
The Practical Efficiency of Regular Expression

Membership Algorithms

By Justin Gray

A Thesis Submitted to
Saint Mary’s University, Halifax, Nova Scotia
in Partial Fulfillment of the Requirements for

the Degree of Bachelor of Science, Honours Computing Science.

April 2022, Halifax, Nova Scotia

Copyright Justin Gray, 2022

Approved: Dr. Stavros Konstantinidis
Professor, Supervisor

Approved: Dr. Porter Scobey
Associate Professor, Reader

Date: April 28, 2022

The Practical Efficiency of Regular Expression

Membership Algorithms

By Justin Gray

Abstract

Regular expressions encode text patterns and define languages of symbolic words. The mem-

bership problem decides if a given word is an element of the language described by a given regular

expression. This problem has various well-studied algorithms, but current research only shows

asymptotic complexity and performance with respect to samples of randomly generated regular

expressions. Our research aims to answer how the algorithms perform when using practical regular

expressions used in the real-world on a representative test set of words. A set of compatible regular

expressions have been collected from public GitHub repositories. Each compatible expression (i.e.,

no backreferences or improper formatting) is then converted into an equivalent unambiguous mathe-

matical representation. For each distinct expression, we have tested Thompson, Glushkov, position,

follow, and partial derivative NFA constructions, as well as partial derivatives and exponential back-

tracking directly on the regular expression tree. These algorithms have been implemented into a

modified version of the Python’s FAdo library and include UNIX-inspired extensions such as char-

acter classes, the wild dot, and UTF-8 support. We find that efficiently constructing a small NFA is

the best approach to this problem; using follow and PDDAG algorithms are experimentally shown

as the best.

April 28, 2022

1

Contents

1 Introduction 4

2 Background 6

2.1 Formal Languages . 6

2.2 Regular Expressions . 7

2.3 Derivatives . 11

2.4 Finite Automata . 13

2.5 Empty Removal Construction . 17

2.6 Product Construction . 17

2.7 Context-Free Grammars . 18

3 Literature Review 21

3.1 Regular Language Enumeration . 21

3.1.1 Pairwise Word Generation . 21

3.1.2 NFA Language Enumeration . 24

3.2 Backtracking Membership Algorithm . 24

3.3 Glushkov/Position NFA . 27

3.4 Partial Derivative NFA . 29

3.5 Follow NFA . 31

4 Programming Tools 34

2

4.1 FAdo . 34

4.2 Lark Parser . 35

4.3 RegExp Tree . 35

5 Methodology 37

5.1 Sampling Practical Regular Expressions . 37

5.1.1 Finding Relevant GitHub Files . 38

5.1.2 Extracting Regular Expressions . 38

5.1.3 Converting into FAdo Compatible Syntax . 39

5.1.4 Partial Matching . 41

5.2 Randomly Generating Regular Expressions . 44

5.3 Implementing FAdo Extensions . 46

5.3.1 Unicode Regular Expressions . 47

5.3.2 Regular Expression Tree Equality . 48

5.3.3 Invariant NFA . 49

5.4 Design of Experiments . 50

6 Results 53

6.1 NFA Sizes for Practical Regular Expressions . 54

6.2 Practical Regular Expressions . 56

6.3 Randomly Sampled Regular Expressions . 61

7 Conclusions 67

3

Chapter 1

Introduction

The most fundamental question with respect to regular expressions is asking if a given input

word is accepted by a given regular expression. This is called the membership problem, and it re-

turns a simple boolean answer. Most practical solutions to this problem have significantly deviated

from their theoretical roots, by extending regular expressions to accept non-regular languages, as

well as using exponential backtracking approaches rather than current developments in the theoret-

ical field. As the theory has evolved, publications have been accompanied by asymptotic analyses.

But to our knowledge, a real-world practical study of these improvements has not been conducted.

This research will test various algorithms for solving the membership problem on practical reg-

ular expressions used by developers. There are two distinct classes of algorithms: backtracking

and partial derivatives can be computed directly on a regular expression, and automata solutions

built using Thompson, Glushkov, position, follow, and partial derivative constructions. Which

algorithms applied to the membership problem are the fastest with respect to practical regular

expressions? How does the exponential backtracking algorithm compare with its theoretical coun-

terparts? If you were writing a modern regular expression library today, which algorithms should

be included for membership evaluation?

We begin in Chapter 2 with a basic overview of essential regular expression related topics.

Chapter 3 goes beyond widely understood topics and explores techniques and constructions useful

4

for the rest of the project. In Chapter 4 useful libraries and programming tools are briefly explained.

The methods and implementation details are given in Chapter 5. Finally, in Chapters 6 and 7 we

discuss the results of the experiments and provide some directions for further research.

5

Chapter 2

Background

To ensure anyone with a moderate mathematical background can understand the contents of

this paper, relevant introductory concepts are explained in this chapter. It is recommended that

special attention be given to Sections 2.2 - 2.4, as the concepts therein will be critical throughout

the paper. Advanced readers who are familiar with formal language theory should at least glance

through these highlighted sections to understand the important difference between a programmer’s

regular expression and a mathematical regular expression, as well as our state notation for NFA

constructions.

2.1 Formal Languages

Formal languages study words created by alphabets in languages. Many real-world problems

can be encoded in terms of languages: is a given word an element of a specified language, or how

large is the defined language?

1. Alphabet: a non-empty set of symbols (characters) typically denoted by Σ. Some alphabets

are used frequently enough to be given a name: the binary alphabet is represented by Σ2 =

{0, 1}.

6

2. Word: an ordered sequence of concatenated (joined) symbols from an alphabet. For example,

0110 and 10011 are words over the binary alphabet. When no symbols are chosen we refer to

the empty word as ε. The empty word has the special concatenation property: w ≡ wε ≡ εw.

3. Language: a set of words on an alphabet. The language Σ∗ represents the set of all possible

words of any length on a given alphabet. Every language is a subset of Σ∗.

Since languages are simply sets, the following important set operations on languages K and L exist:

1. Union: K ∪ L = {w : w ∈ K or w ∈ L}

2. Concatenation: K ⊙ L ≡ KL = {uv : u ∈ K, v ∈ L}

3. Power: Kn = {u1u2...un : ui ∈ K}. Note that K0 = {ε}

4. Kleene Star: K∗ = K0 ∪K1 ∪K2 ∪K3 ∪K4...

5. Difference: K\L = {w : w ∈ K,w /∈ L}

6. Complement: Kc = Σ∗\K

2.2 Regular Expressions

Non-trivial language problems involve large languages. It becomes unmanageable to explicitly

enumerate every word in the language, and impossible for infinitely large languages. Regular

expressions aim to solve this problem by encoding many languages in a relatively small sequence of

alphabet symbols and meta-character operations. We distinguish two types of regular expressions

in this paper: mathematical regular expressions and programmer’s regular expressions. In each

case, the function L(α) represents the language encoded by the regular expression α. A regular

expression α matches or accepts a word w if and only if w ∈ L(α).

Mathematical regular expressions represent the most simple specification. Any language that

can be encoded using a mathematical regular expression is classified as a regular language. These

expressions are defined inductively over the alphabet Σ ∪ {(,), ∗,+,⊘}.

7

Definition of Mathematical Regular Expressions

1. Atomic regular expressions ⊘ and σ ∈ Σ such that L(⊘) = ∅ = {} and L(σ) = {σ}

2. Composite regular expressions from given regular expressions α and β:

(a) Disjunction: (α+ β) accepts L(α) ∪ L(β)

(b) Kleene Star: α∗ accepts L(α)∗

(c) Concatenation: (α⊙ β) ≡ (αβ) accepts L(α)L(β)

If α and/or β are ⊘, then it accepts ∅

In this thesis we extend this definition with compatible structures that maintain regularity:

1. Option: α? accepts L(α) ∪ {ε}

2. Empty Word: ε accepts {ε}

3. Wild Dot: . accepts Σ

4. Character Classes: a non-empty sequence of symbols σ and inclusive symbol ranges σ1 − σ2

(σ1 ≤ σ2) enclosed within [] for positive matches or [∧] when looking for any symbol not

contained within the character class. Some examples below:

L([abc]) = {a, b, c}

L([∧abc]) = Σ\{a, b, c}

L([0− 9abcx− z]) = {0, 1, ..., 9, a, b, c, x, y, z}

Mathematical regular expressions form regular expression trees. The tree length of a regular

expression is defined as the number of nodes in its tree. Figure 2.1 shows a regular expression tree

of tree length 9 using most of the features noted above: concatenation (explicit ⊙), disjunction

(+), Kleene star (*), simple atoms (a, b), wild dot (.), and the character class ([012c− z]).

8

⊙

⊙

[012c− z]?

.

+

∗

b

a

Figure 2.1: A regular expression tree for the mathematical regular expression ((a+b∗)(.?[012c−z]))

Programmer’s Regular Expressions

Programmer’s regular expressions are used in practical software applications [1]. Their typi-

cal implementations further extend the definition of mathematical regular expressions from above.

Because of certain non-regular operations such as backreferences, only a subset of programmer’s

regular expressions can be converted into mathematical regular expressions. And from a theoreti-

cal point of view, programmer’s regular expressions do not define regular languages, but instead a

higher subclass of recursively enumerable languages. Converting programmer’s regular expressions

into mathematical regular expressions is explored in Section 5.1. Among other features, program-

mer’s regular expressions:

1. Change the disjunction operator from plus (+) to pipe (|).

2. Remove the explicit representation of the empty word in favour of using the option operation.

3. Allow for implicit operations defined by precedence rules.

4. Add anchors: typical implementations of programmer’s regular expressions consider a given

word to be in the language if any substring of the word is in the language. This substring rule

can be disabled by anchoring the expression. Placing a ∧ at the start of the regular expression

asserts the match begins at the start of the string, and placing a $ at the end ensures nothing

can be matched afterward. In Section 5.1.4 we define a mapping from anchored expressions

into mathematical expressions.

5. Add ranged repetitions: the syntax r{n,m} encodes the power operation on r, between n tom

times (inclusive). If n is missing it defaults to 0, and if m is missing it defaults to ∞. Section

9

5.1.3 shows how a ranged repetition can be equivalently expressed using concatenations,

disjunctions, and ε’s.

6. Add backreferences: this non-regular language operation allows matching the same substring

multiple times. Regular expressions cannot represent the language {ww : w ∈ Σ∗}, but we

can using the backreferencing expression ∧(.∗)\1$. Unless the initial match encodes a finite

sub-language, we are unable to convert any expression with a backreference into the above

mathematical definition. In general this is not the case, and we therefore do not consider any

programmer’s regular expression containing backreferences.

A regular expression r matches/accepts a word w if and only if w ∈ L(r). Determining the

practical efficiency of this membership problem is the focus of this research, and has several different

approaches. Throughout this paper, mathematical regular expressions may not be fully parenthe-

sized and will instead rely on implicit precedence rules to improve conciseness. These precedence

rules are given in descending order: star, optional, concatenation, and disjunction. Mathematical

regular expressions may briefly contain anchors before being removed; in such a case the anchors

are treated as ε.

