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Abstract 

 

Characterizing the Evolution of a Restoring Salt Marsh Landscape with Low Altitude Aerial 

Imagery and Photogrammetric Techniques 

 

By Samantha Lewis 

 

 

 In Nova Scotia, Canada, managed realignment, a form of nature-based adaptation to the 

effects of climate change, is being used to restore natural salt marsh systems which provide many 

benefits including coastal erosion protection and vital habitat. This study utilized remotely 

piloted aircraft systems equipped with real-time kinematic (RTK) positioning corrections to 

monitor and measure morphodynamic changes at a managed realignment site in the Bay of 

Fundy with resolutions and accuracies not achievable with traditional methods. Sedimentation 

patterns and channel network evolution were analyzed using remote sensing and GIS techniques.  

Results show strong seasonal signals in the morphological evolution of the site, and variations in 

sedimentation patterns and channel characteristics between areas with and without relic 

agricultural features. RTK positioning functionality improved achievable product accuracies and 

increased the magnitude of measurable change in sedimentation analyses, and hyperspatial 

resolutions allowed for the mapping of embryonic channel features. 
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Chapter 1: Introduction 

1.1 Research Context 

Some of the most significant issues society is facing today are the adverse effects of climate 

change. For coastal communities around the world, sea level rise (SLR) is a major threat and 

combined with increased storm surge and storm frequency will contribute to the increasing risks 

of coastal erosion, flooding, and inundation of low-lying landscapes, property and infrastructure 

(IPCC, 2013; Bush et al., 2019). In Nova Scotia, Canada, subsidence, the gradual lowering of an 

area of land, will cause sea level to rise more significantly than in other parts of the country, with 

a current forecasted relative sea level rise increase of 1 m by 2100 (Bush et al., 2019). This, 

combined with the fact that a large percentage of the population resides on or near the coast, 

means that property and infrastructure are particularly and increasingly at risk of damage in 

Nova Scotia. 

One of the more common defenses against SLR globally is the use of earthen barriers called 

dykes. Dykes are a hard defence structure that act as a physical barrier between saline ocean 

water and low-lying areas upland of the structure. Acadian settlers historically constructed dykes 

in Nova Scotia to convert natural salt marsh systems into fertile agricultural land. There are 241 

km of dykes being used as coastal barriers in the province which protect approximately 20,000 

ha of property, agricultural land, and infrastructure (van Proosdij et al., 2013) worth over $300 

million (Kevin Bekkers, 2017 as cited in Matheson, 2020). To continue to provide protection to 

low-lying areas and infrastructure, many of these dykes need to be maintained and/or repaired 

regularly. However, maintenance and repair activities, which may include adding rock armoring, 

topping the dyke to raise its elevation, or widening the dyke, are costly and sometimes physically 

unfeasible (van Proosdij and Page, 2012).  
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A series of approaches called Nature-based Adaptation (NBA) involve the use of vegetation 

and other natural materials to create or restore natural ecosystems and their processes, and 

combat some of the projected effects of climate change such as coastal erosion and storm surge 

(Costanza et al., 1997; Faivre et al., 2017). This research will focus on one specific method of 

NBA called Managed Realignment (MR). MR involves redesigning an existing dyke structure by 

shifting it inland (usually while also reducing its length to decrease costs in future maintenance) 

and reintroducing tidal flow to an area of current agricultural dykeland (French, 2006). The 

reintroduction of tidal flow allows for the potential re-establishment of a salt marsh in front of 

the new dyke (Figure 1.1), otherwise known as a foreshore marsh, which provides protection 

from coastal erosion by means of wave attenuation (Costanza et al., 2008), as well as several 

valuable ecosystem services and anthropogenic benefits, including vital habitat and carbon 

storage. Additionally, salt marshes’ ability to increase surface elevation with rising sea levels 

(Friedrichs & Perry, 2001; Kirwan et al., 2016) may allow for long term protection of coastal 

infrastructure with the increasing effects of climate change. 

Topographical differences between natural salt marshes and managed realignment restoration 

sites, such as the presence of remnant agricultural features, may significantly alter the evolution 

trajectory of such sites (MacDonald et al., 2010). The early monitoring of new marsh 

development in a managed realignment context will allow for a better understanding of these 

differences and aid in our ability to design and implement MR projects for long-term protection 

of coastal infrastructure and other environmental benefits. Salt marsh formation and evolution 

occur at varying spatial (Horne et al., 2013) and temporal (van Proosdij et al., 2006a,b) scales. 

Quantifying landscape changes that accurately model such a dynamic system requires repeat 

surveys with varying resolution and precision, as well as varying technologies and survey 
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methods. Since traditional survey types require human interaction with the environment (e.g., 

footprints) which disrupt and may influence salt marsh evolution, data collection itself can 

negatively impact the measurement of natural processes. Also, traditional methods to quantify 

landscape change require significant time and manual input, which are not appropriate when 

working with a large number of repeat surveys.  

Remote sensing techniques such as the use of Remotely Piloted Aircraft Systems (RPAS), 

otherwise known as Unmanned Aerial Vehicles (UAVs), may offer a unique opportunity for 

monitoring the morphodynamic processes of coastal wetlands while reducing some of these 

issues. Only recent studies have begun to utilize RPAS technology for measuring surface 

elevation change and drainage network initiation and development in salt marsh and mud flat 

environments (Jaud et al., 2016; Kalacska et al., 2017; Dale et al., 2018, 2020; Matheson, 2020; 

Brunetta et al., 2021), allowing surveying at higher spatial resolutions than achievable with 

traditional survey methods. Further research using these technologies, as well as more recent 

advancements such as the integration of Real-Time Kinematic (RTK) positioning systems, may 

greatly increase our capabilities of measuring high resolution phenomenon in complex, sensitive 

environments such as MR sites. This study applies recent advancements in RPAS technology to 

monitor and measure the morphodynamic evolution of a restoring MR site. Elevation models 

derived from RPAS aerial imagery and Structure from Motion (SfM) processing techniques are 

used to examine the spatial and temporal patterns of channel network morphology and 

sedimentation within the study site. Additionally, the application of RPAS with RTK 

functionality for these types of environmental monitoring is assessed, and limitations identified 

to make recommendations for future projects. 
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1.2 Natural Salt Marsh Ecosystems 

Salt marshes are coastal wetland ecosystems that occur within the intertidal zone and are 

regularly inundated by ocean water. They are found in low-energy, temperate zones (Allen and 

Pye, 1992; Adam 2011) and are colonized by halophytic vegetation species that are adapted to 

tolerate inundation by saline water (Pratolongo et al., 2019). Multiple studies have identified a 

decline in salt marsh coverage globally (Zedler and Kercher, 2005; Lotze et al., 2006), and it is 

estimated that up to 87% of global wetlands have been lost since 1700 (Ramsar Convention on 

Wetlands, 2018). Since they provide several valuable ecosystem services including fish habitat 

and support of fisheries (Boesch and Turner, 1984; MacKenzie and Dionne, 2008; Barbier et al., 

2011); carbon sequestration and storage (Mayor and Hicks, 2009; Wollenberg et al., 2018); and 

coastal protection and flood risk reduction via wave attenuation and water storage (Mitsch and 

Gosselink, 2000; Möller et al., 2014), this loss has significant implications on ecosystems, 

industry and the global effects of climate change.  

Salt marshes are sinks for sediment suspended in incoming tidal waters and freshwater 

runoff from uplands (Davidson-Arnott et al., 2002), and can be either dominated by allochtonous 

sediment supply or organically produced material within the marsh, called minerogenic and 

organogenic marshes, respectively (Allen, 2000). Salt marsh vegetation survival is limited by 

inundation frequency and duration (Reed, 1990), and generally salt marsh vegetation does not 

survive below the mean tide level in any given area (McKee and Mendelssohn, 1989). Therefore, 

salt marsh establishment and extent are limited by tidal flat or marsh surface elevation. Two 

aspects of salt marsh morphology are investigated in this research: sediment dynamics and 

drainage network evolution.  
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1.2.1 Sediment Dynamics 

The processes involved in natural salt marsh establishment and evolution have been 

studied for decades and over time researchers have gained an understanding of the complex 

interactions of sediment, hydrology, vegetation, and other variables that drive salt marsh 

morphodynamics (Allen & Pye, 1992; Allen, 2000; Friedrichs, 2001). A graphic representation 

of these variables is shown in Figure 1.1, and highlights the interactions of these variables within 

varying temporal scales. Spatial patterns of sedimentation are a result of complex interactions 

between a variety of factors that can be subdivided within two categories: the availability of 

sediment, and the opportunity for sediment to be deposited (van Proosdij et al., 2006a). More 

specifically, sediment deposition rates and spatial patterns have been related to suspended 

sediment characteristics (Kranck, 1975; Allen and Pye, 1992), suspended sediment concentration 

(Reed et al., 1999; Friedrichs and Perry, 2001; Boyd et al., 2017; Poirier et al., 2017), water 

velocity (Davidson-Arnott et al., 2002; van Proosdij et al., 2006b; Poirier et al., 2017), 

inundation time (Leonard, 1997; French and Spencer, 1993), vegetation presence (Leonard, 

1997; Christiansen et al., 2000; Temmerman et al., 2005; Coulombier et al., 2012) and ice rafting 

(Gordon and Desplanque, 1983; van Proosdij et al., 2006b, Argow et al., 2011). In temperate 

environments, such as the Bay of Fundy, many of these factors are seasonal in nature, causing 

seasonal variation is sedimentation patterns (van Proosdij et al., 2006b; Spencer et al., 2012). 
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Figure 1.1. The variables driving tidal salt marsh establishment and evolution, and their 

corresponding timescales (van Proosdij, 2001). Reproduced with permission from Dr. Danika 

van Proosdij. 

The variables affecting the availability of sediment to a salt marsh are suspended sediment 

concentration, distance of travel from source and wave activity (turbulence in the water 

column and water velocity) (van Proosdij et al., 2006a). These variables not only alter the 

availability of sediment, but also interact with one another in complex ways. Suspended 

sediment is strongly impacted by the sediment source. Sources of allochtonous sediment include 
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discharge from river catchments, eroding coastal cliffs and material from the seafloor (Allen, 

2000). Source material will determine composition and grain size of the suspended sediment, 

which will affect the ability of that sediment to stay suspended in the water column and the 

distance from source it can travel before settling. Larger particles will settle out of the water 

column more quickly, while smaller particles such as clays, will stay in suspension and are more 

readily transported to marsh surfaces (Allen and Pye, 1992). This relationship differs in 

situations where sediment particles aggregate into flocs and settle out of the water column faster 

due to their aggregated size (Kranck, 1975). 

Within a salt marsh, suspended sediment concentrations vary over the tidal cycle, with 

higher concentrations occurring during periods of increased water velocity (Allen, 2000; van 

Proosdij et al, 2006b; Poirier et al., 2017). Suspended sediment concentrations have also been 

shown to decrease over the course of a tidal cycle, from flood to ebb tide, due to settling 

(Davidson-Arnott et al., 2002). Seasonal trends have been identified by examining suspended 

sediment concentrations over larger temporal scales. In the Bay of Fundy, suspended sediment 

concentrations are higher in the winter (Poirier et al., 2017). This seasonality is in part due to 

wave activity. Increases in wave activity and water velocity tend to stir up sediments, increasing 

suspended sediment concentrations in incoming tidal waters (Davidson-Arnott et al., 2002; van 

Proosdij et al., 2006a; Yang et al., 2007). Wave activity increases in the winter due to an increase 

in storm event occurrences and a decrease in the wave attenuating effect of vegetation when die 

back occurs (Tao et al., 2014). 

Sediment accretion patterns within a salt marsh are also governed by the opportunity for 

deposition of material on the marsh surface. The opportunity for deposition is affected by many 

interconnected, spatially and temporally variable controls: inundation time, topography, water 
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flow vectors, velocity and waves, suspended sediment concentration, vegetation and ice (Gordon 

and Desplanque, 1983; Christiansen et al., 2000; Davidson-Arnott et al., 2002; van Proosdij et 

al., 2006a,b). In temperate environments, accretion has been shown to be seasonal, with higher 

rates of accretion occurring over winter (van Proosdij et al., 2006b; Spencer et al., 2012), and 

this seasonality can also be seen in the temporal variations of accretion controls. 

Inundation time is one important component of salt marsh hydrodynamics that is controlled 

by tidal flow and topography. Generally, sediment deposition during a single tidal cycle will 

increase with increased inundation time (Leonard, 1997) as well as water depth, which is a 

function of inundation time (French and Spencer, 1993). However, some studies have shown no 

significant correlation between sediment deposition and inundation time (van Proosdij et al., 

2006b). More variation is introduced in locations where tidal regimes are semidiurnal, such as 

the Bay of Fundy (Davidson-Arnott et al., 2002), and inundation time varies with the changing 

tidal range.  

Water flow speeds and vectors within a salt marsh are controlled by multiple interacting 

variables including topography, stage, wind and waves (Davidson-Arnott et al., 2002). During 

the flood phase of the tidal cycle, velocities are higher, and flow is restricted to the tidal 

channels. Once water levels exceed bankful conditions (water overtops the channel edges), the 

water velocity decreases as it flows over the larger area of the marsh surface. The reverse occurs 

on the ebb tide, when water velocities are low until water levels are restricted to the tidal 

channels and velocities increase once more (Davidson-Arnott et al., 2002; Friedrichs and Perry, 

2001). The general relationship between water velocity and sediment deposition is an increase in 

deposition with a decrease in water velocity. Less turbulence and wave energy in the water 

column allow for settling of suspended sediments and deposition on the marsh surface or within 
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channels (Davidson-Arnott et al., 2002; Friedrichs and Perry, 2001). It has also been found that 

increased wave activity may cause spatial variation in sediment deposition patterns by increasing 

deposition in the upper marsh relative to the lower marsh (van Proosdij et al., 2006b). 

An increase in suspended sediment concentration has been linked to increased sediment 

deposition (Friedrichs and Perry, 2001). However, Poirier et al. (2017) found that in a Bay of 

Fundy marsh system with very high suspended sediment concentrations, there was increased 

deposition within the marsh creek as suspended sediment concentration increased, but not a 

significant increase in deposition on the marsh surface. This indicates that the relationship 

between suspended sediment concentration and deposition may be spatially variable in some 

circumstances. Poirier et al. (2017) hypothesized that this variability was caused by high 

amounts of flocculation resulting in very fast deposition of materials in the creek, therefore 

reducing the availability of material for deposition on the marsh surface. 

The role of vegetation in sediment accretion patterns is generally accepted as vegetation 

presence being a driver of sediment settling and deposition (Allen, 2000; Friedrichs and Perry, 

2001). Vegetation presents two separate opportunities for the deposition of material on the marsh 

surface: physical and chemical. The first opportunity is based on the physical structure of the 

vegetation. Vegetation presence increases friction in the water column, which reduces flow 

velocities within the vegetation canopy and attenuates waves (Christiansen et al., 2000; 

Coulombier et al., 2012). This effect is increased with taller, rigid vegetation, and greater 

biomass/density (Temmerman et al., 2005b; Leonard, 1997; Neumeier and Amos, 2006). As 

discussed earlier, reduced wave action and current velocities allows for greater amounts of 

sediment settling and deposition. Below ground root structures also play a role, by increasing 

bed-shear strength and preventing erosion and resuspension of sediment (Reef et al., 2018). 
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In theory, water velocity reduction by vegetation structures should have a significant 

correlation with sediment deposition. However, multiple field studies have been completed in 

which results did not show a strong relationship between vegetation height, biomass or density 

with sediment deposition or the sediment budget (Reef et al., 2018; Moskalski and Sommerfield, 

2012). In one study in the Bay of Fundy, a measure of vegetation roughness was found to be 

positively correlated with sediment deposition during rough conditions, but this relationship was 

not identifiable in calm conditions (van Proosdij et al., 2006b). It has also been found that in 

some areas of low density or patchy vegetation cover such as in the salt marsh pioneer zone or 

along the marsh edge, vegetation can enhance scour and erosion rates rather than decrease them 

(Temmerman et al., 2007; Feagin et al., 2009; Widdows et al., 2008). These examples illustrate 

the complexity of interactions between controlling variables, and their variability from marsh to 

marsh. The second opportunity for deposition of material by vegetation presence is chemical in 

nature. Some salt marsh vegetation species have adapted to the saline environment by secreting 

salt. The increase in salinity surrounding plant structures may increase sediment flocculation and 

therefore deposition (Jeffries et al., 1977).  

The effect of vegetation on sediment deposition is seasonal. In temperate environments, salt 

marsh vegetation undergoes significant seasonal variation, and has little above ground presence 

during winter due to die back and damage from ice (Watkinson and Davy, 1985; Coulombier et 

al., 2012). The effects of vegetation on current velocities and sediment deposition are highest at 

the end of the growing season when biomass is at its maximum (van Proosdij et al., 2006b; 

Coulombier et al., 2012). Due to this seasonality, when assessing the effect of vegetation on 

sediment deposition, it is necessary to focus on a seasonal or tidal cycle time scale.  
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Despite the expected effect of increased sediment deposition due to vegetation presence in 

the growing season, temperate marshes have been shown to have higher rates of sediment 

accretion over the winter than during vegetated seasons (van Proosdij et al., 2006b; Spencer et 

al., 2012). This trend has been linked to an increase in suspended sediment concentrations over 

the winter (Friedrichs and Perry, 2001), but additionally, winter conditions such as ice can create 

different opportunities for tidal wetland expansion within the marsh system. Sediments and 

vegetation matter can be carried onto the marsh surface during flood tides by ice rafts, which 

provide a significant opportunity for sediment deposition (Gordon and Desplanque, 1983; van 

Proosdij et al., 2006b; Rabinowitz et al., 2022). As ice forms on marsh, mud flat or creek 

surfaces, layers of sediment up to 15cm thick may freeze onto the bottom of the ice (Gordon and 

Desplanque, 1983). During ice break up, blocks of ice with this frozen layer of sediment 

attached, are lifted and transported on incoming tides and then stranded on ebb tides (Gordon 

and Desplanque, 1983). As temperatures increase in the spring, the ice rafts melt, and the 

attached sediment is deposited on the marsh surface. These processes are a form of secondary 

redistribution of sediment in the coastal zone, meaning that sediment is moved from one area of 

the marsh to another (Argow et al., 2011). This is also the case for vegetation. When ice forms 

over vegetated surfaces, there is potential for vegetation to adhere to the ice, allowing for the 

transport of root structures to different areas of the marsh (Dionne, 1989; Rabinowitz et al., 

2022). Although some studies have been completed to assess the importance of ice rafts in the 

sediment budget of specific tidal salt marshes, few have attempted to quantify this input, and the 

variables affecting ice raft formation, distribution on the marsh, and sediment load are not fully 

understood (Argow et al., 2011; Rabinowitz et al., 2022). 
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1.2.2 Drainage Networks 

Drainage networks act as circulatory systems for salt marsh environments, transporting 

water, organic materials, sediment, nutrients, and pollutants in and out of wetlands (Perillo, 

2019). They are very important in salt marsh function, even in coastal environments with 

minimal tidal influence. Channels provide a place for reproduction, refuge, and growth of 

juveniles for coastal and marine species, as well as a method of transport to and from the open 

ocean (Perillo, 2019). Drainage networks are one of the primary features to develop in a coastal 

wetland environment and are often the most dynamic and sensitive to changes in environmental 

characteristics due to their high energy nature (Perillo, 2019). Currently, the factors that 

influence the origin of drainage network features are relatively unknown (Perillo, 2009), 

although there have been many studies to model drainage network initiation (e.g., D’Alpaos et 

al., 2010; Fagherazzi et al., 2012; Vandenbruwaene et al., 2012b; Zhou et al., 2014). 

In the evolution of natural salt marshes, drainage networks are usually inherited from the 

previously existing tidal mud flat (Eisma, 1997). Channels will go through an initial deepening 

and enlarging phase (D’Alpaos et al., 2006) determined by the concentration of sheet flow and 

bed shear stress causing erosion (Whitehouse et al., 2000), and as the salt marsh platform 

continues to increase in elevation as it matures, the channel banks become steeper and the 

channels deeper (D’Alpaos et al., 2005). Vandenbruwaene et al. (2012a) conducted a study that 

observed changes in channel drainage density and channel width over time in a natural salt 

marsh that evolved from a bare tidal flat in the Scheldt estuary in Europe and determined that 

drainage density was heavily influenced by vegetation establishment. The site saw an increase in 

drainage density as pioneer vegetation patches established, with vegetation patches helping to 

route flow and encourage erosion of channels. The opportunity to study salt marsh channel 

initiation and development in an empirical scenario is uncommon, so most data on these 
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processes come from numerical modelling techniques (e.g., D’Alpaos et al., 2005). This research 

therefore will provide empirical insight into early development of embryonic creek systems in an 

MR setting. 

1.3 Managed Realignment and Tidal Wetland Restoration 

NBA methods are being utilized as a method of climate change adaptation against effects 

such as SLR and coastal erosion (Doswald et al., 2014). They are often multi-beneficial, having 

additional positive influences other than climate change adaptation, such as the creation of 

habitat, carbon storage, or recreation (Faivre et al., 2017) and they can have lower costs when 

compared to traditional coastal protection methods such as hard defences (Koch et al., 2009; 

Borsje et al., 2011; Temmerman et al., 2013; Reguero et al., 2018). MR is a type of NBA that 

involves wetland restoration and utilizes the benefits of the restored wetland for the protection of 

the new/realigned infrastructure. A diagram outlining this process is displayed in Figure 1.2 

 

Figure 1.2. Managed realignment process, which includes: a) an existing agricultural dyke with 

minimal foreshore marsh; b) construction of a new dyke that has been pulled back; c) breaching 

of the original dyke to reintroduce tidal flow to the restoration area; d) growth of a restored salt 

marsh that will provide coastal protection to the new dyke as well as numerous ecological 

benefits (TransCoastal Adaptations: Centre for Nature-Based Solutions, 2019). Reproduced with 

permission from Dr. Danika van Proosdij. 

a) b) 

c) d) 
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1.3.1 Sediment Dynamics in Restoration Sites 

Although there are multiple salt marsh restoration projects currently taking place in 

Eastern Canada (Bowron et al., 2012; Wollenberg et al., 2018), the geomorphological and 

biological processes associated with MR in macrotidal environments with extremely high 

suspended sediment concentrations such as the Bay of Fundy, and particularly                                                 

the transformation of former agricultural landscapes to tidal salt marshes, have been infrequently 

documented in peer-reviewed literature. While research has recently been conducted on the 

evolution of MR sites (Dale et al., 2018; Brunetta et al., 2019; Virgin et al., 2020), the between 

site variation in environmental characteristics means that extensive research in a variety of 

different environments is required to better understand the complex processes and evolutionary 

trajectories of the tidal wetland landscape. It can be assumed that patterns of sedimentation in 

MR and restoration sites will be influenced by the complex interaction of multiple variables, 

similar to processes in natural salt marshes, but that the unique topographical and biological 

characteristics due to relic agricultural land use, such as the presence of drainage ditches, dales 

and crowns, and compaction will affect the interactions of such variables and resulting 

sedimentation patterns.  

Since salt marsh vegetation establishment is dependent on tidal flat surface elevation, 

research on MR restoration sites often investigates the rate of sediment deposition and amount of 

time required for a tidal flat surface to reach an elevation that is condusive to vegetation 

establishment and survival. At a microtidal MR site in the Netherlands, Brunetta et al. (2019) 

measured sedimentation rates on a newly created tidal flat to be 6-7 cm∙yr-1 and estimated that it 

would be a further 8-10 years before salt marsh vegetation would establish. Both the starting 

elevation of the surface relative to the tidal frame, and the rate of sedimentation were controls on 

this time estimate. In the Bay of Fundy Canada, the Aulac MR project had a mean sediment 
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deposition of 18.3 ± 3.8 cm in the eastern portion of the site in the first year, and colonization of 

Sporobolis alterniflorus (previously Spartina alterniflora) within 2-5 years (Virgin et al., 2020). 

Sediment deposition values at that restoration site were higher than in a nearby reference salt 

marsh which had higher starting surface elevations than the restoration site (Virgin et al., 2020), 

highlighting a significant difference between sedimentation patterns in MR sites compared to 

natual sites. However, Vandenbruwaene et al. (2011) found that sedimentation patterns in high 

marsh areas of a restoration site with a controlled reduced tide were similar to those in high 

marsh areas of a natural marsh reference site. Vandenbruwaene et al. (2011) determined that the 

most significant vairable affecting sedimentation was mean water depth. 

In addition to sedimentation patterns, sediment characteristics in MR and resotration sites 

have also been examined. A study by Kadiri et al. (2011) compared sediment characteristics in a 

restored salt marsh and mud flat to those in a natural reference site, and found that while 

sediments in the restored and natural mud flats had similar characteristics, there were differences 

in sediment characteristics of the natural marsh and restored marsh. Other morphological 

characteristics can vary bewteen restoration sites and natural sites, such as the rate of foreshore 

progradation. An extreme example was found by Friess et al. (2012), when they measured 

progradation (seward expansion) of a foreshore marsh prior to and post MR, which increased 

from 3.8 m∙yr-1 prior, to 21.3 m‧y-1 post restoration. These variations in sedimentation, sediment 

characteristics and morphology between natural and restored salt marshes should also lead to 

variations in the evolution and development of tidal channel networks (drainage networks) in a 

restoration setting. 
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1.3.2 Drainage Networks in Restoration Sites 

Studies have shown that drainage networks in MR/restoration sites tend to vary in 

topographic parameters when compared to natural salt marshes (Vandenbruwaene et al., 2012b; 

Lawrence et al., 2018). A study in the Scheldt estuary in Europe by Vandenbruwaene et al. 

(2012b) showed that newly formed channels in a 4-year post constructed marsh had lower 

drainage densities and cross-sectional areas than a nearby natural marsh. Similarly, Lawrence et 

al. (2018) found that in multiple MR sites in the UK there were fewer creeks and the sites were 

topographically more similar to coastal agricultural sites than natural marshes. The MR sites in 

this study also had less vertical surface variation and a higher potential for water accumulation 

than natural sites. A study by MacDonald et al. (2010) in the Bay of Fundy, Canada, found that 

salt marshes with a history of agricultural use (storm breached more than 50 years prior to the 

study) had drainage systems that integrated agricultural drainage ditches and were generally less 

sinuous than salt marshes with no agricultural history. However, these sites had a comparable 

drainage densities to the reference saltmarshes with no agricultural history, which may indicate 

that drainage networks in restored salt marshes may reach comparable densities to natural 

marshes over a sufficient period of time (in this case, > 50 years), and that other studies show a 

disparity between drainage densities in restored and natural marshes because the studies were 

conducted relatively early in the restoration trajectory.  

Fewer studies exist that focus on embryonic channel development in salt marsh restoration 

sites, possibly due to the difficulties involved in measuring and monitoring embryonic channels 

using traditional methods. It has been suggested that tidal channel development in these sites is 

related to the antecedent landscape history and the presence of features such as drainage ditches 

and plough lines (French and Stoddart, 1992), which may be incorporated into the developing 

drainage network and maintained for long time periods or permanently (e.g., Bowron et al., 
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2011; MacDonald et al., 2010). Additionally, sub terranean features of the pre-existing landscape 

may influence channel development, as proposed by Dale et al. (2018) who utilized RPAS and 

SfM to monitor embryonic channel evolution at an MR site in the UK and found that the primary 

creek formation mechanism was the collapse of sub-surface piping. This thesis aims to increase 

the knowledge base of embryonic channel evolution in MR scenarios. 

1.4 Applications of Remotely Piloted Aircraft Systems and Structure from Motion 

In recent years, RPAS technology has become more affordable and accessible to the general 

public, with advancements in flight control and sensor technology allowing for detailed and 

accurate scientific data collection (Hugenholtz et al., 2012). They offer advantages over other 

remote sensing imagery and elevation data capturing techniques (manned aircraft surveys, 

satellites and lidar) such as frequent data collection, high spatial resolution and affordability 

(Klemas, 2015; Ventura et al., 2017). Consumer-grade RPAS are most often equipped with 

adequate geolocation technology for manual control of the aircraft and maintaining correct 

positioning and heading during automated flight plans. Images of the ground surface collected 

during these flights are processed via SfM, an algorithmic process in which matching points 

between overlapping photographs are identified and utilized to determine the 3D geometry of 

features/landscapes. From this geometry, orthomosaics (merged imagery), 3D point clouds and 

Digital Surface Models (DSMs) are produced. Ground Control Points (GCPs) are used to 

georeference these products (Eltner et al., 2016), and a well distributed GCP network with at 

least 4 GCPs has been shown to result in higher horizontal and vertical accuracy of SfM products 

(Wolf et al., 2000; Tonkin and Midgley, 2016; Raczynski, 2017). 

