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Freshwater tolerance and mechanisms of freshwater acclimation in marine sticklebacks 

(Gasterosteus spp.) 

 
by Anna E. Bernhardsson 

 

Abstract  
 

Freshwater tolerance has evolved repeatedly in fishes, including in the Gasterosteidae 
family. However, Blackspotted Stickleback (Gasterosteus wheatlandi) and the endemic 
Nova Scotian “white” Threespine Stickleback (Gasterosteus aculeatus) ecotype are largely 
limited to marine environments. I tested if low freshwater tolerance might limit the 
distribution of these fishes. Freshwater tolerance was assessed in wild caught fish 
acclimated to 10 ppt and then transferred to freshwater (0 ppt) or control conditions (10 
ppt) for a period of 21 days. There was no effect of salinity on survivorship or tissue water 
content (a proxy for osmoregulatory homeostasis) in either species. mRNA content of 
candidate gill ion transporters was measured via qPCR in Blackspotted Stickleback, and I 
found this marine species can initiate the transcriptional changes associated with successful 
freshwater acclimation in other sticklebacks. These data suggest that acute freshwater 
tolerance does not limit initial freshwater colonization in these species.  

 
 

August 25, 2021 
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1. Introduction 

Organisms face many stressors that they must cope with to maintain physiological 

homeostasis (i.e., a relatively constant internal environment), and these stressors can be 

both abiotic and biotic. In coping with stressors, organisms have evolved different 

physiological mechanisms to maintain homeostasis. Organisms in different environments 

face different types of stressors, and for fishes, one of the main abiotic factors is the ion 

content of the water environment in which they live (Evans et al., 2014; McCormick, 

2001; Schultz & McCormick, 2012). Environmental salinity plays an important role in 

influencing the distribution of fishes. Due to the physiological changes that are required 

to maintain homeostasis during environmental shifts in salinity levels, saltwater species 

rarely occur in freshwater, or vice versa (Kültz, 2015). While most fish species are 

restricted to either fresh- or saltwater environments, euryhaline fishes have evolved the 

ability to cope with the physiological challenges that come with living in both 

environments (Kültz, 2015). 

With increasing climate change due to combined effect from natural climate change 

and anthropogenic activities, it is expected that the natural environment that fish live in 

will change, a change that may include changes in water salinity. Adding solutes to 

saltwater through natural processes such as chemical weathering and erosion, runoff 

water from rivers and estuaries, and thermal activity on the ocean floor, combined with 

the increased evaporation of water due to global warming increases the salinity of 

saltwater environments (Stocker et al., 2013). Global warming may also contribute to 

decreasing salinity in both fresh- and saltwater areas (Stocker et al., 2013). For example 

in Arctic waters, the melting of polar ice deposits freshwater into the oceans, leading to a 

decrease in salinity through dilution (Curry et al., 2003; Stott et al., 2008). As these 
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processes contribute to a more rapid change in fishes’ natural habitat, it is important to 

better understand the mechanisms involved in acclimation and adaptation to 

environmental change. With the environment constantly changing, it is interesting to find 

out how salinity tolerance has evolved in the past, which can then help in understanding 

how it may evolve in the future as a response to climate change. In addition, 

understanding how salinity tolerance evolved can help in predicting how fish will adapt to 

the changing environment.  

This study will focus on how fish evolve to cope with exposure to low salinity 

water by studying the physiological responses initiated to maintain homeostasis during 

freshwater (0 ppt) acclimation in sticklebacks. The Gasterosteidae family (sticklebacks) 

are widely distributed, with different species distributed around the coast-lines in the 

Northern Hemisphere (McKinnon & Rundle, 2002; Scott & Scott, 1988). This family 

includes euryhaline species as well as species and ecotypes restricted to freshwater or 

saltwater. Therefore, the Gasterosteidae family is a suitable model system for studying 

both the ability to acclimate to saltwater and freshwater in fish as well as the evolution of 

freshwater tolerance among populations and species (Kawahara et al., 2009; Kültz, 2015; 

McKinnon & Rundle, 2002). 

In particular, this dissertation investigates the freshwater acclimation abilities in two 

primarily marine and brackish water species, for which there may be no extant freshwater 

populations: the Blackspotted Stickleback (Gasterosteus wheatlandi) (Garside & 

Kerekes, 1969) and the white Threespine Stickleback, a primarily marine ecotype of the 

Threespine Stickleback (Blouw & Hagen, 1990; Blouw, 1996). Both species are closely 

related to the euryhaline Threespine Stickleback (e.g., Baube, 2008; Garside & Kerekes, 

1969; Gibbons et al., 2017; Jones et al., 2012; Kawahara et al., 2009) which has 
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repeatedly colonized hundreds of freshwater lakes, streams and rivers (McKinnon & 

Rundle, 2002) and evolved to better tolerate low salinities (e.g., Gibbons et al., 2017). 

The results from the present research could provide more information about the 

freshwater acclimation abilities of the primarily marine Blackspotted Stickleback and 

white Threespine Stickleback ecotype. With this information, it could be possible to see if 

a lower ability to acclimate to freshwater may be associated with potential limitations in 

their ability to colonize freshwater.   

 

1.1 Why salinity change is stressful for fishes 

Seawater contains a high concentration of many ions, with the most abundant being 

chloride (Cl-), sodium (Na+), sulfate (SO42-), magnesium (Mg2+), calcium (Ca2+) and 

potassium (K+) (Mackenzie, Howard, Alyn, & Duxbury, 2020). Seawater (~30-35 ppt 

dissolved ions) and freshwater (< 0.5 ppt dissolved ions) have very different ion 

concentrations and compositions, which leads to differences in the passive transport of 

water and ions into the surrounding water from the internal environment. Seawater is 

hypersaline compared to the fish’s cells and extracellular fluids (around 10-14 ppt 

dissolved ions) (Evans, 2011), while the salinity of freshwater is much lower than the 

internal salinity of fishes at < 0.5 ppt (Evans et al., 2014). To maintain homeostasis 

during transfer from hypersaline to hyposaline environments, fish must actively change 

the types of cells as well as ion and water transporters in osmoregulatory tissues (e.g., the 

gills, intestine and kidneys) as they acclimate to their external environment (Evans et al., 

2014; Evans et al., 2005). To survive, bony fishes must maintain internal ion and water 

content within a narrow range (Evans et al., 2014). 
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In saltwater, water is passively transported down the osmotic gradient out of the 

body and ions passively flow into the fish. Therefore, fish must actively drink seawater to 

gain water and transport excess ions out of the body (Evans et al., 2014). In freshwater, 

fishes face the reverse issue of passive ion loss and water gain through osmosis (Evans et 

al., 2005) and actively excrete water through increased urine levels. Freshwater fishes 

must therefore actively take up ions from the external environment to maintain ion 

homeostasis (Evans et al., 2014; Evans, 2011, 2008). Failure to maintain homeostasis can 

have severe consequences for fish. For example, in saltwater shrivelling of the cells due 

to increased water transport out of the cells down the osmotic gradient would occur 

without active ionic regulation. In contrast, freshwater fish struggle with the opposite 

issue of water gain into the cells, due to higher solute concentration in the cells. This 

leads to expansion of the cells, which could rupture (Evans et al., 2014; Evans, 2011).  

Most fishes live in relatively stable salinity throughout their lifetime. However, 

some species have found a way to cope with the challenges that come with living in both 

freshwater and saltwater (Schultz & McCormick, 2012). Despite possessing the 

physiological machinery required to live in these different environments, even euryhaline 

fish often have some difficulty coping with very low salinity levels in freshwater (Evans 

et al., 2014; Shrimpton, 2012). This may be because most fish species evolved in a 

marine environment (Lee & Bell, 1999).  

To deal with the challenges that come with living in freshwater, euryhaline fishes 

have evolved a number of different mechanisms to acclimate to freshwater environments 

(Kültz, 2015). Recent work has found that the specific mechanisms that fish use to 

regulate ion levels (i.e. ionocyte types, ionocyte combinations and combinations of 

specific ion transporters in gills) vary among species of fishes (Dymowska et al., 2012; 
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Hwang et al., 2011), highlighting that there are multiple mechanisms by which distantly 

related fish species can evolve to tolerate freshwater (Hwang et al., 2011). However, little 

is known about if, and how, more closely related fish species (such as the different 

species within the Gasterosteidae family; Kawahara et al., 2009) vary in their freshwater 

acclimation mechanisms. To better understand the evolutionary constraints and 

facilitations that might influence the evolution of freshwater tolerance, it is important to 

find out if closely related species use convergently evolved mechanisms to obtain 

freshwater tolerance (Losos, 2011; Rosenblum et al., 2014). As well, the importance of 

freshwater acclimation capacity, relative to other biotic and abiotic factors, in limiting 

colonization of lakes and streams is largely unknown (but see Gibbons et al., 2017; 

Ishikawa et al., 2019). Thus, comparative studies of freshwater tolerance in clades of fish 

that vary in their salinity distribution in the wild can help to inform us if it is freshwater 

tolerance, or other factors, that may limit fish distributions.  

 

1.2 Mechanisms of acclimation to freshwater in fish. 

There are four major ionoregulatory tissues that undergo remodelling during freshwater 

acclimation in adult fishes: the gills, operculum, kidneys and gastrointestinal tract 

(Dymowska et al., 2012; Kültz, 2015; Schultz & McCormick, 2012). Physiological 

changes in ionoregulatory tissues in freshwater include the upregulation of ionocytes 

involved in ion uptake and downregulation of ionocytes involved in ion excretion in 

saltwater (Al-Jandal & Wilson, 2011; Dymowska et al., 2012; Gibbons et al., 2018; 

Gibbons et al., 2017). Ionocytes are cells that regulate the intracellular and extracellular 

ion content and contain specialized ion transporters. Remodelling of the types of 
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ionocytes as well as the ion transporter content of ionocytes in these ionoregulatory 

tissues contributes to the acclimation in freshwater fishes (Dymowska et al., 2012).  

The fish gill is one of the main ion exchange sites between the internal and external 

environment and the associated mechanisms of ion exchange and transport are well-

studied (e.g. Evans et al., 2014; Evans et al., 2005; Hiroi & McCormick, 2012) in some 

species, such as the Japanese Seabass (Inokuchi et al., 2017) and Medaka (Hsu et al., 

2014). Gill ionocytes possess a variety of ion transporters and channels that are involved 

in transporting key ions, such as Na+, K+, Ca2+, and Cl-, across the epithelial membrane. 

In addition, claudins (tight junction proteins) control the passive transport of Na+ out of 

the body through paracellular pathways (Kolosov et al., 2013). The type of ionocytes, as 

well as the specific ion transporters or channels in and around each ionocyte vary 

depending on water salinity (Dymowska et al., 2012; Hiroi & McCormick, 2012). In 

saltwater, the successful maintenance of homeostasis is dependent upon the excretion of 

ions by the combined action of these transporters and flow through tight junction proteins 

including, but not limited to, the transporters displayed in Figure 1 (Dymowska et al., 

2012; Evans et al., 2005). The structure and function of the seawater gill ionocytes is very 

similar among fish species, as this cell type likely evolved in a common ancestor to all 

teleost fishes (Shrimpton, 2012).  

