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Abstract

On Path Length, Beam Divergence, and Retroreflector Size 

in Open Path FTIR Spectroscopy

By Cameron Power 

Open-Path Fourier Transform InfraRed (OP-FTIR) spectroscopy is an 
established technique used to measure boundary layer trace gas 
concentrations, consisting of  a spectrometer and a retroreflector 
separated by a measurement path. The detection limit is directly 
proportional to the optical path, which controls target gas spectral 
absorption feature depth; however, depending on the specifics of  the 
spectrometer and telescope optics, beam divergence can begin 
overfilling the distant retroreflector array for paths greater than ~300 
m, resulting in decreased returning radiation. In this case, the 
absorption signature of  the target gas increases, but the signal to noise 
ratio of  the recorded spectrum does not, making detection difficult. The 
results of  an experiment where the retroreflector array area was 
increased to collect a larger fraction of  returning radiation at path 
lengths ranging from ~200 m – 1000 m are discussed, including an 
analysis of  both underlying spectra and quality indicators for retrieved 
concentrations of  carbon monoxide. The results show that the larger 
retroreflector array results in smaller decreases in the signal-to-noise 
ratio as a function of  the measurement path when compared to a 
smaller array. Next, the effectiveness of  cleaning retroreflector arrays 
after extended field use is presented using quantitative information, 
including 1) a measured 10% increase in infrared intensity and 3) 
surface characterization of  a single retroreflector cube corner array 
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before and after the cleaning process, which resulted in no notable 
changes, but revealed corrosive processes and contaminants present on 
the cube. Lastly, the results of  theoretical spectral simulations are 
discussed in detail for CO and HCHO (formaldehyde) showing how 
path length, water concentration, and target concentration affect the 
differential absorption spectrum of  the target, also considering random 
and systematic noise levels.  It was determined that path lengths > 300 
m are necessary for robust HCHO measurements.  A further 10 
common atmospheric species are explored in Appendix B.  Finally, 
spectral simulations also explore the relationship between absorbance 
and transmittance by increasing the target gas concentration, from 
which it is seen that for less abundant trace gases (i.e., HCHO at 1 ppb) 
concentration and transmittance are approximately linearly related. 
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Chapter 1 

Introduction and Motivation 

1.1	 Air Pollution and Climate Change 

	 One of  the most socially relevant fields of  scientific research today 

is that of  air quality and climate change processes. This is due to the 

increasingly large human impact on Earth’s atmosphere, which has 

raised concerns around air quality and long term effects on the planet. 

Climate change research is important due to the necessity to both 

quantify and understand the changes occurring, along with the need for 

evidence of  these changes and attribution to human causes to a broader 

audience. 

	 Green house gases lead to climate change, which is a long term 

effect while the issue of  air pollution adversely affects entire populations 

on shorter scales. In particular, a critical component to both climate 

change and air quality are trace gases. Trace gases appear in very small 
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concentrations, and only constitute a fraction of  the atmosphere (~1%) 

while causing longterm health risks if  one experiences prolonged 

exposure of  high concentrations. For example, carbon dioxide, 

methane, and nitrogen dioxide, three important trace gases when 

discussing green house gases, have background levels of  400 ppm, 1.8 

ppm, and 320 ppb respectively (IPCC, 2013). One of  the more versatile 

and novel methods of  measuring these trace gases is Open-Path Fourier 

Transform Infrared (OP-FTIR) spectroscopy, discussed next.  

1.2	 Overview of  the OP-FTIR 

	 OP-FTIR spectroscopy is an established technique used to 

measure boundary layer trace gas concentrations, e.g., in “fenceline 

monitoring” of  industrial emissions. The measurement is made by 

sending an infrared beam to a distant retroreflector and recording the 

returned signal spectrum, which contains signatures of  multiple trace 

gas absorptions in the beam path. This results in a path-averaged 

measurement, which means that measurements are representative of  a 

selected path, as opposed to a point, while retaining high precision. This 

is an inherent advantage to the open-path system, as it provides a more 
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representative look at the measurement location, and minimizes the 

effect of  localized emissions. 

	 The OP-FTIR system consists of  a spectrometer, which contains 

an infrared source, telescope, mirror optics, a retroreflector separated by 

a measurement path as seen in Figure 1.1, and detectors. The source in 

the spectrometer generates infrared light which is collimated by the 

telescope into a 30 cm beam toward the retroreflector, this beam passes 

through the atmosphere along the measurement path until it reaches 

the retroreflector, where the beam is then reflected back to the 

spectrometer to be recaptured. The measurement path is typically a  

few hundred meters, at which distance returning signal diminishes 

significantly, thus greatly degrading measurements. 

 
Figure 1.1: OP-FTIR schematic (adapted from Jarvis, 2003).
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	 The result of  these measurements is an atmospheric absorption 

spectrum which can be used to determine trace gas concentrations by 

analyzing the features of  the spectrum (see section 1.5). 

1.2.1   Contrasting OP-FTIR and In Situ  

When considering methods for trace gas observations, the OP-

FTIR spectroscopy system and in situ gas analyzers are among the most 

popular choices. Although these methodologies differ quite significantly 

in their spatial sampling of  trace gases, they have been used in tandem 

to provide comparisons and references, such as the study conducted by 

Griffith et al. (2017) where open-path measurements were compared to 

in situ measurements at one end of  the path. When comparing the two 

methods to one another, both have inherent strengths and weaknesses. 

In the case of  OP-FTIR spectroscopy, measurements are representative 

of  a selected path, as opposed to a point, while retaining high precision; 

however, according to Smith et al. (2011), this is to the detriment of  

accuracy (Smith et al., 2011) due to calibration difficulties in the open 

path. By comparison, calibrated in situ measurements are by definition 
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very accurate, and, according to Griffith “Such point-based in situ 

measurements in clean baseline air are well suited to monitoring long 

term global changes in atmospheric greenhouse gases...” (Griffith, 2017, 

p. 1549). However, in situ point measurements are, by definition, only 

representative of  a single point, and not of  an extended atmospheric 

path. Thus, for an urban setting such as Halifax, open-path systems are 

less sensitive to highly localized emissions, thus allowing for a more 

accurate representation of  the deployment area (e.g. Waxman et al., 

2017). Compared to in situ point measurement systems, OP-FTIR 

spectroscopy is relatively novel, with ongoing developments, and 

improvements to techniques and configurations, such as the size of  the 

retroreflector used. This is one of  the primary motivations for this 

research project: quantifying the effect of  a larger retroreflector on the 

results of  the OP-FTIR system.

1.3	 Retroreflector Array Design and Size  

	 Retroreflector arrays are constructed from multiple cube corner 

retroreflectors, which can have various coatings depending on the 
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wavelength of  light the system utilizes. In the case of  infrared light, the 

most commonly used coatings are gold and silver, due to their high 

reflectivity in the infrared regime (Bennett, 1965). Each cube corner 

retroreflector reflects any incoming light back toward the source in a 

slightly translated path (~6 cm), parallel to the incoming path (Figure 

1.2 (right)). This is accomplished by combining three flat mirrors so that 

each is perpendicular to one another (Figure 1.2 (left)). This results in 

any incoming beam being reflected twice to achieve a direction change 

of 180 , i.e., a retro-reflection. 

