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Abstract 

 

Application of Mixed Integer Programming in Designing Power Scheduling Algorithms for 

Electric Vehicles and Energy Storage Systems in Bi-Directional Markets 

 

By Hooman Ekhteraei Toosi 

Optimal battery scheduling for electric vehicles and energy storage systems when cooperating with 

renewable energy generation in behind-the-meter applications is studied in this thesis in the 

framework of Mixed-Integer Programming (MIP). High capability in obtaining global optima in 

optimization problems has made MIP a popular tool in smart grid research and particularly for 

battery scheduling problems. One important issue with regards to the battery cycling, is the battery 

degradation which could complicate the Unit Commitment (UC) models. This is because the 

battery wear model can be nonlinear and difficult to be incorporated into a UC problem. To address 

the existing research gap, in this thesis a battery degradation model has been introduced to be 

incorporated into a short-term MIP battery scheduling model to estimate the capacity loss of a Li-

ion battery caused by irregular charging and discharging events. 

Hence, a MIP UC model is developed in this work which incorporates the introduced battery wear 

model. Based on that, the UC problem for a home-based microgrid is investigated and different UC 

strategies have been presented to minimize the operation cost as well as the capacity loss of batteries 

and the carbon footprint for a home equipped with a smart residential microgrid. The impact of the 

resolution of a home UC model on the capacity loss of batteries is another studied subject in this 

work, where hourly and intra-hourly granularities are compared in terms of the battery aging. A 

Controller-Hardware-in-the-Loop (C-HIL) setup is developed to measure the performance of the 

UC strategies as well as the battery degradation rates. Optimal battery scheduling in applications 

with multiple beneficiaries such as workplaces with electric vehicle (EV) charging stations is also 

investigated in this work by studying different UC strategies that take into account the interests of 

system operators and EV users to different extents. The results of this work show that the presented 

MIP UC models, that incorporate the introduced battery wear model, can be solved for real 

optimums in different smart grid applications. 
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𝑃𝑒𝑣
𝑛,𝑐ℎ

 kW Charging power of the EV battery at the 𝑛𝑡ℎ Interval 

𝑈𝑒𝑣
𝑛  - The 𝑛𝑡ℎ element of the charging array of ev 

𝑃𝑒𝑣
𝑐ℎ kW Maximum charging power of the EV battery 

𝑃𝑒𝑣
𝑑𝑖𝑠 kW Maximum discharging power of EV 

𝑆𝐸𝑒𝑣
𝑛  kWh State of energy of EV battery at the 𝑛𝑡ℎ Interval 

𝜂𝑒𝑣
𝑐ℎ - Efficiency of the EV charging process 

𝑆𝐸𝑒𝑣
𝑖𝑛𝑖 kWh Initial state of energy of the EV battery at the first interval 

𝑆𝐸𝑒𝑣
𝑚𝑎𝑥 kWh Maximum allowed amount of stored energy in the EV battery 



XIII 
 

𝑆𝐸𝑒𝑣
𝑚𝑖𝑛 kWh Minimum allowed amount of stored energy in the EV battery 

𝑆𝐸𝑒𝑣
𝑐ℎ kWh User’s desirable state of energy at the time of departure 

𝑃𝑝𝑣
𝑛,𝑐𝑜𝑛

 kW PV power that is consumed locally at the 𝑛𝑡ℎ Interval 

𝑃𝑝𝑣
𝑛,𝑒𝑥

 kW The portion of the PV generation that is exported to the grid at the 𝑛𝑡ℎ 

Interval 

𝑃𝑝𝑣
𝑛,𝑔𝑒𝑛

 kW Total generated power of the PV array at the 𝑛𝑡ℎ Interval 

𝜂𝑝𝑣 - The efficiency of the PV system 

𝑃𝑐𝑙
𝑛 kW Power of controllable load at the 𝑛𝑡ℎ interval 

𝐷𝑐𝑙
𝑛  - The 𝑛𝑡ℎ element of the array that controls the operation status of 

controllable load 

𝑃𝑐𝑙 kW Nominal operating power of the controllable load 

𝑛𝑐𝑙
𝑟𝑜𝑤 - Count of intervals in a row required for every operating iteration of 

controllable load 

𝑆𝑐𝑙
𝑛  - The 𝑛𝑡ℎ member of the array associated with the start of the controllable 

load operation 

𝐹𝑐𝑙
𝑛 - The 𝑛𝑡ℎ member of the array associated with the finish of controllable 

load operation 

𝑛𝑐𝑙
𝑑𝑎𝑦

 - Number of times that controllable load needs to function every day 

𝑃𝑖𝑚
𝑛  kW The power imported from the electric network 

𝑃𝑒𝑥
𝑛  kW The power exported to the electric network 

𝑃𝑙
𝑛 kW Power consumption of regular load at the 𝑛𝑡ℎ interval 

𝑃𝑖𝑚
𝑚𝑎𝑥 kW Maximum allowed power that can be imported by the microgrid 

𝑈𝑖𝑚
𝑛  - 𝑛𝑡ℎ member of the power import array 

𝑃𝑒𝑥
𝑚𝑎𝑥 kW Maximum power that can be exported to the grid 

𝑇𝑛,𝑏𝑢𝑦 $ Buying tariff of energy unit 

𝑇𝑛,𝑠𝑒𝑙𝑙 $ Selling tariff of energy unit 

𝑃𝑝𝑣
𝑛,𝑔𝑒𝑛

 kW Generated power of the photovoltaic system at the 𝑛𝑡ℎ interval 

𝐴𝑎𝑟𝑟𝑎𝑦 𝑚2 Area of the PV array 

𝐼𝑛 𝑘𝑊

𝑚2
 

Solar irradiance 

𝜂𝑎𝑟𝑟𝑎𝑦 - Efficiency of the PV array 

𝑇 °C Temperature 

𝐸𝑎 𝐽𝑚𝑜𝑙−1 Activation energy of reaction 

𝑡 Hour/Second Time 

𝐼 A Discharge current of the battery 

𝑄 kWh Charge throughput of battery 

𝐷 - Depth of discharge 

𝑁𝐷 - Number of cycles that the battery can complete at DoD of 𝐷 

𝑄𝐷 kWh Lifetime energy throughput of the battery at DoD of 𝐷 

∆𝐸𝐷 kWh Capacity loss of battery caused by a completing a half cycle with DoD 

of 𝐷 
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𝑉𝑖𝑛𝑖 $ Initial value of the battery 

𝑉𝑠𝑎𝑙 $ Salvage value of the battery 

𝐸𝑖𝑛𝑖 kWh Initial (rated) capacity of the battery 

𝐸 kWh Available capacity of the battery 

𝑅 - Remaining SoH at the time of replacement 

𝑌𝐷 $ Cost of capacity loss per every single half-cycle 

∆𝐸𝑡𝑜𝑡𝑎𝑙 kWh Total capacity loss during 𝑁 intervals 

∆𝐸𝑛 kWh Capacity loss inflicted within the subinterval 𝑛 

∆𝐸 𝑟𝑒𝑔 𝑐𝑦𝑐𝑙𝑒
𝑛  kWh Capacity fade of the battery caused by completing the 𝑛𝑡ℎ regular cycle 

∆𝐸𝑟𝑒𝑔
𝑛  kWh Capacity loss of battery caused by completing the 𝑛𝑡ℎ regular half cycle 

𝐸𝑛 kWh Battery capacity just before starting the 𝑛𝑡ℎ irregular half cycle 

𝑊𝐷 𝑘𝑊ℎ

𝑘𝑊ℎ
 

Wear coefficient corresponding with the DoD of 𝐷 

𝛼 and 𝛽 - Curve fitting parameters derived from applying exponential curve 

fitting to 𝑁(𝐷) 

∆𝐸𝑖𝑟𝑒𝑔
𝑛  kWh Capacity fade caused by completing the 𝑛𝑡ℎ irregular half cycle 

𝐷𝑏 - DoD of the battery corresponding with its charge level at the beginning 

of a half cycle 

𝐷𝑒 - DoD of the battery corresponding with its charge level at the end of a 

half-cycle 

𝑊𝐷𝑏
 𝑘𝑊ℎ

𝑘𝑊ℎ
 

Wear coefficients corresponding with 𝐷𝑏  

𝑊𝐷𝑒
 𝑘𝑊ℎ

𝑘𝑊ℎ
 

Wear coefficients corresponding with 𝐷𝑒  

𝑆𝑏 - Soc corresponding with the beginning of the irregular half-cycle  

𝑆𝑒 - Soc corresponding with the end of the irregular half-cycle  

𝜂 - Efficiency of the charging process 

𝑆𝐶𝑒𝑣
𝑛  - Soc of the EV battery at the beginning of the 𝑛𝑡ℎ Interval 

𝐸𝑒𝑣
𝑛  kWh Available energy capacity of EV battery at the beginning of the 𝑛𝑡ℎ 

Interval 

𝐷𝑒𝑣
𝑛  - DoD associated with 𝑆𝐶𝑒𝑣

𝑛  

𝑊𝑒𝑣
𝑛  𝑘𝑊ℎ

𝑘𝑊ℎ
 

Wear coefficient associated with 𝐷𝑒𝑣
𝑛  

𝑓 - Function of the wear coefficient of the EV battery 

∆𝐸𝑒𝑣
𝑛  kWh Capacity fade of EV battery caused by the 𝑛𝑡ℎ Interval 

L𝑒𝑣
𝑛  kWh Absolute value of ∆𝐸𝑒𝑣

𝑛  

𝑆𝐶𝑒𝑠
𝑛  - Soc of ESS at the beginning of the 𝑛𝑡ℎ Interval 
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𝐸𝑒𝑠
𝑛  kWh Available energy capacity of ESS at the beginning of the 𝑛𝑡ℎ Interval 

𝐷𝑒𝑠
𝑛  - DoD associated with 𝑆𝐶𝑒𝑠

𝑛  

𝑊𝑒𝑠
𝑛 𝑘𝑊ℎ

𝑘𝑊ℎ
 

Wear coefficient associated with 𝐷𝑒𝑠
𝑛  

𝑔 - Function of the wear coefficient of ESS 

∆𝐸𝑒𝑠
𝑛  kWh Capacity fade of ESS caused by the 𝑛𝑡ℎ Interval 

L𝑒𝑠
𝑛  kWh Absolute value of ∆𝐸𝑒𝑠

𝑛  

𝐿𝑒𝑣,𝑙𝑖𝑓𝑒 - Lifetime capacity fade of EV 

𝐸𝑒𝑣
𝑖𝑛𝑖 kWh Initial storage of EV battery 

𝑉𝑒𝑣
𝑖𝑛𝑖 $ Initial cost of the EV battery 

𝑉𝑒𝑣
𝑠𝑎𝑙 $ Salvage cost of the EV battery 

𝐿𝑒𝑠,𝑙𝑖𝑓𝑒 - Lifetime capacity fade of ESS 

𝐸𝑒𝑠
𝑖𝑛𝑖 kWh Initial storage of ESS 

𝑉𝑒𝑠
𝑖𝑛𝑖 $ Initial cost of ESS 

𝑉𝑒𝑠
𝑠𝑎𝑙 $ Salvage cost of ESS 

𝐸𝑒𝑣
𝑜𝑝𝑡

 kWh Available capacity of EV battery for the next optimization 

𝐸𝑒𝑠
𝑜𝑝𝑡

 kWh Available capacity of ESS for the next optimization 

𝑂 - Set of the total optimization iterations 

𝐶𝐹𝐻 kg Carbon emission per one kWh of energy consumption from the grid 

𝐻𝐸 kg Apparent carbon emission of home 

𝐶𝐹𝑈 kg Carbon emission associated with 1kwh capacity loss 

𝐶𝐹𝑀 𝑘𝑔

𝑘𝑊ℎ
 

Carbon emitted by the battery maker for manufacturing one kilowatt-

hour of battery capacity 

𝑆𝐸𝑒𝑠
𝑒𝑛𝑑 kWh Expected SoE of the ESS at the end of the optimization horizon 

𝑀 - Set of electric vehicles 

𝑚 - Index of electric vehicle 
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Chapter 1: Introduction 

 

1.1 Microgrid unit commitment problem 

 

Clean and efficient generation, transmission, and consumption of electric energy have become an 

absolute necessity today to slow down the global warming issues. Development of renewable 

energy generation, energy storage technologies, electric vehicles (EV), and smart grid technology 

are some of the important steps toward cleaner and more efficient electricity and transportation 

industries as these two industries are responsible for 64% of the total global CO2 emission [1].  

More governments are taking effective measures to increase renewable generation and lower the 

carbon footprints. The European Union is considering reducing the carbon emissions by 80% by 

the year 2050 compared to that of the year 1990 [2] and also increasing the share of EVs to at least 

80% by 2050 [3]. In Japan, the government is planning to build net-zero energy houses by 2030 

whose annual energy consumption will be around zero or even negative. In order to have almost 

50 million houses with net-zero energy, the application of photovoltaic (PV) systems, energy 

storage systems (ESS), and energy management systems (EMS) is necessary [4]. Also, EVs could 

be considered sustainable systems only if the power that is used to charge them is generated from 

sustainable resources. In other words, charging EVs with fuel-based electricity only moves the 

source of pollution from the EV to the power plant. The development of renewable energy sources 

such as PV and other green resources is crucial [5].  

However, poorly managed renewable energy generation could even negatively impact the power 

[6]. As renewable energy sources such as PV and wind generators depend on the weather, the 

connection of these intermittent sources to the grid could cause imbalances between the power 

generation and the load, which will lead to voltage and frequency fluctuations. In this regard, energy 

storage systems and EV batteries can be very helpful to stabilize the grid and minimize the 
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possibility of overload cases [7]. Optimal cooperation of renewable energy systems and battery 

storage systems can be very helpful in harnessing the energy resources maximally due to the 

intermittent nature of wind and solar energies. It is shown that between 14 to 50% of the energy 

demand of a city’s passenger transportation vehicles can be obtained merely by using photovoltaic 

energy [1]. Smart application of batteries to store and release renewable energy efficiently is the 

key to the optimal use of renewable energy sources. Energy storage systems have several benefits 

including assisting the peak shaving and Demand Response (DR) strategies, helping with the 

intermittencies of the renewable energy systems, and applications in the power flow control and 

the energy storage for the grid are some of the major uses of ESSs [8]. 

Today, with the advancement of the smart grid and developments of the vehicle to everything 

(V2X) technologies such as vehicle to grid (V2G), vehicle to building (V2B), and vehicle to home 

(V2) EVs can participate in the power network not just as energy consumers but also as energy 

storage units and providers as EVs carry large amounts of storage capacities. The EV market has 

been growing rapidly over the recent years as its related costs have been decreasing and also 

because of the increase in public concern about carbon emissions [3]. In particular, the number of 

EVs with bidirectional chargers is expected to rise significantly in the coming years which will 

facilitate more widespread V2G and V2H services [9]. Since most of the privately-owned EVs are 

parked the majority of the time, providing smart V2G service by a large number of parked EVs can 

be significantly helpful for the grid in terms of providing ancillary services [10]. There are several 

ancillary services that EVs can offer through the V2G service, including the provision of the storage 

capacity to compensate for the intermittent nature of the renewable energy sources and spinning 

reserve, assisting with the frequency and load regulation through the use of distributed capacity, 

energy trading and regulation services for renewable energy sources [1], [11]. 

However, the unscheduled cycling of EVs can pose a major challenge for the grid, namely the grid 

stability and power quality, the rise of power losses and peak powers, reduction of reserve margins, 
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and rise in costs. A study has found that uncoordinated charging of EVs could worsen the 

harmonics, ruin the demand-supply balance, undermine the voltage control and lead to the necessity 

of changing the protection schemes [8]. Uncontrolled charging of EVs is normally coincident with 

the peak time demand from the grid. This can cause severe issues for the stability of the grid [12]. 

Especially, due to the large power and energy demand of EV batteries, where a small EV can exceed 

the balance of the loads in many homes [13]. As an example, a typical supercharging of an EV is 

almost equal to the consumption of 120 average houses for 30 minutes. While the average energy 

consumption of a household in the US is almost 19 kWh/day [14]. Hence, optimal charging of EVs 

on different scales has been a trending subject in the literature in recent years. Energy management 

systems, built onto the vehicles or applied externally, can be used to optimize the cycling of 

batteries while the vehicles are traveling or when they are stationary and connected to the grid. 

Regarding the optimal charging of EVs, it has been studied in the literature with two approaches of 

centralized and decentralized. In the centralized fashion, a single agent such as the smart grid 

operator controls the charging of all EVs. In this approach, the managing agent requires plenty of 

data to make optimal schedules. While, in the decentralized approach, EV users have the total 

authority overcharging their vehicles which gives them more room to participate in demand 

response (DR) programs [15]. Also, the EV integration has been investigated on different scales, 

including the vehicle, building, local distribution, and transmission grid [16].  

Thus, optimal employment of batteries in the presence of renewable energy sources can be studied 

on different scales to benefit different entities. One example of this problem is the Behind-the-

Meter (BTM) unit commitment (UC) problem for microgrids (MG) incorporating renewable 

energy generation, batteries, and loads which would be a common application, especially in 

residential and commercial sectors. Microgrids are integrated energy systems that could incorporate 

distributed energy resources, storage systems, and loads, and facilitate bidirectional communication 

between users and the operator for the transfer of data and control signals [16], [17]. In some cases, 
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small-scale microgrids under the scale of 100 kVA and 10 kVA are also referred to as nanogrids 

and picogrids, respectively [18], [19]. Today, a typical small-scale microgrid employed by 

residential or commercial users consists of renewable energy generation, and in particular 

photovoltaic arrays, a local energy storage system which is mostly of battery storage system (BSS) 

type, plug-in electric vehicles, and different types of loads (dispatchable and non-dispatchable) 

which can have a bidirectional power transfer with the grid to take energy and possibly sell energy 

to the grid in the context of an energy market. Depending on the available technologies and 

electronics on the EVs and their charging equipment, their interaction in the microgrid could occur 

in a monodirectional fashion where the EV is only charged or bidirectional fashion where EV’s 

battery can also be discharged to provide a V2X service.  

Optimal energy management in microgrids can be realized by employing unit commitment 

algorithms. Unit commitment is a fundamental problem in the operation and planning of power 

systems which aims to determine the operating schedule of power generators (including on/off 

status and generation levels) while satisfying different physical and operational constraints for 

different time horizons [20]. UC problem tends to find the reference power points over a specific 

period to provide high-quality power to the microgrid users [21]. UC can be implemented on 

different scales aiming at benefiting different entities. One way to classify the UC problems would 

be based on the entity that is going to directly benefit from the solution of the UC problem. In this 

regard, the grid operator and energy consumers could be considered as two parties that can employ 

UC strategies to maximize their interests or minimize their costs and losses in a power system or 

microgrid. Unit commitment or energy management algorithm is often a mathematical model or 

algorithm which is implemented on computing resources (e.g., computers, microprocessors, 

microcontrollers, etc.) to manage the operation of microgrid components through an interface 

circuitry. 
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The energy management system of a microgrid has two major responsibilities, including the 

scheduling of the generation and the Demand-Side Management (DSM) [21]. DSM or Demand 

response (DR) refers to the reduction of the load demand when the power demand and price are 

high. There are two types of demand response programs including direct load control programs and 

price-based programs [14]. Utility companies are shifting from posing fixed energy prices to a 

mixture of time-of-use and demand charges. While demand charge is based on the maximum rate 

of the power consumption over a period, the time-of-use charge refers to assigning different tariffs 

to different time frames. This latter approach can have different forms ranging from defining on/off-

peak prices to market prices at each time frame. There are also three different mechanisms 

implemented for the load reduction, including the chemical energy storage (which is the traditional 

battery storage), thermal storage (such as thermal bricks) as well as the demand response. 