Recent advancements in RPAS technology have introduced survey-grade geolocation 

capabilities. New RPAS models have been outfitted with differential GNSS (dGNSS) equipment 
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(RTK) to significantly increase the accuracy of geolocation data during RPAS surveys. This 

precise positioning information can be integrated into the photogrammetric process, allowing for 

higher accuracy in photogrammetric products, and a potential reduction in the number of GCPs 

required during surveys (Taddia et al., 2019). Reducing GCPs in a salt marsh environment is 

highly advantageous. Firstly, when working in a tidal environment, the site is only accessible and 

not flooded for certain periods of time. Surveys must be completed within a tide-window to 

ensure full collection of data before inundation, and full retrieval of deployed equipment such as 

GCPs. RPAS surveys allow for the collection of data in otherwise inaccessible environments 

(Casella et al., 2017). Secondly, salt marsh evolution and ecomorphodynamics can be influenced 

by human interactions, such as footprints in marsh sediments (Kalacska, et al., 2017). By 

reducing the amount of travelling through the site required (by deploying fewer GCPs), natural 

process will remain less altered. 

Since dGNSS technology on RPAS is fairly new, there have been few studies to assess 

accuracy improvements and the capacity for GCP reduction. One such study by Taddia et al. 

(2019) determined that if using a DJI Phantom 4 RTK RPAS, GCPs could be reduced to one 

single deployed target per survey, while retaining product accuracy at comparable levels to a full 

set of well distributed GCPs. However, there has been evidence to the contrary that a full 

deployment of GCPs showed significantly higher accuracy regardless of dGNSS integration 

(Forlani et al., 2018). This discrepancy in results may be due to variations in equipment 

(different RPAS in each study), as well as survey landscape. It is clear that more studies should 

be completed to determine the capabilities of this new technology in geomorphological analyses. 

Assessing the accuracy of SfM-derived products can be conducted using validation data and 

is generally completed as either point to raster (point validation data compared to raster 
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products), raster to raster (raster validation data compared to raster products) or point to point 

(point validation data compared to point products) (Carrivick et al., 2016). The most commonly 

used method is point to raster, specifically the calculation of a Root Mean Square Error (RMSEz) 

from the differences between point validation elevation data and SfM-derived surfaces (Tsutsui 

et al., 2007; Carrivick et al., 2016; Bui et al., 2018). This method is problematic however, as it 

provides one error estimation value for an entire DSM and assumes that errors in SfM-derived 

surfaces are random (pairwise uncorrelated). It is known that errors in SfM DSMs are actually 

higher in areas of high surface homogeneity (mud, shadows, water) (Eltner et al., 2016) and high 

vertical relief and are therefore spatially autocorrelated and non-random (Jaud et al., 2016). 

Applying RPAS technologies and SfM in tidal areas such as salt marshes and coastal restoration 

sites also poses an environmental challenge, as the presence of water can cause issues with point 

matching in the photogrammetric process and increase noise in data products (Jaud et al., 2016). 

Multiple recent studies have begun to assess the applicability of RPAS as a monitoring tool 

in coastal systems. Kalacska et al. (2017) used a small RPAS to measure topography in a salt 

marsh site and determined that RPAS elevation models were able to detect finer scale 

topographic details and features such as small channels at a higher resolution compared to aerial 

lidar. Zhu et al. (2019) utilized repeat RPAS surveys to monitor the spatial and temporal 

evolution of Sporobolis alterniflorus colonies in Chinese coastal wetlands. MR sites have also 

been studied using RPAS technologies, with a study by Dale et al. (2018) looking at embryonic 

creek systems, and studies by Brunetta et al. (2019) and Dale et al. (2020) looking at surface 

elevation change over time. Dale et al. (2018) determined that the agreement between differential 

GPS validation data and RPAS DSMs was suitable, and that RPAS are an appropriate tool for 

studying embryonic creek development at resolutions not achievable with traditional methods.  
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1.5 DEMs of Difference 

The utilization of multitemporal DEMs for erosion and deposition estimates is a common 

technique as it provides benefits over traditional, interpolated point-based surveys, including 

reduction of error (Cavalli et al., 2017). The process involves subtracting two DEMs of the same 

area, collected at different times, to calculate surface elevation change between the two data 

collection dates and results in a DEM of Difference (DoD) raster (Milan et al., 2011). While 

commonly accepted as more accurate than traditional techniques, several studies have stressed 

that an assessment of DEM uncertainty and error propagation is required to quantify the 

reliability of the output DoD (Lane et al., 2003; Wheaton et al., 2010). Additionally, DoDs may 

be used to calculate volumetric change between surfaces (Lane et al., 2003; Tsutsui et al., 2007; 

Haas et al., 2016; Brunetta et al., 2019; Matheson, 2020; Vecchi et al., 2021), and additional 

volumetric uncertainty estimations may be conducted (Taylor, 1997). This includes the 

calculation of an absolute volumetric uncertainty of a particular DoD using the individual 

RMSEz values from input DEMs. Lane et al. (2003) proposed a formula for absolute volumetric 

uncertainty that adds the DoD errors in quadrature and has been used in recent geomorphological 

studies with RPAS and SfM techniques (Haas et al., 2016; Xiang et al., 2018). This technique, 

however, was developed for older elevation model creation methods such as total station and 

dGNSS surveys in which errors are randomly distributed in the data. Since errors in SfM 

surfaces are higher in areas of high vertical relief, homogeneity, and shadows, they are spatially 

correlated and not random in nature (Jaud et al., 2016). Therefore, the Lane et al. (2003) equation 

may not be appropriate for SfM surfaces and is expected to be an underestimate of volumetric 

uncertainty (Matheson, 2020). A more appropriate volumetric uncertainty equation for SfM 

surfaces was proposed by Taylor (1997), which assumes that errors are not pairwise 

uncorrelated. 
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A commonly used approach for quantifying significant change in a DoD is the application of 

a Level of Detection (LoD), which is based on the accuracy of input DEMs (Wheaton et al, 

2010; Hugenholtz et al, 2013). The application of an LoD is a method that helps avoid 

propagating error in volumetric change calculations by applying a high level of scrutiny to DoD 

values, and only incorporating values of significant change (Hugenholtz et al., 2016; Cavalli et 

al., 2017). LoDs have recently been applied to RPAS and SfM datasets to determine volumetric 

change a variety of environments including an iron ore mine (Haas et al., 2016), a gravel 

riverbed (Lane et al., 2003), a salt marsh restoration site (Brunetta et al., 2021), and in borrow 

pits1 in the Bay of Fundy, Canada (Matheson, 2020). Previous studies in salt marsh 

environments, including Matheson (2020) and Brunetta et al. (2021), have used RPAS with 

consumer-grade positioning systems, and resulting RMSEz values ranged between 3.1-6 cm 

(Brunetta et al., 2021) and 4.1-15.6cm (Matheson, 2020). It is expected that utilizing an RPAS 

equipped with survey-grade positioning will decrease the RMSEz of SfM elevation models, and 

therefore reduce the LoD which will then reduce amount of excluded data from volumetric 

calculations. 

1.6 Purpose and Objectives 

The overarching objective of this research is to utilize new advancements in RPAS 

technology to measure the spatial and temporal patterns of the morphological evolution of a 

restoring salt marsh landscape. Specifically, this research aims to delineate developing drainage 

networks and calculate surface elevation and volumetric change within the study site, and by 

incorporating multi-temporal datasets, identify patterns in these measurements over time. By 

                                                 
1 Also known as “clay pits”, borrow pits are elongated pits, often parallel to the dyke, that are used to pull materials 

for dyke construction (Karle and Bartholomä, 2008). 
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conducting these analyses, this research will contribute to the current scientific knowledgebase 

of the evolution trajectory of restoring salt marsh landscapes.  It will provide additional insights 

into the influence of high suspended sediment concentrations, hyper tidal regime, and  

antecedent landscape history of agricultural use. Additionally, this research aims to determine the 

applicability and limitations of RTK-enabled RPAS and SfM techniques for these types of 

environmental monitoring, and to develop repeatable methodologies for future research. These 

objectives will be addressed by investigating the following research questions: 

1) What are the characteristics of the developing channel networks within the site, and how 

do they change throughout the study period? 

2) What are the spatial and temporal patterns of surface elevation and volumetric change 

within the study site, and are these patterns seasonal in nature? 

3) Is there a correlation between surface elevation change and starting elevation or 

proximity to channel? 

4) Does the antecedent landscape history influence sedimentation and channel evolution 

patterns? Do sedimentation and channel evolution patterns vary between the borrow pit 

and other areas of the site? 

5) Are RTK RPAS and SfM technologies appropriate for measuring surface 

elevation/volumetric change as well as delineating channels at a hyperspatial scale in a 

recently restored MR site? What are the limitations of these techniques? 
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Chapter 2: Study Site 

This research was conducted at the Converse dyke realignment and salt marsh restoration 

site, located within the Cumberland Basin in the Upper Bay of Fundy, Canada. The Cumberland 

Basin Estuary covers 118 km2 and approximately 2/3 of this area is occupied by salt marshes and 

mud flats (van Proosdij et al., 2006a) (Figure 2.1). Salt marshes in this region are exposed to 

semi-diurnal macro-tidal conditions, with a tidal range of 12-14 m (Davidson-Arnott et al., 

2002), seasonally variable, high suspended sediment concentrations ranging from 0.05 g∙l-1 to 4.0 

g‧l-1 (Amos et al., 1991), and temperate weather conditions, with ice and snow present for at least 

3 months of the year (van Proosdij et al., 2006b). Concentrations within tidal rivers of the Upper 

Bay can exceed 70 g‧l-1 near the turbidity maximum and are dominated by fluid mud (Purcell, 

2021). Salt marshes in the Cumberland basin are minerogenic, with surface elevation increases 

resulting primarily through sediment deposition rather than below ground biomass accumulation. 

Suspended sediments within the basin range from fine to coarse silt (van Proosdij et al., 1999). 

The study site runs along the eastern side of the mouth of the Missaguash River, which is one 

of multiple large tidal rivers that run through the greater Tantramar marsh system and acts as the 

Nova Scotia and New Brunswick border. The original dyke protecting this marshland was 

experiencing extensive erosion, so the site was chosen for an MR and restoration project 

(Bowron et al., 2021) part of the larger Making Room for Wetlands2 initiative, funded by the 

Department of Fisheries and Oceans Canada’s Coastal Restoration Fund (CRF). This project 

involved the removal of approximately 420 m length of eroding dyke and backfilling the 

removed materials into the drainage ditch inland of the original dyke to a surface elevation of 

~5.9 m CGVD2013, to bring the surface to the elevation of the natural foreshore marsh. 

                                                 
2 https://www.transcoastaladaptations.com/making-room-for-wetlands 
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Additionally, 150 m of new dyke was constructed to a minimum elevation of ~7.2 m CGVD2013 

using materials from the old dyke where possible and supplementing materials from adjacent 

upland areas. This included the creation of a drainage outlet (referred to as the main channel 

mouth) connecting the inner ditch to the main river channel, decommissioning the existing 

aboiteau, and the creation of a borrow pit in front of the new dyke (Figure 2.2) from which 

materials were excavated and used in construction of the new dyke.  

 

Figure 2.1. Cumberland Basin and surrounding area (Bowron et al., 2021). Reproduced with 

permission from Tony Bowron. 
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Figure 2.2. Pre-construction (July 2018) and post-construction (August 2019) configurations at 

the Converse restoration site. 

To act as an additional upland tidal barrier, the Fort Lawrence Road was shifted slightly and 

upgraded to a minimum elevation of ~7.2 m CGVD2013 (Bowron et al., 2021). These activities 

were completed by December 21, 2018, when the final breach and first tidal flow into the site 

occurred. Total restored area for this site was 15.4 ha (Bowron et al., 2021). As part of the 

restoration project’s ongoing monitoring program, geospatial data on hydrology, sediments, and 

vegetation have been collected at the Converse restoration site since 2017 and include pre-

restoration baseline conditions. 

Topography on the site is strongly influenced by its antecedent landscape history. Relic 

agricultural ditches cover most of the site, excluding the borrow pit where sediment was 

excavated and the remaining surface was flattened and graded (Figure 2.3), as well as a 

freshwater stream area in the southeastern corner of the site. There are also some remnants of 
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natural salt marsh channels that pre-date the site’s agricultural history located south of the 

borrow pit (northeast section of the site). Hydrological flow onto the site is restricted by the main 

channel mouth on most high tides, which can be visualized in the flood map displayed in Figure 

2.4. Velocities through the channel mouth area are high and can reach 0.6 m‧s-1 during spring 

tide conditions (Bowron et al., 2021). Larger spring tides allow for overmarsh flow into the site 

in areas where the dyke was levelled/backfilled at peak water levels (Figure 2.4). Maximum 

recorded water level for the 2020 season was 7.1 m CGVD2013 as recorded with a Hobo Level 

Logger within the Missiguash River. Recorded water levels as well as precipitation for the same 

period, are shown in Figure 2.5. Ice formed within the Cobequid Bay and Missiguash River 

during the winter are carried into the site via the main channel mouth during spring tides and are 

deposited (Figure 2.6), potentially carrying in sediment loads from elsewhere in the system 

(Argow et al., 2011). 

 

Figure 2.3. Converse restoration site borrow pit excavation prior to site breach. Imagery 

collected with a DJI Phantom 3 RPAS on September 24, 2018. 
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Figure 2.4. Flood map for Converse restoration site, from 2020 river logger flood statistics 

(Bowron et al., 2021). Reproduced with permission from Tony Bowron. 

 

Figure 2.5. Water levels in the Converse River and restoration site with precipitation from 

Nappan Auto, NS Climate Data Station (Bowron et al., 2021). Reproduced with permission from 

Tony Bowron. 
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Figure 2.6. Ice blocks within the Converse restoration site in February 2020. 

Measurements of surface elevation change and sediment accretion at the study site were 

collected from 2018-2020 as part of the project monitoring program. Results showed that both 

sediment accretion and subsurface processes were contributing to surface elevation change 

(Bowron et al., 2020). Sediment accretion between 2018-2019, measured using marker horizons, 

ranged from 0.02-7.82 cm (mean of 2.48 cm ± 2.0 cm), and generally decreased with increasing 

elevation (Bowron et al., 2020). Accretion values confirm that sediments are being imported to 

the restoration site surface (Bowron et al., 2020). Sediment characteristics measured between 

August and November 2020, showed that the mean grain size of marsh surface sediments ranged 

from 5 µm to 18 µm and these sediments were classified as fine to coarse silt. Suspended 

sediment concentrations measured at the site in the 2020 field season during spring tide 

conditions showed seasonal variability, with concentrations ranging from 80.0-857.6 mg‧l-1 in 

August and 289.0-2062.5 mg‧l-1 in November (Figure 2.7). Concentrations varied over the high 

tide collection period in both collections, but were generally higher in November than August, 

and tide height was determined as the significant predictor variable for these results (Elliott, 

2022).  
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Figure 2.7. Suspended sediment concentrations measured at the Converse restoration site during 

the 2020 field season with an ISCO water sampler. Measurements were conducted around 

multiple spring high tides (Elliott, 2022) Reproduced with permission from Megan Elliott. 
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Chapter 3: Methods 

Spatial and temporal patterns of channel network evolution and sedimentation at the 

Converse restoration site were determined using multi-temporal surveys with an RPAS. Imagery 

was photogrammetrically processed using SfM software to produce orthomosaics and DSMs for 

further analyses. GIS software was used to create models of surface elevation change between 

surveys, calculate volumetric change in areas of interest, delineate and characterize channel 

networks, and examine change in those networks over time. Additional analyses were conducted 

with R to determine correlation between surface elevation change, elevation, and proximity to 

channel networks. Results were also examined to determine the applicability of RTK-enabled 

RPAS technologies for measuring and monitoring the morphological evolution of MR sites at 

high spatial scales. Detailed methods are described in the following sections. 

3.1 Data Collection 

Low altitude RPAS surveys were conducted with a DJI Phantom 4 RTK quadcopter (Figure 

3.1a). This aircraft was chosen because it is equipped with RTK GNSS capabilities, providing 

survey-grade geolocation data for collected imagery. Increased image positioning accuracy from 

the RTK theoretically increases accuracy in photogrammetric processing and resulting data 

products and has been shown to reduce the required number of GCPs which are required for data 

georeferencing (Taddia et al., 2019). The aircraft system included a controller for piloting with 

built-in flight planning software and a heads-up display with flight details and image 

transmission from the aircraft. 

Aerial imagery was collected between November 2019 and May 2021, and details on all 

collections are listed in Table 3.1. Required conditions for flight safety and image quality 

included low wind (less than 36 km/h at flight altitude) (DJI, 2020), no precipitation, and 
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sufficient daylight levels. For planning purposes, these conditions were assessed prior to field 

deployments using UAV Forecast (https://www.uavforecast.com/) and SpotWX 

(https://spotwx.com/) web applications. Tidal conditions also limited flight windows, with all 

flights being conducted around low tide to maximise the amount of exposed sediment and 

minimize the amount of water within the survey area. Water reduces visibility (and therefore 

measurement) of sediment surfaces and increases noise and error in SfM-derived elevation 

models by causing improper point matching during the photogrammetric process (Jaud et al., 

2016). 

Two separate flights were conducted during each survey. The first was flown at an altitude 

of 120 m Above Ground Level (AGL), the regulated maximum altitude for RPAS flights in 

Canada (400’, 122 m) without a Special Flight Operations Certificate (Transport Canada, 2019), 

to allow for full coverage of the study site (Figure 3.2) in a timely manner. For this flight, the 

camera was positioned at a nadir angle, meaning that its line of site was perpendicular to the 

ground surface, or pointing straight down, which is the most commonly used and preferred 

method in environmental mapping (Griffiths et al., 2019). To examine a few key areas of interest 

within the study site in greater resolution and detail, the second flight was flown at a reduced 

altitude of 65 m, which resulted in an increased Ground Sample Distance (GSD), and covered a 

smaller target area of the site that included the borrow pit, channel mouth, and the channel that 

connects both features (Figure 3.2). A reduced flight altitude has been shown to increase data 

accuracy (Raczynski, 2017), and in this study, may improve our ability to measure smaller 

changes in areas of interest. Additionally, this flight was conducted with an oblique camera angle 

of 10˚ from nadir. The oblique camera angle may allow for vertical structures such as channel 
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banks to be picked up more accurately in the imagery compared to a nadir camera angle and has 

been shown to increase final product accuracy in SfM processing (Taddia et al., 2019). 

Each flight was planned with DJI flight planning software (on the DJI Phantom 4 RTK flight 

controller) and the same plan was used for all flights of each type when possible (in some 

instances, settings were modified to account for varying collection conditions). Both flight plans 

had an image side overlap of 60%, and front overlap of 80%, and images were collected based 

on time intervals (calculated automatically by the flight software using aircraft speed to ensure 

consistent image overlap throughout the flight). Due to aircraft malfunction during some 

collections, images were not collected by the aircraft (image dropping) in small sections of the 

flight plans. To account for this missing data, the aircraft was manually flown in these areas and 

images were collected by the pilot. The RPAS was connected to SmartNet NS via a cellular 

network to provide the RTK survey-grade positioning for each collected image. 

 

Figure 3.1. a) DJI Phantom 4 RTK taking off for an aerial survey at the Converse restoration 

site and pilot. b) Collection of a GCP position with a Leica GS14 GNSS with RTK corrections. 

Both activities were conducted at the Converse restoration site on November 8, 2020. 

a) b) 
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Table 3.1. Flight plan and environmental conditions for all completed aerial surveys of the 

Converse restoration site.  

Date Coverage 
Camera 

angle (˚) 

Altitude 

(m) 

Start 

time 

End 

time 

# Photos 

collected 

Cloud 

cover 

Max ground 

windspeed (km/h) 

2019/11/24 
Full site -90 120 15:10 15:38 357 

1/8 7.0 
Target area -80 65 14:32 15:07 653 

2020/06/01 
Full site -90 120 13:53 14:10 278 

6/8 12.8 
Target area -80 65 14:20 14:55 654 

2020/07/09 
Full site -90 120 10:25 10:43 278 

6/8 8.0 
Target area -80 65 10:54 11:28 657 

2020/08/21 
Full site -90 120 08:46 9:03 279 

7/8 5.6 
Target area -80 65 09:06 9:51 686 

2020/10/05 
Full site -90 120 10:19 10:35 279 

7/8 7.0 
Target area -80 65 10:38 11:15 694 

2020/11/08 
Full site -90 120 11:51 12:08 278 

8/8 9.2 
Target area -80 65 12:12 12:51 664 

2021/05/04 
Full site -90 120 13:10 13:31 278 

6/8 2.3 
Target area -80 65 13:35 14:15 684 

 

 

Figure 3.2. Approximate coverage of each flight type, full site (blue polygon) and target area 

(red polygon) for RPAS aerial surveys of the Converse restoration site. Background imagery 

collected August 21, 2020 with a DJI Phantom 4 RTK RPAS. 
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A total of 10 GCPs were deployed throughout the study site prior to each survey with a 

configuration based on recommendations in the literature (James and Robson, 2012; Tonkin and 

Midgley, 2016), and their locations were measured with a Leica GS14 RTK GNSS unit (see 

Figure 3.3 for approximate GCP deployment locations, and Figure 3.1b for an image of GCP 

position measurement). GCPs were deployed in approximately the same locations for each flight 

but varied slightly between deployments. These photo-identifiable targets were used to 

georeference the data products during photogrammetric processing (Eltner et al., 2016). dGNSS 

points were also collected with the Leica unit on areas of bare ground throughout the study site 

during survey deployments, to use as vertical validation for elevation data products. Point 

locations varied between surveys depending on accessible bare ground. 

 

Figure 3.3. Approximate GCP deployment locations at the Converse restoration site for RPAS 

aerial surveys. GCP locations varied slightly between deployments. Background imagery 

collected August 21, 2020 with a DJI Phantom 4 RTK RPAS. 
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3.2 Data Analysis 

3.2.1 Photogrammetric Processing 

Photogrammetric processing of aerial imagery was conducted with Agisoft Metashape® 

(Agisoft LLC, Russia). This software is the most commonly used for research purposes (Eltner et 

al., 2016) and visual comparisons have shown that it can produce more detailed elevation models 

compared to the other available processing software for this research, Pix4D Mapper (Figure 

3.4). A study by Sona et al., (2014) determined that Agisoft Photoscan (software name at time of 

publication) produced higher quality photogrammetric products than competing software such as 

Erdas-LPS, EyeDEA and Pix4D. Highest resolution and accuracy settings within Agisoft 

Metashape® were used for all steps of processing to produce the highest quality/resolution data 

products possible (Agisoft LLC, 2019). Input imagery was assessed using the “Estimate Image 

Quality” tool in Agisoft Metashape® prior to processing. This tool estimates an image quality 

value between 0 and 1 for each image, with lower values corresponding to lower quality. Photos 

that were identified as having the lowest quality values were visually assessed for quality issues 

such as blurring from aircraft rotation or movement, and problematic images were removed prior 

to processing. 

A detailed description of Agisoft Metashape®’s tools and processing steps can be found in 

their user manual (Agisoft LLC, 2019). A general overview of the remaining processing steps, 

after adding images and assessing quality, used in this research is as follows (with non-default 

settings listed): 

1) Convert image coordinate system to NAD83(CSRS)/UTM Zone 20N + CGVD2013 

height 

2) Align Photos (Accuracy: Highest) 
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3) Add GCPs, and manually shift their point locations to match target centers in the 

imagery 

4) Optimize Cameras 

5) Build Dense Cloud (Quality: Ultra High, Depth Filtering: Mild) 

6) Build DEM (Source data: Dense cloud) 

7) Build Orthomosaic (Surface: DEM) 

It is important to note that although Agisoft Metshape® references the elevation model as a 

DEM, since all points from the dense point cloud, including those from vegetation canopy, were 

used in creating the elevation model, the output product is actually a DSM. Also, georeferencing 

of the data takes place within steps 2-4, using both RTK corrected image positions (initial photo 

alignment) and GCP positions (camera optimization) for high quality georeferenced data outputs 

(Eltner et al., 2016). Following the above steps, both the DSM and orthomosaic for each dataset 

were exported as TIF files. Data resolution for each file was rounded up to the nearest 5 mm for 

export. Resulting DSMs were then assessed for accuracy using their respective collected vertical 

validation points by calculating the vertical offset between validation points and elevation 

models, and then summarizing those offsets with simple statistics (minimum, maximum, mean 

absolute error, standard deviation and RMSEz). 

 

Figure 3.4. a) Imagery, b) hillshade elevation model created by Pix4D Mapper, and c) hillshade 

elevation model created by Agisoft MetaShape of the Converse restoration site borrow pit. 

Default settings were used in both SfM processing workflows. 

a) b) c) 
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3.2.2 Channel Delineation 

Channels were delineated using a semi-automated method that was scripted using Python 

scripting language and ESRI Arcpy tools. The script can be run within a python IDE program, or 

from a Command Line on a computer equipped with the relevant software and licenses (ESRI 

ArcMap or ArcGIS Pro, Spatial Analyst extension, Python 2.7.16), and processes one dataset at a 

time. The delineation process uses ArcMap’s Hydrology toolset, which is commonly used for 

hydrological analysis of landscapes (Vandenbruwaene et al., 2012; Li et al., 2019). A flow chart 

of the script’s steps is shown in Figure 3.5. 

Output DSMs from Agisoft Metashape contain erroneous data around their edges caused 

by an extrapolation of data beyond the point cloud (edge effects). These areas do not contain 

valid elevation data and therefore must be removed prior to further processing. An edge clip 

polygon was manually created by assessing the extent of edge artifacts on all DSMs of both 

coverages (full site and target area) and determining the minimum extent of clean data. This 

resulted in two polygons, one for full site datasets and one for target area datasets that would be 

used to remove erroneous edge artifacts. The full site polygon was further clipped along the 

centerline of the Missiguash River to remove areas that were not of interest and to reduce 

processing time in later steps. The first step in the processing script was to clip the input DSM to 

its corresponding edge clip polygon using the Clip Raster tool. The output from this tool was a 

“clean” DSM that no longer contained edge artifacts. Further clipping was completed in the next 

step using an input elevation value. Since only areas within a tidal flooding extent were relevant 

for channel delineation, a maximum flood extent value of 6.959 m CGVD2013 was derived from 

Hobo Level Logger data collected within Converse restoration site over the 2019 and 2020 field 

seasons. This value was the input for a Conditional statement that clipped the input DSM to all 

areas with an elevation below the maximum flood extent. 



   

 

38 

 

 

Figure 3.5. Channel delineation script steps. 
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After preparing the DSM, tools from the hydrology toolbox were used to begin channel 

delineation. First, the Fill tool was used to remove sinks in the elevation data that would cause 

processing failures in future steps. The Flow Direction tool was then run with the clean, filled 

DSM as an input, to create a raster output of flow direction following the steepest gradient from 

each cell. The D8 method was used for this tool, meaning that flow direction could only occur 

from a cell to one of its eight neighboring cells (ESRI, 2020). There are two other flow direction 

methods that can be used with this tool that allow for more complex direction values, but these 

flow direction outputs are not compatible with one of the later processing steps that is necessary 

for stream delineation. The D8 flow direction raster was then used as an input for the Flow 

Accumulation tool, which output a raster of accumulated flow into each cell. The D8 method 

was also used for this tool. 

Next, a watershed extent was created to limit the output extent to hydrologically relevant 

areas. Two Pour Points (point feature shapefiles) were manually placed at the appropriate 

outflow locations for the target area datasets (outflow of eastern channel, at the confluence of 

eastern and western channels) and the full site datasets (outflow of the main channel, where it 

reached the river), so that the watershed extents would include the eastern section of the site 

including borrow pit and eastern channel, and the entire site respectively (Figure 3.6). The 

corresponding pour point shapefile and flow accumulation raster were used as inputs for the 

Snap Pour Point tool. This tool shifts an existing pour point feature to align with the cell of 

highest flow accumulation within a specified distance (ESRI, 2020), in this case 20 cm. The pour 

point must align with highest accumulated flow for accurate watershed delineation. The 

Watershed tool was then used, inputting the snapped pour point and flow direction raster, to 

create a watershed raster in which all cells within the watershed had a value of 1, and all other 
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cells were null. This raster was then converted to a polygon using the Raster to Polygon tool, for 

the purpose of being able to easily calculate the watershed area to be used in channel density 

calculations in later analyses. 

 

Figure 3.6. Manual pour point locations for the full site and target area datasets. Background 

imagery collected August 21, 2020 with a DJI Phantom 4 RTK RPAS. 