Figure 1.2: Cube corner retroreflector seen from front (left). Cube corner retroreflector 
seen from side with example incoming beam double reflection (right). 

o
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1.3.1   Beam Divergence and Overfilling 

	 An important variable in OP-FTIR spectroscopy is the optical 

path length, as it directly correlates to the detection limit of  the system 

(a longer path implies lower detection limits). At long path lengths, 

however, beam divergence due to imperfect beam collimation causes a 

decrease in returning long-path radiation due to overfilling of  the 

retroreflector array (Figure 1.3). In this simplified schematic of  a mono-

static arrangement, the source (not shown), spectrometer (not shown) 

and telescope (cylinder) are on the left, while the retroreflector array 

(two pieces) is on the right. The bi-directional red arrows show the IR 

radiation travelling along the open path. A larger array, or a composite 

array, has the ability to return more divergent radiation towards the 

source and the co-located detector. 

Figure 1.3: Beam divergence (greatly exaggerated) in long-path OP-FTIR spectroscopy 
(Power, 2020 American Geophysical Union).  
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	 As a result, this increases the threshold path at which the 

returning signal is too greatly diminished due to of  beam divergence, 

thus increasing the maximum path length at which the OP-FTIR 

system can make reliable measurements. 

1.4   Absorption Spectra 

	 An absorption spectrum is a measure of  radiation absorption at a 

given wavelength; in the case of  infrared spectroscopy, this absorption is 

a result of  the rotational and vibrational transitions of  molecular 

compounds (Bacsik, 2004). Based on these unique absorption 

signatures, infrared spectroscopy can be used to quantitatively analyze a 

spectrum for underlying trace gas concentrations. 

1.4.1   Spectral Fitting 

	 Fitting an absorption spectrum involves matching a measured 

spectrum to a simulated spectrum.  The simulated spectrum includes a 

list of  i gases, comprised of  the target gas, which is the gas that is being 

studied, and the interfering gases, which includes all other gases in the 
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spectral region, apart from the target gas. This region is defined in 

terms of  spatial frequency, wavenumber, and is dictated by the 

characteristics of  the compound’s infrared transitions from reference 

literature, i.e., HITRAN. 

	 In the spectral fit, each gas contains k rotational-vibrational 

absorption features, which are calculated using line-by-line constants 

from the HITRAN database. The rotational-vibrational absorption 

features are the result of  transitions in rational and vibrational energy 

states (Griffith, 2002), which are the result of  rotation about the centre 

of  mass of  a molecule and the stretching of  the bonds between atoms in 

a molecule respectively. These transitions are discrete, quantized energy 

levels, which leads to each compound absorbing at specific wavelengths 

(Banwell & MacCash, 1994).  

	 As an indication of  the quality of  the fit, the root-mean-square 

residual can be calculated between the fitted and measured spectrum, 

where large root-mean-square residual values indicate poorer fit quality. 
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1.4.2   Calculating Transmittance 

	 To calculate the absorbance at a given wavenumber, , first, the  

gas absorption coefficient, , needs to be determined using the 

following, 

	 	 	  ,  

where k is the absorption line in a rational-vibrational band at a central 

wavenumber , S is line strength, P is pressure, T is temperature and V 

is the Voigt line shape (Wiacek and Strong, 2008, and references there 

in).  

	 The spectral line shape is a description of  the form of  the  

absorption feature. The line shape can take three ideal forms, Gaussian, 

Lorentzian, and Voigt, where the Voight function is a convolution of  the 

Gaussian and Lorentzian functions. These functions are described by 

the following, 

	 	    Gaussian:    , 

ν 𝑖𝑡h

αi

𝛼𝑖(𝜈) = ∑
𝑘

𝑆𝑖,𝑘(𝑇, 𝜈 − 𝜈0) ⊗ 𝑉 (𝑃, 𝑇, 𝜈)

νo

kth

𝑓(𝜈 − 𝜈0) =
1

𝜋𝛾𝐷

𝑒𝑥𝑝( −
(𝜈 − 𝜈0)2

𝛾2
𝐷

)
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	 	           Lorentz:    , 

	 	                 Voigt = Lorentz  Gaussian , 

where  is the Lorenz broadening coefficient, and  is the Doppler 

broadening coefficient. Transition line broadening is dictated primarily 

by Lorentz broadening in the lower atmosphere (high pressure), while in 

the upper atmosphere (high velocity), transition line broadening is 

dictated primarily by Doppler broadening. This results in the Lorenz 

contribution dominating in the OP-FTIR technique, due to the 

relatively high pressure of  operation (1 atm) (Griffith, 1996). 

	 Through summing over all gases, i, the optical depth can be 

calculated using the absorption coefficient as, 

	 	 	 	        , 

f (ν̄ − ν̄0) =
1
π

γL

(ν̄ − ν̄0)2 + γ2
L

⊗

γL γD

𝜏(𝜈) = ∑
𝑖

𝑎𝑖𝛼𝑖(𝜈)
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where  is the concentration of  the  gas multiplied by the measurement 

path length. This relates to the transmittance, , through the following 

relation, using Beer’s law, 

	 	 	 	  

	 	 	 	     , 

     

where  is the intensity at a given wavenumber before passing through a 

given path, and  is the intensity after passing through a given path. Lastly, 

the transmittance relates to the absorbance, , as (Bacsik, 2004), 

	 	 	     	 	   . 

	 This relationship is shown graphically in Figure 1.4, which shows 

absorbance ranging from  to  on the logarithmic x-axis, and 

transmittance on the y-axis ranging from 0 to 1. This figure shows the 

nonlinear relationship between absorbance and transmittance, which 

means an increase in absorbance by some factor does not result in an 

increase in transmittance by the same factor.  

ai ith

T

T(ν) =
I(ν̄)
I0(ν̄)

= e−τ

I0(ν̄)

I(ν̄)

A

T = 10−A

10−5 105
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Figure 1.4: Logarithmic relationship between absorbance vs transmittance. 

1.4.3   MALT Forward Model 

	 A substantial portion of  this project entails theoretical spectral 

simulations using the Multiple Atmospheric Layer Transmission 

(MALT) forward model (Griffith, 1996). This model utilizes spectral 

absorption parameters from the High-Resolution Transmission 

Molecular Spectroscopic (HITRAN) database (Gordon et al., 2017) to 

provide the non-linear mapping between trace gas concentrations and 

atmospheric absorption spectra. A non-linear least squares (NLLS) 

Chapter 1 - Introduction and Motivation 13



algorithm is used to fit simulated spectra to measured spectra. To utilize 

MALT, additional constraints in the form of  input parameters are 

required, which are, 1) initial concentrations of  expected target and 

interfering trace gases, 2) spectral continuum variables, 3) instrumental 

parameters determined by the hardware configuration, and 4) 

environmental variables of  pressure and temperature which influence 

the HITRAN parameters. The measured spectra are then fitted using 

the Levenberg-Marquardt iterative minimization algorithm, which finds 

a set of  fit parameters (including gas concentrations) that minimize the 

cost function, , based on the difference between the measured and 

calculated (simulated) transmittance spectrum, : 

	 	 	   . 

The retrieval results are the gas concentrations, as well as any other 

parameters (1-4 above), that give the best fit of   to , as 

judged by a minimum value of  the spectral residual. 

