, this distribution will be the superposition of many Gaus-

sian distributions each with σQ. Unlike in the case of energy straggling, the broad-

ening here is more consistent through the different energies. This gives a peak with

a more evenly distributed width.
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K3 (MeV) φ(◦) ∂Q
∂θe

σQ(MeV )

12.00 1.75 8.49 0.0074
17.00 18.26 102.8 0.0893
22.00 21.37 132.6 0.115
27.00 21.93 149.8 0.130
32.00 21.25 159.2 0.138
37.00 19.78 161.9 0.141
42.00 17.65 157.1 0.137
47.00 14.83 143.1 0.124
52.00 11.00 114.6 0.0996
57.00 4.21 47.01 0.0410

Table 4.4: Samples of Q-value sigma for angular straggling

Figure 4.8: Effect of target angle broadening on measured angle

4.3.2 Angle Broadening from Target

The thickness of the target will give a very small variation in the angle into the

detector based on the distance through the target the reaction happens. Much like

in the case of the energy loss before the target, there must be some baseline position

in the target to measure l from in Figure 4.8:
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∆ym = (l −∆l) tan(φ), tan(φm) = ∆ym
l

= (1− ∆l
l

) tan(φ)

∂Q

∂∆l
=

∂Q

∂φm

∂φm
∂∆l

=
p1p3sin(φ)

m4

cos2(φ)(
−tan(φ)

l
) =
−p1p3sin

2(φ)cos(φ)

m4l
(4.13)

This will be highest at the highest angle, 21.9◦, with energy 26.3 MeV. The maximum

value of ∆Q from this effect can be calculated with l = 25 cm and ∆l = 100µm:

∆Q = ∂Q
∂∆l

∆l = −(980.8)(543.5)(0.129)
(3758)

100µm
25 cm

= 0.00732MeV

This gives a very small variation in Q, on the same order as seen in the results, which

show a FWHM of 0.003. This FWHM also approximately half of the maximum

calculated here, as would be expected from a roughly linear relationship given by this

approximation.

4.3.3 Angular Segmentation

The detector is divided into angular segments, with the angle measurements only

able to be measured to within one of these. In the simulation, if an angle is inside

the bin, then it is randomized to somewhere in that bin. This causes broadening

of the Q-value, as the randomization will given a combination of energy and angle

associated with a different reaction Q-value. Along with this, there will be cuts due

to the detector geometry, as the smallest angles are not covered by the detector.

The angular bins can be found from the geometry of the detector, which has an

inner radius of ri = 5 cm and an outer radius of ro = 13 cm with ∆r = 0.5 cm segments

across the ring, located d = 25 cm from the target. These result in 16 segments, each

of which with an inner and outer angle. The corresponding angle ranges can be
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calculated, each with two energy ranges for all except the highest angle bin in the

phase space, where they merge. The angles covered by the detector go higher than

the angles in the phase space, so for this analysis only those in the standard resonant

reaction phase space are of interest.

φn = tan−1(
ri + n∆r

d
) (4.14)

φ0 = tan−1( 5
25

) = 11.3◦, φ11 = tan−1(10.5
25

) = 22.8◦, φmax = 21.9◦

Figure 4.9: The phase space locus comparing segmentation

In each bin, as both angle and energy are assumed to be evenly distributed, the

points will be evenly distributed throughout the bin. The unrandomized locus passes

through two corners of every bin, meaning that these corners will have no deviations

in Q-value. The other two corners will have minima and maxima of ∆Q, with those

corners closer to the ’centre’ of the locus with a lower Q-value, and those away from

the ’centre’ with a higher Q-value. The highest bin, in which the maximum value of

φ is found, the two corners have higher Q-values.
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n φ (Degrees) θ1 (Degrees) E1 (MeV) θ2 (Degrees) E2 (MeV)

0 11.31 52.88 48.60 143.56 15.00
1 12.41 56.12 47.58 141.13 15.57
2 13.50 59.37 46.54 138.66 16.20
3 14.57 62.65 45.46 136.12 16.90
4 15.64 66.02 44.33 133.47 17.69
5 16.70 69.50 43.12 130.68 18.57
6 17.74 73.19 41.81 127.66 19.59
7 18.78 77.16 40.35 124.33 20.80
8 19.80 81.63 38.64 120.50 22.26
9 20.81 87.04 36.48 115.70 24.20
10 21.80 95.42 32.97 107.92 27.52
11 22.78 —– —– —– —–

Table 4.5: Angles at detector segments and corresponding kinematics for resonant
reaction

As a crude first-order approximation, for the segments where the locus passes

through opposite corners, the path it takes can be assumed to be linear. Every

other locus passing through will cover some slightly shorter path. As the area can be

assumed to be made up of many of those paths, with each having a corresponding

fraction of the evenly-spaced counts, the distributions of Q-values will correspond to

the relative lengths. For example, in Figure 4.3.3, the blue line will correspond to

the regular resonant reaction with Q = −2.15MeV while the red lines correspond

to equally likely values greater than and less than that value. Each path can be

parameterized by a variable λ going from 0 to 1, as shown in the figure.