 The next processing step was to create a stream raster (stream cells with a value of 1, all 

other cells null) using a Conditional statement that applied a flow accumulation threshold to the 

flow accumulation raster and clipped the output to the watershed extent. To determine the 

appropriate flow accumulation value, several different values were tested prior to running the 

processing script, and their outputs visually assessed. The appropriate amount of channel 

delineation was defined as having the majority of visible channels delineated, as well as a 

sufficient number of water flow paths without visible channel definition, referred to as “proto” 

channels. Initial threshold values were determined based on currently existing methods in the 
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literature, including mean flow accumulation, and 1% of the maximum flow accumulation 

(Ozulu & Gökgöz, 2018). The mean flow accumulation value was too low of a threshold and 

produced a channel delineation with too many channel features to realistically analyze and 

process the data within the scope of this research. The 1% of the maximum flow accumulation 

value was too high of a threshold, producing a channel delineation that did not include the 

majority of visible (“existent”) channels. Flow accumulation thresholds between these two 

values were then tested and examined, and it was determined that a value of 50,000 was 

appropriate for delineating existent and proto channels within the high spatial resolution (2.0 

cm), target area datasets. For the full site datasets with lower spatial resolution (3.5 cm), multiple 

flow accumulation values were similarly explored, and a value of 120,000 was chosen. Because 

the resolution of these datasets did not allow for accurate mapping of the smaller water flow path 

“streams”/embryonic channels, a higher flow accumulation threshold was used to reduce the 

stream output file to only include larger streams/channels at the full site scale. 

 After the stream raster had been produced and clipped to the watershed extent, the Stream 

Order tool was used to apply the Strahler stream ordering method to the stream cells. This is the 

most commonly used stream ordering method in the literature (Chirol, et al., 2018), and one of 

two ordering methods available in ArcMap. This method classifies all terminal segments 

(smallest streams) as stream order 1 and increases the stream order when two segments of the 

same order meet (Strahler, 1957). This ordering system is problematic in the study of salt marsh 

evolution, since the development of new terminal channels over time would alter the stream 

order of larger, consistent channels (Weishar et al., 2005). To overcome this issue, the next step 

in the script was to reverse the stream order, as presented by Chirol et al. (2018). The following 

formula was used for stream order reversal: 
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Equation 1. Stream order based on a reversal of the Strahler ordering system. 

𝑂𝑟𝑑𝑒𝑟𝑅𝑒𝑣𝑒𝑟𝑠𝑒𝑑 = 𝑂𝑟𝑑𝑒𝑟𝑀𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑂𝑟𝑑𝑒𝑟𝑆𝑡𝑟𝑎ℎ𝑙𝑒𝑟 + 1 

 Once the streams were attributed with a reversed Strahler order, the Stream to Feature 

tool was used to convert the stream raster to a line shapefile. Since the flow direction and flow 

accumulation rasters were created using pixel data with a smaller resolution than most stream 

features, the output stream shapefile had a crinkled shape with excess vertices and segments that 

did not run parallel to the actual channels. Since subsequent processing steps involved the 

automated drawing of cross-sections perpendicular to stream segments, it was important that 

stream segments be as close to parallel with actual channels as possible. To reduce the 

occurrence of cross-sections being drawn non-perpendicularly to actual channels due to 

variations in the azimuth of the stream segments (see Figure 3.7), the stream shapefile was 

smoothed using the Smooth Line tool with the Polynomial Approximation with Exponential 

Kernel (PAEK) method. This method required an input smoothing tolerance to determined how 

much detail would be retained in the output shapefile. To determine the appropriate smoothing 

tolerance for the stream shapefile datasets, the tool was run on one test dataset with several 

different smoothing tolerance values between 0.05 m and 1 m. From visual observation of the 

results, it was determined that a smoothing tolerance of 0.4 m reduced the “zig-zag” effect of the 

original shapefile so that the stream segments generally ran parallel to the actual streams, while 

maintaining a sufficient amount of detail. An example of an original stream shapefile and a 

smoothed stream shapefile (smoothing tolerance of 0.4 m) can be seen in Figure 3.7. 
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Figure 3.7. a) Original stream shapefile with potential locations and angular positions of cross-

sections that are not perpendicular to the actual channels. b) Smoothed stream shapefile (with a 

smoothing tolerance of 0.4 m) with potential locations and angular positions of cross-sections 

that are closer to perpendicular to the actual channels. 

3.2.3 Channel Classification 

A classification of stream segments from the channel delineation output shapefile was 

required to differentiate between existent channels and proto channels. For the purpose of this 

research, existent channels were defined as having a cross-sectional depth greater than 2.0 cm 

along the majority of their length, as well as hydraulic connectivity to another existent channel at 

their downstream end. Initial classification methods of the August 2020 dataset involved visual 

analysis of multiple cross-sections along each stream segment using the 3D Analyst tool bar in 

ArcMap, specifically the Interpolate Line and Profile Graph tools, then manually classifying 

each segment based on cross-sectional depth. It was determined that this manual technique 

would be too time consuming and had a significant amount of user bias that could affect the 

classification results. To resolve these issues, a semi-automated python script was developed to 

automatically draw cross-sections at regular intervals along all stream segments and classify 

them based on elevation values along those cross-sections as extracted from the corresponding 

DSM, using a combination of Arcpy tools and python logic (see Appendix C for script text). The 

a) b) 
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channel classification script can be described in two separate parts, the first of which involved 

preparing and creating the stream segments, cross-sections, and points (with elevation values) 

that would be used to determine segment classification and is summarized as a flow chart in 

Figure 3.8.  

 

Figure 3.8. Part 1 of the channel classification script steps. 

Part 1 of the channel classification script began by creating a file geodatabase (its 

location and name specified as a script input) to hold intermediate feature classes and the final 

classified channels, if it did not already exist (this step is not outlined in the summarized flow 

chart, Figure 3.8). Next, the Make Layer tool was used to convert the delineated channel 

shapefile into a feature class. During manual classification of the August 2020 dataset, it was 
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determined that some of the longer channel segments should be split, with a portion of the 

segment being classified as existent and a portion being classified as proto. To create a similar 

effect in the automated classification script, channel segments were split at a user defined value 

so that each new segment could be evaluated independently. This was achieved in the script by 

running the Generate Points Along Lines tool with the channel feature class as the Input Feature, 

and the Distance Between Points as 4 m, and then the Split Line at Points tool to split the channel 

feature class at each point location. This resulted in a new channel feature class in which line 

segments had a maximum length of 4 m, and segments initially longer than 4 m were divided 

into multiple segments.  

The Add Field tool was then used to add a channel classification field (“CH_STAT”) that 

would be used later to hold the classification result of each segment (branch) of the feature class. 

Next, cross-sections were generated along all channel segments at a defined value using the 

Generate Transects Along lines tool. To ensure that segments shorter than the user defined value 

would have at least 2 associated cross-sections, end points were included. This resulted in all 

segments having at least 2 cross-sections (start and end points), as well as at regular intervals 

along their length when applicable. An important note is that the output cross-section shapefile 

included a field that identified which channel segment each cross-section was associated with. 

Cross-section length was a user-defined script variable. It was determined during manual 

classification that morphological variations between channel types in the target area datasets 

required a variable cross-section length to correctly classify them. For embryonic channels with a 

small width and relatively dense distribution that had been developing in areas such as the 

borrow pit, cross-sections were best drawn with a shorter width. This was the case to reduce the 

occurrence of multiple channels showing up in a single cross-section, as well as the cross-
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sections including morphological variations in elevation that were not channel related (eg., banks 

of the borrow pit). For relic ditch channels and manually constructed channels, cross-sections 

needed to be wider to include both channel banks. An example of the morphological variation 

between these two channel types is shown in Figure 3.9. To account for this variation, each 

channel shapefile (prior to running the channel classification script) was divided into two 

sections: embryonic channels and relic ditch/large channels (Figure 3.10). These sections were 

then run through the channel classification script separately. In the full site datasets, since only 

larger channels had been delineated, all channels were processed together with a single transect 

length value. 

 

Figure 3.9. Morphological variations between channel types affecting cross-sectional width. 

 

~ 40 cm 

~ 2 m 
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Figure 3.10. Division between embryonic/small channels and relic ditch/large channels as inputs 

for the channel classification script from the August 2020 target area dataset. 

The Add Field tool was then used again, to add a classification field (“XNS_STAT”) to 

the cross-section shapefile which would later hold the results of the classification of each cross-

section. Finally, a point feature class was created using the Generate Points Along Lines tool 

with the cross-section feature class as the Input Feature. Points were generated at a user defined 

value, and end points were not included. The output point feature class had a field that specified 

the cross-section that each point was associated with. The Add Surface Information tool was then 

used to extract corresponding DSM values for each point and add them as a field in the point 

feature class. 

Part 2 of the channel classification script involved a logical assessment of the data that 

was prepared in Part 1 to classify each channel segment. Since this part of the script was written 

mainly as a series of python logic statements rather than Arcpy tools, files, and variables, it has 

been illustrated using a logical statement flow chart in Figure 3.11. The initial step was to 

use the Arcpy Search Cursor tool to run through the channel segment feature class and create a 
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list of all individual Branch IDs. For each Branch ID in the list, a Search Cursor was used to find 

all corresponding Transect IDs from the cross-section feature class and create a list of those 

Transect IDs. For each Transect ID in the list, the same Search Cursor process was used to create 

a list of all corresponding points and their elevation values. 

 

Figure 3.11. Part 2 of the channel classification script steps, presented as a series of logical 

statements. 
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From the list of points, the minimum elevation value was identified. This 

point was considered the thalweg of the channel. It was necessary to find the minimum elevation 

point from each transect of points to determine the thalweg, rather than the center point (where 

the transect crossed the delineated channel line) to account for inconsistencies between the 

channel delineation and actual channel thalweg. In many cases, when the DSM was filled as part 

of the delineation process, channels were filled in and the resulting delineation ran alongside the 

filled area rather than along the elevation low point or channel center.  

Next, the maximum value to the left of the minimum point was determined (left channel 

edge), as well as the maximum value to the right of the minimum point (right channel edge). If 

the difference between the thalweg elevation and both channel edge elevations (channel depth) 

was greater than 0.02 m, the selected transect was classified as “pass” by editing the 

“XNS_STAT” field in the cross-section feature class. If the channel depth was less than 0.02 m, 

or the minimum point was located at either end of the transect, the selected transect was 

classified as “fail”. The same process was then repeated for all Transect IDs associated with the 

selected Branch ID, until all cross-sections had been classified. At this point, the selected 

channel segment was assessed by counting the number of transects that had been classified as 

“pass” and “fail”. If more than 50% of the transects were classified as “pass”, the channel 

segment was then classified as “Existent”. If not, the channel segment was classified as 

“Proto”. This process, from creating a list of Transect IDs to classifying the individual channel 

segment, was then completed for all Branch IDs, one at a time. Once the script had completed, 

the channel segment feature class was fully classified. 

To determine the appropriate script settings for the most accurate classification results, 

the script was run with varying settings on the August 2020 target area dataset. Classification 
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results from each run were then compared to manual classification results of the same dataset, 

and a confusion matrix was created for each comparison. To account for the variations in channel 

morphology, embryonic/small vs relic ditch/large channels, datasets were run through the script 

and compared to results separately. Total erroneously classified channel length was also 

calculated for each set of results, and the settings that resulted in the shortest length of 

erroneously classified channels were chosen for classification of the remaining datasets. Chosen 

classification settings are stated in Table 3.2. 

Table 3.2. Classification script settings chosen for classifying channels in all datasets, 

determined by comparing script results to a manually classified dataset. 

Dataset Channel Type 

Transect 

Length 

(m) 

Transect 

Distance (m) 

Point 

Distance 

(m) 

Min. Channel 

Depth (m) 

Target Area 
Embryonic/Small 1.000 0.500 0.035 0.020 

Relic Ditch/Large 3.000 0.250 0.050 0.020 

Full Site All 3.000 0.500 0.100 0.020 

 

Since the script classified channels based on channel depth only, incorporating hydraulic 

connectivity and correcting erroneous classification results were completed manually post-

classification. Prior to this, the embryonic and relic ditch feature classes for each dataset were 

merged and exported as a single shapefile that included all channels in both categories. Manual 

clean-up of these shapefiles was then completed individually by comparing the results to the 

corresponding imagery and elevation model. Classified transect feature classes were also 

examined to determine the cause of erroneous classifications. Classifications were corrected in 

cases of obvious script malfunction, such as when a single channel had alternating sections of 

proto and existent classifications (Figure 3.12). Expertise and knowledge of the site was also 

used to determine the correct classifications in these circumstances. 
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Figure 3.12. a) Channel classification script results containing erroneous classifications and b) 

manually corrected classification results. 

3.2.4 Channel Persistence 

Channel persistence was measured to determine if rates of channel persistence between 

collection dates changed over the course of the study period, and to examine the relationship 

between channel persistence and classification. Two persistence analyses were conducted, one 

that determined the rate of persistence of all channel segments regardless of classification from 

their collection date to all remaining collection dates, and another that calculated the rate of 

persistence of existent and proto channels from their original collection date to May 4, 2021, as 

well as their classification in the May 4, 2021 delineation if they did persist.  

Both channel persistence analyses were conducted using the Buffer tool and spatial queries in 

ArcMap with classified channel shapefiles. A buffer shapefile was created for each channel 

delineation dataset, with a buffer distance of 50 cm for Target Area datasets and 1m for Full Site 

datasets. The buffer was used in the spatial queries so that small shifts in channel location, 

caused by natural movement or delineation error would still result in a channel being identified 

as “persisting” between two collection dates. The general persistence analysis was run using all 

channel classifications (existent and proto) within each dataset, by selecting channel segments in 

a) b) 
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the earliest delineation (November 24, 2019) that were “within” the June 1, 2020 buffer 

shapefile. The length of theses selected channels was determined and converted to a percentage 

of the total channel length for the initial delineation. The selected “persisting” channels were 

then used as the input for an additional spatial query, to determine which of these channels were 

within the buffer shapefile of the subsequent collection date (July 9, 2020), and therefore 

persisted to that collection date. This process was continued until the percentage of channel 

length that persisted to May 4, 2021 was determined. The same workflow was followed with the 

delineated shapefile from each collection date, for both Full Site and Target Area datasets, and 

resulting values were tabulated. 

Additionally, the persistence analysis involving channel classification was conducted to 

determine differences in persistence between existent and proto channels. This analysis looked 

only at the persistence of channels from each collection date to the final collection date, May 4, 

2021. Channel segments from each collection date in both Full Site and Target Area datasets 

were selected if they were “within” the buffer polygons for the May 4, 2021 dataset. Length of 

persisted channel segments was calculated for proto channels that persisted to proto channels, 

proto channels that persisted to existent channels, proto channels that did not persist, existent 

channels that persisted to proto channels, existent channels that persisted to existent channels, 

and existent channels that did not persist, and the resultant values were tabulated.  

3.2.5 Drainage Network Characteristics 

To compare drainage network evolution over time, total channel length, drainage area 

and Hortonian drainage density (Equation 2) were calculated for each dataset. Total channel 

length was calculated by creating a new field in each delineated channel shapefile called 

“Length”, then using the Calculate Geometry tool to populate the field with the length of each 
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segment. The sum of these values for existent channel segments only was equal to total channel 

length. Drainage basin area was calculated using the watershed shapefiles that had been created 

during the channel delineation process. A new field was created in each watershed shapefile 

called “Area”, and the Calculate Geometry tool was used to calculate the area of each watershed 

polygon. 

Equation 2. Hortonian drainage density where ΣL is total channel length and A is drainage 

basin area (Horton, 1945). 

𝐷𝑑 =
∑ 𝐿

𝐴
 

3.2.6 DEMs of Difference 

Seasonal and yearly changes in surface elevation were assessed by calculating DoDs 

from the photogrammetric elevation models. Significant processing was required to isolate areas 

of bare ground from the original DSMs (converting DSMs to DEMs of bare ground only) and 

remove all areas of surface deformation caused by the presence of vegetation, water features and 

edge effects. These features in the DSM do not accurately represent sediment surface elevations 

(Carrivick et al., 2016; Jaud et al., 2016; Vecchi et al., 2021) and therefore must be removed 

prior to DEM subtraction and DoD creation. Additionally, because validation data for each DSM 

was only collected on bare ground locations, incorporating vegetated or water-filled areas into 

the DoD analysis would result in an underestimate of vertical error. 

Since shapefiles excluding edge effects for each dataset had already been created as part 

of the channel delineation process, these shapefiles were the starting point for clipping DSMs. In 

many cases, noisy data additional to the edge effects was present along some edges of the 

datasets (Figure 3.13a). For the purposes of DoD creation, these areas were also excluded with 

the edge effect shapefiles to improve data reliability. Areas not of interest in DoD analysis were 
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also excluded by further manual clipping of the edge effect polygons along the new dyke and 

gravel access road to the east of the site. To remove water features, they were manually 

delineated from the orthomosaics in ArcMap at a 1:300 scale, creating a shapefile that contained 

areas of water coverage for each individual dataset. The Erase tool was then used to cut out the 

water coverage shapefiles from the edge effect shapefiles, resulting in a polygon for each dataset 

that excluded areas of noise around the edges of the DSMs, areas north/west of the new dyke and 

access road, and water features present in the orthomosaics. An example of one such polygon 

can be seen in Figure 3.13b. 

 

Figure 3.13. a) Hillshade of June 1, 2020 DSM showing DSM edge effect and noisy data 

extending into the dataset. b) Example of clip polygon excluding edge effects and noisy data, 

areas outside of the study site, and water coverage. Orthomosaic collected June 1, 2020. 

Vegetation was isolated by creating a vegetation mask using a combination of image 

segmentation, unsupervised classification, and manual editing of the results. It was assumed that 

the August 2020 dataset would have the maximum extent of vegetation coverage, so the initial 

vegetation mask was created using this dataset. 

Image segmentation was completed in ArcGIS Pro using the Segmentation tool, with a 

spectral detail of 20.00, spatial detail of 9.00 and minimum segment size of 80. These settings 

were determined through trial and error, with the goal of reaching the minimum number of 

a) b) 
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segments while still maintaining enough detail to isolate vegetation. The output of this tool was a 

3-band raster, with pixels in each segment sharing an RGB value, and variations in these values 

between segments (Figure 3.14a). This segmented raster was then classified using the ISO 

Cluster Unsupervised Classification tool, with 20 classes, minimum class size of 20, and sample 

interval of 10 (minimum class size and sample interval default values) in ArcMap (Figure 3.14b). 

The classified raster output was then compared to the original orthomosaic, and each class was 

assigned as either vegetation (1), sediment (2) or other (3). Classes were assigned based on the 

majority feature within that class, and when significant overlap occurred between features in a 

single class, that class was assigned as other (3).  

The Reclassify tool was used to convert the original 20 classes into the 3 identified 

categories (Figure 3.14c). The reclassified raster was converted to a polygon shapefile using the 

Raster to Polygon tool. Significant manual editing was required to remove areas of sediment 

from the vegetation class, and vice versa, as well as assign either the vegetation (1) or sediment 

(2) class to all polygons in the other (3) class. All reclassification edits were completed by 

comparing the polygons to the orthomosaic imagery.  

 

Figure 3.14. a) Segmented raster output from the ArcGIS Pro Segmentation tool with the August 

2020 full site orthomosaic. b) Original unsupervised classification results of the segmented 

raster with 20 random classes. c) Unsupervised classification results reclassified into vegetation 

(1 – green), sediment (2 – yellow), and other (3 – purple). 

a) b) c) 
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After completing the vegetation mask using the August 2020 dataset, it was determined 

that the October 2020 dataset had a greater vegetation extent, and that further editing of the 

vegetation mask was required. Further examination of the orthomosaic imagery and DSMs 

revealed that surface deformation caused by the presence of vegetation had a larger extent than 

vegetation coverage in the imagery. Since the purpose of the vegetation mask was to remove all 

surface deformation caused by vegetation, all additional manual edits were completed using a 

combination of Orthomosaic imagery and DSMs, to account for this variation (Figure 3.15). The 

mask was edited to include vegetation coverage from the October 2020 dataset, as well as the 

November 2019 dataset that had some areas of persistent agricultural vegetation that were not 

present in any of the 2020 datasets. The final vegetation mask was then used to clip vegetation 

from each of the error/water polygons using the Erase tool, resulting in a final bare ground 

polygon for each dataset. 

 

Figure 3.15. a) Example of DSM surface deformation caused by vegetation and shown with a 

hillshade, compared to b) vegetation presence in the orthomosaic imagery. Vegetation mask 

polygons are shown by green lines.  

 For consistency in DoD extents, a minimum extent for both the full site and target area 

datasets was created by clipping one of the bare ground polygons with all other bare ground 

polygons. This resulted in two polygons, one for full site datasets and one for target area datasets 

a) b) 



   

 

57 

 

that covered bare ground areas which were consistent between all datasets of each coverage type. 

Each DSM was then clipped to its corresponding (either full site or target area) bare ground 

polygon using the Clip (Data Management) tool. Resulting DEM rasters were subtracted from 

one another using the following formula in the Raster Calculator tool to calculate surface 

elevation change over time per pixel in the raster output, a commonly used methodology for 

these purposes with RPAS datasets (Turner, 2015; Ierodiaconou, 2016; Matheson, 2020; 

Brunetta et al., 2021): 

Equation 3.3. Digital Elevation Model of Difference (DoD)equation using multitemporal Digital 

Elevation Models (Addo and Jayson-Quashigah, 2021). 

∆𝐷𝐸𝑀 = 𝑍2 − 𝑍1 

In which ΔDEM is the DoD, Z2 is the more recent DEM and Z1 is the older DEM. Input DEMs 

for each DoD determined the time period being represented. DEMs used in DoD creation were 

selected based on data quality, time periods of interest and the appropriate corresponding survey 

dates, which are listed in Table 3.4.Two DoDs were created for each time period listed, one with 

Full Site datasets and one with Target Area datasets. 

Table 3.4. List of Input DEMs for DoD creation, and representative DoD time periods. 

Input DEMnew Input DEMold 
DoD Time 

Period 

Oct 5, 2020 Nov 24, 2019 1-Year 

June 1, 2020 Nov 24, 2019 Winter 

Oct 5, 2020 June 1, 2020 Growing Season 

Aug 21, 2020 June 1, 2020 Spring-Summer 

Oct 5, 2020 Aug 21, 2020 Summer-Fall 

3.2.7 Volumetric Change Analysis 

Volumetric change for each DoD was calculated using the following equation, which has 

been commonly used in the literature in RPAS and DoD studies: 
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Equation 3.4. Total volumetric change for a DoD, utilizing the sum of volumetric change per 

pixel (Gómez-Guitiérrez et al., 2014; Turner et al., 2015; Ierodiaconou et al., 2016). 

∆𝑉 =  ∑[𝐷𝑜𝐷 × 𝑐2] 

Where c is cell size and DoD is the vertical change per pixel as calculated in Equation 1. The 

calculation was conducted in two steps, the first being a multiplication of the DoD by cell size 

squared (area per pixel). The resulting rasters represented volumetric change per pixel. The 

Zonal Statistics too, which allows the user to specify an input polygon, was then used to sum all 

volumetric raster pixels within the specified input polygon. This tool was run twice on each of 

the target area datasets. Once with the original bare ground polygon for the corresponding 

volumetric raster that had been split into a river area and a site area, producing total volumetric 

change sums for the river and site separately, and another with a manually delineated target area 

polygon that consisted of three polygon extents: the borrow pit, the main channel mouth and the 

main drainage channels (which included the main channel mouth) (Figure 3.16). For the full site 

datasets, the Zonal Statistics tool was only run with one input polygon: the corresponding bare 

ground polygon split into river and site areas. 
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Figure 3.16. Polygon extents used to calculate total volumetric change with the zonal statistics 

tool for areas of interest within the target area datasets. Note: Main channel mouth area is 

included in the drainage channels extent. 

To account for volumetric uncertainty in the above-mentioned datasets, a Level of Detection 

(LoD) was applied to all DoDs following the methodology outlined in Matheson (2020). This 

method of error estimation utilizes the individual DEM RMSEz values and calculates their 

propagation into the DoDs using the following equation: 

Equation 3.5. DoD uncertainty based on the individual accuracies of incorporated Digital 

Elevation Models (Brasington et al, 2003; Lane et al, 2003). 

𝛿𝐷𝑜𝐷 =  √(𝑅𝑆𝑀𝐸1)2 +  (𝑅𝑆𝑀𝐸2)2 

Where 𝛿𝐷𝑜𝐷 is the propagated DoD error and 𝑅𝑆𝑀𝐸1,2 are the vertical RMSE values for the 

corresponding DEMs. Furthermore, the LoD for each DoD was calculated using the following 

equation: 
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Equation 3.6. Level of Detection threshold value for a DoD determined by a statistical 

coefficient based on desired significance level (“t” value) and the uncertainty between 

incorporated Digital Elevation Models (Wheaton et al., 2010). 

𝐿𝑜𝐷 = 𝑡(𝛿𝐷𝑜𝐷) 

Where 𝐿𝑜𝐷 is the Level of Detection threshold value and t is a statistical coefficient based on 

desired significance level (t =1.0 is a 68% confidence interval, t = 1.96 is a 95% confidence 

interval) (Brasington et al, 2003; Lane et al, 2003; Milan et al, 2011). LoDs were calculated for 

each DoD using both 68% and 95% confidence intervals, and volumetric change rasters were 

created incorporating each LoD threshold using the Raster Calculator tool by excluding all pixel 

values between (-)LoD and (+)LoD. The same procedure as outlined above for calculating total 

volumetric change was used for each of these volumetric rasters of “significant” change. 

Although results were calculated using both 68% and 95% confidence intervals, for this study, 

the majority of DoD and volumetric change results will be presented using a 68% confidence 

interval, similar to results presented by Brunetta et al. (2021) and Matheson (2020). Due to the 

nature of morphological changes in some salt marsh restoration sites, where there are often small 

areas of very high surface elevation loss (eg., erosion of channel mouths), and large areas of very 

small surface elevation gain (sediment accretion throughout the site), using a 95% confidence 

interval, while ensuring more confidence in the measured change results, may lead to a 

substantial loss of data (Brunetta et al., 2021) and a potential skewing of measured 

morphological change patterns (Matheson, 2020). For comparison, DoD results with a 95% CI 

will be presented in Appendix H. 

Additional to the LoD, maximum volumetric uncertainty was calculated using Taylor’s 

(1997) equation, which assumes that errors are not pairwise correlated and is most appropriate 

for photogrammetric elevation models due to their known non-random errors (Jaud et al., 2016): 
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Equation 3.7. Maximum volumetric uncertainty for a corresponding DoD (Taylor, 1997). 

𝜎𝑉𝑎𝑏𝑠 = 𝑐2 ×  𝛿𝐷𝑜𝐷 × 𝑛 

Where 𝜎𝑉𝑎𝑏𝑠 is the absolute volumetric uncertainty of a DoD with n number of cells and cell size 

c. Another volumetric uncertainty equation proposed by Lane et al. (2003) was used to calculate 

absolute volumetric uncertainty of the results. This formula however was intended for use with 

DEMs created using older methods such as total stations and dGNSS points and assumes that 

vertical errors in surface models are random (Matheson, 2020). While it has been used in this 

study for comparative purposes, it must be noted that this uncertainty equation may not be 

appropriate for surface models created with SfM techniques, and is expected to be an 

underestimate (Matheson, 2020). Additionally, all total volumetric change values were converted 

to average vertical change per pixel for each area and for all time periods using the following 

formula: 

Equation 3.8. Average vertical change per square meter for a corresponding DoD. 

∆𝑍𝑎𝑣𝑔 =
∆𝑉

𝑛 ×  𝑐2
 

Where ∆𝑉 is total volumetric change, n is number of cells included in the total volumetric 

change calculation (variation in cell number based on LoD and confidence interval) and c is cell 

size. 

3.2.8 Raster Correlation 

A raster correlation analysis was conducted to determine if spatial patterns of sediment 

accretion and erosion could be explained by either surface elevation or distance from channel 

(DFC). DoD rasters were used as the dependent variable to represent sediment accretion and 

erosion, and DEMs and DFC rasters were used as independent variables. A multiple regression 
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model was run in R on a subset of raster datapoints to determine the relationships between 

variables and their significance. 

DFC rasters were created by using the Euclidean Distance tool in ArcMap. Prior to this, a 

shapefile was created for each delineated channel dataset that included only existent channels 

(proto channels removed). This shapefile was used as the input feature source data in the 

Euclidean Distance tool, resulting in an output raster with each cell value equalling the distance 

from that cell to the nearest channel feature. A DFC raster was created for each delineated 

channel shapefile and was subsequently clipped to its corresponding watershed shapefile 

(intermediary product in the delineation process) to reduce file size and remove unnecessary 

data. 

To convert raster datasets to a data type that could be analyzed in R, and to create a 

subset of the raster cells, random points were created, and raster values extracted to them. For the 

Full Site datasets, an extent shapefile was created from the original DoD clip shapefile that 

excluded the river, main channel mouth and drainage channels, and borrow pit. The main 

channel mouth and drainage channel areas were excluded because the controls of sedimentation 

were likely to be different in these areas. These areas appear to be more heavily influenced by 

water velocity than surface elevation or distance from channel and would therefore skew results 

and act as outliers. The borrow pit was excluded because that area was analyzed separately using 

the Target Area datasets. The Create Random Points tool was used to create a series of points 

within the input shapefile extent that were randomly distributed. The number of points created 

was approximately 0.03% of raster cells within the specified extent (n=12,985). Next, the Extract 

Multi Values from Points tool was used to assign each point a value from all input rasters which 

are listed in Table 3.1. Additionally, the Add X Y tool was used to extract easting and northing 
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values to each point. A similar workflow was followed using a shapefile of the borrow pit extent, 

creating a number of points equalling approximately 0.14% of cells (n=11,683) and extracting 

data from Target Area rasters. 