χ2

T

χ2 =
∑v (Tmeasured(ν) − Tcalculated)2

ϵ2
v

Tcalculated Tmeasured
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1.5   Experimental Goals 

	 The first half  of  this project explores the effect of  changes to the 

retroreflector array used in the OP-FTIR system. This is achieved 

through 1) cleaning visually degraded retroreflectors, and 2) increasing 

the retroreflector array area. The remaining half  of  this project 

explores how parameters such as path length, (interfering) water 

concentration, and target gas concentration affect the differential 

absorption signatures of  the target gas. 
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Chapter 2 

Experimental Methods 

2.1   Retroreflector Cleaning 

	 After extensive field use, especially in coastal settings, 

retroreflectors begin to show signs of  visual degradation as well as a 

decrease in infrared (IR) reflectivity. To mitigate this degradation and 

subsequent IR response decrease , the array can be cleaned to improve 

performance, however, the broader community using optical mirrors in 

environmental applications is divided as to the best cleaning procedures 

and their effectiveness in improving IR signal returns. 

	 For this experiment, a method of  deionized water and methanol 

application was used to clean a retroreflector array constructed in 2015, 

with ~180 days of  cumulative exposure in a coastal setting. Successive  

applications (~15) of  deionized water were applied to each side of  each 
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cube corner retroreflector, then a final application of  methanol was 

applied. 

2.1.1   Surface Characterization 

	 Scanning Electron Microscope (SEM) measurements were 

performed by Dr. Hanley of  Saint Mary’s University, Department of  

Geology, to characterize the cube corner surface before and after 

cleaning procedures. The SEM performs measurements on a sample by 

focusing a beam of  electrons through a column of  lenses. This column 

is directed at the sample chamber, which is evacuated along with the 

column to produce a vacuum. These electrons then impact the surface 

of  the sample, producing secondary electrons, characteristic x-rays, and 

backscattered electrons. These products are then collected by detectors 

to form an image for surface characterization. The depth of  penetration 

on the sample surface is dependent on factors such as the sample 

density, and beam acceleration, however, the penetration depth is 

usually on the order ~2 microns. 

	 To determine the result of  the cleaning, a selection of  visible 

images were also taken by Dr. Hanley before and after the cleaning 
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process to examine the condition of  the optical surface. These images 

were taken to determine the extent of  the remaining contamination on 

the optical surface, as well as the buckling of  the gold mirror foil off  of  

the base of  the cube corner retroreflector. Before and after cleaning 

characterization was very similar in the visible and SEM analysis, 

therefore only the "before" results are shown in Chapter 3. 

	 Additionally, Field Emission-SEM surface characterization was 

conducted on a portion of  the optical surface (~4 mm square) that 

bordered the edge of  the optical surface, chosen to explore the 

topography and composition. These methods include the study of  

backscattered electrons, secondary electrons, as well as the use of  an 

energy dispersive spectrometer. 

2.1.2   Spectral Effects of  Cleaning 

	 To quantify the effect of  cleaning on the retroreflector, FTIR 

spectral measurements were made before and after the cleaning process, 

at St. Mary’s University. For the measurement before and after cleaning, 

the OP-FTIR telescope (modified 12" Schmidt-Cassegrain) was focused 

on the retroreflector array using an iterative procedure of  a z-
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adjustment of  the secondary mirror (in-out from primary mirror) 

followed by an x-y adjustment of  the telescope tube (left-right, up-

down), which was iterated at least once to maximize signal levels. 

Focusing the telescope is particularly important at long path lengths, 

where returning radiation is reduced due to beam divergence. The 

result of  these measurements are absorption spectra, recorded at 0.5 

cm-1 resolution with 240 co-added interferogram samples in 1 minute. A 

Norton-Beer (medium) apodization was applied before transforming the 

time-averaged interferogram. This same iterative focusing process was 

also used to make spectroscopic measurements with the enlarged array, 

following the same acquisition settings (Section 2.2.2, p. 24). 

2.2 	Increasing Retroreflector Area  

	 When considering the deployment location for the OP-FTIR 

system, there are many competing factors that need to be considered, 

including, electrical/internet capacity, shelter, and, most importantly, 

atmospheric sampling. An important factor that is often hard to control 

is the path length resulting from a given measurement location and how 

it affects the trace gas. The selected path length must, however, take into 
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account the limitations imposed on path length by the measurement 

system, those being an effective maximum and minimum path length. 	 	

	 A minimum path length of  around 10 m or more is required to 

make effective measurements of  trace gases other than the highly 

abundant water and carbon dioxide (Griffith, 2002). Additionally, an 

upper limit exists due to signal loss resulting from overfilling the 

retroreflector, though this is dependent on retroreflector size and specific 

beam collimation (Wiacek et al., 2018a). Measurements at longer path 

lengths are further complicated due to growing interference from water 

and carbon dioxide in the atmosphere. 

	 Through enlarging the retroreflector in the initial portion of  this 

project, the path length at which the retroreflector is overfilled can be 

increased. This, along with improved beam collimation can increase the 

maximum achievable path length before overfilling begins to affect 

measurements. 

2.2.1   Larger Retroreflector Array Construction  

	 To construct a larger retroreflector array, 60 new cube corner 

retroreflectors were sourced and purchased leading to the honours work 
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in the summer of  2020. These cube corner retroreflectors were 

purchased after an exhaustive search of  possible candidates. Factors 

such as cost, reflective coating material (gold, silver, or aluminum), 

construction time, and protective coatings were considered. In 

particular, the mirror material and the protective coating were 

researched in detail as they directly affect both the quality of  the 

measurements as well as the longevity of  the retroreflectors. After a 

suitable retroreflector candidate was selected, the 60 pristine cubes 

arrived at Saint Mary’s University already mounted onto two custom 

array panels (30 new cubes on each panel), to which the older cubes 

were subsequently added in the course of  this project. 

	 In October 2020, two existing retroreflector arrays, each 

comprising 59 bare-gold cube corner retroreflectors, of  63 mm 

diameter sourced in 2015, were disassembled to construct the larger 

retroreflector arrays. The smaller retroreflector array is shown in Figure 

2.1 (top), taken in 2015. The larger retroreflector array that was 

constructed using these 59 bare-gold cube corners, which have since 

degraded somewhat from ~180 days of  cumulative field use, and 30 

pristine (newly purchased) gold cube corner retroreflectors, which have 
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a protective dielectric coating with a  very similar high IR reflectivity 

(~98%), is shown in Figure 2.1 (bottom), taken just after construction. 

This increase by 30 cube corner retroreflectors corresponds to an 

approximate 50% increase in the retroreflector array area. 

 

Figure 2.1: (Top) Pristine bare-gold retroreflector array acquired in 2015, (Bottom) 
Larger retroreflector array constructed in 2020, with the 30 pristine cube corner 
retroreflectors in the centre and somewhat degraded retroreflectors around it. 
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2.2.2   Varying Path Experiments 

	 To determine the point at which beam divergence results in 

overfilling of  a retroreflector for a particular system, an experiment can 

be conducted where spectral measurements are made at successively 

increasing path lengths. In May 2015, this style of  experiment was 

conducted with a retroreflector array constructed of, at the time, 59 

pristine bare-gold cube corner retroreflectors. The retroreflector array 

was progressively moved further from the spectrometer starting at 50 m  

and increasing to a separation of  450 m in 100 m increments. This 

resulted in two way separations of  100-900 m, where a two-way 

separation is double the physical separation between the retroreflector 

array and the spectrometer, representing the distance travelled by the 

beam. At each increment, spectroscopic measurements were made and 

the return signal level was recorded to assess beam divergence.  