Regarding the demand response programs, they are classified into two major types, namely 

incentive-based programs and price-based programs. Also, price-based programs include different 

types including Time-of-Use (TOU), Critical Peak Pricing (CPP), Real-Time Pricing (RTP), and 

Inclining Block Rate (IBR) [22]. Heavy participation of households in the DR programs could lead 

to intensive power peak events during off-times which could jeopardize the power quality of the 

grid. It also causes events like transformer overloading, which leads to the aging of the grid 

infrastructure [23]. Heating and thermal systems, storage systems, and electric vehicles are good 

candidates for providing demand-side response service [10]. Home energy management systems 

(HEMS) and Advanced Metering Infrastructure (AMI) are major components for the 

implementation of DR programs in homes [13].  Advancements in computers in the past decades 

on one hand and the growth of the smart grid on the other hand have enabled many people to 

implement their local energy management systems. In this regard, BTM unit commitment has 

gained momentum in academia and industry in recent years. This thesis aims at addressing the 

BTM UC for PV/battery-based microgrids. 
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1.2 Microgrid control scheme 

 

Microgrid control is a comprehensive area of study that has attracted a large number of researchers 

in the recent years. A brief and general review of the main microgrid control approaches is provided 

in this section. In general, microgrid control is carried out hierarchically, with different levels of 

the control hierarchy working together to provide a stable and efficient operation of the microgrid. 

In the microgrid control system, there are three sets of requirements that must be met. Firstly, the 

energy transfer between the microgrid and the grid must be managed. Secondly, the microgrid must 

be operated within the allowed voltage and frequency ranges and thirdly, distributed generator 

(DG) units' active and reactive powers must be regulated. These needs must be addressed by the 

control hierarchy. When a microgrid is connected to the grid, it often has extremely low voltage 

and frequency variations as inverters use the grid signal as a reference to achieve proper voltage 

and frequency control. As a result, every DG or ESS might be regarded as a current source in this 

mode, with the power flow regulated by altering the current reference. In islanded mode, however, 

there is no grid reference signal accessible from the grid end. Therefore, the reference voltage 

signals must be generated by the DG unit controllers. In this case, one or multiple DG units must 

act as voltage source(s) to maintain the voltage and frequency of the bus [24].  

It is worth noting that sometimes the local controllers of the DGs are referred to as the “zero level” 

of the microgrid control hierarchy. Anyways, if the local control stage of the power converters is 

considered a part of the primary level of the microgrid control, the generic microgrid control 

scheme can be classified into three levels. In the first level, the preliminary power-sharing, as well 

as voltage and current regulation of power converters is controlled. At the second level, any 

probable voltage deviation that might arise in the first layer is controlled. The optimal energy 

management, power flow, and economic dispatch are handled by the tertiary level of the control 

hierarchy [25], [26]. The required speed of the control system significantly falls when moving from 

the primary control level towards the tertiary level, where the dynamic response of the primary 
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control must be on the scale of milliseconds to ensure the frequency and voltage stability of the 

microgrid at all times. While the tertiary level does not necessarily need to communicate with the 

next levels at a high speed since it deals with the economic aspects of the system. In this regard, 

the microgrid UC problem falls within the tertiary level of the control hierarchy, that is why it is 

sometimes referred to as the high-level control. On this level, the control problem is concerned with 

the economics and energy management of the microgrid rather than the voltage, frequency, and 

dynamics which are handled by the lower control levels. Hence, this work is concerned with the 

tertiary level of the microgrid control, therefore the voltage and frequency regulation are not within 

the scope of this thesis. Figure 1.1 depicts the microgrid control hierarchy and the major tasks 

handled by every level of it. 

 

Figure 1.1: Microgrid control hierarchy [25] 

Although the microgrid control hierarchy consists of different layers, as shown above, not every 

microgrid necessarily utilizes all the aforementioned control layers. In fact, the availability of 

“high-speed” communication technologies as well as the level of autonomy, that is expected from 

a microgrid, impact the structure of the control hierarchy. In this regard, one way to categorize the 
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microgrid control strategies is based on the available communication technology between the 

microgrid components. According to this criterion, microgrid control strategies could be 

categorized into communication-based and non-communication-based methods. In 

communication-based control, the availability of a high-speed communication link between the 

microgrid controller and microgrid components enables the local controllers to receive their 

reference signals directly from a central controller with a minimal delay. Therefore, the central 

controller will be able to always maintain the power balance of microgrids, ensuring the stability 

of the voltage and frequency during the off-grid times. In this case, managing the system during 

the on-grid times is of no significant difficulty from the control point of view as the grid maintains 

the frequency of AC buses. Thus, the availability of high-bandwidth communication links allows 

us to implement a control scheme with low autonomy where microgrid components rely on 

receiving instantaneous commands from the central controller at every moment. This approach to 

microgrid control could be highly efficient but it could be prone to frequent downtimes due to 

possible communication losses. However, in non-communication-based methods, there is no high-

speed communication link in place and microgrid components need to maintain a certain level of 

autonomy while they still have a low bandwidth communication link with the upper levels of the 

control hierarchy. This type of microgrid control is often implemented by utilizing a droop-based 

controller. Droop control is used to specify the active and reactive power of every DG to maintain 

the frequency and/or the voltage of the bus. In this case, the DG units will function as regulated 

voltage sources, with their output sharing the load demand proportionally to their ratings, so there 

is no need for receiving instantaneous reference points from an upper control layer. Non-

communication-based methods are generally more reliable and allow a plug-and-play feature for 

the MG components. Also, in these methods, there is no need for the DGs to be in proximity as 

they do not require fast communications. However, this control approach suffers from lower 

accuracy and optimality compared to the communication-based type. Some literature suggests 

combinations of these two methods for achieving the best performance and reliability [27]. 
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1.3 Scope of the research 
 

The research area of “microgrid optimization” is considerably vast. Many authors have tried to 

address the following question from different points of view: “How can we design, build and run 

microgrids for different applications in the most favorable way?”. It is worth mentioning that the 

word “favorable” in this context could refer to different quantities or qualities. Minimum cost, 

maximum revenue, minimum employment of the grid power or particular equipment, maximum 

comfort of the owners/users, minimum emissions, minimum stress on the power grid, etc. are some 

of the objectives that one could consider as the “favorable” operational condition of a microgrid.  

Hence, this generic problem can be investigated from different aspects which has been studied in 

different works. In this regard, this section is devoted to explaining what is within the scope of this 

research and what is not.  

First, with regards to the grid connectivity as mentioned before, microgrids should be able to work 

in the two modes of grid-connected (on-grid) and islanded (off-grid). Technically, a microgrid must 

be able to function seamlessly in both states and also during the transition times from one state to 

another. However, the operation, control, and energy management of microgrids in off-grid mode 

is an extensive field of research that is not within the scope of this work. Hence, this work is merely 

focused on the optimal operation of grid-connected microgrids. In the islanded mode of microgrids, 

one power converter (usually at the battery side) or multiple converters must be able to maintain 

the frequency and/or the voltage of the AC/DC buses. Thus, in order for the electrical components 

of a modern home to form a microgrid in the exact sense, at least one of the converters must be 

able to have the capability of detecting the power outages and working in the grid-forming mode 

to maintain the frequency and/or the voltage of lines during islanded/transition times. Nowadays, 

some of the smart grid equipment such as AC batteries are able to work in the grid following/grid 

forming mode, while some devices can only operate in the grid following mode. For the sake of 

simplicity of vocabulary, in this work, the power system of residential or commercial buildings is 
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also referred to as a “microgrid”. Therefore, the term “microgrid” in this thesis does not necessarily 

mean the system can operate in the islanded mode. Also, with regards to the energy management 

in the grid-connected mode, only the active power (P) has been addressed in this work, and reactive 

power (Q) control and management are not within the scope of this research work. 

Hence, in this thesis, the behind-the-meter (BTM) unit commitment problem has been investigated 

for grid-connected battery-based systems (ESS, EV) as well as controllable loads in some cases. In 

this work, the UC problem has been studied from the perspective of energy consumers and is 

generated in the framework of mathematical programming which will be discussed in more detail 

in the next chapters. More specifically, this work aims to present BTM UC problems in the 

framework of Mixed-Integer Programming (MIP) including Mixed-Integer Linear Programming 

(MILP) and Mixed-Integer Nonlinear Programming (MINLP) to schedule the operation of battery-

based units such as electric vehicles and energy storage systems in BTM microgrid applications 

(particularly, residential and commercial microgrids which are equipped with PV generation, ESS 

and EV charging facilities). Diesel generators and thermal systems such as Combined Heat and 

Power (CHP) equipment are not considered in the UC models provided in this work. 

Mathematically speaking, the UC problem is an optimization problem whose goal is to assign 

operation reference points to the microgrid components to minimize or maximize one or several 

objective function(s) while satisfying different model constraints.  In the microgrid research, 

“optimization” is usually applied in two different fields of study, namely “system sizing” and “unit 

commitment”. Before a microgrid is constructed, assuming there are no strict financial or logistical 

restrictions for selecting the size and type of the components, a comprehensive study should be 

carried out for finding the right sizes of components. In case the microgrid is designed for both 

islanded and grid-connected operation, there is even a need for another round of study before the 

system sizing to determine the best system topology (e.g., AC bus, DC bus, hybrid) to achieve the 

lowest cost and energy dissipations. The efficient microgrid topology itself depends on many 
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factors such as the composition of loads and available equipment. Thus, prior to the procurement 

of the equipment, a system sizing study would be necessary to determine the optimal sizes of 

components (e.g., battery size, size of PV arrays, etc.). System sizing is an optimization problem 

that aims to find the optimal sizes of microgrid components so they can lead to an optimality such 

as the lowest Return-of-Investment (ROI) term. Different publications, such as [28], [29], have 

focused on the optimal sizing of microgrid components. However, this field of microgrid research 

is entirely out of the scope of this work. In this thesis, the microgrid is assumed to be made of an 

AC-bus structure and solely operate in the grid-connected mode. Also, in this thesis, the 

“optimization” is applied for its other application in MG research which is producing the optimal 

operation plan for microgrid components when they are already available and ready to work.  

Forecasting is another field of research associated with high-level control of microgrids. Day-

ahead/hour-ahead load profile, as an important input dataset of an energy management system is 

usually obtained by statistical or Artificial Intelligence (AI)-based forecasting methods. 

Forecasting the energy prices when they are not available ahead of time, solar irradiance, EV’s 

commuting times, and initial State of Charge (SoC) of EV batteries at the times of arrival are some 

other parameters that could be obtained through forecasting. In some cases, some of this 

information might be provided by third parties such as the utility company through the cloud space. 

Otherwise, they may need to be forecasted on the user end. In this regard, problems such as solar 

irradiance or energy price forecast are focused on by a different group of publications such as 

references [30], [31]. However, forecasting is also not within the scope of this work. Therefore, in 

this thesis, it is assumed that all the input information of the energy management algorithm is 

already obtained in crisp values and high precisions.   

With regards to the certainty of the optimization parameters, the smart grid optimization problems 

may be classified into deterministic and stochastic optimization. Deterministic optimization is used 

when specific values are selected to represent variables associated with a model and produce 
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different scenarios corresponding with those cases. However, stochastic optimization is used when 

there are independent random variables with known distributions in the model [32]. In fact, a 

challenge with home energy management systems is caused by the randomness of different 

phenomena and values such as the idle times of EV, load profile, and renewable energy generation 

which is often addressed by stochastic optimization [6]. Some researchers have investigated the 

UC problem in the context of stochastic optimization [33], [34]. Forecasting and statistical models 

have been employed in the literature to model different uncertainties in EV charging stations with 

PV arrays, such as PV power, EV arrival, departure times, and initial SoCs [35]. However, in this 

thesis, the uncertainty of model parameters is not taken into consideration, and carried out 

optimizations are of deterministic type. 

With regards to the method of optimization, a wide range of approaches has been taken in the 

literature. However, when it comes to optimal scheduling for microgrids, mathematical 

programming would be the most popular and useful optimization method due to its two major 

advantages. The first advantage is its ability for achieving global optima which is important to 

achieve the best possible solutions. The second advantage is concerned with its modular structure 

which makes it easily adaptable to new conditions and variables. In other words, introducing new 

variables, constraints, or objectives to a MIP model could be done with minimal difficulty [36]. 

One case study showed that MIP was able to solve a UC problem significantly faster than a 

metaheuristic method [37]. As there are normally different discrete or binary variables in a UC 

model, MILP has become the most used type of mathematical programming in smart grid research. 

In this regard, according to the abovementioned advantages of mixed-integer programming and 

also the fact that a typical modern computer is normally able to handle the complexity and size of 

a MILP model for a generic small microgrid in a relatively reasonable amount of time, MIP has 

been employed in this work for generating microgrid UC models. In the next chapter, the 

application of the different optimization techniques in producing UC models will be reviewed. 



13 
 

 

Figure 1.2: Residential microgrid and energy management system scheme 

Figure 1.2 illustrates the high-level control scheme for a home or a building microgrid. The term 

“high-level” control refers to the fact that the energy management system falls within the high 

levels of the microgrid control hierarchy, where the control system is responsible for optimizing 

the energy transactions within the system without being involved with the dynamics of the 

microgrid. In this regard, the real-world energy management system is essentially a program 

containing a MIP model which receives input data from the user, cloud, and utility meter, executes 

a round of optimization and produces the optimal power schedule of the batteries as well as the 
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optimal operation times of the controllable loads for the next optimization horizon (e.g., 24 hours, 

1 hour). Those reference points then will be sent to their respective converters/relays in real-time 

but at a low (minute/hour) update rate through a low-bandwidth communication link between the 

energy management system and converters/relays. The frequency at which the EMS receives 

information from different entities depends on the type of information. For example, with regards 

to the user-provided information, some of them such as the ratings of components, battery 

capacities and characteristics, battery prices, and economic/environmental preferences could be 

provided by the user and/or installer at the time of commissioning. However, information such as 

the controllable-load preferences, times of departure and arrival of EV for the weekdays and 

weekends as well as initial and final SoC values of EV battery, when EV is connected to the 

microgrid, could be uploaded anytime the user decides. Obviously, some of the data that are of a 

more random nature such as departure and arrival times of EV as well as its initial SoC value may 

not be known ahead of time with high certainty due to the unpredictable nature of humans’ 

behavior. This issue can be addressed in two different ways. From the modeling point of view, a 

good way to address the random nature of some input data such as the initial SoC of EV or times 

of arrival and departure (as well as other uncertain values such as PV generation) is employing 

stochastic optimization to make sure that the solution of the optimization problem is always within 

an acceptable margin of optimality. However, another way to address this randomness issue is by 

providing more reliable data to the EMS through more sophisticated communication links. For 

example, provided that the technological infrastructure is in place, a modern EV may be able to 

send the times of arrival and expected level of SoC with a relatively good level of accuracy to the 

EMS and through the internet before the EV arrives at the parking place. However, as mentioned 

before, in this work deterministic optimization has been carried out based on the assumption that 

the data provided by the user are highly accurate and reliable without focusing on how the data is 

provided to the EMS. In this work, the information received from the cloud is assumed to be of two 

types, namely the energy prices and the solar irradiance forecast (although other sets of information 
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such as peak power limits, and warnings could be also provided by the grid operator [36]. This 

information can be uploaded on the cloud on certain intervals (daily, hourly, etc.) by different third 

parties such as the utility companies, weather stations, etc. The EMS can then calculate the 

estimated solar generation by using simple mathematics locally. The AMI could record the loads’ 

consumption as well as the building’s energy transactions with the grid and also provide automatic 

bidirectional communication between the utility company and the user [14]. The previous load-

profile records can then be used locally or by a third party to predict the load profile of the next 

optimization horizon. Carrying out this task locally would require available forecasting algorithms 

that should be able to share its outcome with the UC model.  

There are two different approaches for producing charge/discharge cycles plan for multiple EVs, 

including individual planning and aggravated planning [11]. Depending on the number of the 

electric vehicles and the network level which is of concern (e.g., low voltage, medium voltage, high 

voltage) any of these approaches may be needed in the analysis [38]. With regards to how this 

thesis addresses the problem of charging “multiple” EVs, it should be noted that although the UC 

problem in this work is solved at the individual level, it can address the scheduling problem for 

multiple EVs. However, they are designed to address cycling EV batteries when their idle times 

within the next optimization horizon (e.g., one day, one hour, etc.) is known at the time of 

optimization. Hence, the presented UC models would be more useful for the places where a certain 

number of EVs are to be scheduled for a time horizon, while the parking times of every EV are 

predictable, as in the parking lots of office or residential apartment buildings. However, this work 

would not be suitable for optimal EV scheduling in places where EVs’ availability is of a random 

nature, they are charged within unpredicted time frames and their commuting times are not known 

ahead of time, such as in fast-charging stations or parking lots of the shopping centers. This is 

because the designed MIP models can produce optimal battery cycling schedules when they access 

the times of EV availability and also since the model, (especially the battery degradation model), 
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requires specific information about every single EV battery that is going to be addressed. Moreover, 

the presented degradation model, in this work, may not be suitable for fast charging of EVs as it 

does not take into account the impact of C-rate (i.e., the rate of charging or discharging a battery 

relative to its capacity) and temperature on the capacity loss of the battery. In fact, in these cases, 

where EVs' presence is random, two different approaches have been employed in different works. 

Either the EVs are collectively treated as loads rather than control variables and the UC problem is 

solved solely for scheduling the local storage system [8]. In another approach, the commuting times 

of EVs in a public parking lot or fast charging station are statistically modeled and the optimization 

problem for the EVs is roughly solved based on the available statistical forecasts [39]. However, 

this approach may not lead to the optimal results for every EV, and also modeling the battery 

degradation tailored for every EV may not be feasible for this case.  

According to what is explained in this section, the energy management system, that is supposed to 

optimize the operation of a microgrid, may be considered a system consisting of a UC model and 

possibly a forecasting algorithm which are integrated under the umbrella of an energy management 

software package, which also executes some other potential calculative tasks such as calculating 

the PV power profile based on the irradiance profile. This comprehensive program can be 

implemented on a computer or possibly embedded systems that can support internet connection 

and communicate with AMI and power converters for receiving and sending data. It also needs to 

have a graphical user interface (GUI) so the user can input the information into the system. The 

communication link between the device that hosts the EMS program, and the power converters or 

relays is another technical issue as they need to be able to properly communicate with each other. 

However, these technical issues are out of the scope of this work. Finally, it should be noted that 

in this thesis, the terms “energy management system”, “energy management algorithm” or “unit 

commitment model” are used interchangeably, carry the same meaning and only refer to a 

mathematical optimization model which is designed to schedule the operation of microgrid 



17 
 

components (mostly batteries) in terms of their power values and times of operation. In other words, 

the term energy management system in this work has the same meaning as the UC model as this 

work is mainly focused on developing mathematical models for optimal battery scheduling. In 

practice, a “unit commitment program” could be a part of a larger “energy management software 

package” which could also incorporate a forecasting program. Such comprehensive energy 

management package could be installed on a computer to receive information from different entities 

and send reference point values to the microgrid components through appropriate communication 

links.  