Table 3.5. Rasters from which data was extracted to randomly generated points for raster 

correlation analysis (Full Site datasets). 

Raster Type Date/Time Period 

DoD 

Nov 24, 2019 – Oct 5, 2020 (1-Year) 

Nov 24, 2019 – Jun 1, 2020 (Winter) 

June 1, 2020 – Oct 5, 2020 (Growing 

Season) 

DEM 
Nov 24, 2019 

June 1, 2020 

Distance from 

Channel 

Nov 24, 2019 

June 1, 2020 

 

For each set of points, three multiple linear regression models were run in R Studio software, 

one for each of the three DoDs. The models were calculated with the DoDs as the dependent 

variable, and the starting DEM and DFC rasters (November 24, 2019 for 1-year and winter 

DoDs, and June 1, 2020 for the growing season DoD) as the independent variables. Both scaled 

and unscaled versions of each model were calculated. Homogeneity and normality of the datasets 

was assessed by visually inspecting the residuals of each fitted model. It was determined that a 

transformation of the independent variables did not noticeably improve residual homogeneity, 

and therefore no transformations were applied. To determine the RMSE of each predictive 

model, a cross validation technique was incorporated into the model processing (“caret” 

package), using 5 folds. This means that the data was divided into 5 subsets and the model run 5 

times, each time with a different subset serving as a validation dataset. The RMSE values from 

each model were then averaged to determine the prediction statistics for the model as a whole. 

To determine the effect of spatial autocorrelation on the model results, a variance partitioning 
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workflow was conducted. This workflow incorporated the easting and northing values from each 

point and calculated the variation in the dependent variable caused by spatial autocorrelation. 
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Chapter 4: Results 

4.1 Photogrammetric Products 

A Digital Surface Model (DSM) and orthomosaic were produced from the Structure from 

Motion (SfM) processing in Agisoft Metashape for each collection date and survey type (Full 

Site and Target Area). Examples of each are shown in Figures 4.1 and 4.2, and all products are 

shown in a larger scale format in Appendix D (Full Site) and Appendix E (Target Area). 

Products were exported from Agisoft Metashape with a Ground Sample Distance (GSD) of 3.5 

cm for Full Site datasets and 2 cm for Target Area datasets. Results of the vertical accuracy 

assessments are outlined in Table 4.1. Vertical offset values between dGNSS validation points 

and DSMs for all collection dates in the Full Site datasets ranged between -6.7 cm and 5.2 cm 

and had an average Mean Absolute Error (MAE) of 1.4 cm. In the Target Area datasets, vertical 

offset values ranged between -5.3 cm and 5.7 cm, and the average MAE was also 1.4 cm. The 

range in RMSEz for Full Site and Target Area datasets was 1.3-2.3 cm and 1.3-2.1 cm 

respectively. Results of a Mann Whitney U test with an alpha value of 0.05 determined that the 

Full Site and Target Area RMSEz values were not significantly different. 

 

Figure 4.1. a) Orthomosaic and b) Digital Surface model outputs from Agisoft Metashape after 

Structure from Motion processing of the June 1, 2020 Full Site dataset. 

a) b) 
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Figure 4.2. a) Orthomosaic and b) Digital Surface Model outputs from Agisoft Metashape after 

Structure from Motion processing of the June 1, 2020 Target Area dataset.  

Table 4.1. Summary of vertical offsets between GNSS validation points and Structure from 

Motion derived Digital Surface Models. 

Collection 

Date 
Area 

GSD 

(cm) 
n 

Min 

(cm) 

Max 

(cm) 

MAE 

(cm) 

Mean 

(cm) 
SD (cm) 

RMSE 

(cm) 

2019-11-24 
Full Site 3.5 106 -5.0 4.5 1.1 -0.8 1.6 1.8 

Target 2.0 91 -4.4 5.7 1.5 -0.8 1.6 1.8 

2020-06-01 
Full Site 3.5 150 -3.7 4.2 1.1 0.2 1.3 1.3 

Target 2.0 134 -3.2 3.2 1.2 -0.9 1.2 1.4 

2020-07-09 
Full Site 3.5 108 -4.6 3.7 1.2 -0.2 1.5 1.5 

Target 2.0 94 -3.4 2.6 1.2 -0.1 1.5 1.4 

2020-08-21 
Full Site 3.5 118 -4.5 5.2 1.7 0.5 1.9 1.9 

Target 2.0 105 -3.3 4.3 1.6 0.6 1.9 2.0 

2020-10-05 
Full Site 3.5 131 -6.7 2.3 1.8 -1.5 1.7 2.3 

Target 2.0 122 -3.9 1.1 1.4 -1.3 1.0 1.7 

2020-11-08 
Full Site 3.5 110 -3.6 5.2 1.2 -0.7 1.4 1.6 

Target 2.0 101 -4.0 1.8 1.0 -1.0 0.9 1.3 

2020-05-04 
Full Site 3.5 128 -5.9 1.9 1.4 -1.0 1.5 1.7 

Target 2.0 96 -5.3 5.5 1.8 -0.1 2.1 2.1 

 

a) b) 
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4.2 Drainage Network Evolution 

4.2.1 Channel Characteristics 

Classified channel delineation shapefiles of both Target Area and Full Site datasets are 

shown in Appendix G, and examples of each are shown in Figures 4.3 and 4.4. Channels were 

classified as either existent (> 2 cm depth and connected to the rest of the existent channel 

network) or proto (< 2 cm depth or disconnected from the existent channel network). Target area 

delineations covered a smaller area due to the extent of input data and position of the pour point, 

and relatively more channels due to the lower flow accumulation threshold used in the 

delineation process. In both Full Site and Target Area delineations, channels located in areas 

with relic drainage ditches tended to follow the ditches and were generally straight with right 

angles. This differed from channels that developed in areas without relic ditching, such as the 

borrow pit, as these had a more sinuous shape (Figures 4.3 and 4.4). 

Planimetric channel characteristics are outlined in Table 4.2. Hortonian drainage densities 

of existent channels calculated using total channel length and drainage basin area were higher in 

the Target Area datasets (avg. of 0.062 m-1) than in Full Site datasets (avg. of 0.043 m-1). When 

separated by season, drainage densities in both Full Site and Target Area datasets showed a trend 

of generally lower values in fall (October – November) than in the growing season (June – Aug) 

(Figure 4.5). This trend was more significant in Target Area datasets than in Full Site datasets. In 

Full Site datasets, an average of 68.9% of total channel length was classified as existent, while in 

Target Area datasets, an average of 43.4% of total channel length was classified as existent. 
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Figure 4.3. Results of the channel delineation of the June 1, 2020 Target Area dataset. 

Channel Classification 

                 Existent 

                 Proto 
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Figure 4.4. Results of the channel delineation of the June 1, 2020 Full Site dataset. 
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Table 4.2. Channel characteristics of each delineated channel network. Proto channels were not 

included in total channel length or Hortonian drainage density calculations.  

 

Date 
Total Existent 

Channel Length 

(m) 

Watershed Area 

(m2) 
Hortonian Drainage 

Density (m-1) 

Target 

Area 

2019/11/24 3063.280 54170.404 0.057 

2020/06/01 3699.839 55914.110 0.066 

2020/07/09 3545.966 53260.406 0.067 

2020/08/21 3492.611 53674.705 0.065 

2020/10/05 3209.672 53964.408 0.059 

2020/11/08 2980.721 54271.307 0.055 

2021/05/04 3654.577 55316.405 0.066 

Full 

Site 

2019/11/24 4581.019 116368.020 0.039 

2020/06/01 5304.598 116963.011 0.045 

2020/07/09 5332.183 118386.013 0.045 

2020/08/21 4976.295 116337.026 0.043 

2020/10/05 4817.080 117481.012 0.041 

2020/11/08 5018.004 116195.012 0.043 

2021/05/04 5305.969 116926.013 0.045 

 

  

Figure 4.5. Drainage densities grouped by fall vs. growing season collection dates for the a) Full 

Site datasets, and b) Target Area datasets. Fall datasets were collected from October-November 

and growing season datasets were collected from June-August. 

4.2.2 Channel Persistence 

Channel delineations from different collection dates were compared to determine channel 

persistence within the study site. Results from the general channel persistence analysis, which 

a) b) 

Fall Growing Season Fall Growing Season 



   

 

71 

 

looked at how channel segments from each collection date persisted from their collection date 

through all subsequent collection dates are shown in Table 4.3 for Full Site datasets and Table 

4.4 for Target Area datasets. These results showed that for each delineation, approximately half 

of the total channel length did not persist for the initial time period after the collection date, and 

in both Full Site and Target Area datasets, the smallest percentage of persistence occurred 

between November 24, 2019 and June 1, 2020 (45.33% and 35.30% respectively). However, out 

of the total channel length that persisted through the initial time step for each delineation, the 

majority of that channel length would then persist to all subsequent collection dates. Specifically, 

in these circumstances, the rate of persistence for Full Site datasets ranged between 73.27% and 

93.51% and averaged 83.98%. Persistence in Target Area datasets was generally lower, and 

when excluding the initial time step for each delineation, percentages ranged from 65.51% to 

87.78% with an average of 77.89%. 

Generally, the likelihood of persistence to a particular date was higher in older datasets. 

For example, the percentage of channel length in the November 24, 2019 Full Site delineation 

that persisted from November 8, 2020 to May 4, 2021 (86.01%) was higher than the percentage 

of channel length in the August 21, 2020 Full Site delineation that persisted through the same 

time period (75.16%). This trend was present in all instances of both Full Site and Target Area 

datasets and is visualized by the reduction in percentage going from the top of each column to 

the bottom in Tables 4.3 and 4.4. 
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Table 4.3. Channel persistence results for Full Site datasets. Percentages were calculated using 

the length of channels that persisted to the subsequent collection date out of the total length of 

the initial dataset (left column), then out of those persisting channels, the percentage that 

persisted to the next collection date for the remaining collection dates. 

  Persisted to Date 

  2020/06/01 2020/07/09 2020/08/21 2020/10/05 2020/11/08 2021/05/04 

D
el

in
ea

ti
o

n
 C

o
ll

ec
ti

o
n

 

D
at

e 

2019/11/24 45.33% 76.92% 86.12% 93.41% 93.51% 86.01% 

2020/06/01 - 58.80% 78.21% 88.61% 89.84% 84.28% 

2020/07/09 - - 55.77% 82.13% 88.85% 82.59% 

2020/08/21 - - - 60.81% 80.78% 75.16% 

2020/10/05 - - - - 61.34% 73.27% 

2020/11/08 - - - - - 52.60% 

Table 4.4. Channel persistence results for Target Area datasets. Percentages were calculated 

using the length of channels that persisted to the subsequent collection date out of the total 

length of the initial dataset (left column), then out of those persisting channels, the percentage 

that persisted to the next collection date and so on for the remaining collection dates. 

  Persisted to Date 

  2020/06/01 2020/07/09 2020/08/21 2020/10/05 2020/11/08 2021/05/04 

D
el

in
ea

ti
o

n
 C

o
ll

ec
ti

o
n

 

D
at

e 

2019/11/24 35.30% 75.68% 84.06% 87.21% 87.78% 79.48% 

2020/06/01 - 56.55% 75.08% 81.89% 81.46% 79.09% 

2020/07/09 - - 56.27% 74.25% 77.80% 75.95% 

2020/08/21 - - - 53.06% 70.64% 72.54% 

2020/10/05 - - - - 46.63% 65.51% 

2020/11/08 - - - - - 41.54% 

 

 The classified persistence analysis looked at the percentage length of channels that 

persisted from the date of collection of each delineation to May 4, 2021, based on the initial 

channel segment classification as well as the classification of the May 4, 2021 delineations. For 

each delineation, the percentage length of both proto and existent channels that persisted to either 

proto or existent channels in the May 4, 2021 dataset was calculated, as well as the percentage 
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length of each channel classification that did not persist. Results are outlined in Figure 4.6 for 

Full Site datasets, and Figure 4.7 for Target Area datasets. The results show that proto channels 

were significantly less likely to persist from their collection date to May 4, 2021 than existent 

channels, with an average rate of persistence of 13.78% for Full Site datasets and 19.31% for 

Target Area datasets. Of the total length of proto channels that persisted, an average of 52.87% 

persisted to proto channel classification in the Full Site datasets, and an average of 65.61% in the 

Target Area datasets, with the remaining persisting to an existent classification. Existent channel 

length persistence rates were much higher, with approximately 60% of total length of existent 

channels persisting to May 4, 2021 in both Full Site and Target Area datasets. Of the total length 

of existent channels that persisted, on average, 98.39% persisted to existent channel 

classification in the Full Site datasets, and 93.01% in the Target Area datasets. 

 

Figure 4.6. Percentages of persistence of channel segments from each initial collection date to 

May 4, 2021 in Full Site datasets, based on channel segment classification 
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Figure 4.7. Percentages of persistence of channel segments from each initial collection date to 

May 4, 2021 in Target Area datasets, based on channel segment classification 

4.3 DEMs of Difference 

DEMs of Difference (DoDs) were created for several time periods with both the Full Site 

and Target Area datasets. DoD rasters were mapped highlighting an LoD with a 68% confidence 

interval and are shown in Figures 4.8-4.17. DoD maps with a 95% confidence interval LoD are 

shown in Appendix H. For the purposes of this research, only DoD data within the site area 

(excluding the Missaguash River) will be described in these results. The 1-year period 

(November 24, 2019 – October 5, 2020) DoDs for both Full Site (Figure 4.8) and Target Area 

(Figure 4.9) datasets show mostly positive surface elevation change in the borrow pit and field 

area just south of the borrow pit, although the Full Site DoD shows some small areas of negative 

surface elevation change in the borrow pit as well. The majority of positive values in these areas 

ranged between the LoD (2.9 cm Full Site and 2.5 cm Target Area) and 10 cm, but there were 

some small areas of between 10 cm and 50 cm of surface elevation increase in the borrow pit in 
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both datasets. Also, the pattern of surface elevation change highlights the location of embryonic 

channels in both datasets. 

A marked difference between the 1-year Full Site and Target Area DoDs was a more 

significant area of negative surface elevation change in the southern area of the Target Area 

dataset. The Full Site dataset also had some negative surface elevation change in this area, but to 

a lesser extent. Both DoDs did show a significant loss (> 10 cm) around the main channel mouth 

and drainage ditches near the main channel mouth. The larger extent of the Full Site DoD 

showed that the western portion of the site had mostly positive surface elevation change. The 

percentage of pixels within the LoD was 55% in the1-year Full Site DoD, and 50% in the 1-year 

Target Area DoD.  
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Figure 4.8. DoD raster showing Full Site surface elevation change from November 24, 2019 to 

October 5, 2020 (1-year). LoD was calculated using a 68% confidence interval. Background is a 

hillshade of the October 5, 2020 DSM. Percentage of pixels in the site area and river area within 

LoD are 55% and 94% respectively.  
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Figure 4.9. DoD raster showing Target Area surface elevation change from November 24, 2019 

to October 5, 2020 (1-year). LoD was calculated using a 68% confidence interval. Background 

is a hillshade of the October 5, 2020 DSM. Percentage of pixels in the site area and river area 

within LoD are 50% and 91% respectively. 

The DoDs representing winter (November 24, 2019 to June 1, 2020) (Figures 4.10 and 

4.11) both showed more negative surface elevation change throughout the site compared to the 

1-year DoDs, especially in the center area of the site. The Full Site DoD showed more negative 

surface elevation change surrounding the borrow pit, but both DoDs showed areas of positive 

surface elevation change within the LoD in the borrow pit. Both the Full Site and Target area 

datasets had fewer pixels within the LoD compared to the 1-year datasets, with 41% in the Full 

Site DoD and 42% in the Target Area DoD. 
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Figure 4.10. DoD raster showing Full Site surface elevation change from November 24, 2019 to 

June 1, 2020 (winter). LoD was calculated using a 68% confidence interval. Background is a 

hillshade of the June 1, 2020 DSM. Percentage of pixels in the site area and river area within 

LoD are 41% and 93% respectively. 
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Figure 4.11. DoD raster showing Target Area surface elevation change from November 24, 2019 

to June 1, 2020 (winter). LoD was calculated using a 68% confidence interval. Background is a 

hillshade of the June 1, 2020 DSM. Percentage of pixels in the site area and river area within 

LoD are 42% and 92% respectively. 

 The growing season (June 1, 2020 – October5, 2020) DoDs (Figures 4.12and 4.13) were 

characterized by a majority of positive surface elevation change, and in the Target Area DoD 

most of this change, as well as most of the negative change, was outside the LoD (-2.2 to 2.2 

cm). The percentage of pixels within the LoD in the Full Site and Target Area DoDs was 65% 

and 31% respectively. Most of the positive surface elevation change in the Target Area DoD that 

was within the LoD was located around the main drainage ditches, the northwestern corner of the 

borrow pit, and the freshwater stream area. The Full Site growing season DoD had a generally 
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even coverage of pixels with values > LoD (-2.6 to 2.6 cm) throughout the site, other than some 

areas in the borrow pit that had negative surface elevation change, concentrated at the eastern 

end. This pattern was similar in the Target Area DoD, and in both DoDs these negative values 

were mostly outside of the LoD. 

 

Figure 4.12. DoD raster showing Full Site surface elevation change from June 1, 2020 to 

October 5, 2020 (growing season). LoD was calculated using a 68% confidence interval. 

Background is a hillshade of the October 5, 2020 DSM. Percentage of pixels in the site area and 

river area within LoD are 24% and 84% respectively. 
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Figure 4.13. DoD raster showing Target Area surface elevation change from June 1, 2020 to 

October 5, 2020 (growing season). LoD was calculated using a 68% confidence interval. 

Background is a hillshade of the October 5, 2020 DSM. Percentage of pixels in the site area and 

river area within LoD are 16% and 67% respectively. 

 There were some significant differences between Full Site and Target Area DoDs in the 

spring-summer and summer-fall datasets. Specifically, Target Area DoDs for both time periods 

(Figures 4.15 and 4.17) showed a pattern of surface elevation change that was more likely to 

represent a vertical offset between input DEMs in the northern corner of the site than actual 

surface elevation change. In the spring-summer DoD this is visible as a large area of negative 

values, and in the summer-fall DoD it is visible as a large area of positive values. Results from 

the Target Area DoDs for these time periods will not be considered reliable in this study. 
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Although the Full Site spring-summer (Figure 4.14) and summer-fall (Figure 4.16) DoDs 

also showed patterns of surface elevation loss and gain respectively in the borrow pit area, the 

changes vary with topography instead of having a continuous gradient, and appear to be realistic 

in nature. The Full Site spring-summer DoD was characterized by mostly negative surface 

elevation change around the borrow pit, field area south of the borrow pit, and freshwater stream 

area, although most of this change was outside the LoD (< 0 cm and > -2.3 cm). The remainder 

of the site showed slight positive surface elevation change, with the majority of pixels also 

having values outside the LoD (> 0 cm and < 2.3 cm). The percentage of pixels in this dataset 

within the LoD was 24%.  

The Full Site summer-fall DoD consisted of mostly positive surface elevation change 

values within the site, although the majority of these values were outside the LoD (> 0 cm and < 

2.3 cm). The total percentage of cells within the LoD in this dataset was 36%. Negative surface 

elevation change around the main channel mouth and drainage ditches in this DoD was minimal, 

similar to the spring-summer and growing season DoDs.  
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Figure 4.14. DoD raster showing Full Site surface elevation change from June 1, 2020 to August 

21, 2020 (spring to summer). LoD was calculated using a 68% confidence interval. Background 

is a hillshade of the August 21, 2020 DSM. Percentage of pixels in the site area and river area 

within LoD are 36% and 70% respectively.   
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Figure 4.15. DoD raster showing Target Area surface elevation change from June 1, 2020 to 

August 21, 2020 (spring to summer). LoD was calculated using a 68% confidence interval. 

Background is a hillshade of the August 21, 2020 DSM. Percentage of pixels in the site area and 

river area within LoD are 26% and 52% respectively. 
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Figure 4.16. DoD raster showing Full Site surface elevation change from August 21, 2020 to 

October 5, 2020 (summer to fall). LoD was calculated using a 68% confidence interval. 

Background is a hillshade of the October 5, 2020 DSM. 
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Figure 4.17. DoD raster showing Target Area surface elevation change from August 21, 2020 to 

October 5, 2020 (summer to fall). LoD was calculated using a 68% confidence interval. 

Background is a hillshade of the October 5, 2020 DSM. 

4.4 Volumetric Change 

Total volumetric change in specific areas of the study site was calculated for all DoD 

rasters and the results are summarized in Tables 4.5-4.7. To compare error estimation methods, 

results are presented with no LoD, an LoD with a 68% confidence interval (CI), and an LoD with 

a 95% CI. Total volumetric uncertainties calculated with Equation 3.4 (Taylor, 1997) are also 

reported for each volumetric change value. All volumetric change results were also reported with 

the Lane et al. (2003) equation for volumetric uncertainty in Appendix F, Tables F-5 to F-10. 
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Volumetric change values for the site area of the Full Site datasets for all DoD time 

periods are outlined in Table 4.5. Total volumetric change for all LoDs were net positive for all 

time periods excluding winter (November 24, 2019 – June 1, 2020) which was net negative. The 

maximum volumetric change occurred over the growing season (June 1, 2020 – October 5, 2020) 

with a value of 1860.8 ± 1528.7 m3 with no LoD, 1567.1 ± 987.4 m3 with a 68% CI LoD, and 

451.7 ± 204.8 m3 with a 95% CI LoD. The 1-year, growing season, spring-summer and summer-

fall datasets had significantly variable total volumetric change values depending on LoD. 

However, total volumetric change values for the winter dataset were more comparable at 

different LoD confidence intervals: -397.6 ± 1285.5 m3 with no LoD, -389.9 ± 525.1 m3 with a 

68% CI LoD, and -299.4 ± 284.5 m3 with a 95% CI LoD.  

An increased confidence level in the LoD for all time periods generally resulted in a 

smaller magnitude of measured volumetric change. Total volumetric uncertainty values were 

relatively large compared to corresponding total volumetric change values, and sometimes 

exceeded measured volumetric change when no LoD was applied and when 68% CI LoD was 

applied. Total volumetric uncertainty values for total volumetric change calculated with a 95% 

CI LoD were all lower than measured change but were still relatively large. Volumetric change 

results for the river area of the Full Site dataset are shown in Appendix F, Table F-1. 
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Table 4.5. Results of the volumetric change analysis for the site area of the Full Site datasets using no LoD, an LoD with 68% CI and 

an LoD with a 98% CI. Volumetric uncertainties were calculated using the Taylor (1997) equation. 

Time Frame 

No LoD 68% CI 95% CI 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

2019/11/24 - 2020/10/05 

(1-Year) 
1464.3 ± 1690.9 2.5 ± 2.9 2.9 1228.0 ± 929.9 3.9 ± 2.9 5.7 418.8 ± 284.5 4.3 ± 2.9 

2019/11/24 - 2020/06/01 

(Winter) 
-397.6 ± 1285.5 -0.7 ± 2.2 2.2 -389.9 ± 525.1 -1.7 ± 2.2 4.4 -299.4 ± 181.4 -3.7 ± 2.2 

2020/06/01 - 2020/10/05 

(Growing Season) 
1860.8 ± 1528.7 3.2 ± 2.6 2.6 1567.1 ± 987.4 4.2 ± 2.6 5.2 451.7 ± 204.8 5.8 ± 2.6 

2020/06/01 - 2020/08/21 

(Spring – Summer) 
430.7 ± 1331.9 0.7 ± 2.3 2.3 273.8 ± 316.4 2.0 ± 2.3 4.5 39.6 ± 32.1 2.8 ± 2.3 

2020/08/21 - 2020/10/05 

(Summer - Fall) 
1429.7 ± 1725.6 2.5 ± 3.0 3.0 865.5 ± 625.6 4.1 ± 3.0 5.8 123.4 ± 58.2 6.3 ± 3.0 
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Target area datasets were subdivided into 5 specific areas for calculating total volumetric 

change: site, river, borrow pit, drainage channels and main channel mouth. Since the Target Area 

DoDs for the spring-summer and summer-fall datasets were determined to be unreliable, their 

volumetric results will not be discussed. Results for the site area are summarized in Table 4.6, 

and show a similar trend to the site area in the Full Site datasets. Both 1-year and growing season 

DoDs had a net positive volumetric change, but the winter DoD had a net negative volumetric 

change. The highest rate of volumetric change within these time periods varied by LoD. With no 

LoD, and with a 95% CI LoD, the highest measured volumetric change occurred over the 

growing season: 666.6 ± 923.1 m3 and 67.0 ± 39.6 m3 respectively. However, when an LoD with 

a 68% CI was applied, the highest amount of volumetric change occurred over the 1-year period:  

440.9 ± 522.8 m3.  

Similar to the site area of the Full Site DoDs, there was a large amount of variation within 

measured total volumetric change between different LoDs confidence intervals, with the least 

amount of variation occurring in the winter period: -126.3 ± 955.5 m3 with no LoD, -184.7 ± 

397.6 m3 with a 68% CI LoD, and -163.8 ± 108.3 m3 with a 95% CI LoD. Volumetric 

uncertainties for Target Area DoDs were very high and exceeded the measured change values in 

the majority of results. The river area and problematic datasets (spring-summer, summer-fall) 

volumetric change results for the Target Area DoDs are reported in Appendix F, Tables F-2 to F-

4. 
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Table 4.6. Results of the volumetric change analysis for the site area of the Target Area datasets using no LoD, an LoD with 68% CI 

and an LoD with 95% CI. Volumetric uncertainties were calculated using the Taylor (1997) equation. 

Time Frame 

No LoD 68% CI 95% CI 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

2019/11/24 - 2020/10/05 

(1-Year) 
540.4 ± 1040.1 1.3 ± 2.5 2.5 440.9 ± 522.8 2.1 ± 2.5 4.9 46.5 ± 136.3 0.9 ± 2.5 

2019/11/24 - 2020/06/01 

(Winter) 
-126.3 ± 955.5 -0.3 ± 2.3 2.3 -184.7 ± 397.6 -1.1 ± 2.3 4.5 -163.8 ± 108.3 -3.5 ± 2.3 

2020/06/01 - 2020/10/05 

(Growing Season) 
666.6 ± 923.1 1.6 ± 2.2 2.2 369.2 ± 283.6 2.9 ± 2.2 4.3 67.0 ± 39.6 3.7 ± 2.2 
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 Volumetric change values for the borrow pit, main drainage channels and main channel 

mouth (extents shown in Figure 3.16) are outlined in Table 4.7. Compared to volumetric results 

from the site, the volumetric uncertainties for these areas of interest were generally smaller 

relative to measured volumetric change, especially when an LoD was applied (either 68% or 

95% CI). Patterns of volume loss or gain varied between the borrow pit and the main drainage 

channels and main channel mouth. In the borrow pit, all time periods showed net positive 

volumetric change, and the largest amount of volumetric change occurred over the 1-year period: 

174.5 ± 82.9 m3 with no LoD, 166.9 ± 64.7 m3 with a 68% CI LoD, and 138.4 ± 43.7 m3 with a 

95% CI LoD. 

 Seasonal results show that the majority of surface elevation gain in the borrow pit 

occurred over the winter (146.8 ± 76.2 m3 with no LoD, 140.4 ± 58.0 m3 with a 68% CI LoD, 

and 114.3 ± 38.7 m3 with a 95% CI LoD). In the drainage channels and main channel mouth, 

both the 1-year and winter periods had very similar net negative volumetric change values, 

showing that the majority of change occurred over the winter. The growing season had very 

small volumetric change values, with the drainage channels net positive with no LoD and a 68% 

CI LoD, but net negative with a 95% CI LoD, and the main channel mouth net negative at all 

LoD levels. Total volumetric change values for these datasets did vary with different LoDs, but 

to a lesser extent than seen in the site area results.  
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Table 4.7. Results of the volumetric change analysis for areas of interest in Target Area datasets using no LoD, an LoD with 68% CI 

and an LoD with 95% CI. Volumetric uncertainties were calculated using the Taylor (1997) equation. 