	 In October 2020, this experiment was repeated with the newly 

constructed retroreflector array. This experiment was conducted with 

separations from 50 m to 1575 m (two-way) in approximately 200 m 

increments, with the goal of  assessing the benefits of  the larger 

retroreflector array area, specifically with regard to overfilling. At each 
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location and path, the OP-FTIR telescope was focused on the 

retroreflector using the method outlined in section 2.1.2 (p. 19). Note 

that the data selected for analysis were those that were free of  

interference from local traffic while measurements were being made. 

2.2.3   Spectroscopic Retrievals	 

	 After data acquisition using the proprietary software from Bruker 

(OPUS RS), the trace gas concentrations were retrieved using MALT. 

The raw and normalized spectra recorded at each path length of  both 

the 2015 and 2020 experiments were plotted to assess gross features in 

the data. From the spectra normalized to the highest value, the region 

of  7640  to 7740  was isolated to determine the spectral noise 

by taking the standard deviation after de-trending. The de-trending 

removed any change in the mean signal of  the region, thus making the 

signal in the region vary about zero so that a true random noise value 

could be calculated. The signal-to-noise ratio was calculated by taking 

the inverse of  the noise value from these normalized spectra. 	 	 	

	 Retrievals of  carbon monoxide were performed on the absorption 

spectra between 2044.52 cm-1 and 2167.95 cm-1 using a nonlinear least-

cm−1 cm−1
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squares technique (Wiacek et al., 2018a) that models the absorption of  

all gases relevant in the chosen spectral window using the HITRAN 

database (Rothman et al., 2013) at the temperature and pressure of  the 

measurements. The 2044.52 cm-1 and 2167.95 cm-1  region was selected 

as the best region to detect the target gas, carbon monoxide, with 

interfering gases of  water and carbon dioxide, as both gases have 

notable absorbance in the selected region. To analyze the effect of  path 

length (and thus noise), the root-mean-square residuals of  the spectral 

fit and retrieved carbon monoxide concentration percent errors were 

chosen as goodness-of-fit parameters.

2.3   Theoretical Spectral Simulation 

	 For each target trace gas with significant interfering gases present, 

there is an optimal path length to allow for sufficient spectral absorption 

for detection, before either the increasing path begins to yield 

diminishing returns due to an increase in the absorption of  the 

interfering gases (Wiacek et al., 2018b) or retroreflector overfilling 

begins. Determining which trace gases have an optimal path length and 

also finding this optimal path length is the focus of  the theoretical 
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spectral simulations in this project, which utilizes constant input 

parameters such as water concentration and target gas concentration 

while path length is varied to show its effect on absorption. 

2.3.1   Effect of  Path on Target Gas Absorption 

	 To determine the effect of  the path length on the absorption 

spectrum of  the target and interfering gases, the path length must be 

allowed to vary over a range while all other parameters are held 

constant. These parameters include values for target gas concentration, 

any interfering gas concentrations, instrument parameters, temperature, 

and pressure. 

	 Simulations were also conducted to isolate the effect of  only the 

target gas on the spectrum. This is achieved by calculating the 

differential absorption due to the target gas, or in other words, the 

difference between a spectrum with the target and interfering gases, and 

a spectrum that contains only the interfering gases. These simulations 

require the same input parameters as above. 
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	 For the simulations in this project, multiple target gases were 

selected and simulated, however the focus for this project is carbon 

monoxide and formaldehyde due to their differing abundance, discussed 

further in the following section. The input parameters for these 

simulations, as well as the results outputs for various other trace gases, 

will be given in Appendices A and B. 

	

2.3.2   Effect of  Increasing Target Gas Concentration 

	 To examine the relationship between transmittance and 

absorbance shown in Figure 1.4, simulations  were conducted where the 

target gas concentration was increased by a factor of  ten to examine the 

resulting effect on the differential absorption.  These simulations were 

conducted for multiple gases, however the focus in the results section 

will be on carbon monoxide and formaldehyde. These gases were 

selected due to their differing background concentration values; carbon 

monoxide is abundant and easily detectable at ~120 ppb, while 

formaldehyde has a very low background concentration near the 

threshold of  detection for the OP-FTIR system at ~1 ppb.

Chapter 2 - Experimental Methods 27



Chapter 3 

Results and Discussion 

3 . 1 C l e a n i n g E x p e r i m e n t s a n d M i r r o r 

Characterization 

	 After ~15 campaigns spanning over 5 years of  service, the smaller  

(59-cube) retroreflector arrays were cleaned to remove visual 

degradation and help mitigate a 15-25% IR signal intensity loss, 

determined experimentally in July of  2019. After recording spectral 

signals before and after the cleaning process, a maximum spectral 

intensity increase of  ~10% was found. The visual degradation on the 

optical surface remained unchanged. An optical surface 

characterization of  a single bare-gold cube corner mirror edge (Figure 

3.1) was conducted by Dr. Hanley on one of  the most degraded array 

elements, while an SEM (Figure 3.2) was used for a more detailed 

analysis. Before and after cleaning results proved very similar, hence 
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only before results are presented below. The following are Dr. Hanley’s 

remarks on the characterization experiments, as presented by Power at 

the American Geophysical Union; Fall Meeting (2020). 

	 There was virtually no change in imaging results after cleaning, 

including particles that remained affixed to the reflective area, which 

would require ultrasonic cleaning to remove, likely destroying the 

underlying gold coating in the process. Figure 3.1 shows that the base 

substrate holding the gold mirror coating is an aluminum-chromium 

alloy that is heavily surface oxidized/corroded, producing the 

aluminum-hydroxide visible principal contaminant. Figure 3.2 shows 

that the contaminants are only present in significant thickness on the 

outermost 500  of  the surface, near the mirror edge, which 

corresponds to the area of  visible contamination. As the aluminum-

chromium alloy corrodes, gold is bubbled and separated from the 

substrate (Figure 3.1 inset), creating the visible area of  damage (500 ) 

up to several mm wide over all array cubes.  

	 Shown in Figure 3.1 and inset, creep delamination is the de-

adhesion of  a coating from the substrate. As the retroreflectors see 

μm

μm
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continued use it is likely the effects of  creep delamination will worsen, 

possibly resulting in peeling of  the coating from the substrate. 