Typically regular expressions are seen as presented above, where binary operators like con-

catenation and disjunction are placed in the middle of two sub-expressions, or where the star and

optional are placed immediately after a sub-expression. However, it can occasionally be useful to use

an alternative string syntax called reverse polish notation (RPN) where operators are never implicit

and always come before their sub-expressions. Given regular expressions α,β in the appropriate

form, the following equivalencies exist:

10

Infix Operation RPN

(αβ) Concatenation ⊙αβ

(α+ β) Disjunction +αβ

α∗ Star ∗α

α? Optional ?α

σ Atom σ

ε Empty word ε

The RPN syntax is equivalent to the typically-used infix syntax, but hurts human readability in

favour of removing parentheses and being more compact. For example, the mathematical regular

expression (a + (b∗)) ⊙ ((.?) ⊙ [012c − z]) from Figure 2.1 becomes ⊙ + a∗b⊙?.[012c − z] when

expressed using RPN.

2.3 Derivatives

Derivatives can be applied both to languages and regular expressions. The high-level idea is

to remove the first symbol from each word and see what remains. The derivative of a language

L relative to a symbol a is the language defined as a−1L = {y : ay ∈ L}. An arbitrary word

w = a1a2...an is an element of L if and only if ε ∈ a−1
n ...a−1

2 a−1
1 L. That is, removing the first letter

a1 from the words of L, then the first letter a2 from the resulting words and so on will result in a

language. If this language contains the empty word ε, then w = a1a2...an is in L. Derivatives for

regular expressions are defined inductively [2].

1. Dσ(αβ) =

!
""#

""$

Dσ(α)β, ε /∈ L(α)

Dσ(α)β +Dσ(β), ε ∈ L(α)

2. Dσ(α+ β) = Dσ(α) +Dσ(β)

3. Dσ(α
∗) = Dσ(α)α

∗

4. Dσ(σ) = Dσ(.) = Dσ([...σ...]) = ε

11

5. Dσ(a) = Dσ(⊘) = ⊘, for a ∕= σ

The derivative of a regular expression is a regular expression. For example,

Da((a+ b∗)(a(ba)∗)) = ((a(ba)∗) + (ba)∗)

An arbitrary word w = a1a2...an is accepted by regular expression r if and only if ε ∈ L(Dan ...Da2Da1(r)).

Although derivatives can solve membership of infinite languages, the returned expressions suffer

from exponential growth [3].

Mirkin and Antimirov introduced partial derivatives as an improvement to Brzozowski’s word

derivatives [3, 4]. Partial derivatives use sets of regular expressions instead of a single regular

expression to maintain the derivative’s value.

1. δσ(αβ) =

!
""#

""$

δσ(α){β}, ε /∈ L(α)

δσ(α){β} ∪ δσ(β), ε ∈ L(α)

2. δσ(α+ β) = δσ(α) ∪ δσ(β)

3. δσ(α
∗) = δσ(α){α∗}

4. δσ(σ) = δσ(.) = δσ([...σ...]) = {ε}

5. δσ(a) = δσ(⊘) = ∅, for a ∕= σ

The derivative example is redone using partial derivative rules, and we get a set of regular

expressions rather than a single regular expression:

δa((a+ b∗)(a(ba)∗)) = {a(ba)∗, {(ba)∗}

Let the pd(r) function represent the set of all regular expressions derivable by repeatedly apply-

ing the partial derivative algorithm on every element with respect to each character of the alphabet

12

Σ. This set of regular expressions can be no larger than the alphabet length of the regular ex-

pression. That is, |pd(r)| ≤ |r|Σ [3]. This theorem makes testing if a regular expression r accepts

w = a1a2...an easy and efficient:

Algorithm 2.1: Partial derivative membership

1 Algorithm PD Match(r, w):

2 current := {r}
3 for each ai in w:

4 next := ∅
5 for each β in current:

6 next := next ∪ δai(β)
7 current = next

8 for each β in current:

9 if ε ∈ L(β) return Yes

10 return No

As identified by Antimirov, one of the most expensive parts of this algorithm is testing equality

of regular expressions to maintain sets of unique elements, current and next. Significantly reducing

or entirely eliminating this cost without using automata remains an open problem, but can be

mitigated by assigning each regular expression subtree with a directly comparable string or number.

2.4 Finite Automata

A finite automaton is an alternative way to express a regular language. Formally, a finite

automaton is a 5-tuple (Q,Σ, q0, δ, F). Where Q is a set of states (labelled graph nodes), Σ is

the alphabet of the language, q0 is the initial state, δ ⊆ (Q,Σ, Q) is the transition function of

atomic structures between states (directed labelled edges), and F is the set of final states. The

transition function δ maps a state p and a symbol σ to the set δ(p,σ) of possible next states. We

also view δ as the set of transitions (edges); that is, (p,σ, q) ∈ δ means that q ∈ δ(p,σ). For an

automaton A, the language L(A) consists of all input words leading from the state q0 to any final

state in F through zero or more transitions defined by δ. In general the transition function is non-

deterministic; meaning there can be multiple successors of a state given a single label. Deterministic

transition functions also exist, but could require an exponentially larger automaton than their non-

13

deterministic counterparts. Due to the exponential nature of deterministic finite automata (DFAs),

non-deterministic finite automata (NFAs) are almost always preferred in practice. The size of an

automaton is measured as the number of states plus the number of transitions.

Let a finite automaton configuration be a 2-tuple consisting of the set of current states and

a suffix of a given input word. A configuration yields another configuration by taking transitions

from all current states given the first symbol in the suffix.

(S, aw) ⊢ ({p : (s, a, p) ∈ δ, s ∈ S}, w), for S ⊆ Q

A word w is accepted/member/matched of the automaton A if w ∈ L(A). Equivalently, this asks

if there is a valid sequence of configurations such that ({q0}, w) ⊢∗ (S, ε) where S contains at least

one final state (|S ∩ F | > 0).

Figure 2.2 is an example of an NFA that accepts the language {a, b, c} ∪ {a}{a}∗{c}. This

automaton is formally described as

({q0, q1, q2}, {a, b, c}, q0, {(q0, a, q1), (q0, a, q2), (q0, b, q2), (q0, c, q2), (q1, a, q1), (q1, c, q2)}, {q2})

q0

q1

q2

a

a

c

a, b, c

Figure 2.2: an NFA accepting the language {a, b, c} ∪ {a}{a}∗{c}

14

Is the word aaac accepted by this automaton?

({q0}, aaac) ⊢ ({q1, q2}, aac)

⊢ ({q1}, ac)

⊢ ({q1}, c)

⊢ ({q2}, ε)

Since the state q2 is final, and the configuration ends with ε, the word aaac is accepted. It is impor-

tant to note that there are infinitely many NFAs representing the same language. We will therefore

focus our attention on efficient ways to construct NFAs that avoid needlessly large machines.

The definition of an NFA can be extended to allow empty transitions of the form (p, ε, q) for

some states p, q. Allowing ε-transitions simplifies some algorithms considered in this paper, but

does not result in a more powerful language describing method. That is, NFAs without ε-transitions

(called ε-free or sequential) can express exactly the same languages as NFAs with ε-transitions. In

Section 2.5 we define a construction that removes ε-transitions from an NFA, and leaves a sequential

NFA. Any NFA with an empty transition (p, ε, q) at state p may move to state q without consuming

any symbols from the input word.

For any regular expression, we can construct an NFA using the structural induction method -

also known as the Thompson construction. This construction is illustrated in Figure 2.3. There is

always one initial and one final state, and previous subtree computations are joined together using

ε-transitions going into the initial state(s), and out of final state(s).

The rest of this paper will use a consistent notation when illustrating various NFA construction

methods. New states will be left unnamed, previously computed subtree NFAs will be drawn in an

appropriate box, and any modifications to previously computed NFAs will be in bold. We define

the following meanings for the names of states for all constructions illustrated in this paper:

15

State Name Meaning

iα The initial state of NFA(α)

fα The only final state of NFA(α)

f i
α The ith final state of NFA(α)

x, y States x and y are merged

ε

(a) Empty word

σ

(b) Atom σ

iα fα iβ fβ... ...ε

(c) Concatenation (αβ)

iα fα

iβ fβ

...

...

ε

ε

ε

ε

(d) Disjunction (α+ β)

iα fα...

ε ε

ε

ε

(e) Star α∗

Figure 2.3: Thompson construction

The optional operation case α? is omitted in this construction (and all others in this paper)

because it is directly equivalent to (α + ε) and can easily be handled as such. This construction

shows that every mathematical regular expression can be converted into an NFA accepting the

same language. The converse is also true using the state-removal construction, but the resulting

regular expression is exponentially long, and the process is generally not useful in practice since

developers typically write regular expressions and not NFAs.

16

2.5 Empty Removal Construction

In general, NFAs are permitted to include ε-transitions. But for some algorithms (see Section

2.6) we require an NFA to have no ε-transitions. Such an NFA is classified as sequential or ε-free.

Clearly, every sequential NFA is an NFA, but below we show an algorithm proving every NFA is

also a sequential NFA.

To construct a sequential NFA M ′ from NFA M , first copy all states and non-empty transitions.

Define the function:

EM (q) = {p : p ∈ Q, p ∕= q, and p is reachable from q using only ε-transitions}

Then for every state q with outgoing transition (q, a, p) ∈ δ, add transitions ∀r ∈ EM (p) : (q, a, r) to

M ′. The initial state of M ′ is the initial state of M , and the final states of M ′ are ∀f ∈ F : EM (f).

2.6 Product Construction

The algorithms available to NFAs are more well developed than algorithms for regular expres-

sions. The product construction takes the intersection of two regular languages by taking sequential

NFAs A1 and A2 and returning the NFA M such that L(M) = L(A1)∩L(A2). The idea is to label

each state in M as a pair of states (p, q) where p ∈ A1.Q and q ∈ A2.Q. The initial state of M is

the pair of states where both elements are the initial state in their respective automaton - (p0, q0).

Any state in M labelled (p, q) is final if and only if p ∈ A1.F and q ∈ A2.F .

Begin this algorithm by creating state in M (p0, q0) where p0 is the initial state in A1, and

q0 is the initial state in A2. While there is some state not marked done (pi, qn) ∈ M.Q, take the

intersection of every transition (pi,α, pj) ∈ A1.δ with every transition (qn,β, qm) ∈ A2.δ: if α = β,

add state (pj , qm) to M if it does not exist, and add transition ((pi, qn),α, (pj , qm)) to M . Once

every outgoing transition pair from state (pi, qn) is fully explored, mark the state as done. Finally,

make each state (p, q) final in M if and only if both p ∈ A1.F and q ∈ A2.F .

17

For example, suppose there were two NFAs P and Q from Figure 2.4. Using the product

construction, a new NFA is created that accepts exactly the language L(P) ∩ L(Q).

p0 p1 p2

a, b a, b

a a

(a) NFA P accepting all words with the substring aa

q0 q1

a

b

(b) NFA Q accepting all words of the form (a∗b)

p0, q0

p0, q1

p1, q0 p2, q0 p2, q1

a

b

a

a

a

b

(c) Product-constructed NFA accepting exactly L(P) ∩ L(Q)

Figure 2.4: Product construction example with Σ = {a, b}

The product construction becomes extremely useful with respect to the language enumeration

problem in Section 3.1.

2.7 Context-Free Grammars

Context-free grammars (CFG) are a more powerful encoding of formal languages than mathe-

matical regular expressions and finite automata. Formally, they are defined as a 4-tuple: (Γ, Σ, R,

S) where Γ is a set of non-terminal symbols, Σ is the alphabet (set of terminal symbols), R is a set

of production rules of the form γ ∈ Γ → (Γ ∪Σ)∗, and S is the start symbol ∈ Γ. Note that Γ and

Σ are disjoint sets. Any language described by a CFG is considered a context-free language.