1.4 Literature review on the unit commitment of electric vehicles and energy storage 

systems in behind-the-meter microgrids 

  

Unit commitment at residential and commercial buildings is now a possibility for the home and 

business owners as fast computers and internet (cloud) connection is now accessible for a 

significant percentage of people. A modern microgrid employed by the residential/commercial 

sector often consists of (but, not limited to) energy storage units and renewable energy generators 

(in particular, PV systems in urban areas). Gradually, more EV manufacturers are also providing 

their vehicles with circuitry required for the vehicle to grid service which means in a modern 

building, the EVs can also be components of the local microgrid which is significant due to the 

large storage capacity of an average EV compared to the amount of daily energy transactions in a 

typical residential or small commercial building. Numerous studies have investigated the optimal 

charge/discharge of EVs within bidirectional markets. One way of classifying these studies could 

be based on the connection of the EV to the grid (V2G) through a charging station or connection 

to a home power bus (V2H) [4].  

Thus, most of the time the UC problem for an urban microgrid can be narrowed down to a battery 

scheduling problem. Controllable (i.e., shiftable, dispatchable) loads are also other components of 

a residential power system that can be addressed in the UC algorithm. When it comes to islanded 
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microgrids that are situated in remote areas and have no connection to the grid, the main concern 

is maintaining the voltage regulation in the system. While for a microgrid, which is normally 

connected to the grid, the main issue is usually the economic dispatch. In a grid-connected 

microgrid, the renewable energy systems normally work on their Maximum Power Points (MPP) 

unless otherwise required. Assuming that the microgrid is committed to participating in ancillary 

service, PV curtailment could also be considered as a parameter that is determined by the energy 

management algorithms. Hence, PV curtailment is the subject of some of the literature that has 

addressed energy management systems for buildings. When excessive PV energy is generated, such 

that available storage systems are not capable of storing all the excess energy, PV curtailment could 

be necessary to avoid the voltage peaks in the distribution system [4]. However, in this thesis, the 

PV system is assumed to work on the MPP as it normally does in grid-connected systems. Thermal 

systems and diesel generators are also included in some residential or commercial microgrids and 

they can be subject to a comprehensive study. However, the focus of this research is mainly on the 

battery scheduling problem, hence, diesel generators and thermal units are not addressed in this 

work. 

The literature review is focused on the UC problem for the BTM microgrids with a focus on 

batteries (both local energy storage systems and EV batteries) as battery scheduling is focused on 

in this thesis. The literature review has been carried out with a methodological approach, where 

different methods used to study the unit commitment for electric vehicles and/or battery storage 

systems in microgrids have been reviewed. It aims to point out the applied methodologies and 

objectives in recent years for addressing UC problems for batteries. Due to the fact that this work 

is based on MIP optimization, research works that have employed this method have been 

emphasized in this literature review.  

With regards to the application, residential and commercial microgrids are the subject of this thesis 

and the literature review section as well. Several researchers have studied the battery cycling 
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problem for a building with different approaches and objectives. Minimization of net energy cost, 

electricity cost, renewable energy curtailment, load shedding mitigation, voltage deviations, battery 

degradation, emission, maximization of revenues or deployment of renewable energy, and user’s 

comfort during grid-connected or islanded conditions are the most applied objectives in these types 

of problems [40]-[42]. 

Technically, the energy management problem in microgrids falls into the category of mixed-integer 

nonlinear programming [43]. However, various optimization methods have been employed in 

different studies to solve the energy management or battery scheduling problems. Mathematical 

programming, metaheuristics, and AI-based methods are the main categories employed in the 

literature among which the first two are more commonly applied by researchers [37]. Linear and 

Quadratic Programming (LP, QP) [9], [10], Nonlinear Programming (NP) [44], Convex 

Programming (CP) [45], Mixed-Integer Linear Programming (MILP) [1], [3] ,[5], [12]-[14], [18], 

[23], [36], [39], [46]-[53] and Dynamic Programming (DP) [3], [6], [53] are among the 

mathematical programming models that could be employed in a deterministic or stochastic fashion. 

Particle Swarm Optimization (PSO) [40],  [53], [54], Gray Wolf Optimization (GWO) [55], and 

Genetic Algorithm (GA) [49], [56], [57] are some of the heuristic search-based algorithms used in 

the literature optimization and planning of microgrids. However, these algorithms usually require 

large computational and storage resources. Therefore, for the real-time application, they may end 

up being expensive in terms of the equipment [58]. Rule-based algorithms [35], [59]-[63], game 

theory [17], [64], and AI-based techniques such as Artificial Neural Network (ANN) [15] and 

Fuzzy Logic (FL) [65]-[67] are some of the other methods that have been used for optimal 

scheduling of batteries (e.g., EVs) in the literature [39]. Some of these most relevant works are 

introduced in the following. 

By implementing nonlinear programming and a rule-based algorithm, a smart charging method 

designed for a building with a multi-port system combining EV, PV, battery, and a heat pump was 
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provided in reference [44]. The smart charging algorithm of this work managed to lower the entire 

cost of energy by combining grid power prices, PV investment costs, EV/battery operation 

expenses, and revenue gained from serving as the main frequency regulation reserve, all based on 

PV production and load estimates. Reference [4] presents an EV charge-discharge management 

system in the mathematical programming framework based on information interchange between 

the home energy management system (HEMS) and the grid energy management system (GEMS) 

for optimal PV output utilization. The HEMS develops an EV charge-discharge strategy to reduce 

home operating costs and PV curtailment without interfering with EV driving. 

A linear programming model for several households with PV generation, shiftable load, and EV 

has been presented in [10] and the optimal schedule of EV charging as well as heating and cooling 

loads has been solved. A stochastic optimization framework for smart home energy management 

using EV storage and PV generation has been presented in [6]. The electric power allocation in the 

EV battery, home load demand, PV power, and utility grid is optimized using stochastic dynamic 

programming. The technique explicitly considers probability distributions for EV’s journey 

duration and length, as well as forecasting home load demand and PV electricity generation. The 

study in [45] proposes a convex-programming framework for optimizing the energy management 

of a hybrid solar-battery power source in a smart-home nanogrid with electric vehicle load. The 

convex program in this work is a mathematical formulation for allocating electric power between 

the EV battery, house battery, residential power demand, PV arrays, and the utility grid. 

An energy management system for a household user is presented in [14] in the framework of MILP, 

which is capable of energy transactions between the consumer and the load-serving entity. The 

suggested household model includes shiftable and non-shiftable loads, as well as an electric vehicle 

that can provide V2H and V2G services to cut the household’s energy costs. The study in [18] 

proposes a MILP for reducing the total operating cost of an interconnected nanogrid by optimizing 

the overall operating cost while considering the effects of V2H and V2G. The main goal is to 
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minimize carbon emissions, overall operating costs, and peak load demand while meeting the needs 

of each nanogrid's customers. An EV scheduling system that makes use of V2H technology to 

schedule the charging/discharging level for each timeslot is presented in [12] to reduce the payable 

costs of customers. This algorithm which is built in the framework of MIP can support both on-

grid and off-grid working conditions.  

The study in [13] has conducted an assessment of dynamic-pricing and peak power limiting-based 

Demand-Response (DR) schemes for EV and ESS using mixed-integer linear programming. This 

was carried out for a single home with a distributed small-scale renewable energy system, an EV 

with V2H and V2G capabilities as well as an ESS with two-way energy trading, to study several 

DR techniques. Alternative ways for charging a single car, connected to the power system of a 

single home were studied in [9] by using a rule-based algorithm and linear programming. All 

optimum algorithms have the same goal: to lower the vehicle's charging cost. In this regard, 

numerous use scenarios and four distinct daily energy price profiles were used to test the seven 

effective solutions. The impact of the BTM unit commitment on the grid equipment is a subject 

that has been addressed in [59], where the benefits of adopting a peak shaving algorithm for each 

house that makes up a domestic electric grid were investigated in this work. It shows positive results 

as the transformer's aging rate has significantly decreased as a result of the employment of a 

heuristic rule-based peak shaving algorithm. 

With the integration of wind and solar systems, battery storage, and electric vehicles, the study in 

[47] provides a MILP model to optimize the energy production and consumption systems in a smart 

house. Also, a variety of case studies are provided in this work using the Taguchi technique to 

create experiments. Then, to tackle the problem of domestic energy management and reduce the 

consumer's electricity costs, a heuristic approach is provided. For a day-ahead UC model in 

microgrids, a heuristics-based optimization mechanism is provided in [21]. This model seeks to 

schedule electricity among the many microgrid units, which include renewable energy resources, a 
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storage unit, two microturbines, a fuel cell, and electric vehicles while reducing operational costs 

and CO2 emissions. The study in [48] aims to maximize the overall profit of a building microgrid 

by optimizing the operation of EVs and batteries in the day-ahead and regulated energy markets 

while taking the EV's driving pattern into account. This work considers electric vehicles as dynamic 

energy storage devices and batteries as managed demand facilities to take advantage of buildings' 

energy flexibility. The optimization problem of this work is a two-stage MILP.  

Reference [68] describes a dual-layer predictive energy management system for a microgrid with 

a hybrid energy storage system that includes batteries and supercapacitors. A hierarchical dispatch 

model is suggested to determine the scheduling of utilities within a finite time horizon to maintain 

high system robustness at minimal operational cost, where the upper layer minimizes total 

operational cost, and the lower layer eliminates fluctuations caused by the forecast errors. A MILP 

has been presented in [49] for making charging decisions for multiple facilities of a single end-user 

with green energy generation, ESS, EV, and an internet-of-energy (IoE)-based energy trading 

platform to reduce energy waste and total energy usage costs. Due to the vast number of constraints 

and variables in the suggested model, this study also presents a genetic algorithm for this issue, to 

manage the solution infeasibility of constraints. The study in [15] has presented an intelligent 

charging technique based on Machine Learning technologies to schedule the EV charging during 

connection times. This is accomplished by making real-time charging decisions based on auxiliary 

data such as price, environment, driving, and demand time series to minimize the total energy costs 

of the vehicle.  

A MILP-based EMS is proposed in reference [36] to produce an efficient day-ahead schedule for a 

smart household under hourly pricing and peak power limiting demand response schemes. This 

work addressed the scheduling of different types of controllable assets, including thermostatically 

and non-thermostatically controlled appliances. Also, EV, ESS, and distributed generating at the 

user location are taken into account. In reference [50], a MILP-based online UC algorithm is 
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proposed for microgrids with on-site batteries, renewable energy sources, and integrated EVs. 

Using forecasted values such as power consumption, renewable energy generation, EV connection, 

and disconnection timings, this problem is solved over a rolling time horizon. It also formulated 

the problem as a stochastic chance constraints optimization to improve the system resilience when 

dealing with uncertainties in demand/generation, EV state of charge, as well as 

connection/disconnection timings. 

One way of classifying the publications that have investigated the MG unit commitment problem 

would be based on the number of beneficiaries of the UC algorithm that have different and probably 

conflicting interests in the microgrid’s operation. As long as a microgrid is going to serve only one 

party (its owner or operator), the scale of the system and the size of its components do not have a 

meaningful impact on the structure of its mathematical model. However, introducing other parties 

with involved interests could change the model noticeably, especially in terms of the objective 

functions. Thus, the number of parties that are going to benefit from the operation of a microgrid 

impacts the system modeling and formulation. For instance, different neighbors/owners that may 

operate a neighborhood microgrid in a shared way or different EV owners that connect their EVs 

to a local microgrid are examples of the cases where a microgrid could have different beneficiaries 

with separate and potentially conflicting interests. Different works have studied the UC problem 

for joint utilization of microgrid components which are mentioned in the following. For instance, 

workplaces are one of the noticeable places where several entities could benefit from a tailored 

energy management system. Especially, when it is known that during the daytime, around 25% of 

vehicles are parked at the workplaces [16]. 

The optimal interaction of a neighborhood of smart houses that have bi-directional power flow 

between themselves, and the grid is investigated in [23] aiming at minimizing the overall energy 

cost. The problem is formulated in the framework of MILP. These houses could be equipped with 

EVs that provide V2H and V2G services, controlled appliances, energy storage, and distributed 
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generation. A heuristic operating method for commercial building micro-grids with different EVs 

and PV systems is suggested in [58] which is centered on real-time data collection. The technique 

can effectively enhance the self-consumption of PV energy and minimize reliance on the power 

grid by allocating the charging rate of EVs in real-time. In [5], a MILP model has been implemented 

for charging an EV fleet in a workplace from the photovoltaic generation. In this model, the EVs 

are charged from the PV array, and provide V2G service for the grid support and ancillary services 

in the form of reserves, while taking the distribution network capacity constraints into account. The 

MILP optimization model which uses a fixed period is implemented as a receding horizon model 

predictive control. 

An EV charging model is outlined in [35], for a Solid-State Transformer (SST) in a charging station 

equipped with a PV array. This work suggests a rule-based EMS that allows SST-based charging 

stations to dynamically engage in ancillary services while ensuring the quality of charging for EV 

owners. A categorization method for electric vehicles has been investigated in [1], which can help 

a PV-powered charging station minimize the overall cost of energy trading with various energy 

entities in a smart grid network. The EVs in this MIP model are planned according to their priorities, 

which could be premium, conservative, or green. A dual-stage power flow method for a PV-battery 

facilitated EV charging station is proposed in [53] to obtain the minimum cost of operation. As a 

prediction layer, an offline particle swarm optimization is employed in the first step of the 

optimization method. Dynamic programming is also used as an online reactive layer in the second 

level. In both rounds, predicted system data is used to develop the best power schedule. A UC 

model capable of predicting the PV generation and optimizing power transfer between the PV array, 

the grid, and EVS at the workplace is presented in [51]. The goal of this work is to reduce the 

charging costs while lowering the grid energy demand by enhancing the PV self-consumption. A 

MILP framework is used to efficiently designate power to minimize the charging cost of EVs in 

this work. 
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The effect of different V2G approaches on the batteries at a workplace charging station facilitated 

with a PV array is investigated in [11]. In this regard, two types of V2G modes have been studied 

in this work namely power-coordinated and time-coordinated modes using the Round Robin 

scheduling method. The study in [69] proposes a four-stage UC method a charging station with PV 

array and ESS, that is connected to a commercial building. The proposed algorithm aims to 

minimize the operational cost associated with user satisfaction while balancing real-time supply 

and demand. This happens by optimal scheduling of EVs, battery storage, grid supply, and 

dispatchable load in the context of chance-constrained optimization. The optimum operation of a 

PV-equipped charging station is addressed in [70] through multi-objective problem formulation to 

schedule the EVs and local battery storage system. This work aims to achieve the highest revenues 

as well as the lowest capacity loss of battery while taking into account the grid's power restrictions. 

This multi-objective problem is then solved by the Enhanced Augmented-Constrained 

(AUGMECON2) Algorithm.  

In [71], a rule-based UC technique has been proposed for real-time control of multi-source charging 

stations with distributed energy resources, ESS, and V2G service capability while the stochastic 

character of the sources is taken into account. This energy management algorithm is made up of 

different cascaded problems to reach the lowest operating cost. For a parking station with a 

Photovoltaic system, a battery cycling model is developed by [39] in the framework of MILP to 

arrange the charging or discharging rates of EVs and ESS. In this work, the EVs are categorized 

and prioritized according to their initial SoC levels; some may be considered suitable for V2G 

service, and some are in need of urgent charging.  This article aims at maximizing the EV users' 

satisfaction as well as the parking station's profit. An energy management strategy for microgrids 

with an EV charging station, PV system, and dynamic loads is presented in [3]. This strategy uses 

the PV and demand forecasts to implement a dynamic programming method that optimizes the EV 
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cycling regime. This algorithm offers the consumers different charging alternatives while lowering 

the reliance on the grid. 

Reference [40] has employed particle swarm optimization to implement nonlinear, degradation-

incorporated energy management algorithms for a DC microgrid with PV, ESS, and charging 

station aiming at minimizing the costs. In [52], MILP and model predictive control have been 

applied to produce an EMS for an apartment building with a parking lot that offers V2H service, 

renewable energy generation, and storage system to achieve the minimum cost. Gray wolf 

optimization is used in [55] to solve the linear UC problem of the parking lot of a building which 

also includes photovoltaic generation and ESS. The study in [17] presents a decentralized demand-

side management technique that uses two layers to reduce the difference between forecasted and 

real-time load in a microgrid composed of several households. The suggested technique is based 

on the game theory where its first layer calculates the projected demand, and the second layer 

calculates the deviation of the forecasts. In [72], a framework has been developed for controlling 

and optimizing the operation of a microgrid with PV, dispatchable load, EV charging stations, and 

a local battery unit using model predictive control and Alternating Direction Method of Multipliers 

(ADMM) to minimize the cost of operation. 

1.5 Research gaps and contributions 

 

This thesis aims to address some of the existing gaps and shortcomings of the literature that has 

studied the UC problem in microgrids. More specifically, it focuses on the research gaps of the 

works that have implemented mixed-integer programming as the framework of battery scheduling 

problem. First and foremost, this thesis addresses the battery degradation issue in the behind-the-

meter UC problems. A battery scheduling model requires to take into consideration the battery 

degradation caused by the irregular cycling of batteries to be able to provide realistic outcomes. 

(The irregular cycling takes place between random SoC values unlike the regular cycling which 

takes place between 0 and 100%SoC). Otherwise, the inflicted cost associated with the capacity 
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loss of batteries could undermine the profitability of any cycling regime. As a result of introducing 

the battery degradation model, a UC model will be introduced for a home-based microgrid to 

minimize the real costs and carbon footprint for a user. In this regard, the next contribution of this 

work is investigating the impact of the resolution of the MIP model on the capacity loss of batteries 

in the intra-hourly markets. A Hardware-in-the-Loop (HIL) experimental setup has been employed 

to study this subject in depth. Optimal battery scheduling in a commercial building with charging 

station where multiple parties (microgrid owner and EV owners) could have conflicting interests is 

another subject of study in this work. In brief, the main contributions of this work can be 

categorized into the following areas.  

• Investigating the battery degradation for irregular cycling in microgrids in the context of 

MIP. 

• Examining the impact of the resolution of the MIP unit commitment model on batteries in 

microgrid. 

• Studying the MIP-based UC strategies in applications with multiple beneficiaries. 

In the following sections, every one of these areas are explained in more detail as well as the 

research gaps associated with them.   

1.5.1 Battery degradation problem 

 

One common shortcoming among the relevant published literature is the lack of consideration of 

battery degradation or just oversimplifying this issue, given the fact that battery degradation can 

largely affect the optimization results [56]. Several manuscripts have produced sophisticated UC 

models, however, failed to address the crucial issue of battery degradation such as [1], [17], [23], 

[35], [48], [50], [55]. However, those works that employed MIP to build UC models and addressed 

battery wear in a way, suffer from some important shortcomings. These shortcomings mainly 

consist of assuming static factors or constants as the wear rate of different cycling regimes or 
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missing some important parameters that impact the capacity loss of batteries in smart 

grid/microgrid applications. The study in [73] states that most of the literature has considered 

battery wear as a simplified and additional cost factor rather than addressing it as a main objective.  

