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Mate choice in white and common Threespine Sticklebacks 

(Gasterosteus aculeatus) 

 

By Rachel H. Corney 

ABSTRACT 

During speciation, mate choice can reproductively isolate one group from another through 
selection on divergent traits and behaviours such as colouration, courtship behaviour, 
and/or body size. Reinforcement can also limit interbreeding between ecotypes in 
sympatric populations through these sexually selected traits. The primary goal of this 
research was to investigate male mate choice in common and white Threespine 
Sticklebacks (Gasterosteus aculeatus) that are known to mate assortatively in sympatric 
populations and who differ markedly in their propensity for paternal care. I observed mate 
choice of both male and female sticklebacks from sympatric and allopatric populations. 
Neither common nor white male stickleback courted or mated assortatively. Additionally, 
female stickleback did not differ in their responses to males of either ecotype. Our 
research suggests that there is no ecotype-based preference for white and common 
Threespine Sticklebacks and that mechanisms other than reinforcement may be 
responsible for the maintenance of common and white Threespine Stickleback ecotypes. 
 
 

July 27, 2021 
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1. BACKGROUND 

1.1 Sexual selection and speciation  

Sexual selection is one of the mechanisms that can lead to speciation as it can act as a 

barrier to reproduction for sexually reproducing organisms (Fisher 1930; 1958; Lande 

1981; 1982). Biological speciation occurs when reproductive isolation between two 

closely related organisms exists, creating genealogically distinct individuals that do not 

produce viable offspring (Coyne and Orr 2004). This isolation may arise from sexual 

selection acting on traits associated with mating success (Darwin, 1871; Hosken and 

House 2011), which occurs via two primary mechanisms: intra-sexual competition and 

mate choice (Andersson 1994; Maan and Seehausen 2011). Both mechanisms can occur 

when members of the non-limiting sex vary in their ability to acquire mates, which can 

influence the variation in reproductive success and alter the intensity of sexual selection 

for favourable traits. The intensity of sexual selection and variance in reproductive 

success are expected to be higher in situations where mates or resources are spatially 

clumped and/or asynchronous and can be monopolized by a few individuals (Emlen and 

Oring 1977). The distribution of mates in space and time directly affects the operational 

sex ratio (OSR: amount of sexually active males to receptive females in a population, 

Emlen 1976), which can be used to predict the direction and intensity of sexual selection.  

Similarly, the potential reproductive rate (PRR) can influence the availability of males 

and females to mate, as ‘time-outs’ occur when gametes are replenished or if parental 

care is required (Clutton-Brock and Vincent 1991; Clutton-Brock and Parker 1992). In 

natural populations, males are typically the non-limiting sex; however the inverse 

mechanisms do certainly occur (see Hosken and House 2011 for a review).  
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When the sex ratio is skewed toward females, males become the limiting sex if 

they are the only parent to invest in the care of their offspring (i.e. uniparental male care, 

Kraak and Bakker 1998; Emlen and Wrege 2004). Additionally, when a male is the sole 

provider of parental care, males may be choosy and, in some situations, females may 

compete for mates (Emlen and Wrege 2004; Myhre et al. 2012). As a result, sexual 

selection may be acting on female traits that would provide males with increased 

reproductive benefits. Males may base their selection preferences on factors such as 

female size or attractiveness, thus providing males with higher direct or indirect fitness. 

However, there are situations where the OSR can shift from a male to a female bias, or 

vice versa, over the course of the breeding season and sex-roles can alternate between 

conventional (e.g., female-choice) and reversed (e.g., male-choice). This shift can occur 

when both sexes become limiting at varying times throughout a breeding cycle due to 

their reproductive investment through parental care and gamete production (Clutton-

Brock and Vincent 1991; Clutton-Brock and Parker 1992; Kokko and Jennions 2008). 

This shift will result in instances in which both males and females in a population may 

become choosy and competitive over mates. For example, this shift between OSR and 

sex-roles has been shown in populations of Two-spotted Gobies (Gobiusculus 

flavescens), where males are more abundant at the beginning of the breeding season 

(male-biased OSR) and females are plentiful at the end of the season (female-biased 

OSR; Forsgren et al. 2004). This variation between the availability of males and females 

in the population results in both sexes being choosy and competitive during mating 

(Forsgren et al. 2004; Myhre et al. 2012). Thus, when female choice for high-quality 

males is paired with male choice for high-quality females, a mutual mate choice system 

may arise. As a result, assortative mating could occur as only the favoured (i.e., high-
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quality) individuals can sustain a choosy lifestyle; thus, high-quality males and females 

will mate with one another and low-quality individuals will mate with each other (Kraak 

and Bakker 1998). Therefore, if both males and females can differentiate between low- 

and high-quality mates, they may receive the greatest benefits from their selected partner 

and attain overall higher reproductive success. 

1.2 Reinforcement  

For individuals to select high quality mates they must first be able to recognize 

individuals of their species or ecotype. This pre-zygotic differentiation typically occurs in 

sympatric populations, where two closely related groups live in the same area but do not 

interbreed. Avoidance of interbreeding among sympatric populations that have the 

potential to hybridize may be a result of strong prezygotic barriers that have evolved to 

select against interspecific matings (Dobzhansky 1940; Servedio and Noor 2003). This 

process, known as reinforcement, ultimately selects against the production of hybrids 

(Dobzhansky 1940; Servedio and Noor 2003); this may provide a possible explanation for 

a lack of crossbreeding between closely related sympatric populations. Reinforcement has 

been studied in various organisms that maintain both sympatric and allopatric populations 

by comparing traits that aid in species recognition such as mating calls (Pfennig and Rice 

2014) and morphology (Hołyńska 2000). The importance of studying species that 

maintain both types of populations is to understand how individuals recognize one 

another and how these traits function in selection to avoid unstable hybridization. These 

traits may help determine the outcome of contact between allopatric populations by 

demonstrating whether allopatric populations can differentiate conspecifics from 

heterospecifics using traits that sympatric populations use for recognition and mate 
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selection. Where secondary contact might arise, extinction of one of the populations, 

hybridization, or reinforcement due to incomplete reproductive barriers may occur 

(Servedio and Noor 2003; Liou and Price 1994 and references therein). In cases where 

incomplete barriers are present, selection against hybrids will sustain the separation of the 

populations, though selection for isolation prior to matings between the populations will 

also occur to reduce the production of low fitness hybrids. This selection can be 

strengthened through sexually selected mating signals if they were present prior to 

secondary contact (Servedio and Noor 2003). Thus, sexually selected traits will not only 

be useful for choosing high-quality mates, but can aid in differentiating individuals of the 

same species when introduced to and/or interacting with closely related populations.  

1.3 Mate characteristics 

Nuptial colouration, or colouration used during the breeding season, is one characteristic 

that may have evolved because of mate choice (Hunt et al. 2009). Nuptial colouration has 

been associated with increased benefits or indicators of quality in both males and females 

for the choosing sex. A positive relationship exists between colour intensity and benefits 

such as enhanced foraging ability, sperm quality, and health, as seen in various species of 

fish (Maan et al. 2006; Locatello et al. 2006; Takahashi 2018), birds (Hill 1991), lizards 

(Bajer et al. 2010), and turtles (Polo-Cavia et al. 2013). Female nuptial colouration is also 

indicative of their quality through traits such as fecundity, readiness to spawn, and 

maternal quality (Berglund et al. 1986; Amundsen et al. 1997; Amundsen and Forsgren 

2001; Baldauf et al. 2011). The information provided about the quality of an individual 

through nuptial colouration can be enhanced through the use of other breeding-related 

traits, such as behaviour.  
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  The energy expenditure associated with courtship displays can also be a reliable 

indicator of mate quality, such that increased frequency, or duration, can signal male 

vigour. For example, in Fifteen-spine Sticklebacks (Spinachia spinachia), males that 

perform a relatively high frequency of body shakes are more attractive to females; the 

number of body shakes has been positively correlated with higher offspring hatching rates 

(Östlund and Ahnesjö 1998). Male vigor can also be demonstrated vocally as well as 

behaviourally. For male Sage Grouse (Centrocercus urophasianus), the interval between 

vocalizations and display rate with their air sacs is considered attractive to females 

(Gibson 1996). The attractiveness arises from the greater energetic costs associated with 

short intervals between vocalizations and rapid display rates which may be connected to 

male health (Vehrencamp, 1989; Gibson, 1990), male reproductive quality (e.g., 

testosterone levels in domesticated goats [Capra hircus]; Longpre et al. 2011), or gamete 

viability (e.g., sperm count and motility in the Houbara Bustard [Chlamydotis undulata 

undulata]; Chargé et al. 2010). 

Additionally, parental care can be used to assess the quality of an individual as a 

potential mate. Parental care is a form of investment that enhances offspring fitness 

(Gross and Sargent 1985; Clutton-Brock 1991). The main benefit of parental care is the 

increase in offspring survival, which is likely the primary reason parental care has 

evolved. However, traits related to the quality of parental care may also influence the 

chance of a particular individual to procure a mate by attracting individuals through these 

caring behaviours. To elaborate, previous studies have shown that females prefer males 

who court (Knapp and Kovach 1991; Östlund and Ahnesjö 1998), build nests (Soler et al., 

1998; Jones and Reynolds, 1999; Clotfelter, Curren, and Murphy 2006), and possess eggs 
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already in their nest as signs of their caring abilities (Marconato and Bisazza 1986; 

Clutton-Brock 1991). For example, Tallamy (2000), noted that across all arthropod taxa 

with exclusive paternal care, males who built nests and were already guarding eggs were 

preferred by a larger number of gravid females as these behaviours were considered 

signals of their paternal quality. Despite the benefits, there are multiple costs associated 

with parental care. These costs include a reduction in matings, survivorship of the caring 

parent, and lowered future fertility (Gross and Sargent 1985; Smith and Wootton 1995; 

Reynolds, Goodwin and Freckleton 2002; Clutton-Brock 1991). However, the loss of 

potential matings may not be a significant as previously thought and may be insignificant 

when the male becomes territorial (Blumer 1979; Gross and Sargent 1985). 

Territoriality is one of the least debated hypotheses behind why parental care has 

evolved, after the main benefit of offspring survival. Barlow (1962), proposed that early 

stages of paternal care involved multiple matings and male territoriality ((Barlow 1962): 

Baylis 1981). Territorially is assumed to have been a pre-cursor to the evolution of male 

parental care and paternal care is more likely to evolve in the species where males are 

territorial (Ah-King et al. 2005). The association between territoriality and male parental 

care may explain why paternal care represents a phylogenetically advanced state (Gross 

and Sargent 1985; Reynolds et al. 2002), as some costs may be reduced if the male is 

territorial. If a male is territorial, he is already on “site” defending that area, therefore, 

protecting his eggs would not be more energetically expensive (Gross and Sargent 1985; 

Williams 1975). There is a potential for him to gain benefits towards an increased current 

reproductive effort and a decrease in future reproduction costs, as the costs associated 

with remaining on site are outweighed by the increased number of matings (Gross and 
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Sargent 1985; Blumer 1979; Barlow 1981). Current mating costs may also be reduced due 

to multiple females being able to spawn with the male on his territory (Blumer 1979; 

Clutton-Brock 1991; Williams 1975). However, there are certain cases where the caring 

male parent may be more vulnerable to predation such as when they are brightly coloured 

to attract females (Semler 1971; Blumer 1979). Despite the possible reduction in costs 

associated with a territorial male conducting parental care, there is still an energetic cost. 

Thus, the amount of energy and time a male invests into caring for his offspring alone 

may provide him an opportunity to select who he mates with, as this would influence 

which sex is limiting in a population. When a male is favoured by multiple females, that 

male may select the higher-quality female (Kraak and Bakker 1998). For example, by 

using traits such as female body size or colouration, males may be able to assess female 

fecundity and thus their quality (Berglund et al. 1986; Baldauf et al. 2011). This 

connection between colouration, behaviour, body size, and the association with mate 

choice is demonstrated exceptionally well in a model fish species – the Threespine 

Stickleback (Gasterosteus aculeatus). 

1.4 Threespine Sticklebacks 
 
The Threespine Stickleback is a very diverse species of fish. Seven ecotypes comprise the 

Threespine Stickleback species complex that inhabit a range of salinities and 

temperatures as a result of the last glaciation (McKinnon and Rundle 2002). Gasterosteus 

aculeatus is a small, euryhaline, ray-finned fish (Jordan and Garside 1972; Wootton 

1984). I will be focusing on two marine forms of the seven ecotypes: the “white” and 

“common” ecotypes (Fig. 1.4.1). The common Threespine Stickleback can be found 

anywhere within its range of the Northern Hemisphere, whereas the white stickleback is 
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endemic to Nova Scotia, Canada (Blouw and Hagen 1990). The two ecotypes typically 

occur sympatrically (Blouw and Hagen 1990), although allopatric populations comprising 

of only white or common sticklebacks do exist (personal observations). Despite the 

overlap in breeding habitat, white and common ecotypes are genetically distinct, though 

closely related enough that there is still some gene flow (Samuk 2016). However, 

behavioural studies have noted that in the field and laboratory the two ecotypes mate 

assortatively (Haglund et al. 1990; Blouw and Hagen 1990). Additionally, current 

research has found that artificially crossed hybrids do not produce viable offspring 

because the eggs are not adequately cared for by the father, though they survive if 

artificial aeration is provided (C. Behrens, personal communication).  

Behavioural, morphological, and physiological variation between and within the 

common and white ecotypes allows for easy differentiation. During the breeding season, 

common Threespine Stickleback males provide parental care for their offspring, whereas 

the white males do not (van Iersel 1953; Blouw 1996; Jamieson, Colgan, and Blouw 

1992b). Both common and white Threespine Stickleback males acquire and defend a 

nesting territory on which they build a nest using either mud/sand (common males) or 

algae (white males; van Iersel 1953; Jamieson, Colgan, and Blouw 1992; Haglund, Buth, 

and Blouw 1990). Once their nest is built, common and white males will begin to court 

females. Both ecotypes will conduct various courtship behaviours, such as moving 

quickly in a zig-zag pattern (zig-zag dance) and displaying his nest to the female by 

swimming towards it then back to her (leading/pointing). However, white males do not 

prick the female with their dorsal spines (dorsal pricking) or circle the female (circling) as  

commons do (Wootton, 1976; Tinbergen 1952; van Iersel 1953; Mclennan and McPhail 
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1989; Blouw and Hagen 1990; Jamieson, Colgan, and Blouw 1992; Haglund, Buth, and 

Blouw 1990). Additionally, both types of males conduct nest-oriented behaviours during 

the courtship encounter which include fanning, gluing, and boring through the nest 

(Wootton 1984; see Table 2.3.2 for behaviour descriptions).  

While maintaining their nests and courting, males will also display their nuptial 

colouration to attract females. Both ecotypes have light blue eyes with a pink to red throat 

colouration, which in common males is indicative of their quality and availability 

(Ostlund-Nilsson, Mayer, and Huntingford 2007; Hagen, Moodie, and Moodie 1980; 

Frischknecht 1993). However, there is a striking difference in their dorsal colouration; 

common male dorsi will turn a shade of blue/brown, whereas white males turn a 

pearlescent white during the breeding season (Tinbergen 1952; van Iersel 1953; Blouw 

and Hagen 1990).  