Regular languages are a proper subset of context-free languages; any regular language repre-

18

sented by NFA M can be expressed using a CFG G with the following approach:

1. The non-terminals of G are the state names of M .

2. The start symbol of G is the initial state of M .

3. For every transition (P,σ, Q) ∈ M.δ, add to G the rule P → σQ.

4. For every final state F ∈ M.F , add to G the rule F → ε.

Using the pumping lemma, we can prove certain languages are context-free but not regular. Take

for example the language of balanced parentheses defined by the context-free grammar:

({S}, {(,)}, {S → SS, S → (S), S → ε}, S)

There is no such representation using mathematical regular expressions or NFAs. Many important

languages are also context-free but not regular, such as most source code, regular expression strings,

arithmetic expressions, and binary trees. Context-free languages can recurse into themselves; this

is a useful property missing from regular languages.

A derivation is a sequence of production rule applications yielding a word. Any derivable word

is accepted/generated by the CFG. Using the balanced parentheses language defined above, the

word ()(()) is shown to be a member of this language through the derivation:

S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())

Equivalently, this derivation generates the parse tree shown in Figure 2.5. The yield is the con-

catenation of the leaves from left to right.

19

S

S

)S

)S

ε

(

(

S

)S

ε

(

Figure 2.5: Parse tree of “()(())” using the balanced parentheses grammar.

20

Chapter 3

Literature Review

This section aims to explore concepts that are less widely known among researchers outside the

area of regular languages. Along with summarizing the important task of language enumeration

algorithms, this section also outlines the backtracking membership algorithm, as well as Glushkov,

position, partial derivative, and follow constructions for converting a regular expression into an

NFA.

3.1 Regular Language Enumeration

In order to test the efficiency of regular expression membership algorithms, we need to generate

words accepted by the regular expression. This is the language enumeration problem, and it can

be approached with respect to the regular expression tree as well as an equivalent NFA.

3.1.1 Pairwise Word Generation

Word generation applied directly onto a regular expression tree is approached as a finite set

construction by Zheng et al [5]. One of the main advantages of regular expressions allows the

representation of infinite languages using the star operator, so to generate a finite set of words we

21

must limit the number of repetitions allowed of each star. That is, each (r∗) becomes (r0+r1+...+rk)

for some integer 1 < k < ∞. Combination coverage is the simplest way to generate words, since we

rely on enumerating every word in the language. Its implementation is simple, depending on the

structure of each node on the tree. For a regular expression r, generate the combination coverage

set by calling C(r).

1. C(αβ) = C(α)C(β)

2. C(α+ β) = C(α) ∪ C(β)

3. C(α∗) = C(α)0 ∪ C(α)1 ∪ ... ∪ C(α)k

4. C(α?) = {ε} ∪ C(α)

5. C(ε) = {ε}

6. C(σ ∈ Σ) = {σ}

7. C([...σ0 − σ1...σ2...]) = ... ∪ {σ : σ0 ≤ σ ≤ σ1} ∪ ... ∪ {σ2} ∪ ...

(Every symbol accepted by the character class)

However, combination coverage returns an excessive number of words. Not only is this com-

putationally expensive to create (both in time and memory), but a complete set of words is too

large when testing an arbitrary regular expression [5]. To limit the number of words, pairwise

word generation is employed. Pairwise testing applies generally to software where there is a set

of variables, each with a finite number of assignments. With combination testing, we test every

possible combination of variable assignment. Whereas with pairwise testing we are only concerned

with testing pairs of variable assignments [6]. The key idea is to test multiple paired assignments

simultaneously.

For the regular expression r = (a+ b)(c+d)(e+f), combination coverage enumerates the entire

language |L(r)| = 8. But pairwise coverage is achieved with the set {ace, ade, adf, bcf, bde} ⊂ L(r).

This means that every paired combination of assignments is seen in this subset (i.e., a is paired

22

with all c, d, e, f ; c is paired with all a, b, e, f ; etc.). Pairwise coverage requires five words, whereas

combination coverage requires eight. These savings grow as the regular expression gains complexity.

FAdo implements binary concatenations. This improves simplicity across many algorithms,

but totally destroys any savings seen through pairwise concatenation since binary concatenation is

pairwise by definition. Instead, we use combination coverage and attempt to limit the number of

test cases through problem-specific assumptions:

1. C(.) = 16 arbitrarily chosen ASCII symbols

2. C([...a− b...c...]) = {a, b,σ, c, ...} for some σ between a, b

3. C(αβ) = no more than 10,000 words sampled randomly (with constant seed) from all possi-

bilities

4. C(α∗) = {ε} ∪ C(α) ∪ G where G is generated by identifying every pair that needs to be

covered, and greedily concatenating them together. We also implemented a hard-limit that

helps mitigate against G from containing extremely long words.

(a) If α = (a+ b+ c), which accepts {a, b, c}, then all

{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)} pairs need to be covered.

(b) Begin arbitrarily with aa, then find any pair not yet covered that starts with an a. Say,

(a, b). The current word being built is now aab.

(c) Repeat, but looking for a pair starting with b: (b, a). Now the word is aaba.

(d) Repeat, but looking for a pair starting with a: (a, c). Now the word is aabac.

Only the following pairs remain: {(b, b), (b, c), (c, a), (c, b), (c, c)}.

(e) Continue building the current word until a certain maximum number of repetitions is

taken, no more pairs start with the desired letter, or all pairs are used.

(f) Note that in general, letters a, b, c are words of any length.

23

3.1.2 NFA Language Enumeration

The other way to enumerate a regular expression r and generate the language L(r) is to construct

a sequential NFA M such that L(M) = L(r), and use the membership algorithm to generate words

in lexicographic order. This approach allows a star operation to be maintained as a star operation,

instead of having to limit its repetition.

Consider any sequential NFA construction as the function A(r) (e.g., the Thompson construc-

tion with empty-removal construction applied immediately after). The NFA enumeration algorithm

describes how to enumerate cross-sections of a given NFA, where the nth cross-section of an NFA is

the set of words of length n accepted by the NFA. We use the product construction to construct the

acyclic NFA Mn = A(r) ∩ A(.n) where every path from the initial state is of length n. First, find

the minimal word of Mn by starting at the initial state and greedily taking minimum transitions;

concatenate the minimum transition labels, and consider all concatenated words that end in a final

state. Given a minimum word w, find the next word by running w through the membership algo-

rithm, then backtracking through previous state configurations until the next minimum transition

can be taken, then find the minimal word in Mn starting at each potential backtracked state. The

entire cross-section has been enumerated when the algorithm backtracks to the initial state from

its maximal outgoing transition [7]. This process can be repeated for any desired cross-section n.

3.2 Backtracking Membership Algorithm

In order for a regular expression implementation to support non-regular operations such as

backreferences (as used in some programmer’s regular expressions), they must forego typical mem-

bership algorithms. Regular languages can decide membership in polynomial time (both using

partial derivatives and NFA matching). But after adding non-regular operations such as backrefer-

ences, only exponentially bound backtracking algorithms are known. Even using the backtracking

algorithm on a mathematical regular expression (i.e., without backreferences) involves an exponen-

tial worst-case time complexity. Adding backreferences makes deciding the membership problem

NP-complete, since word membership could be solved in (linear) polynomial time to the input

24

word’s length if a perfect guessing function was known. Backtracking algorithms consider one state

at a time and allow saving additional information like matched groups, whereas regular algorithms

consider all possible states at once and rely on collision of these states.

The backtracking membership algorithm can be viewed with respect to a regular expression tree,

as well as an NFA [8]. This thesis tests backtracking membership directly using regular expression

trees, which avoids the polynomial NFA construction cost. Using generating functions, we are able

to write a recursive backtracking algorithm for each type of regular expression node on the regular

expression tree. This algorithm tracks the remaining suffix left to match. The Match function

returns an iterator of suffixes of the input word. If any substring from the Match(r, w) iterator is

empty (i.e., all of w has been matched by r), then r accepts w. To fit within the scope of the rest

of this paper, our implementation of the backtracking algorithm only supports structures defined

in mathematical regular expressions.

Algorithm 3.1: Deciding membership using backtracking

1 Algorithm Backtrack Match(r, w):

2 if r = αβ:
3 for s in Match(α, w):

4 for s′ in Match(β, s):
5 yield s′

6 else if r = α|β:
7 for s in Match(α, w):

8 yield s
9 for s in Match(β, w):

10 yield s
11 else if r = α∗:
12 for s in Match(α, w):

13 for s′ in Match(r, s):
14 yield s′

15 yield w
16 else if r = α?:
17 for s in Match(α, w):

18 yield s
19 yield w
20 else if r = ε:
21 yield w
22 else if r = σ or r = [...σ...] or r = .:
23 yield ε

25

Algorithm 3.1 is a modification of Algorithm 1 from [8], and has been adapted to fit within our

mathematical regular expression specification implemented in FAdo. Figure 3.1(a) shows the main

pitfall of this simple membership algorithm: some words tested on vulnerable regular expressions

will experience exponential membership time. In practice, regular expression libraries include

many complicated optimizations to limit this exponential cost. Some mitigation strategies include

optimizing the regular expression tree to avoid duplicate match options, or using memoization

during word evaluation [8, 9].

(a) Time to reject words aib, for i ∈ N in (a+a)∗

using backtracking vs. partial derivatives.
(b) Time to reject words aic, for i ∈ N in (a|aa)∗b
using Python’s built-in re module.

Figure 3.1: Backtracking suffers from exponential membership time

However, when using a carefully chosen regular expression that avoids structural optimizations,

we are able to see exponential growth despite any internal memoization. Figure 3.1(b) shows how

Python’s built-in re module is vulnerable to exponential membership time. This can lead to security

vulnerabilities in any application that generates regular expressions based on user input, or uses

regular expressions susceptible to a large amount of backtracking (like in Figure 3.1). Theoretically,

an attacker could launch a backtracking search capable of denying service to other users for hours

[8]. Such an attack is referred to as ReDoS (regular expression denial of service).

26

3.3 Glushkov/Position NFA

The Glushkov and position constructions are two distinct approaches that build the same NFA.

Some authors refer to this NFA as the Glushkov NFA while others call it the position NFA. The

Glushkov construction [10] algorithm can be thought of as the Thompson construction without

the empty transitions, and potentially with multiple final states. Let states named pα and qα be

successors of the initial state iα of a given NFA α. For concatenation, each state f i
α is final if and

only if iβ is final, then for every transition (iβ ,σ, pβ), add transitions (f i
α,σ, pβ). Disjunction simply

merges the initial states. And star takes a similar approach to concatenation, but without creating

any new states and making iα final. Through every operation, the initial state only has outgoing

transitions.

27

(a) Empty word

σ

(b) Atom σ

iα

f1
α

fn
α

...

pβ

qβ

f1
β

fm
β

...

σ1

σ2σ1

σ2

(c) Concatenation (αβ)

iα, iβ

f1
α

fn
α

f1
β

fm
β

... α ...

... β ...