To successfully acclimate to freshwater, a fish must reduce the number of saltwater 

specific ionocytes or remodel the function (by changing the types of ion transporters) of 

the ionocytes to better suit a freshwater environment (Figure 1a). Therefore, the cystic 

fibrosis transmembrane conductance regulator (CFTR) and Na+/K+/2Cl cotransporter 1 

(NKCC1), two transporters unique to seawater ionocytes, are downregulated (Dymowska 

et al., 2012; Gibbons et al., 2017; Nakamura et al., 2021). The fish must also increase the 
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number of freshwater ionocytes, which often contain the Na+/Cl- cotransporter 2 (NCC2), 

or remodel the existing ionocytes to include freshwater specific ion transporters (Figure 

1b). This should lead to an upregulation of NCC2 to help in the additional uptake of ions 

that is needed in this environment (Breves et al., 2020; Dymowska et al., 2012). There are 

also common changes in the mRNA content of transporters found in both fresh and 

saltwater gill ionocytes as euryhaline fish acclimate to freshwater, including increases in 

Na+/H+ exchanger 3 (NHE3), Na+,K+-ATPase (NKA) alpha subunit, and epithelial Ca2+ 

channel (ECaC) in freshwater (Breves et al., 2020; Gibbons et al., 2017; Scott et al., 

2004). The downregulation of seawater ionocytes and ion transporters and upregulation of 

freshwater transporters in the gill is a critical process in acclimation to freshwater (Breves 

et al., 2020; Dymowska et al., 2012; Gibbons et al., 2017). In addition, changes in the 

specific claudin isoforms expressed in the gill epithelium also reduce the permeability for 

Na+ in freshwater to help maintain ion homeostasis (Kolosov et al., 2013). Note that the 

model depicted in Figure 1 does not include all ion transporters and enzymes involve in 

ion transport and acid-base regulations. Hwang et al. (2011) reviewed the recent progress 

on the molecular mechanisms involved in ionic and acid-base regulation. Also see Perry 

et al. (2003) and Evans et al. (2005) for further information on additional gill ion 

transporters involved in acid-base and ion regulation. The present study will focus on Na+ 

and Cl- ion transporters in freshwater and saltwater ionocytes to provide more information 

about the role of these proteins in freshwater acclimation and adaptation in Blackspotted 

Stickleback to determine if this primarily marine species is able to effectively 

downregulate ‘seawater ion transporters’ and upregulate ‘freshwater ion transporters’ 

during freshwater acclimation. 
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In freshwater, the types of ionocytes and combination of transporters used by fish to 

take up ions and successfully osmoregulate varies among species (Dymowska et al., 

2012; Hwang et al., 2011). Dymowska et al. (2012) reviews the different types of 

ionocytes and the ion transporter content for each type of ionocyte in the gill epithelium, 

which often varies between different teleost fish species (Dymowska et al., 2012; Evans 

et al., 2005; Furukawa et al., 2014; Gibbons et al., 2017; Hwang et al., 2011; Inokuchi et 

al., 2017). It is important to note that no immunohistological studies of gill ionocytes 

have been conducted in the Gasterosteidae, therefore there is little information on the 

specific types of ionocytes and exact ion transporter composition in each ionocyte in 

stickleback beyond measures of mRNA content (e.g. Gibbons et al., 2017; Inokuchi et al., 

2017). Therefore, Figure 1 depicts the composition that is predicted for sticklebacks 

(Infraclass Teleostei, Euteleostei, Neoteleostei, Acananthopterygii, Percomorphaceae, 

Eupercaria; Near et al., 2012), based on the knowledge of ion transporter composition in 

two other fish in the Percomorphaceae: the Tilapia (Oreochromis mossambicus; 

Percomorphaceae, Ovalentaria) and Japanese Seabass (Lateolabrax japonicus; 

Percomorphaceae, Eupercaria), for which ionocyte types have been studied via 

immunohistochemistry (Inokuchi et al., 2017).  

 In the Japanese Seabass, Inokuchi et al. (2017) observed three different types of 

ionocytes (one seawater type and two freshwater types: NHE3 and NCC2 containing, 

Figure 1.) and found evidence that that some seawater type ionocytes transform into 

NHE3-containing freshwater type ionocytes post freshwater transfer. Inokuchi et al. 

(2017) also observed that NCC2, which was absent in the gill filament ionocytes of fish 

exposed to seawater, appeared in freshwater exposed fish, potentially via the 

differentiation of new cells. They also observed that while NCC2 was more predominant 
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in freshwater gill filaments, a small number of NCC2 appeared in the lamellae after 10 

days of freshwater exposure, suggesting that some of the NCC2 ionocytes migrate to the 

lamellae (Inokuchi et al., 2017). We predict that sticklebacks also have the two freshwater 

and single seawater ionocyte types found in the Japanese Seabass and Tilapia and the 

proposed ionocyte types can be viewed in Figure 1.  

Key ion transporters that will be measured in the present study include Na+/H+ 

exchanger 3 (NHE3; present in freshwater and seawater ionocytes), Na+, K+-ATPase 

(NKA; present in freshwater and seawater ionocytes), epithelial Ca2+ channel (ECaC; 

present in freshwater and seawater ionocytes), Na+/K+2Cl cotransporter 1 

(NKCC1;present only in seawater ionocytes), Na+/Cl- cotransporter 2 (NCC2; present 

only in freshwater ionocytes), and the Cl- channel: cystic fibrosis transmembrane 

conductance regulator (CFTR; present only in seawater ionocytes). See Figure 1 for the 

proposed location of these ion transporters in freshwater and saltwater gill ionocytes 

respectively. It is worth noting that not all salinity-responsive ion transporters are 

included in Figure 1, such as those involved in ammonia transport, and that the identity of 

some key transporters remains unknown (Hwang et al., 2011). The proposed location and 

function of ion transporters in the saltwater gill ionocyte is the same in all fish species 

studied to date, however, the location and function of ion transporters in the freshwater 

gill ionocyte varies among the fish species and remains unknown for many species, 

including Gasterosteiformes (Dymowska et al., 2012; Hwang et al., 2011 Kolosov et al., 

2013).  
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Figure 1. Schematic drawing of the proposed ionocyte and ion transporter composition in 
percomorph fish gill ionocytes based upon data from the Mozambique Tilapia (Oreochromis 
mossambicus: Furukawa et al., 2014) and Japanese Seabass (Inokuchi et al., 2017) in freshwater 
(a) and seawater (b), with the addition of predicted ECaC ion transporter locations (Dymowska 
et al., 2012; Evans et al., 2005). Accessory cells are included to clarify how transcellular 
transport occurs. Claudins are included to emphasize the passive movement of Na+ out of fish in 
seawater, as well as the downregulation of this function in freshwater, likely via the insertion of 
different claudin isoforms (Kolosov et al., 2013). Arrows indicate the direction of movement of 
ions across the cell membrane (Dymowska et al., 2012; Kolosov et al., 2013). It is worth noting 
that Type I cells are present in seawater as well as freshwater. 



 19 

1.3 Evolution of freshwater tolerance in fish 

It is commonly believed that fishes evolved in marine environments and have since 

colonized freshwater multiple times (Dymowska et al., 2012; Evans et al., 2005; Lee & 

Bell, 1999; McKinnon & Rundle, 2002). Previous research has found that tolerance to 

freshwater has evolved differently in different fish species (reviewed by Dymowska et al., 

2012). The differences in the molecular mechanisms of ion and acid-base regulation 

covered by Dymowska et al. (2012) in Rainbow Trout, Killifish, Tilapia and Zebrafish, 

highlights that freshwater tolerance has evolved multiple times in different ways in fish 

species.  

Freshwater acclimation in fish is highly dependent on the fish’s ability to upregulate 

ion transporters involved in freshwater acclimation as well as the ability to downregulate 

ion transporters involved in seawater acclimation (Dymowska et al., 2012). The 

importance of changes in gene expression in regulating the key transporters involved in 

freshwater acclimation has been documented by multiple studies and in a wide variety of 

fish species, including Rainbow Trout, Killifish, Tilapia, Zebrafish, Threespine 

Stickleback, Takifugu and Alewife (DeFaveri et al., 2011; Dymowska et al., 2012; 

Gibbons et al., 2017; Nakamura et al., 2021; Velotta et al., 2017). Freshwater ionocyte 

morphology varies between different species (Dymowska et al., 2012), but there is some 

consistency in the up- and downregulation of candidate ion transporter genes, suggesting 

that transporters such as the CFTR and NKCC1 should be downregulated in all 

freshwater fishes, while the NCC2 should be upregulated (DeFaveri et al., 2011; 

Dymowska et al., 2012; Gibbons et al., 2017; Nakamura et al., 2021; Velotta et al., 

2017). The ability to acclimate to freshwater can therefore be estimated through gene 

expression analysis for the genes involved in freshwater acclimation, as studies have 
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found that evolving increased freshwater tolerance requires the ability to transcriptionally 

upregulate genes related to freshwater tolerance and downregulate genes related to 

seawater tolerance (Gibbons et al., 2018, 2017, 2016; Nakamura et al., 2021; Velotta et 

al., 2017). By analyzing candidate gene expression, a potential inability to acclimate to 

freshwater can be estimated to be due to either failure to downregulate ‘saltwater genes’ 

(e.g. CFTR and NKCC1), or failure to upregulate ‘freshwater genes’ (e.g. NCC2). 

Therefore, the inability to upregulate genes related to freshwater and downregulate genes 

related to seawater acclimation may limit freshwater evolutionary potential in fish, but 

few studies have tested this hypothesis among closely related species and populations (but 

see DeFaveri et al., 2011; Gibbons et al., 2018, 2017, 2016; Nakamura et al., 2021; 

Velotta et al., 2017). 

 

1.4 Gasterosteidae as a model system to study the evolution of freshwater tolerance 

The sticklebacks (Gasterosteidae) are a group of small teleost fishes that includes species 

with a variety of salinity tolerances that are thought to have evolved from a marine 

ancestor (Figure 2; Kawahara et al., 2009). Within the Gasterosteidae family, some 

species mainly live in marine to brackish waters and cannot tolerate acute transfers to 

freshwater (e.g. Fifteenspine Stickleback; Raffy, 1953) while others not only manage the 

challenges that come with living in saltwater, but also have populations that live in 

freshwater year-round (e.g. Threespine Stickleback, Fourspine Stickleback and Ninespine 

Stickleback; Arai & Goto, 2005; Blouw & Hagen, 1984; Kawahara et al., 2009; Nelson, 

1968). This raises questions such as: Did the common ancestor of all Gasterosteidae 
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possess some freshwater tolerance or did different populations and species evolve 

freshwater tolerance independently?  