Area Time Frame 

No LoD 68% CI 95% CI 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

Borrow 

Pit 

2019/11/24 - 2020/10/05 

(1-Year) 
174.5 ± 82.9 5.0 ± 2.5 2.5 166.9 ± 64.7 6.4 ± 2.5 4.9 138.4 ± 43.7 7.9 ± 2.5 

2019/11/24 - 2020/06/01 

(Winter) 
146.8 ± 76.2 4.4 ± 2.3 2.3 140.4 ± 58.0 5.5 ± 2.3 4.5 114.3 ± 38.7 6.7 ± 2.3 

2020/06/01 - 2020/10/05 

(Growing Season) 
27.7 ± 73.6 0.8 ± 2.2 2.2 14.7 ± 12.5 2.6 ± 2.2 4.3 0.8 ± 0.5 3.8 ± 2.2 

Drainage 

Channels 

2019/11/24 - 2020/10/05 

(1-Year) 
-103.5 ± 28.4 -9.0 ± 2.5 2.5 -102.3 ± 20.9 -12.2 ± 2.5 4.9 -99.2 ± 16.0 -15.4 ± 2.5 

2019/11/24 - 2020/06/01 

(Winter) 
-106.2 ± 26.1 -9.3 ± 2.3 2.3 -104.8 ± 22.2 -10.8 ± 2.3 4.5 -98.5 ± 19.2 -11.7 ± 2.3 

2020/06/01 - 2020/10/05 

(Growing Season) 
3.8 ± 25.2 0.3 ± 2.2 2.2 2.5 ± 14.8 0.4 ± 2.2 4.3 -1.4 ± 8.7 -0.4 ± 2.2 

Main 

Channel 

Mouth 

2019/11/24 - 2020/10/05 

(1-Year) 
-127.0 ± 9.5 -33.2 ± 2.5 2.5 -126.9 ± 8.7 -36.4 ± 2.5 4.9 -126.6 ± 8.0 -39.3 ± 2.5 

2019/11/24 - 2020/06/01 

(Winter) 
-125.6 ± 8.7 -32.8 ± 2.3 2.3 -125.5 ± 8.1 -35.1 ± 2.3 4.5 -125.0 ± 7.7 -37.0 ± 2.3 

2020/06/01 - 2020/10/05 

(Growing Season) 
-1.0 ± 8.4 -0.2 ± 2.2 2.2 -1.5 ± 5.5 -0.6 ± 2.2 4.3 -2.7 ± 3.7 -1.6 ± 2.2 
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Total volumetric change values were standardized by dividing the total volumetric 

change by the number of months in each corresponding time period. Monthly volumetric change 

values are reported in Figures 4.18-4.21. The general trend of monthly volumetric change in the 

site area for Full Site datasets (Figure 4.18) and Target Area datasets (Figure 4.19) was a 

negative value during the winter (-64.1 m3‧month-1 and -20.4 m3‧month-1 respectively), increased 

to positive in the Target Area growing season (159.9 m3‧month-1) and Full Site spring-summer 

(159.5 m3‧month-1) and summer-fall (953.1 m3‧month-1) periods, and a value between those for 

the 1 year period (142.2 m3‧month-1 and 52.5 m3‧month-1 respectively).  

Target Area borrow pit data sets showed an opposite trend (Figure 4.20), with a peak 

monthly volumetric change in the winter of 23.7 m3‧month-1, and minimum change over the 

growing season of 6.7 m3‧month-1. In the main channel mouth area (Figure 4.21), the monthly 

rates of change were negative over the 1-year (-10.051 m3‧month-1) and winter (17.134    

m3‧month-1) periods, but had lower magnitudes than the rates of volumetric gain in the borrow 

pit for the same time periods. Over the growing season, the rate of change was positive, but with 

a relatively low magnitude of 0.921 m3‧month-1. 

 

Figure 4.18. Volumetric change per month based on seasonal DoDs for the site area of the Full 

Site datasets. 
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Figure 4.19. Volumetric change per month based on seasonal DoDs for the site area of the 

Target Area datasets. 

 

Figure 4.20. Volumetric change per month based on seasonal DoDs for the borrow pit area of 

the Target Area datasets. 

 

Figure 4.21. Volumetric change per month based on seasonal DoDs for the main channel mouth 

area of the Target Area datasets. 
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4.5 Raster Correlation 

Multiple linear regression models were calculated in R to predict surface elevation 

change (DoD rasters) based on starting elevation and distance from channel (DFC). The models 

were calculated as scaled so that coefficient magnitudes for both independent variables could be 

directly compared, as well as unscaled, and cross validation was completed to estimate the 

prediction error of each model. Three time periods for DoD calculation were examined in this 

analysis: 1-year (November 24, 2019 – October 5, 2020), winter (November 24, 2019 – June 1, 

2020), and growing season (June 1, 2020 – October 5, 2020). Results of each multiple linear 

regression model are presented in Tables 4.8-4.13. 

For the 1-year period borrow pit dataset, a significant regression equation was found 

(F(3,11679) = 3999, p <2.2x10-16), with an adjusted R2 of 0.507 (Table 4.8). The model shows 

that elevation, DFC, and the interaction effect (elevation * DFC) were significant predictors of 

surface elevation change, and that the regression equation explained 50.6% of data variance. The 

regression coefficients show that elevation was negatively correlated with surface elevation 

change, and DFC was positively correlated, but elevation was approximately 7 times stronger a 

predictor of surface elevation change. By incorporating the interaction effect, it was determined 

that the overall effect of DFC on surface elevation change was negative at all elevations, and the 

overall effect of elevation was negative at all DFC values. The effect of DFC increased in 

magnitude at higher elevations, and the effect of elevation increased in magnitude at higher DFC 

values. The RMSE of the model was 2.601x10-2.  

The 1-year period full site dataset also had a significant regression equation (F(3,12981) 

= 1273, p <2.2x10-16), with an adjusted R2 of 0.227 (Table 4.9). In this model, only 22.7% of 

variance in surface elevation change was explained by elevation, DFC and interaction effect, 

although all independent variables were significant predictors. The regression coefficients show 
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that elevation was negatively correlated with surface elevation change, and distance from 

channel was positively correlated. Elevation was approximately 2.6 times stronger a predictor 

than DFC, and the interaction effect had a similar magnitude of prediction power as DFC. 

Incorporation of the interaction effect shows that the overall effect of DFC on surface elevation 

change was negative at elevations greater than 6.151 m CGVD2013, and positive at elevations 

below this threshold. The magnitude of this effect was larger at lower elevations than high but 

did not vary greatly between DEM values. The overall effect of elevation on surface elevation 

change was negative at all DFC values, and the magnitude of this effect was greatly increased at 

higher DFC values. The RMSE of the model was 2.705x10-2.  

Table 4.8. Multiple linear regression results for surface elevation change in the borrow pit from 

November 24, 2019 to October 5, 2020 (1-year, Target Area dataset). 

 Scaled Coefficient Unscaled Coefficient P-Value 

Intercept 5.191x10-2 (2.491x10-4) 0.486 (0.003976) <2x10-16 *** 

Elevation -2.696x10-2 (2.506x10-4) -0.08137 (0.0007524) <2x10-16 *** 

Distance from Channel 3.522x10-3 (2.506x10-4) 0.00102 (0.00007423) <2x10-16 *** 

Interaction Effect -1.084x10-3 (2.398x10-4) -0.0009681 (0.0002141) 6.2x10-6 *** 

Adjusted R-squared: 0.507   

No. observations 11679   

RMSE: 2.601x10-2   
Standard errors are reported in parentheses. RMSE calculated using 5-fold cross validation. 

*, **, *** indicates significance at the 90%, 95%, and 99% level, respectively. 
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Table 4.9. Multiple linear regression results for surface elevation change within the study site 

but excluding main channel mouth, drainage ditches and borrow pit from November 24, 2019 to 

October 5, 2020 (1-year, Full Site dataset). 

 Scaled Coefficient Unscaled Coefficient P-Value 

Intercept 3.421x10-2 (2.724x10-4) 0.1314809 (0.0049289) <2x10-16 *** 

Elevation -1.774x10-2 (3.102x10-4) -0.0180334 (0.000854) <2x10-16 *** 

Distance from Channel 6.733x10-3 (3.260x10-4) 0.0202884 (0.0006281) <2x10-16 *** 

Interaction Effect -8.757x10-3 (2.725x10-4) -0.0032986 (0.0001026) <2x10-16 *** 

Adjusted R-squared: 0.227   

No. observations 12981   

RMSE: 2.705x10-2   
Standard errors are reported in parentheses. RMSE calculated using 5-fold cross validation. 

*, **, *** indicates significance at the 90%, 95%, and 99% level, respectively. 

 

A significant regression equation was found for both borrow pit and remaining site area 

datasets over the winter period, (F(3, 11679) = 2261, p <2.2x10-16), with an adjusted R2 of 0.367, 

and (F(3, 12981) = 1111, p <2.2x10-16), with an adjusted R2 of 0.204 respectively (Table 4.10 

and Table 4.11). Both models showed a negative correlation between elevation and surface 

elevation change, and a positive correlation between DFC and surface elevation change, and all 

independent variables were significant predictors. In the borrow pit, elevation was a 13.4 times 

stronger predictor than DFC, and in the remainder of site it was only 2.6 times stronger a 

predictor. In both datasets, the overall effect of DFC on surface elevation change was negative 

above a certain elevation threshold (5.661 m CGVD2013 for the borrow pit, 6.098 m 

CGVD2013 for the site area), and positive below this threshold, although the magnitude of this 

effect varied minimally with changing elevation values. The effect of elevation on surface 

elevation change was negative at all DFC values and increased in magnitude at larger DFC 

values for both datasets, but this increase was more prominent in the site area than the borrow 

pit. The RMSE of the borrow pit model was 2.547x10-2, and the RMSE of the remaining site area 

model was 2.622x10-2. 
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Table 4.10. Multiple linear regression results for surface elevation change in the borrow pit from 

November 24, 2019 to June 1, 2020 (winter, Target Area dataset). 

 Scaled Coefficient Unscaled Coefficient P-Value 

Intercept 4.389x10-2 (2.441x10-4) 0.321421 (0.0065551) <2x10-16 *** 

Elevation -1.952x10-2 (2.455x10-4) -0.051974 (0.0012324) <2x10-16 *** 

Distance from Channel 1.456x10-3 (2.455x10-4) 0.0085918 (0.0011357) <2x10-16 *** 

Interaction Effect -1.699x10-3 (2.349x10-4) -0.0015176 (0.0002097) 4.94x10-13 *** 

Adjusted R-squared: 0.367   

No. observations 11679   

RMSE: 2.5471x10-2   
Standard errors are reported in parentheses. RMSE calculated using 5-fold cross validation. 

*, **, *** indicates significance at the 90%, 95%, and 99% level, respectively. 

Table 4.11. Multiple linear regression results for surface elevation change within the study site 

but excluding main channel mouth, drainage ditches and borrow pit from November 24, 2019 to 

June 1, 2020 (winter, Full Site dataset). 

 Scaled Coefficient Unscaled Coefficient P-Value 

Intercept 1.117x10-3 (2.641x10-4) 0.05373 (0.004779) 2.38x10-5 *** 

Elevation -1.548x10-2 (3.007x10-4) -0.01024 (0.000828) <2x10-16 *** 

Distance from Channel 5.959x10-3 (3.161x10-4) 0.02152 (0.000609) <2x10-16 *** 

Interaction Effect 
-9.369 x10-3 (2.642x10-

4) 
-0.003529 (0.00009951) <2x10-16 *** 

Adjusted R-squared: 0.204   

No. observations 12981   

RMSE: 2.622x10-2   
Standard errors are reported in parentheses. RMSE calculated using 5-fold cross validation. 

*, **, *** indicates significance at the 90%, 95%, and 99% level, respectively. 

Model results for the growing season datasets are presented in Table 4.12 and Table 4.13 

for the borrow pit and site area respectively. As with all other models, a significant regression 

equation was found for the borrow pit (F(3, 11679) = 1573, p <2.2x10-16), with an adjusted R2 of 

0.288 and the site area (F(3, 12981) = 57.31, p <2.2x10-16), with an adjusted R2 of 0.013. The 

adjusted R2 value for the site area growing season model was the lowest out of all the presented 

models. In both borrow pit and site area models, elevation was negatively correlated with surface 

elevation change and DFC was positively correlated. However, in the site area dataset, DFC was 
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not a significant predictor, and in both datasets the interaction effect was a less significant 

predictor than the independent variables in all other models.  

Incorporation of the interaction effect into the overall effect of both independent variables 

shows that the growing season dataset for both site and borrow pit were unique compared to the 

other models. In these models, the overall effect of DFC on surface elevation change was 

positive at all elevations. In the borrow pit, the overall effect of DFC had a higher magnitude at 

lower elevations, while in the site area it had a higher magnitude at higher elevations. The overall 

effect of elevation on surface elevation change in the borrow pit was negative at all DFC values, 

and its magnitude did not vary greatly with different DFC values. Alternatively, the overall effect 

of elevation on surface elevation change in the site area was negative only when DFC values 

where less than 23.537 m, and positive when DFC values were above this threshold. 

Table 4.12. Multiple linear regression results for surface elevation change in the borrow pit from 

June 1, 2020 to October5, 2020 (growing season, Target Area dataset). 

 Scaled Coefficient Unscaled Coefficient P-Value 

Intercept 8.338x10-3 (1.058x10-4) 0.1231 (0.002917) <2x10-16 *** 

Elevation -7.195x10-3 (1.057x10-4) -0.02172 (0.0005415) <2x10-16 *** 

Distance from Channel 2.191x10-3 (1.064x10-4) 0.002309 (0.0005427) <2x10-16 *** 

Interaction Effect -3.477x10-4 (3.477x10-4) 
-0.0003132 

(0.00009959) 
0.00166 ** 

Adjusted R-squared: 0.288   

No. observations 11679   

RMSE: 1.127x10-2   

Standard errors are reported in parentheses. RMSE calculated using 5-fold cross validation. 

*, **, *** indicates significance at the 90%, 95%, and 99% level, respectively. 
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Table 4.13. Multiple linear regression results for surface elevation change within the study site 

but excluding main channel mouth, drainage ditches and borrow pit from June 1, 2020 to 

October5, 2020 (growing season, Full Site dataset). 

 Scaled Coefficient Unscaled Coefficient P-Value 

Intercept 3.307x10-2 (1.722x10-4) 0.07269 (0.003239) <2x10-16 *** 

Elevation -1.817x10-3 (1.981x10-4) -0.006821 (0.0005607) <2x10-16 *** 

Distance from Channel 2.177x10-4 (2.096x10-4) 0.001655 (0.0005005) 0.298815 

Interaction Effect 5.838x10-4 (1.645x10-4) 0.0002898 (0.00008166) 0.000388 ** 

Adjusted R-squared: 0.011   

No. observations 12981   

RMSE: 1.735x10-2   

Standard errors are reported in parentheses. RMSE calculated using 5-fold cross validation. 

*, **, *** indicates significance at the 90%, 95%, and 99% level, respectively. 

 

 

 To summarize, the 1-year and winter models showed similar results, with the overall 

effect of elevation on surface elevation change being negative at all DFC values, but the overall 

effect of DFC being positive below a certain elevation threshold, and negative above this 

threshold (excluding the 1-year borrow pit model in which this value was negative at all 

elevations). Alternatively, the overall effect of DFC on surface elevation change was positive in 

both growing season models. The overall effect of elevation on surface elevation change was 

consistently negative in the borrow pit growing season model, but was positive above a certain 

DFC threshold in the site area model. Adjusted R2 values were higher in borrow pit models than 

in full site models, but in both the borrow pit and site area, adjusted R2 values were highest in the 

1-year models and lowest in the growing season models. Generally, in all models, elevation was 

a stronger predictor of surface elevation change than DFC.
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Chapter 5: Discussion 

5.1 Drainage Networks 

An objective of this research was to determine the characteristics of the developing 

channel networks within the Converse restoration site and how they changed throughout the 

study period. Additionally, this research sought to establish how the antecedent landscape history 

influenced channel evolution patterns. Results of the channel delineation showed a strong 

seasonal trend in channel density, with fall datasets having lower densities than growing season 

datasets, a trend not otherwise present in the literature. Comparison of the delineations from 

multiple collection dates and persistence analyses indicated an early initialization of drainage 

networks and general stability of these networks throughout the study period. The developing 

channel network has incorporated relic agricultural features where present, but also some relic 

natural features, and embryonic channels have developed where the effects of the antecedent 

landscape history were not present. Further research should be conducted to determine whether 

these three channel types are evolving differently within the site. 

5.1.1 Seasonality of Network Characteristics 

The drainage network characteristics highlighted a seasonal pattern in channel evolution. 

Rather than increase over the duration of the study period as expected, drainage network density 

peaked in the spring and summer months and was lower in fall in both Full Site and Target Area 

datasets (Figure 4.5). It is hypothesized that over the winter, channel networks in some areas 

underwent higher rates of erosion within the channels themselves, while the marsh platform/tidal 

flats experienced higher rates of deposition, increasing the depth of channels. Water flow 

pathways that had a depth <2 cm during the fall months, may have developed over the winter to 

have depths >2 cm, changing their classification from proto channels (fall) to existent channels 
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(spring), and increasing total existent channel length and therefore Hortonian drainage density. 

Channel infilling in smaller channels may have occurred over the summer months, causing 

channel depth to reduce over time and be lowest in fall. An example of a channel that was 

classified as existent in 2020 and 2021 spring datasets but proto in the 2020 fall dataset is shown 

in Figure 5.1. This trend can also be visualized in the winter and growing season DoD rasters, 

and an example of this is shown in Figure 5.2. In this example, two channels that have branched 

from the main drainage ditch are characterized by erosion in the winter DoD and infilling in the 

growing season DoD. This trend was not present within all channels however, especially the 

main drainage ditch, which had infilling over all time periods in areas closer to the borrow pit, 

and high levels of erosion over all time periods closer to the main channel mouth (see Figures 4.8 

to 4.17). 

 

Figure 5.1. Channel classification results for a single channel in a) June 1, 2020 (spring) 

oblique dataset, b) October5, 2020 (fall) oblique dataset and c) May 4, 2021 (spring) oblique 

dataset. 

a) b) c) 

        Existent 

        Proto 
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Figure 5.2. a) Winter (November 24, 2019 – June 1, 2020) Target Area DoD showing erosion 

along existent channels delineated using the June 1, 2020 dataset and b) growing season (June 

1, 2020 – October 5, 2020) Target Area DoD showing a lack of erosion along the same 

channels. 

The difference between densities in the fall and the growing season were of a higher 

magnitude in Target Area datasets than full site datasets (Figure 4.5). This difference is most 

likely due to the nature of delineated channels in each dataset. During Target Area delineation, a 

smaller flow accumulation threshold resulted in a delineation with many more smaller water 

flow pathways (proto channels) and embryonic channels. Since Full Site datasets were processed 

with a higher flow accumulation threshold, fewer channels, but larger and with more drainage 

area were delineated. These channels generally had depths greater than 2 cm all year round, and 

therefore there was less variability in classification results between collection dates. 

5.1.2 Early Initialization and Stability 

Results of the channel analyses indicate that the site’s drainage network was relatively 

stable throughout the study period, and that the ultimate channel network patterns imprinted 

within the first year of tidal flow. This result was supported by a qualitative analysis of channel 

delineations showing general agreement in channel locations, as well as the persistence analysis 
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(Tables 4.3 and 4.4) which determined that the majority of channels that persisted from their 

collection date to the subsequent collection date then persisted to all remaining collection dates. 

Since the study period for this research began almost one year after the initial introduction 

of tidal waters to the study site, measurements of channel initialization in the first year of 

restoration cannot be conducted. However, RPAS data collected during the 2019 field season as 

part of the site monitoring project and other research activities provided an additional insight into 

channel evolution. Figure 5.3 shows the borrow pit at three dates prior to the study period, 

overlaid with the November 24, 2019 channel delineation. There is general alignment between 

channels present just a few months after the site breach and the delineation, demonstrating that 

embryonic channels in areas unaffected by relic landscape features established rapidly. This 

finding agrees with modelling results of D’alpaos et al. (2005) as well as empirical study results 

by Dale et al. (2018), in which channel networks had begun establishing within an MR site in the 

UK within 1 year of site breach. However, Dale et al. (2018) determined that channel network 

initiation was linked to sub surface piping features, a relationship that has not been established at 

the Converse restoration site.  
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Figure 5.3. November 24, 2019 Target Area channel delineation (dashed blue line) overlaid on 

supplementary RPAS orthomosaics collected in a) September 2018, prior to the introduction of 

tidal flow to the site, b) May 2019, 4.5 months after the introduction of tidal flow, and c) August 

2019, 8 months after the introduction of tidal flow. 

In areas with remnant agricultural ditching, throughout all time periods the channel 

networks were generally restricted to these ditches and their positions maintained. Differences 

between collection dates arose from whether or not a ditch was part of the drainage network at 

that specific time, and in the areas where the drainage ditches connected to the main drainage 

channel (Figure 5.4). Similar to areas without ditch features, channel establishment was rapid, 

a) 

b) 

c) 
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and the drainage networks were relatively stable throughout the study period despite some 

changes over time as referenced. However, one significant area of change between collection 

dates occurred in the western portion of the site at the pond. Imagery of this area shows that the 

pond itself drains from multiple locations (Figure 5.5), but since the delineation method used in 

this study did not allow for multiple flow directions, only one main drainage path was delineated 

in each dataset. The delineated channel network in each dataset shifted between the north and 

south drainage path depending on the collection date, with drainage along the south path in the 

November 8, 2020 and July 9, 2020 datasets, and drainage along the north path in all other 

datasets. After closer examination of the orthomosaics for all collection dates, it appeared that 

both drainage paths were functioning throughout the study period, and it is unclear whether this 

shift in the delineations represents an actual shift in the majority of water flow. 

 

Figure 5.4. Multitemporal channel delineation results (Full Site datasets) in areas of the 

Converse restoration site with relic agricultural ditches overlaid on the May 4, 2021 

orthomosaic. 
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Figure 5.5. Illustration of multiple drainage paths for the pond in the Converse restoration site. 

Although the channel networks were generally stable throughout the study period, in 

areas without relic landscape influence such as the borrow pit, there was a noticeable shift in 

some channel locations between November 24, 2019 and the remaining collection dates. This 

shift can be visualized in Figure 5.6, and may indicate that the drainage networks in these areas 

were still initializing in November 2019. This finding is confirmed in the persistence analysis 

(Tables 4.3 and 4.4) as the smallest length of channels persisted between November24, 2019 and 

June 1, 2020 compared to all other time periods.  
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Figure 5.6. Multitemporal channel delineation results (Target Area datasets) in areas of the 

Converse restoration site without relic agricultural features overlaid on the May 4, 2021 

orthomosaic. 

In comparing rates of persistence between existent and proto classified channel segments 

(Figures 4.6 and 4.7), results show that existent channels were more likely to persist to either 

classification than proto channels, and that the majority of existent channel segments maintained 

their existent classification. This was expected because proto channels by definition had depths 

less than 2 cm along the majority of their length and should have been more likely to shift or be 

affected by sedimentation patterns and surface disturbances such as footprints. However, since 

proto channels were delineated following routes of steepest elevational gradient, it was expected 

that these pathways would erode into measurable channels over time, as elevational gradient and 
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shear stress have been modelled to be the driving factor of channel incision in early tidal network 

development (D’alpaos et al., 2005). In this study, the average percentage of proto channel 

segments in all delineations that evolved to existent channel segments in the May 4, 2021 dataset 

was only 6.46%. This may indicate the importance of factors other than elevational gradient in 

early channel incision and development, or that the elevation models used in this study for 

channel delineation had errors that resulted in the misidentification of steepest elevational 

gradients in areas without existing channel incision.  

5.1.3 Effect of the Antecedent Landscape 

Delineated channels within the study site (Appendix G) can be divided into three 

categories: channels developing within relic agricultural/anthropogenic features, channels 

developing within relic natural features, and embryonic channels developing without the 

influence of landscape history (Figure 5.7). Each of these channel types were present in both Full 

Site and Target Area delineations and were maintained between collection dates. In all datasets, 

relic agricultural ditch features have been incorporated into the site’s drainage network, 

representing the first channel type as previously outlined. These channels are characterized by 

straight lines and right angles, characteristics that would not normally be present in natural salt 

marsh channel networks (MacDonald et al., 2010). The incorporation of these features into the 

site’s drainage network agrees with findings from other researchers (French and Stoddart, 1992; 

MacDonald et al., 2010; Bowron et al., 2011; Lawrence et al., 2018), and if the site follows a 

similar trajectory as those studied by Macdonald et al. (2010) which are also located in the Bay 

of Fundy, they may be maintained for another 50 years at least.  

However, in one area of the site directly south of the borrow pit, existent channel 

delineations from the November 24, 2019 and May 4, 2021 Target Area datasets show a slight 
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reduction in drainage network use of relic agricultural ditching in an area with relic natural 

drainage features (Figure 5.8), which may indicate a preference in channel characteristics of the 

site’s drainage network, and an infilling of some agricultural ditches. The relic natural drainage 

features in this area appear to be relic salt marsh channels from before the historic salt marsh 

landscape was drained and dyked. These channels, along with another main channel branch ~100 

m south of this area (see Figure 5.7) are present in all channel delineations. 

 

Figure 5.7. June 1, 2020 Full Site existent channel delineation and orthomosaic, labelled with 

the three distinct channel types present within the site. 
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Figure 5.8. November24, 2019 and May 4, 2021 existent channel delineations (Target Area 

datasets) and May 4, 2021 orthomosaic, highlighting a reduction of drainage network usage of 

relic agricultural ditching.  

The third category of channel within the study site is embryonic channels that have 

developed in areas without the influence of the landscape history. Specifically, they have mainly 

developed in three areas of the site as shown in Figure 5.7. These areas, including the borrow pit, 

were characterized by relatively low elevations at the start of the study period compared to the 

rest of the site. This agrees with the finding by Vandenbruwaene et al. (2012b), that channel 

development in a constructed tidal marsh was preferential to areas of lower elevation. RPAS 

imagery collected prior to site breach (Appendix J, Figure J-3) shows these areas did not have 

remnant agricultural ditching (originally present in the borrow pit area but removed during 

excavation), and therefore may have mimicked natural tidal flats in terms of embryonic channel 

development. The borrow pit may be an example of a methodology for reducing the influence of 

relic anthropogenic features on drainage network evolution in MR sites, showing that the 
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removal of the upper layer of agricultural vegetation and sediment in areas with ditch features 

may encourage a more natural channel network establishment.  

5.2 Spatial and Temporal Patterns of Surface Elevation and Volumetric Change 

Another of the main research objectives of this thesis was to determine the spatial and 

temporal patterns of surface elevation and volumetric change within the Converse restoration 

site. Results showed significant variation in surface elevation and volumetric change between 

areas of interest (site, borrow pit, main channel mouth), as well as strong seasonal trends. At the 

site level, the presence of agricultural vegetation beneath a thin layer of sediment may have 

significantly affected surface elevation change values, resulting in measured sediment loss 

instead of sediment deposition as expected. In the borrow pit, where agricultural vegetation was 

not present, surface elevation change was generally net positive, showing an influx of sediment 

throughout the year, with the highest measured volumetric change occurring over the winter 

which coincides with expected peak levels of suspended sediment concentrations (Poirier et al., 

2017). Sedimentation rates in the borrow pit were comparable to other sites in the Bay of Fundy 

(Matheson, 2020; Virgin et al., 2020). The main channel mouth was characterized by net erosion 

(surface elevation decrease) throughout the year, with the highest magnitude of change occurring 

over the winter. Sediment influx to the borrow pit was higher than sediment loss in the channel 

mouth over all time periods, indicating that sediment is entering the site from other areas of the 

system. 

5.2.1 Seasonality of Surface Elevation and Volumetric Change 

Sedimentation patterns and volumetric change at the Converse restoration site had a strong 

seasonal signal over the course of the study period, although the trends were not consistent 

between areas of interest. At the site level, in both Full Site and Target Area datasets, there was a 
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net loss of surface elevation over the winter, and a net gain over the growing season. This result 

was unexpected, as increased suspended sediment concentrations in the Bay of Fundy in the 

winter (Poirier et al., 2017) were expected in increase sediment deposition rates (Friedrichs and 

Perry, 2001) and surface elevation change. In the borrow pit, all DoD time periods resulted in a 

net gain of surface elevation, with the highest gain occurring over the winter as expected.  

The discrepancy between the site area and borrow pit may be due to variations in surface 

characteristics. Surfaces in some areas of the site in November 2019 were characterized by 

remnant agricultural vegetation (grasses) that were covered by a thin layer of sediment. The 

sediment was not heavy enough to fully compact the vegetation layer, so there were many 

pockets of air between the actual ground surface and sediments that had been deposited since site 

breach approximately one year prior. This created false surfaces in some areas of the DSM that 

were not accounted for in processing. Over the course of the 2019 winter, additional deposited 

sediment increased compaction forces on the vegetated layer, and air pockets were reduced, 

which lowered the elevation of the sediment surface as measured in June 2020. In the resulting 

winter DoD, these areas were characterized by surface elevation loss, but that loss may have 

been a result of compaction rather than sediment erosion, and those areas may have had 

significant amounts of sediment deposition. In the borrow pit, where agricultural vegetation had 

been removed during excavation, deposited sediments caused surface elevation to increase, 

resulting in the net volumetric gain as calculated for all time periods. 