An important aspect that must also be considered, along with mating cues and 

signals, while studying the mating systems of Threespine Sticklebacks is the reproductive 

availability of both sexes. In general, the sex that is available for a shorter reproductive 

period and who invests more in their offspring becomes limiting, which will shift the 

instantaneous sex ratio towards the opposite sex (Clutton-Brock and Vincent 1991; 

Clutton-Brock and Parker 1992; Kokko and Jennions 2008). In Threespine Sticklebacks, 

there is variation in the amount an individual invests in reproduction between both sexes 

and ecotypes. Females of both ecotypes must produce eggs and will take three or more 

days to do so depending on food availability (reviewed in Wootton et al. 1995). During 

this time period, females are the limiting sex as there is a fluctuation in the amount of 

reproductively available females, with the sex ratio shifting towards being male biased. 
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However, male reproductive availability must also be considered, because common male 

Threespine Sticklebacks provide parental care (van Iersel 1953; Blouw 1996; Jamieson, 

Colgan, and Blouw 1992b). During the paternal care period common males are not 

available to mate for seven or more days (reviewed in Wootton et al. 1995). A male can 

mate with up to 30 females that can produce egg clutches that contains ~50-200 eggs (see 

Wootton 1976; 1984; Kraak et al. 1999 and references therein) that are all laid in one nest 

that the male guards during this parental care period until the fry become independent, 

thus, they can also become the limiting sex if these “time-outs” shift the sex ratio of 

available mates such that it becomes female-biased. This back-and-forth between the 

reproductive availability of male and female Threespine Sticklebacks generates a mutual 

mate choice system (Rowland 1982; Blouw and Hagen 1990; Kraak and Bakker 1998). In 

contrast with common males, white male Threespine Sticklebacks do not provide parental 

care, but rather disperse eggs from their nest after fertilization (Jamieson et al. 1992b; 

Blouw 1996) and thus avoid or markedly shorten any reproductive “time-outs”. The white 

Threespine Stickleback’s sex ratio will thus be male-biased throughout the mating season. 

As a result, male mate choice may not occur in this ecotype, or it may be dampened 

compared to the mating system of common Threespine Sticklebacks. Thus far, no studies 

have examined male mate choice preferences among the white Threespine Sticklebacks. 

While there is some speculation that white males do not actively choose mates (Blouw 

and Hagen 1990), that study only considered consecutive and not simultaneous female 

interactions with the white males, so it is currently unknown whether males are choosy in 

this ecotype.        



 11 

a)  b)  

b)  d)  
 
Figure 1.4.1. The (a) male and (b) female common marine ecotype and (c) male and (d) 

female white marine ecotype of the Threespine Stickleback. Both males are in breeding 

colouration. 
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Additionally, previous studies such as that by Blouw and Hagen (1990) mainly 

focused on either same ecotype mate choice (common male and female; van Iersel 1953; 

Rowland 1982; Kraak and Bakker 1998) or sympatric populations of common and white 

sticklebacks (Jamieson et al. 1992a; Blouw 1996). Therefore, this ecotype pair (i.e. 

common and white Threespine Sticklebacks) is a good model for examining 

reinforcement in the context of sexual selection as allopatric and sympatric populations 

exist and crossbreeding is not known to occur in sympatric populations (Blouw and 

Hagen 1990). Thus, due to the considerable variation within this species with reference to 

their behaviour, colouration, and size, the ability to study them both in situ and in the 

laboratory (Foster and Bell 1994), and the lack of information surrounding reinforcement 

and mate choice in white and common sticklebacks, the Threespine Stickleback is an 

exceptional fish to study.  

1.5 Research objective and predictions 
 
While studies have examined female mate choice in populations of both common and 

white Threespine Sticklebacks (Blouw and Hagen 1990; Milinski and Bakker 1990), less 

research has been conducted on male mate choice in the common stickleback (Rowland 

1982; 1989; Bakker and Rowland 1995; Kraak and Bakker 1998), and none of that 

research has been conducted on the white stickleback. Moreover, few studies have 

investigated the influence of mate choice on the maintenance of barriers between white 

and common Threespine Sticklebacks. Sympatric populations of white and common 

sticklebacks mate assortatively (Haglund et al. 1990; Blouw and Hagen 1990), which may 

have evolved because of hybrid breakdown (F1 males are poor fathers, leading to egg 

death; Behrens, personal communication). Through evolutionary time, sympatric 
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populations of white and common sticklebacks should evolve strong mate selection 

preferences to avoid the fitness costs associated with producing unfit hybrids, thus 

reinforcing their separation. However, allopatric populations have not experienced this 

selection pressure as they have not experienced the fitness cost (hybrid breakdown) 

associated with interbreeding. Therefore, I hope to understand how this selection 

pressure, which is enhanced through reinforcement, has contributed to the divergence of 

the common and white Threespine Sticklebacks by comparing the two types of 

populations.   

In their work with sympatric white and common threespines, Blouw and Hagen 

(1990) observed that female white sticklebacks initiated the receptive “head-up” display 

(willingness to spawn) more to white male sticklebacks. They also found that, although 

common females initially showed a “head-up” display to white males, they ultimately 

chose to spawn with common males. This initial response by the common females may be 

explained by the vigorous courting and conspicuous colouration of the white males 

(Jamieson et al. 1992a; Haley 2018). Blouw and Hagen’s (1990) study was not 

specifically designed to assess male mate choice, but they did note that when males of 

both ecotypes were presented with either common or white females, common male 

sticklebacks courted their own ecotype more and the whites courted the two equally. My 

research expands on Blouw and Hagen’s work by investigating mating preferences in 

both sexes, ecotypes and population types. Given what we know about mate choice in 

Gasterosteus aculeatus and the costs associated with reproduction (e.g., gamete 

production), I predict that: 
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(i) Female mate choice will occur in both populations as both female ecotypes 

invest in gamete production.  

(ii)  Male mate choice will be more important for common, compared to  

white, male sticklebacks as only the common males provide paternal care. 

Because common males are conducting a costly behaviour, selection is 

expected to favour males who choose the best quality and quantity of eggs to 

fertilize, therefore they may be more choosy about the individual with whom 

they will mate. 

(iii) Males and females in the allopatric populations of common and white  

Threespine Sticklebacks will have weaker mate preferences, measured as  

courtship and response frequency by males and females respectively, for  

their own ecotype than their sympatric counterparts, as they have not 

experienced the potential fitness costs associated with interbreeding. Based  

on previous findings about sympatric mate preferences of common and white 

Threespine Sticklebacks (see Blouw and Hagen, 1990), I predict that allopatric 

males will court, and females will respond, to both their own ecotype as well 

as the other ecotype. 

Through conducting this mate choice experiment on sympatric and allopatric 

populations of the Threespine Stickleback, I will gain insight into the potential drivers of 

mutual mate choice through sexual selection. Exploration of mutual choice will yield a 

more comprehensive understanding of mating systems and provide additional information 

about the possible mechanisms that drive speciation. 
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2. METHODS 

2.1 Sampling sites and fish collection 
 
Fish collection took place during the month of June 2020 at three sites located across 

Nova Scotia, Canada. All three locations are brackish water environments supplied by the 

Atlantic Ocean, with a salinity range of ~18 to ~30 ppt and temperature ranging between 

~13 to ~21 ºC (personal observations). The locations contained either sympatric 

(Rainbow Haven Estuary) or allopatric, (Antigonish Landing [common] and Crossing 

Road [white], populations of white and common Threespine Sticklebacks, Fig. 2.1.1). 

These sites were selected based on knowledge about the populations from previous 

sampling years and prior research studies (Blouw and Hagen 1990; Samuk 2016; Haley 

2018, personal observation). Antigonish Landing is characterized by its muddy substrate 

and is relatively bare of large rocks and algae. Crossing Road has a rocky substrate 

surrounded by patches of filamentous algae, such as Cladophora spp.. Rainbow Haven 

Estuary is intermediate between the other two sites with a combination of a muddy and 

rocky substrate surrounded by filamentous algae and tall grass. Presence or absence of 

these environmental factors is important as Threespine Sticklebacks have specific habitat 

requirements for nesting sites (Blouw and Hagen 1990).    

Fish were collected using a combination of unbaited Gee’s minnow traps (1/4 inch 

mesh) that soaked for three to twenty-four hours, and dip-netting by hand. Fish were 

identified visually in the field for sex and ecotype by observing their size, colouration, 

and abdominal shape as these traits vary between the sexes and ecotypes (Blouw and 

Hagen 1990). Females were collected mostly by minnow traps while most males were 

dip-netted above their nest. Females and males were identified by size as previous studies 
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have shown that common Threespine Sticklebacks are larger than the white ecotype 

(Blouw and Hagen 1990; Samuk 2016). Male ecotype was determined by breeding 

colouration and nest location. Common male stickleback were differentiated by their 

bright blue eyes, red throat, and dark dorsum, and their nests were built in mud; while 

white male sticklebacks were identified by their conspicuous white dorsum and their nests 

were built in the filamentous algae (Blouw and Hagen 1990; Jamieson et al. 1992a). If 

male sticklebacks were caught in the minnow traps and easily identifiable via their 

colouration, they were retained. Across all three sites a total of 120 fish (Table 2.1.1) 

were collected and transported to Saint Mary’s University’s aquatic facility.  

2.2 Fish husbandry 
 
Fish were housed at Saint Mary’s University’s aquatic facility and held in 15-gallon stock 

tanks with the sexes, ecotypes, and populations housed separately. The stock tanks were 

maintained at a water temperature of 20-22°C and salinity of 15ppt ± 1ppt supplied by 

reverse osmosis de-ionized (RODI) source water. The tanks contained gravel, artificial 

plants, hiding structures, algae collected from Rainbow Haven estuary for nesting 

material, and a waterfall filter for aeration. The fish were maintained on a light cycle of 

16 hours light and 8 hours dark, which is consistent with the summer breeding 

photoperiod of Nova Scotia (Blouw and Hagen 1990) and were fed a diet of frozen Mysis 

shrimp and Bloodworms once a day. All fish collection and laboratory work were 

conducted in accordance with Saint Mary’s Universtiy animal care protocol 20-09.



 

Figure 2.1.1. Map of Nova Scotia Threespine Stickleback sampling locations. Antigonish 

Landing (blue circle) contained an allopatric population of common Threespine 

Stickleback. Crossing Road (grey circle) contained an allopatric population of white 

Threespine Stickleback. Rainbow Haven Estuary (green circle) contained a sympatric 

population of white and common Threespine Stickleback. 
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Table 2.1.1. Total number of fish collected by site, ecotype and sex during the month of 

June 2020, across Nova Scotia. 

Site 

Fish ecotype and sex 

Common Male Common Female White Male White Female 

Rainbow Haven 12 12 15 15 

Antigonish Landing 15 15 NA NA 

Crossing Road NA NA 18 18 
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2.3 Experimental setup and design 
 
2.3.1 Tank set-up and male nest-building 
 
The experimental setup consisted of six 10-gallon focal tanks that housed one male and 

two females. Tanks were partitioned into three compartments; one large compartment 

comprising three-quarters of the tank containing the focal male stickleback and nesting 

material; the other two compartments were evenly divided into the remaining one-quarter 

of tank space and housed the two females separately (Fig. 2.3.1a). Prior to observations 

and the addition of female stickleback to the tanks, male stickleback were placed in the 

focal tanks and provided with two types of nest-building material: sand in a petri dish and 

algae. Nest material preferences of common and white stickleback have been previously 

reported: common stickleback prefer sand and white stickleback prefer algae (Blouw and 

Hagen 1990; Jamieson et al. 1992a), but both ecotypes may build nests using both 

materials (Blouw and Hagen 1990; Corney 2019). If a male did not build a nest within 

four days, he was removed and a new male was added to the focal tank. Males were given 

a minimum of 24 hours to build a nest prior to any observations. Nests were identified as 

an opening in a constructed mound made of algae and/or sand. One of the two materials 

always made up the majority of a nest (≥70%), and thus I classified nests as either sand or 

algae-based. These observations acted as a confirmation of the visual identification of 

male ecotype in the field.  

2.3.2 Experimental design and data collection 
 
The experimental design for the mate choice study followed a procedure similar to that of 

Kraak and Bakker (1998) with a few modifications. The experiment consisted of four 

combinations of the layout displayed in figure 2.3.1. Each layout was a combination of 
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one male and two females. Both males and females varied by ecotype (white and/or 

common) and in geographical distribution (population type: sympatric or allopatric 

population). For example, an allopatric white male with a common female and a white 

female would be one of the four possible combinations (Table 2.3.1). There was always a 

white and common female in each trial. There were eight to ten replicates of each 

combination for a total of 35 observational trials. During one trial, two choice 

experiments were conducted sequentially, male preference and no-choice. A trial 

consisted of a one-hour observational period divided into four 15-minute sections (Fig. 

2.3.1c). Two of the four 15-minute sections were for the male preference stage (Fig. 

2.3.1a) and the remaining two 15-minute sections were for the male and female no-choice 

stage, herein referred to as the “interaction” stage (Fig. 2.3.1b). All trials were recorded 

with an Enviro R jvc camcorder (GZ-R460D model). To investigate mate preference of 

male and female Threespine Sticklebacks, video recordings were uploaded to JWatcher, a 

quantitative behavioural analysis program (Blumstein, Daniel, and Evans 2006). 

JWatcher allows for the observer to record events to assess the frequency and time 

allocated to specific behaviours conducted by the focal subject. 
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Table 2.3.1. Number of observations for each combination of male and female ecotype 

and population type. There was a total of 35 trials with each trial consisting of one male 

and two females. 

Male ecotype and 
population type 

Female ecotype and population type 
Allopatric 
common 

Sympatric 
common 

Allopatric 
white 

Sympatric 
white 

Allopatric common 4 4 3 5 

Sympatric common 5 5 5 5 

Allopatric white 3 5 3 5 

Sympatric white 4 5 5 4 
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a)  b)  
 

c)  
 

Figure 2.3.1. Experimental setup for the (a) male preference and (b) male and female no-choice experiments. The larger part 

of the tank contained the focal male fish and nest-building materials. The two smaller portions of the tank contained one female 

each for the first part of the male preference trial (a). For the second part of the experiment, the male and female no-choice 

trials, one of the two females was released into the larger portion of the tank with the male (b). The order of the observational 

events, each event consisting of 15-minute intervals totaling a one-hour long experimental trial (c). The black partition in figure 

a and b, or black line in figure c, indicates an opaque partition separating the fish visually from one another, the grey line in 

figure c and clear plexiglass in figures a and b indicate a clear partition separating the fish physically from one another. 
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Preference stage 
 
The preference stage was designed to assess male choice based mainly on visual cues and 

involved a focal male who was physically separated from a female of each ecotype, but 

could see them (Fig. 2.3.1a). For the two 15-minute periods the male and females were 

physically separated from one another (Fig. 2.3.1c box 1); after the first 15 minutes 

elapsed the females’ positions were swapped with one another and the second 15 minutes 

were completed (Fig. 2.3.1c box 2). This was to ensure that the male was interacting with 

a specific female not simply exhibiting a preference for one side of the tank.  

Male preference was determined by observing the amount of time a male spent in 

proximity to each of the contained females. Proximity was determined when the male was 

located directly in front of the clear plexiglass barrier of the female’s compartment. If the 

male was located away from the clear plexiglass barrier or directly in the middle of the 

two female compartments (black line fig. 2.3.1c) then this was considered no preference 

by the focal male. Time recording was initiated each time the male “poked” the clear 

plexiglass barrier with his mouth (“glass poking”), and ceased when he stopped the 

behaviour for more than one second or retreated from the barrier. The male needed to 

conduct the poking behaviour to ensure that we were recording his potential interest in the 

contained female and not for other reasons such as resting near the barrier.  

Interaction stage 
 
A 30-minute interaction stage was used to assess both visual and behavioural cues of 

male and female stickleback when the male was able to interact with one of the two 

females (Fig. 2.3.1b). For the first 15-minute interaction stage, one of the two females 

was randomly chosen to be released into the larger portion of the tank with the male (Fig. 
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2.3.1c box 3) while the other remained behind the clear barrier. For the second 15-minute 

interval, she was then swapped with the other female (Fig. 2.3.1c box 4). During the 

interaction stage, the male was still able to view the other female while interacting with 

the released female allowing for a potential additional measure of preference between the 

two females (Fig. 2.3.1b).  