The battery degradation problem and its associated factors will be investigated in the next chapters. 

However, in this section, some of the main shortcomings of the relevant literature concerning 

battery wear are pointed out. Some of the literatures have used oversimplified mostly static 

degradation models that may not be able to model the wear with a decent precision [66], [74]-[76]. 

Attributing constant degradation factors to different cycles cannot reflect the impact of different 

effective factors such as Depth of Discharge (DoD) and State of Charge (SoC). Some works have 

overlooked the impact of DoD on the capacity fade or just oversimplified this effect [44]. Some 

authors that have taken into account the impact of DoD on the capacity loss, neglected the 

dependence of DoD-related capacity loss on the initial and final SoC of charging and discharging 

attempts [77]-[79]. Some of the research works are produced based on special datasets, charts, etc. 

that may not be provided by the manufacturers normally [44]. Computing the capacity loss separate 

from the original objective function of the problem is another issue that could undermine the 

optimality of results [80], [81]. This could lead to the emergence of competing objectives which 

may affect the optimality of results. Some of the research works rely on specific battery chemistry 

and they cannot be applied to the other battery technologies directly [44], [82], [83]. Low precision 

or high complexity due to the application of metaheuristics or iterative structures [77], [78], [82], 

[84] is another shortcoming in the existing literature. 

To the best of the author’s knowledge, among the published literature that has provided a battery 

wear model in the context of UC problems, some of them have more similarities to this work in 

terms of the methodology used for producing the battery wear model. The shortcomings of those 

works are explained as follows. Reference [82] which has been used as the basis for the wear model 

in this work has proposed a capacity loss model based on the cycle life-DoD of the battery. This 
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model was proposed for irregular cycling in V2G scenarios. By using a single global wear 

coefficient corresponding with every charging/discharging event, this study seeks to simplify the 

wear rates associated with every irregular half-cycle. However, the global wear coefficient was 

based on the cycle life-DoD curve of a specific battery. Therefore, it may not be directly applicable 

to all battery technologies. Furthermore, the form of the wear model presented in this paper needs 

the use of an iterative framework to ensure the convergence of the algorithm. Other works such as 

[85] and [86] that employed the approach of [82] suffer from the same shortcomings. 

Reference [87] provides an empirical battery degradation model for the short-term cycling of 

batteries in the energy market. It provides a novel method for addressing SoC and charging rate by 

extracting the wear data from a contour map of a battery that maps battery degradation versus SoC 

of two consecutive time intervals at a particular C-rate. Although this work manages to address the 

SoC of cycling and C-rate, it suffers from some deficiencies. First and foremost, it builds the 

degradation model based on the SoC-degradation contour map of a particular battery type, while 

this map is not normally provided by the battery manufacturers. Also, in order to address C-rate, it 

assumes the effect of the C-rate of the battery wear changes linearly which is not an accurate 

assumption according to [88]. Moreover, the degradation model of this work is minimized along 

with the cost function in the context of a multi-objective optimization problem and a good solution 

is tried to find through the Pareto front of these objectives. Therefore, the degradation and cost 

function compete with each other which will avoid obtaining the exact optimum result where 

battery degradation and energy costs lead to a total minimum cost [87]. 

Reference [89] has proposed a semi-empirical wear model that is based on the cycle life-DoD curve 

and provides a wear cost as the return value to incorporate it into the optimization models. It 

implements the wear model for an EV that provides V2G service and operates along with PV 

generation. However, this work has used particle swarm optimization to solve the EV charging 

problem which would not be able to produce a global solution within a reasonable time as MIP 
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does. Reference [90] presented a wear model based on a linearized version of a capacity loss vs 

SoC curve. However, the linearization attempt could notably lower the accuracy of the model. Also, 

it cannot guarantee the maximum revenue as the user has to set a minimum value for the lifetime 

of the battery and then attempt to carry out the optimization to maintain that initial lifetime, rather 

than search for the optimum solution (maximum revenue) among all the possible states.  

In order to tackle the deficiencies of the MIP-based UC models for BTM microgrids, this work 

represents several contributions as follows. 

First and foremost, a technology-agnostic battery wear model is provided in this work to address 

the real-world battery cycling practices in microgrids where batteries are cycled irregularly between 

random SoC levels. The wear model is built based on the cycle life-DoD curve of batteries and is 

applicable in MIP structures for online minimization of UC costs. Hence, it takes into consideration 

the fact that DoD-related capacity fade depends on the initial and final values of SoC during every 

cycle/half cycle. Due to the reliance of the proposed wear model on the cycle life-DoD curve of the 

battery and concerning the fact that this curve itself is normally provided for specific C-rates, one 

technique is also introduced to employ the best cycle life-DoD curve for every problem. As a 

consequence of calculating the capacity wear of batteries during their operation, the real costs 

associated with the battery operation and also the environmental footprint of the microgrid are 

addressed in this thesis. It is demonstrated how scheduling the batteries without taking into account 

the battery wear as practiced traditionally could significantly increase the costs and carbon footprint 

of microgrids. 

1.5.2 Impact of model granularity 

 

After a MIP unit commitment is produced and incorporates a tailored battery degradation model to 

schedule the day-ahead operation of a microgrid, a raised question would be, what is the optimal 

time resolution to schedule the microgrid components. In general, more frequent battery scheduling 
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seems promising in achieving better energy costs, while at the same time could overwhelmingly 

increase the cost of battery degradation. Hence, in the energy markets where the prices change on 

an intra-hourly basis, we normally have to deal with two sets of competing interests. On one hand, 

cycling the batteries with maximum frequency to minimize the net cost of energy, and on the other 

hand, prohibiting the excessive battery wear that is caused by high cycling frequency. Hence, to 

participate in an intra-hourly bidirectional market, the users should be aware of the potential battery 

degradation costs associated with different model granularities to make a proper choice regarding 

the desirable battery scheduling frequency. Different publications have addressed the BTM unit 

commitment problem in the context of mathematical programming (LP, MILP, etc.) in different 

time resolutions, most of them considering hourly resolution with daily horizons [6], [10], [13], 

[14], [18], [47], [91], while some others have employed intra-hourly resolution (5 minutes, 15 

minutes, 30 minutes) for their case studies, such as references [12], [36], [44], [52], [68]. However, 

the impact of the time resolution or granularity of the UC model on the capacity loss of batteries 

has not been properly addressed in the literature. In this regard, this issue is investigated in this 

work by presenting a dual-stage energy management strategy for intra-hourly scheduling of EV 

and ESS that addresses the hourly scheduling in the first layer and produces the intra-hourly 

schedule in the second layer. This strategy can provide useful information about the impact of 

model resolution on the capacity fade of batteries. In order to improve the precision of battery 

degradation estimations, a hardware-in-the-loop simulation is then employed to measure the 

capacity loss associated with real-world battery cycling conditions. This approach enables us to 

have a more realistic estimation of the battery wear due to its capability to calculate the nonlinear 

wear rates in real-time and with higher precision. 

1.5.3 Unit commitment with multiple beneficiaries 
 

Investigating the optimal unit commitment for applications where multiple parties (beneficiaries) 

have conflicting interests demands consideration of battery degradation issue for all the involving 
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entities. Without consideration of battery wear, chances are some or all parties be in loss due to the 

excessive degradation of their batteries. In this regard, different publications that have investigated 

the UC problem for multiple parties ignored the degradation issue as in [1], [39], [50], [52], [55]. 

However, some other references that have considered battery wear in a way, suffer from 

shortcomings such as fixed DoD [8] or constant wear rate [5], [51]. In this regard, the UC problem 

for the microgrid of a public building (an office) that can charge and discharge multiple EVs is 

investigated in the framework of mixed-integer programming. Similar to the residential building, 

the office is also considered to benefit from a local energy storage unit, photovoltaic arrays, and 

bidirectional power transfer with the grid. Investigating optimal UC models that could benefit both 

the microgrid operator (office) and the EV owners can be realized by employing the battery 

degradation model that could estimate the capacity loss of every battery during any given 

optimization horizon. Hence, different strategies are provided by this work to manage the unit 

commitment in an office in an efficient and fair fashion. Due to the fact that the presented battery 

wear model addresses the capacity loss of batteries individually, the studied UC strategies can be 

specifically tailored to minimize the costs for EV owners, MG operators, or all parties to different 

extents. This approach also can predict the profitability of participating in a V2B service for the 

EV owners. 
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Chapter 2: Application of mixed-integer programming 

in a unit commitment problem 
 

 

2.1 Introduction to mixed-integer programming  

 

In this chapter, mixed-integer programming as the framework of optimization in this thesis is 

briefly introduced. “Mathematical programming” in general and its subsets such as “mixed-integer 

programming” are used for modeling systems and optimizing (e.g., maximizing or minimizing) a 

function of different variables derived from systems. The limitations of the system (i.e., model 

constraints) are expressed by restricting functions of decision variables via equations or 

inequations. By nature, some variables are of discrete type while some others are continuous. The 

size of a model and subsequently the processing power required for solving it rises exponentially 

with the number of variables. This modeling method is now very popular in the electricity industry 

due to its applications in UC problems on different scales.  In recent years, to formulate the UC 

problems, the power system operators in the US have transitioned from using heuristics to MIP 

models which are solved by commercial branch-and-cut engines such as Gurobi and CPLEX. From 

an economic viewpoint, this transition is estimated to have saved up to 5 billion dollars a year [20]. 

In order to introduce mixed-integer programming, first the concept of “linear programming” should 

be introduced. “Linear program” (LP) is a problem of the form below whose constraints and 

objective functions are linear. Linear programming problems or simply linear programs include a 

set of decision variables that are unknown values or are subject to optimization. The objective 

function in linear programs should be a linear function of the decision variables which is to be 

maximized or minimized. To enforce the restrictions that limit the decisions, we use constraints in 

the model which must be written as linear functions of the decision variables. As a general 
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condition, decision variables cannot be negative values. In this regard, assuming that 𝑥1 to 𝑥𝑛 are 

the decision variables, we can present a linear programming problem as follows.                                                           

Maximize or minimize (𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3 + ⋯ + 𝑐𝑛𝑥𝑛) (2.1) 

        Subject to:          𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 + ⋯ + 𝑎1𝑛𝑥𝑛  ≥/≤/=  𝑏1 (2.2) 

𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 + ⋯ + 𝑎2𝑛𝑥𝑛  ≥/≤/=  𝑏2 (2.3) 

𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 + ⋯ + 𝑎3𝑛𝑥𝑛  ≥/≤/=  𝑏3 (2.4) 

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + 𝑎𝑚3𝑥3 + ⋯ + 𝑎𝑚𝑛𝑥𝑛  ≥/≤/=  𝑏𝑚         𝑥𝑗 ≥ 0 ∀𝑗 = 1,2,3, … , 𝑛 (2.5) 

In the model above, normally, 𝑐𝑗 values are called objective coefficients, 𝑏𝑗 values represent the 

magnitude of available resources and requirements, and 𝑎𝑖𝑗 values show the number of resources 

or requirements 𝑖 that are utilized or satisfied by decision 𝑗. It should be noted that nonlinear terms 

(e.g., a product of decision variables, the absolute value of variables, or the largest value among 

different variables) cannot be used in a linear model. Moreover, there is no strict inequality in a 

linear model. 

“Integer Programming” (IP), also referred to as “Integer Linear Programming”, is another subset 

of Mathematical Programming that can be described similar to linear programming (LP) with the 

exception that in IP as its name implies, all the decision variables take integer values. Furthermore, 

a “mixed-integer program” (MIP) is similar to a linear problem with the exception that some of the 

variables must be of integer type. Regarding the types of solutions to MIP problems, if a solution 

satisfies all the constraints of the model, it is named a “feasible solution”. The feasible solution that 

also leads to the most optimum value for objective function (maximum or minimum depending on 

the model) is referred to as the “optimal solution”. However, if the MIP model has no solution, it 

is called “infeasible”. However, there is a possibility that a mixed-integer program would be 

feasible but without an optimal solution, and those programs are called “unbounded”. This is 

because in unbounded programs, it is possible to obtain infinitely decent values for objective 

functions. 
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In order to model any system by mixed-integer programs, one needs to have an in-depth knowledge 

of the system's nature. In general, a MIP model could be produced in three steps as follows, where 

steps 2 and 3 could be switched: 

1. Defining the decision variables which constitute the terms that are to be optimized. 

2. Defining the model constraints. 

3. Defining the objective function. 

In many cases, the MIP model may not be correctly and completely built-in entirety in the first 

attempt, and it may be required to add more variables and constraints and examine the model again 

multiple times. In this regard, the production process of MIP models can be considered as a loop 

[92]. To solve a practical mathematical programming problem, it is crucial to take into 

consideration the potential changes needed to be made to the primary model from the beginning. 

In fact, during the production process of the mathematical model, some modifications may turn the 

initial model into a different class of models. For instance, an LP model could turn into a MIP by 

adding some simple discrete constraints [93], also a MILP could turn into a mixed-integer nonlinear 

program (MINLP) by adding some nonlinear constraints that cannot be replaced with linear 

alternatives. 

A mixed-integer program (MIP) can be expressed as follows: 

𝑚𝑎𝑥{𝑐𝑇𝑥: 𝑏1 ≤ 𝐴𝑥 ≤ 𝑏2, 𝑑1 ≤ 𝑥 ≤ 𝑑2, 𝑥𝑗 ∈ ℤ 𝑓𝑜𝑟 𝑗 ∈ 𝑆} 

where, 𝑏1, 𝑏2 ∈ ℝ𝑚 , 𝑑1, 𝑑2 ∈ ℝ𝑛, 𝑆 ⊆ {1,2, … , 𝑛}, 𝐴 is a real 𝑚 × 𝑛 matrix, 𝑥 is an 𝑛 

vector of variables and 𝑆 is the array of integer variables 

(2.6) 

In integer programs where all variables are of integer type, |𝑆| = 𝑛, also in linear programs as there 

is no integer variable, 𝑆 = ∅. The fact that MIP includes discrete variables, makes them more 

complex and one of the most difficult mathematical programs from the algorithm viewpoint despite 

their simple formulation [93]. In the model above, 𝑏1 ≤ 𝐴𝑥 ≤ 𝑏2 represents a linear constraint and 
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𝑑1 ≤ 𝑥 ≤ 𝑑2 represents a bound constraint. The 𝑥𝑗 variables that must take integer values are 

integrality constraints. The integrality constraints allow a program to model the discrete nature of 

a decision such as turning on or off a generator. 

In the MIP above, a vector such as 𝑦 ∈ ℚ𝑛 is called a feasible solution provided that it satisfies 

linear constraints, bound requirements, and integrality restrictions of the model. A solution such as 

𝑦𝑜𝑝𝑡 is considered an optimal solution if it satisfies 𝑦𝑜𝑝𝑡 = 𝑐𝑜𝑝𝑡. If there are no integrality 

restrictions, the MIP is considered a linear program (LP). Hence, the LP-relaxation of a MIP 

program is obtained by neglecting the integrality restrictions. Solving the LP-relaxation to 

optimality provides the lower bound on the optimal objective of the model [94]. 

Nonlinearity is the factor that can turn a MILP into an MINLP and make it significantly hard to 

solve for computers. Simplifying nonlinearities or modifying the nonlinear terms to make them less 

complex while representing the same mathematical concept is often used in MIP modeling. One 

way to address the nonlinearities in MIP constraints is by modeling them using integer variables. 

In fact, by introducing additional integer variables to a MIP model, it is possible to model many 

nonlinearities by employing linear constraints. For example, in the following constraint, x must be 

an integer to satisfy the equation. 

𝑠𝑖𝑛(𝜋𝑥) = 0 (2.7) 

Also, the following equation enforces the fact that x is a binary number. 

𝑥2 − 𝑥 = 0 (2.8) 

Hence, various optimization problems can be formulated as “Quadratic Programming” (QP) 

problems that incorporate quadratic terms. In other words, a MIP problem could be simplified down 

to a quadratic model. Although integer programming could be considered different in the sense that 

integer values are handled at the algorithmic level by implementing branching and cuts.  
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In order to handle the nonlinearity in MIP models, a nonlinear function can be simplified by 

piecewise linear approximation. Let us assume 𝑓(𝑥) is a function defined between [a,b] where, 

𝑎 = 𝑥1̅̅ ̅ < 𝑥2̅̅ ̅ < ⋯ < 𝑥𝑟̅̅ ̅ = 𝑏 (2.9) 

By connecting the adjacent breakpoints on this nonlinear function with lines, a piece-wise linear 

approximation of 𝑓(𝑥), which is denoted with 𝑓(𝑥), can be obtained as illustrated in figure 2.1. 

 

Figure 2.1: Piecewise linear approximation of a nonlinear function [93] 

Thus, 𝑓 can be represented by the following model: 

 𝑥1 = 𝑎  𝑥2  𝑥3  𝑥4  𝑥5  𝑥6 = 𝑏 

 

𝑓(𝑥1) 

 

𝑓(𝑥2) 

 

𝑓(𝑥3) 
 

𝑓(𝑥4) 

 

𝑓(𝑥5) 

 

𝑓(𝑥6) 

 

𝑓(𝑥) 

 𝑥 
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The first three equations enforce that the point (x, y) belongs to the convex hull of the points 

(�̅�1, �̅�1),…., (�̅�𝑟 , �̅�𝑟).  The second three inequations enforce the fact that at most, two 𝜆𝑘 variables 

can be nonzero values and also those nonzero values must be consecutive numbers. In fact, these 

conditions are the mathematical representation of the fact that the point (x,y) must lie on a line 

segment that connects to adjacent breakpoints [93]. 

To obtain an intuitive understanding of how a mathematical program and in particular MIP works, 

one needs to notice that mathematically, a “program” is solved altogether. Therefore, there is no 

sequential process for addressing the model components. In order to solve a MIP model, all the 

constraints and objective functions must be considered at once to explore the best solutions that 

lead to the desirable optimality. Hence, even though the computers solve problems during multiple 

machine cycles, there is no precedence in addressing the model components during the solution 

process. 

 Probably, the best way to learn how to produce a mixed-integer program is to study the existing 

MIP models [93]. MIP can be applied in a wide range of industries such as energy, transportation, 

health, automotive, etc.  In this regard, a classic and relevant application of MIP in the energy 

industry, which is electricity generation planning, is reviewed in this section. One of the use cases 

𝑥 = ∑ 𝜆𝑘�̅�𝑘

𝑟

𝑘=1

 
(2.10) 

𝑦 = ∑ 𝜆𝑘�̅�𝑘

𝑟

𝑘=1

 
(2.11) 

∑ 𝜆𝑘

𝑟

𝑘=1

= 1 
(2.12) 

𝜆𝑘 ≤ 𝛿𝑘 , 𝑘 = 1,2, … , 𝑟 (2.13) 

𝛿𝑖 + 𝛿𝑗 ≤ 1, 𝑗 = 3, … , 𝑟,    𝑖 = 1,2, … , 𝑗 − 2 (2.14) 

𝜆𝑘 ≥ 0, 𝛿𝑘 ∈ {0,1},   𝑘 = 1,2, … , 𝑟 (2.15) 
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of MIP in real-life applications is in UC problems. The goal of a UC problem is to produce a power 

generation schedule for a certain horizon (e.g., a day or a year) with a certain resolution (e.g., hourly 

or intra-hourly). In other words, the outcome of a UC problem shows how much power should be 

delivered by which generators. Hence, it has been used to schedule the operation of traditional 

diesel generators or balance the use of different generators with different capacities. More recently, 

it has also gained interest in scheduling renewable energy-based generators and energy storage 

systems. 