The lengths are given based on points and corresponding distances in the figure:

(φ2 −∆φλ,E2)→ (φ2, E2 −∆Eλ)

s =
√

(φ2 −∆φλ− φ2)2 + (E2 − (E2 −∆Eλ))2
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Figure 4.10: A simplified model of the Q-value loci through randomized segments

s =
√

(−∆φλ)2 + (∆Eλ)2 =
√

∆φ2 + ∆E2λ

Given that the distance is proportional to the parameter λ, the distribution will

be linear on each side, with the most likely value at the resonant reaction Q-value.

This gives roughly triangular distributions, each with a number of counts proportional

to the energy range covered, with widths dependent on the maximal variation in Q-

value for that segment. The one exception is the maximal angle bin, which is a much

more complicated case. A simple understanding can be seen from the fact that while

the minimum angle value of the bin is 21.8◦ and the maximum value is 22.8◦, the

maximum angle from the locus is 21.9◦. For an equal energy, a higher value of φ

gives a higher value of Q, as seen in equation 4.9. Therefore, as the randomizations

will generally increase the angle, one should expect this segment to contribute more

towards a higher number of Q-value counts than the resonant reaction value.
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For the angular segmentation, the prediction of a triangular distribution with a

slight asymmetry towards higher Q-values lines up with the result from the simulation.

The effect of the detector geometry on the distribution is more indirect. It will not

show up directly in a the resonant distribution, as it simply removes certain counts,

though it does cut off lower Q-values of the non-resonant distribution and may modify

certain distributions studied where lower angles contribute to broadening.
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Chapter 5

Conclusion

An experiment was carried out to study the reaction 8He(d, 6Li)4n at the IRIS

facility at TRIUMF in Vancouver, BC. In order to understand the sensitivity of

the IRIS setup to resonant tetraneutron events compared to the non-resonant four-

neutron breakup, a simulation was developed. A systematic study showed that the

results of the simulation are consistent with what would be expected from the physics

of the setup. The final combined results of the simulation for the resonant and non-

resonant reaction can be compared to determine the sensitivity of the experiment.

Running the simulation for both the resonant and non-resonant reaction shows

their distributions. With the full simulation with no resonance energy or width, there

is a clear distinction between the two peaks with minimal overlap, as shown in Figure

5.1. The true sensitivity, however, depends on the exact Q-value and the relative

cross-sections of the resonant and non-resonant reaction. In the region where the two

distributions overlap, the ability to distinguish whether a count in this region would

come from either distribution is diminished. Even without knowing anything about

the cross-sections, some statements about the sensitivity can still be made.

Taking into account the resonance energy, the resonant peak would be shifted to

a lower Q-value towards the non-resonant distribution. As resonance energy is the
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Figure 5.1: The missing mass spectrum for resonant and non-resonant reactions

excitation energy of the tetraneutron resonance, it increases the mass and as a result

gives a lower Q-value. As a result, the higher the resonance energy, the more indis-

tinguishable the resonant distribution becomes from the non-resonant distribution.

With an increased resonance width, there will be even more overlap with the non-

resonant peak, but also the potential for more counts that are at a higher Q-value that

do not overlap with the non-resonant distribution. The resonance width is assumed

to be given by a Breit-Wigner distribution:

P (M) =
Γ

2π[(M −M0)2 + (Γ
2
)2]

(5.1)
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Where Γ is the width, M0 is the mass of the tetraneutron resonance, taking into

account resonance energy Er, and PM is the probability density function. Using the

same value for Er as measured at RIKEN of 0.83MeV and using the upper bound

given by this experiment of Γ = 2.6MeV , the sensitivity of the experiment to such an

experiment can be seen in Figure 5.2. While the experiment is now less sensitive to the

resonant tetraneutron signature, there are still a region of the missing mass spectrum

where a resonant tetraneutron event would be distinguishable from a non-resonant

event.

Figure 5.2: The missing mass spectrum taking into account Er and Γ
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In contrast to the GANIL experiment, this experiment would be measuring the

missing mass spectrum, which means that these counts could be directly related to

a resonant tetraneutron, not just the potential of an increased correlation between

the neutrons. In contrast to the RIKEN experiment, events with higher Q-value not

accounted for by the non-resonant distribution could only be accounted for by the

resonant distribution, no other background such as 8He breakup. In contrast to the

GANIL-SPIRAL experiment, the target is entirely deuterium, so this too will give no

background in the resonant reaction region.