Male courtship effort was divided into two sections; first, by male exertion, which 

was determined by the total courtship behaviours conducted towards the released female 

during the interaction stage; and second, by male persistence, determined by the amount 

of “glass poking” behaviour that a male conducted towards the contained female during 

the interaction stage. Male courtship behaviours are described in Table 2.3.2. 

Interaction stage – female preference 
 
Female preference was measured as a binomial response associated with whether or not 

she conducted any of the typical “head-up”, “follow”, and/or “inspect nest” response 

behaviours that characterize female willingness to mate when released with the male. The 

pairs were also observed for spawning events. When spawning occurred, the time that the 

female and male entered and left the nest were recorded along with whether or not the 

female deposited her eggs, which was determined by a change in size of her abdomen. 

After spawning took place, the portion of the trial for the female that spawned was 

terminated and nests were checked for the presence of eggs.   

After a trial was complete, the male and the two females were tagged using 

subcutaneous visual implant elastomer tags (Northwest Marine Technologies) for 

individual fish identification. Body size was also collected to confirm the ecotype of the 
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fish by taking measurements of standard length to the nearest 0.01mm and a piece of the 

anal fin was collected for later genetic analysis. 

There was a total of 35 observations for male sticklebacks, with each male 

interacting with a common and white female in random order. As two females were 

present per trial, there was a total of 70 female observations recorded (Table 2.3.1). Male 

fish were only used once per mate choice trial, while female fish were used one to four 

times (mean ≈ 2). Only one female was reused with a male of the same ecotype and 

population type combination as a previous trial. Female fish were reused due to the 

necessity of having a gravid female in the choice trails. There was a total of 39 female 

fish and 35 male fish used during the experiment.  

Nest tending 
 
While male and female preferences were being recorded, male nest tending was also 

documented. Nest tending time and frequency were recorded to determine if additional 

differences between the nesting habits of white and common stickleback existed (during 

the preference stage) and whether nest tending might be associated with mate choice, i.e., 

whether common and/or white male stickleback tend to their nest more depending on the 

female with whom they can interact (during the interaction stage). Male nest-tending was 

recorded in a similar manner to male preference, with the amount of time spent nest-

tending recorded during the preference stage and the frequency of individual behaviours 

recorded during the interaction stage.  
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Table 2.3.2. Description of focal behaviours observed for both male and female 

Threespine Sticklebacks. Modified from Haley, 2018 and Berhens, 2020. 

Sex Behavioural 
category 

Focal 
behaviour Definition 

Male 

Nest building 

Material 
retrieval Male brings material to where he is building a nest 

Nest                  
tending 

Gluing – male uses spiggin to hold the nest 
together 
Poke – male bites/pecks at his nest  
Fanning – male moves his pectoral fins back and 
forth 
Creep-through – male enters and squirms through 
his nest 

Courtship 

Zig-zag Male swims in a ‘Z’ configuration quickly 

Dorsal pricking Male swims against female, often slightly on his 
side and pokes the gravid stomach with his spines 

Biting Male bites female’s lateral and/or ventral surface 

Lead Male leads the female back to his nest 

Side fan Similar to dorsal pricking in commons, male 
wiggles their body in a horizontal position 

Show nest Male will poke at the opening to indicate where 
the female should go 

Glass poking* Male pokes the plexiglass barrier with his mouth 

Female 
 

Courtship 
response 

Head-up Female holds her head pointing upwards towards 
the top of the tank (~45 degree angle) 

Inspect nest Female pokes her head into the nest entrance 

Follow male Female follows closely behind/or next to the male 

Both 
 

Spawning 
Enter nest 

Female – enters/squirms into the nest and stops 
inside of it 
Male – enters his nest after a female deposits her 
eggs to spread sperm onto the eggs 

Quiver Male quivers against the female when she is in the 
nest 

* This behaviour was given a description specifically for this experiment, it is not an officially documented courtship 
behaviour of Threespine Sticklebacks. 
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2.4 Statistical analyses  
 
All analyses were implemented using the statistical software R v4.0.2 (R Core team 

2020). Two statistical methods were performed. First, I used a model comparison method 

utilizing Akaike Information Criteria (AIC) that is described in the following sub-

sections; second, I explored my data using a Bayesian approach that is described in 

Appendix A. 

2.4.1 Body size and nest material 
 
Body size, measured as standard length (mm), and nest material were collected as extra 

measurements to confirm the visual identification of the common and white Threespine 

Stickleback ecotypes. Body size was analysed using a generalized linear model (GLM), 

as the data were normally distributed and continuous. The full model was fitted with 

ecotype (white or common), sex (male or female), and their interaction as the fixed 

effects; no random variables were included. All possible models containing different 

combinations of predictors were compared and ranked using Akaike Information Criteria 

corrected for small sample size (AICc). This was accomplished by running an automated 

model selection (dredge) using the ‘MuMin’ package, version 1.43.17 (Bartoñ 2020). 

Model fit was assessed using quantile-quantile (QQ) plots and pairwise differences 

between groups were then analysed using post-hoc analyses for the full model. 

To confirm the nest material preferences of the white and common Threespine 

Stickleback ecotypes, regardless of male population type, χ2-squared tests were performed 

on the nesting material (sand or algae) of males’ nests and their ecotype (common or 

white). Male population type (allopatric or sympatric) was omitted from the analysis as 

we do not expect any change in nesting material preference based on the presence or 
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absence of either ecotype from a population. For nesting material, when both options 

were used to construct a nest only the dominant material was included in the chi-squared 

analysis to account for the small sample size of mixed material nests. Additional analyses 

related to differences between white and common nest tending habits can be found in the 

supplementary information section one.  

2.4.2 Male preference 
 
Preference stage 
 
Male preference was examined by assessing the relationship between the proportion of 

time a male spent with each female and the male’s ecotype, population type, and female 

body size. The proportion of time was calculated by dividing the time the male was in 

proximity to the contained female, by the total observation time (30 minutes); this was 

done for both females. Because the response variables were proportions, I used a 

generalized linear mixed model (GLMM) with a binomial error distribution. Fixed effects 

included in the model were male ecotype, male population type (allopatric or sympatric), 

whether the female they were near was the same ecotype as themselves or not (ecotype 

relationship), and their interactions. The ecotype relationship effect was evaluated as a 

value of 0 indicating that the male and female were of different ecotypes and a value of 1 

denoted that the fish were of the same ecotype. Individual males were included a random 

effect to account for each male being able to associate with both a white and a common 

female during this stage. Automated model selection using the dredge function was 

conducted to determine the best model based on the AICc values, followed by assessing 

the model fit using QQ plots and calculated pairwise differences.  
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Interaction stage 
 
Male courtship effort 
 
Male courtship effort was investigated using both male exertion and male persistence 

which were recorded during the interaction stage. Prior to the analyses, the frequency of 

courtship behaviours and glass poking were corrected for time. Nine of the 35 trials did 

not span the full 15-minute observation period as spawning events occurred. Therefore, 

the behavioural frequencies had to be corrected to account for how many behaviours 

would have occurred if the trial lasted the full 15 minutes. This was done by dividing the 

typical observation time (15 minutes) by the duration of the trial and then multiplying by 

the total combined frequency of all the behaviours (see Table 2.3.2 for descriptions). The 

final value was rounded to the nearest integer to approximate count data (see 

supplementary information section two for analyses using each courtship behaviour 

separately). Following the correction for time, two negative binomial generalized linear 

mixed effect models were run: one for male exertion, the second for male persistence.  

For male exertion, the adjusted total courtship frequency was the response 

variable and male ecotype, male population type, the ecotype relationship, and all 

possible interactions were the fixed effects. Individual male was the only random effect to 

control for the effect of repeated observations of the same male. The model was run using 

a negative binomial error distribution from the glmmTMB package, version 1.0.2.1 

(Magnusson et al 2020) as the data were over-dispersed counts. Again, significance was 

determined by the model with the lowest AICc followed by a QQ plot to assess the fit of 

the model to the data. The models were then followed by post-hoc testing.  
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To assess male persistence, the glass-poking frequency conducted by male 

stickleback was the response variable in a new GLMM. Predictors and random effects 

were the same as above for male exertion. Automated model selection was performed to 

determine model significance, and the full model’s fit was assessed using QQ plots, 

followed by calculating any pairwise differences.  

Male courtship effort and female body size 
 
Two separate models were run for assessing the impact of female body size on male 

exertion. The first model consisted of female body size, female ecotype, male ecotype and 

their interactions as the predictors and the total courtship frequency as the response 

variable, with individual male and female fish as the random effects. The second model 

consisted of female body size, male population type, the ecotype relationship, and their 

interactions as the predictors; the response variable and random effects remained the 

same. Both models were run using a Poisson error distribution, as the data were counts 

that were not overdispersed, with the female size variable scaled and centered using the R 

Base Package (version 4.0.2). As with all other models, the best model was determined by 

the lowest AICc value and the fit was evaluated with a QQ plot. Both models were 

created to assess both a male’s preference for female body size based on ecotype, while 

the second model was aimed at determining whether there was a pattern for males from 

different geographic backgrounds having a preference for female body size (e.g. larger 

females), and whether she was the same ecotype as himself.   

 

2.4.3 Female preference 
 



 31 

Interaction stage 
 
Female preference was recorded as a binary response with a value of 1, indicating the 

female responded to a male by following him, inspecting his nest, or conducting the 

typical “heads up” display, and a value of 0 indicating she did not respond during the 

interaction stage. A GLMM with a binomial error distribution was run with female 

response as the binary response variable to determine the effect of male ecotype, female 

population type, whether the male and female were of the same ecotype or not, and their 

interactions on a female’s response. Individual females were a random effect to account 

for the re-use of 20 of 39 females that were used more than once in the trials. Model 

selection and fit were determined in the same manner as the previous GLMMs using the 

dredge function on the model to determine the AICc values and assessing the model fits 

with QQ plots.  

2.4.4 Spawning 
 
Spawning events were recorded during the interaction stage of the experiment. For each 

spawning event, the ecotype and population type of the male and female fish were 

recorded. Assortative spawning was determined based on whether the male and female 

were of the same (pure cross) or different (hybrid cross) ecotype and whether the fish 

were from the same (sympatric), different (allopatric), or a combination of population 

types. 

In addition to the model selection approach used above, I also did all analyses 

using a Bayesian framework. Results from the Bayesian analyses did not differ from 

those retained from the model comparison analyses and can be found in appendix A.  

3. RESULTS 
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3.1 Ecotype confirmation 
 
Ecotype identity of male and female Threespine Sticklebacks were visually categorized in 

situ and identification was confirmed in the laboratory by measuring the standard length, 

to the nearest millimetre, of both sexes. Body size of the Threespine Stickleback was best 

explained by the model that included the effects of ecotype, sex, and their interaction 

(Table 3.1.1). Common stickleback of both sexes were larger than their white 

counterparts (Fig. 3.1.1). Additionally, common female stickleback were larger than 

common male stickleback, while there were no differences between the sexes for the 

white stickleback (Fig. 3.1.1).  

I also compared nest material (sand or algae) preferences of common and white 

male stickleback to confirm male ecotype. As per Blouw and Hagen (1990), in my study, 

common Threespine Stickleback males more frequently constructed a nest using 

predominately sand, while the white ecotype constructed nests out of filamentous algae 

(χ2 = 16.56, p < 0.0001, Table 3.1.2).  

 

 

 

 

 

 

 

Table 3.1.1. Linear model selection for the effects of ecotype and sex on the body size of 

Threespine Sticklebacks. Shown below are the degrees of freedom (df) for the predictors, 
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Akaike Information Criterion corrected for small sample sizes (AICc), the difference 

between the model with the lowest AICc value compared to all other predictors (∆AICc), 

and ωi is the weight of a model relative to the complete model set (n = 5). The bolded 

models are those with the lowest AICc values by a difference of two or more. 

response 
variable predictor df AICc ∆AICc ωi 

body size 

ecotype + sex + ecotype x sex 5 395.2 0.00 0.968 
ecotype + sex 4 403.2 7.84 0.019 

ecotype 3 403.9 8.67 0.013 

(intercept) 2 474.6 79.41 0.000 
sex 3 476.5 81.25 0.000 
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Figure 3.1.1. Standard length of male (grey) and female (black) common and white 

Threespine Sticklebacks (n = 78). Black and grey horizontal lines indicate the median, the 

black and grey diamonds are the sample means, and the coloured dots are the body size 

(standard length [mm]) for individual fish. Letters above the data represent post-hoc test 

groupings. 

 
 
 
 
 
 
 
 
Table 3.1.2. Number of nests built by common and white Threespine Stickleback males 

using either algae or sand as their dominant material (n = 35).  

Nest material 
Male ecotype 

Common White 
Algae 5 17 

Sand 13 0 
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3.2 Mate preference 
 
3.2.1 Male courtship trends 
 
I was interested in four questions related to male Threespine Stickleback mate choice: 

first, whether one male stickleback ecotype courted females more than the other ecotype; 

second, whether sympatric or allopatric male stickleback courted females more than the 

other population type; whether males of different ecotype or population type preferred a 

female that was the same or different ecotype than themselves; lastly, whether female 

body size influenced a males’ preference. I answered these questions by running various 

generalized linear mixed effect models with the respective variables for the question 

posed, with males as the random effect.   

Preference stage 
 
During the preference stage, I assessed the proportion of time males spent in proximity to 

the contained females of two different ecotypes. There was a degree of uncertainty as to 
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which model best predicted the proportion of time male stickleback spent near a female, 

as there were seven models within two AICc values of one another (Table 3.2.1), 

indicating that all seven models influenced the proportion of time. There was a broader 

range of times that white and common males spent in proximity to common females 

compared to the range of times white and common males spent in proximity to white 

females (Fig. 3.2.1). Additionally, sympatric males spent slightly more time near a female 

regardless of his or her ecotype, with the exception of sympatric common males with 

white females (Fig. 3.2.1). However, overall males of either ecotype and population type 

spent relatively the same amount of time near each female (Fig. 3.2.1 and Table 3.2.1).   

Table 3.2.1. Generalized linear model selection for the effects of male ecotype, male 

population type (allopatric or sympatric), and whether the female was the same ecotype as 

the male (ecotype relationship) on the proportion of time male Threespine Sticklebacks 

spent in proximity to the contained females during the preference phase of the 

experiment. Shown below are the degrees of freedom (df) for the predictors, Akaike 

Information Criterion corrected for small sample sizes (AICc), the difference between the 

model with the lowest AICc value compared to all other predictors (∆AICc), and ωi is the 

weight of a model relative to the complete model set (n = 19). The bolded models are 

those with the lowest AICc values by a difference of two or more. Only the top models 

are shown below. 

response 
variable predictor df AICc ∆AICc ωi 

proportion 
of time spent 
in proximity 
to a female 

(intercept) 2 14.7 0.00 0.188 

male ecotype 3 15.4 0.72 0.131 

ecotype relationship 3 15.4 0.78 0.127 
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male population type 3 15.6 0.95 0.117 

ecotype relationship + male ecotype 4 16.2 1.56 0.086 

male ecotype + male population type 4 16.3 1.68 0.081 

ecotype relationship + male population type 4 16.5 1.79 0.077 

 
 
 
 
 
 
 
 

 
 
Figure 3.2.1. Proportion of time allopatric (black) and sympatric (grey) common and 

white male Threespine Sticklebacks spent in proximity to females of a different (left) or 
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similar (right) ecotype to themselves during the 30-minute male preference stage of the 

experiment (n = 35). Black and grey horizontal lines indicate the median, the black and 

grey diamonds are the sample means, and the coloured dots are the proportion of time for 

individual males. Individual males are counted twice as each male had an observation 

recorded for both a common and white female stickleback. 