(d) Disjunction (α+ β)

iα

pα

qα

f1
α

fn
α

σ1

σj

σ1

σj σ1

σj

(e) Star α∗

Figure 3.2: Glushkov construction

Although the position automaton [11] is identical to the Glushkov automaton, its construction is

significantly different. To convert regular expression r into an NFA using the position construction,

we begin by uniquely marking each atom in r according to its left-to-right position. For example,

the marked version of a(b+ a)b∗ is a1(b2 + a3)b
∗
4. Then informally define the following functions:

first(r) is the set of marked atoms that could represent the first symbol in a matched word

28

(e.g., first(a1(b2+a3)b
∗
4) = {a1}). Similarly, last(r) is the set of marked atoms that could represent

the last symbol in a matched word (e.g., last(a1(b2 + a3)b
∗
4) = {b2, a3, b4}). Finally, follow(r,σi) is

the set of atoms directly reachable in r from the atom σi (e.g., follow(a1(b2 + a3)b
∗
4, b2) = {b4}).

Because the informal definition is so intuitive, the rigorous approach is not included as it only

overcomplicates matters. Curious readers can refer to [12] for their inductive definitions.

These functions are used in three distinct phases of the position construction. First, create an

initial state i, and for each element σi in first(r) create the state named σi if it does not exist, and

add transition (i,σ,σi). Mark state i as done. Then, while there is some state qj in the NFA not

marked as done: iterate through each σi ∈ follow(r, qj). Create the state σi if it does not exist,

and add a transition (qj ,σ,σi) to the NFA, and mark state σi as done. Finally, make each state

σi ∈ last(r) final.

3.4 Partial Derivative NFA

At a high-level, the partial derivative automaton represents all partial derivative possibilities

of a regular expression for every alphabet symbol. Each state is named by a regular expression, so

the initial state is the original regular expression being encoded, and the final states are any state

named r where ε ∈ L(r). The transition (p,σ, q) exists if and only if the set of partial derivatives

of p with respect to σ includes q. That is, q ∈ δσ(p) as defined in Section 2.3.

The approach from Antimirov [3] defines the linear form of a regular expression p as the set

of 2-tuples {(σ, q) : σ ∈ Σ, q ∈ δσ(p)}. To convert regular expression r into the partial derivative

NFA: create a set of newly created states N initialized to {r}. While there is some newly created

state p (representing a regular expression), compute the linear form and iterate through each (σ, q)

pair. If q has not yet been created, add it to N and create the state. Then for each pair, create

the transition (p,σ, q).

Because each state of the partial derivative NFA represents a partial derivative derivable from

the root r of the regular expression tree, and pd(r) ≤ |r|Σ, the partial derivative NFA can have

29

no more than |r|Σ states [3]. This leads to the partial derivative NFA generally having fewer

states than other constructions. Additionally, the partial derivative automaton is a quotient of the

position automaton; meaning the position automaton can be converted into the partial derivative

automaton by merging some states. Figure 3.3 illustrates this point with an example using the

regular expression accepting HTML paragraph tags. While the partial derivative NFA for this

regular expression is of size 13, the Thompson construction creates an NFA of size 50 (omitted due

to its large size).

0 1

2

3 4

.

<

/

p

p

[∧>]

>

.

Figure 3.3: Partial derivative NFA of the expression .∗(< /?p[∧>] >).∗

Finding the linear form of a regular expression is costly, especially for large trees. A simple

memoization approach lessens the amount of work needed by only computing the linear form for

each recursively defined regular expression once, and saving it for future use. This optimized

approach is implemented as the “nfaPDO” algorithm within FAdo, while the repetitive version is

simply “nfaPD”.

Even when using the optimized construction, the partial derivative automaton was very slow

to construct for longer regular expressions until the nfaPDDAG (partial derivative directed acyclic

graph) algorithm was published [13]. The nfaPDDAG algorithm works by transforming the reg-

ular expression tree into a compressed regular expression directed acyclic graph (DAG) without

duplicate subtrees; where each node of the compressed regular expression tree is created in the

DAG and is uniquely assigned with an increasing index. Each node has no knowledge of the exact

regular expression it represents, and instead stores information if the regular expression would have

accepted the empty word, and outgoing labelled transitions and their node indices. Once the DAG

is constructed, it can be easily converted into an NFA by starting with the root node/index and

30

propagating according to the outgoing labelled transitions.

This algorithm is very fast because it compresses the regular expression (no longer re-computing

multiple times for the same subtree in different locations), and uses integer hashing instead of tree

hashing. As implemented in FAdo, regular expression tree hashing first converts the tree into a

string, then hashes the string using Python’s built-in hash function. Tree hashing has a linear cost

with the size of the tree, while integer hashing can be done in constant time.

3.5 Follow NFA

The follow automaton was first presented by Lucian Ilie and Sheng Yu in 2003 [12]. In their

paper they presented two new automata constructions for regular expression α: Aε
follow(α) that

constructs an NFA with empty transitions, and Afollow(α) that efficiently removes empty transi-

tions from Aε
follow(α). Building Aε

follow(α) for regular expression α is defined inductively, similar

to the Thompson construction from Section 2.4, and is also implemented within FAdo as “nfaFol-

lowEpsilon” [14].

(a) Empty word

σ

(b) Atom σ

iα fα, iβ fβ... ...

(c) Concatenation (αβ)

iα, iβ fα, fβ

... α ...

... β ...

(d) Disjunction (α+ β)

iα, fα
ε ε

...

(e) Star α∗

Figure 3.4: Follow construction (see below for additional instructions after each step)

31

For each presented case, a post-processing step is completed to remove unnecessary empty

transitions as they are created.

• Concatenation: merge state fα, iβ with any state reachable through one or more undirected

empty transitions. That is, interpret every ε-transition as going both ways.

• Star: if iα, fα is involved in any cycle with only empty transitions, then all involved states

are merged into iα, fα.

• Any case: if the initial state i only has one outgoing transition of the form (i, ε, i′), then i is

removed and i′ becomes the new initial state.

This construction is comparable to the Thompson NFA which also uses empty transitions; but

the Thompson NFA is always larger. The true follow automaton uses a specialized empty removal

construction to return a sequential NFA. The follow NFA is found to be a quotient of the position

NFA [12].

Although a general case of the empty removal construction is presented in Section 2.5, the

conversion from Aε
follow(α) to the sequential follow NFA Afollow(α) is performed in a specific order

that improves efficiency. The states Q of Aε
follow(α) are sorted in topological order Q′ according to

the heuristic:

p, q ∈ Q : p ≤ q iff (p, ε, q) ∈ Aε
follow(α).δ

Then, the sorted set of states Q′ is considered in reverse order: for each transition (q ∈ Q′, ε, p),

find all transitions (p,σ, r). Add the transition (q,σ, r), remove the transition (p,σ, r), and if state

p is final, then make r final.

So far, the follow automaton may include disconnected, unreachable, or useless states from

the initial state. To trim these states, explore through the NFA starting at the initial state and

mark any state as useful or not. A state is marked useful if it can be involved in a path from the

initial state to any final state. Any unmarked or not useful state is removed along with any of its

associated incoming/outgoing transitions.

32

0 2

3

1

a, b

a, b

ε

b

a
ε

(a) A!
follow(α)

0 1 2
a, b

a, b

b

a, b

a, b

(b) Afollow(α)

Figure 3.5: Follow construction example [12]

Figure 3.5 shows an example that illustrates the compactness of the follow automaton (before

and after removing empty transitions) for α = (a+ b)(a∗ + ba∗ + b∗)∗.

33

Chapter 4

Programming Tools

Python 2.7 was selected as the main language for the experiments and implementations of this

thesis because it is the most recent Python version supported by FAdo as of May 2021. Lark-parser

was chosen to parse regular expression strings into Python 2.7 classes. And finally RegExp Tree

was found to help convert programmer’s regular expressions into mathematical regular expressions.

4.1 FAdo

FAdo is an open-source Python library developed as an academic tool to study and manip-

ulate formal languages. It includes functionality to work with regular expressions, DFAs, NFAs,

transducers, and context-free grammars; as well as converting between these different language

representations [14]. Only the regular expression and NFA modules are relevant for the purposes

of this research, as these are the two modules that best decide the membership problem for regular

languages in practical applications.

Regular expressions are saved in memory as a tree of Python class objects. FAdo’s built-in

regular expression classes support concatenation, disjunction, star, and option as the inner-nodes

of the tree; and empty word, empty set, and atomic character as its leaves. A regular expression

tree can be converted into an NFA using several construction algorithms covered in the Literature

34

Review [14].

NFAs are implemented using their standard 5-tuple definition. The transition function uses a

Python dictionary to find the mapping of single-character string labels to their corresponding set of

successor state indices. FAdo’s NFAs are also equipped with algorithms to enumerate the accepted

language [14].

4.2 Lark Parser

Lark is an open-source Python library to parse context-free grammars [15]. A Lark grammar

is used to convert a mathematical regular expression string into a FAdo regular expression tree.

It recommends defining and using a LALR-compatible grammar whenever possible, since this

is the fastest algorithm available in this library [16]. Mathematical regular expressions follow the

restricted protocol and can benefit from the speed of LALR parsing. Secondly, since the raw

abstract syntax tree itself is irrelevant, each tree node is immediately transformed in-place to the

corresponding FAdo Python class. This builds the regular expression tree from a mathematical

regular expression string as directly as possible.

4.3 RegExp Tree

RegExp Tree is a very popular open-source NodeJS library to process programmer’s regular

expressions [17]. It is able to parse a regular expression string into a recursively defined JSON

object. Because programmer’s regular expressions form a complex language, RegExp Tree was

chosen to parse each programmer’s regular expression into its non-ambiguous mathematical version;

writing such a grammar from scratch would require too much time and would be error-prone.

This library receives well over one million downloads per week on npm (node’s package manager).

Common errors should be found quickly and patched with so many users.

Despite the vast quantity of users, a small bug was discovered while writing this thesis. Previ-

35

ously, a unicode programmer’s regular expression of the form “[a\-z]” would throw an error when

parsed into RegExp Tree. With a simple fix the same string can be parsed properly as a character

class matching the single characters “a”, “-”, or “z”. This contribution is now live to all RegExp

Tree users.

Most practically found regular expressions can be passed into RegExp Tree to get a traversable

JSON object. This object is then converted into a non-ambiguous string recognized by our Lark

grammar.

36

Chapter 5

Methodology

In order to test membership algorithms on regular expressions, a set of regular expressions was

needed. In this case, we chose to create two distinct sets: practical regular expressions used by

developers on GitHub, and randomly generated regular expressions. Creating and evaluating each

regular expression set individually is helpful in their analysis. Then, the Python library FAdo was

extended to support new operations and algorithms used in this research. Finally, each selected

algorithm for evaluating word membership was extensively benchmarked to see how fast it would

decide the problem.

5.1 Sampling Practical Regular Expressions

In order to understand the practical efficiency or regular expression membership algorithms,

practically used regular expressions are needed. Previous work [13] shows the efficiency of various

algorithms on randomly generated regular expressions, but how does the membership algorithm

behave, and are there notable differences, when using practical regular expressions?

It was decided that practical regular expressions would be sampled from publicly available

GitHub repositories. GitHub is very extensive, and there is insufficient time to search all files, so

we use an online API called https://grep.app [18] to identify files of interest. Once we have a

37

https://grep.app

file, it is scanned line-by-line for regular expression syntax according to the language of the file. If

any regular expression is found on the line, it is extracted and inserted into a database of traceable

regular expressions. That is, we can go back later and find where and how the regular expression

is used if we want. Each regular expression must be converted into a FAdo compatible form. And

finally we must consider partial matching with anchor placements.

5.1.1 Finding Relevant GitHub Files

On GitHub itself, specific substrings can be searched. And while this is an extremely useful

tool for finding exact occurrences of specific function calls (e.g., Python’s “re.compile”), regular

expressions involve several functionalities (e.g., searching, matching, splitting, compiling, replacing,

etc.), and we would need a distinct GitHub search for each relevant function. If the above Python

search is generalized to “re.”, too many irrelevant results will be found.