Previous studies have looked at the freshwater tolerance in 1- to 5-week-old 

juvenile Blackspotted Stickleback and Threespine Stickleback (Belanger et al., 1987; 

Campeau et al., 1984). Campeau et al. (1984) found one and five week old Blackspotted 

Stickleback can survive freshwater, but are more lethargic and have a decreased growth 

rate in freshwater compared to saltwater (Campeau et al., 1984). As well, adult 

Blackspotted Stickleback showed a preference for brackish water (7 ppt or 14 ppt), while 

Threespine Stickleback showed no preference from 0 to 35 ppt (Campeau et al., 1984). At 

present, we do not know if adult marine and brackish living stickleback species, such as 

the Blackspotted Stickleback and white ecotype of Threespine Stickleback, are able to 

acclimate to freshwater or if they are intolerant like the Fifteenspine Stickleback 

(Belanger et al., 1987; Raffy, 1953). Thus, a further characterization of freshwater 

tolerance abilities in all stickleback species is needed. There is little evidence in the 

existing literature regarding the ability of adult Blackspotted Stickleback to colonize 

freshwater (e.g., Campeau et al., 1984 only find adult Blackspotted fish at higher 

salinities in Rivière des Vases, Québec), but it should be noted that Blackspotted 

Stickleback have been collected from at least one estuarine site at 0 ppt (Blouw, 1978; 

van Vliet, 1970) suggesting that it may be possible for this species to successfully 

acclimate to freshwater, or adapt to be able to tolerate freshwater. It is therefore of 

interest to test the freshwater tolerance of the adult Blackspotted Stickleback. 

Furthermore, by comparing the molecular mechanisms underlying freshwater acclimation 
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in stickleback species, we can determine if these species use similar molecular 

mechanisms to acclimate to freshwater. 

In addition to the Blackspotted Stickleback, the “white” Threespine Stickleback 

(Gasterosteus aculeatus) has only been observed in saltwater environments along the 

Nova Scotian coastline (Blouw & Hagen, 1990). This marine ecotype of the Threespine 

Stickleback species is suggested to have evolved from a “common” Threespine 

Stickleback ancestor through sexual selection for the white breeding colouration of the 

white Threespine Stickleback (Blouw & Hagen, 1990; Blouw, 1996). While the common 

Threespine Stickleback is widely distributed in marine, brackish and freshwater, the white 

Threespine Stickleback appeared to be restricted to marine environments (Blouw & 

Hagen, 1990). Therefore, data on the freshwater tolerance in this ecotype is required to 

better determine the evolution of freshwater tolerance within the Threespine Stickleback 

model system (McKinnon & Rundle, 2002), as well as the Gasterosteidae family.   

The mechanisms underlying freshwater acclimation and adaptation has been studied 

in freshwater, anadromous and marine populations of the euryhaline Threespine 

Stickleback (DeFaveri et al., 2011; Divino, 2016; Gibbons et al., 2018, 2017; Kusakabe 

et al., 2017). Threespine Stickleback and Ninespine Stickleback can be found throughout 

much of the northern hemisphere (Scott & Scott, 1988) and many ecotypes of both 

species have repeatedly and independently evolved increased freshwater tolerance during 

post-glacial colonization of lakes and streams (e.g. DeFaveri et al., 2011; Divino, 2016; 

Gibbons et al., 2017; Kusakabe et al., 2017). The evolution of increased freshwater 

tolerance in Threespine Stickleback populations is thought to have evolved as a result of 

post-glacial invasion by marine fish after the Pleistocene epoch. As the ice that covered 

large parts of North America receded after the Pleistocene epoch, sticklebacks were 
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trapped in lakes that were created from the melting ice water. These trapped marine 

populations were then forced to acclimate and adapt to the new environment or face 

extinction (Lee & Bell, 1999). With the new environment having much lower salinity, the 

sticklebacks faced challenges with water gain and ion loss (section 1.2). To cope with 

these challenges, species within the Gasterosteidae family have undergone parallel 

divergence in morphology, including the adaptation of physiological mechanisms needed 

to cope with freshwater (Dymowska et al., 2012; Kültz, 2015). This local adaptation is 

thought to have occurred in fish that did have some ancestral tolerance to freshwater; the 

present-day marine ecotype of Threespine Stickleback also shows impressive, but slightly 

lower, tolerance to freshwater (Gibbons et al., 2017). 

The upregulation of ion transporters related to freshwater acclimation (NCC2) in 

many species (Brennan et al., 2016; Dymowska et al., 2012; Hwang et al., 2011), 

indicates that this transporter protein would also be upregulated in the freshwater tolerant 

species within the stickleback family Gasterosteidae when exposed to freshwater. In 

addition, most fish downregulate the seawater-related ion transporters CFTR and NKCC1 

in freshwater (e.g., Breves et al. 2020). However, the data for Threespine stickleback is 

equivocal; Divino et al. (2016) found decreased NKCC1 gill protein content in fresh 

compared to seawater gill homogenates, but Gibbons et al. (2018) did not detect lower 

mRNA content in 0 ppt compared to 30 ppt exposed Threespine Stickleback. Thus, we 

will further explore these transporters in Blackspotted Stickleback to test the generalities 

of these transcriptional response in the sticklebacks. Gibbons et al., (2017, 2018) also 

observed increased expression of some transporters present in both freshwater and 

seawater ionocytes in Threespine Stickleback exposed to freshwater. In particular, NKA 

and NHE3 were found to have higher expression levels in both marine and freshwater 
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ecotype exposed to freshwater compared to saltwater exposed fish (Gibbons et al., 2017). 

In contrast, while ECaC was found to be expressed in both freshwater and saltwater, the 

expression levels were slightly higher in freshwater exposed fish from a lake population 

(freshwater adapted fish) compared to a marine population (Gibbons et al., 2017). These 

results are generally similar to the way other species acclimate to freshwater (Breves et 

al., 2020; Dymowska et al., 2012; Furukawa et al., 2014). However, the transcriptomic 

changes associated with freshwater tolerance, or lack of tolerance, in other stickleback 

species (i.e. Blackspotted Stickleback) have not yet been measured. Therefore, this thesis 

investigated the following questions: Can Blackspotted stickleback acclimate to 

freshwater? If so, do they use similar transcriptional mechanisms as the Threespine 

Stickleback? If they cannot tolerate freshwater, what transcriptional mechanisms may 

malfunction to prevent acclimation?   
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Figure 2. Gasterosteidae phylogeny from Kawahara et al. (2009) with corrected habitat 
distribution information from Blouw and Hagen (1984), Gibbons et al. (2016), Shimada 
et al. (2011), Worgan and Fitzgerald (1981) and Dr. A Dalziel (personal communications 
regarding species distributions in Nova Scotia). The habitat (marine, brackish and 
freshwater) in which populations of each species are commonly found is indicated on the 
right.  
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and upregulated to the same extent, in the Blackspotted Stickleback upon freshwater 

transfer as the freshwater-tolerant Threespine Stickleback (Gibbons et al., 2017), 

suggesting a similar capacity for, and mechanisms of, freshwater acclimation. 

By determining freshwater tolerance levels, and the mechanisms associated with 

tolerance in each species, we can better understand the evolution freshwater tolerance in 

the Gasterosteidae (McKinnon & Rundle, 2002; Pfennig et al., 2010; Wolf, 2013). Seeing 

as Blackspotted Stickleback and white Threespine Stickleback are closely related to the 

common Threespine Stickleback (Kawahara et al., 2009) and Ninespine, Brook and 

Fourspine Stickleback also possess freshwater tolerance, I predict that the Blackspotted 

Stickleback and white Threespine Stickleback would be able to tolerate freshwater. This 

prediction is based on the assumption that freshwater tolerance evolved early in the 

evolutionary history of the Gasterosteidae giving all Gasterosteus spp., Pungitius, Culaea 

and Apeltes, the underlying genetics for ion transporters related to freshwater tolerance, as 

well as the ability to upregulate freshwater related ion transporters (e.g. NCC2, ECaC, 

NKA, and NHE3; Breves et al., 2020; Dymowska et al., 2012; Furukawa et al., 2014; 

Gibbons et al., 2017) transporters (e.g. CFTR and NKCC1: Breves et al., 2020; Li & 

Kültz, 2020; Taugbøl et al., 2014). Therefore, I predicted survivorship to be equal 

between 0 ppt and 10 ppt, indicating that the Blackspotted Stickleback and white 

Threespine Stickleback can live in both fresh- and saltwater. Similarly, the Blackspotted 

Stickleback as well as the white Threespine Stickleback tissue water content is expected 

to remain the same in fish exposed to 0 ppt compared to fish exposed 10 ppt.  

If the Blackspotted Stickleback are freshwater tolerant, it is predicted that 

Blackspotted Sticklebacks exposed to 0 ppt water conditions will show an upregulation of 

NCC2 expression (a transporter aiding in Na+ and Cl- uptake) and a slight increase in 
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NHE3 and NKA alpha subunit expression in freshwater relative to 10 ppt, similarly to the 

euryhaline Threespine Stickleback tested at a range of salinities, including 0 and 11 ppt 

(Gibbons et al., 2017). I do not expect ECaC to change in expression levels in fish 

exposed to the 0 ppt test condition compared to 10 ppt, as Gibbons et al. (2017) only 

found an increase in ECaC gene expression in 0 ppt compared to 11 ppt in a freshwater-

adapted population, not in the marine Threespine Stickleback population (Gibbons et al., 

2017). In addition, no changes in CFTR and NKCC1 (two saltwater ionocyte ion 

transporters that help excrete ions) mRNA levels are expected as the Threespine 

Stickleback does not transcriptionally downregulate these ion transporters to successfully 

colonize freshwater (Gibbons et al., 2017; Taugbøl et al., 2014), and instead appears to 

use post-transcriptional mechanisms to reduce NKCC1 protein content (Divino et al., 

2016).  

2. Methods 

2.1 Fish collection  

Fish collections were performed in June 2020 at Rainbow Haven Beach Provincial Park, 

Nova Scotia, Canada (44.654779, -63.421304), under the Department of Fisheries and 

Oceans Canada Maritime Region fishing licence #343930. Minnow traps were placed in 

the shallow waters close to shore and left for 3-24 hours. Fishes were collected from their 

natural habitat with a salinity of 30 ppt and ~18°C. 

Fishes were placed in buckets with their native water and a bubbler to aerate the 

water. After identification of the fish, individuals to be brought back to Saint Mary’s 

University (SMU) were placed in water in buckets with constant aeration using bubblers. 

The buckets were placed in a cooler with ice packs. Fish were brought back to the SMU 
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fish facilities and were cared for following an animal care protocol, approved by the SMU 

Animal Care Committee (AUPF 18-07). 