Although the spring-summer and summer-fall Target Area datasets were excluded from 

further examination due to clear offsets between surfaces, the Full Site DoDs for these time 

periods did not appear to suffer from the same issues and therefore were investigated. These 

DoDs and volumetric change results show significant variation in sedimentation patterns 
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throughout the growing season. While the spring-summer DoD was characterized by a mix of 

surface elevation loss and gain, with a small net gain, the summer-fall DoD was almost entirely 

characterized by surface elevation gain, and the rate of volumetric change was approximately 6 

times greater than the spring-summer dataset (Figure 4.18). This significant variation may be due 

to the tidal regime during the growing season (Figure 2.5). Between the August and October 

surveys, there were a higher number of high tides that exceeded 6.0 m CGVD2013 compared to 

the June-August time period, meaning that there was more flooding of the site at greater depths 

and longer inundation times. An increase in these factors have been shown to increase sediment 

deposition in natural salt marsh systems (French and Spencer, 1993; Leonard, 1997), and this 

relationship may also be occurring at the Converse restoration site. 

5.2.2 Effect of the Antecedent Landscape 

The effect of the antecedent agricultural landscape history is clearly displayed when 

comparing the seasonal patterns of sedimentation in the site area and borrow pit. A large portion 

of the site was characterized by relic agricultural vegetation that may have significantly altered 

surface elevation change and volumetric change calculations as earlier described. The borrow pit, 

which had agricultural vegetation and upper soil layer removed, displayed the opposite 

sedimentation pattern to the rest of the site, with higher rates of sedimentation occurring over the 

winter. However, the effect of agricultural vegetation may have only been to mask the actual 

sedimentation rates occurring on the site, and it is unclear if calculated sedimentation rates would 

have been more similar between the site and borrow pit if the agricultural vegetation had been 

removed prior to site breach. Previous work has shown that borrow pit infill rates may be higher 

than those measured in natural salt marshes or on restoration site marsh platforms (Matheson, 

2020), a trend that is supported when comparing the borrow pit and remaining site area 



   

 

115 

 

sedimentation rates at the Converse restoration site, although the potential skewing of results by 

remnant agricultural vegetation compaction must be considered when making these comparisons. 

5.2.3 Rate of Sedimentation 

Since sedimentation rates throughout the site area were affected by the presence of 

agricultural vegetation, and the actual amount of sediment accretion can not be directly 

measured, sedimentation rates in the borrow pit will be used in comparison to other studies. The 

average vertical rate of change over the 1-year period (second year of restoration) in the borrow 

pit was 5.0 ± 2.5 cm with no LoD, and 6.4 ± 2.5 cm with an LoD (68% CI). These results were 

comparable to sediment deposition values collected at the Aulac MR site just north of Converse 

in the second year of restoration (Virgin et al., 2020), as well as sediment accretion values for the 

same time period measured at the Converse restoration site using marker horizons (Bowron et 

al., 2021). Previous work has identified sediment accretion rates in other borrow pits in the Bay 

of Fundy to vary significantly, ranging from -0.54 m‧y-1 to 0.18 m‧y-1 (Matheson, 2020), with 

results from this study falling within that range.  

Comparing the volumetric rate of sediment loss in the main channel mouth (Figure 4.21) to 

the volumetric rate of sediment gain in the borrow pit (Figure 4.20) over the 1-year, winter and 

growing season periods shows that there is consistently a larger influx of sediment to the borrow 

pit alone than is lost from the main channel mouth. This indicates that sediment being deposited 

in the site is coming from elsewhere in the system as well as areas of erosion within the site, and 

that erosion of the main channel mouth is not the sole source of sediment for site evolution. 
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5.3 Correlation Between Surface Elevation Change and Elevation, Proximity to Drainage 

Network 

Multiple linear regression models were calculated to determine the correlation of surface 

elevation change to elevation and DFC, and to help examine the spatial patterns of sedimentation 

at the Converse restoration site. Adjusted R2 values were highest in the 1-year dataset models 

and lowest in the growing season dataset models, and all borrow pit models had higher adjusted 

R2 values than the corresponding site area model for the same time period. Relationships 

between elevation and DFC may have been more easily identified in the borrow pit due to the 

generally higher rates of surface elevation change (higher ratio of data above LoD thresholds) 

than in the site area datasets, as well as a lack of skewed surface elevation change values caused 

by compaction of agricultural vegetation as seen in other areas of the site. 

Results of the models generally agreed that elevation was a much stronger predictor of 

surface elevation change than DFC. In all models, the elevation coefficient was significant and 

negative, meaning that as elevation decreased, surface elevation change increased. By 

incorporating the interaction effect to determine the overall effect of elevation on surface 

elevation change at varying DFC values, it was determined that the negative coefficient was 

maintained at all DFC values in all but one model (growing season, site area). Since water depth 

and inundation time are a function of elevation, this relationship was expected, as it has been 

shown that an increase in inundation time (increase in depth, decrease in elevation) will increase 

sediment deposition (Leonard, 1997). However, previous research in the Bay of Fundy and U.S. 

Mid-Atlantic Coast found no correlation between inundation time (van Proosdij et al., 2006b) or 

marsh elevation (Boyd et al., 2017) and sediment deposition/accretion. 

In both the borrow pit and remaining site area models, the magnitude of the overall effect of 

elevation on surface elevation change was greater over the winter than the growing season, 
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indicating seasonality in this relationship. Additionally, aside from in the growing season site 

area model, higher DFC values resulted in a greater magnitude of the effect of elevation on 

surface elevation change, indicating that there was a compounding effect of elevation and DFC. 

At greater distances from channels, a higher surface elevation resulted in less surface elevation 

change than occurred closer to channels. However, the changing magnitude of this effect 

depending on DFC was variable between areas. In all borrow pit models, the overall effect of 

elevation on surface elevation change was only fractionally increased by all DFC values. 

Alternatively, in the site area 1-year and winter models, the overall effect of elevation on surface 

elevation change was more than doubled at 5.5 m and 2.9 m from channel respectively. This may 

indicate that the controls of sediment accretion and erosion differ between the borrow pit and the 

rest of the study site. 

The DFC coefficient was also significant in most of the linear regression models, but of a 

very small magnitude and positive (Tables 4.8-4.13). However, in the 1-year site area model and 

both winter models, incorporation of the interaction effect (which had a negative value) changed 

the sign of the overall effect of DFC to be negative at elevations above a threshold value. It was 

expected that the effect of DFC on surface elevation change be negative in all scenarios, with 

higher surface elevation change closer to channel thalwegs, as found by Poirier et al. (2017) at a 

natural salt marsh in the Bay of Fundy. Results from this research indicate that at lower 

elevations this relationship is reversed, with lower surface elevation change values closer to 

channels, which may represent erosion occurring within and around the channels themselves. 

This trend can be visualized in some of the DoD results (Figure 5.9). The discrepancy in findings 

between this study and that of Poirier et al. (2017) may be due to channel maturity in both 

studies. The channel examined by Poirier et al. (2017) was mature, and more than 6 m deep from 
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channel thalweg to edge, while channels examined within this research included embryonic 

channels with depths as little as 2 cm. Since the channel network at the Converse restoration site 

is very early in its establishment and development, erosion along and near the channel thalweg 

may be more pronounced than in mature channels in a natural salt marsh setting. Additionally, 

the overall effect of elevation on surface elevation change being greater in magnitude than that of 

DFC, may indicate that in the early stages of marsh development (such as an early MR 

restoration site), channels play a less significant role in sediment deposition patterns. This 

appears to be the case in the borrow pit specifically, since the overall effect of DFC on surface 

elevation change was relatively low in magnitude, and DFC did not greatly alter the magnitude 

of the overall effect of elevation. 

 

Figure 5.9. a) November 24, 2019 – June 1, 2020 (winter) DoD results within the borrow pit and 

b) November 24, 2019 – October 5, 2020 (1-year) DoD results at a channel confluence with the 

June 1, 2020 channel delineation highlighting erosion patterns close to channel thalwegs in 

areas of low elevation within the Converse restoration site. 

Both the borrow pit and site area growing season datasets acted as outliers in the multiple 

regression results. Most noticeable was the reduced significance of some of the independent 

variable coefficients, specifically the interaction effects in both models and the DFC coefficient 

in the site area model. It appears that a reliable relationship between these variables and surface 
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elevation could not be found to the same level of significance as in the other models. Another 

non-conforming result was the over all positive effect of DFC on surface elevation change at all 

elevations within the borrow pit, which directly contradicted the overall negative effect of 

elevation on surface elevation change, since the relationship between elevation and DFC in this 

dataset was positive (distance from channel increased as elevation increased). Also, in the site 

area dataset, the overall effect of elevation on surface elevation change was only negative when 

DFC was less than 23.537 m, a result not seen in any other models. These findings may indicate 

that over the growing season, when sediment accretion is expected to be less than over winter or 

a 1-year period (as was the case in the borrow pit), sediment erosion within and close to channels 

plays a more significant role in sedimentation patterns than sediment deposition and its usual 

controls such as elevation (inundation time, depth) or DFC (distance from sediment source) 

within an early restoration context. 

5.4 Applicability of RTK RPAS in Restoration Site Monitoring 

This research sought to investigate the applicability of RPAS and SfM technologies and 

methodologies for delineating salt marsh drainage networks and measuring surface elevation and 

volumetric change, including the integration of RTK capabilities for improved product accuracy. 

Results confirmed an increase in elevation model accuracy in this study compared to previous 

research utilizing aircraft without RTK functionality, and that achieved accuracies may be more 

dependent on georeferencing data quality than GSD or camera angle when utilizing RTK-

enabled aircraft. Produced elevation models allowed for a generally accurate channel delineation, 

although the presence of vegetation caused some issues. Elevation model RMSEz values were 

generally low, and resulted in low LoD values when calculating DoDs, and it was possible to 

measure changes as small as 2.2 cm with a 68% confidence interval. However, offsets between 
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some surfaces in one area of the site were not accounted for in LoD calculations, resulting in 

erroneous DoD values being considered “significant”. Also, volumetric uncertainty values at the 

site level were very high, indicating that volumetric change values for these datasets were 

unreliable. It appears that it is more appropriate to conduct DoD and volumetric change analyses 

in smaller, targeted areas with generally higher levels of expected change (eg. borrow pit and 

main channel mouth) to achieve reliable volumetric change estimates. 

5.4.1 Improved Accuracy with RTK Capabilities 

It is expected that with georeferenced SfM elevation models, the absolute vertical accuracy 

of the model should fall within the accuracy of data used for georeferencing (GCPs and/or 

camera positioning) but cannot be higher than relative accuracy, which is 1-2x GSD in x and y 

and 1-3x GSD in z (Matheson, 2020; Pix4D, 2021). In this study, both GCP positions and 

survey-grade positioning of the aircraft through RTK corrections were used in georeferencing, 

and therefore the vertical errors of the elevation models should fall within the range in errors of 

these data. The accuracy of GCP positions for all deployments as measured with a dGNSS 

system ranged from 0.004-0.007 m (horizontal) and 0.006-0.013 m (vertical). In camera 

positions for all collected photos, accuracies ranged from 0.011-0.022 m (horizontal) and 0.023-

0.039 m (vertical). Since RMSEz values for all surveys ranged between 1.3-2.3 cm (Table 4.1), it 

is clear that elevation model errors fall within the range between GCP accuracies and camera 

position accuracies. However, RMSEz values are smaller than 1x GSD in all Full Site datasets 

and are equal to or less than 1x GSD in all but one Target Area dataset (May 4, 2021). 

RMSEz values achieved in this study are comparable to those from other RPAS/SfM 

studies in the literature with similar spatial resolutions, although they are generally lower. In tidal 

environments specifically, other researchers have achieved RMSEz values in datasets with 
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resolutions between 1.83 and 4 cm ranging from 0.032 m (Dale et al., 2018), 4.1-15.6 cm 

(Matheson, 2020), 3.1-6 cm (Brunette et al., 2021), and 0.015 m (Taddia et al., 2021). These 

studies, however, utilized RPAS that are not equipped with survey-grade positioning, and 

therefore relied solely on GCP deployment to georeference their datasets. In the majority of these 

studies, RMSEz values less than GSD were not achieved, which supports the hypothesis that the 

addition of survey-grade positioning (through RTK capabilities) to the aircraft during the survey 

allowed for higher accuracies in SfM products. Although RPAS with PPK/RTK capabilities are 

less common, one comparable study was conducted by Taddia et al. (2018) which used a DJI 

Phantom 4 RTK RPAS to compare accuracies of datasets with various GCP layouts in 

conjunction with survey-grade positioning of the aircraft. The RMSEz value of their 2 cm 

resolution elevation model when using a well distributed GCP network and a nadir camera angle 

was 0.020 m, comparable to RMSEz values produced in this study.  

Taddia et al. (2018) also indicated that product accuracies were higher when an oblique 

camera angle was used for image collection. However, in this thesis, results of a Mann Whitney 

U test (alpha value of 0.05) comparing the Full Site and Target Area RMSEz values determined 

that the two sets of values were not significantly different. Hence, flying at a lower altitude, and 

with an oblique angle as conducted for Target Area surveys, did not significantly increase DSM 

accuracies as expected. This finding agrees with a study by Brunetta et al. (2021), in which a 

reduction in flight altitude and increase in GSD of a series of RPAS surveys did not significantly 

increase accuracy in SfM elevation products. It may be the case that elevation model accuracy is 

entirely a function of georeferencing data accuracies and is not significantly affected by GSD or 

camera angle. Since the validation data in this study was only collected on relatively flat, bare 
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ground surfaces, it is not clear whether the oblique camera angle used in Target Area surveys 

increased the accuracy of vertical surfaces in the elevation models. 

It is known that the presence of vegetation in DSMs significantly reduces accuracy of 

surface measurement (Carrivick et al., 2016; Taddia et al., 2021; Vecchi et al., 2021), and it must 

be noted that the RMSEz values of surface models in this study were achieved in part because 

vegetated areas were not included in the validation process or DoD analyses. While removing 

vegetation from further processing helped to increase data accuracy and reliability, it did not 

allow for the measurement of surface elevation change related to vegetation presence, and 

significantly increased manual processing time.  

5.4.2 Drainage Network Delineation 

The hydrological toolset in ESRI’s ArcMap is based off hydrological analyses and 

processes that were designed for traditional surface models such as lidar, generally with low 

spatial resolution. Incorporating RPAS data of salt marsh environments into this workflow 

presented some challenges, including the presence of vegetation and surface depressions. 

Utilizing a DSM that includes vegetation rather than a DEM with only ground surface elevations 

results in routing of water flow pathways around vegetated features. While naturally vegetation 

does provide some resistance to water flow (Christiansen et al., 2000; Coulombier et al., 2012), 

water can flow through vegetated areas and does so in many areas of the Converse restoration 

site.  

Additionally, in areas where vegetation was growing within a channel, its elevation 

values cause a “dam” effect during the Fill step of the delineation process (Figure 5.10). The 

channel upstream of the vegetation is considered a depression, and the area is filled. Channel 

delineation along these filled areas will then fall along the edge of the fill, rather than the channel 
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thalweg, creating discrepancies between channel delineation shapefiles and actual channel 

centers (Figure 5.10). This issue would not exist if utilizing an elevation model without 

vegetation features, and therefore is a limitation of SfM-derived surfaces for these processing 

workflows. The same issue occurs in naturally existing depressions in the restoration site surface. 

Despite these issues, the delineation process utilized in this research produced relatively accurate 

channel delineations of very small, embryonic channels. The hyperspatial resolution of input 

datasets aided in these results, and the semi-automated process significantly reduced delineation 

time compared to a manual delineation technique. 

 

Figure 5.10. Example of channel delineation offset due to vegetation “dams” in the DSM 

causing filled areas prior to channel delineation. Delineated channel shapefile shown in green 

compared to a) orthomosaic imagery, b) original DSM, and c) filled DSM from the June 1, 2020 

Target Area dataset. 

5.4.3 DoD Creation and Volumetric Change Calculations 

The RMSEz values achieved in the collected datasets were relatively low compared to 

similar studies (Tonkin and Midgley, 2016; Dale et al., 2018; Matheson, 2020), and resulted in 

comparably low LoD values. It appears that the incorporation of RTK capabilities to RPAS 

surveys may improve our ability to measure significant surface elevation change at smaller 

scales than previously achievable, but that the high-level accuracy of data products in this 

research did not prevent surface offsets to occur and affect some DoD calculations. Furthermore, 

a) b) c) 
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RPAS surfaces may not be appropriate for measuring volumetric change at the site level over the 

time periods examined in this research, as calculated volumetric uncertainty at those scales often 

exceeded measured volumetric change. It is recommended that future volumetric change 

calculations in MR sites with similar sedimentation rates be limited to small areas of interest in 

which expected surface elevation change is significant (eg., majority of cells greater than LoD), 

such as a borrow pit (area of relatively lower elevation) or channel mouth (area of high erosion) 

or be conducted over time periods ≥ 1 year. In these circumstances, absolute volumetric 

uncertainty may be more reasonable compared to total volumetric change, increasing the 

confidence in change measurements. 

The northern section of the spring-summer and summer-fall Target Area DoDs had surface 

elevation change patterns that did not appear realistic in nature. Examination of the June 1, 2020, 

August 21, 2020 and October 5, 2020 DSMs (inputs for DoD calculation) determined that in this 

area there were visible offsets between the surfaces and between two of the surfaces and the 

validation data (Figure 5.11). Specifically, the June 1, 2020 surface generally matched well with 

validation data collected throughout the growing season, the August 21, 2020 surface sat a few 

cm below the validation, and the October 5, 2020 surface sat a few cm above the validation in 

this area. Since calculated RMSEz values summarize errors for an entire dataset and are reported 

as a magnitude of error (no directionality), LoD values calculated for surfaces that have errors in 

opposite directions from the validation (such as the August and October surfaces) may not 

accurately determine significant value thresholds. In this example, RMSEz values for the August 

and October 2020 datasets were 2.0 cm and 1.7 cm respectively, and the LoD (68% CI) for the 

calculated DoD between these surfaces was 2.6 cm. This value clearly does not account for 

differences between the two surfaces that occurred in the northern section of the site of around 
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~5 cm. This issue was reduced by applying an LoD with a 95% CI but may also be alleviated by 

utilizing spatially variable error estimates instead of a single value for each surface in future 

studies (Wheaton et al., 2010; Milan et al., 2011; Cavalli et al., 2017). 

 

 

Figure 5.11. Elevation data along cross-section in northern area of the Converse restoration site 

showing RPAS surface elevations compared to GNSS validation points.  

Results of the volumetric change calculations and absolute volumetric error estimations 

showed that at the site level (in both Full Site and Target Area datasets), total volumetric change 

was often less than volumetric uncertainty with no LoD and a 68% CI LoD. While this was not 

the case with the majority of results using the 95% CI LoD, a much smaller percentage of cells 

were included to calculate total volumetric change (2.4%-14.41% in Full Site datasets and 1.1%-

13.1% in Target Area datasets), and surface elevation change over the majority of the site was 

not significant enough to be measured. Because of this, it appears as though the temporal and 

spatial scales of the site area DoDs and volumetric change calculations were not appropriate. 

Alternatively, volumetric change values from areas of interest, such as the borrow pit and main 

channel mouth were of the majority greater than absolute volumetric uncertainty over the 1-year, 
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winter and growing season periods, indicating that these techniques may be more appropriate for 

smaller scale areas where higher rates of change are expected. 

An additional concern in conducting DoD analyses to calculate volumetric change is the 

nature of surface elevation change measurements. Surface elevation change in a salt marsh 

system is comprised of both above ground and below ground processes. Above ground processes 

include sediment accretion and erosion, and below ground processes include below ground 

biomass growth, compaction, and water saturation (Allen, 2000; Paquette et al., 2004). 

Converting surface elevation change to sediment volumetric change (an above ground process) 

automatically assumes that below ground processes are negligible. This was not the case, 

however, at the Converse restoration site, where compaction of agricultural vegetation was 

identified, and other types of below ground processes may have been occurring. 

5.5 Recommendations for Future Research Activities 

5.5.1 RPAS Data Collection 

Although resolutions and accuracies achieved in this research were relatively high compared 

to similar studies, there may be adjustments to data collection protocol that could increase the 

accuracy and reliability of SfM data products. Since DSM vertical accuracy was limited by the 

accuracy of the data used in georeferencing, and GCP positions had higher vertical accuracies 

(0.006-0.013 m) than camera positions with an RTK-enabled RPAS (0.023-0.039 m), surface 

accuracy could potentially be increased by deploying additional GCPs for future surveys. 

Relying more heavily on a dense GCP network could reduce errors across the DSMs and may 

limit the issues with surfaces being offset in certain areas and producing erroneous DoD rasters. 

Although conducting aerial surveys at a lower altitude did not significantly increase surface 

accuracy, an increase in product resolution may still be beneficial to future research. The high 
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resolution orthomosaics and surface models produced in this research allowed for detailed 

mapping of very small embryonic channels and may be used for future research to identify 

vegetation species, or other tasks that require more detailed imagery. 

It is well known that surface homogeneity in imagery causes issues in the tie point matching 

step of the photogrammetric process (Mancini et al., 2013; Eltner et al., 2016), and salt marsh 

mud flats are often characterized by a lack of image texture, especially when wet (Jaud et al., 

2016). During this research, aerial surveys were conducted during a variety of mud surface 

conditions, including post significant precipitation and during spring tides when mud surfaces 

were saturated and lacked texture, and during neap tides after a period of dry weather in which 

sediments had dried out and cracked. Examination of these datasets showed that aerial surveys 

conducted while sediments retained cracked features reduced surface homogeneity and 

significantly reduced instances of erroneous point matching and elevation model noise (Figure 

5.12). It is recommended that future surveys be conducted during dry conditions when possible 

to improve surface reconstruction results and reduce error in SfM products.  
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Figure 5.12. May 4, 2021 a) orthomosaic and b) elevation model showing homogenous, wet mud 

and noisy elevation data resulting from tie point errors in the photogrammetric process 

compared to June 1, 2020 c) orthomosaic and d) elevation model with cracked mud features.  

Continuing these research activities so that a longer study period can be examined would 

provide further insight into the restoration trajectory. Within this research, the initial fall surface 

model may not have been an accurate representation of ground elevations due to the presence of 

agricultural vegetation that created air pockets beneath a thin layer of sediment in some areas of 

the site. This issue may have affected the validity of volumetric change results for the winter and 

1-year periods and speaks to the importance of a reliable initial surface for volumetric analyses. 

Conducting a similar analysis with new surface models would allow for more accurate 

representations of surface elevation change, especially for the winter period. Continuing the DoD 

and volumetric analyses would also inform whether sedimentation rates at the site are slowing 

down or being maintained. 

a) b) 

c) d) 
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5.5.2 Data Error Estimation 

The DSM error estimation method used in this research was the calculation of a single error 

value for each surface model. While this approach is generally accepted and utilized in the 

literature, several studies have recommended the use of spatially variable error estimations 

(Wheaton et al., 2010; Milan et al., 2011; Cavalli et al., 2017) to better represent non-random, 

spatially correlated error that is present in SfM elevation models. The application of a spatially 

variable error estimation method for RPAS datasets in this research may have reduced the issues 

encountered with directionality of error in some parts of the study site and false surface elevation 

change measurement. It is recommended that spatially variable error estimation techniques be 

researched to determine their applicability for RPAS surface models, and if appropriate, 

incorporated into further DoD and volumetric change analyses. 

5.5.3 Channel Delineation Techniques and Analyses 

There were noticeable errors in all channel delineations around depressions (caused by 

ponding water or vegetation “dams”) in the surface models, in which channel delineations did 

not align with channel thalwegs. Since the channel classification technique required the 

delineations and channel thalwegs to coincide, these offsets also caused issues with classification 

results that required manual clean up and added significant time to processing. It is 

recommended that a least-cost path approach be investigated for channel delineation as a 

potential improved delineation technique, such as the method presented by Melles et al. (2011). 

A least-cost approach should theoretically not require a “fill” step and may therefore reduce 

offsets between channel delineations and actual channel thalwegs, consecutively reducing error 

in classification results. Furthermore, the stream delineation process utilized in this research 

identified water flow pathways rather than channels, and in both Full Site and Target Area 
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delineations a classification technique was required to identify existent channels versus proto 

channels. An alternative method for identifying channels utilizing slope thresholding (Chirol et 

al., 2018), may alleviate issues in the classification process, and reduce manual input that was 

required for classification clean up. 

Recommendations for additional analyses and research regarding channel delineation and 

classification results include the investigation of differences in channel characteristics and 

persistence in the three channel types identified in this research, and cross-sectional analysis. By 

examining the channel characteristics and persistence of channel types (relic agricultural, relic 

natural, and embryonic), insight may be gained regarding differences in channel evolution, and a 

better understanding of drainage network development. Additionally, this research examined 

planimetric channel characteristics only, and a cross-sectional analysis of channels of interest 

and/or the three channel types may provide more information about channel evolution on the 

site, including spatial and temporal patterns of channel infilling/deepening.  
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Chapter 6: Conclusions 

Remote sensing technologies continue to advance at a very fast rate, improving our ability to 

measure and monitor environmental systems. An RTK-enabled RPAS was utilized in this 

research along with SfM workflows to conduct multi-temporal aerial surveys of a restoring MR 

site on the Bay of Fundy, Canada, to measure changes in surface elevation and to map drainage 

networks. Accuracies of the collected datasets were high compared to results from similar studies 

in salt marsh systems (Dale et al., 2018; Matheson, 2020; Brunetta et al., 2021; Taddia et al., 

2021), allowing for the measurement of fine-scale changes and details within the site. However, 

caution must be utilized when taking these approaches, as offsets between surfaces can cause 

erroneous surface elevation change measurements, even when relatively low surface error 

estimates have been established. Results of DSM accuracy assessments showed no significant 

increase in accuracy of datasets collected at a reduced altitude (65 m AGL) and with an oblique 

camera angle, compared to those collected at the legal altitude maximum in Canada (120 m 

AGL) (Transport Canada, 2019) and with a nadir camera angle. Also, despite the ability to 

accurately measure surface elevation changes less than 5 cm with collected datasets, conducting 

volumetric change analyses on the entire site scale over time periods less than 1 year may not be 

appropriate, and results were more reliable when areas of interest with relatively higher rates of 

change were examined.  

Compaction of remnant agricultural vegetation over the winter most likely skewed 

volumetric change values at the site level, but the borrow pit, which was excavated prior to site 

breach, allowed for the analysis of sedimentation patterns without noticeable effects of the 

antecedent landscape history. Sedimentation rates within the borrow pit were comparable to 

others reported for MR sites as well as borrow pits specifically in the Bay of Fundy (Matheson, 

2020; Virgin et al., 2021; Brunetta et al., 2021). Multiple regression models comparing surface 
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elevation change to elevation and distance from channel, had higher predictive power (higher 

adjusted R2 values) in the borrow pit than in the remaining areas of the site, showing more 

pronounced sedimentation patterns correlating to tested controls on sediment deposition. 

Channels developing within the borrow pit were characterized by a sinuous appearance and 

differed from the majority of channels within the rest of the site that incorporated agricultural 

ditch features. It appears that the removal of agricultural surface sediments prior to site breach 

allowed for a morphological evolution that more closely resembled natural salt marsh processes, 

and this technique could be applied to reduce the impacts of antecedent landscape history on 

restoration site evolution in the future, although more research is required to determine 

differences in long-term trajectory within the borrow pit and the remainder of the Converse 

restoration site. 

Sedimentation patterns within the site showed strong seasonal signals as expected. 

Sedimentation rates in the borrow pit had the highest magnitude over the winter, which may have 

been due to increased suspended sediment concentrations in the area as measured in previous 

research (Poirier et al., 2017). Over the growing season, sedimentation rates at the site level 

showed significant variation, with more positive surface elevation change occurring between 

August and October, which may have been correlated to an increased frequency of high tides 

reaching the marsh surface as well as an increase in depth of those tides. The spatial patterns of 

sedimentation within the borrow pit and remaining areas of the site were more strongly 

correlated with elevation and distance from channel over the winter compared to the growing 

season, and elevation was generally a stronger predictor of surface elevation change than 

distance from channel in all datasets. 
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Channel density also showed a seasonal signal and was significantly higher in the fall 

datasets than growing season datasets, rather than increasing over the course of the study period 

as expected. This indicates that erosive patterns within channel, as well as increased sediment 

deposition on marsh surfaces may increase channel depth over the winter but infilling during the 

growing season may reduce embryonic channel depth. Channel networks were found to be 

relatively stable throughout the study period, and it appears that the fate of the ultimate drainage 

network patterns imprinted within the first year of tidal flow. Channels within the site were 

characterized by their formation type, either remnant agricultural, remnant natural, or embryonic.  