	 Since these processes (gold buckling and heavy edge 

contamination by the Al phase) affect mirror optical flatness, the signal 

loss should be correlated with area lost, which we estimate (over all 3 

mirrors of  this heavily impacted cube) using a DIC Nomarski prism 

(Figure 3.1) to be no more than 3% of  the total area (range between 1 

and 3%). This is lower than the estimates of  reflectivity loss of  15-25% 

over the entire array area. Additionally, the total reflectivity is 

approximately 100% in regions outside of  the 500 um to 3 mm altered, 

buckled window, also measured in reflected, plane-polarized visible 

light, using a highly polished gold standard (0.2 um finish).  However, 

the flatness and reflectivity characterizations are  optical, whereas the 

15-25% signal loss was inferred from mid-IR spectral intensity 

measurements in 2015 and again in 2019, although the complication of  

imaging an unknown fraction of  degraded vs. pristine cubes makes a 

precise analysis impossible. Overall, the estimated signal loss is of  the 

same order in each spectral region.  
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Figure 3.1. Visible image of single bare-gold cube corner edge  before cleaning (left) and 
optical flatness characterization (right). “SEM image” refers to Figure 3.2 analysis area. 
Courtesy of Dr. Hanley 

Figure 3.2. Field Emission-SEM surface characterization of a single bare-gold cube 
corner (before cleaning) showing compositional and textural features of a visibly 
contaminated mirror edge (“SEM image” in Figure 3.1) with back-scattered electron 
detector (BSE, panel A), secondary electron detector (SE, panel B), and energy dispersive 
spectrometer (EDS) analysis of points 1-5 (panel A) shown in panel I. See text for details 
about panels C-H. Courtesy of Dr. Hanley 
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	 In Figure 3.2, [A], the SE image shows surface textural features 

including a thin film of  variable thickness (light and dark patches) and 

fragments of  contaminating material that increases in abundance 

immediately near the edge of  the mirror. The numbered spots were 

analyzed by EDS and data are summarized in Figure 3.2, [I]. The 

dashed yellow line outlines the area closest to the edge that is 

contaminated with a precipitate and delaminated. In Figure 3.2, [B], 

the BSE image shows grey scale mean atomic number (proportional to 

density). Black areas show pure, low density, coarse-grained 

contaminant particles on the mirror surface. Light areas are the gold 

surface coated with a variable density “film” of  fine-grained 

contaminants in negligible concentrations. In Figure 3.2, [C]-[H], the 

EDS “maps” of  relative X-ray line intensity (emission line used for 

measurement indicated next to element symbol). These maps show that 

the vast majority of  the contaminants are concentrated within ~ 500 

microns of  the edge of  the gold mirror. The dominant contaminant is 

an aluminum-bearing hydroxide (gibbsite- boehmite) seen in the 

aluminum and oxygen X-ray maps, Figure 3.2 [D, E] respectively, 

which is present in significant concentrations, up to ~ 50 wt% (mass 

Chapter 3 - Results and Discussion 32



fraction) of  the surface layer. Marine-related, minor to trace carbon 

(organics, coarse particles, and fine-grained film) in Figure 3.2, [F], 

chlorine (fine-grained film, likely halite – NaCl) in Figure 3.2, [G], and 

sulphur (fine-grained film) in Figure 3.2, [H] are also present in this 

~500 micron zone. In panel [I] of  Figure 3.2, there is a summary of  

EDS analysis at points 1-5 shown in Figure 3.2, [A], showing that 

generally, at least ~ 50% of  the surface layer is gold, and away from the 

~500 micron altered zoned, gold concentration rapidly climbs to ~99 

wt%+, as expected for gold-coated cube corner retroreflectors without 

any protective dielectric coating.  

3.2  Increasing Retroreflector Area 

3.2.1  Effect on Raw Spectra 

	 In the 2015 experiment at Franklyn Street (Figure 3.3), it was 

determined that after ~300 m of  two-way separation between the 

spectrometer and retroreflector array, the retroreflector became 

overfilled and the signal intensity was progressively reduced at 

increasing paths, with an approximately even signal drop between 500 

m and 700 m, and again between 700 m and 900 m (Figure 3.5). In the 
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2020 experiment at Otter Lake (Figure 3.4), the signal began decreasing 

to a similar extent after ~600 m of  separation. The rate of  decrease in 

2020 was half  the rate of  the 2015 experiment, as shown by the slopes 

of  best-fit lines in Figure 3.5. Apart from the expected slower signal 

decrease for a larger array, the arbitrary signal level maxima are 25% 

lower at Otter Lake (~0.69, 100 m) as compared to Franklyn Street 

(~0.92, 100 m), despite the 50% larger retro array, which is discussed in 

detail next. Note that when the arrays are under-filled, signal levels are 

expected similar, regardless of  size. 

	 Pressure and temperature, and the closely associated swings in 

humidity, are also factors in signal intensity. In the 2015 experiment, the 

conditions were slightly more humid than the conditions of  the 2020 

experiment, which would result in a decrease in the signal levels 

recorded in the 2015 experiment, as opposed to the observed increase. 

The higher humidity at Franklyn Street is also visible in the spectral 

features of  water absorption (Figure 3.3 and 3.4, e.g., 100 m path in 

saturated band regions) and retrieved water concentrations (not shown).  

	 The likelihood that the maximum signal level decreases in 2020 

spectra were caused by the dielectric coating on the 30 pristine cubes 
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was also investigated. From the manufacturer's specifications, the 

reflectivity of  the cube corner retroreflectors with the protective coating 

is similar or higher, i.e., 97-99%, as compared to bare-gold (97-98%). 

While Otter Lake spectra show a changed continuum shape between 

800  and 1200  as compared to spectra recorded at Franklyn 

Street (Figure 3.3 compared to Figure 3.4), the recent mirror cleaning 

experiments involving uncoated gold cubes (not shown) have the simpler 

continuum shape of  the spectra from Franklyn Street (Figure 3.3), but 

with similar maximum signal values of  Otter Street. Thus it is 

confirmed that the signal decrease is not due to the protective dielectric 

coating, as expected.  

	 The next potential source for the lower signal levels in the 2020 

spectra that was investigated was the 59 degraded cube corner 

retroreflectors and how they affected the signal levels recorded at Otter 

Lake in 2020. It is not clear if  the alignment procedure used (see section 

2.1.2) has the precision or accuracy to image only the 59 degraded cube 

corner retroreflectors or some combination of  old and new cubes. Since 

the array is under-filled at 100 m separation (12" telescope diameter), if  

the spectrometer was aligned with only degraded retroreflectors, their 

cm−1 cm−1
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measured degradation would account for the full observed signal loss of  

25% (at 100 m path), assuming that nothing else has changed with the 

system since 2015. If  the spectrometer was imaging a combination of  

degraded and pristine retroreflectors, it would imply that the 

degradation would have to be greater still (e.g., 50% if  half  of  the 

imaged cubes were new, also assuming their reflectivity was 100%). This 

is not the case, however, as measurements from 2015 and 2019, which 

were made at similar conditions to one another, rule out a 50% 

degradation, even after ~180 cumulative days of  ambient marine 

environment exposure since 2015, which contributes to the poor visible 

quality of  the arrays.  

	 Lastly, using the internal retroreflector in the spectrometer (used 

for calibration and computer connection), a measurement was taken at 

an extremely short path (< 1 m). This measurement revealed that the  

Globar infrared source intensity has decreased by ~10% between 2015 

and 2020. A loss of  source intensity would affect degraded and pristine 

cubes in the same way, so this factor can account for a significant 

portion of  the 25% reduction in arbitrary signal levels (at 100 m) 

between 2015 and 2020, although the complication of  imaging an 
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unknown fraction of  degraded vs. pristine cubes makes a precise 

analysis impossible. Regardless of  reduced absolute signal levels in 

2020, the essential finding of  this work stands: a larger retroreflector 

array exhibits slower signal loss as a function of  separation from the 

spectrometer. 

 

Figure 3.3. Raw spectra from Franklyn Street (May, 2015), where a 59-cube retroreflector 
array was used at varying two-way measurement paths (see legend). Measurement 
temperature and relative humidity (RH) conditions varied very little from noon to 4PM at 
~22∘C and ~70% . 
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Figure 3.4. Raw spectra from Otter Lake (October, 2020), where a 50% larger array (89 
cubes) was used at varying two-way measurements paths (see legend). Measurement 
temperature and RH conditions varied from ~21∘C and ~60% RH at 2 PM to ~13∘C and 
~75% RH at 6 PM. 