Given the kinematics of the resonant and non-resonant reaction and the physical

effects from the IRIS setup, an experiment to search for the signature of a tetraneutron

resonance with this setup would be able to distinguish such a resonance. There is a

significant likelihood that an event that could be attributed to a resonant tetraneutron

would have a low chance of being attributed to any other source compared to previous

experiments. As a result, this experiment provides the sensitivity in measuring the

missing mass spectrum of this reaction that would be required to distinguish the

signature of a tetraneutron resonance.
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Appendix A

Kinematics Calculations

The kinematics of reactions are important in several aspects of this work. Here, the

derivation of laboratory quantities and the conversion between Q-value and laboratory

energies and angles for two-body reactions is covered. The convention here will follow

Figure 2.2, with the particles 1-4 as labelled, m as the mass, E as the total relativistic

energy, K as the kinetic energy and p as the momentum. Angle φ and λ refer to

the laboratory frame angles of particles 3 and 4 respectively. All calculations in this

section assume a two-body reaction, though may be applied to many-body reactions,

such as described for the missing mass method in subsection 2.1.2. All analysis shown

is done relativistically to allow it to be applied to a broad range of reactions, with

c = 1.

A.1 Finding Laboratory Energies and Angles

First, assuming a given reaction, the energies and angles in the laboratory frame can

be found from principles of energy and momentum conservation. For this calculation,

the first step is conversion to the COM frame. As this frame is defined as having zero

momentum, to convert from the laboratory frame where particle 1 has momentum in

the positive-x direction and particle 2 is stationary, the system is boosted into a new

inertial frame using relativistic transformations (25) characterized by a negative-x
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velocity vc:

p1c = γ(p1 − E1vc) p2c = γ(p2 − E2vc)

p1c = −p2c, p1 − E1vc = m2vc

vc =
p1

K1 +m1 +m2

(A.1)

E1c =
E1 − p1vc√

1− v2
c

E2c =
m2√
1− v2

c

(A.2)

Given conservation of energy and momentum, the properties of particle 3 and 4 in

the COM frame can be derived. The only free variable in the COM frame will be the

angle θ as seen in Figure 2.2 a).

ETot = E1c + E2c = E3c + E4c p3c = p4c = pc

ETot =
√
p2
c +m2

3 +
√
p2
c +m2

4 (A.3)

This equation can be solved for pc:

pc =
1

2ETot

√
(ETot −m3 −m4)(ETot +m3 −m4)(ETot −m3 +m4)(ETot +m3 +m4)

(A.4)

With this expression, the components of the momenta can be found and transformed

back into the laboratory frame:

pcx = pc cos(θ) pcy = pc sin(θ)

p3x =
pcx + E3cvc√

1− v2
c

, p3y = pcy (A.5)

p4x =
−pcx + E4cvc√

1− v2
c

, p4y = −pcy (A.6)
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φ = tan−1(
p3y

p3x

), λ = tan−1(
p4y

p4x

) (A.7)

p3 =
√
p2

3x + p2
3y, E3 =

√
p2

3 +m2
3, K3 = E3 −m3 (A.8)

p4 =
√
p2

4x + p2
4y, E4 =

√
p2

4 +m2
4, K4 = E4 −m4 (A.9)

From this calculation, all energies and angles of the products in the laboratory

frame are found, parameterized by the free variable θ. The lighter product will cover

all angles from 0◦ to 180◦, while the more massive product will have some locus

through phase space with a parabolic shape. As a result, each angle will correspond

to two energies, with the highest and lowest energies corresponding to 0◦. There

will be some maximum angle where increasing energy begins to decrease the angle.

This means that the heavy product will be restricted to small angles, while the light

product is unrestricted in angle.

A.2 Finding Q from K3 and φ

As seen in section A.1, the properties of reaction products in the laboratory can

be derived precisely with only one free variable. Each locus derived in this process

corresponds to a specific Q-value, derived from the masses of the reactants and prod-

ucts. This is described in more detail in the section on the missing mass method.

The process for finding the Q-value from a given value of K3 and φ is given using the

following equations:

E4 = E1 + E2 − E3, Q = m1 +m2 −m3 −m4 (A.10)
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p4x = p1 − p3cos(φ), p4y = −p3sin(φ)

p2
4 = (p1 − p3cos(φ))2 + p2

3sin
2(φ) = p2

1 + p2
3 − 2p1p3cos(φ) (A.11)

m4 =
√
E2

4 − p2
4 (A.12)

The results from equation A.12 can be used in equation A.10 to get the Q-value.