It is recommended that in future RPAS data collection in salt marsh restoration sites, surveys 

should be conducted during dry weather and neap tides when possible, to allow the sediment 

surfaces to dry out and crack, increasing tie point matching in SfM processing and reducing 

noise and erroneous data in output elevation models. A further increase in accuracy of produced 

DSMs may be achieved by utilizing a more densely distributed GCP network during aerial 

surveys, although accuracies achieved in this study were substantially low. While a reduced 

flight altitude did not significantly reduce DSM error, an increase in resolution allowed for the 

detailed mapping of very small features such as embryonic channels. It is recommended that in 

future work, a lower flight altitude may be utilized in target areas when higher resolutions are 

beneficial (eg., embryonic channel mapping, vegetation species identification). 

The time scale of this research of approximately 1-year, represents a small window in the 

evolution of a salt marsh restoration site, and it is recommended that similar/repeated analyses be 

conducted at the Converse restoration site over a longer time frame to provide further insight into 

the long-term restoration trajectory. Additional research should include the investigation of 

differences in evolution and characteristics of the three channel types identified in this work, as 
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well as surface elevation and volumetric change analyses. Improvements in data analyses may be 

made by utilizing spatially variable error estimates of DSMs (Wheaton et al., 2010; Milan et al., 

2011; Cavalli et al., 2018), and investigating different channel delineation and classification 

techniques such as a least-cost path approach (Melles et al., 2011) or slope thresholding (Chirol 

et al., 2018). 
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Appendix A - RPAS Data Collection Trouble Shooting 

Due to aircraft malfunction during some collections, images were not collected by the 

aircraft (image dropping) in small sections of the flight plans. This occurred in two different 

scenarios, one that was not easily identified during collection but did not significantly impact 

data coverage, and one that interrupted data collection and was therefore easy to identify but 

required additional photo collection to ensure data coverage. In the first scenario, the aircraft 

would drop around 5-10 images within the first few minutes of a flight section (most often after 

changing the aircraft battery mid-collection and resuming the flight plan). Due to a delay on the 

controller of the displayed number of collected images for the first few minutes of each flight 

section, it was not possible to identify when this issue was occurring. Since images were 

collected with a 60% side overlap, dropped photos did not cause significant negative impacts on 

the collected datasets such as holes.  

The second scenario also involved a malfunctioning of the aircraft during data collection but 

occurred less often. Occasionally during flights, the aircraft would stop collecting images 

altogether and would not resume image collection unless the aircraft was landed and restarted. 

To mitigate this issue, the displayed number of images collected on the controller was monitored 

during all flights. Since it was common for delays to occur between actual image collection and 

when this number updated on the controller, the issue was identified if the aircraft travelled more 

than half of a flightline without an increase in the displayed number of collected images. At this 

point the aircraft would be returned home for a landing and restart. Unfortunately, upon 

resuming an interrupted flight, the aircraft would continue the flight plan at the point it was 

interrupted, and not the point at which photo collection stopped. This left significant gaps in 

image collection. To account for this missing data, the aircraft was manually flown in these areas 

and images were collected manually
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Appendix B - Channel Delineation Script 

# Name: Channel Delineation 

# Description: Delineates stream networks from a Digital Surface Model 

# Paste this to command line to run: C:\Python27\ArcGISx6410.7\python.exeD:\SLewis\Thesis 

\Scripts\ChannelDelineation.py 

 

# Import system modules and extensions 

import sys 

sys.path.append("C:\Program Files (x86)\ArcGIS\Desktop10.7\arcpy") 

import arcpy, os 

from arcpy.sa import * 

import arcpy.cartography as CA 

arcpy.CheckOutExtension("Spatial") 

arcpy.env.overwriteOutput = True 

 

# Input Variables ############################################################# 

 

# Input elevation model 

inDSM = 

r'E:\CON_20210504\SfM_Projects\CON_20210504_R4MS_Obliques.files\Products\CON_2021

0504_R4MS_Obliques_DSM_CGVD2013_2cm.tif' 

# Location for output files 

output_folder = r'D:\SLewis\Thesis\Processing\ChannelDelineation\20210504_Obliques' 

# Max elevation for processing (max flood extent in meters) 

elev_max = 6.959 

# Input edge effects clip shapefile (covering extent of "good" data without edge effect noise from 

SfM) 

edge_clip = 

r'D:\SLewis\Thesis\Processing\ChannelDelineation\ExtraFiles\CON_Obliques_AllEdge_ForCha

nnelDelin.shp' 

# Input pour point for watershed calculation 

pour_point = 

r'D:\SLewis\Thesis\Processing\ChannelDelineation\ExtraFiles\PourPoint_Obliques.shp' 

# Input flow accumulation threshold value (50,000 for Target Area datasets, 120,000 for Full 

Site datasets) 

flow_acc_thresh = 50000 

# Stream order type 

stream_ord_type = 'STRAHLER' 

# Smoothing output stream features: Input smoothing tolerance value in m, or enter 0 if you do 

not want to smooth 

smooth_tol = 0.4 
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print('Inputs acceptable') 

 

# Set Data Info and Temp Folder ############################################### 

file_name = str(os.path.basename(inDSM).split('.')[0]) 

shp_folder = str(output_folder + os.sep + 'Shapefiles') 

if not os.path.exists(shp_folder): 

    os.makedirs(shp_folder) 

 

print('Shapefile folder: ' + shp_folder) 

 

# Run Tools ################################################################### 

 

# Clip raster to remove edge effects 

edgeDSM = output_folder + os.sep + file_name + '_EdgeClipped.tif' 

arcpy.management.Clip( 

    in_raster = inDSM, 

    rectangle = "400814.754 5076836.992 401803.636 5077587.748", 

    out_raster = edgeDSM, 

    in_template_dataset = edge_clip, 

    clipping_geometry = "ClippingGeometry") 

 

print("Edge effects removed") 

 

# Clip Raster to maximum flood extent 

elevCon = Con(Raster(edgeDSM) < elev_max, inDSM) 

 

print('Elevation clip successful') 

 

# Fill clipped DSM if the file does not already exist, otherwise, call the file as a raster object for 

later use 

if not os.path.exists(output_folder + os.sep + file_name + '_Fill.tif'): 

    outFill = Fill(elevCon) 

    outFill.save(output_folder + os.sep + file_name + '_Fill.tif') 

    print ('DSM has been filled') 

else: 

    outFill = Raster(output_folder + os.sep + file_name + '_Fill.tif') 

    print ('Filled DSM already exists') 

 

# Create Flow Direction (defaults to D8 method) raster if the file does not exist, otherwise, call 

the file as a raster object for later use 

if not os.path.exists (output_folder + os.sep + file_name + '_FlowD.tif'): 

    flow_dir = FlowDirection(outFill) 

    flow_dir.save(output_folder + os.sep + file_name + '_FlowD.tif') 
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    print('Flow direction raster created') 

else: 

    flow_dir = Raster(output_folder + os.sep + file_name + '_FlowD.tif') 

    print ('Flow direction raster already exists') 

 

# Create Flow Accumulation (set to D8 method) raster if the file does not exist, otherwise, call 

the file as a raster object for later use 

if not os.path.exists (output_folder + os.sep + file_name + '_FlowAcc.tif'): 

    flow_acc = FlowAccumulation( 

        in_flow_direction_raster = flow_dir, 

        in_weight_raster = "", 

        data_type = "INTEGER", 

        flow_direction_type = "D8") 

    flow_acc.save(output_folder + os.sep + file_name + '_FlowAcc.tif') 

    print('Flow accumulation raster created') 

else: 

    flow_acc = Raster(output_folder + os.sep + file_name + '_FlowAcc.tif') 

    print ('Flow accumulation raster already exists') 

 

# Snap pour point to stream 

SnapPour = SnapPourPoint(in_pour_point_data = pour_point, 

                             in_accumulation_raster = flow_acc, 

                             snap_distance = 0.2) 

print('Pour point snapped to stream cells') 

 

# Create watershed raster for extent if the file does not exist, otherwise, call the file as a raster 

object for later use 

if not os.path.exists (output_folder + os.sep + file_name + '_Watershed.tif'): 

    watershed_extent = Watershed( 

        in_flow_direction_raster = flow_dir, 

        in_pour_point_data = SnapPour) 

    watershed_extent.save(output_folder + os.sep + file_name + '_Watershed.tif') 

    watershed_shape = shp_folder + os.sep + file_name + '_Watershed.shp' 

    arcpy.conversion.RasterToPolygon( 

        in_raster = watershed_extent, 

        out_polygon_features = watershed_shape, 

        simplify = "NO_SIMPLIFY") 

    print('Watershed extent raster and shapefile created') 

else: 

    watershed_extent = Raster(output_folder + os.sep + file_name + '_Watershed.tif') 

    print ('Watershed extent already exists') 
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# Clip flow accumulation raster to watershed, and apply a flow accumulation threshold to 

determine stream cells (set stream cell values to 1) 

stream = Con(watershed_extent, Con(flow_acc > flow_acc_thresh, 1)) 

print('Accumulation raster clipped to watershed extent, and flow accumulation threshold applied 

to create stream raster') 

 

# Add stream order to stream cells 

stream_ord_1 = StreamOrder( 

    in_stream_raster = stream, 

    in_flow_direction_raster = flow_dir, 

    order_method = stream_ord_type) 

print('Stream order has been added to stream raster') 

 

# Reverse stream order 

max_stream_ord = int(arcpy.GetRasterProperties_management(stream_ord_1, 

property_type='MAXIMUM').getOutput(0)) 

stream_ord = max_stream_ord - stream_ord_1 + 1 

stream_ord.save(output_folder + os.sep + file_name + '_StreamOppOrd.tif') 

print('Stream order has been reversed') 

 

# Create stream shapefile from stream raster 

out_stream = (shp_folder + os.sep + file_name + '_Stream.shp') 

StreamToFeature( 

    in_stream_raster = stream_ord, 

    in_flow_direction_raster = flow_dir, 

    out_polyline_features = out_stream, 

    simplify = 'SIMPLIFY') 

 

# Smooth stream shapefile 

if smooth_tol > 0: 

    smooth_stream = shp_folder + os.sep + file_name + '_SmoothStream.shp' 

    CA.SmoothLine( 

        in_features = out_stream, 

        out_feature_class = smooth_stream, 

        algorithm = "PAEK", 

        tolerance = smooth_tol) 

print('Final stream shapefile created!') 
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Appendix C - Channel Classification Script 

# Name: Channel Classification 

# Description: Classifies delineated stream segments based on channel depth 

# Paste this to command line to run: C:\Progra~1\ArcGIS\Pro\bin\Python\envs\arcgispro-

py3\python.exe D:\SLewis\Thesis\Scripts\Channel_Classification_v0.4_FullSite.py 

 

print("Start Channel Script") 

 

# Import system modules and extensions 

import arcpy, os 

from arcpy.sa import * 

 

## Define Feature Creation and Extract Elevation Function ########################### 

 

def 

extract_elevations(instream,segment_length,inelevation,transect_len,transect_dist,point_dist,proc

_workspace): 

    print('Extracting cross-section elevations from valid branches') 

 

    # Make layer with stream shapefile 

    print("Making branch layer") 

    fo_temp_streams = proc_workspace + os.sep + "temp_streams" 

    arcpy.MakeFeatureLayer_management( 

        in_features = instream, 

        out_layer = fo_temp_streams) 

 

    fo_temp_points = proc_workspace + os.sep + "temp_points" 

    arcpy.GeneratePointsAlongLines_management( 

        Input_Features=fo_temp_streams, 

        Output_Feature_Class=fo_temp_points, 

        Point_Placement="DISTANCE", 

        Distance=segment_length, 

        Include_End_Points="NO_END_POINTS") 

 

    fo_streams = proc_workspace + os.sep + "streams" 

    arcpy.SplitLineAtPoint_management( 

        in_features = fo_temp_streams, 

        point_features = fo_temp_points, 

        out_feature_class = fo_streams , 

        search_radius = 0.5) 

 

    arcpy.management.AddField( 

        in_table = fo_streams, 
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        field_name = "CH_STAT", 

        field_type = "TEXT") 

 

    arcpy.management.AddField( 

        in_table = fo_streams, 

        field_name = "AVG_DEP", 

        field_type = "FLOAT") 

 

    arcpy.management.Delete( 

        in_data = fo_temp_points 

        #{data_type}) 

 

    print("Branch layer created") 

 

    # Generate transects for x-section 

    print("Making transects") 

    fo_transects = proc_workspace + os.sep + "transects" 

    arcpy.management.GenerateTransectsAlongLines( 

        in_features = fo_streams, 

        out_feature_class = fo_transects, 

        interval = transect_dist, 

        transect_length = transect_len, 

        include_ends = "END_POINTS") 

 

    arcpy.management.AlterField( 

        in_table = fo_transects, 

        field = "ORIG_FID", 

        new_field_name = "SEG_ID", 

        clear_field_alias = "CLEAR_ALIAS") 

 

    arcpy.management.AddField( 

        in_table = fo_transects, 

        field_name = "XNS_STAT", 

        field_type = "TEXT") 

     

    arcpy.management.AddField( 

        in_table = fo_transects, 

        field_name = "XNS_DEP", 

        field_type = "FLOAT") 

 

    print("Transects created") 

 

    # Generate cross-section points along transects 
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    print("Making extraction points") 

    fo_extraction_points = proc_workspace + os.sep + "extraction_points" 

    arcpy.management.GeneratePointsAlongLines( 

        Input_Features = fo_transects, 

        Output_Feature_Class = fo_extraction_points, 

        Point_Placement = "DISTANCE", 

        Distance = point_dist) 

 

    print("Extraction points created") 

    arcpy.management.AlterField( 

        in_table = fo_extraction_points, 

        field = "ORIG_FID", 

        new_field_name = "XNS_ID", 

        clear_field_alias = "CLEAR_ALIAS") 

 

    # Extract elevations to points 

    print("Extracting elevations to points") 

    arcpy.ddd.AddSurfaceInformation( 

        in_feature_class = fo_extraction_points, 

        in_surface = inelevation, 

        out_property = "Z") 

 

    # Wrap feature generation portion 

    t1 = time.time() 

    t1 -= t0 

    t1 = float(t1) 

    print("Elevations extracted") 

    return(fo_streams,fo_transects,fo_extraction_points) 

 

## Define Channel Class Decision Function ######################################### 

 

def is_channel(streams,transects,points,min_ch_depth,pass_threshold): 

    t2 = time.time() 

    print("Assessing channel x-sections") 

 

    # Setup the required field lists 

    sc_xns_fields = ['XNS_ID', 'SEG_ID', 'Z'] 

    uc_xns_fields = ['OBJECTID', 'CH_STAT', 'AVG_DEP'] 

    uc_tr_fields = ['OBJECTID', 'XNS_STAT', 'XNS_DEP'] 

 

    # Get unique SEG_IDs and determine channel status per segment 

    vals = [row[0] for row in arcpy.da.SearchCursor(transects, 'SEG_ID')] 

    seg_ids = set(vals)     
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    br_status_list = [] 

    xns_status_list = [] 

    depth_list = [] 

    for i, seg_id in enumerate(seg_ids): 

        print("Assessing Branch: %s (%s of %s)" %(seg_id, i+1,len(seg_ids))) 

        # Get unique XNS_IDs 

        expression = (u'{0} = {1}'.format(sc_xns_fields[1], seg_id)) 

        vals = [row[0] for row in arcpy.da.SearchCursor(transects, 'OBJECTID', where_clause = 

expression)] 

        xns_ids = set(vals) 

        fails = 0 

        passes = 0 

        # Determine cross-section status 

        for ii, xns_id in enumerate(xns_ids): 

            #print("Measuring X-Section: %s (%s of %s; Pass: %s Fail: %s)" %(xns_id, ii+1, 

len(xns_ids), passes, fails)) 

            expression = (u'{0} = {1}'.format(sc_xns_fields[0], xns_id)) 

            with arcpy.da.SearchCursor( 

                in_table = points, 

                field_names = sc_xns_fields, 

                where_clause = expression 

                ) as sc: 

                    elevation = [] 

                    for srow in sc: 

                        elevation.append(srow[2]) 

 

                    # We now have a list of elevations and decisions to make 

                    xns_status = "" 

                    thalweg = min(elevation) 

                    thalweg_index = elevation.index(thalweg) 

                    l_br = elevation[:thalweg_index] 

                    r_br = elevation[thalweg_index:] 

                     

                    if len(l_br) > 0 and len(r_br) > 0: 

                        xns_depth = min([max(l_br),max(r_br)]) - thalweg 

                        depth_list.append(xns_depth) 

                        if max(l_br) > (thalweg + min_ch_depth) and max(r_br) > (thalweg + 

min_ch_depth): 

                                #print("Pass") 

                                passes += 1 

                                xns_status = "Pass" 

                        else: 

                            #print("Fail") 
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                            fails += 1 

                            xns_status = "Fail" 

                    else: 

                        #print("Fail") 

                        xns_depth = 0 

                        fails += 1 

                        xns_status = "Edge" 

 

                    xns_status_list.append([xns_id,xns_status,xns_depth]) 

        average_depth = sum(depth_list)/len(depth_list) 

        # Determine the channel code 

        ch_status = "" 

 

        # Every segment has at least two transects. 

        if passes > 0: 

            if passes / (passes+fails) >= pass_threshold: 

                ch_status = "Existent" 

            else: 

                ch_status = "Proto" 

        else: 

            ch_status = "Proto"             

 

        print("Branch is: %s" %(ch_status)) 

        br_status_list.append([seg_id,ch_status,average_depth]) 

 

    # Update stream with channel status 

    for i,r in enumerate(br_status_list): 

        seg_id,ch_status,average_depth=r[:] 

        print('Updating Branch: %s of %s' %(i+1, len(br_status_list))) 

        expression = (u'{0} = {1}'.format(uc_xns_fields[0], seg_id)) 

        with arcpy.da.UpdateCursor( 

            in_table = streams, 

            field_names = uc_xns_fields, 

            where_clause = expression 

            ) as uc: 

                for urow in uc: 

                    urow[1] = ch_status 

                    urow[2] = average_depth 

                    uc.updateRow(urow)  

 

    # Update cross-sections with xns status 

    for i,r in enumerate(xns_status_list): 

        xns_id,xns_status,xns_depth=r[:] 
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        print('Updating Cross-section: %s of %s' %(i+1, len(xns_status_list))) 

        expression = (u'{0} = {1}'.format("OBJECTID", xns_id)) 

        with arcpy.da.UpdateCursor( 

            in_table = transects, 

            field_names = uc_tr_fields, 

            where_clause = expression 

            ) as uc: 

                for urow in uc: 

                    urow[1] = xns_status 

                    urow[2] = xns_depth 

                    uc.updateRow(urow)  

 

    # Wrap branch definitions 

    print("Branches defined”) 

 

## Define Inputs ############################################################ 

 

# Input delineated channel shapefile 

instream = 

r"D:\SLewis\Thesis\Processing\ChannelDelineation\20191124_FullSite\Shapefiles\CON_20191

124_P4MS_FullSite_DSM_CGVD2013_35mm_SmoothStream120.shp" 

# Input elevation model 

inelevation = r"\\sparc7\dvp\archive\RPAS\Converse\2019-11-

24\03_SfM_Projects\CON_20191124_R4MS_FullSite\01_RawProducts\CON_20191124_P4MS

_FullSite_DSM_CGVD2013_35mm.tif" 

# Location for output files 

output_folder = r"D:\SLewis\Thesis\Processing\ChannelClassification\20191124_FullSite" 

# Maximum stream segment length (m) 

segment_length = 8 

# Total length of each transect (m) 

transect_len = 3 

# Distance between transects (m) 

transect_dist = 0.5 

# Distance between points along each transect (m) 

point_dist = 0.05 

# Minimum acceptable channel depth 

min_ch_depth = 0.02 

# Pass / fail threshold 

pass_threshold = 0.5 

# Set Geodatabase 

gdb = 'Channel_Definition.gdb' 

# Set Data Info and Temp Folder  

proc_workspace = str(output_folder + os.sep + gdb) 
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## Run Script ############################################################## 

 

# Initialize the workspace 

if not os.path.exists(proc_workspace): 

    arcpy.management.CreateFileGDB( 

        out_folder_path = output_folder, 

        out_name = gdb, 

        out_version = "CURRENT") 

arcpy.env.workspace = proc_workspace 

arcpy.env.overwriteOutput = True 

arcpy.CheckOutExtension("Spatial") 

 

# Build the required feature classes and extract elevations 

streams, transects, points = 

extract_elevations(instream,segment_length,inelevation,transect_len,transect_dist,point_dist,proc

_workspace) 

 

# Generate and apply channel classifications 

is_channel(streams,transects,points,min_ch_depth,pass_threshold) 

 

# Script finished 

print("Channels classified!")
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Appendix D - Structure from Motion Data Products (Full Site) 

 

Figure D-1. RGB orthomosaic produced by Agisoft Metashape. Imagery data collected with a DJI Phantom 4 RTK RPAS during a full 

site survey of Converse, November 24, 2019. Resolution is 3.5cm and horizontal RMSE expected to be less than the resolution. 
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Figure D-2. Elevation model produced by Agisoft Metashape (displayed as a combined colour ramp and hillshade). Imagery data 

collected with a DJI Phantom 4 RTK RPAS during a full site survey of Converse, November 24, 2019. Resolution is 3.5 cm, and 

vertical RMSE is 1.8 cm. 
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Figure D-3. RGB orthomosaic produced by Agisoft Metashape. Imagery data collected with a DJI Phantom 4 RTK RPAS during a full 

site survey of Converse, June 1, 2020. Resolution is 3.5cm and horizontal RMSE expected to be less than the resolution. 
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Figure D-4. Elevation model produced by Agisoft Metashape (displayed as a combined colour ramp and hillshade). Imagery data 

collected with a DJI Phantom 4 RTK RPAS during a full site survey of Converse, June 1, 2020. Resolution is 3.5 cm, and vertical 

RMSE is 1.3 cm. 
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Figure D-5. RGB orthomosaic produced by Agisoft Metashape. Imagery data collected with a DJI Phantom 4 RTK RPAS during a full 

site survey of Converse, July 9, 2020. Resolution is 3.5cm and horizontal RMSE expected to be less than the resolution. 
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Figure D-6. Elevation model produced by Agisoft Metashape (displayed as a combined colour ramp and hillshade). Imagery data 

collected with a DJI Phantom 4 RTK RPAS during a full site survey of Converse, July 9, 2020. Resolution is 3.5 cm, and vertical 

RMSE is 1.5 cm. 
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Figure D-7. RGB orthomosaic produced by Agisoft Metashape. Imagery data collected with a DJI Phantom 4 RTK RPAS during a full 

site survey of Converse, August 21, 2020. Resolution is 3.5cm and horizontal RMSE expected to be less than the resolution. 
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Figure D-8. Elevation model produced by Agisoft Metashape (displayed as a combined colour ramp and hillshade). Imagery data 

collected with a DJI Phantom 4 RTK RPAS during a full site survey of Converse, August 21, 2020. Resolution is 3.5 cm, and vertical 

RMSE is 1.9 cm. 
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Figure D-9. RGB orthomosaic produced by Agisoft Metashape. Imagery data collected with a DJI Phantom 4 RTK RPAS during a full 

site survey of Converse, October 5, 2020. Resolution is 3.5cm and horizontal RMSE expected to be less than the resolution. 
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Figure D-10. Elevation model produced by Agisoft Metashape (displayed as a combined colour ramp and hillshade). Imagery data 

collected with a DJI Phantom 4 RTK RPAS during a full site survey of Converse, October 5, 2020. Resolution is 3.5 cm, and vertical 

RMSE is 2.3 cm. 
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Figure D-11. RGB orthomosaic produced by Agisoft Metashape. Imagery data collected with a DJI Phantom 4 RTK RPAS during a 

full site survey of Converse, November 8, 2020. Resolution is 3.5cm and horizontal RMSE expected to be less than the resolution. 
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Figure D-12. Elevation model produced by Agisoft Metashape (displayed as a combined colour ramp and hillshade). Imagery data 

collected with a DJI Phantom 4 RTK RPAS during a full site survey of Converse, November 8, 2020. Resolution is 3.5 cm, and vertical 

RMSE is 1.6 cm. 
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Figure D-13. RGB orthomosaic produced by Agisoft Metashape. Imagery data collected with a DJI Phantom 4 RTK RPAS during a 

full site survey of Converse, May 4, 2021. Resolution is 3.5cm and horizontal RMSE expected to be less than the resolution. 
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Figure D-14. Elevation model produced by Agisoft Metashape (displayed as a combined colour ramp and hillshade). Imagery data 

collected with a DJI Phantom 4 RTK RPAS during a full site survey of Converse, May 4, 2021. Resolution is 3.5 cm, and vertical 

RMSE is 1.7 cm. 
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Appendix E - Structure from Motion Data Products (Target Area) 

 

Figure E-1. RGB orthomosaic produced by Agisoft Metashape. Imagery data collected with a 

DJI Phantom 4 RTK RPAS during a target area survey of Converse, November 24, 2019. 

Resolution is 2 cm and horizontal RMSE expected to be less than the resolution. 
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Figure E-2. Elevation model produced by Agisoft Metashape (displayed as a combined colour 

ramp and hillshade). Imagery data collected with a DJI Phantom 4 RTK RPAS during a target 

area survey of Converse, November 24, 2019. Resolution is 2 cm, and vertical RMSE is 1.8 cm. 



   

 

175 

 

 

Figure E-3. RGB orthomosaic produced by Agisoft Metashape. Imagery data collected with a 

DJI Phantom 4 RTK RPAS during a target area survey of Converse, June 1, 2020. Resolution is 

2 cm and horizontal RMSE expected to be less than the resolution. 
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Figure E-4. Elevation model produced by Agisoft Metashape (displayed as a combined colour 

ramp and hillshade). Imagery data collected with a DJI Phantom 4 RTK RPAS during a target 

area survey of Converse, June 1, 2020. Resolution is 2 cm, and vertical RMSE is 1.4 cm. 
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Figure E-5. RGB orthomosaic produced by Agisoft Metashape. Imagery data collected with a 

DJI Phantom 4 RTK RPAS during a target area survey of Converse, July 9, 2020. Resolution is 2 

cm and horizontal RMSE expected to be less than the resolution. 
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Figure E-6. Elevation model produced by Agisoft Metashape (displayed as a combined colour 

ramp and hillshade). Imagery data collected with a DJI Phantom 4 RTK RPAS during a target 

area survey of Converse, July 9, 2020. Resolution is 2 cm, and vertical RMSE is 1.4 cm. 
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Figure E-7. RGB orthomosaic produced by Agisoft Metashape. Imagery data collected with a 

DJI Phantom 4 RTK RPAS during a target area survey of Converse, August 21, 2020. Resolution 

is 2 cm and horizontal RMSE expected to be less than the resolution. 
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Figure E-8. Elevation model produced by Agisoft Metashape (displayed as a combined colour 

ramp and hillshade). Imagery data collected with a DJI Phantom 4 RTK RPAS during a target 

area survey of Converse, August 21, 2020. Resolution is 2 cm, and vertical RMSE is 2.0 cm. 
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Figure E-9. RGB orthomosaic produced by Agisoft Metashape. Imagery data collected with a 

DJI Phantom 4 RTK RPAS during a target area survey of Converse, October 5, 2020. Resolution 

is 2 cm and horizontal RMSE expected to be less than the resolution. 
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Figure E-10. Elevation model produced by Agisoft Metashape (displayed as a combined colour 

ramp and hillshade). Imagery data collected with a DJI Phantom 4 RTK RPAS during a target 

area survey of Converse, October 5, 2020. Resolution is 2 cm, and vertical RMSE is 1.7 cm. 



   

 

183 

 

 

Figure E-11. RGB orthomosaic produced by Agisoft Metashape. Imagery data collected with a 

DJI Phantom 4 RTK RPAS during a target area survey of Converse, November 8, 2020. 

Resolution is 2 cm and horizontal RMSE expected to be less than the resolution. 



   

 

184 

 

 

Figure E-12. Elevation model produced by Agisoft Metashape (displayed as a combined colour 

ramp and hillshade). Imagery data collected with a DJI Phantom 4 RTK RPAS during a target 

area survey of Converse, November 8, 2020. Resolution is 2 cm, and vertical RMSE is 1.3 cm. 
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Figure E-13. RGB orthomosaic produced by Agisoft Metashape. Imagery data collected with a 

DJI Phantom 4 RTK RPAS during a target area survey of Converse, May 4, 2021. Resolution is 

2 cm and horizontal RMSE expected to be less than the resolution. 



   

 

186 

 

 

Figure E-14. Elevation model produced by Agisoft Metashape (displayed as a combined colour 

ramp and hillshade). Imagery data collected with a DJI Phantom 4 RTK RPAS during a target 

area survey of Converse, May 4, 2021. Resolution is 2 cm, and vertical RMSE is 2.1 cm. 
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Appendix F - Additional Volumetric Analysis Results 

Table F.1 outlines the volumetric change results for the river area of the Full Site 

datasets. These results varied significantly from the site results in terms of variability of total 

volumetric change values with differing LoDs. Within the river area, total volumetric change 

values remained relatively consistent with no LoD, a 68% CI LoD, and a 95% CI LoD. All 

volumetric changes within the river area were net positive, with the largest change occurring in 

the 1-year dataset: 12607.9 ± 2137.6 m3 with no LoD, 12610.5 ± 2000.7 m3 with a 68% CI LoD, 

and 12620.3 ± 1877.4 m3 with a 95% CI LoD. 