 
 
 
 
 
Interaction stage 
 
Male courtship effort 
 
During the interaction stage, I determined male exertion and persistence to gain access to 

the two females. Male exertion was assessed by analysing the total courtship behaviours 

performed towards the released female. Male exertion was explained by three models that 

were retained from this analysis; male population type, and an additive and an interactive 

effect between male population type and ecotype relationship (Table 3.2.2.). Males from 

sympatric populations courted females at a higher frequency than allopatric males and 

males courted females of a different ecotype than themselves at a slightly higher rate with 

the exception of white males courting common females (Fig. 3.2.2). Specifically, 

sympatric white male stickleback courted common females significantly more frequently 

than allopatric common male stickleback courted common females (Fig. 3.2.2). 

 Male persistence was analysed using the amount of “glass poking” male 

stickleback performed on the clear barrier separating the male from the contained female. 
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Although there is variation in the frequency of “glass poking” (Fig. 3.2.3), no predictors 

were retained in the best model (Table 3.2.2).    

 
 
 
 
 
 
 
 
 
 
 
Table 3.2.2. Generalized linear model selection for the effects of male ecotype, male 

population type (allopatric or sympatric), and whether the female was the same ecotype as 

the male (ecotype relationship) on the total courtship behaviour frequency conducted 

toward the released female stickleback (effort) and the frequency of “glass poking” 

(persistence) toward the contained female stickleback by male Threespine Sticklebacks. 

Shown below are the degrees of freedom (df) for the predictors, Akaike Information 

Criterion corrected for small sample sizes (AICc), the difference between the model with 

the lowest AICc value compared to all other predictors (∆AICc), and ωi is the weight of a 

model relative to the complete model set (n = 19). The bolded models are those with the 

lowest AICc values by a difference of two or more. Only the top five models are shown 

below. 

response 
variable predictor df AICc ∆AICc ωi 

released 
female 

ecotype relationship + male population type 5 827.6 0.00 0.275 

male population type 4 828.0 0.45 0.219 
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ecotype relationship + male population type + 
ecotype relationship x male population type 6 828.8 1.23 0.149 

ecotype relationship + male population type + 
male ecotype 6 829.8 2.24 0.090 

male population type + male ecotype 5 830.2 2.57 0.076 

contained 
female 

(intercept) 3 783.6 0.00 0.387 

male ecotype 4 785.6 2.06 0.139 

male population type 4 785.6 2.06 0.138 

ecotype relationship 4 785.8 2.23 0.127 

male population type + male ecotype 5 787.8 4.19 0.048 

 

 
 
Figure 3.2.2. Frequency of total courtship behaviours allopatric (black) and sympatric 

(grey) common and white male Threespine Sticklebacks displayed towards a female of a 
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different (left) or similar (right) ecotype as himself that was released in the tank with him 

during the male interaction stage of the experiment (n = 35). Black and grey horizontal 

lines indicate the median, the black and grey diamonds are the sample mean, and the 

coloured dots are the frequency for individual males. Individual males are counted twice 

as each male had an observation recorded for both a common and white female 

stickleback. Letters above the data represent post-hoc test groupings. 

 
 
 
 

 
 
Figure 3.2.3. Frequency of “glass poking”  allopatric (black) and sympatric (grey) 

common and white male Threespine Sticklebacks performed towards a female of a 
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different (left) or similar (right) ecotype to themselves that was contained behind the clear 

plexiglass barrier during the male interaction stage of the experiment (n = 35). Black and 

grey horizontal lines indicate the median, the black and grey diamonds are the sample 

mean, and the coloured dots are the frequency for individual males. Individual males are 

counted twice as each male had an observation recorded for both a common and white 

female stickleback. 

 
 
 
 
3.2.2 Male courtship effort and female body size 
 
Male ecotype 
 
Body size preference of male stickleback was determined by analysing the frequency of 

courtship behaviours conducted towards females of different sizes during the interaction 

stage. The two models that best explained the frequency of courtship toward females of 

different sizes both contained the interactive effects of female ecotype and male ecotype, 

and female size and male ecotype (Table 3.2.3). Interestingly, only white males increased 

their courtship toward the largest females regardless of ecotype (Fig. 3.2.4). Meanwhile, 

common male stickleback courted larger females with a higher frequency than smaller 

females, but did not show a continuous preference with body size (Fig. 3.2.4). Because of 

the interactive effects, I also examined patterns within subsets of my data. When only 

common females were included in the analysis, both female size and male ecotype 

weakly influenced courtship frequency (Table 3.2.4). Common and white male 

stickleback males courted larger common females more than the smaller common females 
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(Fig. 3.2.4). By contrast, when a subset of the data containing only white females was 

examined, there remained an interaction between female size and male ecotype (Table 

3.2.4). Common male stickleback courted larger white females more, while white male 

stickleback courtship frequency remained fairly constant regardless of white female body 

size (Fig. 3.2.4). 

 

 

 
Table 3.2.3. Generalized linear model selection for the effect of male ecotype, female 

ecotype, and female body size (standard length [mm]) on male Threespine Sticklebacks 

courtship frequency. Shown below are the degrees of freedom (df) for the predictors, 

Akaike Information Criterion corrected for small sample sizes (AICc), the difference 

between the model with the lowest AICc value compared to all other predictors (∆AICc), 

and ωi is the weight of a model relative to the complete model set (n = 19 for the first 

model, n = 5 for the other two). The bolded models are those with the lowest AICc values 

by a difference of two or more. 

response variable predictor df AICc ∆AICc ωi 
total courtship 

frequency 
female eco. + female size + male 
eco. + female eco. x male eco. + 
female size x male eco. 

8 874.2 0.00 0.619 

female eco. + female size + male 
eco. + female eco. x male eco. + 
female size x male eco. + female 
eco. x female size 

9 875.7 1.43 0.302 
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female eco. + female size + male 
eco. + female eco. x male eco. + 
female size x male eco. + female 
eco. x female size + female eco. x 
female size x male eco. 

10 878.3 4.11 0.079 

(intercept) 3 921.7 47.52 0.000 

common females (intercept) 3 431.2 0.00 0.430 

female size 4 432.3 1.11 0.247 

male ecotype 4 432.9 1.73 0.181 

female size + male ecotype 5 434.6 3.42 0.078 

female size + male ecotype + 
female size x male ecotype 6 434.9 3.79 0.065 

Table 3.2.3 (continued). Generalized linear model selection for the effect of male 

ecotype, female ecotype, and female body size (standard length [mm]) on male 

Threespine Sticklebacks courtship frequency. Shown below are the degrees of freedom 

(df) for the predictors, Akaike Information Criterion corrected for small sample sizes 

(AICc), the difference between the model with the lowest AICc value compared to all 

other predictors (∆AICc), and ωi is the weight of a model relative to the complete model 

set (n = 19 for the first model, n = 5 for the other two). The bolded models are those with 

the lowest AICc values by a difference of two or more. 

response variable predictor df AICc ∆AICc ωi 
white females (intercept) 3 414.6 0.00 0.279 

male ecotype 4 414.9 0.33 0.237 

female size + male ecotype + 
female size x male ecotype 6 415.0 0.44 0.224 

female size 4 415.8 1.19 0.154 

female size + male ecotype 5 416.5 1.94 0.106 
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Figure 3.2.4. Total courtship frequency of common (left) and white (right) male 

Threespine Sticklebacks towards common (black) and white (grey) female sticklebacks 

based on the standard length (mm) of the females during the 15-minute interaction stage 

(n = 35). Black and grey circles represent the frequencies for individual males. Individual 

males are counted twice as each male had an observation recorded for both a common 

and white female stickleback. 
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Male population type 
 
Male preference for female body size was also analysed for males from different 

population types (allopatric or sympatric). The frequency of courtship behaviours 

conducted towards the released females during the interaction stage was again analysed 

but with a focus on male population type instead of male ecotype. One model consisting 

of two interaction terms between the ecotype relationship with both female size and male 

population type best predicated the courtship behaviours conducted by sympatric and 

allopatric male stickleback (Table 3.2.4). As female body size increased, sympatric male 

stickleback increased their courtship frequency showing a higher preference for larger 

females (Fig. 3.2.5). Allopatric males remained relatively constant in their courtship 

towards females, regardless of body size, with a very slight increase for allopatric males 

courting females of a different ecotype (Fig. 3.2.5). Interestingly, both allopatric and 

sympatric males had a higher frequency of courtship behaviours oriented towards females 

that were not of the same ecotype as themselves (Fig. 3.2.5). As before, due to the 

interactive effects, I also examined subsets of my data. When only females that were the 

same ecotype as the male were included in the analysis, male population type was the 

only predictor influencing the data (Table 3.2.4). Sympatric males courted females that 

were the same ecotype as themselves not only at a higher frequency but with an 

increasing frequency as body size increased (Fig. 3.2.5). Similarly, when only females 
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that were of a different ecotype than the male were included in the analysis, male 

population type was the best predictor (Table 3.2.4). Both allopatric and sympatric males 

increased their courtship frequency as female body size increase, albeit very slightly for 

allopatric whereas sympatric males increased a considerable amount (Fig. 3.2.4).   

Table 3.2.4. Generalized linear model selection for the effect of female body size 

(standard length [mm]), male population type (allopatric or sympatric), and whether the 

female was the same ecotype as the male (ecotype relationship) on male Threespine 

Sticklebacks courtship frequency. Shown below are the degrees of freedom (df) for the 

predictors, Akaike Information Criterion corrected for small sample sizes (AICc), the 

difference between the model with the lowest AICc value compared to all other predictors 

(∆AICc), and ωi is the weight of a model relative to the complete model set (n = 19 for 

the first model, n = 5 for the other two). The bolded models are those with the lowest 

AICc values by a difference of two or more. 

response 
variable predictor df AICc ∆AICc ωi 

total courtship 
frequency 

eco. relation + female size + male pop. + 
eco. relation x female size + eco. relation x 
male pop. 

8 902.0 0.00 0.707 

eco. relation + female size + male pop. + 
eco. relation x female size + eco. relation x 
male pop. + female size x male pop. 

9 904.3 2.32 0.222 

eco. relation + female size + male pop. + 
eco. relation x female size + eco. relation x 
male pop. + female size x male pop. +  
eco. relation x female size x male pop. 

10 906.9 4.90 0.061 

females of the 
same ecotype 

male population type 4 411.0 0.00 0.750 

female size + male population type 5 413.8 2.73 0.192 
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female size + male population type +  
female size x male population type 

6 416.7 5.64 0.045 

(intercept) 3 419.7 8.66 0.010 

female size 4 422.0 10.97 0.003 
 
 
Table 3.2.4 (continued). Generalized linear model selection for the effect of female body 

size (standard length [mm]), male population type (allopatric or sympatric), and whether 

the female was the same ecotype as the male (ecotype relationship) on male Threespine 

Sticklebacks courtship frequency. Shown below are the degrees of freedom (df) for the 

predictors, Akaike Information Criterion corrected for small sample sizes (AICc), the 

difference between the model with the lowest AICc value compared to all other predictors 

(∆AICc), and ωi is the weight of a model relative to the complete model set (n = 19 for 

the first model, n = 5 for the other two). The bolded models are those with the lowest 

AICc values by a difference of two or more. 

response variable predictor df AICc ∆AICc ωi 
females of a 

different ecotype 
male population type 4 417.0 0.00 0.514 

(intercept) 3 418.7 1.68 0.222 

female size + male population type 5 419.7 2.68 0.134 

female size 4 421.1 4.12 0.065 

female size + male population type + 
female size x male population type 6 421.1 4.14 0.065 
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Figure 3.2.5. Total courtship frequency of male Threespine Sticklebacks from allopatric 

(left) and sympatric (right) populations conducted towards females of the same (grey) or 

different (black) ecotype than themselves based on standard length (mm) of the females 

during the 15-minute interaction stage (n = 35). Black and grey circles represent the 

frequencies for individual males. Individual males are counted twice as each male had an 

observation recorded for both a common and white female stickleback. 
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3.2.3 Female preference 
 
Interaction stage  
 
In addition to assessing male preference during the interaction stage of the experiment, I 

also quantified female preference using female behavioural cues. For the analysis, 

individual behaviour frequencies were not used, instead, a binomial data set was created 

where a value of 1 indicated that any of the three behavioural cues (heads-up display, 

follow, and/or inspect nest) were observed, while a value of 0 denoted that none of the 

behaviours were observed. I used a GLMM with male ecotype, female population type, 

whether the male and female were of the same ecotype or not, and their interactions as the 

fixed effects. Individual female identity was the random effect because some females 

were used more than once. Three models were retained that contained interactive and 

additive effects between the three predictors (Table 3.2.5). Sympatric females generally 

responded more than allopatric females, with the exception of allopatric common females 

who responded more to white males than their sympatric counterpart. White females also 

responded more to white males in comparison to the response of common females 

towards common males and allopatric common females performed no response 

behaviours towards common males. Moreover, both female ecotypes responded in a 

similar quantity to males of the opposite ecotype; however, post-hoc tests revealed that 

these trends were not significantly different from one another (Fig. 3.2.6).  
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Table 3.2.5. Generalized linear model selection for the effects of male ecotype, female 

population type (allopatric or sympatric), and whether the male was the same ecotype as 

the female (ecotype relationship) on whether a female responded to a male or not. Shown 

below are the degrees of freedom (df) for the predictors, Akaike Information Criterion 

corrected for small sample sizes (AICc), the difference between the model with the lowest 

AICc value compared to all other predictors (∆AICc), and ωi is the weight of a model 

relative to the complete model set (n = 19). The bolded models are those with the lowest 

AICc values by a difference of two or more. Only the top five models are shown below. 

response 
variable predictor df AICc ∆AICc ωi 

female 
responded 

ecotype relation + male ecotype +  
ecotype relation x male ecotype 

5 84.5 0.00 0.379 

ecotype relation + male ecotype +  
female population type + ecotype relation x  
male ecotype 

6 86.1 1.67 0.164 

ecotype relation + male ecotype +  
female population type + ecotype relation x male 
ecotype + male ecotype x female population type 

7 87.3 2.87 0.090 

male ecotype 3 87.7 3.27 0.074 

(intercept) 2 88.2 3.78 0.057 
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Figure 3.2.6. Proportion of common and white Threespine Stickleback females that 

originated from an allopatric (black) or sympatric (grey) population and responded to a 

male of a different (left) or similar (right) ecotype as themselves, during the interaction 

stage of the experiment. A response indicates that females performed at least one of the 

three response behaviours (“heads-up” display, following the male to his nest, and/or 

inspecting the male’s nest). Numbers above each bar represent the number of trials where 

a female responded at least once out of the total number of replicates of that female 

ecotype, male ecotype, and female population type. Of the 70 trials 21 had at least one 

response behaviour performed by a female. 
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3.3 Threespine Stickleback spawning events 
 
Ten spawning events occurred during the interaction phase of the 35 mate choice trials 

(28.6%). Five of the ten spawnings were hybrid matings; four of these were between 

common males and white females (Table 3.3.1). For four of the five hybrid crosses, at 

least one of the fish originated from the area containing both common and white 

stickleback (sympatric populations). The fish for the remaining hybrid cross were both 

from allopatric populations. Of the five pure crosses, one was a common male and female 

cross, while four were between a white male and female (Table 3.3.1).  
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Table 3.3.1. Number of spawning events for each combination of male and female 

Threespine Stickleback of both ecotypes and population types. 