 

2.2 Freshwater tolerance experiment 

2.2.1 Acclimation 

Fish were kept at 10 ppt (approximately isosmotic to fish extracellular fluids) at room 

temperature (17-23°C) and a photoperiod of 16L:8D, as this mimics the natural summer 

conditions, for an acclimation period of 1-2 weeks prior to start of the experiment. These 

temperature and light conditions were maintained throughout the experiment. Tanks at 10 

ppt and 0 ppt (freshwater) were set up 2 weeks prior to transfer of the fish, allowing for a 

healthy community of nitrifying bacteria to grow. Three tanks with 0 ppt and three tanks 

with 10 ppt were used to account for potential tank effects, and fish were kept at a density 

of 10-12 fish per tank in 3 tanks at 0 ppt and 3 tanks at 10 ppt. Blackspotted Stickleback 

and white Threespine Sticklebacks were kept in the same tanks, and the two species were 

separated by a mesh net, i.e. 5-6 individuals of each species in each tank.  

2.2.2 Freshwater transfer 

Fish were transferred from the acclimation tanks into the experimental tanks using nets. 

For every Blackspotted Stickleback transferred a white Threespine Stickleback was also 

transferred (randomly), from each of the acclimation tanks to reduce tank effect prior to 

salinity transfer. The first time point (day 0) was directly before fish were transferred to 

the test conditions. The other three sampling points were performed at days 1, 4, and 21 

post transfer (Figure 3). This experimental time frame was chosen to allow for the study 
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of short-term exposure effects (acute responses; day 1 and 4) as well as prolonged 

exposure effect (acclimation; day 21).  

Survivorship was measured by monitoring the death of individuals from salinity 

transfer until the end of the experiment at day 21. When a death occurred, the species, 

tank number, salinity and gender was recorded. The death counts were then used to 

calculate the percentage of fish that survived the full trial period. The calculations 

included the assumption that sampled fish would have survived the full trial period. The 

percent Blackspotted Stickleback and white Threespine Stickleback that survived the 

duration of the experiment in each salinity (0 and 10 ppt) was calculated by subtracting 

the fish that were sampled for gene expression and tissue water content studies. The data 

for survivorship was analyzed in the binomial test to compare two proportions in R (R 

version 4.0.4, 2021 in RStudio Ó 2009-2021 version 1.4.1106, “Tiger Daylily” for 

macOS). 
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2.2.3 Fish sampling and tissue collection 

Fish were euthanized to collect tissue samples from the gills at four different time points. 

(Figure 3: days 0, 1, 4, and 21 post-transfer). For each sampling day, both species of fish 

(white Threespine Stickleback n = 6 for day 0, n = 6 for day 1 at 0 ppt and 10 ppt 

respectively, n = 4 for day 4 at 0 ppt, n = 6 for day 4 at 10 ppt, no white Threespine 

Sticklebacks were sampled on day 21; for Blackspotted Stickleback sample sizes see 

Figure 3.) were randomly selected from each of the three tanks at each salinity to 

minimize the effects of sampling order, and it was noted which tank each sample came 

from. Each fish was removed from their tank and immediately put into a lethal dose of 

anesthetic at a concentration of 3.8  mM (1 g tricaine methanesulfonate (MS222) buffered 

Figure 3. Diagram of the freshwater tolerance experimental sampling time frame. The 
salinity is presented along the y-axis in ppt and the sampling times (day 0, 1, 4, and 21) post 
salinity-transfer are presented on the x-axis. At day 0, fish were either transferred to test 
conditions of 0 ppt or a handling control tank at 10 ppt. 3 tanks at 0 ppt and 3 tanks at 10 ppt 
were used to account for tank effect. The Blackspotted Stickleback sample sizes are 
indicated: n = 10 fish were sampled at day 0 for a pre-transfer control. The number of fish (n) 
sampled at each sampling point is depicted above. 
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with 0.5 g sodium bicarbonate (NaHCO3) in 1 L of water). The MS222 solution was 

constantly aerated using a bubbler to reduce stress during euthanasia. Once the fish had 

been euthanized, a scalpel was used to remove the caudal peduncle from the rest of the 

body. A heparanized microhematocrit capillary tube (FisherbrandÔ, Fisher Scientific) 

was used to collect blood from the body through the caudal artery, but due to the small 

fish size, not enough blood was collected to measure plasma ion content. The fish was 

then placed on a ruler along with the caudal peduncle and body length was recorded. The 

full fish body was then placed on an analytical scale and the wet body weight was 

recorded. The head was removed using a scalpel and spring scissors were used to remove 

the full gill basket. Directly after dissection, gills were wrapped in tin foil and flash 

frozen in liquid nitrogen. In addition, the intestine was dissected, and any remaining 

organic materials were removed before flash-freezing the intestine samples in liquid 

nitrogen. All internal organs were removed from the body and the wet weight without 

internal organs, head and fins was recorded as the wet body mass for later calculation of 

tissue water content (section 2.4). The carcass was placed in a sample tube and left to air 

dry in a fume hood. Gill and intestine samples were stored in a -80°C freezer for RNA 

extractions (section 2.6).  

 

2.3 Tissue water content 

After allowing for the fish carcasses to air dry until the weight remained constant (~ 14 

days), the dry weight was recorded using an analytical scale. The percent muscle water 

content was calculated using the following equation: 

%	#$%&'(	)*+(,	&-.+(.+ = 	01%ℎ	)(+	)(13ℎ+ − 01%ℎ	5,6	)(13ℎ+01%ℎ	)(+	)(13ℎ+ × 100 



 32 

 

2.4 RNA extractions from Blackspotted Stickleback gill samples 

RNA was extracted from the whole gills using the GeneJet Purification kit (Thermo 

Scientific), with some minor modifications. To extract RNA, gills stored at -80°C were 

thawed and immediately placed in a homogenization solution made by using 300 µL lysis 

buffer from the Thermo Scientific GeneJet Purification kit and 2M dithriothreitol (Sigma-

Aldrich) dissolved in RNase free water (Thermo Scientific) on ice. Gill samples were 

then homogenized using a roto-stator homogenizer (Variac autotransformer, 7 mm blade, 

Kinematic Switzerland model GMpH) 3 times in 30 seconds intervals at 60-80 % power, 

or until homogenized. Homogenized samples were then stored at -80°C.  

Following homogenization, RNA purification was executed using 10 µL proteinase 

K mixed with 590 µL TE buffer as well as wash buffer 1 and 2 from the kit, following the 

steps in the GeneJet protocol, with the addition of an on-column DNase treatment that 

was performed using the PureLinkÔ Invitrogen kit, to remove contaminating DNA. RNA 

samples were eluted in 100 µL RNase free water and the extracted RNA was divided into 

three separate 33 µL aliquots: one for quantitation and quality check, one for cDNA 

synthesis and one extra aliquot.  

 

2.5 RNA quantitation and quality verification 

RNA quantity was assessed using a Spectromax M3 spectrophotometer (Molecular 

Devices) and the Softmax Pro 7 software. 2.5 µL of each sample was loaded in triplicate 

onto a 24-well MVMP SpectraDropÔ Micro-Volume Microplate (Molecular Devices) 

with a 0.5 mm cover slip. The nucleic acid concentration was measured at an absorbance 



 33 

of 260 nm and protein contamination was estimated by absorbance at 280 nm. RNase free 

water was loaded onto each plate in triplicate as a blank.  

The quality of the RNA samples was tested by running out and visualizing samples 

on an agarose bleach gel (1 % agarose: Tris-acetate EDTA w/v, 1 % bleach v/v, stained 

with ethidium bromide) following the methodology by Aranda et al. (2012). Up to 1 µg 

of each RNA sample was loaded in each well. Samples were run in a Bio-Rad agarose gel 

electrophoresis system for 50 minutes. The gel was then removed from the 

electrophoresis rig and transferred to a Bio Molecular ImagerÒ Gel DocÔ XR+ (Bio-

Rad) imaging system. The gel was photographed using the Imager and the Image LabÔ 

software (Version 6.0, 2017, Bio-Rad). This software was also used to analyze the ratio of 

28S rRNA and 18S rRNA band density. The ratio was calculated by assessing the 

adjusted volume (excluding the background noise) of the 28S and 18S rRNA bands 

respectively. High quality RNA should have a ratio of 2:1 (Taylor et al., 2010).  

 

2.6 Reverse transcription (RT) and quantitative polymerace chain reaction (qPCR) 

analysis of genes of interest in Blackspotted Stickleback gill 

2.6.1 cDNA synthesis 

RNA samples for complementary DNA (cDNA) synthesis were selected by analysing the 

results from RNA quantification and quality verification assays (section 2.6). Only 

samples with >16 ng/µL RNA concentration and a 28S:18S ratio of 2:1 were selected for 

cDNA synthesis.  

cDNA synthesis was performed using 6 µL reverse transcription (RT) supermix 

from the iScriptÔ cDNA Synthesis kit (Bio-Rad) along with 2 µL no reverse 



 34 

transcription supermix for the No-RT series, following the protocol provided by 

manufacturer. A 30 µL cDNA reaction (using 500 ng RNA) was completed for each 

sample along with a 10 µL non-reverse transcribed (No-RT) reaction. The samples were 

stored at -80°C for qPCR analyses (see section 2.11). 

 

2.6.2 Selection of genes of interest and qPCR primer design 

Genes of interest (GOI) were selected based on findings in previous studies reporting the 

regulation of ECaC, NHE3 and NKA in response to salinity transfer (Dymowska et al., 

2012; Gibbons et al., 2017). Other studies have found that NCC2 is upregulated in teleost 

fish in freshwater (Breves et al., 2020; Hiroi et al., 2008; Inokuchi et al., 2017; Wang et 

al., 2009), and the NCC2-1a and NCC2-1b transcripts were therefore selected to test the 

regulation of ion transporters related to freshwater acclimation. In addition, the NKCC1 

and CFTR ion transporters in gills were selected as “seawater ion transporters” for the 

present study as these ion transporters have been observed to be related to seawater 

acclimation (Zimmer et al., 2021). 

Primers for amplification of genes of interest were designed according to the 

conditions outlined by Taylor et al. (2010), which include, but are not limited to, optimal 

amplicon length, GC content, and melting temperature. The primers were designed to 

amplify a 75 – 150 bp long amplicon, have a GC content between 50 – 60 %, melting 

temperature (Tm) of 55 – 65°C, span an exon-exon boundary, and be in a consensus 

region of a closely related species within the group of teleost fish. Sequence information 

for genes of interest, including genes predicted to be upregulated during freshwater 

acclimation (NHE3, NKA and ECaC), genes involved in seawater acclimation (NKCC1 
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and CFTR) that are predicted to be downregulated in freshwater, along with the reference 

genes L13A ribosomal binding protein (RPL13A), ubiquitin (UBA), hypoxanthine 

phosphoribosyltransferase 1 (HPRT) and eukaryotic elongation factor 1 alpha (EEF1a) 

(Hibbeler et al., 2008; Wang et al., 2009), were retrieved from Ensembl for the 

Threespine Stickleback. The Threespine Stickleback genes were used for primer design, 

since it is a closely related species to the Blackspotted Stickleback and the Blackspotted 

Stickleback genome is not yet available online. The cDNA sequence was downloaded in 

FASTA format and aligned with sequences from two other closely related teleost species 

within the Actinopterygii class (wolf-eel, Anarrhichthus ocellatus and lump fish, 

Cyclopterus lumpus) using the Multalin online tool (Mitchell, 1993) to find consensus 

sequences within the gene among the three species.  