As m4 is not assumed, there is no requirement that the reaction is truly a 2-body

reaction, this is simply the Q-value if it were a 2-body reaction.



Bibliography 100

Bibliography

[1] Hansen, P. G. Nuclear Structure at the Drip Lines. Hyperfine Interactions, vol.
43, no. 1-4, Dec. 1988, pp. 379–394

[2] Hoyle, F. On Nuclear Reactions Occuring in Very Hot STARS .I. The Synthe-
sis of Elements from Carbon to Nickel. The Astrophysical Journal Supplement
Series, vol. 1, Sept. 1954, p. 121

[3] Kezerashvili, Roman Ya. A Short Summary on the Search of Trineutron and
Tetraneutron. Fission and Properties of Neutron-Rich Nuclei, 3 Oct. 2017

[4] �Pieper, Steven C. Can Modern Nuclear Hamiltonians Tolerate a Bound Tetra-
neutron?. Physical Review Letters, vol. 90, no. 25, 27 June 2003

[5] Hiyama, E., et al. Possibility of Generating a 4-Neutron Resonance with a T=3/2
isospin 3-Neutron Force. Physical Review C, vol. 93, no. 4, 29 Apr. 2016

[6] �Shirokov, A.M., et al. Prediction for a Four-Neutron Resonance. Physical Review
Letters, vol. 117, no. 18, 28 Oct. 2016

[7] �Ivanytskyi, O., et al. Tetraneutron Condensation in Neutron Rich Matter. The
European Physical Journal A, vol. 55, no. 10, Oct. 2019

[8] ��Tilley, D.R., et al. Energy Levels of Light Nuclei a = 4. Nuclear Physics A, vol.
541, no. 1, May 1992, pp. 1–104

[9] �Aleksandrov, D. V., et al. Search for Resonances in the Three-and Four-Neutron
Systems in the 7Li(7Li, 11C)3n and 7Li(7Li, 10C)4n Reactions. Journal of Ex-
perimental and Theoretical Physics Letters, vol. 81, no. 2, Jan. 2005, pp. 43–46

[10] ��Marqués, F. M., et al. Detection of Neutron Clusters. Physical Review C, vol.
65, no. 4, 1 Apr. 2002

[11] Sherrill, B. M., and C. A. Bertulani. Proton-Tetraneutron Elastic Scattering.
Physical Review C, vol. 69, no. 2, 24 Feb. 2004

[12] ��Marqués, F. M., et al. On the Possible Detection of 4n Events in the Breakup of
14Be. ResearchGate, 6 May 2005

[13] �Kisamori, K., et al. Candidate Resonant Tetraneutron State Populated by
TheHe4(He8,Be8)Reaction. Physical Review Letters, vol. 116, no. 5, 3 Feb. 2016

[14] �Fortier, S., et al. Search for Resonances in 4n, 7H and 9He via Transfer Reac-
tions. AIP Conference Proceedings, 2007



Bibliography 101

[15] Barrett, Bruce R., et al. Ab Initio No Core Shell Model. Progress in Particle and
Nuclear Physics, vol. 69, Mar. 2013, pp. 131–181

[16] Rene Brun and Fons Rademakers ROOT - An Object Oriented Data Analysis
Framework. Proceedings AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst.
Meth. in Phys. Res. A 389 (1997) 81-86.

[17] Harris, C. R., et al. Array programming with NumPy. Nature 585, 357–362, 2020

[18] James, F. Monte-Carlo phase space. CERN-68-15, May 1968

[19] Rutherford, Ernest et al. The Scattering of alpha and beta Particles. Radiations
from Radioactive Substances, Apr. 1911, pp. 191–239

[20] Bethe, H. A. Molières Theory of Multiple Scattering. Physical Review, vol. 89,
1953, pp. 1256-1266

[21] Highland, Virgil L. Some practical remarks on multiple scattering. Nuclear In-
struments and Methods, vol. 129, 22 Aug. 1975, pp. 497–499

[22] Tarasov, O.B., and D. Bazin LISE++: Radioactive Beam Production with in-
Flight Separators. Nuclear Instruments and Methods in Physics Research Section
B: Beam Interactions with Materials and Atoms, vol. 266, no. 19-20, 2008, pp.
4657–4664.

[23] Virtanen, P. et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17(3), 261-272, 2020

[24] Kumar, Sunil, and P.K. Diwan Energy loss and straggling of -particles in Ag and
Sn metallic foils. Journal of Radiation Research and Applied Sciences, vol. 8, no.
4, 2015, pp. 538–543

[25] Walet, N. Lorentz Transformations of Energy and Momentum..
https://chem.libretexts.org/@go/page/15052, 13 Aug. 2020