Assume that the problem is to minimize the operation cost of 𝑛 generators that are going to work 

for 𝑇 periods and feed the load demand which is equal to 𝑑𝑡 in each period 𝑡. To be on the safe 

side, the maximum power of generators in each period must be at least 𝑞 times the load demand in 

the same period. Now, the MIP objective function is meant to minimize the total cost of the 

operation for all the generators during the entire horizon and includes the start-up costs. It is defined 

by: 

Where, 𝑔𝑖 denotes the start-up cost for the generator 𝑖 from the off state in period 𝑡, 𝑓𝑖 is the fixed 

operation cost in period 𝑡, 𝑝𝑖 is the variable cost of the operation in period 𝑡 (operation cost at level 

𝑣 in a period is 𝑓𝑖 + 𝑣𝑝𝑖), 𝑧𝑖𝑡 is a binary value representing the switching status of the generator 𝑖 

in period 𝑡 (1: switched, 0: not switched), 𝑥𝑖𝑡 is a binary value representing the generation status of 

the generator 𝑖 in period 𝑡 (1: generating, 0: not generating), 𝑦𝑖𝑡 is the generated power of the 

generator 𝑖 in period 𝑡. Moreover, the model constraints are presented as follows. 

∑ 𝑦𝑖𝑡

𝑛

𝑖=1

= 𝑑𝑡 ,       𝑡 = 1,2, … , 𝑇 
(2.17) 

𝑚𝑖𝑛 ∑ ∑(

𝑇

𝑡=1

𝑛

𝑖=1

𝑔𝑖𝑧𝑖𝑡 + 𝑓𝑖𝑥𝑖𝑡 + 𝑝𝑖𝑦𝑖𝑡) 

(2.16) 
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∑ 𝑢𝑖𝑥𝑖𝑡

𝑛

𝑖=1

≥ 𝑞𝑑𝑡 ,       𝑡 = 1,2, … , 𝑇 
(2.18) 

𝑙𝑖𝑥𝑖𝑡 ≤ 𝑦𝑖𝑡 ≤ 𝑢𝑖𝑥𝑖𝑡 ,    𝑖 = 1,2, … , 𝑛, 𝑡 = 1,2, … , 𝑇 (2.19) 

−𝑟𝑖
1 ≤ 𝑦𝑖𝑡 − 𝑦𝑖 , ((𝑡 − 2 + 𝑇) 𝑚𝑜𝑑 𝑇) + 1 ≤ 𝑟𝑖

2,    𝑖 = 1,2, … , 𝑛, 𝑡 = 1,2, … , 𝑇 (2.20) 

𝑥𝑖𝑡 − 𝑥𝑖 , ((𝑡 − 2 + 𝑇) 𝑚𝑜𝑑 𝑇) + 1 ≤ 𝑧𝑖𝑡 , ,    𝑖 = 1,2, … , 𝑛, 𝑡 = 1,2, … , 𝑇 (2.21) 

𝑧𝑖𝑡 ≤ 𝑥𝑖𝑡 ,    𝑖 = 1,2, … , 𝑛, 𝑡 = 1,2, … , 𝑇 (2.22) 

𝑥𝑖𝑡 , 𝑧𝑖𝑡 ∈ {0,1},   𝑖 = 1,2, … , 𝑛, 𝑡 = 1,2, … , 𝑇 (2.23) 

𝑦𝑖𝑡 ∈ ℝ+,   𝑖 = 1,2, … , 𝑛, 𝑡 = 1,2, … , 𝑇 (2.24) 

where, 𝑢𝑖 represents the maximum power of the generator 𝑖, 𝑙𝑖 is the minimum operating power of 

the generator 𝑖, 𝑟𝑖
1 is the maximum power decrease (ramping) of the generator 𝑖 between two 

consecutive periods and 𝑟𝑖
2 expresses the maximum power increase (ramping) of generator 𝑖 

between two consecutive periods [93]. 

Equation (2.17) enforces the fact that the total generation of generators at each interval must be 

equal to the load demand. Inequation (2.18) guarantees that the maximum power of the operating 

generators is sufficiently large. Inequation (2.19) confines the generation of the generator 𝑖 to the 

values between the maximum and minimum range. Inequation (2.20) ensures that the ramp up and 

ramp down rates of generators do not exceed their ramping specifications, where the interval 

((𝑡 − 2 + 𝑇) 𝑚𝑜𝑑 𝑇) + 1 is followed by the interval 𝑡. Inequations (2.21) and (2.22) enforce the 

fact that the generator 𝑖 is operating at the interval 𝑡 provided that it has switched on in this interval 

or the prior intervals. Equations (2.23) and (2.24) declare that 𝑥𝑖𝑡 is a binary value (on/off) while 

𝑧𝑖𝑡 could take any positive value. 

2.2 Solving methods of MIPs 

 

There are two popular approaches for solving MIP problems, namely the cutting plane methods, 

and the branch and bound methods [95]. Some other alternatives also exist for solving a MIP 
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problem such as metaheuristic methods. However, branch & bound, and cutting planes are the 

dominant methods that are also used in the majority of solvers including Gurobi, which is used for 

this work [96]. These methods are briefly introduced in the following section. 

2.2.1 Branch and bound 

 

MILP problems are often solved by an LP-based branch-and-bound algorithm. In this regard, as 

the first step of the algorithm, all the integrality restrictions of the model are removed which leads 

to a linear program also referred to as LP-relaxation of the original MIP, and then this LP is solved. 

Although this is unlikely in most cases, however, in case the results of the LP could satisfy the 

integrality restrictions, they can be considered as the solution of the original MIP which means the 

optimization is over. However, in most cases, the LP-relaxation results will not satisfy the 

integrality restrictions. Hence, the next step is to select some variable that is restricted to be an 

integer but has a fractional value in the LP relaxation. Let us assume 𝑥 is such a variable whose 

value in the LP relaxation is 5.6. Therefore, this value can be excluded by setting new restrictions 

such as 𝑥 ≤ 5 and 𝑥 ≥ 6. If the original MIP is 𝑃0, then 𝑃1 could be a subproblem with restriction 

𝑥 ≤ 5 and 𝑃2 could be another subproblem with restriction 𝑥 ≥ 6. In this case, 𝑥 is called a 

branching variable. At this stage, if the optimal solution can be obtained for 𝑃1 or 𝑃2, the better of 

those two solutions would be the optimal solution to the 𝑃0. In the next step, the same process can 

be done for every one of the branches by solving their corresponding LP relaxations and selecting 

the branching variables if needed. This process will result in what is referred to as a search tree. In 

a search tree, as shown in figure 2.2, MIPs produced by the branching procedure are called nodes 

where 𝑃0 represents the root node. Those nodes, from which the branching is not performed, could 

be considered the leaves of the tree. Reaching a point where we can either solve or remove all the 

leaf nodes means the original MIP, 𝑃0, has been solved [97]. 



42 
 

                                            

Figure 2.2: Branching in the branch and bound algorithm 

In the branch-and-bound algorithm, optimization problems are divided into smaller pieces 

recursively to create search trees, such as the one in figure 2.2, and enumerate the potential 

assignments of integers. In fact, branching and splitting the problems into smaller subproblems is 

repeated until the individual subproblems can be solved. Every node on the search tree is the 

representation of one subproblem [94]. 

Following the introduction of the branch and bound algorithm, it is worth explaining the concepts 

of fathomed and incumbent nodes. In this regard, a case is assumed where the target is to minimize 

an objective and the LP relaxation of some node in the search tree has been solved. In case every 

integrality constraint, in 𝑃0, is satisfied at this node, it means that a feasible solution to the original 

problem has been obtained. At this stage, we could refer to this node, which is also a permanent 

leaf, is referred as fathomed. Hence, it is not essential to branch on this node. The incumbent can 

be defined as the best integer solution obtained at any point during the search. Thus, it can be said 

that at the beginning of the search, there is no available incumbent. In case the obtained integer 

solution leads to a better objective function value compared to the current incumbent or if there is 

no incumbent at all, the current solution can be regarded as the new incumbent. Otherwise, the 

search can be proceeded without updating the incumbent [97]. 
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Best bound and gap are two other relevant factors that should be introduced here. Let us assume 

that there is a minimization MIP problem. Now, if we have an incumbent, the objective value 

corresponding with that incumbent is a valid upper bound on the optimal answer to the MIP 

problem. It means that the integer solution of any value will be lower than this value. Furthermore, 

during the searching process, there is also a valid lower bound which is called the best bound. This 

bound is also the minimum of the optimal objective values among the leaf nodes. The difference 

between the lower and upper bounds at each moment is called the gap. Therefore, once the gap is 

equal to zero the search has reached optimality [97].  

2.2.2 Cutting planes 

 

The idea of cutting plane is basically restricting the formulation of a problem by disposing of the 

undesirable fractional solutions during the solution process without inflicting undesirable side 

effects such as introducing additional subproblems [97]. Once a mixed-integer program has been 

formulated, we could improve it by the addition of new inequalities that have two characteristics. 

First, they must be valid for all the feasible solutions, and second, they must be invalid for the 

relaxation polyhedron, where polyhedron is the set of solutions in a system of linear inequalities 

[93]. These inequalities are referred to as cuts and they can be added at the time of formulating or 

during the solution process of the problem. It would be better to explain the cutting planes algorithm 

by an example. Let us assume the following integer program. 

Maximize 𝑥1 + 2𝑥2 (2.25) 

𝑠. 𝑡.   3𝑥1 + 2𝑥2 ≤ 9 (2.26) 

𝑥2 ≤ 2 (2.27) 

𝑥2, 𝑥2 ∈ ℤ+ (2.28) 

The first step is to solve the LP relaxation of this IP by allowing the integer variable to take real 

values as well. Figure 2.3 demonstrates the feasible prototype (𝑃0) of the LP relaxation as well as 
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the optimal solution (𝑥(0) = (
5

3
, 2)𝑇). However as 𝑥(0) is not an integer, it cannot be considered as 

a solution to the IP. Now, an inequality that cuts off 𝑥(0) from the set of feasible solutions is called 

“cut” or “cutting plane”.  

𝑋 = {𝑥 ∈ ℤ+
2 : 3𝑥1 + 2𝑥2 ≤ 9, 𝑥2 ≤ 2} (2.29) 

 

 

Figure 2.3: Example of Cutting planes algorithm 

These cuts can be built in different ways. In this example, the point 𝑥(0) was removed based on the 

following observation. Both inequalities of the IP model cannot be satisfied simultaneously at the 

points from 𝑋. Thus, the following inequality is true for 𝑋 but not for 𝑥(0) as (3 × 1.66 + 3 × 2 >

10). 

3𝑥1 + 2𝑥2 + 𝑥2 ≤ 9 + 2 − 1   𝑜𝑟   3𝑥1 + 3𝑥2 ≤ 10 (2.30) 

Therefore, we can simplify the cut as follows. 

𝑥1 + 𝑥2 ≤ ⌊
10

3
⌋ = 3 

(2.31) 

This inequality can now be added to the model constraints. It is worth noting that the cut-off region 

does not include integers and subsequently no feasible point from 𝑋. Also, 𝑋 is included in the 
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feasible prototype of the new LP relaxation. Now, the point 𝑥(1) = (1,2)𝑇 is an optimal solution to 

the LP, and as it is an integer 𝑥(1) is an optimal solution to the IP [93]. 

 Apart from the introduced search algorithms, the field of MIP has advanced significantly in recent 

years and several other capabilities and techniques have been developed most of which aim at 

lowering the size of the search tree. Presolve, heuristics, parallelism, symmetry detection, etc., are 

some of these techniques. However, introducing these techniques is out of the scope of this work 

[97]. Different commercial software packages such as CPLEX, Gurobi, and Xpress and several 

non-commercial or open-source solvers such as MINTO, SCIP, and SYMPHONY are available for 

solving mixed-integer programs. These packages use variants or combinations of cutting planes 

and branch and bound methods and are accessible by different modeling languages such as C, C++, 

Java, MATLAB, and Python [98]. 

2.3 Modeling a day-ahead unit commitment problem for a residential microgrid in 

the framework of MIP  

 

In this section, a MILP unit commitment model for a residential building (home energy 

management system (HEMS)) is produced and solved in the context of a case study. HEMS is one 

of the key parts of a smart home that controls the optimal cooperation of multiple systems such as 

smart meters, EVs, ESS, different types of power generators, and loads [45] under any market 

scenario. 
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Figure 2.4: Schematic of the studied AC-bus microgrid 

When it comes to the energy market, we could classify the energy pricing schemes into static and 

dynamic types. Where static pricing schemes (e.g., fixed prices) are normally determined in 

advance and do not change with the grid condition. However, dynamic pricing schemes (e.g., real-

time pricing) depend on the regional marginal prices and are normally determined a day or hours 

ahead, which enables the consumers to plan ahead of time to minimize their costs or maximize 

benefits [68]. 

In this regard, a day-ahead UC problem for a typical residential building under dynamic pricing has 

been laid out in this section. The building was considered to be facilitated with the common 

components of a modern home, including photovoltaic arrays, a battery-based energy storage 

system, charging equipment for an electric vehicle, and an electric vehicle, controllable loads and 

regular (non-controllable) loads. These components are interconnected on an AC bus and could 

constitute an AC-bus microgrid. Considering a residential/commercial-based microgrid situated in 
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urban areas is supposed to operate grid-connected most majority of the time, it is assumed that the 

frequency and voltage of the main bus are maintained by the grid. Hence, in a practical application, 

a low bandwidth communication link between the EMS and the components is sufficient to send 

the reference points that lead to optimal energy management.   

In a real-world scenario, the practical system configuration for the studied microgrid would be as 

follows.  The ESS is essentially an AC battery equipped with a battery management system (BMS) 

that could protect the battery from overcharging and discharging. The battery is then connected to 

a battery inverter that can operate in P/Q mode to inject and absorb power to and from an AC bus. 

The battery inverter must be able to provide and take continuous amounts of power based on the 

reference values it receives from a microgrid controller (EMS). The EV must be able to provide 

bidirectional power flow through the V2X circuitry. Regarding the EV charging facilities, 

residential buildings are normally equipped with type 1 or 2 charging systems that provide different 

levels of charging power. However, regardless of the charging power, the EV charging equipment 

in this work is supposed to have two major features. First, the power converter which is responsible 

for charging the EV battery should be able to work bi-directionally so it can also discharge the EV 

battery. Also, similar to the ESS inverter, it is assumed that the EV’s power converter is able to 

charge and discharge the EV battery with continuous amounts of power based on the reference 

signals received from the microgrid controller. 

 In the grid-connected operation of a microgrid, PV inverters work on the MPPT mode most of the 

time to produce the maximum possible amount of power. Hence, the user normally avoids 

controlling the current/power of the PV inverter in the grid-connected mode unless there is a need 

for providing ancillary services by the microgrid. In this regard, as this thesis is focused on 

producing UC models for grid-connected systems, the PV power is not considered a control 

variable in the MIP models, and it is addressed as a model parameter that should be provided 

through prediction or by a third-party. 



48 
 

Concerning the controllable loads, they are of two types, including thermostat loads such as water 

heaters and air conditioners which can be flexible and controlled but always have to be supplied. 

The other type is deferrable loads that need to be powered for a specific but shiftable duration such 

as dishwashers and washing machines [69]. Controllable loads in this work are of the deferrable 

type that can be operated at alternative times. In fact, these loads can be operated at the optimal 

times by the microgrid controller via relays and/or timers. However, the regular or non-controllable 

loads are the type of loads that cannot be scheduled or shifted such as lighting, TV, etc. The 

microgrid is then operated and monitored by a microgrid controller which includes the energy 

management or UC algorithm for scheduling the batteries and controllable load. In order to manage 

the operation of a microgrid in the grid-connected mode, the MG controller could communicate 

with power converters, relays, etc., via a low bandwidth communication link.  

Now, the mixed-integer programming model required for the day-ahead unit commitment of the 

introduced microgrid is provided as follows. This model is to schedule the operation of ESS and 

EV battery chargers as well as controllable-load relay throughout a certain horizon (e.g., a day) 

with a certain resolution (e.g., one-hour). This mathematical model could be incorporated into the 

energy management program of a microgrid controller. In this regard, the following equations lay 

out the MIP model constraints and objective functions to minimize the operation cost of the 

microgrid. 

2.3.1 MIP constraints of ESS 

 

 Equations (2.32)-(2.38) provide the MIP constraints associated with the ESS component where 

(2.32) shows that the applicable part of the discharging power of ESS is composed of a portion that 

is consumed in the microgrid and a portion which is exported to the grid. Equation (2.33) sets a 

maximum amount for the charging power of ESS at every interval and equation (2.34) defines the 

maximum discharging power of ESS. Equation (2.35) enforces the fact that the state of energy or 

the amount of energy stored in ESS at every interval is a function of the state of energy at the 
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previous interval as well as the charged or discharged energy in the previous interval. Equations 

(2.36) to (2.38) define the initial, maximum, and minimum states of energy for ESS respectively 

[13]. 

 

The superscript 𝑛 in these equations and this thesis refers to the 𝑛𝑡ℎ time interval of the day and 𝑁 

is the set of intervals of the day, therefore its size depends on the resolution of the model. 𝑛𝑏 and 

𝑛𝑒 are the intervals corresponding with the beginning and end of the optimization horizon. In other 

words, these two intervals are the first and last elements of the 𝑁 respectively. In a day-ahead 

optimization with an hourly model resolution, 𝑁 is a set of 24 elements that represent the 24 hours 

of the day. In these equations,  𝑃𝑒𝑠
𝑛,𝑐𝑜𝑛

 represents the portion of the ESS power at the 𝑛𝑡ℎ interval 

which is consumed locally. 𝑃𝑒𝑠
𝑛,𝑒𝑥

 denotes the portion of the ESS power at the 𝑛𝑡ℎ interval which is 

exported to the grid. 𝑃𝑒𝑠
𝑛,𝑑𝑖𝑠

 denotes the discharging power of ESS at the 𝑛𝑡ℎ interval, 𝜂𝑒𝑠
𝑑𝑖𝑠 refers to 

the discharging efficiency of the charging equipment which is a value between 0 and 1. 𝑃𝑒𝑠
𝑛,𝑐ℎ

 is the 

charging power for charging the ESS at the 𝑛𝑡ℎ interval, 𝑈𝑒𝑠
𝑛  represents the 𝑛𝑡ℎ element of an array 

(referred to as “charging array of ESS”) which has N binary members which could be either 0 or 1. 