The NCBI Primer-Blast online tool (Ye et al., 2012) was used to find the primers 

for each GOI. Among the primer results, the primers that met the conditions outlines 

above were selected. Where not all conditions could be met, the primers that met the most 

conditions were selected. Multiple primer sets were designed and used in the primer 

optimization for determination of the better suited primer sets for the present study (Table 

1).  

 

2.6.3 qPCR optimization 

Following primer design, primers were ordered from Integrated DNA Technologies Inc. 

The DNA oligos were order in a lab-ready solution normalized to 100 µM in IDTE buffer 

at pH 8.0 with standard desalting. For primer optimization, the primers were diluted to 20 

µM in sterile nuclease free water (VWR Life Science). The primers were then tested on 
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cDNA from the meta population, i.e., reverse transcribed pooled RNA from all samples. 

The reverse transcription from RNA into cDNA was conducted following the procedures 

described in section 2.7 and then diluted to an eight step 2-fold dilution series starting at a 

¼ dilution.  

Master mix solution for qPCR was prepared using 5 µL SsoAdvancedÔ Unversal 

SYBRÒ Green Supermix (Bio-Rad), 0.5 µL forward primer (10 mM) and 0.5 µL reverse 

primer (10 mM) for each well. Six (6) µL master mix was added to a MultiplateÔ 96 well 

PCR plate (Bio-Rad). Four (4) µL of the serially diluted cDNA was added in triplicate. 

The plate was then sealed using an adhesive optically clear Microseal ‘B’ PCR plate 

sealing film (Bio-Rad). The plate was then centrifuged and placed in a C1000 Touch Bio-

Rad Thermal Cycler (Bio-Rad) for a qPCR assay. Standard curves were generated for all 

primer sets and the best suited primer sets were determined by assessing the acquired 

qPCR data following the recommendations of Taylor et al. (2010). In assessing the qPCR 

data, the Cq values were used to verify that the different dilutions in the dilution series 

were separated by 1 cycle. Melt curves were assessed to verify that one single PCR 

product was being amplified. The melt curve should be uniform and there should be one 

single melt peak for each primer set (Taylor et al., 2010). Reaction efficiency was 

estimated and accepted if it fell between 90 – 110 %, in accordance with the MIQE 

guidelines (Bustin et al., 2009; Taylor et al., 2010). In addition, the R^2 value was 

verified, and should be >0.98, confirming that the samples conform to the regression line 

in the standard curve. Table 1 include the primers that were selected based on the primer 

optimization results.  
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Table 1. Primer sequences for genes of interest in qPCR. * indicates reference genes. **indicates potential reference genes that were tested, but not 
used in the study due to a lack of stability. Primers were designed during this experiment following the procedures from section 2.9. Genes include 
the Na+/Cl- cotransporter 2 (NCC2), Na+/H+ exchanger 3 (NHE3), epithelial Ca2+ channel (ECaC), Na+,K+-ATPase (NKA) alpha subunit, 
Na+/K+/2Cl cotransporter 1 (NKCC1), cystic fibrosis transmembrane conductance regulator (CFTR), ubiquitin (UBA), and L13A ribosomal 
binding protein (RPL13A). The respective gene transcript, gene ID reference for Ensembl, forward/reverse strands, and primer sequence in the 5’ 
to 3’ directions, qPCR product size in base pairs and the melting temperature (Tm) in Celsius are included.  

Gene name 
 

Transcript Gene ID 
(Ensembl) 

F/R Primer sequence 
(5’ -> 3’) 

qPCR Product 
size (bp) 

Tm  
(°C) 

slc12α10.1 NCC2-1a ENSGACT00000025101.1 F GCAACGTCACGGTGATAACG 83 59.91 
(NCC2)   R GAAGGGAGCGACACTTTCCA  59.97 

slc12α10.1 NCC2-1b ENSGACT00000025108.1 F CCCATTAGGTTTGGCTGGGT 141 59.96 
(NCC2)   R CACGGACATCGCGAGGATAA  59.97 

slc9α3.2 slc9a3.2-201 ENSGACG00000002446.1 F CGTTTGTGTCACTGGGAGGA 105 59.89 
(NHE3)   R ACACAAGGCCCAAAAGGGAA  60.03 

trpv6 trpv6-201 ENSGACT00000013861.1 F TATCCGCGTCCAGAAAACCC 114 60.11 
(ECaC)   R ATCTCCAGCAACAGGATGGC  60.11 

atp1α1.2 atp1a1-203 ENSGACT00000018954.1 F AGCCCAGAAACCCCAAAACA 143 60.03 
(NKA)   R GTCATTGGGGAGGAAACCGT  59.96 

slc12α2 slc12a2-201 ENSGACT00000024304.1 F GGCCTGATGATGTGTGGTCA 114 60.04 
(NKCC1)   R GGCCTTGGTCTCGTTCTTCA  59.97 

cftr cftr-201 ENSGACT00000011967.1 F CCTACGACGAGTTCCGCTAC 100 59.97 
(CFTR)   R CCCTCCAGGAGAAGCGTTTT  59.96 

uba52* uba52-201 ENSGACT00000010662.1 F ACGGGGAAGACCATCACTCT  147  60.25  
(UBA)   R AGACAGTGTCCGTCCATCCT   60.25  

rpl13α* rpl13a-201 ENSGACT00000012319.1 F GGACCGTACCACTTCAGAGC 124 60.11 
(RPL)   R GAGGGATACCGTCGAACACC  59.90 

hprt1** hprt1-201 ENSGACT00000024687.1 F  GTGGACTTCATCCGCCTCAA  148   60.04  
(HPRT)   R ACGTCTGCATTGTCTTCCCT   59.31 

eef1α ** eef1a1l2-201  ENSGACT00000023950.1 F CTCAGGCAAATCCACCACCA  148  60.25  
(EEF1a)   R CTCTGCCTTCAGCTTGTCCA   59.96  
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2.7 qPCR for Blackspotted Stickleback gill filament tissues 

For the qPCR assay for the Blackspotted Stickleback gill cDNA samples, a master mix 

solution was prepared according to the process described in section 2.9 and 6 µL master 

mix was added to a 96 well PCR plate. All cDNA and NRT samples were diluted to a 1/8 

concentration to prevent inhibition of amplification, as suggested by Bio-Rad (Taylor et 

al., 2010). Four (4) µL of 1/8 diluted cDNA was added in triplicate for each biological 

replicate to the designated wells, accompanied by a single 4 µL NRT control. The plate 

was then sealed using the sealing film and centrifuged before starting the qPCR assay.  

Thermal cycles for the qPCR assay were as follows: 50°C for 120 seconds, 95°C 

for 60 seconds, followed by a repeating step of 95°C for 15 seconds and 60° for 30 

seconds. This was repeated 40 times. An additional cycle was added to get the melt curve 

to assess the purity of the qPCR product: 95°C for 10 seconds, then a repeating step at 

60°C with an increase of 0.5°C for each cycle until the temperature reached 95°C. The 

results from the qPCR assay were analyzed in accordance with the MIQE guidelines 

(Bustin et al., 2009). Analyzing the qPCR data included checking the melt curve to make 

sure a single product was being amplified and setting the threshold value for the standard 

curve on the amplification curve to match the point of exponential amplification. As well, 

the efficiency and R2 value was checked and determined to be 90-110 % (efficiency) and 

> 0.98 respectively. 
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2.8 Statistical analyses  

2.8.1 Reference gene selection 

Within the CFX MaestroÔ Software (Bio-Rad), the Reference Gene Selection tool was 

used to determine the stability of the reference genes. The two genes with the highest 

stability were selected for statistical analyses. Only genes rated as “Acceptable” or higher 

were selected for further statistical analyses (see Appendix A, Table A1). For the present 

study, RPL and UBA were determined to be acceptable reference genes. In addition, 

significant effects of time and salinity on gene expression was tested using a two-way 

ANOVA. 

The Gene Study tool in CFX MaestroÔ was used to analyse the DDCq (normalized 

expression) for each gene of interest (GOI). Here, two reference genes (RPL and UBA) 

from the reference gene stability test were used as reference, and the GOI’s (see Table 1) 

were compared to the reference genes. 

 

2.8.2 Statistical analyses: survivorship, tissue water content and gene expression 

Chi-square tests were conducted using the software R (R version 4.0.4, 2021 in RStudio 

Ó 2009-2021 version 1.4.1106, “Tiger Daylily” for macOS) to test for difference in 

survivorship between Blackspotted Stickleback and white Threespine Stickleback for 

each treatment (0 or 10 ppt).  

Two-way ANOVAs (analysis of variance) were conducted in R to test for an effect 

of salinity (0 ppt or 10 ppt) on tissue water content in the two species, Blackspotted 

Stickleback and white Threespine Stickleback respectively. All assumptions of the 

ANOVA, including homogeneity of variance and a normal distribution of data, were 
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tested and met, using a Normal Quantile-Quantile plot, Shapiro-Wilk test and a Residuals 

vs Fitted plot in R. 

Two-way ANOVAs were conducted in R to test for an effect of salinity (0 ppt or 10 

ppt) treatment and time (1- and 4-days exposure period) on mRNA content in 

Blackspotted Stickleback. The data for the GOI’s (ECaC, NKA, NHE3, NCC2, CFTR 

and NKCC1) were transformed to fit the assumptions of a two-way ANOVA using the 

Tukey’s Ladder of Power. The 21 days exposure for Blackspotted Stickleback was 

excluded due to a low sampling size as a result of deaths during the experiment and the 

Day 0 control was excluded because reference genes did not show stability at this time 

point. The TukeyHSD package was used for post-hoc Tukey multiple comparisons to 

compare differences between salinity (10 or 0 ppt) and exposure time (1 day and 4 days). 

The ggplot2 package was used for data visualization of each GOI.  

 

3. Results 

3.1 Survivorship  

During the experiment (21 days), 65.7 % of Blackspotted Stickleback survived the 0 ppt 

treatment (freshwater environment) and 81.8 % survived the 10 ppt treatment (isosmotic 

environment). The white Threespine Stickleback has a survivorship of 52.6 % in 

freshwater (0 ppt) and 63.2 % in the control group (10 ppt). These results assume that all 

fish that were sampled in day 1, 4 and 21 would have survived the 21 days of freshwater 

exposure. 81 % of the Blackspotted Sticklebacks used in the present study were male fish 

and 19 % were female fish. Out of the white Threespine Sticklebacks used in the present 

study, 63 % were male fish and 37 % were females.   
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While both species had slightly higher survival at 10 ppt, there was no significant 

difference in survivorship between the freshwater (0 ppt) and the control group (10 ppt) in 

Blackspotted Stickleback (p = 0.0662 χ2 = 2.2631, df = 1) or white Threespine 

Stickleback (p = 0.2555, χ2 = 0.4218, df = 1) (Figure 4). During the acclimation period 

pre salinity transfer and during the experiment (21 days freshwater exposure), a high 

mortality rate was also observed in the white Threespine Stickleback.  