Instead, a web application called grep.app (https://grep.app) is used. It maintains an index

for half a million GitHub repositories and their public source code. Both using the web interface

and through their API’s, we can search a specific language for matches of a regular expression. For

example, we search for regular expressions in Python code using the regular expression:

re(gex)?\.(search|match|compile|split|sub|find(all|iter|match))\(

This search yields a substantial set of relevant source code files. At this step we simply choose the

first n files and save their URLs.

5.1.2 Extracting Regular Expressions

Each source file is retrieved from GitHub, and searched through line-by-line for regular expres-

sions. We attempt to identify substrings of lines that define a regular expression. At this point

the syntax of the regular expression is not guaranteed. At first glance, this task is generally sim-

38

https://grep.app

ple since regular expressions are often defined as a string argument in a function call. However,

there are many cases to consider: variably created regular expression strings, string concatenation,

and multi-line definitions. For simplicity we only extract regular expression strings without vari-

able interpolation, concatenation, or multi-line definitions. The extracted programmer’s regular

expression is saved alongside enough information to verify its correctness.

This task could be improved if the entire source file is parsed into an abstract syntax tree, and

then traversed for regular expression strings. This would greatly improve reliability of the extracted

regular expression strings, but would certainly take more computation time. Minor errors of regular

expression extraction are allowable since the extracted regular expressions still represent a much

more practical sample than randomly generated regular expressions.

5.1.3 Converting into FAdo Compatible Syntax

Regular expression syntax in programming languages allows for a great deal of complexity.

Along with implicit precedence rules, there are also non-regular operations and slightly different

syntaxes across programming languages. As presented in Section 4.3, the RegExp Tree NodeJS

library is used to convert a programmer’s regular expression string into a recursively defined JSON

object describing the abstract syntax tree of the expression. Once the JSON object is retrieved, it

is recursively converted into an unambiguous mathematical regular expression string. This process

is accomplished using a recursive approach on the function f(node), that acts according to the

“type” property exposed in RegExp Tree’s JSON construction.

1. Character Class: convert \d to [0− 9] and so on, or use directly

2. Character or Symbol: return node.symbol

3. Backreference: throw an error

4. Disjunction: return (f(node.left) + f(node.right))

5. Assertion, throw an error unless node.kind is in {∧, $}

39

6. Concatenation [e1, e2, e3, ..., en]: return ((((f(e1) f(e2)) f(e3)) ...) f(en))

Left recursion is preferred for parsing [16].

7. ? Repetition: return f(node.expression)?

8. ∗ Repetition: return f(node.expression)∗

9. + Repetition: return (f(node.expression) f(node.expression)∗)

10. {a, b} Repetition:

Construct an array A using Algorithm 5.1, and pass it to f with node type concatenation.

Algorithm 5.1: Efficient expansion of a ranged repetition

1 e = f(node.expression)

2
3 // at least a repetitions of e

4 for i in 0:a

5 A[i] = e

6
7 // between 0 and b-a more repetitions of e

8 i = a

9 n = b - a

10 while n > 0

11 m = 1

12 while m <= n

13 A[i] = f(em)?

14 i = i + 1

15 n = n - m

16 m = m * 2

Inspired by the binary representation of numbers, this achieves a somewhat compact repre-

sentation of a ranged repetition. The expression e is repeated at least a times, and then can

be repeated between 0 and b − a more times. This representation is generally more space

40

(and therefore time) efficient than other similar approaches:

Approach 1: [ea, (ε+ e1 + e2 + ...+ eb−a)]

Approach 2: [ea, e?, e?, ..., e?% &' (
b−a times

]

Our Approach: [ea, e1?, e2?, ..., e2
i
?, ..., e1?, e2?, ..., e2

j
?]

Where: 1 + 2 + ...+ 2i + ...+ 1 + 2 + ...+ 2j = b− a

For example: e{2, 100}. Approach 1 repeats the expression 4, 853 times. Both approach 2

and our approach optimally repeat the expression 100 times, but our approach does this in a

smaller concatenation array; |A| = 100 for approach 2, while |A| = 16 using our approach.

5.1.4 Partial Matching

Behind the curtains, theoretical membership algorithms require matching the entire word. How-

ever, practical implementations of regular expressions typically search for substring matches unless

the expression is anchored. Anchors are used during a match to assert that either nothing has

matched or that nothing else matches afterward. The absence of anchors implicitly increases the

size of the accepted language; while the mathematical regular expression (ab) accepts the language

{ab}, when interpreted as a programmer’s regular expression there are several anchored alternatives:

1. L(ab) = {w1abw2 : wi ∈ Σ∗}

2. L(∧ab) = {abw : w ∈ Σ∗}

3. L(ab$) = {wab : w ∈ Σ∗}

4. L(∧ab$) = {ab}

To our knowledge, an anchor elimination construction has not been created in the literature.

Clearly, every mathematical regular expression r without anchors is equivalent to the programmer’s

regular expression ∧r$, but the inverse does not follow such a simple rule since the permissive syntax

41

of programmer’s regular expressions allows anchors to be used in unexpected ways. For example,

$∧ is a valid programmer’s regular expression, but only accepts the empty word, and the simple

modification to $a∧ means the regular expression accepts nothing. At first, a∗∧b$ appears to accept

{aib : i ∈ N0}, but the starting anchor guarantees a is repeated zero times. Even ∧∧a$ is a valid

anchored expression. In our anchor elimination construction, we attempt to eliminate anchors in

the most commonly used ways, and regrettably throw an error on some unexpected, but otherwise

valid expressions.

To convert from a regular expression with anchors into a mathematical regular expression

without anchors, the entire tree must be traversed. .∗’s must be added to the starting and ending

positions of the regular expression where no anchor is found, and anchors cannot appear anywhere

else (recall the idea of first and last functions from the position construction in Section 3.3). As

we traverse the tree there are four states describing which anchors are valid in this position: both,

start, end, and neither. Each state respectively corresponds to allow only these anchors: {∧, $},

{∧}, {$}, ∅. If an invalid anchor is found (for example finding a $ at the neither state), then we

throw an error. To enable partial matching in a regular expression, begin with the both state on

the root of the tree.

Concatenation of (αβ) presents a straightforward case. Given a regular expression tree con-

taining only concatenation nodes, a starting anchor is only allowed on the leftmost leaf, and an

ending anchor is only allowed on the rightmost leaf. The both state allows starting anchors in α

and ending anchors in β. The start state allows starting anchors in α and neither anchor in β. The

end state allows ending anchors in β and neither anchor in α. And the neither state does not allow

anchors in α or β.

Disjunction of (α + β) simply passes the current state onto each of its children. This allows

regular expressions such as ((∧a)+(b$)) which accepts the language {aw : w ∈ Σ∗}∪{wb : w ∈ Σ∗}.

Note that this union has intersecting elements such as {awb : w ∈ Σ∗} which may be confusing, but

is ultimately fine. We can remove the anchors and represent the language with the mathematical

regular expression ((εa.∗) + (.∗bε)).

42

The optional operation α? is equivalently represented as (α+ ε), and treated as such.

A star operation α∗ presents a significant complication for anchor elimination. Any program-

mer’s regular expression of the form α∗ is universal (accepts all words), because α can be taken zero

times, and the rest of the input is unanchored and therefore implicitly accepted. If α contains some

anchor, we naively assume this anchor is non-conditional (not within any optional or disjunction

operation). In this simplified case, α can be repeated no more than one time without failing anchor

assertions. A disjunctive structure is created (α′ + ε) where α′ is constructed using the partial

matching state of α∗. Otherwise when α contains no anchors, α∗ is wrapped appropriately with .∗

as if it were an atomic structure.

Anchors are converted into ε if they are accepted by the current partial matching state. This

maintains the shape of the tree and avoids re-balancing.

All other atomic structures, including σ ∈ Σ, character classes, wild dot, and ε handle anchor

elimination in the same way. Given the atomic structure a: it is converted into .∗a.∗ in the both

state, .∗a in the start state, a.∗ in the end state, and left unchanged in the neither state.

⊙

+

$b

⊙

aa

(a) Before anchor elimination construction

⊙

+

ε⊙

∗

.

b

⊙

a⊙

a∗

.

(b) After anchor elimination construction

Figure 5.1: Enabling partial matching for aa(b+ $)

Figure 5.1(a) shows the regular expression tree for an anchored expression aa(b+$). The anchor

elimination construction is completed and constructs Figure 5.1(b). Through concatenations, the

leftmost leaf a becomes (.∗a); the $ anchor is recognized to be valid and becomes ε; and through

the sequence of states starting at the root, [both, end, end], atomic b becomes (b.∗).

43

A smaller partial matching tree can be constructed if at each stage of the partial matching

algorithm the entire subtree is searched for anchors. If an anchor is found, continue as presented

above. If no anchor is found, wrap the current regular expression with anchors as if it were an

atomic structure. This alternative construction traverses the tree up to two times: once to search

for anchors, and once to insert .∗’s at the proper depth according to the current state. Whereas

the construction presented above traverses the tree no more than once in all cases except the star

operation. Which version is better depends on the use case, as more pre-processing for a smaller

tree is not necessarily better.

5.2 Randomly Generating Regular Expressions

Although the main focus of this thesis is the practical efficiency of regular expression membership

algorithms, we are also interested in how the results might differ when using randomly generated

regular expressions. Conveniently, FAdo can uniformly generate regular expression trees with a

specific tree length on a small fixed alphabet. However we must make an accommodation since the

existing FAdo implementation cannot generate wild dots and character classes. This is accomplished

by adding marker symbols to the alphabet to indicate the location of the wild dot or character class

atoms.

To generate a random regular expression tree of length n over the alphabet Σ, pass to FAdo the

length n and the alphabet Σ ∪∆ where ∆ = {w, x} and |Σ ∩∆| = 0. Then transform each node

of the returned tree into its respective extended Python class, replace all w atoms with a wild dot,

and replace all x atoms with a uniformly chosen character class over the alphabet Σ.

The inner structure of character classes is implemented as an inclusive ranged list of characters.

To improve efficiency, whenever two inclusive, non-enclosing ranges (a, b), (c, d) overlap such that

c ≤ b, they are merged into the single range (a, d). If one range is enclosed in the other, only

the larger range is kept. The inner structure S is associated with the character classes [S] and

[∧S] for positive and negated character classes respectively. We must uniformly choose a character

class based on its internal structure, and not necessarily the form most commonly used by humans.

44

For a finite alphabet of size n, the internal structure is a regular language. Its size presents an

interesting combinatorial problem, but is beyond the scope of this project. First we enumerate the

entire language of character class inner structures for the given alphabet. Then, when we want a

uniformly selected character class we simply select an inner structure and decide 50/50 if it should

be positive or negated.

Alphabet: {a, b}

1. [(a, a)]

2. [(a, b)]

3. [(b, b)]

4. [(a, a), (b, b)]

Alphabet: {a, b, c}

1. [(a, a)]

2. [(a, b)]

3. [(a, c)]

4. [(b, b)]

5. [(b, c)]

6. [(c, c)]

7. [(a, a), (b, b)]

8. [(a, a), (b, c)]

9. [(a, a), (c, c)]

10. [(a, b), (c, c)]

11. [(b, b), (c, c)]

12. [(a, a), (b, b), (c, c)]

The inner structure of alphabets of size 2 and 3 are shown above. Each ordered list trivially

corresponds with a word; for example [(a, b), (c, c)] corresponds to a− bc− c. The number of words

for each alphabet size starting at |Σ| = 2 follows the sequence: 4, 12, 33, 88, 232, 609, 1,596, 4,180,

etc. The language of inner structures is easily encoded using an automaton created in Algorithm

5.2.