Male Population 
and Ecotype 

Female Population and Ecotype 
Antigonish 

Landing Common 
Rainbow Haven 

Common 
Crossing Road 

White 
Rainbow Haven 

White 
Antigonish 

Landing  
Common 

0 0 1 1 

Rainbow Haven 
Common 0 1 1 1 

Crossing Road 
White 0 0 2 1 

Rainbow Haven 
White 0 1 1 0 
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4. DISCUSSION 

The Threespine Stickleback species complex provides a unique opportunity to study how 

these fish have evolved and diverged in various environments. The common and white 

morphs in Nova Scotia, Canada are an excellent study species for understanding how 

sympatric speciation may occur (Blouw and Hagen 1990; Samuk 2016). The two 

ecotypes are genetically distinct (Samuk 2016), though there is still evidence of gene flow 

between morphs (Samuk 2016), and allopatric and sympatric populations have shifted 

over the past 30 years with previously undocumented populations arising and known 

populations disappearing (Blouw and Hagen 1990, personal observations). However, 

hybrids have not been found in the wild, as all observed spawnings prior to this work 

have been positive assortative (Blouw and Hagen 1990; Jamieson et al. 1992a), and 

genetic evidence suggests that common and white stickleback have not collapsed into a 

single morph (Samuk 2016). To further understand the mechanisms that maintain the two 

Threespine Stickleback ecotypes, I examined the mate preference of males and females 

using behavioural and visual cues as possible pre-mating isolation mechanisms. Despite 

previous research that found that the ecotypes mate assortatively (Haglund et al. 1990; 

Blouw and Hagen 1990; Jamieson et al. 1992a), my findings indicate that mixed-matings 

occur as frequently as within-ecotype matings. Additionally, my results indicated that 

there is no strong mate preference by males or females for either ecotype based on the 

time males spent in proximity to females and the response behaviours performed by 

females, nor do the sexes perform these behaviours assortatively based on ecotype. 

However, when considering male courtship frequency, sympatric white male stickleback 

courted common females more than allopatric common stickleback males. Moreover, 
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there was evidence that male stickleback of both ecotypes and population types adjusted 

their courtship frequency based on the body size of females. Common male stickleback 

preferred to court larger-bodied females of both ecotypes, while white male stickleback 

showed no body size preference among white females, but increased their courtship for 

larger-bodied common females. In addition, males from allopatric populations remained 

relatively constant in their courtship frequency as female body size increased, but 

sympatric males courted larger females at a higher frequency than they did smaller 

females. 

4.1 Ecotype confirmation 
 
I examined male nesting material preference and body size of the Threespine Sticklebacks 

collected to ensure proper ecotype identification for the experiment. Nest preference and 

body size differences between common and white Threespine Sticklebacks were 

congruent with previous reports that common stickleback males preferred nests made of 

sand while white stickleback males preferred algae nests, and that common stickleback 

are larger than white stickleback.  

 Studies have reported the nest preferences of white and common Threespine 

Stickleback males and the requirement of sand or mud and/or algae specifically for nest 

construction (van Iersel 1953; Haglund et al. 1990; Blouw and Hagen 1990; Jamieson et 

al. 1992a; Blouw 1996). Blouw and Hagen (1990) suggested that the algae preference of 

the white stickleback may be related to benefits associated with cover and protection 

because the white stickleback is very conspicuous in colour, and as a potential source of 

aeration for fertilized eggs. By contrast, common stickleback typically prefer more open 

areas not obstructed by dense algae, as the covered areas may reduce visibility and the 
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prospects of encountering a female (Candolin and Salesto 2006). My findings are 

consistent with these previous reports indicating that nesting material preference is an 

accurate method with which to identify the ecotype of male Threespine Sticklebacks. In 

addition to nesting material, my results support the use of relative body size as a 

determinant of ecotype. Common stickleback of both sexes were larger than both sexes of 

white stickleback which is consistent with the initial findings of Blouw and Hagen (1990) 

and other, more recent studies (see Samuk, Iritani, and Schluter 2014; Samuk 2016). 

4.2 Interbreeding and hybridization in white and common Threespine Sticklebacks 
 
During the experiment ten spawning events occurred resulting in ~29% spawning 

success. Spawning success of Threespine Stickleback in laboratory experiments varies 

greatly from 0-100% (see Ridley and Rechten 1981; McLennan and McPhail 1989; 

Blouw and Hagen 1990; Jamieson and Colgan 1992; Dean, Dunstan, Reddish, and 

MacColl 2021 for examples). Of these ten spawnings, five were pure crosses, while the 

other five were hybrid crosses that occurred in both directions and involved fish from 

both population types (allopatric or sympatric).  

The observation that white and common Threespine Sticklebacks will interbreed 

is not congruent with the findings from previous studies on these ecotypes, where mating 

was completely assortative both in the laboratory and the field (Blouw and Hagen 1990; 

Jamieson et al. 1992a). Additionally, white Threespine Sticklebacks are no longer found 

in some of the locations previously discovered by Blouw and Hagen (1990, e.g. 

Antigonish Landing) and new populations of allopatric and sympatric white stickleback 

have been found (personal observations), indicating that there may be spatial and 

temporal effects influencing the distribution of stickleback ecotypes over the past 30 
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years. My findings indicate that reinforcement may not be as strong as previously 

suspected in these stickleback populations.  

Reinforcement is related to the prezygotic barriers that aid in selecting against 

hybrids in sympatric populations (Dobzhansky 1940; Servedio and Noor 2003). It is 

thought that sympatric populations should evolve stronger mating preferences compared 

to allopatric populations if hybrids are less viable or have reduced fertility, as selection 

can act on populations in sympatry to favour conspecifc matings (Dobzhansky 1940; 

Rundle and Schluter 1998; Servedio and Noor 2003 and references therein). While there 

is evidence that some sympatric populations of Threespine Stickleback ecotype pairs 

found in Washington, USA have evolved strong mate choice based on male colouration to 

avoid inbreeding (McPhail 1969; Scott 2004), there are instances where populations from 

the same watersource in Washington show little preference for colouration (McKinnon 

1995; Tinghitella et al. 2015). Similarly, there are some sympatric populations of 

stickleback that show preferences for specific traits based on ecotype that may also 

interbreed under certain conditions (Hagen 1967; Ólafsdóttir et al. 2006; Conte and 

Schluter 2013). For example, benthic and limnetic Threespine Sticklebacks are known to 

hybridize in the wild and do so based on size matching. Benthic stickleback are larger in 

size and heavier in mass than limnetic stickleback (Schluter and Mcphail 1992; Nagel and 

Schluter 1998) and hybridization may occur when individuals on the extreme end of their 

ecotype’s size distribution overlap with the extreme of the other ecotype (e.g. a small 

benthic with a large limnetic; Nagel and Schluter 1998; Conte and Schluter 2013). In the 

Little Campbell River in British Columbia, Canada, pure marine and freshwater 

stickleback occupy two separate ends of the coastal stream, but there is evidence of 
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hybridization where the two populations connect in the middle (Hagen 1967). Moreover, 

there are Icelandic sympatric stickleback populations for which instances of inter-ecotype 

spawning events have been observed, despite the general observation that they mate 

assortatively (Ólafsdóttir et al. 2006). These Icelandic stickleback, like the common and 

white stickleback, are genetically distinct but most likely diverged recently (Ólafsdóttir 

2004).  

While my finding of interbreeding between white and common stickleback was  

unexpected because there have been no documented common and white stickleback 

hybrids in the wild and the two ecotypes are considered genetically distinct (Samuk 

2016), gene flow can occur between the two ecotypes. Laboratory breeding studies have 

noted that through artificial crosses common and white ecotypes can interbreed and 

produce viable offspring (Blouw 1996). The same study also reported that male 

colouration and whether a male performs parental care duties or not are heritable traits 

(Blouw 1996). Because the two ecotypes are interfertile, produce viable offspring, and 

their identifying traits are heritable, it is not illogical to suspect that there may be 

instances in sympatric populations where hybridization may occur. It is possible that 

white and common stickleback are at the end of a potential divergence spectrum, whereby 

they are beginning to collapse back into one ecotype or in the process of diverging into 

different species. Both hypotheses are supported by the finding that there appears to be no 

ecotype-based preference for either white or common males or females, nor is there pre-

zygotic reinforcement in sympatric populations. However, there is evidence in favour of 

the maintenance of the two ecotypes, where initial findings reported that the offspring of 

F1 hybrids are not adequate fathers which results in egg death without artificial aeration 
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(C. Behrens, personal communication). Additionally, one study has shown that the well-

known naturally occurring hybrids of the limnetic and benthic stickleback pair after four 

generations and across three life history stages showed a decline in hybridity (Gow et al. 

2007). Although it appears that reinforcement may not be the main reason for the 

separation of common and white ecotypes, there could be other mechanisms at play (see 

section 4.3.1.1) that could explain why we do not find hybrids in the wild but that gene 

flow still occurs. It has also been suggested by Servedio and Noor (2003) that selection 

against hybrids may be negligible in other Threespine Stickleback species pairs when 

compared to other mechanisms such as mating cues (e.g. colouration, Boughman 2001, 

and body size, Nagel and Schluter 1998) to help in premating isolation (Servedio and 

Noor 2003). A generational study would be beneficial to fully understand the impacts of 

mate selection (or lack thereof) within the common and white ecotypes of the Threespine 

Stickleback.  

4.3 Mate choice in Threespine Stickleback 
 
4.3.1 Male preference as an indicator of mate choice  
 
I predicted that common male stickleback would be more likely to choose a female of the 

same ecotype than white males due to the amount of investment males provide (i.e. 

parental care vs. no parental care). However, my results indicate that male Threespine 

Sticklebacks showed no preference for one ecotype or the other as they spent the same 

amount of time in proximity to either female ecotype during the preference stage. 

Because white male stickleback do not perform parental care duties (Blouw and 

Hagen 1990; Jamieson et al. 1992b; Blouw 1996) they do not experience the reproductive 

“time-outs” or the energy constraints associated with paternal care as do common male 



 61 

stickleback (Jamieson et al. 1992b). For this reason, appropriate mate selection (i.e., a 

white female) may not be as important for white males as it would be for common males, 

because their fitness cost associated with producing hybrid offspring may not be as high.  

The allocation of energy reserves is important in common male stickleback since 

males must distribute their energy between courtship and parental care. A study 

conducted on common male courtship found that males who courted more vigorously 

were poor fathers compared to the less vigorous courters as they had less energy to put 

towards their parental care duties (von Hippel 2000). However, because white males do 

not have this parental care constraint, they can invest their energy in pre-mating 

behaviours such as courtship and aggression to optimize mate acquisition and their 

reproductive success. Previous studies have reported white male stickleback to have 

higher courtship frequency than their sympatric common counterparts (Blouw and Hagen 

1990; Jamieson et al. 1992a; Macdonald et al. 1995; Haley et al. 2019). Even though we 

expect white males to invest more in mating than parental behaviour compared to 

common males, aggression levels were similar between the two ecotypes, indicating that 

white male stickleback may use inter-sexual selection to enhance their mating success 

(Haley et al. 2019).  

It is surprising that common male stickleback showed no preference for the 

ecotype of the female they were courting, counter to my prediction. Because common 

male stickleback assume the burden of  paternal care and associated energy costs, it is 

expected that they would be more selective with respect to ecotype. A possible 

explanation for the interactions between white and common Threespine Sticklebacks is 

what population type (allopatric or sympatric) the individuals originated from. Previous 
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work that reported positive assortative mating between common and white stickleback 

only considered sympatric populations (Blouw and Hagen 1990; Jamieson et al. 1992a; 

Blouw 1996). It is suspected that males from sympatric populations would have stronger 

mate preferences than males from allopatric populations because sympatric populations 

may have experienced selection against interbreeding if there are fitness costs to 

hybridization (egg death when cared for by the father; Behrens, personal communication), 

while allopatric populations would not have undergone the same evolutionary process and 

selection for an appropriate mate may not be reinforced. For this study, male population 

type was included and it was found that during the interaction stage, sympatric white 

males courted common females at a higher frequency than did allopatric common males 

but otherwise there were no differences otherwise. 

It was not unexpected that allopatric male sticklebacks showed no preference for 

their female counterpart. Allopatric male stickleback when interacting with a female that 

is morphologically similar to his ecotype with the exception of body size (Blouw and 

Hagen 1990; Samuk 2016), may court the only female option over no female at all. 

Courtship oriented towards the different ecotype may arise as the allopatric males might 

not have experienced the negative outcome of mating with females of a different ecotype 

that is reinforced in sympatric populations evolutionarily through selection. Another 

possibility is poor initial mate recognition. For example, results showed for when 

allopatric Calopteryx virgo Damselfly males were exposed to heterospecific and 

conspecific females, there was a non-significant trend for males to be able to differentiate 

between the two female types (Kuitunen et al. 2012). However, when exposed to 

conspecific females for an extended period of time, allopatric males’ discriminating 

ability was strengthened (Kuitunen et al. 2012). The authors of that study suggest that 
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learning might be a factor in species recognition (Kuitunen et al. 2012). The fact that 

sympatric white males courted common females with higher frequency than white 

females, or that sympatric common males courted females of either ecotype seemingly 

indiscriminately is interesting. If the separation of common and white stickleback in 

sympatric populations was due to reinforcement, we would have expected male 

preference to exist for common males who provide care, and for both male ecotypes to 

avoid related fitness costs as is seen in other species. Peterson and colleagues (2005) have 

noted that male mating preferences of sympatrically occurring Blue Milkweed beetle 

(Chrysochus cobaltinus) and Dogbane beetle (Chrysochus auratus) have evolved with the 

help of reinforcement (Peterson et al. 2005). Sympatric Chrysochus cobaltinus males are 

more likely to mate with conspecific females than allopatric male C. cobaltinus (Peterson 

et al. 2005). The same study also noted that sympatric C. auratus males are less 

discriminating about their mate compared to the C. cobaltinus males (Peterson et al. 

2005), which is similar to my observations.  

Additional mechanisms that maintain ecotypes 
 

Male preference does not appear to be a strong pre-mating isolation barrier for the 

white and common ecotypes of Threespine Stickleback, regardless of the population type 

(allopatric or sympatric). However, there are various additional avenues that may prevent 

stable hybridization between ecotypes of Threespine Stickleback, such as other isolating 

mechanisms that visually identify an individual (e.g. body size, colouration, and others, 

Nagel and Schluter 1998; Boughman 2001; Servedio 2001; Servedio and Noor 2003) or 

mechanisms that could occur after mating (e.g. differential sperm production and sperm 



 64 

precedence [see Howard 1999 for a review], hybrid sterility, inviability, or fitness [see 

Wirtz 1999 for examples] and female death and low fertility [Servedio 2001]).  

The Threespine Stickleback mating system is typically described as female choice 

dominated in the common Threespine Stickleback and various other stickleback ecotypes 

including hybrids (McPhail 1969; Milinski and Bakker 1990; Bakker 1993; Baube et al. 

1995; Conte and Schluter 2013; Bay et al. 2017). Because male mate choice (or mutual 

mate choice) may not be as prominent in the stickleback mating system, though there is 

evidence (see Rowland 1982; 1989; Bakker and Rowland 1995; Kraak and Bakker 1998), 

male selection for female identifiable traits may not be as strong. Indicators of female 

quality focus mainly on body size in relation to fecundity (Hagen 1967; Wootton 1973; 

Rowland 1989); however, there is little in comparison into identifying other traits of 

female stickleback. In fact, common and white female stickleback are morphologically 

very similar (Blouw and Hagen 1990; Samuk 2016). Common and white stickleback have 

complete lateral plate coverage, similar gill raker numbers, and similar colouration 

outside of the breeding season (Blouw and Hagen 1990; Samuk 2016). While there is 

evidence that the two stickleback differ in body depth and size (Blouw and Hagen 1990), 

when controlling for body size (as depth and other morphological traits scale with size) 

there are no differences in body shape with the exception of white stickleback having 

slightly shorter pelvic spines (Samuk 2016). This similarity in morphology could create 

difficultly when visually identifying one female ecotype from the other. However, there 

are other instances within the Threespine Stickleback species complex, such as the 

limnetic and benthic species pair, where even though males are able to distinguish 

between females of the same or different ecotype as themselves, they courted the two 
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female types differently, they still courted both female types with similar vigor (Kozak et 

al. 2009). Male preference should be related to not only identifying an appropriate mate 

but also to distinguishing a good quality mate from a poor-quality mate or else 

distributing their resources appropriately.  