𝑃𝑒𝑠
𝑐ℎ denotes the maximum charging power or charge rating of the ESS which depends on the 

charging equipment. 𝑃𝑒𝑠
𝑑𝑖𝑠 represents the maximum discharging power or discharge rating, 𝑆𝐸𝑒𝑠

𝑛  

𝑃𝑒𝑠
𝑛,𝑐𝑜𝑛 + 𝑃𝑒𝑠

𝑛,𝑒𝑥 = 𝑃𝑒𝑠
𝑛,𝑑𝑖𝑠 × 𝜂𝑒𝑠

𝑑𝑖𝑠       ∀𝑛 ∈ 𝑁 (2.32) 

𝑃𝑒𝑠
𝑛,𝑐ℎ ≤ 𝑈𝑒𝑠

𝑛 × 𝑃𝑒𝑠
𝑐ℎ        ∀𝑛 ∈ 𝑁 (2.33) 

𝑃𝑒𝑠
𝑛,𝑑𝑖𝑠 ≤ (1 − 𝑈𝑒𝑠

𝑛 ) × 𝑃𝑒𝑠
𝑑𝑖𝑠       ∀𝑛 ∈ 𝑁 (2.34) 

𝑆𝐸𝑒𝑠
𝑛 = 𝑆𝐸𝑒𝑠

𝑛−1 + (𝜂𝑒𝑠
𝑐ℎ × 𝑃𝑒𝑠

𝑛−1,𝑐ℎ × 𝐺) − (𝑃𝑒𝑠
𝑛−1,𝑑𝑖𝑠 × 𝐺)       ∀𝑛 ∈ [𝑛𝑏 + 1, 𝑛𝑒 + 1] (2.35) 

𝑆𝐸𝑒𝑠
𝑛 = 𝑆𝐸𝑒𝑠

𝑖𝑛𝑖       𝑓𝑜𝑟  𝑛 = 𝑛𝑏 (2.36) 

𝑆𝐸𝑒𝑠
𝑛 ≤ 𝑆𝐸𝑒𝑠

𝑚𝑎𝑥        ∀𝑛 ∈ [𝑛𝑏  , 𝑛𝑒 + 1] (2.37) 

𝑆𝐸𝑒𝑠
𝑛 ≥ 𝑆𝐸𝑒𝑠

𝑚𝑖𝑛       ∀𝑛 ∈ [𝑛𝑏  , 𝑛𝑒 + 1] (2.38) 
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denotes the state of energy of ESS at the 𝑛𝑡ℎ interval, and accordingly 𝑆𝐸𝑒𝑠
𝑛−1 denotes the same 

variable at the (𝑛 − 1)𝑡ℎ interval. 𝜂𝑒𝑠
𝑐ℎ represents the efficiency of the charging process of ESS 

which depends on the charging equipment and is a factor between 0 and 1. 𝐺 is the granularity or 

resolution of the model whose dimension is time (hour). 𝑆𝐸𝑒𝑠
𝑖𝑛𝑖 denotes the initial state of energy of 

ESS at the first interval of the model. 𝑆𝐸𝑒𝑠
𝑚𝑎𝑥 and 𝑆𝐸𝑒𝑠

𝑚𝑖𝑛 represent the maximum and minimum 

allowed amounts of stored energy in the ESS respectively. It is considered charging and discharging 

the ESS beyond these levels could significantly increase their wear rate. In this thesis, all the power 

variables and parameters are considered to be in kilowatt. Also, all the energy (or state of energy) 

variables and parameters are assumed to be in kilowatt-hours. 

2.3.2 MIP constraints of EV  

 

The following constraints address the EV battery in the MIP model. Equation (2.39) shows that the 

applicable part of the discharging power of an EV battery includes a portion that is consumed in 

the microgrid and a part that is exported to the grid. Inequation (2.40) specifies a maximum amount 

for the charging power of the EV battery at every interval and inequation (2.41) sets the maximum 

discharging power for the EV battery. Equation (2.42) enforces the fact that the state of energy of 

an EV battery at every interval depends on its state of energy at the previous interval plus the 

charged or discharged energy during the previous interval. Equations (2.43) to (2.46) enforce the 

initial, maximum, minimum, and final states of energy for the EV battery respectively. Equation 

(2.47) enforces the fact that during the EV’s absence times, all the power and energy variables 

associated with it are equal to zero. 
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Where 𝑛𝑎 is the interval of EV’s arrival and 𝑛𝑑 is the interval of EV’s departure. These two 

intervals are provided by the user. 𝑃𝑒𝑣
𝑛,𝑐𝑜𝑛

 represents the portion of the EV power at the 𝑛𝑡ℎ interval 

which is consumed in the microgrid. 𝑃𝑒𝑣
𝑛,𝑒𝑥

 denotes the portion of the EV power at the 𝑛𝑡ℎ interval 

which is exported to the grid. 𝑃𝑒𝑣
𝑛,𝑑𝑖𝑠

 represents the discharging power of the EV battery at the 𝑛𝑡ℎ 

interval, 𝜂𝑒𝑣
𝑑𝑖𝑠 refers to the discharging efficiency of the EV charging equipment which is a value 

between 0 and 1. 𝑃𝑒𝑣
𝑛,𝑐ℎ

 denotes the charging power for charging the EV battery at the 𝑛𝑡ℎ interval, 

𝑈𝑒𝑣
𝑛  represents the 𝑛𝑡ℎ element of an array referred to as charging array of EV which has N binary 

members which could be either 0 or 1. 𝑃𝑒𝑣
𝑐ℎ denotes the maximum charging power of the EV battery 

which depends on its charging equipment. 𝑃𝑒𝑣
𝑑𝑖𝑠 represents the maximum discharging power, 𝑆𝐸𝑒𝑣

𝑛  

denotes the state of energy of EV battery at the 𝑛𝑡ℎ interval. 𝜂𝑒𝑣
𝑐ℎ is the efficiency of the charging 

process which depends on its charging equipment and is a factor between 0 and 1. 𝑆𝐸𝑒𝑣
𝑖𝑛𝑖 denotes 

the initial state of energy of the EV battery at the first interval. 𝑆𝐸𝑒𝑣
𝑚𝑎𝑥 and 𝑆𝐸𝑒𝑣

𝑚𝑖𝑛 denote the 

maximum and minimum allowed amounts of stored energy in the EV battery respectively and 𝑆𝐸𝑒𝑣
𝑐ℎ 

is the user’s desirable state of energy at the time of departure. 

𝑃𝑒𝑣
𝑛,𝑐𝑜𝑛 + 𝑃𝑒𝑣

𝑛,𝑒𝑥 = 𝑃𝑒𝑣
𝑛,𝑑𝑖𝑠 ∗ 𝜂𝑒𝑣

𝑑𝑖𝑠       ∀𝑛 ∈ [𝑛𝑎, 𝑛𝑑] (2.39) 

𝑃𝑒𝑣
𝑛,𝑐ℎ ≤ 𝑈𝑒𝑣

𝑛 × 𝑃𝑒𝑣
𝑐ℎ        ∀𝑛 ∈ [𝑛𝑎, 𝑛𝑑] (2.40) 

𝑃𝑒𝑣
𝑛,𝑑𝑖𝑠 ≤ (1 − 𝑈𝑒𝑣

𝑛 ) × 𝑃𝑒𝑣
𝑑𝑖𝑠       ∀𝑛 ∈ [𝑛𝑎, 𝑛𝑑] (2.41) 

𝑆𝐸𝑒𝑣
𝑛 = 𝑆𝐸𝑒𝑣

𝑛−1 + (𝜂𝑒𝑣
𝑐ℎ × 𝑃𝑒𝑣

𝑛−1,𝑐ℎ × 𝐺) − (𝑃𝑒𝑣
𝑛−1,𝑑𝑖𝑠 × 𝐺)    ∀𝑛 ∈ [𝑛𝑎 + 1, 𝑛𝑑 + 1] (2.42) 

𝑆𝐸𝑒𝑣
𝑛 = 𝑆𝐸𝑒𝑣

𝑖𝑛𝑖      𝑓𝑜𝑟 𝑛 = 𝑛𝑎 (2.43) 

𝑆𝐸𝑒𝑣
𝑛 ≤ 𝑆𝐸𝑒𝑣

𝑚𝑎𝑥        ∀𝑛 ∈ [𝑛𝑎, 𝑛𝑑 + 1] (2.44) 

𝑆𝐸𝑒𝑣
𝑛 ≥ 𝑆𝐸𝑒𝑣

𝑚𝑖𝑛       ∀𝑛 ∈ [𝑛𝑎, 𝑛𝑑 + 1] (2.45) 

𝑆𝐸𝑒𝑣
𝑛 ≥ 𝑆𝐸𝑒𝑣

𝑐ℎ        𝑓𝑜𝑟 𝑛 ≥ 𝑛𝑐ℎ ∈ [𝑛𝑎, 𝑛𝑑] (2.46) 

𝑃𝑒𝑣
𝑛,𝑐𝑜𝑛 = 𝑃𝑒𝑣

𝑛,𝑒𝑥 = 𝑃𝑒𝑣
𝑐ℎ = 𝑃𝑒𝑣

𝑛,𝑑𝑖𝑠 = 𝑆𝐸𝑒𝑣
𝑛 = 0       ∀𝑛 ∉ [𝑛𝑎 , 𝑛𝑑] (2.47) 
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2.3.3 MIP constraints of PV system 

 

The following equation enforces the fact that the applicable portion of the photovoltaic power is 

partly consumed at home and partly exported to the network [13]. 

In this equation, 𝑃𝑝𝑣
𝑛,𝑐𝑜𝑛

 is the PV power that is consumed locally at the 𝑛𝑡ℎ interval, 𝑃𝑝𝑣
𝑛,𝑒𝑥

 denotes 

the portion of the PV generation that is exported to the power network and 𝑃𝑝𝑣
𝑛,𝑔𝑒𝑛

 is the total 

generated power of the PV array at the 𝑛𝑡ℎ interval. However, as some part of the PV generation is 

wasted in the power interfaces,  𝜂𝑝𝑣 is also defined as the efficiency of the PV system.  

2.3.4 MIP constraints of controllable loads 

 

Controllable load is the other type of component whose operation is planned by the presented UC 

algorithm. The UC model is laid out for a deferrable controllable load that works at fixed amount(s) 

of power while its operation times can be shifted to different times of the day. In this regard, 

equation (2.49) shows that the power which is assigned to the controllable load at any interval is 

the product of a binary number and the nominal power of the controllable load. Equation (2.50) 

specifies the count of intervals that controllable load must work consecutively whenever it is 

operated. For example, in a model with an hourly resolution, a dryer that works for one hour each 

time it is operated, works for one interval every time. Equations (2.51) and (2.52) determine the 

number of times associated with the start and stop of operation over a day. The operation period(s) 

of the load is enforced through (2.53) and (2.54), where two arrays of binary numbers associated 

with the start and finish intervals of load operations are defined and the sum of their elements is 

equated with the number of times that the load needs to operate in a day. Equation (2.53) enforces 

that the first and last intervals of every working period of load carry the same corresponding binary 

values in their start and finish arrays. Equation (2.54) provides the condition between the associated 

𝑃𝑝𝑣
𝑛,𝑐𝑜𝑛 + 𝑃𝑝𝑣

𝑛,𝑒𝑥 = 𝑃𝑝𝑣
𝑛,𝑔𝑒𝑛

× 𝜂𝑝𝑣       ∀𝑛 ∈ 𝑁       (2.48) 
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array elements that must be satisfied to schedule to controllable load properly. It is worth noting 

that the controllable load could possibly be modeled in other ways as well. 

𝑃𝑐𝑙
𝑛 = 𝐷𝑐𝑙

𝑛 × 𝑃𝑐𝑙        ∀𝑛 ∈ 𝑁      (2.49) 

∑ 𝐷𝑐𝑙
𝑛

𝑁

= 𝑛𝑐𝑙
𝑟𝑜𝑤      (2.50) 

∑ 𝑆𝑐𝑙
𝑛

𝑁

= 𝑛𝑐𝑙
𝑑𝑎𝑦

      (2.51) 

∑ 𝐹𝑐𝑙
𝑛

𝑁

= 𝑛𝑐𝑙
𝑑𝑎𝑦

      (2.52) 

𝑆𝑐𝑙
𝑛 = 𝐹𝑐𝑙

𝑛+ 𝑛𝑐𝑙
𝑟𝑜𝑤

       ∀𝑛 ∈ 𝑁      (2.53) 

𝑆𝑐𝑙
𝑛 + 𝐹𝑐𝑙

𝑛 + 𝑆𝑐𝑙
𝑛−1 × 𝐹𝑐𝑙

𝑛+1 = 𝐷𝑐𝑙
𝑛         ∀𝑛 ∈ 𝑁      (2.54) 

 

Where, 𝑃𝑐𝑙
𝑛  represents the power of controllable load at the 𝑛𝑡ℎ interval. If we consider 𝐷 to be an 

array with 𝑁 binary elements that controls the operation status of controllable load (1 causing the 

load to operate and 0 causing it to not operate), 𝐷𝑐𝑙
𝑛  is defined as the 𝑛𝑡ℎ element of 𝐷. This shows 

that controllable load is operated in a binary fashion in this model. 𝑃𝑐𝑙 denotes the nominal 

operating power of controllable load, 𝑛𝑐𝑙
𝑟𝑜𝑤 is the count of intervals in a row required for every 

operating iteration which depends on the resolution of the problem and operation length of the load. 

Considering 𝑆 and 𝐹 as arrays associated with the start and finish of load operation, each with 𝑁 

binary elements, 𝑆𝑐𝑙
𝑛  is defined as the 𝑛𝑡ℎ member of the 𝑆, and 𝐹𝑐𝑙

𝑛 is defined as the 𝑛𝑡ℎ element of 

𝐹. 𝑛𝑐𝑙
𝑑𝑎𝑦

 denotes the number of times that controllable load needs to function every day which is 

specified based on the user’s demand. 

2.3.5 MIP constraints for power balance 

 

After defining the constraints associated with each component, the governing equations of the 

microgrid should also be determined. In an AC-bus operational microgrid, the total power that is 

delivered to the AC bus at every moment equals the total power that is drawn from the bus. This 
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simple rule which demonstrates the power balance is enforced by (2.55). In fact, at any given 

moment, the sum of imported power from the grid, the consumed and exported power from EV 

battery, ESS, and PV system is equal to the sum of feed-in (exported) power, charging power of 

EV battery, ESS and the power of all the loads [13]. 

𝑃𝑖𝑚
𝑛 + 𝑃𝑒𝑣

𝑛,𝑐𝑜𝑛 + 𝑃𝑒𝑣
𝑛,𝑒𝑥 +  𝑃𝑒𝑠

𝑛,𝑐𝑜𝑛 + 𝑃𝑒𝑠
𝑛,𝑒𝑥 + 𝑃𝑝𝑣

𝑛,𝑐𝑜𝑛 + 𝑃𝑝𝑣
𝑛,𝑒𝑥  

= 𝑃𝑒𝑥
𝑛 + 𝑃𝑒𝑣

𝑛,𝑐ℎ + 𝑃𝑒𝑠
𝑛,𝑐ℎ + 𝑃𝑐𝑙

𝑛 +  𝑃𝑙
𝑛      ∀𝑛 ∈ 𝑁 

(2.55) 

Where 𝑃𝑖𝑚
𝑛  denotes the power that is imported from the electric network, 𝑃𝑒𝑥

𝑛  is the power that is 

exported to the electric network and 𝑃𝑙
𝑛 is the power consumption of regular load at the 𝑛𝑡ℎ interval. 

2.3.6 MIP constraints for Power exchange  

 

The power which is fed to the grid from the microgrid is composed of three components, the 

exported power from EV battery, ESS, and photovoltaic system. This rule is enforced via equation 

(2.56). However, the power transaction between the microgrid and the grid has a limit which 

depends on the ratings of the protection equipment, the utility meters, and potential DR services 

offered by the microgrid. In general, there must be a limit for the imported and exported power 

from and to the grid which is enforced by inequations (2.57) and (2.58). 

𝑃𝑒𝑥
𝑛 = 𝑃𝑒𝑣

𝑛,𝑒𝑥 + 𝑃𝑒𝑠
𝑛,𝑒𝑥 + 𝑃𝑝𝑣

𝑛,𝑒𝑥        ∀𝑛 ∈ 𝑁 (2.56) 

𝑃𝑖𝑚
𝑛 ≤ 𝑃𝑖𝑚

𝑚𝑎𝑥 ×  𝑈𝑖𝑚
𝑛        ∀𝑛 ∈ 𝑁 (2.57) 

𝑃𝑒𝑥
𝑛 ≤ 𝑃𝑒𝑥

𝑚𝑎𝑥 × (1 − 𝑈𝑖𝑚
𝑛 )       ∀𝑛 ∈ 𝑁 (2.58) 

Where, 𝑃𝑖𝑚
𝑚𝑎𝑥 represents the maximum allowed power that can be imported by the microgrid. If 

𝑈𝑖𝑚 is considered as an array with 𝑁 binary elements associated with the occurrence of power 

import in every interval, 𝑈𝑖𝑚
𝑛  is the 𝑛𝑡ℎ member of 𝑈𝑖𝑚. Also, 𝑃𝑒𝑥

𝑚𝑎𝑥 represents the maximum power 

that can be exported to the grid.  
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2.3.7 Conventional objective function 

 

Typically, the MIP unit commitment models in smart grid problems are solved for achieving the 

minimum monetary cost of energy or maximum potential profits. In a bi-directional market with 

time-of-use or dynamic energy pricing where users can buy and sell energy from and to the grid 

through a single or separate utility meters, the UC problem can be designed to minimize the cost 

of energy, maximize the revenue from energy selling or achieve each objective to some extent. 

Alternatively, the objective could be achieving the minimum algebraic net cost of transferred 

energy which could be a positive or negative value. A positive net energy cost reflects the fact that 

the total cost of energy consumption throughout the optimization term exceeds the total revenue 

from energy selling. Whereas a negative net value shows that the total revenue is larger than the 

total cost. Selecting the objective function boils down to the user preferences and to some extent, 

the energy measurement (AMI) configuration. For instance, a user might utilize two different utility 

meters for selling and buying energy which will undermine the structure of MIP and objective 

functions. In this work, the objective is to minimize the net cost of transferred energy over a given 

time horizon. The outcome of this objective function is the fee that the user must pay to the energy 

provider if the value is positive or the fee that the user must be paid to if the value is negative. 

Achieving the minimum paid energy fee seems to be a decent objective for scheduling the batteries 

in a smart grid problem. However, this objective does not take into consideration the important fact 

that batteries become worn out as they are employed in the microgrid. This costly wearing process 

can be intensified by more frequent or deeper cycling regimes which may be required to achieve 

the minimum energy cost. In fact, the degradation cost of batteries could possibly exceed the 

apparent monetary profit that could be obtained from their operation in a microgrid. However, this 

important fact is neglected when considering the energy cost as the sole objective of the problem 

and this has been traditionally practiced in many studies. Moreover, environmental aspects of the 

microgrid operation such as the carbon footprint is another factor that is neglected in a traditional 
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cost function. In this section, apparent energy cost as the conventional (basic) objective function is 

presented in (2.59) [13]. Although we may be able to consider the capital, operation, and 

maintenance expenses of chargers and feeders as the costs associated with EV charging [99], 

however, those costs cannot be treated as control variables. Hence, the energy cost and battery wear 

cost are variables that can be minimized by solving an optimization problem. In the next chapters, 

this problem will be investigated by addressing the battery degradation and carbon footprint of the 

user as other important objectives. 