Algorithm 5.2: Pure FAdo implementation to enumerate all inner character class structures

1 from FAdo.fa import NFA

2 nfa = NFA()

3 init = nfa.addState("init")

4 nfa.addInitial(init)

5
6 for i in reversed(range(0, len(alphabet))):

7 state = nfa.addState(alphabet[i]) # last seen

8 nfa.addFinal(state)

9
10 toState1 = nfa.addState("[]-" + alphabet[i])

11 toState2 = nfa.addState("-" + alphabet[i])

12 nfa.addTransition(toState1 , "-", toState2)

13 nfa.addTransition(toState2 , alphabet[i], state)

14 for j in range(0, i+1): # from initial state

45

15 nfa.addTransition(init , alphabet[j], toState1)

16
17 # state , alphabet[k(k>i)], all following states >=k

18 for j in range(i, len(alphabet)):

19 for k in range(i+1, j+1):

20 nfa.addTransition(state , alphabet[k],

21 nfa.stateIndex("[]-" + alphabet[j]))

22
23 # use the NFA to generate the entire language

24 innerStructures = [x for x in nfa.enumNFA(len(alphabet)*3)]

If Algorithm 5.2 is given the sorted alphabet [a, b, c], the resulting NFA is shown in Figure 5.2.

Each state is displayed using its created name from Algorithm 5.2 for clarity. Enumerating the

language is simply accomplished using NFA cross-section enumeration from Section 3.1.

init

[]-a -a a

[]-b -b b

[]-c -c c

a

a, b

a, b, c

- a

b

b, c

- b

c

- c

Figure 5.2: The NFA generated using Algorithm 5.2 on the sorted alphabet [a, b, c]

Using an alphabet of size 10, we generated 784 regular expressions for each length in {25, 50,

100, 150, 200, 300, 400, 500}. This is sufficient for a 95% confidence interval with a 3.5% margin of

error that our results are statistically correct. An alphabet of size 10 creates 10,945 inner character

classes, and twice that many character classes when considering positive and negated versions.

5.3 Implementing FAdo Extensions

One of FAdo’s main advantages is its extensibility. Main concepts such as regular expression

tree nodes and NFAs are implemented as Python class objects, allowing each class to be extended

with new features and functionality. Below is an overall view of how FAdo’s classes were extended.

46

The “u” prefix refers to forcibly using unicode symbols, and the “Invariant” NFA name is inspired

as a non-transducer version of the automata from [19].

FAdo class Extension

regexp uregexp

concat uconcat

disj udisj

star ustar

option uoption

FAdo class Extension

epsilon uepsilon

anchor

atom uatom

chars

dotany

FAdo class Extension

NFA InvariantNFA

5.3.1 Unicode Regular Expressions

All regular expression classes have been extended to support the following features: partial

derivative membership (Section 2.3), pairwise language enumeration (Section 3.1.1), backtrack-

ing word membership (Section 3.2), explicit pointer-based tree compression (Section 3.4), partial

matching anchor elimination construction (Section 5.1.4), and displaying regular expression trees

using graphviz [20]. And where relevant, FAdo bugs were fixed (e.g., delAttr not passing down to

both children in concat class).

The following InvariantNFA constructions are supported: Thompson, Glushkov, position, fol-

low, and partial derivative (through nfaPDO, nfaPDDAG, and nfaPDRPN). The nfaPDRPN (par-

tial derivative reverse polish notation) construction was created as a further optimization of FAdo’s

optimized partial derivative NFA construction nfaPDO. The nfaPDO algorithm memoizes the lin-

ear form of regular expressions within each node in case the exact node needs its linear form again.

Like with the naive nfaPD construction from Section 3.4, each NFA state is named according to

its regular expression tree. Whenever a new transition is created in the NFA, the destination node

is either created or found according to its name (recall: the state’s name is a regular expression

tree). Repeatedly comparing regular expression trees for equality is expensive. By contrast, the

nfaPDRPN algorithm first compresses the regular expression tree [13], then names its NFA states

with the RPN string of the regular expression tree. nfaPDRPN avoids the duplicate linear form

47

function evaluations of nfaPDO, and speeds up NFA state lookup by naming states with strings

rather than trees that have to be traversed for equality. The performance of this algorithm is

explored in Chapter 6.

Additionally, all atomic subclasses (uatom, chars, and dotany) support taking the intersection

with another atomic subclass. This is an important feature with respect to the product construction

(Section 2.6); especially with the added complexity of character classes. For the purpose of this

thesis, the product construction is used for the cross-section language enumeration problem, and

all comparisons are between an atom σ and the wild dot. In this case, the intersection is simply σ.

5.3.2 Regular Expression Tree Equality

The partial derivative membership and NFA construction algorithms make use of sets of distinct

regular expressions to improve their performance. However, when a regular expression tree is

directly added to a Python set object, the associated computational costs can become larger than

expected. FAdo compares equality of two regular expression trees by first converting each tree into

its repr form, and then comparing the resulting strings. In Python, repr is an overridable instance

method on every class object that returns a string representing that object; although not strictly

required, repr should return the string that constructs the object being represented. In the case of

a regular expression tree in FAdo, repr traverses the entire tree to create a string. For example:

Infix Syntax: a((b+ a)b∗)

Repr Syntax: concat(atom(a),concat(disj(atom(b),atom(a)),star(atom(b))))

Each time a regular expression tree is added to any set, its repr string is computed and saved

internally within the set object. Now consider the definition of partial derivatives from Section

2.3: each recursive step creates a new set, and when each regular expression tree is added, its repr

string is linearly computed. Any algorithm that makes use of partial derivatives added directly to

the set will experience these repeated linear cost repr computations.

This can be improved by saving the repr value for each subtree as it is computed the first time,

48

and then referring back to this previously computed repr string. Instead of using sets of regular

expression trees, use dictionaries of repr keys and tree values. When adding a regular expression to

the dictionary, strings are directly compared for equality rather than having to traverse the entire

tree again. For brevity, the RPN string was selected over the repr string in the implementation,

but it serves the exact same purpose.

In the Results section, both pd and pdo represent partial derivative membership algorithms

without constructing an NFA. The pd algorithm makes some use of string identification, while

pdo (partial derivative optimized) makes use of string identification in a dictionary throughout the

entire algorithm. A naive partial derivative algorithm using a set is far too unoptimized, and was

not selected to be tested. Similarly, the partial derivative NFA can be constructed much more

efficiently if the states of the NFA are identified by a string (nfaPDRPN) instead of a regular

expression tree (nfaPDO).

5.3.3 Invariant NFA

Pure FAdo follows typical theory and implements its NFA transition function using single

character string symbols. A HashMap uses an integer state index to find another HashMap of

outgoing character transitions, and because this is an NFA, there can be multiple destinations

given a single transition character.

HashMap<int, HashMap<character, Set<int>>>

This approach is extremely advantageous as finding the successors of a state given a symbol is a

constant-time operation. So, evaluating NFA word membership of w can be done in O(n∗ |w|) time

where n is the number of states in the NFA.

However, in practice when using the large UTF-8 alphabet, creating individual transitions for

every symbol in a character class or wild dot is extremely space inefficient. And although word

evaluation is still fast with a good hash function, constructing the NFA in the first place becomes

slow and impractical. Instead, in order to keep construction time reasonable, the InvariantNFA

49

uses Python classes as its transitions (uatom, chars, and dotany). Like in pure FAdo, the string

“@epsilon” represents the the empty string and Python class uepsilon; this allows more FAdo NFA

methods to work without needing to be extended.

HashMap<int, HashMap< T , Set<int>>>

where T ∈ {uatom, chars, dotany, “@epsilon”}

The trade-off of this approach says that given a current state index and a symbol of the input

word, each outgoing transition has to be matched individually. Although it could be expensive

to analyze each outgoing transition for simple atomic membership, in practice there are relatively

few outgoing transitions from an average state. Of the sampled practical regular expressions, no

chosen NFA construction assigns an average state with more than 1.25 outgoing transitions (and the

average number of transitions per state across all construction methods for the sampled practical

regular expressions is approximately 1.187). Therefore it is straightforward to iterate through each

outgoing transition as there is not generally a lot of them.

5.4 Design of Experiments

There are three stages each regular expression must complete: (1) preparation, (2) construction

into an appropriate form, and (3) word membership time. The untimed preparation stage generates

an appropriate test-set of accepting and rejecting words using techniques from Section 3.1. Next, for

each selected evaluation method we measure the time taken for the regular expression string to be

parsed into a regular expression tree that allows partial matching, then potentially converted into

an InvariantNFA. Finally, we measure the time it takes this final structure to decide membership

of all the accepting and rejecting words. No membership test is allowed to save any information to

be used on a later membership test. In real implementations, it may be beneficial to save certain

information (like previously computed partial derivatives), but this hurts our ability to fairly scale

the number of word evaluations. It may be beneficial to build a more expensive NFA (like the

partial derivative NFA) if you are evaluating thousands of words, while if you only evaluate one

50

word another approach may be optimal. Our methods will retain the ability to contrast these

algorithms with different capacities of input words.

We considered three membership algorithms that can be applied directly on the regular expres-

sion tree: word derivatives, partial derivatives, and backtracking. In each case, the construction

stage does not need to build an InvariantNFA. Word derivatives (Dσ function from Section 2.3)

were initially tested, but due to their exponential blow-up during membership evaluation it became

obvious practical implementations should avoid this method. A naive partial derivative algorithm

directly inserts the partial derivatives of a regular expression into a set, but the chosen implementa-

tion is more efficient because it uses string equality instead of tree equality (Section 5.3.2). The pd

algorithm uses string key identification within the membership method only, and the pdo algorithm

uses this approach both in the membership and recursive partial derivative methods. Unfortunately,

the pdo optimization was conceived at a late stage of the thesis and there was only enough time

to test the pdo algorithm on practical regular expressions. Finally, because most practical regular

expression libraries support backreferences and therefore use backtracking membership, we wanted

to test this approach in our framework.

Another approach to solving word membership is to build an InvariantNFA, and then run the

standard membership algorithm on it. FAdo’s implementations of Thompson, Glushkov, position,

follow (ε-free), and a few partial derivative constructions were extended to create uatom, chars,

dotany, and “@epsilon” transitions. The non-optimized partial derivative automaton construction

(nfaPD) was not selected since a superior algorithm already exists within FAdo: nfaPDO. The

optimized partial derivative NFA construction uses memoization and is much faster. Two additional

partial derivative constructions were also selected: nfaPDDAG and nfaPDRPN.

The above process was completed independently for both practically sampled and randomly

generated regular expressions. Separating random and practical expressions allows the analysis to

compare the results from each sample. For each evaluation method, we create a plot using every

regular expression. This plot compares the time to accept or reject the average tested word against

the tree length of the regular expression. The time measurement considers the construction time n

times and the average word evaluation m times. Additionally, to smooth the plot we group regular

51

expressions into bins according to their tree length; this bin size is also configurable.

The main tests were conducted on a virtual private server (VPS) from Microsoft Azure (B4ms).