Chapter 3 - Results and Discussion 38



 

Figure 3.5. Maximum arbitrary signal intensity for varying two-way measurement path 
lengths in 2015 and 2020, together with lines of best fit. 

In an experiment conducted across Halifax harbour in December 

2020 (~570 m two-way), after the Otter Lake 2020, the pristine portion 

of  the larger retroreflector array was covered to quantify its effect. 

Figure 3.6 shows eight spectra taken consecutively, with the first three 

spectra having the pristine portion of  the array covered and the last four 

with the entire array exposed (one spectrum is affected by the removal 

of  the covering). From these results, it is clear that the arbitrary signal 
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intensity in the 2000  to 3000  of  the uncovered spectra are 

nearly twice the signal of  the covered spectra. Thus the larger 

retroreflector array returns very nearly 100% more incoming radiation 

compared to the smaller retroreflector array, which is twice the increase 

expected based on the area increase (50%) alone, if  all cubes had the 

same reflectivity. If  we assume 100% reflectivity for the new cubes for 

simplicity, this implies that the old cubes have 50% "net" reflectivity, 

considering also that there are twice as many old cubes as new cubes. 

This assumes that the IR beam is uniform across all cubes, which is 

certainly not the case: In all likelihood the  beam centre is aligned 

preferentially on the new, more reflective cubes, exaggerating somewhat 

the disparity between the reflectivity of  the old and new cubes.  Finally, 

we note that if  the old cubes have a "net" reflectivity of  50%, this 

means that the degraded gold surface actually has a surface reflectivity 

of  70%, since two reflections of  the beam take place in each cube. 

cm−1 cm−1
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Figure 3.6: Spectra taken from Halifax harbour (~1100 m two-way), spectra 1-3 have the 
pristine cube corner retroreflectors covered, spectra 5-8 have the entire retroreflector 
array uncovered  

3.2.2  Effect on Noise in Spectra 

	 The spectral region used to estimate noise (see Section 2.2.3) is 

shown in Figure 3.7 (top) for the Otter Lake experiment. The signal 

remaining after normalization and de-trending has white noise 

characteristics and, upon closer examination (not shown), there are no 
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correlated spectral absorption features in this spectral region between  

spectra at different measurement paths. As expected, the longer paths, 

where the retroreflector is overfilled (and the return signal is being lost), 

exhibit higher noise values. The root-mean-square noise values 

estimated at both measurement locations are also shown in Figure 3.7 

(bottom), and Otter Lake noise shows an increase of  approximately one 

half  the rate of  Franklyn Street noise, based on the slopes of  the lines of  

best fit (~4.8 m-1 vs. ~9.0 m-1). Since the noise values are relative, it 

makes sense that they are higher at Otter Lake, where signal levels were 

lower, assuming constant instrumental noise. 
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Figure 3.7: (top) Normalized and detrended spectral signatures in a region outside of 
instrumental response at Otter Lake (cf. Figure 3.4), which correspond to relative noise 
values. (bottom) RMS noise values at Franklyn Street (May 27, 2015, 59 cube corner 
retroreflector) and Otter Lake (October 16, 2020, 89 cube corner retroreflector), together 
with lines of best fit. 

3.2.3  Effect on Signal and Noise 

	 The signal-to-noise ratio of  both experiments is shown in Figure 

3.8. At short paths (e.g., 100 m) the higher signal in the 2015 Franklyn 

Street experiments leads to correspondingly higher SNR values, 

however, the Franklyn Street signal-to-noise ratio values decrease more 

than two times faster than the Otter Lake signal-to-noise ratio values 

with increasing paths (~ -1.5 m-1 vs. ~ -3.6 m-1). At long paths, i.e., 800 

m and above, the Otter Lake experiment shows higher signal-to-noise 

ratio values. 
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Figure 3.8: Signal-to-noise ratio for varying path lengths in 2015 (59 cube corner 
retroreflectors) and in 2020 (89 cube corner retroreflectors), together with lines of best 
fit.  

3.2.4  Effect on Carbon Monoxide Retrieval 

	 The effect of  the measurement configuration and the resultant 

signal-to-noise on goodness-of-fit parameters for retrievals of  carbon 

monoxide is shown in Figure 3.9. Carbon monoxide was chosen as a 

robust, easy to detect species. 
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	 Both experiments show increasing spectral fit root-mean-square 

(RMS) residuals with increasing path (Figure 3.9, top); however, whereas 

the noise for the Otter Lake experiment at 900 m was lower than that 

of  the Franklyn Street noise (Figure 3.7, bottom) the corresponding 

residual value is higher than Franklyn Street. Systematic fitting effects  

act to increase the RMS fit residual above the random noise value. The 

fit residuals at 300 m and 900 m (Figure 3.10) for both experiments 

shows that the residuals for the Otter Lake experiments are greater than 

the Franklyn Street experiments, and that this has to do with systematic 

fitting errors of  water. 

	 Both experiments also show decreasing spectral fit percent errors 

with increasing path (Figure 3.9, bottom), which is consistent with 

increasing spectral absorption features of  carbon monoxide with 

increasing path, as the absorption depth for both experiments is higher 

at a path of  900 m. At the highest path common to both experiments, 

the larger retroreflector array (Otter) shows a nearly identical percent 

error as the smaller retroreflector array (Franklyn). The absolute values 

of  carbon monoxide retrieved are near background levels for Halifax in 

both experiments (within 135 ppb ± 10 ppb).  
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Figure 3.9: (top) Root-mean-square spectral fit residual for a carbon monoxide retrieval 
from a short path spectrum where the retroreflector is not overfilled and from a spectrum 
at the longest path length common to both experiments. (bottom) Retrieved carbon 
monoxide concentration percent error for the same spectral retrievals. 
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Figure 3.10: Carbon monoxide fit residuals for Otter Lake and Franklyn Street for a path 
difference of 300 m (top) and 900 m (bottom). Arrows point out residual features due to 
water misfitting 
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3.3  Theoretical Spectral Simulations 

	 For the theoretical spectral simulations in this project, ~10 target 

gases were selected, also in multiple spectral windows for certain gases. 

In the following sections, carbon monoxide and formaldehyde will be 

discussed in detail, while the results for the other gases are shown in 

Appendix B. Carbon monoxide was chosen due to its abundance, ease 

of  detection, as well as previous work, while formaldehyde was selected 

due to its comparatively small abundance and difficulty of  detection, 

molecular complexity, and importance in air quality. 

3.3.1  Percent Absorption vs. Path 

	 In Figure 3.11 the effect of  increasing path length (which starts at 

50 m and increases up to 1500 m in 50 m increments) on the absorption 

spectrum of  the target and interfering gases is shown. Figure 3.11 (top) 

shows that the percent absorption of  carbon monoxide and interfering 

gases increases with increasing path length, peaking at  ~100%, due to 

water vapour absorption. These regions of  water saturation do not 

carry information about other trace gas concentrations, as an infinity of  
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mathematical solutions exists for other trace gases overlapped by 100% 

water absorption. The best region to perform carbon monoxide 

retrievals is between 2100  to 2200 , as it avoids regions of  

100% absorption. Additionally Figure 3.11 (top) shows that at short 

path lengths (< ~500 m), the percent absorption of  regions without 

water lines (such as at approximately 2120  and 2170 ) is 

~20%, with only a fraction of  that percentage coming from carbon 

monoxide (Figure 3.12 (top)), thus further complicating detection. 