 
Figure 4. The percent survival of Blackspotted Stickleback and white Threespine 
Stickleback in freshwater (0 ppt) and the brackish water handling control (10 ppt) after 21 
days.  

 

 

3.2 Tissue water content 

There was no effect of salinity (0 ppt or 10 ppt; F = 1.254, p = 0.275, df = 1) or time (day 

0, 1, or 4; F = 2.361, p = 0.118, df = 2) on tissue water content in white Threespine 
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Stickleback (Figure 5). There was also no effect of salinity (0 ppt and 10 ppt; F = 0.566, p 

= 0.455, df = 1) or time (day 0, 1, and 4; F = 1.831, p = 0.171, df = 2) on tissue water 

content in Blackspotted Stickleback (Figure 6). 

 

 

 

Figure 5. Percent tissue water content in white Threespine Stickleback in freshwater (0 
ppt) and isosmotic control conditions (10 ppt) 0, 1 and 4 days after salinity transfer. n = 6 
on day 0, n = 6 (0 ppt and 10 ppt) on day 1, n = 4 (0 ppt) and n = 6 (10 ppt) on day 4.  
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Figure 6. Percent tissue water content in Blackspotted Stickleback in freshwater (0 ppt) 
and isosmotic control condition (10 ppt) 0, 1 and 4 days after salinity transfer. n = 10 on 
day 0, n = 11 (0 ppt and 10 ppt) on day 1, n = 10 (0 ppt and 10 ppt) on day 4.  

 
3.3 Gene expression 

From the CFX MaestroÔ gene stability test (CFX MaestroÔ Software Reference Gene 

Selection tool, Bio-Rad), RPL and UBA were found to be the most stable genes and were 

therefore used as reference genes (Appendix A). An M value of 0.7 was obtained for both 

RPL and UBA and they were deemed “acceptable” as reference genes by the software 

(Table 1A). The RPL and UBA Cq values were then used in a two-way ANOVA to test if 

there was a significant effect of time or salinity on the expression of these genes. A 

significant effect of day on the average Cq for RPL was detected (F = 4.484, p = 0.017, df 

= 2), see Appendix A, Figure A2. When day 0 was excluded from the statistical analyses 

there was no significant effect of salinity (0 or 10 ppt) or time (day 1 or 4) on the average 
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Cq values for the reference genes RPL (effect by salinity: F = 0.184, p = 0.671, df = 1; 

effect by day: F = 1.769, p = 0.192, df = 1) and UBA (effect by salinity, F = 0.251, p = 

0.620, df = 1; effect by day: F = 3.293, p = 0.0784, df = 1), see Appendix A, Figure A1. 

Therefore, the time-matched handling controls were used in our analysis and the pre-

transfer gene expression data (reduced stress) was not included due to the large effect of 

handling on all reference genes. Thus, the analysis focuses on the effects of salinity on 

mRNA content only.  

In addition, hypoxanthine phosphoribosyltransferase 1 (HPRT1) and eukaryotic 

elongationfactor 1 alpha (EEF1a) were included in the gene stability test. However, 

EEF1a was deemed “unstable” (Table 1A) by the Reference Gene Selection tool (Bio-rad) 

and was therefore not included as a reference gene in the present study. HPRT1 was 

deemed “acceptable”, but a slightly higher M value was obtained for HPRT1 compared to 

RPL and UBA (see Table A1). As well, a significant effect by day was detected in the 

ANOVA test statistics (F = 4.003, p = 0.026, df = 2, Tukey a posteriori: p = 0.058) and 

HPRT was therefore not included as a reference gene in the present study. 

A difference in relative gill gene expression (relative to the reference genes RPL 

and UBA) between the two salinity treatments was observed for transcripts encoding 

transporters present in two fresh- and saltwater ionocytes (NKA and NHE3: Figure 7). 

There was no effect of salinity on ECaC gill mRNA content (F = 3.254, p = 0.080, df = 

1). A significant effect of salinity was found for NKA alpha gill mRNA content (F = 

7.163, p = 0.012, df = 1, Tukey a posteriori: p = 0.011), but no significant difference was 

detected in the specific interactions of day and salinity (0 ppt compared to 10 ppt on day 

1, etc.). NHE3 gill expression was also increased at 0 ppt (effect of salinity: F = 11.795, p 
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= 0.003, df = 1) on day 1 (Tukey a posteriori: p = 0.009), but this increase in NHE3 gill 

mRNA content was no longer significant by day 4.  

In addition, a difference in relative gene expression between the two different 

salinity treatments (10 and 0 ppt) was observed in the transcripts encoding transporters 

expressed in freshwater gill ionocytes (NCC2-1a: Figure 8A). There was an effect of 

salinity on NCC2-1a gill mRNA content (F = 29.443, p = 1.24e-05, df = 1) with an 

increase in freshwater on day 1 compared to 10 ppt (p = 0.002) and an increase at day 4 (p 

= 0.003). A large increase in NCC2-1b gill gene expression was also observed at 0 ppt 

(Figure 8B), with a significant effect of salinity detected (F = 39.344, p = 5.66e-07, df = 

1) with a significant difference between 0 and 10 ppt at day 1 (p = 0.001) and at day 4 (p 

= 0.0003) (Figure 8B).  

No difference between the two salinity treatments was found in the expression of 

genes associated with seawater type ionocytes in the gill (CFTR and NKCC1: Figure 9). 

The relative gene expression remained relatively stable for CFTR (F = 0.951, p = 0.336, 

df = 1) and NKCC1 (F = 0.190, p = 0.666, df = 1) throughout the experiment for both test 

conditions. 
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Figure 7. Effect of salinity (10 and 0 ppt) on genes related to freshwater and seawater 
acclimation in Blackspotted Stickleback gills at days 1 and 4 post salinity transfer. The 
relative gene expression is presented on the y axis; however, the statistical analyses were 
performed on transformed data (using the Tukey’s Ladder of Power). (A) relative 
expression of ECaC during the 4-day exposure (n = 11 at 10 ppt on day 1, n = 8 at 0 ppt 
on day 1, n = 9 at 10 ppt on day 4, n = 10 at 0 ppt on day 4). (B) relative expression of 
NKA (n = 11 at 10 ppt on day 1, n = 9 at 0 ppt on day 1, n = 9 at 10 ppt on day 4, n = 10 
at 0 ppt on day 4). (C) relative expression of NHE3 (n = 8 at 10 ppt on day 1, n = 6 at 0 
ppt on day 1, n = 3 at 10 ppt on day 4, n = 7 at 0 ppt on day 4). The “*” indicates 
significant difference from the 10 ppt treatment on the same day. 
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Figure 8. Effect of salinity (10 and 0 ppt) on genes related to freshwater acclimation in 
Blackspotted Stickleback gills at days 1 and 4 post salinity transfer. The relative gene 
expression is presented on the y axis; however, the statistical analyses were performed on 
transformed data (using the Tukey’s Ladder of Power). (A) relative expression of NCC2-
1a transcript during the 4-day exposure. n = 8 at 10 ppt on day 1, n = 7 at 0 ppt on day 1, 
n = 6 at 10 ppt on day 4, n = 8 at 0 ppt on day 4. (B) relative expression of NCC2-1b 
transcript. n = 11 at 10 ppt on day 1, n = 8 at 0 ppt on day 1, n = 7 at 10 ppt on day 4, n = 
9 at 0 ppt on day 4. The “*” indicates significant difference from the 10 ppt treatment on 
the same day. 

 

 
Figure 9. Effect of salinity (10 and 0 ppt) on genes related to seawater acclimation in 
Blackspotted Stickleback gills at days 1 and 4 post salinity transfer. The relative gene 
expression is presented on the y axis; however, the statistical analyses were performed on 
transformed data (using the Tukey’s Ladder of Power). (A) relative expression of CFTR 
during the 4-day exposure. n = 11 at 10 ppt on day 1, n = 8 at 0 ppt on day 1, n = 9 at 10 
ppt on day 4, n = 10 at 0 ppt on day 4. (B) relative expression of NKCC1. n = 11 at 10 ppt 
on day 1, n = 8 at 0 ppt on day 1, n = 9 at 10 ppt on day 4, n = 10 at 0 ppt on day 4. 
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4. Discussion 

The colonization of marine fish in freshwater brings physiological challenges for fish 

(e.g. Pfennig et al., 2010). These freshwater associated physiological challenges include, 

but are not limited to, warmer temperatures in summer, freezing in winter, lower salinity, 

as well as differences in nutrients and predators (Pfennig et al., 2010; Stocker et al., 

2013). Many studies have assessed the ability to tolerate, and colonize, freshwater in 

Threespine Stickleback (DeFaveri et al., 2011; Gibbons et al., 2017; Kusakabe et al., 

2017; Metzger et al., 2016). However, other species within the stickleback family, such as 

the Blackspotted Stickleback and the white Threespine Stickleback, are very rarely 

observed in freshwater (Blouw, 1978; van Vliet, 1970). The paucity of Blackspotted 

Stickleback and white Threespine Stickleback in freshwater lakes and rivers could be due 

to low freshwater tolerance as lower freshwater tolerance has been observed in juvenile 

Blackspotted Stickleback (Campeau et al., 1984). Mechanisms for freshwater acclimation 

have been studied in Threespine Stickleback (Gibbons et al., 2017), but little is known 

about the freshwater tolerance and underlying physiological mechanisms potentially 

allowing freshwater survival in Blackspotted Stickleback (Audet et al., 1986; Campeau et 

al., 1984) and the white Threespine Stickleback. The present study therefore used a 

comparative approach to investigate the molecular response to freshwater in the adult 

Blackspotted Stickleback and white Threespine Stickleback to gain a better understanding 

of the level of freshwater tolerance in these fish. I found that adult white Threespine 

Stickleback and Blackspotted Stickleback can tolerate an acute freshwater transfer. 

However, further studies should be conducted on juvenile and embryos at winter 

temperatures to further investigate if a lack of freshwater tolerance may have limited the 

white Threespine Stickleback’s ability to colonize post-glacial lakes as the “common” 
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Threespine Stickleback ecotype has successfully done (Defaveri & Merilä, 2014; Gibbons 

et al., 2016; Hohenlohe & Magalhaes, 2019). Due to the high mortality rate in the present 

study, gill gene expression data for the white Threespine Stickleback could not be 

measured and the mechanisms for freshwater tolerance for these fish could not be 

determined. 