This VPS was configured with 16 GB of memory and 4 virtual CPU cores. Up to 4 tests were com-

puted in parallel; this number would shrink if there was a memory bottleneck, because sometimes

the generated test set of words required several GB of memory (particularly with large randomly

generated regular expressions with nested star operations), and we want to avoid using slow mem-

ory swap onto the disk. Each CPU-bound test process was given a “nice value” of -20, meaning the

process scheduler would prioritize these processes above all others. The built-in Python module

timeit was selected to measure the relevant times; it chooses the most precise time implementation

for the system, and ensures garbage collection is turned off. If we were using Python > 3.3, we

would use time.process time() to measure CPU time directly.

An indicator of the efficiency of a regular expression’s NFA is the number of states plus the

number of transitions. For every practically sampled regular expression and supported NFA con-

struction method we save the resulting NFA in a database [21] along with the number of states and

the number of transitions. This analysis is completed to show how various NFA constructions scale

on a practical sample of regular expressions. Although time measurements were taken, they were

not the focus of this analysis, and therefore this was the only test executed on a personal computer.

52

Chapter 6

Results

First, we analyze the size of the tested NFA constructions on the sample of practical regular

expressions. There were four resulting NFAs constructed: Thompson, Glushkov, follow, and the

partial derivative NFA. The position construction creates an identical NFA to Glushkov, and the

partial derivative NFA has been constructed using nfaPDO, nfaPDRPN, and nfaPDDAG methods.

Secondly, we analyze the performance of each membership evaluation algorithm independently on

practical and randomly generated regular expressions. Membership is tested on each of the seven

NFA constructions using the standard NFA membership algorithm that tracks a set of current

states as each symbol of the input word is consumed. Additionally, three non-NFA methods were

tested: backtracking, partial derivatives (pd), and optimized partial derivatives (pdo). Table 6.1

shows a summary of the tested methods below. The pdo algorithm was created too late into this

thesis to test on randomly generated regular expressions, and the backtracking algorithm frequently

experienced exponential membership time for the random sample, so neither of these methods were

completed for the randomly generated sample.

53

Expression Type

Algorithm Practical Random Description

Thompson Yes Yes Thompson construction

Glushkov Yes Yes Glushkov construction

Position Yes Yes Position construction

Follow Yes Yes ε-free follow construction

PDO Yes Yes Optimized partial derivative construction

PDRPN Yes Yes Partial derivative construction with string keys

PDDAG Yes Yes Partial derivative construction using a DAG

pd Yes Yes Partial derivatives (non-NFA)

pdo Yes No Partial derivatives (non-NFA) with string keys

backtrack Yes No Exponential backtracking

Table 6.1: Summary of tested algorithms

6.1 NFA Sizes for Practical Regular Expressions

An indication of an NFA’s efficiency is its size. So, given practically sampled regular expressions,

how large are the resulting NFAs by their regular expression tree length? We have 12, 023 unique

practical regular expressions, each with two forms: partial matching and non-partial matching.

Since partial matching regular expression α might be equivalent to non-partial matching regular

expression β (α ∕= β), only one of α,β is kept. After considering this, we have 23, 253 unique

regular expressions. If any construction takes longer than two minutes, it is preempted and thrown

away. Table 6.2 shows that the PDO method is the most limiting factor for these constructions,

and as such we have 23, 247 regular expressions that are successful for all construction methods.

This table also shows the amount of time it took to construct the regular expressions into NFAs,

but this measurement should be taken very lightly since the number of regular expressions for each

method may be unequal, and that it was performed on a personal computer instead of a server.

54

Method # Regular Expressions Time taken (s)

Follow 23,253 26.968

Glushkov 23,253 36.084

Position 23,253 38.332

PDDAG 23,253 73.251

Thompson 23,251 141.28

PDRPN 23,251 260.19

PDO 23,247 680.46

Table 6.2: The number of regular expressions constructed by method without preemption

Figure 6.1 plots the sizes of different NFAs for all 23, 247 non pre-empted regular expressions

common to every construction method. We correctly assert that PDO, PDDAG, and PDRPN

all construct the same partial derivative NFA; as well, the Glushkov and position constructions

build an identical NFA. Partial derivative constructions create the smallest NFA, then the follow

construction, position/Glushkov, and finally the Thompson NFA.

55

Figure 6.1: Sizes of the NFAs produced using different construction methods and practical regular
expressions

6.2 Practical Regular Expressions

We found 12,023 unique regular expressions that could be successfully converted into their

equivalent mathematical syntax. Due to time constraints, only 10,686 regular expressions have

been fully tested using each method. Table 6.3 shows the distribution of the sampled practical

regular expressions by their tree length, and the quantity that have been fully tested. Beyond tree

length 175, we only have single-digit quantities and we are therefore not confident to make any

conclusions; all plots of measuring the performance of practical regular expressions will only include

regular expressions with tree length less than 180 (of which we have ≈10,662, depending on the

unimportant distribution within [175, 200)).

56

Tree Length # Expressions # Completed

[0, 25) 8,053 7,185

[25, 50) 2,560 2,305

[50, 75) 832 747

[75, 100) 272 239

[100, 125) 136 98

[125, 150) 79 55

[150, 175) 49 30

[175, 200) 10 3

Table 6.3: The number of practical regular expressions by tree length

Figure 6.2: Construction time by method for practical regular expressions

Figure 6.2 shows the time taken to construct an appropriate Python class object starting at a

mathematical regular expression string. As expected, the methods which do not construct an NFA

represent the fastest constructions (pd, pdo, and backtrack all have an identical construction into

a partial matching regular expression tree). The remaining NFA constructing methods are given

57

in increasing order: follow, position, Glushkov, nfaPDDAG, Thompson, nfaPDRPN, and finally

nfaPDO.

Once the structure is constructed, we must consider the efficiency of the different membership

algorithms. Figure 6.3 compares the different methods. Both non-NFA partial derivative algo-

rithms (pd and pdo) are significantly slower to evaluate word membership than all other tested

methods. The backtracking algorithm is frequently the fastest, but occasionally experiences spikes

where excessive backtracking was required. The NFAs are divided into two classes according to

membership time: sequential NFAs (PDO/PDRPN/PDDAG, Glushkov/position, and follow), and

the Thompson NFA with ε-transitions. These empty transitions delay word matching and therefore

result in a slower membership process. In reality, the backtracking algorithm occasionally failed

all together when Python’s maximum recursion depth (set to 12,000) was exceeded. Presumably,

this issue could be solved by refactoring the backtracking algorithm to use an iterative approach,

so any time the maximum recursion depth was reached, the regular expression was removed from

our results set for every method.

Figure 6.3: Word membership time of practical regular expressions after construction has taken
place

58

Often, regular expressions are used to evaluate the membership of just a single input word.

In this case, Figure 6.4 compares solutions to the one-word membership problem using each of

our algorithms. The backtracking algorithm continues to be impressively fast, due to its low

construction cost and average fast membership time. The follow algorithm has a small edge over

nearly equivalent position and Glushkov constructions. Then, with larger time gaps: nfaPDDAG,

Thompson, pdo, nfaPDRPN, nfaPDO, and finally pd. This is very similar to Figure 6.2 since word

membership takes far less time on average than construction time.

Figure 6.4: Sum of construction time and one-word membership time for practical regular expres-
sions

A key observation from Figure 6.4 is the pdo algorithm is faster on average than the nfaPDO

and nfaPDRPN methods. The partial derivative NFA is constructed by considering every possible

partial derivative with respect to every alphabet symbol, but the (non-NFA) partial derivative al-

gorithm only computes the partial derivatives with respect to the specific input word. Equivalently,

only a subset of the states in the partial derivative NFA are useful for the computation for a given

input word; so the overall computation cost can be mitigated by only constructing the useful states.

The pdo algorithm is based on the same methodology as the nfaPDRPN construction, and it makes

59

sense that pdo is faster when considering a single input word. Using nfaPDDAG as inspiration,

there should be a (non-NFA) partial derivative algorithm which computes membership faster than

PDDAG can be constructed and membership evaluated; but to our knowledge no such algorithm

currently exists.

Perhaps the regular expression is used to filter data from a database with 100,000 records.

Figure 6.5(a) shows that as long as the regular expression library is using a sequential NFA to decide

membership, there is little relative difference between construction algorithms. With so many word

evaluations, even the slow nfaPDO construction is acceptable. Because the overall time is dominated

by word membership tests, the construction time is unimportant. NFAs compute all possible paths

through the regular expression at construction-time, whereas pd, pdo, and backtrack algorithms do

this at membership-time. The pd and pdo algorithms are blown away, but backtracking remains

generally competitive assuming the expression is not vulnerable to catastrophic backtracking. Like

in Figure 6.3, the sequential NFAs provide an advantage over the Thompson NFA. It is difficult

to declare a clear winner among the sequential NFA methods, but Figure 6.5(b) attempts to do

so by decreasing the resolution (using more averaging) and zooming into a focused region. The

nfaPDDAG algorithm is the fastest, followed by the other partial derivative NFAs, and then nearly

equivalent Glushkov, position, and follow NFA methods.

(a) Full picture: length bins of tree length 10 (b) Zoomed in: length bins of tree length 40

Figure 6.5: Sum of construction time and 100,000 word membership time for practical regular
expressions

60

6.3 Randomly Sampled Regular Expressions

Using the same testing framework for randomly generated regular expressions allows us to

compare the results with practical expressions. It also gives us more control and confidence: 784

regular expressions with alphabet of size 10 were generated for each tree length {25, 50, 100,

150, 200, 300, 400, 500}. We were unable to sample many practical regular expressions beyond

tree length 200, so this will give a much better picture how these algorithms perform for longer

expressions. Once the tests are complete, we have a 95% confidence interval with a 3.5% margin

of error. However once again, the test set is incomplete due to both time constraints and memory

issues related to deeply nested star operations and pairwise (Section 3.1.1) language generation

within the set of randomly generated regular expressions. Table 6.4 shows the amount each tree

length has been completed. Instead, we are 95% confident that our results are statistically correct

with a margin of error no more than 5% for all tree lengths except 500.

Tree Length # Expressions # Completed

25 784 783

50 784 780

100 784 769

150 784 741

200 784 688

300 784 581

400 784 422

500 784 286

Table 6.4: The number of randomly generated regular expressions by tree length

The backtracking membership algorithm frequently experienced exponential membership time

for randomly generated regular expressions. There are a few reasons why this could make sense:

(1) programmers may be aware of catastrophic membership and therefore write their regular ex-

pressions to not be vulnerable, (2) vulnerable regular expressions may not be useful for GitHub

developers, or (3) a small alphabet with nested star operations allow input words to be matched in

61

complex ways. Because the backtracking algorithm was taking too long, it was disabled so the rest

of the tests could be run in our lifetimes. In addition, the results for the pdo algorithm were not

completed for the randomly generated set of regular expressions because the pdo algorithm was

created only recently.

Figure 6.6: Construction time by method for randomly generated regular expressions

Figure 6.6 shows the construction times for each of the algorithms. Once again the pd algo-

rithm has the least construction time because it does not construct an NFA, and the nfaPDO and

Thompson algorithms are very slow. All other sequential NFA constructions are given by increas-

ing speed: follow, nfaPDDAG, position, Glushkov, and finally nfaPDRPN. It is exciting to see the

nfaPDDAG algorithm performing so well; since the partial derivative NFA was previously so far

out of reach with the nfaPDO method.