𝑀𝑖𝑛 ∑(𝑃𝑖𝑚
𝑛 × 𝑇𝑛,𝑏𝑢𝑦 × 𝐺)

𝑁

− (𝑃𝑒𝑥
𝑛 × 𝑇𝑛,𝑠𝑒𝑙𝑙 × 𝐺) (2.59) 

In this objective function, 𝑇𝑛,𝑏𝑢𝑦 is the buying tariff of energy unit (from the grid) and 𝑇𝑛,𝑠𝑒𝑙𝑙  is 

the selling tariff of energy unit (to the grid) at the 𝑛𝑡ℎ interval. If power variables are considered in 

kW and granularity (𝐺) in hour, the tariffs could be stated in cent/kWh.  

2.4 Case study: A MIP UC problem for a residential microgrid 

 

In order to study the explained UC model, a case study has been investigated in this section for a 

residential unit. This case study serves as a preliminary step for studying more sophisticated UC 

models in the next chapters. Later in this work, the results of this case study will be compared with 

the results of more realistic models that can estimate battery wear. That comparison will show the 

deficiencies of the current model as a “basic” or “conventional” model which is used by several 

works of literature [1], [17], [23], [35], [48], [50], [55]. 

 In this regard, the studied example is a home facilitated with the following equipment. A 3kW PV 

system including a 3kW PV array and a 3kW MPPT PV inverter, a 2.5kWh battery-based energy 

storage system with a grid-connected battery inverter. With regards to the capacity of the EV 

battery, reference [2] reports that a 16kWh battery is sufficient for 80% of transportation needs. 

Hence, for this work, an electric vehicle with a 22kWh battery storage (as in BMW i3-60Ah) was 
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selected. In this configuration, the ESS and EV batteries are supposed to be charged and discharged 

by bi-directional grid-connected battery inverters which are capable of receiving continuous power 

references from an external source. In this context, depending on the availability of technologies, 

the power converters that receive the reference points of EV battery and ESS could be installed 

onboard the EV and ESS or exist external to these devices. From a model perspective, the power 

conversion stages of all batteries are merely interfaces for sending the reference values to the 

batteries and are only modeled with an efficiency factor (𝜂). As for the controllable load, it is 

considered that a 3 kW home thermal storage unit is used and set to operate for two consecutive 

hours over a day. These devices can be used for load shifting in the time-of-use markets by storing 

heat during the off-peak hours and releasing it during peak hours. The power profile for the typical 

or non-controllable load was acquired from [100], and the energy tariffs for the purchased energy 

were obtained from [101]. Usually, the general practice for assuming the feed-in tariffs is taking a 

percentage of the corresponding purchase tariffs as in [44]. In this work, it was considered that the 

feed-in price for every time interval was 0.8 of that of the purchase tariff. Also, it was assumed that 

the EV departs home at 8 AM and returns at 18. The initial SoC of EV battery and ESS were 

considered 40% and 50% respectively. Therefore, the EV is connected to the microgrid and is 

expected to be charged up by the next morning. The solar irradiance was obtained from [102] and 

the generated photovoltaic power was calculated from the following equation.  

𝑃𝑝𝑣
𝑛,𝑔𝑒𝑛

= 𝐴𝑎𝑟𝑟𝑎𝑦 ∗ 𝐼𝑛 ∗ 𝜂𝑎𝑟𝑟𝑎𝑦 (2.60) 

In this equation, 𝑃𝑝𝑣
𝑛,𝑔𝑒𝑛

 represents the generated power of the photovoltaic system at the 𝑛𝑡ℎ 

interval, 𝐴𝑎𝑟𝑟𝑎𝑦 expresses the area of the PV array [𝑚2], 𝐼𝑛 is the solar irradiance [
𝑘𝑊

𝑚2] and 𝜂𝑎𝑟𝑟𝑎𝑦 

denotes the efficiency of the PV array. Figure 2.5 illustrates the load power and energy prices 

(purchase) for the studied 24 hours. It shows that the load peak occurs around 7-9 PM when the 

user and EV are at home. 
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Figure 2.5: Load power and energy price profiles for the case studies of chapters 2 and 3 

Table shows the input parameters of the MIP models provided in the case studies of the chapters 2 

and 3. 
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Table 2.1: Input parameters of the MIP model of chapters 2 and 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The resulting model was a mixed-integer linear program which was produced using Python 

language and solved by the Gurobi solver [96] which uses a combination of Branch & Bound and 

Cutting Planes techniques to solve MIPs. With regards to the hardware, a personal computer with 

core i7, 1.8GHz CPU, and 8 GB RAM was used for this work. According to the report produced 

by the solver, the optimization model of this case study includes 768 continuous and 144 integer 

Input Parameter Value 

𝜼𝒆𝒔
𝒄𝒉/𝜼𝒆𝒗

𝒄𝒉 96%/96% 

𝜼𝒆𝒔
𝒅𝒊𝒔/𝜼𝒆𝒗

𝒅𝒊𝒔 96%/96% 

𝑷𝒆𝒔
𝒄𝒉/𝑷𝒆𝒗

𝒄𝒉 0.75kW/1.75kW 

𝑷𝒆𝒔
𝒅𝒊𝒔/𝑷𝒆𝒗

𝒅𝒊𝒔 0.75kW/1.75kW 

𝑮 1 hour 

𝑺𝑬𝒆𝒔
𝒊𝒏𝒊/𝑺𝑬𝒆𝒗

𝒊𝒏𝒊 1.225kWh/8.8kWh 

𝑺𝑬𝒆𝒔
𝒎𝒂𝒙/𝑺𝑬𝒆𝒗

𝒎𝒂𝒙 2.375kWh/22kWh 

𝑺𝑬𝒆𝒔
𝒎𝒊𝒏/𝑺𝑬𝒆𝒗

𝒎𝒊𝒏 0.1875kWh/1.65kWh 

𝑺𝑬𝒆𝒗
𝒄𝒉 20.9kWh 

𝜼𝒑𝒗 100% 

𝑷𝒄𝒍 3kW 

𝒏𝒄𝒍
𝒓𝒐𝒘 2 

𝒏𝒄𝒍
𝒅𝒂𝒚

 1 

𝑷𝒊𝒎
𝒎𝒂𝒙 10kW 

𝑷𝒆𝒙
𝒎𝒂𝒙 10kW 

𝑬𝒆𝒔
𝒊𝒏𝒊/𝑬𝒆𝒗

𝒊𝒏𝒊 2.5kWh/22kWh 

𝑽𝒆𝒔
𝒊𝒏𝒊/𝑽𝒆𝒗

𝒊𝒏𝒊 $2005/$5500 

𝑽𝒆𝒔
𝒔𝒂𝒍/𝑽𝒆𝒗

𝒔𝒂𝒍 $125/$1122 

𝑪𝑭𝑴/𝑪𝑭𝑼 175 kg/kWh /175 kg/kWh 

𝑹𝒆𝒔/𝑹𝒆𝒗 0.5/0.8 
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variables and 22 quadratic constraints. The best objective (global optima) was found to be -9.83 in 

0.18 seconds with a gap of 0.0%. 

The simulation results are depicted in figure 2.6 where the power distribution of all the involving 

units throughout the 24 hours is presented. It shows that after the EV arrives at home, it starts 

charging in a relatively uniform way during the nighttime. However, noticeably is also discharged 

over three hours to contribute to the minimum net energy cost of the building. The ESS’s charge 

and discharge attempts are also scattered throughout the day to help minimize the net energy cost, 

although at a lower power compared to the EV. The controllable load is scheduled to operate early 

in the morning when the energy prices are minimum. During the daytime, the PV system covers 

the consumption, and its excess power is fed to the grid for making revenue from selling energy to 

the grid. During the evening time, however, the grid and batteries address the energy demands. It 

also shows that only in 11 hours there was a need for drawing power from the grid and during the 

remaining hours, PV, EV battery, and ESS managed to provide the entire energy demand of the 

building and more. 

 

Figure 2.6: Power profile of the microgrid components-objective function: energy cost 
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To observe the UC results on various days, the case study was carried out for a month-long period. 

To obtain the input datasets for the monthly simulation, solar irradiance was obtained from [102] 

and electricity tariffs were acquired from [101]. The monthly load profile was obtained by changing 

the original daily load profile as a mean value with a Gaussian distribution with a 10% standard 

deviation. The initial SoCs of the EV battery and ESS for the days were obtained by varying their 

original values with a Gaussian distribution and 10% standard deviation. With regards to the 

departure and arrival times of the EV, it was assumed that it departs at 8 AM every day and arrives 

home at 6 PM on weekdays and 8 PM on weekends. The results of the payable energy prices are 

shown in figure 2.7. It can be seen that the daily energy prices vary between 8 and 42 cents, totaling 

$6.82 over the month. Significant variations in energy costs could be attributed to different reasons 

especially large differences in daily energy tariffs and solar irradiance levels. In general, relatively 

low energy costs can be attributed to different reasons, including the use of PV array, ESS, and EV 

battery for local energy consumption, and selling energy to the grid. Also, relatively low energy 

tariffs and finally, applying the UC model which attempted to minimize the payable cost led to the 

low payable energy cost for the home.  

         

Figure 2.7: Daily energy cost of the home for one month, under the basic objective function (energy cost) 
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The peak power chart is illustrated in figure 2.8. The daily peak power of a building is the maximum 

amount of power that is drawn from the grid by the building throughout the day. Larger peak powers 

are associated with larger stress on the grid infrastructure which could lower the lifetime of the grid 

equipment and particularly the transformers. The graph shows that the daily peak power varies 

between 3.3 and 6.7 kW depending on different reasons such as the variations of daily load profile 

and energy prices. In fact, these factors impact the most important reason for peak power which is 

the controllable-load operation. Usually, due to the large consumption of these loads, they could 

largely affect the peak power during the day. To avoid large peak power values, (e.g., in the context 

of DR service) we could apply further restrictions to the grid power in the model constraints or try 

to include the grid power in the objective functions as a subject of minimization. This approach 

will be studied in the next chapter. 

 

 

 

 

Figure 2.8: Daily peak power of home for one month, under the basic objective function (energy cost) 
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Chapter 3: Incorporation of battery degradation model 

into the MIP problem 
 

 

A MIP-based UC problem was formulated and solved in the previous chapter. However, as 

explained in chapter 1, neglecting the important issue of battery degradation could lead to 

suboptimal or potentially wasteful unit commitment. However, this work aims to present a useful 

battery wear model which can be incorporated into MIP UC models. In this chapter, after a review 

of the battery degradation problem, the proposed wear model is explained and used. 

3.1 Overview of battery degradation problem in Li-ion batteries 

 

Battery degradation is a phenomenon caused by electrochemical and material fatigue in battery 

cells, as these two factors can degrade the cell's chemical, electrical, and mechanical characteristics. 

This phenomenon causes a change in the structural characteristics of the cell, a change in the 

electrolyte composition, loss of active material, or a composition of these three events, leading to 

a reduction in the performance of the battery. During a degradation process, the cathode and anode 

of batteries go through different wear mechanisms while the former is probably more prone to 

aging. The aging mechanisms can be divided into different classes, most importantly, the rise of 

internal resistance, the loss of active materials on anode and cathode (LAM), and the loss of lithium 

inventory (LLI) [40], [103]. The electrochemical aging of batteries is a complicated phenomenon 

caused by several factors affecting the electrodes and electrolytes. Despite this intricacy, the 

observable results include a loss of energy capacity and a reduction of output power. As a result, 

an aging model must strive to replicate these two effects [103]. As an example, in an electric 

vehicle, the degradation mechanism of the battery leads to the increase of the internal resistance of 

it which impacts the EV’s power draw capability when it is traveling. Also, it lowers the capacity 

of the EV battery which corresponds to a lower driving range [73].  
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Despite the large variety of batteries’ chemistries, due to the dominance of Lithium-ion batteries in 

the transportation and smart grid industries, this thesis is focused on Li-ion batteries. Li-ion 

batteries can be categorized based on the chemistry of their cathode to Lithium-Iron-Phosphate 

(LiFePO4), Lithium-Manganese-Oxide (LMO), Lithium-Cobalt-Oxide (LCO) and Nickel-Cobalt-

Manganese (NCM) types [103]. Among the Li-ion batteries, different materials impact the 

degradation in different ways. For instance, Lithium-Iron Phosphate or LFP batteries are largely 

sensitive to the number of cycles while Lithium-Nickel-Cobalt-Aluminum (NCA) batteries are 

impacted by both number of cycles and DoD [104]. 

 The capacity fade of Li-ion batteries mainly stems from two major factors, namely the calendric 

aging which is independent of usage, and the cyclic aging which is caused by usage. The shelf-life 

of a battery is limited by its calendric life, due to the decomposition of the cell composites such as 

the electrolyte. However, calendric aging is normally small compared to the cycling aging which 

is caused by driving (in EVs) and charging/discharging of battery [73]. The calendar life of the 

battery represents the irreversible process of self-discharge loss. The rates of calendar loss are 

obtained by observing the capacity loss of the batteries that are kept at a constant voltage [105]. 

The calendric aging is independent of utilization and determines the battery’s shelf life. However, 

it depends on the battery’s SoC, temperature, and the length of time itself [106] during the periods 

that it is not under cycling, as shown in (3.1). As for the SoC, higher rates increase the 

decomposition rate of battery cell composites and consequently lead to higher degradation. Also, 

the degradation dependence on the temperature is modeled with the Arrhenius law [73] which will 

be provided later in this chapter.  

𝐶𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 ∝ 𝑓 (exp (
−𝐸𝑎

𝑅𝑇
) , 𝑓(𝑆𝑜𝐶), 𝑡𝑘1), (0< 𝑘1 ≤ 1) (3.1) 

Where 𝑇 represents the temperature, 𝑅 denotes the universal gas constant and 𝐸𝑎 is the activation 

energy of reaction, 𝑡 stands for the time and 𝑘1 is a constant which is reported in the literature to 

be equal to 0.5 and 0.75. Calendar aging becomes notable at high temperatures. For example, the 
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results of [73] show that at 35°C it is comparable to cyclic aging. The calendric wear factor has a 

declining nature, meaning that at the early stages of the battery life the rate of degradation is higher, 

and it gradually decreases over time. However, an increase in SoC and temperature increases the 

rate of calendric degradation. For instance, according to the Arrhenius law, 10 degrees increase in 

temperature can decrease the battery lifetime by 50%, and at 35°C, the calendric rate can even 

exceed the cyclic rate of degradation. 

Although reference [103] reports that there is a possibility that the calendar wear of an EV battery 

is larger than its cycle wear even when the EV is regularly used for driving, however, normally the 

cyclic aging is larger for batteries that are regularly used. Therefore, as the total capacity loss of 

battery within any period is determined by the larger of cycling and calendric aging [107], cycling 

aging is the determining factor in the cases where batteries are operated regularly. The cycling 

aging depends on the usage and usually leads to larger degradation rates compared to the calendric 

aging. It also highly depends on the chemical composites of the battery cells. On the system level, 

it largely relies on the DoDs of the cycling events. Obviously, the higher rates of DoDs can increase 

the battery wear. It has been shown that maintaining the DoD levels at  moderate levels such that 

the average SoC will be around 50% can increase the battery life considerably [73].  The effective 

parameters of calendar aging are represented by (3.2). On a systemic scale, high DoD levels, as 

well as very low and very high average SoCs (around 0 and 100%) during cycling, amplify the 

aging process. The other parameter which proportionally impacts the cycling aging is the charge 

and discharge current [73]. 

𝐶𝑐𝑦𝑐𝑙𝑒 ∝ 𝑓(𝑓(𝑆𝑜𝐶̅̅ ̅̅ ̅), 𝑓(𝐷𝑜𝐷), 𝑓(𝐼), 𝑄𝑘2), (0< 𝑘2 ≤ 1) (3.2) 

Where, 𝑆𝑜𝐶̅̅ ̅̅ ̅ refers to the average 𝑆𝑜𝐶 of a cycle, 𝐼 is the discharge current, 𝑄 represents the charge 

throughput, and the constant 𝑘2 has been reported to be 0.5 and 0.87 in the literature. 

The battery degradation is modeled in the literature using three different approaches, namely 

physically-based electrochemical models, semi-empirical models, and empirical models. Put 
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simply, these modeling approaches aim to provide the relationship between the capacity loss and 

resistance of batteries with different aging factors. Semi-empirical and empirical types focus on the 

wear mechanism rather than the physics of the phenomena and are commonly used for the online 

calculation of batteries’ State of Health (SoH). Hence, they are more utilized in the system-level 

design as they benefit from simple structures and relatively accurate outcomes. However, the 

accuracy and applicability of these two types depend on the type of data used for the calibration of 

models, where those datasets are normally obtained through extensive experimental tests. On the 

other hand, electrochemical models normally address the diffusion and charge flow of ions in a 

battery and express the degradation on a physical basis. Thus, they can be applied in a wider range 

of cases, but at a higher complexity [108], [109]. In semi-empirical models, observable wear 

mechanisms are represented by low-order models and the parameters of these models are fitted to 

the experimental data. Whereas, in empirical models, available experimental data is utilized to 

forecast the behavior of batteries without knowledge of the electrochemical characteristics of the 

battery. Polynomial, exponential and trigonometric are some of the functions used as empirical 

models [109].   

There is also another way to categorize the battery wear models which classifies them into 

performance-based and energy throughput models. Performance-based models which include 

electrochemical models, equivalent circuit models, analytical models, and ANNs are known to have 

good precision but could be complicated and require large amounts of data to address the range of 

battery operational conditions. 

 Energy throughput is the total cycled energy by the battery in one year. Therefore, the energy 

throughput models, relate the capacity loss to the level of charge transfer, considering the total 

amount of energy that can be processed by the battery. These models may have relatively lower 

accuracy but higher practicality [110]. 
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Normally, the datasheets provided by the battery manufacturers provide the safety specifications 

such as voltage, current, and temperature ranges without providing significant performance metrics 

for the batteries [88]. Hence, although the physics-based models could be accurate, they are rarely 

useful at a higher system level, such as the pack simulations. Furthermore, these models are very 

dependent on numerous physical parameters of the cell, such as size and porosity of electrode, 

accurate mass, and properties of materials which require comprehensive measurements [111]. 

Furthermore, a notable issue of physical wear models is that they do not predict the nonlinear 

relationship between cycle  life and DoD as shown in figure 3.1. If we assume N as the number of 

cycles that the battery can complete at the DoD of D, the cycle-life function can be represented as 

N(D). In physical models, the capacity loss is roughly a linear function of the charge throughput. 

Whereas, the empirical wear models could provide the capacity loss as a nonlinear function of DoD 

[112]. 

 

Figure 3.1: Life cycles of a Li-ion battery against its depth-of-discharge (N(D)) 
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Most of the degradation models employ one of the following two approaches, curve fitting of the 

experimental data and using the extracted parameters from the chemistry of the battery which are 

also derived from experimental data. However, there are different challenges associated with using 

these methods. One of the issues is the fact that sometimes the battery wear is expressed as a 

physical quantity such as resistance which cannot be conveniently managed in a battery cycling 

model. Let us assume in order to lower the degradation rate of a battery, we would like to maintain 

the resistance of the battery cells at a low level by maintaining the SoC in a certain range. However, 

as the battery wear is expressed as a physical parameter (resistance), it could be difficult to 

incorporate that as a cost within a cost function for the problem. Another challenge with producing 

battery wear models is that they are normally built upon experimental data, which are difficult, time 

taking, and costly to obtain and are usually not provided by the manufacturers [89]. 