	  Figure 3.11 (bottom), shows that the peak absorption is ~55%, 

corresponding to water features at approximately 2720 . It can also 

be seen that the percent absorption increases with increasing path 

length, with shorter path lengths (< ~400 m) reaching only ~15% 

absorption. This means that retrievals are theoretically better at longer 

path lengths, as the higher percent absorption indicates that more of  

the target gas spectral signature is present, however, this percent 

absorption includes the interfering gases in Figure 3.11. To discern how 

the target gas impacts this percent absorption, the differential 

absorption plots in Section 3.3.2 are more informative.  

cm−1 cm−1

cm−1 cm−1

cm−1
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Figure 3.11: (top) Percent absorption due to 130 ppb carbon monoxide and interfering 
species as a function of varying path. (bottom) Percent absorption due to 1 ppb 
formaldehyde and interfering species as a function of varying path. 
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3.3.2  Differential Absorption 

	 Figure 3.12 shows a set of  transmittance spectra, which includes 

the target and inferring gases, plotted above a differential absorption 

spectrum. This is to help relate the spectral features of  the selected 

gases to the corresponding features in the differential absorption plot. 

Figure 3.12 (top), shows that the spectral lines in the transmittance 

spectrum of  carbon monoxide, which reach a minimum of  ~0.80, 

correspond to lines of  increased differential absorption, peaking at ~ 

20%. From these differential lines, it is clear that the differential 

absorption of  carbon monoxide increases as path length increases. This 

implies that the best path length to measure carbon monoxide is the 

longest path length possible for the OP-FTIR system, provided that 

overfilling of  the retroreflector does not result in a signal-to-noise ratio 

unsuitable for measurements, as shown in Section 3.2.3, Figure 3.8.  

	 In Figure 3.12 (bottom), the transmittance spectrum is zoomed in 

to see the spectral features of  formaldehyde, which only reaches a 

minimum transmittance of  ~0.9985. It is clear that very short path 

lengths (< ~300 m) provide an approximate differential percent 

absorption of  < 0.06%, which is technically large enough for 
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formaldehyde to be detected in the presence of  the interfering gases, 

because the noise is 0.014 - 0.016% (Figure 3.7) at these separations. 

The differential percent absorption of  formaldehyde alone reaches a 

maximum of  only ~0.12% at the maximum path length of  1500 m, 

which is also technically higher than the random noise of  ~0.025% at 

these separations (Figure 3.7). This means that at longer path lengths 

the interfering gases are not obscuring the target gas, as the pink 

differential absorption bands intensify toward maximum path 

difference. However, it must be noted that this analysis considers 

random noise only, and that systematic noise due to spectroscopic 

parameter errors is always an issue in fit residuals, as discussed later. For 

robust detection to be possible, the individual yet spectrally correlated 

contributions from the target gas features must be comparable to the 

noise of  the retrieval, which includes both random and systematic 

components. 

	 Certain species can be obscured by the interfering gases at a 

certain threshold path difference, giving diminishing returns in 

detection limits at increasing path lengths. One example of  a species 

that shows this behaviour is nitric oxide (1560  - 1660 ), region cm−1 cm−1
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shown in Figure 3.13. It is clear that the largest differential percent 

absorption is present in the lines centred around ~1585 , 1600 

, and 1605 . Each of  these regions show diminishing returns 

as the path length increases, with the lines at ~1585  and 1605 

 extinguishing before the maximum path, while the lines near 1600 

 begin to narrow at a path difference of  approximately 500 m. As 

stated above, this occurs as a result of  interfering gases dominating over 

the target gas at longer path lengths. 

cm−1

cm−1 cm−1

cm−1

cm−1

cm−1
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Figure 3.12: (top) Differential absorption due to 130 ppb carbon monoxide in the 
presence of interfering gases as a function of varying path and corresponding 
transmittance spectrum for target and interfering gases. (bottom) Differential absorption 
due to 1 ppb formaldehyde in the presence of interfering gases as a function of varying 
path and corresponding transmittance spectrum for target and interfering gases. 
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Figure 3.13: Differential absorption due to 25 ppb nitric oxide in the presence of 
interfering gases as a function of varying path and corresponding transmittance spectrum 
for target and interfering gases.  

3.3.3  Increasing Target Gas Concentration 

	 To examine the relationship between absorbance, which is 

proportional to concentration, and transmittance which is 

logarithmically related to absorbance, simulations of  carbon monoxide 

and formaldehyde were conducted with initial concentrations at ten 

times the typical values (1300 ppb and 10 ppb respectively). The 

differential absorption of  carbon monoxide and formaldehyde are 

shown in Figure 3.14 (top and bottom respectively); note that all other 

input parameters remain identical to the parameters used in the 
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simulations shown in Section 3.3.2. Additionally, the y-axis of  the 

transmittance spectra has been rescaled to show the spectral features of  

the target gases. 

	 The maximum differential percent absorption due to carbon 

monoxide in Figure 3.14 (top) is ~60%, which has increased by a factor 

three as compared to Figure 3.12 (top). This is despite the carbon 

monoxide concentration increase by a factor of  ten, highlighting the 

non-linear relationship between transmittance and absorbance (see 

Figure 1.4). This is not the case for formaldehyde, in Figure 3.14 

(bottom), which shows an increase of  a factor of  ten in percent 

difference as compared to Figure 3.12 (bottom). These same factors are 

also present in minimum transmittance subtract one for each target gas, 

which represents absorption. From Figure 3.15 it is clear that carbon 

monoxide and formaldehyde exhibit different behaviour when the 

concentration is increased due to their location on the solid curve. Thus 

for species with a low background concentration of  ~ 1 ppb, such as 

formaldehyde, concentration increases appear in a linear region of  

Figure 3.15, while more abundant gases, such as carbon monoxide, do 

not.	  
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Figure 3.14: (top) Differential absorption due to 1300 ppb carbon monoxide in the 
presence of interfering gases as a function of varying path and corresponding 
transmittance spectrum for target and interfering gases. (bottom) Differential absorption 
due to 10 ppb formaldehyde in the presence of interfering gases as a function of varying 
path and corresponding transmittance spectrum for target and interfering gases.
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Figure 3.15: Logarithmic relationship between transmittance vs absorbance with gases 
from Sections 3.2 and 3.3. Note that transmittance are taken from a simulation at 1500 m.
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Chapter 4 

Conclusions and Future Work 

	 Setting out, the goals of  this project were, 1) to characterize the 

effects of  retroreflector array cleaning and size, 2) to determine how 

parameters such path length, (interfering) water concentration, and 

target concentration affect the differential absorption of  a target gas 

through simulations, and 3) to determine the effects of  increases in the 

target gas concentration, also through simulations.

	 The effect of  the retroreflector cleaning was found to be a modest 

signal increase of  10%, with no visible effects on array appearance. 