Differentiating sperm production based on the type of female present could be a 

possible explanation as to why, when looking at courtship behaviours and time spent in 

proximity to a female, male stickleback appear to have no preference for the female’s 

ecotype. Males may be courting females of a different ecotype than themselves with 

similar frequency as they would females of the same ecotype while simultaneously 

manipulating their sperm reserves to properly reflect the different ecotype female. 

Differential sperm production has been seen in other fish species, for instance, male 

Sailfin Mollies (Poecilia lapitinna) that originated from both allopatric and sympatric 

populations when in the presence of a conspecific female produced more sperm than 

when in the presence of a heterospecific female (Aspbury and Gabor 2004b). Through 

this method the male could still mate without wasting a large amount of genetic resources 

if a conspecific female becomes available later. Post-zygotic reproductive barriers related 

to hybrid sterility or inviability may not occur with first generation hybrids because 

hybrids between the two ecotypes survive and are fertile, though evidence for stickleback 

hybrids has only been found in laboratory crosses (Blouw 1996, C. Behrens, personal 

communication). Because the hybrids survive this could result in diminished pre-zygotic 

barriers (e.g. courtship display and/or colouration), as the parental individuals do not 

experience the direct fitness cost of eventual egg death of the second generation hybrids 

(C. Behrens, personal communication). However, the survival of first-generation hybrids 
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indicate that there should be repeated interbreeding among stickleback that results in 

detection of hybrids in the wild, but wild hybrids are not found (Samuk 2016). If the 

behavioural difference of the hybrid fathers of the first generation is heritable, as other 

traits have shown to be (Blouw 1996), then the hybrid lineage will end when the F2 eggs 

die. Reduced fitness in F1 hybrids is not uncommon in stickleback. Red and Black 

Threespine Stickleback hybrids experience a 5% reduction in survivability and the 

fertility of males (McPhail 1969). These hybrids also experience a 50% reduction in 

viability when backcrossed with parental species (McPhail 1969). Additionally, although 

the first-generation hybrids are viable, they may experience a reduction in fitness when 

acquiring a mate as observed in other stickleback hybrids. For example, limnetic and 

benthic hybrids have lower reproductive success compared to pure individuals as they 

must attempt to outcompete the pure parental male ecotypes for access to pure parental 

females (Vamosi and Schluter 1999). Moreover, the same study noted that pure limnetic 

males courted limnetic females more intensely than hybrid males and that limnetic 

females preferred pure limnetic males (Vamosi and Schluter 1999). Thus, in common and 

white Threespine Sticklebacks, reinforcement may not be acting on the “pure” parental 

species, but rather on the first-generation hybrids who must out-compete their pure rivals, 

and who appear to not be adequate fathers to produce the next generation. However, as 

mentioned earlier, common and white stickleback hybrids have only been observed in the 

laboratory. No hybrids have been documented in the wild, and thus perhaps there are 

other mechanisms in the natural environment (e.g. temporal differences, if common and 

white stickleback are reproductively available at different times, or ecological differences, 

if females are not able to interact with males of the different ecotype due to nesting 

location/material) that are removing hybrids from the population. In situ observations and 
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generational studies of stickleback in their natural habitat could improve our 

understanding of male mate preferences, ecotype recognition in sympatric and allopatric 

populations and the prevalence and fitness of hybrids in sympatric populations. 

Male courtship effort and female body size 
 
Based on courtship frequency with respect to female body size, common male stickleback 

preferred larger-bodied females of both ecotypes, while white male stickleback showed 

only a preference for larger-bodied common females but not larger white females. 

Common male stickleback increased their courtship for both larger-bodied common and 

white females, but did not prefer only the largest females.  

Female size is positively correlated with fecundity in various fish species 

(Nerophis ophidion, Berglund et al. 1986; Fundulus diaphanus, Phillips et al. 2007; 

Salvelinus alpinus, Smalås et al. 2017; review of fishes, Helfman et al. 2009). Threespine 

Stickleback females fit this pattern, where fecundity varies with female body size 

(Rowland 1989), with larger females producing more eggs (Hagen 1967; Wootton 1973); 

however within the white stickleback, similar sized females produce a variety of clutch 

sizes (Blouw 1996). 

Common male stickleback prefer larger-bodied and more distended females 

(Rowland 1989; Kraak and Bakker 1998), and common males did increase courtship for 

larger females in this study; as did white males (for common females). Preference for 

larger females stems from a female’s body size being a good proxy for her spawning 

readiness and egg quantity or size (Rowland 1989; Kraak and Bakker 1998). White males 

did not, however, increase courtship for white females. White male stickleback may be 

courting white females of all sizes since there is variation in clutch sizes with similarly 
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sized females producing differing amounts of eggs (Blouw 1996). Mating based on body 

size is not uncommon in the Threespine Stickleback species complex; limnetic and 

benthic Threespine Stickleback ecotypes are known to interbreed and in some instances 

they differentiate between one another by size matching, though when the two ecotypes 

are within similar sizes to each other, hybridization may occur (Nagel and Schluter 1998; 

Conte and Schluter 2013). Additionally, populations of anadromous and freshwater Japan 

Sea and Pacific Ocean ecotypes of Threespine Stickleback also demonstrated some 

variation in courtship behaviours towards differently sized individuals (Ishikawa and 

Mori 2000). Moreover, some male fish such as Sailfin Mollies differentially allocate their 

sperm production, by producing more sperm in the presence of larger-bodied females 

compared to smaller females (Aspbury and Gabor 2004a). In organisms other than fish, 

there is evidence of males actively choosing heterospecific females due to their larger size 

(and fecundity) over conspecifics females (e.g. Groundhoppers, Hochkirch et al. 2007; 

Pacific Island Geckos, Dame and Petren 2006).  It is possible that white and common 

stickleback may not only consider the size of a potential mate as a measure of her 

fecundity but also as an indicator of compatibility. The gravidity of females was not 

measured in this study, and future avenues of work may involve quantifying the 

relationship between female fecundity and male preference in the white stickleback. 

4.3.2 Female response as an indicator of mate choice 
 
Based on previous findings (Blouw and Hagen 1990), I expected that common females 

would respond to both male ecotypes, but ultimately mate with common males, while 

white females would show only a preference for white males. I also expected that, as with 

the male stickleback, sympatric females would be more selective of their mate than 
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allopatric females, due to the fitness costs associated with interbreeding. Preference for 

common males may arise due to their parental care (van Iersel 1953), where preference 

for white males may be associated with their vigorous courting and conspicuous 

colouration (Jamieson et al. 1992a; Haley 2018). By contrast, I found that female 

stickleback of both ecotypes and population types have no preference for either male 

ecotype. My findings show that although all predictors (male ecotype, female population 

type, and ecotype relationship) were considered to have influenced female response, there 

were no significant differences in the probability of a response from females of both 

ecotypes towards males of either ecotype, nor did the population type (sympatric or 

allopatric) of the female influence her behaviour.  

 The probability of response towards common males by common females was 

lower than expected. Only sympatric common females responded with stereotypical 

mating displays directed toward common males, while common females from both 

population types responded to white males. This finding is similar to what has been 

reported previously for this ecotype (Blouw and Hagen 1990; Jamieson et al. 1992a), 

where common females are initially attracted to white males. However, white females 

from allopatric and sympatric populations also responded to both male ecotypes similarly, 

not only white males, indicating that my findings for female behaviour are different from 

the original study published 30 years ago (Blouw and Hagen 1990). A lack of clear 

preference by common and white females for either male ecotype may arise if both 

female ecotypes are attracted to the paternal care provided by common males (van Iersel 

1953), while also being interested in the more energic courtship attempts and bright 

colouration of white male sticklebacks (Jamieson et al. 1992a; Haley et al. 2019). 
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Because female stickleback do not provide maternal care, the benefits associated with the 

male providing parental care are high. Selecting a mate who appears to be a good father 

would be beneficial to the female to ensure her eggs will thrive. Females can assess a 

male’s parental ability using his red nuptial colouration (Candolin 2000). Furthermore, 

when in the presence of multiple males, a female can determine the best care-giver as red 

colouration more accurately represents male parental ability during competition 

(Candolin 2000). In addition to preferring the most red male, common females prefer to 

mate with males who already have eggs in their possession, as this is an indicator of a 

high quality mate (Ridley and Rechten 1981). However, other studies that examined 

female preference noted that instead of egg presence in a male’s nest, his readiness to 

court may serve as a better indicator (Jamieson and Colgan 1992 and references therein). 

Because male stickleback participate in egg parasitism, the eggs present in the courting 

male’s nest may not accurately represent his quality if he stole the eggs from another 

male (Jamieson and Colgan 1989; Jamieson et al. 1992b). Because egg presence may not 

be as influential on female response as the studies above hinted, female stickleback, when 

in the presence of a male who possesses no eggs, as in my study, may have a more 

difficult time choosing a mate and may respond to a potential caring common male as 

much as she would toward an energetic courting white male, as was seen in my study.  

Although white stickleback may not possess eggs in their nest, their energetic 

courtship might be initially appealing to females over egg presence. Additionally, egg 

presence indicates that a male already mated with one or more females, which could 

indicate sperm depletion. Females may avoid mating with potential sperm-depleted males 

in favour of an individual who could fertilize all of her eggs (Nakatsuru and Kramer 
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1982; Harris and Moore 2005). White males may show no eggs in his nest, which could 

act as an indication that he is not sperm-depleted. While nothing is known about sperm 

regeneration in white males, common male stickleback are limited by their sperm supply. 

Spermatogenesis in Threespine Sticklebacks is physiologically inhibited by androgens 

until breeding ceases at the end of the season (Borg 1981; Borg and Mayer 1995). Post-

breeding, spermatogenesis commences once more to produce more spermatozoa for the 

following breeding season (Borg 1981; 1982). As a result, male stickleback who mate 

multiple times have significantly reduced sperm counts and smaller ejaculate size 

compared to virgin males (Zbinden et al. 2001).  

Additionally, larger males invest more sperm into a spawning event compared to 

smaller males (Zbinden et al. 2001), which could allow male size to be an indicator of 

quality to selecting females as it would ensure all of her eggs get fertilized. Trends for 

male size as an indicator for females has been observed in Poecilia reticulata which 

suggested females preference for larger males may result from indirect genetic benefits 

(Reynolds and Gross 1992) and in some stickleback populations, such as the limnetic and 

benthic and Icelandic species pairs (Boughman et al. 2005; Ólafsdóttir et al. 2006). As 

well, in common Threespine Stickleback, larger males who defended a larger and higher 

quality territory encountered more females than other males, suggesting that these males 

were of higher genetic and/or phenotypic quality (Candolin and Voigt 2001). Although 

male body size was not analysed in this study, it could be a measure for females to assess 

males as potential mates.  

Although only male courtship behaviours were analysed in this study, females of 

one or both ecotypes could also be assessing multiple physical characteristics of males, 
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such as their body size, and other attributes that would represent a male’s quality and/or 

identity that could promote (or hinder) isolation between ecotypes. Within the limnetic 

and benthic species pairs, female preference for male colouration was determined to be 

strong for limnetic females and less so for benthic females, and that limnetic males have 

more exaggerated traits compared to benthic males (e.g. colour; Boughman 2001; 

Boughman et al. 2005). These differences in traits and preferences creates an environment 

for strong reproductive isolation as limnetic females will be more selective of their mates 

compared to benthic females (Boughman 2001; Boughman et al. 2005). Moreover, a 

study conducted on allopatric populations of red and black ecotypes of Threespine 

Stickleback that are known to mate assortatively showed that when females could not 

choose among potential mates, they would mate with the ecotype different from their own 

(McPhail 1969). Similarly, Threespine Stickleback females once ovulated, their eggs’ 

lifespan shortens as time passes therefore, females become less discriminatory towards 

the male they respond to in order to ensure her eggs have a chance to get fertilised 

(Bakker and Milinski 1991; Wirtz 1999). Although, focused on female stickleback 

selecting common male stickleback of varying brightness, the idea could still apply to 

common and white females who need to spawn with any male or risk her eggs dying. 

Within my study, it is possible that many of these situations arose within and between 

female and male Threespine Sticklebacks, such as no strong response for either male 

ecotype by females influencing the choice of mating partners in female stickleback.  

In addition to colouration and behaviour, several other factors can be used by 

females to assess males. Common and other female stickleback ecotypes assess male 

sticklebacks’ MHC genetic make-up, as it is directly associated with many beneficial 
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characteristics including parasite and infection resistance, better quality nests, and higher 

reproductive success (Reusch et al. 2001; Aeschlimann et al. 2003; Milinski 2003; Jager 

et al. 2007; Eizaguirre et al. 2009; Stutz and Bolnick 2017). It is possible that white 

female stickleback also assess male MHC genes, as the two ecotypes are so closely 

related. Another avenue of female choice could be mate copying. Mate choice copying is 

related to social learning, where the mate selection of a female is related to the choice of 

another female (i.e. whether she mated with or rejected the male in question; Varela et al. 

2018 and references therein). A theoretical study has suggested that mate copying 

between species that have had secondary contact may promote hybridization via mate 

preferences of heterospecifics converging (Varela et al. 2018). This study also considered 

how mate choice copying may influence speciation in different ways such as preventing 

or reinforcing speciation via mate preferences of conspecifics converging or diverging 

(Varela et al. 2018). My experimental setup allowed for the contained female to see the 

first released female and the focal male interacting with each other. Because of this, one 

can predict that if the first female chose not to mate with the male, this could have 

influenced the choice of the contained female when she was released. However, female 

response was only directly correlated in two of the 35 trials when both females respond to 

the focal male; all other female responses (19 of 35) were singular instances (i.e., only 

one of the two females responded). The two trials mentioned were instances where the 

first female that was released spawned with the male, however, a second spawning event 

did not occur with the second female. To properly understand the relationship between 

MHC genes and white stickleback and the possibility of the presence of mate copying 

further research is required. To disentangle the effect of MHC genes in the white 

stickleback, experiments focusing on a white male's or female’s preference for a mate 
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based on the MHC genes of the potential mate through the use of smell (for an example 

see Milinski 2003) or genetic analyses of white stickleback MHC genes can be 

conducted. Future studies can also provide females opportunities to interact with multiple 

males while other females observe and record their mate selection to determine the 

presence or absence of mate copying.  

5. CONCLUSION 

Selection can be one of the pathways that leads to the divergence and maintenance of 

sexually reproducing organisms (Fisher 1930; 1958; Lande 1981; 1982). Reproductive 

isolation can occur both before and after mating between two different ecotypes or 

species through pre- or postzygotic reproductive barriers. In sympatric populations, strong 

prezygotic barriers, including reinforcement, can be a reason for the separation or 

maintenance of distinct groups of sexual reproducing organisms; this is strengthened 

through selection over evolutionary time (Dobzhansky 1940; Servedio and Noor 2003). 

Selection against interspecific matings that do not experience associated fitness costs of 

producing unfit hybrids could be an explanation for the maintenance of white and 

common Threespine Stickleback ecotypes that live sympatrically.  