I observed that the Blackspotted Stickleback responds to acute freshwater transfer 

by upregulation of NCC2 ion transporters that have been found to be related to freshwater 

acclimation (Breves et al., 2020; Inokuchi et al., 2017). In addition, upregulation of ion 

transporters related to both freshwater and seawater (ECaC, NKA and NHE3) was 

observed, however, no downregulation of transporters related to seawater (CFTR and 

NKCC1) was observed. No significant changes in the expression of CFTR has been 

observed in Threespine Stickleback after transfer from seawater to freshwater (Taugbøl et 

al., 2014), nor was the expression of NKCC1 decreased after freshwater transfer from 

seawater in Threespine Stickleback (Gibbons et al., 2017). Therefore, Blackspotted 

Stickleback appear to utilize similar mechanisms for freshwater acclimation as other 

euryhaline sticklebacks. Furthermore, these data suggest that sticklebacks do not 

transcriptionally downregulate CFTR and NKCC1 in freshwater (Gibbons et al., 2017; 

Taugbøl et al., 2014; current study) as many other teleost often do (Breves et al., 2020; 

Hiroi et al., 2008; Scott et al., 2004). Instead, it is possible that post-transcriptional 

mechanisms lead to a downregulation of “seawater” ionocyte ion transporters (i.e., Divino 

et al., 2016). 
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4.1 Freshwater tolerance in two primarily marine sticklebacks: the white Threespine 

Stickleback and Blackspotted Stickleback 

The wide range of salinity tolerances observed within the species of the Gasterosteidae 

family (Gibbons et al., 2016; Kawahara et al., 2009; Nelson, 1968; Raffy, 1953) gives 

ground to questions regarding the evolution of freshwater tolerance among marine species 

within the family. The Blackspotted Stickleback is a marine species, with only a few 

observations in freshwater (Blouw, 1978; van Vliet, 1970), and the present study looked 

at their capacity for freshwater tolerance in adult Blackspotted fish. Understanding 

freshwater tolerance, and the mechanisms used to tolerate freshwater, can help us 

determine if different populations and species of Gasterosteidae evolved freshwater 

tolerance independently using unique mechanisms, or if common ancestral mechanisms 

might be commonly redeployed during local adaptation.  

I found no effect of salinity on either survivorship (section 3.1) nor tissue water 

content (section 3.2) in adult white Threespine Stickleback and Blackspotted Stickleback. 

A high mortality rate was observed in the white Threespine Stickleback during the 

acclimation period as well as the experimental period, causing a low sampling number for 

each sampling time (day 1, 4 and 21). The deaths could be due to the fish being collected 

from the wild and reared in the laboratory during their natural breeding season, causing 

extra stress for these fish seeing as the breeding state takes a lot of energy (Evans et al., 

2014). In addition, the difference in capture site conditions, such as salinity and 

temperature, could have played a role in the high mortality rate. It is worth noting that 

similar temperatures were used in the laboratory setting to the natural temperature. As 
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well, a previous study has observed minimal differences in gene expression of key ion 

transporters in fish exposed to 30 ppt and 11 ppt (Gibbons et al., 2017). The white 

Threespine Stickleback were excluded from the qPCR assay due to the low sampling 

numbers, and no further analyses of the freshwater tolerance in these fish were conducted. 

The results from the survivorship assay (section 3.1) give no indication of the 

survivorship being affected by salinity as no significant difference was found in the 

mortality between the different treatments (10 and 0 ppt). As well, no significant 

difference was found between the different treatments in the tissue water content assay, 

indicating that these fish can maintain osmotic homeostasis in both salinities (10 and 0 

ppt), as the ability of maintaining water balance within the cells is critical for 

transitioning between saltwater and freshwater (Whitehead et al., 2012). It is worth noting 

that previous studies have found higher freshwater growth rates in anadromous 

Threespine stickleback hatched at 0 ppt compared to 20 ppt (Belanger et al., 1987), while 

a different study found higher mortality in 20 ppt hatched Threespine Stickleback later 

exposed to lower (0 ppt) and higher (28 ppt) salinities compared to fish transferred to 7, 

14, and 21 ppt (Campeau et al., 1984). Therefore, hatching in a freshwater environment 

could predispose the development of freshwater tolerance via developmental acclimation 

(Belanger et al., 1987; Campeau et al., 1984; Defaveri & Merilä, 2014). While I found 

high survival and tolerance to 0 ppt in our wild caught fish, future studies could breed 

wild caught fish in common conditions, including freshwater, to test if hatching salinity 

affects growth and metabolism in marine white Threespine Stickleback and Blackspotted 

Stickleback and determine if these species differ in tolerance from other sticklebacks that 

have colonized freshwater.  
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To address the potential effects of breeding condition on lab survival in white 

Threespine Stickleback, future studies could look at the freshwater tolerance in healthier, 

non-breeding, juvenile white Threespine Stickleback before they migrate to the ocean for 

the winter season. By using juvenile fish, the breeding condition would be eliminated as a 

factor in the freshwater tolerance experiment. Campeau et al. (1984) found that 

Threespine Stickleback and Blackspotted Stickleback fry (one week old) are less tolerant 

to freshwater than 5 week old fish of the same species (Campeau et al., 1984). The 

decreased ability to acclimate to freshwater among fry and juvenile fish could be the 

reason for the paucity of both Blackspotted Stickleback and white Threespine Stickleback 

in freshwater lakes as their growth appears to be affected by salinity (Campeau et al., 

1984). Seeing as freshwater tolerance seems to be lower in younger fish, another 

suggestion would be to breed white Threespine Sticklebacks in a laboratory setting and 

look at the freshwater tolerance in adult fish outside of the breeding season and in less 

heavily parasitized fish (wild stickleback are consistently parasitized). By looking at 

laboratory bred adult fish, breeding condition and parasite load can be eliminated as a 

potential factor leading to mortality. 

 

4.2 Mechanisms of acclimation to freshwater: the effect of freshwater transfer on 

gene expression in gills 

Previous studies have also found that the types of ionocytes used by fish to acclimate to 

freshwater vary greatly among species, but that certain ion transporters seems to be 

commonly utilized in acclimation to freshwater, even when their combinations within 

ionocytes varies (Breves et al., 2020; Dymowska et al., 2012; Hwang et al., 2011; 
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Inokuchi et al., 2017). Therefore, the present study investigated if the Blackspotted 

Stickleback use similar mechanisms of freshwater acclimation as the Threespine 

Stickleback, as well as if the Blackspotted Stickleback acclimate to freshwater as well as 

the Threespine Sticklebacks do. Studies looking at the gill transcriptional responses in 

Tilapia, Killifish, Zebrafish and Mummichog were used as reference for their findings on 

freshwater acclimation in these fishes (Breves et al., 2020; Dymowska et al., 2012; 

Gibbons et al., 2017).  

The primarily marine Blackspotted Stickleback was predicted to possess the ability 

to acclimate to freshwater, however, Blackspotted Stickleback was also expected to have 

a weaker freshwater acclimation response than the Threespine Stickleback (Gibbons et 

al., 2017) that has a relatively high ancestral freshwater acclimation capacity and has also 

repeatedly colonized freshwater (Bell & Foster, 1994). Thus, it was predicted that 

Blackspotted Stickleback possess the underlying mechanisms to freshwater tolerance in a 

similar fashion as the Threespine Stickleback, but that the response would be of a smaller 

magnitude. The present study looked at two different transcripts for the freshwater 

ionocyte ion transporter NCC2: NCC2-1a and NCC2-1b. NCC2-1b mRNA showed much 

higher transcription levels than NCC2-1a (Figure 8), suggesting that NCC2-1b is the 

more important transcript in freshwater acclimation in Blackspotted Stickleback and that 

Blackspotted Stickleback acclimate to freshwater through upregulation of this ion 

transporter, as Threespine do (Gibbons et al., 2017). When comparing the fold-change in 

mRNA levels for the NCC2-1b with the RNA-seq data from Gibbons et al. (2017), it was 

noted that the Blackspotted Stickleback had a higher fold-change in NCC2-1b mRNA 

levels than the Threespine Stickleback. Gibbons et al. (2017) found a 5-fold increase in 

NCC2-1b mRNA in freshwater compared to saltwater (test conditions: 0 ppt and 30 ppt), 
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compared to the ~500-fold increase observed in the present study. The present study also 

observed an increase in NCC2-1a mRNA levels in freshwater, with a 6-fold increase from 

10 to 0 ppt, compared to the 2-fold increase observed by Gibbons et al. (2017) from 30 to 

0 ppt. These results contradict the prediction that the Blackspotted Stickleback would 

show a weaker response to freshwater. Similar upregulation patterns in expression were 

found in other previous studies where NCC2 was found to be more highly expressed in 

the gills of freshwater acclimated Mummichog, Mozambique Tilapia and Japanese 

Seabass (Breves et al., 2020; Furukawa et al., 2014; Inokuchi et al., 2017).  

During freshwater acclimation, the genes encoding multi-functional ion transporters 

expressed in both seawater and freshwater ionocytes have an increased mRNA content in 

Threespine Stickleback, including ECaC (only freshwater populations), NHE3 and NKA 

(Gibbons et al., 2017). A similar pattern was found in the present study as a significant 

increase in the expression of NHE3 and NKA after one day of freshwater exposure 

(Figure 7B-C) was found. While the results indicate an elevation in ECaC mRNA levels, 

no significant increase was detected (Figure 7A). On day 4 the expression was somewhat 

lower for all three ion transporters. This matches the lack of upregulation of ECaC found 

by Gibbons et al. (2017) in marine populations after 3 months of freshwater exposure. 

The lower gene expression at day 4 could indicate that as time progress other post-

transcriptional processes, such as protein localization, increased translation or 

phosphorylation could play a more important role in maintaining protein function as time 

progresses (Gamba, 2012). This hypothesis could be tested by designing an experiment 

examining the prolonged exposure to freshwater, as conducted by Gibbons et al. (2017), 

who studied a 3-month acclimation and also measuring protein content and activity (e.g., 

Divino et al., 2016). The results on ECaC, NKA and NHE3 mRNA levels on day one of 
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exposure from the present study are generally on par with Gibbons et al.’s (2017) qPCR 

data in 3 month freshwater acclimated  Threespine Stickleback (Gibbons et al., 2017). 

Gibbons et al. (2017) found that NKA and NHE3 remained upregulated ~2.5-fold and 6-

fold respectively, in both freshwater and marine Threespine Stickleback ecotypes after 3 

months acclimation to freshwater, and I also found upregulation of these transcripts. 

However, Gibbons et al. (2017) only found ECaC to remain upregulated by about 3-fold 

in the freshwater population when assessed by qPCR, with no change in the marine 

Threespine Stickleback population, which was collected from a similar salinity as our 

Blackspotted fish. The present study found an on average 3-fold increase in ECaC mRNA 

in marine collected Blackspotted Stickleback in freshwater on day 1 post-transfer, and a 

2-fold increase on day 4, but these were not significantly upregulated, similar to Gibbons 

et al. (2017) findings in the Threespine marine population. In addition, the present study 

found an around 3-fold increase in NKA mRNA levels on day 1 and 4, respectively. As 

well, there was an average 5-fold increase in NHE3 mRNA levels in freshwater compared 

to 10 ppt on day 1, and a 6-fold average increase on day 4 in Blackspotted Stickleback. 