After a surface characterization of  one cube corner retroreflector was 

performed by Dr. Hanley, his findings were that the aluminum-

chromium alloy substrate holding the gold mirror coating is heavily 

surface oxidized/corroded, producing the principal visible contaminant 

of  aluminum-hydroxide. These contaminants are only present in 
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significant thickness on the outermost 500  of  the surface, near the 

mirror edge, corresponding to the area of  visible contamination. For the 

outermost 500  to 3 mm of  the altered, buckled window, the total 

reflectivity is estimated to be close to 100%.  The total signal loss, which 

is correlated to the optical area, was estimated (over all 3 mirrors of  this 

heavily impacted cube) to be no more than 3%, which accounts for gold 

buckling and contamination. This, however, is lower than other 

independent estimates of  signal loss of  15-25% over the entire array 

area, including a 10% contribution from source intensity changes, and 

points to reflectivity losses in areas without visible contaminants, as may 

be expected due to the presence of  organic and inorganic thin coatings. 

	 From experiments conducted with the larger retroreflector array, 

it was determined that the signal-to-noise ratio for the experiment with 

the larger retroreflector array decreased as a function of  array-

spectrometer separation at half  the rate of  the experiment with the 

smaller retroreflector. This directly correlated to the behaviour of  the 

noise in the two experiments, as the noise of  the larger retroreflector 

experiment increased at half  the rate of  the smaller retroreflector 

experiment, again, as a function of  array-spectrometer separation. 

μm

μm
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From the raw spectra taken from both experiments, it is clear that the 

peak arbitrary signal levels were higher for the smaller retroreflector 

array experiments by approximately 25%. This may be accounted for 

by considering the impact of  the older cube corner retroreflectors as 

well as the intensity decrease of  the Globar infrared source used by the 

spectrometer. Looking at spectra taken with and without the pristine 

portion of  the larger retroreflector array showed that the returning 

arbitrary signal levels are approximately doubled with the larger 

retroreflector. 

	 From absorption and differential absorption plots of  carbon 

monoxide, it can be seen that the retrievals should be conducted 

between 2100  to 2200 , preferably at larger path lengths. For 

formaldehyde, path lengths of  ~300 m and shorter do not have the 

absorption required to detect formaldehyde when systematic sources of  

error are taken into consideration in spectral residuals. Lastly, for trace 

gases with typical concentrations of  ~1 ppb, such as formaldehyde, 

differential absorption and absorbance are approximately linearly 

related, while trace gases with more abundant background values, such 

as carbon monoxide at ~130 ppb, this relation is non-linear. 

cm−1 cm−1
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	 To further analyze the effect of  the larger retroreflector array, 

measurements can be taken at locations where the smaller retroreflector 

array was recently used. These results can then be cross-referenced with 

more recent results from the smaller retroreflector array (earlier than  

the 2020 Otter Lake experiments). Next in future work, the gases shown 

in Section 3.2 and Appendix B are all taken from the HITRAN 

database, however, more complex species can be simulated using a 

database such as the Pacific Northwest National Lab. In the future, the 

current code used for these simulations can be updated to include more 

complex species. Additionally, the output figures shown in Section 3.2 

and 3.3 are simulated at a higher resolution then is capable for most 

OP-FTIR systems. Future work should address this issue by 

implementing a resolution setting into the code used for simulations. 

Finally, all the simulated species should be plotted on Figure 3.15 since 

their absorbance is a function of  a combination of  concentration, 

absorption cross-section, and path length; as such, concentration alone 

does not predict a species’ location on Figure 3.15. 

Appendix A

Chapter 4 - Conclusions and Future Work 63



List of input parameters required to perform spectral simulations

Appendix B

Simulation Parameter Carbon Monoxide Formaldehyde

Spectral Window

Pressure 1013.25 mb 1013.25 mb

Temperature

Path length 50 m - 1500 m 50 m - 1500 m

Step 50 m 50 m

Target gas concentration 130 ppb 1 ppb

Water (1%) Water (1%)

Carbon dioxide (400 
ppm)

Methane (2 ppm)

Interferring gases Nitrous oxide (330 ppb) Nitrous oxide (330 ppb)

Carbonyl sulphide (0.5 
ppb)

2000 cm  - 2200 cm−1 −1 2700 cm  - 2900 cm−1 −1

15 Co15 Co
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Figure 1: (top) Differential absorption due to 1 ppb hydrogen chloride in the presence of 
interfering gases as a function of varying path and corresponding transmittance spectrum 
for target and interfering gases. (bottom) Percent absorption due to 1 ppb hydrogen 
chloride and interfering species as a function of varying path and corresponding 
transmittance spectrum for target and interfering gases.
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Figure 2: (top) Differential absorption due to 1 ppb nitrogen dioxide in the presence of 
interfering gases as a function of varying path and corresponding transmittance spectrum 
for target and interfering gases. (bottom) Percent absorption due to 1 ppb nitrogen 
dioxide and interfering species as a function of varying path and corresponding 
transmittance spectrum for target and interfering gases.
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Figure 3: (top) Differential absorption due to 1 ppb methanol in the presence of 
interfering gases as a function of varying path and corresponding transmittance spectrum 
for target and interfering gases. (bottom) Percent absorption due to 1 ppb methanol and 
interfering species as a function of varying path and corresponding transmittance 
spectrum for target and interfering gases.
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Figure 4: (top) Differential absorption due to 1 ppb ammonia in the presence of 
interfering gases as a function of varying path and corresponding transmittance spectrum 
for target and interfering gases. (bottom) Percent absorption due to 1 ppb ammonia and 
interfering species as a function of varying path and corresponding transmittance 
spectrum for target and interfering gases.
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Figure 5: (top) Differential absorption due to 0.5 ppb carbonyl sulphide in the presence 
of interfering gases as a function of varying path and corresponding transmittance 
spectrum for target and interfering gases. (bottom) Percent absorption due to 0.5 ppb 
carbonyl sulphide and interfering species as a function of varying path and 
corresponding transmittance spectrum for target and interfering gases.
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Figure 6: (top) Differential absorption due to 1 ppb nitric acid in the presence of 
interfering gases as a function of varying path and corresponding transmittance spectrum 
for target and interfering gases. (bottom) Percent absorption due to 1 ppb nitric acid and 
interfering species as a function of varying path and corresponding transmittance 
spectrum for target and interfering gases.
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Figure 7: (top) Differential absorption due to 1 ppb sulpher dioxide in the presence of 
interfering gases as a function of varying path and corresponding transmittance spectrum 
for target and interfering gases. (bottom) Percent absorption due to 1 ppb sulpher dioxide 
and interfering species as a function of varying path and corresponding transmittance 
spectrum for target and interfering gases.
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Figure 8: (top) Differential absorption due to 1 ppb acetylene in the presence of 
interfering gases as a function of varying path and corresponding transmittance spectrum 
for target and interfering gases. (bottom) Percent absorption due to 1 ppb acetylene and 
interfering species as a function of varying path and corresponding transmittance 
spectrum for target and interfering gases.
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Figure 9: (top) Differential absorption due to 1 ppb ethylene in the presence of interfering 
gases as a function of varying path and corresponding transmittance spectrum for target 
and interfering gases. (bottom) Percent absorption due to 1 ppb ethylene and interfering 
species as a function of varying path and corresponding transmittance spectrum for 
target and interfering gases.
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Figure 10: (top) Differential absorption due to 1 ppb formic acid in the presence of 
interfering gases as a function of varying path and corresponding transmittance spectrum 
for target and interfering gases. (bottom) Percent absorption due to 1 ppb formic acid 
and interfering species as a function of varying path and corresponding transmittance 
spectrum for target and interfering gases.
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