My research suggests that there is no ecotype-based preference for white and 

common Threespine Sticklebacks. Inter-ecotype matings were observed as frequently as 

pure crossed matings. Moreover, common and white males spent relatively the same 

amount of time with and courted both female ecotypes with similar frequency. Similarly, 

female stickleback responded equally to both male ecotypes. This finding differs from a 

former study that looked at mate choice in white and common Threespine Stickleback 

and found that both common and white females and common male sticklebacks have a 
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preference for their own ecotype (Blouw and Hagen 1990). However, I did corroborate 

previous reports that common stickleback are larger in size in comparison to their white 

counterparts (Blouw and Hagen 1990; Samuk 2016) with an additional finding that both 

male ecotypes spend more time and energy when in the presence of relatively larger 

females. Common male stickleback courted more intensely the larger-bodied common 

and white females within their respective ecotype size range, while white males courted 

the largest female overall (common females) more intensely.  

Due to time and space restraints along with the Covid-19 global pandemic co-

occurring, the full extent of this study, both experimental design and sample size, could 

not be achieved. Females in this study were subject to a no-choice trial design which may 

hinder mate choice. However, when presented with only one stimulus (one male 

stickleback) female response may represent her absolute preference for a mating partner 

(Wagner 1998; Dougherty and Shuker 2015), if a female rejects a male this may indicate 

a stronger preference for a different male type since there is the potential that the female 

would not encounter another male (Dougherty and Shuker 2015 and references therein). 

Additionally, males were limited to only two females (one of each ecotype) which greatly 

reduces mate options and males may opt to court any female over no/an inappropriate 

female. Future studies should consider an experimental design that represents a more 

natural mating environment with multiple male and female encounters to fully understand 

the mating preferences of the two stickleback ecotypes. Moreover, this study focused on 

visual and behavioural mating signals of common and white Threespine Stickleback. 

While many studies have focused on these characteristics, comparatively fewer have 

investigated other stimulants, such as olfactory cues and its associated traits. For example, 
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the role of major histocompatibility complex (MHC genes) on mate selection in 

Threespine Stickleback. Previous reports suggest that common Threespine Stickleback 

males who possess an optimal number of MHC genes not only gain benefits in terms of 

health but are more attractive to selecting females (Jager et al. 2007; Eizaguirre et al. 

2009; Stutz and Bolnick 2017). However, the influence of MHC genes specifically within 

the white Threespine Stickleback ecotype and between the common and white ecotypes 

has yet to be investigated and could potentially be a mechanism separating the two 

sticklebacks.  

My findings associated with male preference for larger-bodied females within an 

ecotype by common males, and for the largest female overall regardless of ecotype for 

white males, merit further research to delve into the relationship between preference and 

size, both from the male and female point of view. Similar outcomes have been found in 

limnetic and benthic Threespine Sticklebacks that are known to hybridize based on 

preference for similarly sized individuals (Nagel and Schluter 1998; Conte and Schluter 

2013). 

Although my results did not support my predictions that mate preference would be 

present in both female ecotypes and common male sticklebacks due to the amount of 

investment provided during the breeding season, my research, especially the difference in 

preference for female body size between common and white males, provides one of many 

stepping stones on the pathway to discovering what mechanisms are maintaining the 

separation of common and white Threespine Sticklebacks in the wild.  
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SI1 Threespine Stickleback nest building trends 
 
I investigated the proportion of time a male spent tending to his nest and the frequency at 

which he conducted nest tending behaviours to determine if other dissimilarities between 

common and white stickleback nesting habits were present. These analyses were 

conducted in a similar fashion to male choice where the during the preference stage nest 

tending was timed while during the interaction stage nest tending behaviour frequencies 

(Table 2.3.2) were recorded. A generalized linear model (GLM) with binomial 

distribution was run to determine if the proportion of time males spent tending their nest 

differed. The proportion of time was calculated using the time a male spent tending to his 

nest during the 30 minute preference stage divided by the total observational time. Male 

ecotype, male population type, and their interaction were included in the model as the 

fixed effects, there were no random effects included.  

The average of the all the nest tending behaviours added together (herein “total 

nest-tending frequency”) was analysed using a generalized linear mixed effect model 

(GLMM) for each 15 minute interval during the interaction stage. However, prior to 

analysis, the values for the individual nest-tending behaviours were corrected for time as 

was done with the total courtship and glass poking frequencies, then summed to create the 

total nest-tending frequency. Because the data generated from the observations were 

counts that were overdispersed, the GLMM was run with a negative binomial error 

distribution. As with the other models, individual males were included as a random effect 

as each male was observed with a white and a common female. Fixed effects included 

male ecotype and male population type. The predictive models produced for both the 

proportion of time and nest tending frequency were then compared and ranked as was 
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done for the body size analysis using AICc and assessed with QQ plots and post-hoc 

analysis.  

Results indicated that males of either ecotype and population type spent the same 

amount of time tending to their nest along with a similar behaviour frequency. Although, 

there was a weak additive effect of ecotype and population type for nest tending 

frequency (Fig. SI1.1, SI1.2  and Table SI1.1). 

Male stickleback of both ecotypes and population types did not differ in the 

amount of time they spent or the frequency of nest tending behaviours they conducted 

towards building and maintaining their nests. Generally, white male stickleback spent 

more time maintaining their nest while common male stickleback performed more 

behaviours.  
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Table SI1.1. Generalized linear model selection for the effects of male ecotype and male 

population type (allopatric or sympatric) on the proportion of time and behaviour 

frequency male Threespine Sticklebacks spent tending to their nest. Shown below are the 

degrees of freedom (df) for the predictors, Akaike Information Criterion corrected for 

small sample sizes (AICc), the difference between the model with the lowest AICc value 

compared to all other predictors (∆AICc), and ωi is the weight of a model relative to the 

complete model set (n = 5). The bolded models are those with the lowest AICc values by 

a difference of two or more. 

response 
variable predictor df AICc ∆AICc ωi 

proportion of 
time spent 

nest tending 

(intercept) 1 6.2 0.00 0.567 

male population type 2 8.5 2.26 0.183 

male ecotype  2 8.5 2.28 0.181 

male ecotype + male population type 3 10.9 4.69 0.054 

male ecotype + male population type + 
male ecotype x male population type 

4 13.4 7.25 0.015 

nest tending 
frequency 

(intercept) 3 603.0 0.00 0.353 

male ecotype 4 603.5 0.48 0.278 

male population type 4 604.4 1.39 0.176 

male ecotype + male population type 5 604.9 1.91 0.136 

male ecotype + male population type +  
male ecotype x male population type 

6 606.7 3.67 0.056 
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Figure SI1.1. Proportion of time common and white male stickleback spent performing 

nest oriented behaviours from allopatric (black) and sympatric (grey) populations during 

the male preference stage (n = 35). Black and grey horizontal lines indicate the median, 

the black and grey diamonds are the sample means, and the coloured dots are the time for 

individual males. Letters above the data represent post-hoc test groupings. 
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Figure SI1.2. The frequency of total nest oriented behaviours common and white 

Threespine Stickleback males from allopatric (black) and sympatric (grey) populations 

conducted during the two 15-minute observation periods from the male exertion stage (n 

= 35). Black and grey horizontal lines indicate the median, the black and grey diamonds 

are the sample means, and the coloured dots are the frequencies for individual males. 

Letters above the data represent post-hoc groupings. 
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SI2 Courtship behaviours of Threespine Sticklebacks 
 
I was also interested in whether there existed courtship behaviours conducted exclusively 

by common or white male stickleback. To answer this, I looked at the average frequency 

of the individual courtship behaviours performed by males of both ecotypes (Table 2.3.2) 

and compared them between the ecotypes.  

Four of the six were performed with relatively similar frequencies between the 

two ecotypes (Table SI2.1), while side fanning behaviour was conducted exclusively by 

white male stickleback and dorsal pricking was performed solely by common male 

stickleback (Table SI2.1).    

Jamieson et al. (1992a) found a similar outcome in their field studies noting that 

there were no behaviour frequency differences between common and white stickleback, 

though they did note that white males did not perform dorsal pricking. There are other 

populations of stickleback that also differ in their courtship behaviours, such as the 

Pacific Ocean ecotype and Japan Sea ecotypes. The Pacific Ocean ecotype conducts a 

zig-zag courtship display, whereas the Japan Sea ecotype replaced zig-zagging with a 

lateral display (Ishikawa and Mori 2000). This lateral display may be similar in nature to 

the change from the dorsal pricking display of the common males to the side-fanning 

display of the white males. 
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Table SI2.1. Average frequency of focal behaviours conducted by common and white 

Threespine Stickleback males towards the released female during the male interaction 

stage of the experiment (n = 35). 

Focal behaviour 
male ecotype 

common 
(mean ± std. dev.) 

white 
(mean ± std. dev.) 

biting 102 ± 82 110 ± 110 
leading 11 ± 18 12 ± 12 

zig-zagging 45 ± 59 42 ± 48  

nest showing 1 ± 3 4 ± 15 

dorsal pricking 5 ± 15 0 ± 0 

side fanning 0 ± 0 5 ± 10 
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A1 Bayesian statistical analyses – methods 
 
In addition to the previous model comparison analysis, a Bayesian statistical approach 

was also taken to analyse the experimental data. This was to provide another statistical 

means of analysis since Bayesian statistics allows for the interpretation of the hypothesis 

given the data with the additional input of prior information about the data. For the 

Bayesian analyses the statistical software R v4.0.2 (R Core Team 2020) with the 

additional package of rstan v2.21.2 (Stan Development Team 2020) were used.  

A1.1 Statistical model selection 
 
Nest material and body size 
 
Male stickleback nesting material preference was recorded as a binary response with a 

value of 0 indicating that the dominant nesting material (>70%) used was algae and a 

value of 1 representing the dominant nesting material as sand/mud. A Bernoulli logistic 

regression model was run using Bayesian methodology to properly determine male nest 

material preference, because preference was recorded as binary data. The predicted 

(response) variable was the dominant nesting material data. The Bernoulli model structure 

contains only one parameter, µ (mu). Male ecotype was the sole categorical predictor 

(explanatory) variable that constituted the Bernoulli parameter, as I was only interested in 

confirming the material preferences of common and white male stickleback. Because 

Bayesian analysis takes advantage of using prior probabilities to better inform the model, 

I used a normal distribution with a mean of zero and a standard deviation (S.D.) of one to 

determine the probability of which male ecotype would prefer what nesting material. An 

assumption with these analyses is that there is no relationship between the predicted (nest 

material preference) and predictor variables (in this case just male ecotype), therefore, a 
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prior with a normal distribution with a mean of zero will account for this assumption 

while also allowing for the estimation of the mean effect of the predictor variables on the 

predicted variable on a standardized scale. A standard deviation of one was selected as I 

do not expect any values to fall outside this range since the data were recorded as binary.  

To confirm body size differences between common and white stickleback, 

standard length (mm) measurements were recorded and standardized. Standardized body 

length was calculated by subtracting mean body size from the size of the individual (for 

each individual) then divided by the standard deviation of the body size measurements. 

Because the data for the predicted variable were standardized and continuous numbers, a 

Bayesian analysis with a normal distribution was executed. The ecotype and sex of each 

fish and their interaction were used as the categorical predictor variables along with an 

intercept (mean predicted value for body size when predictor values are zero). The two 

predictor variables, their interaction, and the intercept were summed to formulate one of 

the two normal distribution parameters known as µ (mu). The second parameter of the 

normal distribution was sigma which was derived from a prior of an exponential 

distribution with a rate of 0.5 to account for the variation around the mean. The 

exponential distribution was chosen as sigma must be positive, as you cannot have a 

negative difference between two numbers since the smallest possible difference is zero, 

and had the highest likelihood for sigma between the values of zero and one. I expect 

sigma to fall somewhere between zero and one because the body size data was 

standardized with a standard deviation of one and again the smallest possible difference is 

zero. The intercept, ecotype, sex, and the interaction terms all derived from normally 

distributed priors with a mean of zero and a standard deviation of one. Similar to before, 
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the normal distribution with these parameters was chosen as it accounts for the mean 

effect of each variable while also allowing for some variation (S.D. = 1). 

A1.2 Male choice 
 
Preference stage 
 
Male preference was determined by assessing the proportion of time male stickleback 

spent in proximity to each of the contained females during the preference stage. The 

amount of time a male spent in proximity to the contained female (for each female) 

divided by the total observation time (30 minutes) formulated the proportion of time 

variable. The data was then standardized by subtracting the mean from individual 

proportion of time data points and then dividing by the standard deviation. Male 

preference was analysed using a normal distribution because the data were standardised 

and continuous. Standardized proportion of time was used as the predicted variable in the 

model. Male ecotype, male population type, female ecotype and their interactions were 

used as the predictor variables. These variables are similar to the non-Bayesian model 

comparison analysis however, in the previous model I did not have enough power to run 

the analysis with female ecotype and ecotype relationship was used instead. With the 

Bayesian analysis I could use female ecotype directly as intended; therefore, this model 

differs slightly in that ecotype relationship is replaced with either white or common 

ecotype for the female. Individual males were also included in the model as a hierarchical 

variable to account for each male being recorded twice, once for the proportion of time 

spent he with a common female and once with a white female. Lastly, an intercept was 

also included in the model (mean predicted value when predictor values are zero). As 

with the body size analysis, the predictor variables, their interactions, the intercept, and 
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the hierarchical variable were summed to formulate the normal distribution parameter µ, 

and sigma was calculated from an exponential prior distribution with a rate of 0.5. Prior 

probability distributions for all variables aside from the hierarchical variable were 

normally distributed with a mean of zero and a standard deviation of one since the data 

had been standardized. The individual male hierarchical variable was derived from a 

normally distributed prior with a mean of zero as the mean was previously defined for the 

intercept, and a standard deviation deriving from a hyperprior with an exponential 

distribution with a rate of 0.5 to account for variation around the mean.  

Interaction stage 
 
Male courtship effort 
 
Male courtship effort was examined by analysing male exertion and persistence with a 

Normal distribution likelihood Bayesian model. Male exertion was recorded as the 

number of courtship behaviours a male conducted towards a released female, while male 

persistence was defined as the frequency of “glass poking” conducted towards the 

contained female. The data for both of these variables were standardized before the model 

was run. As described previously, data were standardized by subtracting the mean from 

the value for each individual and then divided by the standard deviation. For male 

exertion, standardized total courtship behaviour was used as the predicted variable. Male 

ecotype, male population type, female ecotype and their interactions were used as the 

categorical predictor variables along with an intercept (mean predicted value when 

predictor values are zero). Individual males were also included in the model as a 

hierarchical variable to account for the two observations per male. The intercept and the 

three predictor variables were all derived from normally distributed priors with a mean of 
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zero and standard deviation of one as described in the previous models. The individual 

male hierarchical variable was derived from a normally distributed prior with a mean of 

zero, as the mean was previously defined for the intercept, and a standard deviation 

deriving from a hyperprior of an exponential distribution with a rate of 0.5. All variables 

were summed and analysed to form the parameter µ. Lastly, the other normal parameter 

sigma was derived from a prior exponential distribution, it too with a rate of 0.5.  

Male persistence was calculated in an identical manner to male exertion with the 

predicted variable being changed from the standardized total courtship behaviours 

conducted towards the released female to the standardized amount of “glass poking” a 

male conducted towards the contained female. 