The fold-increase in mRNA content found by Gibbons et al. (2017) using qPCR was 

around 3-fold for NKA and 6-fold for NHE3, however, it is worth noting that these 

comparisons were made after a 3 month acclimation period. It is interesting to see a 

similar transcriptional reaction to freshwater transfer in the acute exposure used in the 

present study compared to the long-term exposure used by Gibbons et al. (2017). In 

addition, the upregulation found in the RT-qPCR assay by Gibbons et al. (2017) was 

supported by RNA-seq data on the same ion transporters (ECaC, NKA and NHE3). The 

results from the present study indicate that Threespine Stickleback and Blackspotted 
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Stickleback use similar mechanisms to acclimate to freshwater in the regulation of ion 

transporters related to both freshwater and seawater. 

It was also predicted that the marine Blackspotted Stickleback would not 

downregulate genes for ion transporters found in seawater ionocytes (e.g. CFTR and 

NKCC1), in similar fashion as the Threespine Stickleback (Gibbons et al., 2017). 

However, studies in other teleost fish species have found that CFTR and NKCC1 mRNA 

content is decreased to reduce the ion export in freshwater (Hebert et al., 2004; Marshall 

& Singer, 2002). I found that Blackspotted Stickleback could tolerate freshwater, but still 

found no significant differences in the expression of CFTR and NKCC1 in the freshwater 

transfer compared to control conditions at 10 ppt. Similarly, prior studies examining ion 

transporter expression in the gills of Threespine Stickleback transferred from seawater to 

freshwater also found no significant downregulation in the expression of CFTR (Taugbøl 

et al., 2014), and NKCC1 (Gibbons et al., 2017). Therefore, these combined data suggest 

that sticklebacks do not need to transcriptionally downregulate CFTR and NKCC1 to 

survive in freshwater (Gibbons et al., 2017; Taugbøl et al., 2014; current study), which is 

quite different from most other teleosts (Breves et al., 2020; Hiroi et al., 2008; Scott et 

al., 2004). In addition, Divino et al. (2016), observed decrease in NKCC1 protein 

abundance upon freshwater transfer. The lack of downregulation of NKCC1 mRNA 

levels (Gibbons et al., 2017; Taugbøl et al., 2014; current study), but decrease in NKCC1 

protein abundance (Divino et al., 2016) indicate that sticklebacks may use different 

mechanisms to downregulate NKCC1 than other teleost fish (Breves et al., 2020; Hiroi et 

al., 2008; Scott et al., 2004). 

Therefore, it is concluded that the Blackspotted Stickleback employ similar ion 

transporters for freshwater acclimation as other species within the sticklebacks (Gibbons 
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et al., 2017). Further gene expression studies, along with immunohistochemistry assays 

must be conducted to accurately determine the freshwater ionocyte types in Blackspotted 

Stickleback and other Gasterosteidae. In particular, the reason why there is no 

transcriptional downregulation of CFTR and NKCC1a expression in sticklebacks (present 

study; Gibbons et al. 2017; Taugbøl et al., 2014), and the potential post-transcriptional 

regulatory factors influencing seawater ionocyte ion-transporter function, should be 

further examined. For example, protein phosphorylation/de-phosphorylation (e.g., 

Gamba, 2012), protein localization or the role of changes in ionocyte surface area should 

also be examined. 

4.3 Other factors limiting freshwater colonization in Blackspotted Stickleback 

The results from the present study indicate that adult Blackspotted Stickleback can 

acutely tolerate freshwater exposure and possess and can transcriptionally regulate the ion 

transporters commonly found in gill ionocytes related to freshwater acclimation and could 

therefore hypothetically inhabit freshwater. As the underlying mechanisms of freshwater 

acclimation seems to be present in the Blackspotted Stickleback at summer water 

temperatures and photoperiods, the inability to colonize freshwater is likely to be 

primarily due to some other factor or combination of factors. The results of Gibbons et al. 

(2016) suggest that Threespine Stickleback growth, and the expression of NKA and 

NHE3, are reduced at colder (4°C) temperatures in marine populations compared to 

freshwater populations. A combination of colder temperature and low salinity also lead to 

higher mortality in European marine Threespine Stickleback ecotypes than freshwater 

ecotypes (Schaarschmidt et al., 1999), indicating that freshwater ecotypes have evolved 

increased freshwater tolerance in cold temperatures. It is hypothesized that marine 
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populations do not have the full capacity to undergo the necessary physiological 

remodelling required to successfully colonize freshwater when it is cold (Gibbons et al., 

2016). In addition, low temperatures in combination with shorter days have shown 

reduced reproduction ability in Threespine Stickleback (Allen & Wootton, 1982). For the 

purpose of the present study, the assumption is that Blackspotted Stickleback are more 

similar to marine Threespine Stickleback ecotypes than freshwater Threespine ecotypes. 

Thus, I predict that cold winter temperatures in combination with low salinities might 

restrict freshwater colonization in Blackspotted stickleback, as suggested for Threespine 

Stickleback (Gibbons et al. 2016; 2018). 

In addition, Ishikawa et al. (2019) suggested that the Blackspotted Stickleback, as 

well as the Japan Sea Stickleback, cannot cope with the restricted nutrition in freshwater. 

The study found that freshwater populations of the Threespine Stickleback possess extra 

copies of the Fads2 gene compared to some marine populations and the Blackspotted 

Stickleback that appears to provide them with the ability to better digest fatty acids in less 

nutritious food that is in freshwater. Ishikawa et al. (2019) also found that the Fads2 in 

Threespine Stickleback had undergone a transposition, giving it a different chromosomal 

location than the ancestral location of Fads2, suggesting that this relocation of the Fads2 

gene give the Threespine Stickleback the ability to increase the expression of this gene. 

The advantage of increased fatty acid metabolism in Threespine Stickleback seems to 

play a key factor in freshwater colonization (Ishikawa et al., 2019). The seemingly lower 

ability to digest fatty acids in primarily marine Japan Sea Stickleback (and potentially 

Blackspotted Stickleback) could also be the key to the decreased freshwater acclimation 

ability observed in juvenile Blackspotted Stickleback. As well, the increased ability to 

digest fatty acids in the less nutritious food that is in freshwater, could help in the growth 
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of juvenile fish in freshwater (Campeau et al., 1984; Ishikawa et al., 2019). In this short-

term study, our fish were fed mysis shrimp, which are known to have a high fatty acid 

content and may mitigate the negative survival effects of freshwater exposure in Japan 

Sea stickleback (Ishikawa et al., 2019). 

 

5. Conclusion 

The present study found that adult Blackspotted Stickleback and white Threespine 

Stickleback can tolerate an acute freshwater transfer in summer conditions (17-23°C and 

a photoperiod of 16L:8D). The survivorship was lower in white Threespine Stickleback 

compared to Blackspotted Stickleback, potentially because of the highly active breeding 

behaviour of the white Threespine Stickleback (Blouw & Hagen, 1990), but no difference 

between the salinity treatments (10 and 0 ppt) within the species was observed. 

Blackspotted Sticklebacks were observed to upregulate the same ion transporters (i.e., 

NCC2, NKA and NHE3) during freshwater exposure as was found by Gibbons et al. 

(2017) in their study on Threespine Stickleback. Furthermore, the lack of CFTR and 

NKCC1a transcriptional downregulation is not predicted to be the limiting factor for 

freshwater colonization in Blackspotted Stickleback, as the euryhaline Threespine 

Stickleback shows a similar lack of transcriptional downregulation (Gibbons et al. 2017; 

Taugbøl et al., 2014) and instead appears to rely on post-transcriptional mechanisms 

(Divino et al., 2016). Thus, the specific factors limiting freshwater colonization in 

Blackspotted Stickleback require further investigation. 
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Appendix 
 
Appendix A 
 
Table A1. Results from the CFX MaestroÔ Software gene stability test using the 
Reference Gene Selection tool (Bio-rad). Table is including the gene names and the 
number indicate which primer set was used, ubiquitin (uba-40), L13 ribosomal binding 
protein (rpl-20), hypoxanthine phosphoribosyltransferase 1 (HPRT-42), eukaryotic 
elongation factor 1 alpha (eef-37). The evaluation, M value and estimated stability by the 
software, as well as the number of samples used in the test are included.  

Order Gene Name Evaluation Avg M Value Stability 
(Ln(1/AvgM)) 

# Samples 

1 uba-40 Acceptable 0.700005597 0.356666948 47 
2 rpl-20 Acceptable 0.700005597 0.356666948 47 
3 HPRT-42 Acceptable 0.743997502 0.295717602 47 
4 eef-37 Unstable 1.08337952 -0.080085341 47 

 
 

 
Figure A1. The average Cq (quantitative cycle) for reference genes. (A) Average Cq for 
L13A ribosomal binding protein (RPL) during the 4-day exposure. n = 11 at 10 ppt on 
day 1, n = 8 at 0 ppt on day 1, n = 9 at 10 ppt on day 4, n = 10 at 0 ppt on day 4. (B) 
Average Cq for ubiquitin (UBA) during the 4-day exposure. n = 11 at 10 ppt on day 1, n 
= 8 at 0 ppt on day 1, n = 9 at 10 ppt on day 4, n = 10 at 0 ppt on day 4. 
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Figure A2. The average Cq (quantitative cycle) for reference genes including the day 0 
data points. (A) Average Cq for L13A ribosomal binding protein (RPL). A significant 
effect by day was found for day 0 and day 4 at 10 ppt (F = 4.484, p = 0.017, df = 2, Tukey 
a posteriori: p = 0.023). n = 10 at 10 ppt on day 0, n = 11 at 10 ppt on day 1, n = 8 at 0 
ppt on day 1, n = 9 at 10 ppt on day 4, n = 10 at 0 ppt on day 4. (B) Average Cq for 
ubiquitin (UBA). n = 10 at 10 ppt on day 0, n = 11 at 10 ppt on day 1, n = 8 at 0 ppt on 
day 1, n = 9 at 10 ppt on day 4, n = 10 at 0 ppt on day 4. 

 

 
Figure A3. The average Cq (quantitative cycle) for genes included in the gene stability 
test using the CFX MaestroÔ Software Reference Gene Selection tool (Bio-rad). (A) 
Average Cq for hypoxanthine phosphoribosyltransferase 1 (HPRT). A significant effect 
by day was found (F = 4.003, p = 0.026, df = 2, Tukey a posteriori: p = 0.058). (B) 
Average Cq for eukaryotic elongation factor 1 alpha (EEF1a). As the gene stability test 
deemed EEF1a “unstable”, no statistical analyses were made for this gene.    
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