The river area volumetric change results for the Target Area DoDs are outlined in Table 

F.2. Trends in these results were very similar to those in the river area of the Full Site DoDs, and 

all time periods had a net positive volumetric change. The highest amount of total volumetric 

change occurred over the 1-year period: 908.3 ± 330.6 m3 with no LoD, 910.0 ± 300.1 m3 with a 

68% CI LoD, and 919.3 ± 273.4 m3 with a 95% CI LoD. Total volumetric change values did not 

vary a lot between different LoDs in all time periods, although volumetric uncertainties were 

relatively high compared to measured change. 

Tables F.3 and F.4 show results of the volumetric analyses of the problematic Target 

Area datasets (spring-summer and summer-fall), and Tables F.5 to F.10 show all results of the 

volumetric analyses but with the Lane et al. (2003) equation utilized to calculate volumetric 

uncertainty.
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Table F-1. Results of the volumetric change analysis for the river area of the Full Site datasets using no LoD, an LoD with 68% CI 

and an LoD with 95% CI. Volumetric uncertainties were calculated using the Taylor (1997) equation. 

Time Frame 

No LoD 68% CI 95% CI 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

2019/11/24 - 2020/10/05 

(1-Year) 
12607.9 ± 2137.6 17.2 ± 2.9 2.9 12610.5 ± 2000.7 18.4 ± 2.9 5.7 12620.3 ± 1877.4 19.6 ± 2.9 

2019/11/24 - 2020/06/01 

(Winter) 
4007.7 ± 1625.2 5.5 ± 2.2 2.2 4008.4 ± 1508.2 5.9 ± 2.2 4.4 4015.3 ± 1394.6 6.4 ± 2.2 

2020/06/01 - 2020/10/05 

(Growing Season) 
8599.3 ± 1932.6 11.8 ± 2.6 2.6 8567.6 ± 1670.4 13.5 ± 2.6 5.2 8413.8 ± 1434.2 15.9 ± 2.6 

2020/06/01 - 2020/08/21 

(Spring – Summer) 
5100.8 ± 1683.8 7.0 ± 2.3 2.3 5074.4 ± 1410.3 8.3 ± 2.3 4.5 4939.1 ± 1164.1 9.8 ± 2.3 

2020/08/21 - 2020/10/05 

(Summer - Fall) 
3498.5 ± 2181.5 4.8 ± 3.0 3.0 3343.6 ± 1521.4 6.6 ± 3.0 5.8 3092.2 ± 1067.9 8.6 ± 3.0 

Table F-2. Results of the volumetric change analysis for the river area of the Target Area datasets using no LoD, an LoD with 68% CI 

and an LoD with 95% CI. Volumetric uncertainties were calculated using the Taylor (1997) equation. * denotes unreliable results. 

Time Frame 

No LoD 68% CI 95% CI 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

2019/11/24 - 2020/10/05 

(1-Year) 
908.3 ± 330.6 6.8 ± 2.5 2.5 910.0 ± 300.1 7.5 ± 2.5 4.9 919.3 ± 273.4 8.3 ± 2.5 

2019/11/24 - 2020/06/01 

(Winter) 
381.7 ± 304.0 2.9 ± 2.3 2.3 383.8 ± 278.4 3.1 ± 2.3 4.5 393.1 ± 252.0 3.6 ± 2.3 

2020/06/01 - 2020/10/05 

(Growing Season) 
540.7 ± 293.4 4.1 ± 2.2 2.2 538.0 ± 225.2 5.3 ± 2.2 4.3 527.6 ± 166.9 7.0 ± 2.2 

2020/06/01 - 2020/08/21 

(Spring – Summer) 
242.0 ± 325.3* 1.8 ± 2.4* 2.4 237.9 ± 217.3* 2.7 ± 2.4* 4.8 223.2 ± 136.9* 4.0 ± 2.4* 

2020/08/21 - 2020/10/05 

(Summer - Fall) 
284.8 ± 349.7* 2.1 ± 2.6* 2.6 272.1 ± 182.5* 3.9 ± 2.6* 5.1 208.7 ± 88.8* 6.2 ± 2.6* 
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Table F-3. Results of the volumetric change analysis for the site area of the problematic Target Area datasets using no LoD, an LoD 

with 68% CI and an LoD with 95% CI. Volumetric uncertainties were calculated using the Taylor (1997) equation. Please note, 

presented data are considered unreliable due to RPAS surface offsets. 

Time Frame 

No LoD 68% CI 95% CI 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

2020/06/01 - 2020/08/21 

(Spring – Summer) 
55.2 ± 1023.1 0.1 ± 2.4 2.4 12.6 ± 166.8 0.2 ± 2.4 4.8 5.2 ± 11.1 1.2 ± 2.4 

2020/08/21 - 2020/10/05 

(Summer - Fall) 
611.5 ± 1100.1 1.5 ± 2.6 2.6 356.4 ± 288.8 3.2 ± 2.6 5.1 33.5 ± 22.4 3.9 ± 2.6 

Table F-4. Results of the volumetric change analysis for areas of interest in problematic Target Area datasets using no LoD, an LoD 

with 68% CI and an LoD with 95% CI. Volumetric uncertainties were calculated using the Taylor (1997) equation. Please note, 

presented data are considered unreliable due to RPAS surface offsets. 

Area Time Frame 

No LoD 68% CI 95% CI 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

Borrow 

Pit 

2020/06/01 - 2020/08/21 

(Spring – Summer) 
-72.6 ± 81.6 -2.1 ± 2.4 2.4 -41.7 ± 31.5 -3.2 ± 2.4 4.8 -1.7 ± 0.8 -5.0 ± 2.4 

2020/08/21 - 2020/10/05 

(Summer - Fall) 
100.2 ± 87.7 2.9 ± 2.6 2.6 77.4 ± 47.4 4.3 ± 2.6 5.1 24.3 ± 10.9 5.9 ± 2.6 

Drainage 

Channels 

2020/06/01 - 2020/08/21 

(Spring – Summer) 
8.4 ± 28.0 0.6 ± 2.4 2.4 4.6 ± 14.0 0.8 ± 2.4 4.8 -1.5 ± 6.3 -0.6 ± 2.4 

2020/08/21 - 2020/10/05 

(Summer - Fall) 
-5.5 ± 30.0 -0.4 ± 2.6 2.6 -4.6 ± 7.9 -1.5 ± 2.6 5.1 -5.2 ± 2.7 -5.1 ± 2.6 

Main 

Channel 

Mouth 

2020/06/01 - 2020/08/21 

(Spring – Summer) 
6.2 ± 9.3 1.4 ± 2.4 2.4 5.3 ± 6.2 2.1 ± 2.4 4.8 3.1 ± 3.9 2.0 ± 2.4 

2020/08/21 - 2020/10/05 

(Summer - Fall) 
-7.6 ± 10.0 -1.7 ± 2.6 2.6 -6.2 ± 3.3 -5.0 ± 2.6 5.1 -3.7 ± 1.1 -8.6 ± 2.6 
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Table F-5. Results of the volumetric change analysis for the site area of the Full Site datasets using no LoD, an LoD with 68% CI and 

an LoD with a 98% CI. Volumetric uncertainties were calculated using the Lane et al. (2003) equation. 

Time Frame 

No LoD 68% CI 95% CI 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

2019/11/24 - 2020/10/05 

(1-Year) 
1464.3 ± 24.6 2.5 ± <0.1 2.9 1228.0 ± 18.2 3.9 ± 0.1 5.7 418.8 ± 10.1 4.3 ± 0.1 

2019/11/24 - 2020/06/01 

(Winter) 
-397.6 ± 18.7 -0.7 ± <0.1 2.2 -389.9 ± 12.0 -1.7 ± 0.1 4.4 -299.4 ± 7.0 -3.7 ± 0.1 

2020/06/01 - 2020/10/05 

(Growing Season) 
1860.8 ± 22.2 3.2 ± <0.1 2.6 1567.1 ± 17.9 4.2 ± 0.1 5.2 451.7 ± 8.1 5.8 ± 0.1 

2020/06/01 - 2020/08/21 

(Spring – Summer) 
430.7 ± 19.4 0.7 ± <0.1 2.3 273.8 ± 9.4 2.0 ± 0.1 4.5 39.6 ± 3.0 2.8 ± 0.2 

2020/08/21 - 2020/10/05 

(Summer - Fall) 
1429.7 ± 25.1 2.5 ± <0.1 3.0 865.5 ± 15.1 4.1 ± 0.1 5.8 123.4 ± 4.6 6.3 ± 0.2 

Table F-6. Results of the volumetric change analysis for the river area of the Full Site datasets using no LoD, an LoD with 68% CI 

and an LoD with 95% CI. Volumetric uncertainties were calculated using the Lane et al. (2003) equation. 

Time Frame 

No LoD 68% CI 95% CI 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

2019/11/24 - 2020/10/05 

(1-Year) 
12607.9 ± 27.7 17.2 ± <0.1 2.9 12610.5 ± 26.8 18.4 ± <0.1 5.7 12620.3 ± 25.9 19.6 ± <0.1 

2019/11/24 - 2020/06/01 

(Winter) 
4007.7 ± 21.0 5.5 ± <0.1 2.2 4008.4 ± 20.3 5.9 ± <0.1 4.4 4015.3 ± 19.5 6.4 ± <0.1 

2020/06/01 - 2020/10/05 

(Growing Season) 
8599.3 ± 25.0 11.8 ± <0.1 2.6 8567.6 ± 23.2 13.5 ± <0.1 5.2 8413.8 ± 21.5 15.5 ± <0.1 

2020/06/01 - 2020/08/21 

(Spring – Summer) 
5100.8 ± 21.8 7.0 ± <0.1 2.3 5074.4 ± 19.9 8.3± <0.1 4.5 4939.1 ± 18.1 9.8 ± <0.1 

2020/08/21 - 2020/10/05 

(Summer - Fall) 
3498.5 ± 28.2 4.8 ± <0.1 3.0 3343.6 ± 23.6 6.6 ± 0.1 5.8 3092.2 ± 19.7 8.6 ± 0.1 
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Table F-7. Results of the volumetric change analysis for the site area of the Target Area datasets using no LoD, an LoD with 68% CI 

and an LoD with 95% CI. Volumetric uncertainties were calculated using the Lane et al. (2003) equation. * denotes unreliable results.  

Time Frame 

No LoD 68% CI 95% CI 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

2019/11/24 - 2020/10/05 

(1-Year) 
540.4 ± 31.1 1.3 ± 0.1 2.5 440.9 ± 22.1 2.1 ± 0.1 4.9 46.5 ± 11.3 0.9 ± 0.2 

2019/11/24 - 2020/06/01 

(Winter) 
-126.3 ± 28.6 -0.3 ± 0.1 2.3 -184.7 ± 18.4 -1.1 ± 0.1 4.5 -163.8 ± 9.6 -3.5 ± 0.2 

2020/06/01 - 2020/10/05 

(Growing Season) 
666.6 ± 27.6 1.6 ± 0.1 2.2 369.2 ± 15.3 2.9 ± 0.1 4.3 67.0 ± 5.7 3.7 ± 0.3 

2020/06/01 - 2020/08/21 

(Spring – Summer) 
55.2 ± 30.6* 0.1 ± 0.1* 2.4 12.6 ± 12.4* 0.2 ± 0.2* 4.8 5.2 ± 3.2* 1.2 ± 0.7* 

2020/08/21 - 2020/10/05 

(Summer - Fall) 
611.5 ± 32.9* 1.5 ± 0.1* 2.6 356.4 ± 16.9* 3.2 ± 0.2* 5.1 33.5 ± 4.7* 3.9 ± 0.6* 

Table F-8. Results of the volumetric change analysis for the river area of the Target Area datasets using no LoD, an LoD with 68% CI 

and an LoD with 95% CI. Volumetric uncertainties were calculated using the Lane et al. (2003) equation. * denotes unreliable results. 

Time Frame 

No LoD 68% CI 95% CI 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

2019/11/24 - 2020/10/05 

(1-Year) 
908.3 ± 17.5 6.8 ± 0.1 2.5 910.0 ± 16.7 7.5 ± 0.1 4.9 919.3 ± 16.0 8.3 ± 0.1 

2019/11/24 - 2020/06/01 

(Winter) 
381.7 ± 16.1 2.9 ± 0.1 2.3 383.8 ± 15.4 3.1 ± 0.1 4.5 393.1 ± 14.7 3.6 ± 0.1 

2020/06/01 - 2020/10/05 

(Growing Season) 
540.7 ± 15.6 4.1 ± 0.1 2.2 538.0 ± 13.6 5.3 ± 0.1 4.3 527.6 ± 11.7 7.0 ± 0.2 

2020/06/01 - 2020/08/21 

(Spring – Summer) 
242.0 ± 17.3* 1.8 ± 0.1* 2.4 237.9 ± 14.1* 2.7 ± 0.2* 4.8 223.2 ± 11.2* 4.0 ± 0.2* 

2020/08/21 - 2020/10/05 

(Summer - Fall) 
284.8 ± 18.6* 2.1 ± 0.1* 2.6 272.1 ± 13.4* 3.9 ± 0.2* 5.1 208.7 ± 9.4* 6.2 ± 0.3* 
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Table F-9. Results of the volumetric change analysis for areas of interest in Target Area datasets using no LoD, an LoD with 68% CI 

and an LoD with 95% CI. Volumetric uncertainties were calculated using the Lane et al. (2003) equation. 

Area Time Frame 

No LoD 68% CI 95% CI 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

Borrow 

Pit 

2019/11/24 - 2020/10/05 

(1-Year) 
174.5 ± 8.8 5.0 ± 0.3 2.5 166.9 ± 7.8 6.4 ± 0.3 4.9 138.436 ± 6.379 7.9 ± 0.4 

2019/11/24 - 2020/06/01 

(Winter) 
146.8 ± 8.1 4.4 ± 0.2 2.3 140.4 ± 7.0 5.5 ± 0.3 4.5 114.3 ± 5.8 6.7 ± 0.3 

2020/06/01 - 2020/10/05 

(Growing Season) 
27.7 ± 7.8 0.8 ± 0.2 2.2 14.7 ± 3.2 2.6 ± 0.6 4.3 0.8 ± 0.6 3.8 ± 2.9 

Drainage 

Channels 

2019/11/24 - 2020/10/05 

(1-Year) 
-103.5 ± 5.1 -9.0 ± 0.5 2.5 -102.3 ± 4.0 -12.2 ± 0.5 4.9 -99.2 ± 3.9 -15.4 ± 0.6 

2019/11/24 - 2020/06/01 

(Winter) 
-106.2 ± 4.7 -9.3 ± 0.4 2.3 -104.8 ± 4.4 -10.8 ± 0.5 4.5 -98.5 ± 4.1 -11.7 ± 0.5 

2020/06/01 - 2020/10/05 

(Growing Season) 
3.8 ± 4.6 0.3 ± 0.4 2.2 2.5 ± 3.5 0.4 ± 0.5 4.3 -1.4 ± 2.7 -0.4 ± 0.7 

Main 

Channel 

Mouth 

2019/11/24 - 2020/10/05 

(1-Year) 
-127.0 ± 3.0 -33.2 ± 0.8 2.5 -126.9 ± 2.8 -36.4 ± 0.8 4.9 -126.634 ± 2.726 -39.3 ± 0.9 

2019/11/24 - 2020/06/01 

(Winter) 
-125.6 ± 2.7 -32.8 ± 0.7 2.3 -125.5 ± 2.6 -35.1 ± 0.7 4.5 -125.0 ± 2.6 -37.0 ± 0.8 

2020/06/01 - 2020/10/05 

(Growing Season) 
-1.0 ± 2.6 -0.2 ± 0.7 2.2 -1.5 ± 2.1 -0.6 ± 0.9 4.3 -2.7 ± 1.7 -1.6 ± 1.1 
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Table F-10. Results of the volumetric change analysis for areas of interest in problematic Target Area datasets using no LoD, an LoD 

with 68% CI and an LoD with 95% CI. Volumetric uncertainties were calculated using the Lane et al. (2003) equation. Please note, 

presented data are considered unreliable due to RPAS surface offsets. 

Area Time Frame 

No LoD 68% CI 95% CI 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

LOD 

(cm) 

Total Volumetric 

Change (m3) 

Average 

Vertical 

Change (cm) 

Borrow 

Pit 

2020/06/01 - 2020/08/21 

(Spring – Summer) 
-72.6 ± 81.6 -2.1 ± 2.4 2.4 -41.7 ± 31.5 -3.2 ± 2.4 4.8 -1.7 ± 0.8 -5.0 ± 2.4 

2020/08/21 - 2020/10/05 

(Summer - Fall) 
100.2 ± 87.7 2.9 ± 2.6 2.6 77.4 ± 47.4 4.3 ± 2.6 5.1 24.3 ± 10.9 5.9 ± 2.6 

Drainage 

Channels 

2020/06/01 - 2020/08/21 

(Spring – Summer) 
8.4 ± 28.0 0.6 ± 2.4 2.4 4.6 ± 14.0 0.8 ± 2.4 4.8 -1.5 ± 6.3 -0.6 ± 2.4 

2020/08/21 - 2020/10/05 

(Summer - Fall) 
-5.5 ± 30.0 -0.4 ± 2.6 2.6 -4.6 ± 7.9 -1.5 ± 2.6 5.1 -5.2 ± 2.7 -5.1 ± 2.6 

Main 

Channel 

Mouth 

2020/06/01 - 2020/08/21 

(Spring – Summer) 
6.2 ± 9.3 1.4 ± 2.4 2.4 5.3 ± 6.2 2.1 ± 2.4 4.8 3.1 ± 3.9 2.0 ± 2.4 

2020/08/21 - 2020/10/05 

(Summer - Fall) 
-7.6 ± 10.0 -1.7 ± 2.6 2.6 -6.2 ± 3.3 -5.0 ± 2.6 5.1 -3.7 ± 1.1 -8.6 ± 2.6 
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Appendix G - Channel Delineation Results 

 

Figure G-1. Results of the channel delineation of the November 24, 2019 Full Site dataset. 
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Figure G-2. Results of the channel delineation of the November 24, 2019 Target Area dataset. 
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Figure G-3. Results of the channel delineation of the June 1, 2020 Full Site dataset. 
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Figure G-4. Results of the channel delineation of the June 1, 2020 Target Area dataset. 
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Figure G-5. Results of the channel delineation of the July 9, 2020 Full Site dataset. 
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Figure G-6. Results of the channel delineation of the July 9, 2020 Target Area dataset. 
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Figure G-7. Results of the channel delineation of the August 21, 2020 Full Site dataset. 
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Figure G-8. Results of the channel delineation of the August 21, 2020 Target Area dataset. 
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Figure G-9. Results of the channel delineation of the October 5, 2020 Full Site dataset. 
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Figure G-10. Results of the channel delineation of the October 5, 2020 Target Area dataset. 

Channel Classification 

                 Existent 

                 Proto 



   

 

204 

 

 

Figure G-11. Results of the channel delineation of the November 8, 2020 Full Site dataset. 
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Figure G-12. Results of the channel delineation of the November 8, 2020 Target Area dataset. 
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Figure G-13. Results of the channel delineation of the May 4, 2021 Full Site dataset. 

Channel Classification 

                 Existent 

                 Proto 



   

 

207 

 

 

Figure G-14. Results of the channel delineation of the May 4, 2021 Target Area dataset. 
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Appendix H - 95% Confidence Interval Digital Elevation Models of Difference Results 

 

Figure H-1. DEM of Difference raster showing Full Site surface elevation change from 

November 24, 2019 to October 5, 2020 (1-year). LoD was calculated using a 95% confidence 

interval. Background is a hillshade of the October 5, 2020 DSM. Percentage of pixels in the site 

area and river area within LoD are 17% and 88% respectively. 
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Figure H-2. DEM of Difference raster showing Target Area surface elevation change from 

November 24, 2019 to October 5, 2020 (1-year). LoD was calculated using a 95% confidence 

interval. Background is a hillshade of the October 5, 2020 DSM. Percentage of pixels in the site 

area and river area within LoD are 13% and 83% respectively. 
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Figure H-3. DEM of Difference raster showing Full Site surface elevation change from 

November 24, 2019 to June 1, 2020 (winter). LoD was calculated using a 95% confidence 

interval. Background is a hillshade of the June 1, 2020 DSM. Percentage of pixels in the site 

area and river area within LoD are 14% and 86% respectively. 
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Figure H-4. DEM of Difference raster showing Target Area surface elevation change from 

November 24, 2019 to June 1, 2020 (winter). LoD was calculated using a 95% confidence 

interval. Background is a hillshade of the June 1, 2020 DSM. Percentage of pixels in the site 

area and river area within LoD are 11% and 83% respectively. 
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Figure H-5. DEM of Difference raster showing Full Site surface elevation change from June 1, 

2020 to October 5, 2020 (growing season). LoD was calculated using a 95% confidence interval. 

Background is a hillshade of the October 5, 2020 DSM. Percentage of pixels in the site area and 

river area within LoD are 13% and 74% respectively. 
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Figure H-6. DEM of Difference raster showing Target Area surface elevation change from June 

1, 2020 to October 5, 2020 (growing season). LoD was calculated using a 95% confidence 

interval. Background is a hillshade of the October 5, 2020 DSM. Percentage of pixels in the site 

area and river area within LoD are 4% and 57% respectively. 
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Figure H-7. DEM of Difference raster showing Full Site surface elevation change from June 1, 

2020 to August 21, 2020 (spring-summer). LoD was calculated using a 95% confidence interval. 

Background is a hillshade of the August 21, 2020 DSM. Percentage of pixels in the site area and 

river area within LoD are 2% and 69% respectively. 
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Figure H-8. DEM of Difference raster showing Target Area surface elevation change from June 

1, 2020 to August 21, 2020 (spring-summer). LoD was calculated using a 95% confidence 

interval. Background is a hillshade of the August 21, 2020 DSM. Percentage of pixels in the site 

area and river area within LoD are 1% and 42% respectively. 
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Figure H-9. DEM of Difference raster showing Full Site surface elevation change from August 

21, 2020 to October 5, 2020 (summer-fall). LoD was calculated using a 95% confidence interval. 

Background is a hillshade of the October 5, 2020 DSM. Percentage of pixels in the site area and 

river area within LoD are 3% and 49% respectively. 
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Figure H-10. DEM of Difference raster showing Target Area surface elevation change from 

August 21, 2020 to October 5, 2020 (summer-fall). LoD was calculated using a 95% confidence 

interval. Background is a hillshade of the October 5, 2020 DSM. Percentage of pixels in the site 

area and river area within LoD are 2% and 25% respectively. 
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Appendix I - Multiple Linear Regression Partition of Variance Results 

 

Figure I-1. Variance partitioning variables for calculated multiple linear regression models, 

where [a] = pure environmental variation, [b] = spatially autocorrelated environmental 

variation, [c] = pure spatial variation, and [d] = model residuals. 

Table I-1. Partition of variance results for the unscaled multiple linear regression model of 

surface elevation change within the borrow pit from November 24, 2019 to October 5, 2020 (1-

year, Target Area dataset). 

 Df Adjusted R2 

[a] + [b] = X1 3 0.50656 

[b] + [c] = X2 6192 0.73953 

[a] + [b] + [c] = X1 + X2 6195 0.79475 

Individual Fractions   

[a] = X1 | X2 3 0.05522 

[b] 0 0.45134 

[c] = X2 | X1 6192 0.28819 

[d] = Residuals  0.20525 
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Table I-2. Partition of variance results for the unscaled multiple linear regression model of 

surface elevation change within the study site but excluding main channel mouth, drainage 

ditches and borrow pit from November 24, 2019 to October 5, 2020 (1-year, Full Site dataset). 

 Df Adjusted R2 

[a] + [b] = X1 3 0.22708 

[b] + [c] = X2 6627 0.49419 

[a] + [b] + [c] = X1 + X2 6630 0.52561 

Individual Fractions   

[a] = X1 | X2 3 0.03142 

[b] 0 0.19567 

[c] = X2 | X1 6627 0.29852 

[d] = Residuals  0.47439 

Table I-3. Partition of variance results for the unscaled multiple linear regression model of 

surface elevation change within the borrow pit from November 24, 2019 to June 1, 2020 (winter, 

Target Area dataset). 

 Df Adjusted R2 

[a] + [b] = X1 3 0.36725 

[b] + [c] = X2 6192 0.68936 

[a] + [b] + [c] = X1 + X2 6195 0.74298 

Individual Fractions   

[a] = X1 | X2 3 0.05362 

[b] 0 0.31363 

[c] = X2 | X1 6192 0.37573 

[d] = Residuals  0.25702 
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Table I-4. Partition of variance results for the unscaled multiple linear regression model of 

surface elevation change within the study site but excluding main channel mouth, drainage 

ditches and borrow pit from November 24, 2019 to June 1, 2020 (winter, Full Site dataset). 

 Df Adjusted R2 

[a] + [b] = X1 3 0.20406 

[b] + [c] = X2 6627 0.53465 

[a] + [b] + [c] = X1 + X2 6630 0.55212 

Individual Fractions   

[a] = X1 | X2 3 0.01747 

[b] 0 0.18659 

[c] = X2 | X1 6627 0.34806 

[d] = Residuals  0.44788 

Table I-5. Partition of variance results for the unscaled multiple linear regression model of 

surface elevation change within the borrow pit from June 1, 2020 to October 5, 2020 (growing 

season, Target Area dataset). 

 Df Adjusted R2 

[a] + [b] = X1 3 0.28763 

[b] + [c] = X2 6192 0.59471 

[a] + [b] + [c] = X1 + X2 6195 0.61320 

Individual Fractions   

[a] = X1 | X2 3 0.01850 

[b] 0 0.26913 

[c] = X2 | X1 6192 0.32558 

[d] = Residuals  0.38680 
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Table I-6. Partition of variance results for the unscaled multiple linear regression model of 

surface elevation change within the study site but excluding main channel mouth, drainage 

ditches and borrow pit from June 1, 2020 to October 5, 2020 (growing season, Full Site dataset). 

 Df Adjusted R2 

[a] + [b] = X1 3 0.01284 

[b] + [c] = X2 6627 0.21234 

[a] + [b] + [c] = X1 + X2 6630 0.23535 

Individual Fractions   

[a] = X1 | X2 3 0.02301 

[b] 0 -0.01017 

[c] = X2 | X1 6627 0.22251 

[d] = Residuals  0.76465 
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Appendix J - Supplementary Data Products 

 

Figure J-1. RGB orthomosaic produced by Pix4D Mapper. Imagery data collected with a DJI Phantom 3 Professional RPAS during a 

full site survey of Converse, August 1, 2018, pre-breach. Orthomosaic resolution of 4 cm, and horizontal RMSE expected to be less 

than the resolution. 
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Figure J-2. Elevation model produced by Pix4D Mapper. Imagery data collected with a DJI Phantom 3 Professional RPAS during a 

full site survey of Converse, August 1, 2018, pre-breach. Elevation model resolution of 4 cm, and vertical RMSE unknown. 
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Figure J-3. RGB orthomosaic produced by Pix4D Mapper. Imagery data collected with a DJI Phantom 3 Professional RPAS during a 

full site survey of Converse, September 24, 2018, pre-breach. Orthomosaic resolution of 4 cm, and horizontal RMSE expected to be 

less than the resolution. 
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Figure J-4. Elevation model produced by Pix4D Mapper. Imagery data collected with a DJI Phantom 3 Professional RPAS during a 

full site survey of Converse, September 24, 2018, pre-breach. Elevation model resolution of 4 cm, and vertical RMSE of 15.7 cm. 
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Figure J-5. RGB orthomosaic produced by Pix4DMapper. Imagery data collected with a WingtraOne PPK RPAS during a full site 

survey of Converse, May 5, 2019. Orthomosaic resolution of 4 cm, and horizontal RMSE expected to be less than the resolution. 
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Figure J-6. Elevation model produced by Pix4D Mapper. Imagery data collected with a DJI Phantom 4 RTK RPAS during a full site 

survey of Converse, May 5, 2019. Elevation model resolution of 4 cm, and vertical RMSE of 6.8 cm. 
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Figure J-7. RGB orthomosaic produced by Agisoft Metashape. Imagery data collected with a WingtraOne PPK RPAS during a full 

site survey of Converse, August 2, 2019. Orthomosaic resolution of 2.5 cm, and horizontal RMSE expected to be less than the 

resolution. 
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Figure J-8. Elevation model produced by Agisoft Metashape. Imagery data collected with a WingtraOne PPK RPAS during a full site 

survey of Converse, August 2, 2019. Elevation model resolution of 2.5 cm, and vertical RMSE of 3.1 cm.