Male courtship effort and female body size 
 
Two separate models were run to assess whether males preferred females of a particular 

size (i.e., whether they preferred larger females). The two models were identical in 

structure with the exception of one predictor variable. The first model considered the 

impact of female body size on the preference of males of different ecotypes (male ecotype 

model), while the second model focused on the impact of female body size on the 

preference of males from different population types (male population model). Both 

models used a Normal distribution likelihood, with standardized total courtship 

behaviours conducted towards the released female as the predicted variable. Standardized 

courtship behaviour was calculated by subtracting mean courtship behaviours of all males 

from the courtship frequency of the individual male (for each male) then divided by the 

standard deviation of the total courtship behaviours for all males. Each model contained 

an intercept, female ecotype, and standardized female body size as the predictor variables, 
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and individual males as a hierarchical variable. Standardized body size was calculated the 

same way as in the body size analysis. The male ecotype model had the additional 

predictor variable of male ecotype while the male population model contained male 

population type as a predictor variable. All interactions between the categorical predictor 

variables were included. These components were then summed to create the normal 

parameter µ. As before, sigma was derived from an exponential prior distribution with a 

rate of 0.5. Similar to the previous analyses, all the predictor variables were derived from 

normally distributed priors with a mean of 0 and a standard deviation of 1, with the 

exception of the hierarchical variable was derived from a normally distributed prior with 

a mean of 0 as the mean was previously defined for the intercept, and a standard deviation 

deriving from a hyperprior with an exponential distribution with a rate of 0.5 to account 

for variation around the mean. 

A1.3 Female preference 
 
Interaction stage 
 
Female preference was recorded as a binary response with a value of 1 indicating the 

female responded to a male by following him, inspecting his nest, or conducting the 

typical “heads up” display during the interaction stage, and a value of 0 indicating she did 

not respond during the interaction stage. A Bayesian analysis was performed with a 

Bernoulli logistic regression model to properly analyse the binary data. The predicted 

variable was the binary female response variable. Male ecotype, female population type, 

ecotype relation (same or different ecotype) and their interactions were the categorical 

predictor variables. I also added an effect of individual female which was classified as a 

hierarchical effect within the model to account for individual effects on the data if a 
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female was observed more than once during the experiment (20 of 39 females observed). 

The sum of the three predictor variables, the hierarchical variable, along with the 

intercept (mean predicted value when predictor values are zero) composed the single 

Bernoulli parameter µ. The intercept and the three predictor variables all derived from 

normally distributed priors with a mean of 0 and a standard deviation of 1 as before. For 

the individual females hierarchical variable, the prior consisted of a normal distribution 

with a mean of 0, as the mean was previously defined, and a standard deviation deriving 

from a hyperprior of an exponential distribution with a rate of 0.5.  

A1.4 Checking statistical model performance 
 
To ensure each model performed well and ran appropriately, various checks were 

executed. Model performance was assessed through the use of traceplots, Rhat values and 

effective chain length (n_eff) values for each predictor variable. These three methods 

determine how well the Markov chains performed and explored the sample space. To 

confirm that each model had appropriate prior distributions selected, the response 

(predicted) variable was predicted based on the predictor variables values (or category) 

and their prior distribution; if the predicted values completely overlap the observed/actual 

data then the priors were considered to be good. As a final check that the statistical model 

ran appropriately, simulated models were run for each experimental question to check 

their posterior distributions. Data were randomly selected from the existing observed data 

set, for each of these data points their corresponding predicted and predictor values were 

selected. New predicted variable values were estimated, similarly to the prior distribution 

check, by using the values (or category) of the predictor variables and the calculated 

posterior values from the model. The newly generated posterior values were then 



 103 

compared to the original observed data; if the simulated data were able to retrieve the true 

values (i.e., properly predict the observed data value) the model was considered 

successful.  

A1.5 Extracting results from the statistical model 
 
Results were extracted from the model by creating a matrix that contained the output 

values for each step in the Markov chain for all predictor variables in every model 

including a new matrix for each interactive term. To determine the general trend of each 

predictor variable and their interaction the mean and 95% highest density interval (HDI) 

were calculated and compared to the intercept (predicted variable average when all 

predictor variables are zero). However, to determine the absolute value of each predictor 

variable and how it differed from the average, the individual effect of each category 

within the predictor variable was calculated by summing the effect from each time that 

specific variable occurred with the average (intercept). For example, in the case of the 

effect of sex on body size, the female variable occurred three times: on its own, an 

interaction with common females and an interaction with white females. Within each 

categorical predictor variable, the difference between one category and the other was also 

calculated by subtracting the effect of one of the categories from the other and then 

converted back to the original scale. The mean and 95 % HDI of the difference were also 

calculated. The mean was used to assess how the predicted variable changed depending 

on the category of the predictor variable and the 95% HDI was used to determine if there 

were credible nonzero differences from the average effect of being in one of the 

categories of the predictor variable.   
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A2 Bayesian statistical analyses – results 
 
A2.1 Ecotype confirmation 
 
Next material preference 
 
Nest material preference was determined by whether the nest was dominantly (>70%) 

built of algae or sand/mud. Posterior probability plots show no overlap between the nest 

material preferences of white and common stickleback (Fig. A2.1), indicating that white 

male stickleback prefer algae as a nesting material and common males prefer sand/mud. 
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Figure A2.1. Effect of male ecotype (common [black] and white [grey]) on male 

Threespine Sticklebacks nesting material preference. 
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Body size 
 
Body size was measured as the standard length of the fish (mm). The estimate for average 

fish size was 45.55 mm with a 95% highest density interval (HDI) from 37.33 – 53.68 

mm. Posterior probability plots show some overlap with the body size of the fish between 

ecotypes but with common stickleback being larger (Fig. A2.2a), though there is 

complete overlap in body size between the sexes (Fig. A2.2b). Further, the posterior 

distributions show that the difference in size between common and white stickleback is 

different from zero (given that zero does not fall within the 95% HDI). More specifically, 

these distributions show that common stickleback on average are larger than white 

stickleback by 10.24 mm (Fig. A2.3a), however, the difference in size between sexes was 

not considered different from zero (the 95% HDI crosses zero, Fig. A2.3b), indicating 

that within their respective ecotypes, the sexes do not differ in size. 
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a)  b)  
 
 
Figure A2.2. Effect of a) ecotype (common [black] and white [grey]) and b) sex (female [black], male [grey]) on Threespine 

Stickleback body size (standard length [mm]).  
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a) b)  
 

 
Figure A2.3. The difference between posterior distributions of a) ecotype and b) sex predictor variables on Threespine 

Stickleback body size (standard length [mm]). Dashed line represents the mean effect of the predictor variable and the bolded 

line on the x-axis represents the 95% highest density interval (HDI) for the predictor variable. Exact values for the mean and 

95% HDI are reported above the plot. Credible nonzero differences observed when zero does not fall within the 95 % HDI.
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A2.2 Mate choice of the Threespine Stickleback 
 

Male courtship trends 
 

Preference stage 

 

Male preference was measured by calculating the proportion of time male Threespine 

Sticklebacks spent in proximity to the contained females. The estimate for the average 

proportion of time spent in proximity to a female was 0.17 with a 95% HDI from 0.02 – 

0.32. Posterior probability plots show complete overlap for all three predictor variables, 

female ecotype (common or white; Fig. A2.4a), male ecotype (common or white; Fig. 

A2.4b), and male population type (sympatric or allopatric; Fig. A2.4c). This overlap is 

further supported by there being no differences (zero falls within the 95% HDI) between 

the categories within each predictor variable (Fig. A2.5). These findings indicate that 

males of either ecotype and from either population had no preference for which female 

ecotype they were in proximity to.  
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a)   b)  c)                                                                                                                
 
 

Figure A2.4. Effect of a) female ecotype (common [black], white [grey]), b) male ecotype (common [black] and white [grey]) 

and c) male population type (allopatric [black], sympatric [grey]) on the proportion of time male Threespine Sticklebacks spent 

in proximity to the contained females. 
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a)   b)  c)  
 
 

Figure A2.5. The difference between posterior distributions of a) female ecotype, b) male ecotype, and c) male population 

type predictor variables on the proportion of time male Threespine Sticklebacks spent in proximity to a contained female. 

Dashed line represents the mean effect of the predictor variable and the bolded line on the x-axis represents the 95% highest 

density interval (HDI) for the predictor variable. Exact values for the mean and 95% HDI are reported above the plot. Credible 

nonzero differences are observed when zero does not fall within the 95 % HDI.
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Interaction stage 
 
Male exertion 
 
Male exertion was measured by the total amount of courtship behaviours male stickleback 

performed towards the released female. The estimate for the average courtship behaviour 

frequency was ~169 instances with a 95% HDI from ~9 – 327 behaviours. Posterior 

probability plots show complete overlap for all three predictor variables: female ecotype 

(Fig. A2.6a), male ecotype (Fig. A2.6b), and male population type (Fig. A2.6c). 

Moreover, no differences (zero falls within the 95% HDI) between the categories within 

each predictor variable (Fig. A2.7) further explains the overlap seen. These findings 

indicate that males of either ecotype and from either population type females of either 

ecotype with similar frequency.  

Male persistence 
 
Male persistence was measured by the total amount of “glass poking” male stickleback 

performed towards the contained female. The estimate for the average glass poking 

frequency was ~95 instances with a 95% HDI from 0 – ~229 pokes. As with male 

exertion, posterior probability plots show complete overlap for all three predictor 

variables: female ecotype (Fig. A2.8a), male ecotype (Fig. A2.8b), and male population 

type (Fig. A2.8c). There are no differences (zero falls within the 95% HDI) between the 

categories within each predictor variable (Fig. A2.9) These results show that males of 

either ecotype and from either population type attempted to gain access to contained 

females with similar frequency.
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a)   b)  c)  
 
 

Figure A2.6. Effect of a) female ecotype (common [black], white [grey]), b) male ecotype (common [black] and white [grey]), 

and c) male population type (allopatric [black], sympatric [grey]) on the total courtship behaviours male Threespine 

Sticklebacks conducted towards the released females.  
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a)   b)  c)  
 
 

Figure A2.7. The difference between posterior distributions of a) female ecotype, b) male ecotype, and c) male population 

type predictor variables on the total courtship behaviours male Threespine Sticklebacks conducted towards the released 

females. Dashed line represents the mean effect of the predictor variable and the bolded line on the x-axis represents the 95% 

highest density interval (HDI) for the predictor variable. Exact values for the mean and 95% HDI are reported above the plot. 

Credible nonzero differences observed when zero does not fall within the 95 % HDI. 
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a)   b) c)  
 
 

Figure A2.8. Effect of a) female ecotype (common [black], white [grey]), b) male ecotype (common [black] and white [grey]), 

and c) male population type (allopatric [black], sympatric [grey]) on the frequency of glass poking male Threespine 

Sticklebacks conducted towards a contained females. 
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a)   b)  c)  
 
 

Figure A2.9. The difference between posterior distributions of a) female ecotype, b) male ecotype, and c) male population 

type predictor variables on the frequency of glass poking male Threespine Sticklebacks conducted towards a contained 

females. Dashed line represents the mean effect of the predictor variable and the bolded line on the x-axis represents the 95% 

highest density interval (HDI) for the predictor variable. Exact values for the mean and 95% HDI are reported above the plot. 

Credible nonzero differences observed when zero does not fall within the 95 % HDI.
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Male courtship effort and female body size 
 
Male ecotype 
 
The relationship between male courtship effort towards female body size was measured 

using the total number of courtship behaviours as the predicted variable, with male 

ecotype, female size and female ecotype and as the predictor variables. The estimate for 

the average courtship behaviour frequency with respect to female body size was ~172 

instances with a 95% HDI from ~29 – 314 behaviours. Posterior probability plots show 

complete overlap for the male ecotype (Fig. A2.10a) and female ecotype (Fig. A2.10b) 

predictor variables. The corresponding posterior plots for the differences between the 

categories within the two predictor variables indicate no differences between the 

categories (95% HDI crosses zero, Fig. A2.11a,b), indicating that male stickleback of 

either ecotype courted females of either ecotype with similar frequency. However, when 

looking at the effect of female body size alone, the difference between the intercept and 

the effect of female size is largely different than zero (Fig. A2.11c). 

Male population type 
 
This analysis was the same as above, however, the predictor variables were male 

population type and ecotype relationship. The estimate for the average courtship 

behaviour frequency with respect to female body size was ~167 instances with a 95% 

HDI from ~25 – 309 behaviours. Male population type and ecotype relationship posterior 

probability plots have complete overlap (Fig. A2.13a,b) and non-credible non-zero 

differences within their categories (Fig. A2.14). This suggests that males from either 

population have no preference for females of a particular ecotype. However, when 

examining the effect of female body size alone, as was done in the male ecotype analysis, 
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the difference between the intercept and the effect of female size is largely different than 

zero (Fig. A2.13c).   
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a)  b)  
 
 

Figure A2.10. Effect of a) female ecotype (common [black], white [grey]) and b) male ecotype (common [black] and white 

[grey]) on the frequency of courtship behaviours male Threespine Sticklebacks conducted towards a released female with the 

additional influence of female body size.  
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a)   b)  c)  
 
 

Figure A2.11. The difference between posterior distributions of a) female ecotype and b) male ecotype predictor variables on 

the frequency of courtship behaviours male Threespine Sticklebacks conducted towards a released female with the additional 

influence of female body size. Difference between posterior distributions of c) the average courtship behaviours (intercept) and 

the effect of female body size alone on the frequency of courtship behaviours towards the released females. Dashed line 

represents the mean effect of the predictor variable and the bolded line on the x-axis represents the 95% highest density interval 

(HDI) for the predictor variable. Exact values for the mean and 95% HDI are reported above the plot. Credible nonzero 

differences observed when zero does not fall within the 95 % HDI. 
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a) b)  
 
 

Figure A2.12. Effect of a) male population type (allopatric [black], sympatric [grey]) and b) ecotype relationship (different 

ecotype [black], same ecotype [grey]) on the frequency of courtship behaviours male Threespine Sticklebacks conducted 

towards a released female with the additional influence of female body size. 
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a)   b)  c)  
 
 

Figure A2.13. The difference between posterior distributions of a) female ecotype and b) male ecotype predictor on the 

frequency of courtship behaviours male Threespine Sticklebacks conducted towards a released female with the additional 

influence of female body size. Difference between posterior distributions of c) the average courtship behaviours (intercept) and 

the effect of female body size alone on the frequency of courtship behaviours towards the released females. Dashed line 

represents the mean effect of the predictor variable and the bolded line on the x-axis represents the 95% highest density interval 

(HDI) for the predictor variable. Exact values for the mean and 95% HDI are reported above the plot. Credible nonzero 

differences observed when zero does not fall within the 95 % HDI.
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Female preference 
 
Interaction stage  
 
Female preference was recorded as whether a female responded, or did not respond, to the 

focal male. The estimate for average female response was 0 with a 95% HDI from 0 – 

~1.3. Posterior probability plots show mostly complete overlap for the ecotype 

relationship (same or different; Fig. A2.14a), male ecotype (Fig. A2.14b), and female 

population type (Fig. A2.14b) predictor variables. Further, the posterior distributions 

show that there is no difference among all predictor variables when assessing female 

preference as they were not considered different from zero (the 95% HDI crosses zero, 

Fig. A2.15), indicating that females responded similarly from both populations and 

responded to males of both ecotypes, regardless of if they were of the same ecotype.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 124 

a)   b)  c)  
 
 

Figure A2.14. Effect of a) ecotype relationship (different ecotype [black], same ecotype [grey]), b) male ecotype (common 

[black] and white [grey]) and c) female population type (allopatric [black], sympatric [grey]) on whether or not a female 

responded to the focal male she was released with. 
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a)   b)  c)  
 
 

Figure A2.15. The difference between posterior distributions of a) female ecotype, b) male ecotype, and c) female population 

type predictor variables on whether or not a female responded to the focal male she was released with. Dashed line represents 

the mean effect of the predictor variable and the bolded line on the x-axis represents the 95% highest density interval (HDI) for 

the predictor variable. Exact values for the mean and 95% HDI are reported above the plot. Credible nonzero differences 

observed when zero does not fall within the 95 % HDI. 

 