In Figure 6.7 we get a look at word membership times. The time scale is significantly larger

than with practical regular expressions because the accepted words are sometimes extremely long

using the modified combination generation approach with deeply nested stars. However, the relative

ranking of each method is still comparable because the exact same input words are generated for

62

any given regular expression. The Thompson NFA continues to have ε-transitions that delay word

matching, and is therefore the slowest. Each of the partial derivative NFAs are very close (as

they should be, since they generate the same NFA). The position algorithm appears to be slightly

faster than follow, which is slightly faster than Glushkov. Remarkably for much of the domain, the

(non-NFA) partial derivative algorithm is the fastest. And we would expect the pdo algorithm to

speed up this computation even more. This is in direct contrast to practical regular expressions

where the partial derivative algorithm is the slowest. Why are partial derivatives so much better

in randomly generated regular expressions?

Figure 6.7: Word membership time of randomly generated regular expressions after construction
has taken place

An analysis of the composition of practical and randomly generated regular expressions exposes

a potential answer. Since membership is tested on regular expressions with partial matching en-

abled, this analysis first enabled partial matching on each expression before checking the relative

frequency of internal nodes. Recall: optional operations are removed in favour for a disjunction

with the empty word in the anchor elimination construction.

63

Practical Expressions Random Expressions

Concatenation 78.99% 43.02%

Disjunction 3.10% 41.93%

Star 17.91% 15.05%

Table 6.5: Relative frequencies of internal nodes in the regular expression samples

As shown in Table 6.5, practically sampled regular expressions have almost twice as many

concatenations as randomly generated expressions. Recall the partial derivative definition for con-

catenation from Section 2.3:

δσ(αβ) =

!
""#

""$

δσ(α){β} ε /∈ L(α)

δσ(α){β} ∪ δσ(β) ε ∈ L(α)

Calculating the partial derivative set of a concatenation requires checking if the empty word is

accepted by the left child (α). Consider converting the programmer’s regular expression a{6} into

the mathematical regular expression using methods from Section 5.1.3. The tree in Figure 6.8(a)

is the result.

⊙

a⊙

a⊙

a⊙

a⊙

aa

(a) Left expansion

⊙

⊙

⊙

⊙

⊙

aa

a

a

a

a

(b) Right expansion

Figure 6.8: Converting a{6} into a mathematical regular expression

64

Observe how in Figure 6.8(a) the left child represents a larger subtree than the right child. If

this tree were evaluated for partial derivative membership on the word a6, the left subtrees would

need to be traversed repeatedly to check if it accepts the empty word. If the tree grew to the right

like in Figure 6.8(b), checking if the left subtree accepts the empty word is a much faster operation.

Figure 6.9: Sum of construction time and one-word membership time for randomly generated
regular expressions

Figure 6.9 combines Figures 6.6 and 6.7 to show how much time would be taken to construct

the string into a Python class, and then evaluate membership of one word. The long length of input

words makes determining word membership slow, so the construction cost is mostly negligible in

comparison. The only significant difference from Figure 6.7 is the nfaPDO construction makes

this method the slowest, despite word membership on the partial derivative NFA being fast. The

Thompson and nfaPDO methods are very slow, the partial derivative algorithm is competitively

fast except at tree length 400, and then in increasing order: nfaPDDAG, nfaPDRPN, position,

follow, and Glushkov.

65

Figure 6.10: Sum of construction time and 100,000 word membership time for randomly generated
regular expressions

There is little difference between Figure 6.9 and Figure 6.10, only that the nfaPDO algorithm

is once again competitive because the one-time construction cost is negligible in comparison to the

membership cost.

66

Chapter 7

Conclusions

Both theoretically and through experimentation we have shown the benefits and pitfalls of

the common backtracking algorithm for word membership. This algorithm is suitable for appli-

cations that absolutely require non-regular language operations such as backreferences, or when

developers create regular expressions that are robust against excessive backtracking. However, this

method occasionally takes extreme membership time (e.g., randomly generated regular expressions,

or pathologically chosen expressions designed to hog system resources). Any regular expression li-

brary using the backtracking algorithm should do so cautiously, and warn their users to avoid

writing regular expressions vulnerable to a lot of backtracking.

Library and language developers cannot guarantee their users will write robust regular ex-

pressions, and many programmers consider regular expressions a “black box” of abstraction. If

non-regular language operations are non-essential, or a regular expression contains only regular

operations, then a more traditional theoretical algorithm is warranted. These algorithms provide

polynomial worst case membership matching on any regular expression or input word combination,

and therefore is safer for developers who use regular expressions without understanding their un-

derlying implementation. Algorithms that first compute an NFA, and then run membership on that

NFA should avoid NFA constructions involving empty transitions (like the Thompson construction)

since they delay word matching. Instead, these sequential NFA constructions should be considered

67

by increasing construction cost: follow, position, Glushkov, and PDDAG. The PDDAG NFA is

slower to construct than the follow NFA, but is smaller on average and therefore results in faster

membership times than any other considered NFA. Finally, non-NFA partial derivative membership

could be fast if tree identification is done efficiently, and when binary concatenations grow right

instead of left. Further research should compare these results when expanding concatenation trees

right instead of left (Figure 6.8), or potentially when building more complete trees. The trade-offs

between parsing speed in Lark [15] and various regular expression/NFA algorithms would be an

interesting investigation. Predominantly, evaluating membership using pure partial derivatives is

expected to be much faster when expanding repetitions right.

Additionally, the speed of these tests proved to be a significant issue. They were executed

over the span of months, and we still did not have time to finish all benchmarks. Using smaller

test-sets of input words would speed up the overall time, and the pairwise generation algorithm [5]

would have greatly benefited from a non-binary concatenation. However, the pairwise generation

algorithm would still create long accepting words for deeply nested stars, and this needs to be

addressed. Running these experiments in C++, Java, Rust, or even JavaScript would decrease

execution time by up to hundreds of times; Python makes code quick to write, but ridiculously

slow to run.

If finding a database of perfectly accurate practical regular expressions was important to future

researchers, they may approach the problem using grep.app to find relevant GitHub source files.

But a significant improvement would be to parse the entire source file, and then traverse the parse

tree to find regular expressions directly.

The source files and database results of this research are publicly available on GitHub, at

https://github.com/just1ngray/SMUHon-Practical-RE-Membership-Algs.

68

https://github.com/just1ngray/SMUHon-Practical-RE-Membership-Algs

References

[1] Cezar Câmpeanu, Kai Salomaa, and Sheng Yu. “A Formal Study of Practical Regular Expres-

sions”. In: International Journal of Foundations of Computer Science 14.6 (2003), pp. 1007–

1018.

[2] Janusz Brzozowski. “Derivatives of Regular Expressions”. In: Journal of the ACM 11.1 (1964),

pp. 481–494. doi: 10.1145/321239.321249.

[3] Valentin Antimirov. “Partial derivatives of regular expressions and finite automaton construc-

tions”. In: Theoretical Computer Science 155.2 (1996), pp. 291–319. doi: 10.1016/0304-

3975(95)00182-4.

[4] B. G. Mirkin. “An Algorithm for Constructing a base in a Language of Regular Expressions”.

In: Eng. Cybernetics 5 (1966), pp. 51–57.

[5] Lixiao Zheng, Shuai Ma, Yuanyang Wang, and Gang Lin. “String Generation for Testing

Regular Expressions”. In: The Computer Journal 63 (Jan. 2019), pp. 41–65. doi: 10.1093/

comjnl/bxy137.

[6] Jacek Czerwonka. “Pairwise Testing in Real World Practical Extensions to Test Case Gener-

ators”. In: July 2008.

[7] Margareta Ackerman and Jeffrey Shallit. “Efficient enumeration of words in regular lan-

guages”. In: Theoretical Computer Science 410.37 (2009), pp. 3461–3470. doi: 10.1016/j.

tcs.2009.03.018.

[8] Martin Berglund, Frank Drewes, and Brink Van Der Merwe. “Analyzing Catastrophic Back-

tracking Behavior in Practical Regular Expression Matching”. In: Electronic Proceedings in

Theoretical Computer Science 151 (May 2014), pp. 109–123. doi: 10.4204/EPTCS.151.7.

69

https://doi.org/10.1145/321239.321249
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1093/comjnl/bxy137
https://doi.org/10.1016/j.tcs.2009.03.018
https://doi.org/10.4204/EPTCS.151.7

[9] Russ Cox. Regular Expression Matching Can Be Simple And Fast. https://swtch.com/

~rsc/regexp/regexp1.html. Jan. 2007.

[10] Sheng Yu. “Regular Languages”. In: Handbook of Formal Languages, Volume 1: Word, Lan-

guage, Grammar. Ed. by Grzegorz Rozenberg and Arto Salomaa. Springer, 1997, pp. 41–110.

doi: 10.1007/978-3-642-59136-5_2.

[11] Robert McNaughton and Hisao Yamada. “Regular Expressions and State Graphs for Au-

tomata”. In: IRE Transactions on Electronic Computers EC-9.1 (1960), pp. 39–47. doi:

10.1109/TEC.1960.5221603.

[12] Lucian Ilie and Sheng Yu. “Follow automata”. In: Information and Computation 186.1 (2003),

pp. 140–162. doi: 10.1016/S0890-5401(03)00090-7.

[13] Stavros Konstantinidis, António Machiavelo, Nelma Moreira, and Rogério Reis. “Partial

Derivative Automaton by Compressing Regular Expressions”. In: Descriptional Complexity

of Formal Systems. Ed. by Yo-Sub Han and Sang-Ki Ko. Springer International Publishing,

Jan. 2021, pp. 100–112. doi: 10.1007/978-3-030-93489-7_9.

[14] Rogério Reis and Nelma Moreira. FAdo v1.3.5.1. https://fado.dcc.fc.up.pt. Jan. 2018.

[15] Erez Shinan. Lark. https://github.com/lark-parser/lark.

[16] Erez Shinan. Parsers - Lark documentation. Accessed on February 8, 2022.

[17] Dmitry Soshnikov. RegExp Tree. https://github.com/DmitrySoshnikov/regexp-tree.

[18] grep.app. https://grep.app. Search across a half million git repos.

[19] Stavros Konstantinidis, Nelma Moreira, Rogério Reis, and Joshua Young. “Regular Expres-

sions and Transducers Over Alphabet-Invariant and User-Defined Labels”. In: International

Journal of Foundations of Computer Science 31 (Dec. 2020), pp. 1–37. doi: 10 . 1142 /

S0129054120420010.

[20] John Ellson, Emden Gansner, Eleftherios Koutsofios, Stephen North, and Gordon Woodhull.

“Graphviz and dynagraph – static and dynamic graph drawing tools”. In: Graph Drawing

Software. Springer-Verlag Berlin Heidelberg, Jan. 2004, pp. 127–148. doi: 10.1007/978-3-

642-18638-7_6.

70

https://swtch.com/~rsc/regexp/regexp1.html
https://doi.org/10.1109/TEC.1960.5221603
https://doi.org/10.1016/S0890-5401(03)00090-7
https://doi.org/10.1007/978-3-030-93489-7_9
https://fado.dcc.fc.up.pt
https://github.com/lark-parser/lark
https://github.com/DmitrySoshnikov/regexp-tree
https://grep.app
https://doi.org/10.1142/S0129054120420010
https://doi.org/10.1007/978-3-642-18638-7_6

[21] Michael McKerns, Leif Strand, Tim Sullivan, Alta Fang, and Michael Aivazis. “Building a

framework for predictive science”. In: 10th Python in Science Conference. 2011.

71