Figure 3.2 demonstrates the causes and results of different degradation modes that lead to capacity 

loss, power loss, or both of them, obtained from reference [103]. It demonstrates how the main 

causes of the battery aging such as extreme temperatures, SoC, DoD, C-rate, and physical 

imperfections of the battery cells could impact the battery cells chemically (stated as degradation 

modes) such as decomposition of electrolyte and corrosion which then manifest in the changes that 

can be regarded as battery degradation symptoms, such as the rise of internal resistance and loss of 

cyclable lithium. With regards to the aging mechanism of these factors, it could be said that the 

lower availability of lithium and decrease in the surface of anode and cathode lead to capacity loss. 

Whereas, the rise in internal resistance leads to the power loss of the battery [103].  
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Figure 3.2: Degradation scheme of Li-ion batteries including causes, modes, and results [103] 

Reference [113] categorizes the causes of battery aging into internal and external types where 

parameters associated with battery chemistry fall within the former group, while temperature, SoC, 

DoD, and charging regime are considered external parameters. In this regard, DoD, SoC, mean 

SoC, C-rate, charge throughput, and temperature are the factors that could impact the battery 

degradation and be included in the semi-empirical models. Therefore, semi-empirical models could 

be comprised of a single factor or multiple factors. Among these factors, battery temperature cannot 

be managed directly and it is controlled through other variables [40], [73]. 
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As a matter of fact, the exact impact of DoD, C-rate, and temperature on the capacity loss is 

chemistry-specific. For every battery chemistry, the capacity loss could show nonlinear trends over 

a range of temperatures, DoDs, and C-rates. For example, [88] has investigated the aging of LFP, 

NMC, and NCA cells in the range of 15 to 35°C. In this particular range, for the LFP technology, 

the cycle aging increases with the rise of temperature, while it decreases for NMC batteries and 

NCA showed no significant correlation between temperature and cycle aging. This can be related 

to the fact that the degradation mechanism changes at different temperatures. For example, this 

article reports that for temperatures below 25°C, the dominant degrading mechanism is Li plating, 

while for temperatures over 25°C it is the SEI (Solid-Electrolyte Interphase) growth. However, 

with regards to the calendar aging, all the three battery technologies showed increasing capacity 

loss with the temperature rise. Regarding the impact of DoD, this reference has studied three 

cycling ranges (40-60%), (20-80%), and (0-100%) and observed that for all the batteries, the 

degradation directly increased with an increase in DoD. This is attributed to the more created cracks 

that increase the reactions between Lithium and electrolyte followed by further SEI creation, loss 

of Li inventory, and capacity loss. However, NCA and NMC chemistries show more dependence 

on the DoD. Regarding the impact of SoC, larger SoCs directly increase the calendar aging for all 

the studied battery types. This can be attributed to the increased loss of electrolyte and Li 

involvement in developing SEI which occur at lower anode potentials. However, with regards to 

the cycle aging, NMC and NCA batteries show large capacity losses around SoC of 100%. As for 

the discharge rate, larger discharge rates cause higher degradation in the three battery types because 

of the larger stress on the battery electrodes caused by fast volume change [88].  

In this regard, although meticulous experimentations on every Li-ion chemistry demonstrate 

complex nonlinear relationships between the capacity loss and the degradation causes (e.g., DoD 

or C-rate), some general rules could be extracted from several research works that have focused on 

battery degradation of Li-ion batteries [40], [73], [88], [89], [105], [111], [113]-[116]. For example, 
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with regards to the impact of SoC, most Li-ion batteries show high degradation levels at very small 

and large amounts of SoC and smaller at the medium values of SoC. This is due to the larger internal 

resistance at both ends of the SoC. It is worth noting that the impact of SoC on battery aging could 

be studied from two different viewpoints. When it comes to the calendric aging, the SoC at which 

the battery is kept or stored affects its degradation. However, with regards to the cycling aging, the 

initial and final values of SoC levels during every charging/discharging process impact the inflicted 

degradation during that process [40], [89]. Authors in [2] reported that small cycles (around 20%) 

around an average SoC (roughly 50%) are more beneficial and less likely to cause battery 

degradation. It has also been observed from the EVs that different ranges of SoC will affect the 

state of health of batteries to different extents, where wide ranges of SoC cause more capacity loss 

in the batteries [114]. 

As an example, authors in reference [114] have investigated the impact of different SoC ranges 

(with 25% DoD for every case) on the capacity loss of a LiFePO4/graphite cell when the cell is 

cycled with 1000 iterations. The results of this work show that cycling this cell in the mid-SoC 

ranges (25% to 75%SoC) will lead to better cycle life compared to cycling at both ends of the SoC 

range. Interestingly, the capacity loss inflicted by cycling at a large DoD of 60% but within (20 to 

80%SoC) shows a smaller capacity loss compared to the case with a smaller DoD (20%) but at (0 

to 20%SoC) or (80 to 100%SoC). This is due to the larger polarization impedance at the end of 

SoC which is caused by the reactions between electrodes and electrolytes as well as the structural 

variations of anode and cathode materials in these SoC ranges [114]. These results show that in 

order to have a realistic estimation of the battery wear due to a charging/discharging process, not 

only should we address the DoD of the process but also the initial and final SoCs of the battery 

should be considered throughout the process. 

As a general fact regarding the impact of DoD, the battery degradation rises at higher levels of DoD 

[105]. For instance, it is recommended in the study, presented in [2], that for the V2G service, the 
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DoD be kept under 60% and SoC between 30% and 90%. In this regard, two types of approaches 

have been employed commonly in the battery scheduling research works to address the DoD-

related wear rate. The first approach is to put a restriction on DoD to guarantee a certain amount of 

lifetime, and the second method is to designate a cost to DoD which impacts the operating cost 

[113]. However, taking restrictive measures like limiting the usable range of SoC to 80% [16] and 

depriving a battery of operating in a large range of charge such as 0 to 30% and 90% to 100% 

would not be the best approach. Because, in this case, a significant portion of the battery capacity 

will be unusable.  

The rate of charging and discharging the battery also has a significant impact on its rate of capacity 

loss. The study, carried out by [105], shows that the rate of capacity loss versus the C-rate for a Li-

ion battery that is cycled at 10°C is an exponential function which is shown in figure 3.3. The graph 

shows that low C-rate levels (<1) cause a minimal capacity loss in the Li-ion batteries.  

 

Figure 3.3: Rate of cycle loss of a Li-ion battery as a function of its C-rate [105] 
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Battery temperature is another effective factor in the wear rate which depends on different factors, 

especially the ambient temperature and the C-rate. Ambient temperature is not a control variable 

of the battery. However, controlling the C-rate of the battery could largely impact its temperature. 

We could state that at low temperatures, the degradation accelerates when C-rate rises and at low 

C-rates the battery wear rises with higher temperatures. However, at high temperatures, there is 

high battery wear regardless of the value of the C-rate [105]. Thus, as a rule of thumb, larger C-

rates lead to larger battery temperatures which cause higher capacity fade rates. In this regard, the 

study, presented in [115], has measured the temperature of a pouch Li-ion cell when cycled with 

different C-rates (1C, 3C, and 5C) over 1500 seconds and from an initial temperature of 297 kelvin. 

The results show that after the testing time, the battery’s temperature change was insignificant when 

it cycled at the rate of 1C. However, when the C-rate was 3C the temperature increased to around 

303-305 K depending on the point of measurement on the battery. Also, cycling at 5C raised the 

temperature to 312-320 K.   

The study, presented in [116], has investigated the temperature changes for a Li-ion cell under 1C, 

1.5C, and 2C cycle rates. This work also shows that depending on the point of measurement, the 

temperature could show larger rises (on the positive electrode tab), small changes (on the negative 

electrode tab), or uniform changes (on the surface of the battery). Also, it shows that not only do 

higher C-rates increase the battery temperature, but also make it happen in a shorter amount of 

time. Applying a thermal management system (TMS), which is usually a component of 

sophisticated battery management systems (BMS), is an effective measure to maintain the cells' 

temperature and subsequently temperature-related degradation at a low level [111]. Thermal 

management systems could be of the active or passive type. Active TMS preserves the battery 

temperature at a specific rate, while the passive type uses the ambient air circulation for heat 

dissipation [117]. In [118], it is recommended to maintain the temperature of Li-ion batteries 

between 15 and 35°C for better longevity. In this regard, assuming the Li-ion battery is not 
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preserved in a place with extreme ambient temperatures and also is equipped with onboard TMS, 

provided that it is not cycled at high C-rates, the temperature-associated degradation could be 

maintained at a low level.   

3.2 Semi-empirical battery degradation models 

 

Due to the large applicability of semi-empirical models in online wear estimation, this work is 

focused on this type of wear model. Hence, in this section, the popular semi-empirical wear models 

are introduced.  Cycle aging has been modeled in the literature based on different causes or stress 

factors. As mentioned before, these factors include C-rate, temperature, SoC, DoD, and charge 

throughput of battery. A semi-empirical wear model could be laid out based on single or multiple 

stress factors. The battery temperature is not a directly controllable factor; hence it is managed 

through the other stress factors and in particular, C-rate. Three common semi-empirical wear 

models for obtaining cycling loss of batteries are the linear model, NREL model, and Arrhenius 

model which will be introduced in the following. There are also other wear models available in the 

literature such as the Peukert Lifetime Energy Throughput (PLET) model or more complex multi-

actor models [40] which use different combinations of inputs to address the wear rate. 

 It is worth noting that these models are usually constructed based on the results of experimentations 

that have cycled batteries regularly (e.g., from and to 100%SoC [90]). Hence, they might not be 

directly applicable to online estimation of dynamic battery degradation caused by irregular cycling 

attempts where batteries are cycled between random SoCs. 

3.2.1 Linear Model 

 

To define the linear degradation model of batteries, it is assumed that the cycle life of batteries only 

depends on the depth of discharge. Then, cycle life can be represented by the total amount of energy 

that can be transferred by the battery as follows. 
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𝑄𝐷 = 𝐸𝐷𝑁𝐷 (3.3) 

In (3.3), 𝐷 denotes the depth of discharge, 𝑁𝐷 denotes the number of cycles that the battery can 

complete at DoD of 𝐷, 𝐸 represents the nominal capacity of the battery and 𝑄𝐷 expresses the 

lifetime energy throughput of the battery at DoD of 𝐷. Averaging the lifetime throughput for every 

DoD provides the general lifetime throughput as follows, where 𝑖 is the count of DoD quantities. 

𝑄𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 =
1

𝑖
∑ 𝑄𝐷

𝐷=1

𝐷=0

 

(3.4) 

Then, the linear model provides the capacity loss as follows: 

𝑄𝑙𝑜𝑠𝑠
𝑙𝑖𝑛𝑒𝑎𝑟(𝑇) = ∑ 𝐶𝐿𝑃(𝑡)∆𝑡

𝑇

𝑡=1

  
(3.5) 

Where, 𝐶𝐿 =
1

𝑄𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
 is the equivalent capacity fade of battery per kWh, calibrated through 

experimentation, and 𝑃(𝑡) denotes the average battery power during the interval of the problem 

(∆𝑡). 

3.2.2 NREL Model 

 

NREL weighted Ah wear model is built based on the assumption that the battery can go through a 

certain number of effective Ampere hours and after that, it reaches the end of life. In this regard, 

the rated charge life (Γ𝑅) is defined as: 

Γ𝑅 = 𝐶𝑅𝐷𝑅𝐿𝑅 (3.6) 

Where 𝐶𝑅 represents the rated capacity of the battery under the rated current, 𝐷𝑅 denotes the rated 

DoD associated with the rated battery life, 𝐿𝑅 represents the life cycles associated with the 

discharging rate and 𝐷𝑅. Capacity loss can be calculated according to the accumulated discharged 

Ampere hours (𝑑𝑒𝑓𝑓) as follows.  



76 
 

𝑄𝑙𝑜𝑠𝑠
𝑁𝑅𝐸𝐿(𝑇) =

1

Γ𝑅
∑ 𝑑𝑒𝑓𝑓(𝑡)

𝑇

𝑡=1

 

(3.7) 

And,                                      𝑑𝑒𝑓𝑓 = (
𝐷𝐴

𝐷𝑅
)𝑢0𝑒

𝑢1(
𝐷𝐴
𝐷𝑅

−1) 𝐶𝑅

𝐶𝐴
𝑑𝑎𝑐𝑡𝑢𝑎𝑙 

(3.8) 

 

Where, 𝐷𝐴 and 𝐶𝐴 represent the actual DoD and battery capacity under the actual condition, 𝑢0 and 

𝑢1 are the fitting coefficients obtained from the N(D) curve of the battery and 𝑑𝑎𝑐𝑡𝑢𝑎𝑙 represents 

the actual discharge value.  

3.2.3 Arrhenius Model 

 

Arrhenius aging model of battery provides the relationship between the electrolyte film growing 

and Ampere hour throughput of battery as laid out below. The beauty of this wear model is that it 

can provide the impact of temperature on the battery wear. Another advantage of this model over 

the time-based wear models is that it could also model the relationship between C-rate and capacity 

loss. 

𝑄𝑙𝑜𝑠𝑠
𝐴𝑟𝑟ℎ𝑒𝑛𝑖𝑢𝑠 = 𝐴 𝑒𝑥𝑝(

−𝐸𝑎

𝑅𝑇
)𝐴ℎ𝑧 

(3.9) 

In this equation, 𝐴 is a pre-exponential coefficient, 𝐸𝑎 denotes the activation energy ( 𝐽𝑚𝑜𝑙−1), R 

represents the gas constant, 𝑇 expresses the absolute temperature and 𝑧 represents the power-law 

factor which is considered to be constant under different charging rates. However, to use this model 

for the dynamic operation of batteries in microgrid applications, it needs to be discretized to 

calculate the capacity loss within a given period. Therefore, the following two equations provide 

the discrete version of the Arrhenius model. 

𝑄𝑙𝑜𝑠𝑠
𝐴𝑟𝑟ℎ𝑒𝑛𝑖𝑢𝑠(𝑇) = 𝑄𝑙𝑜𝑠𝑠

𝐴𝑟𝑟ℎ𝑒𝑛𝑖𝑢𝑠(𝑇 − 1) + 𝑧𝐴
1
𝑧exp (

−𝐸𝑎

𝑧𝑅𝑇
)∆𝐴ℎ𝑄𝑙𝑜𝑠𝑠

𝐴𝑟𝑟ℎ𝑒𝑛𝑖𝑢𝑠(𝑇 − 1)
𝑧−1

𝑧  
(3.10) 
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∆𝐴ℎ = ∫ |𝐼(𝑡)|𝑑𝑡
𝑡

𝑡−1

 
(3.11) 

In these equations, 𝑄𝑙𝑜𝑠𝑠
𝐴𝑟𝑟ℎ𝑒𝑛𝑖𝑢𝑠(𝑇 − 1) represents the accumulated value of capacity fade at the end 

of time 𝑇 − 1, ∆𝐴ℎ is a variable denoting the Ampere hour throughput during the period from 𝑇 −

1 to 𝑇, and 𝐼(𝑡) represents the average current during the same period [40]. 

3.3 Introducing the battery degradation to the MIP UC problems  

 

In this chapter, a technology-agnostic semi-empirical battery degradation model is presented for 

applying in the unit commitment of batteries in applications such as residential and commercial 

microgrids where batteries go through irregular charging and discharging half cycles with relatively 

low levels of power (C-rate ≤ 1) without experiencing extreme temperatures. This battery wear 

model can be incorporated into a mathematical programming model such as a MIP model for online 

minimization of real costs associated with the operation of a microgrid including the cost of battery 

wear.  

Unless a UC algorithm is employed by an energy-system developer for a proprietary configuration, 

a generic short-term (daily planning) battery scheduling algorithm that could be used globally for 

residential or commercial buildings in bi-directional markets is anticipated to carry some important 

characteristics. First of all, it should be technology-agnostic so that it could be used for different 

batteries regardless of their chemistry and technology. In this regard, the applied battery 

degradation model plays a major role in making the UC algorithm accommodating. The battery 

degradation model is expected to take into consideration the factors that impact the battery life in 

a meaningful way. DoD, SoC, C-rate, and temperature are the three factors that play a major role 

in battery degradation in general. However, due to the complicated correlation between these 

factors themselves, a comprehensive wear model that could model capacity loss caused by all of 

those factors simultaneously could be highly nonlinear and complex. Thus, it may be required to 

compromise some of the wear factors depending on the case to keep the model fairly reasonable in 
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terms of size and complexity. For instance, when the battery temperature is controlled by the 

battery’s thermal management system, it may be possible to neglect the temperature and still have 

a wear model with decent accuracy. Alternatively, if battery charging/discharging facilities are 

merely capable of cycling the battery with low C-rates (e.g., < C/2), it may be worthwhile to 

overlook C-rate as it barely can cause meaningful capacity loss. Computational resources is another 

subject that should be taken into account when developing a wear model. Processing and memory 

hardware are normally of great importance for mathematical programming and metaheuristics 

respectively. With regards to the software resources, it should be known what tools and programs 

are required for implementing a UC algorithm. Developing proprietary solvers and programs could 

take large amounts of time, energy, and cost. Utilizing commercial programs and solvers is another 

alternative that entails its limitations and costs. In either case, it is important to make sure that the 

UC model can be properly implemented with the available resources. This is because solving a 

complex optimization model in the research and development phase using commercial solvers and 

computers is one thing while solving a similar model in a practical application could require 

sophisticated and costly proprietary software and hardware. For instance, it is difficult or possibly 

impossible for most of the existing MIP solvers to handle severe nonlinearities in MIP models. In 

short, a good wear model should be able to model the battery degradation rate caused by the 

effective wear factors with a level of complexity that can be handled by available computational 

resources within an acceptable time and in an economic fashion.  

In this thesis, the optimal UC problem for residential and commercial buildings in bi-directional 

markets has been addressed in the framework of mixed-integer programming. In order to address 

the battery degradation problem in this work, a battery wear model will be presented which can be 

used as a generic wear model compatible with different MIP short-term battery scheduling models. 

The presented wear model is a semi-empirical technology-agnostic model which is developed 

based on the N(D) curve of batteries. The wear model is capable of estimating the magnitude of the 
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capacity loss of the battery caused by irregular cycles. Also, this wear model can be written in the 

discretized-time format and directly incorporated into a mixed-integer programming model to 

minimize a cost function. This is significant in the sense that embedding the battery wear (as a cost 

factor) directly into the UC model can help us achieve the real minimum cost of a system with 

consideration of energy and battery wear cost. While implementing a battery wear model along 

with (and not embedded into) a UC model could prevent achieving the best possible unit 

commitment approach since different objectives will compete with each other. However, 

incorporating the wear model into the UC model with the same dimension (e.g., cost) could lead to 

obtaining the global optima of the problem.  

By considering the fact that residential and workplace EV chargers work at low power compared 

to the capacity of an average EV battery, we may be able to neglect the impact of the charging rate 

on the battery degradation. Residential and commercial typical charging is normally implemented 

by type 1 or type 2 chargers (less than 20 kW of power). Moreover, typical EVs normally come 

with two types of charging connectors, namely AC and DC connectors.  The AC inlet is used for 

level 1 and 2 chargers up to 20 kW power at the standard distribution voltage level. The DC 

connectors can be used for DC fast charging in places like fast-charging stations. EV batteries 

usually benefit from onboard AC-DC and DC-DC chargers [119] to facilitate these different types 

of charging. On the other hand, today an average EV has a battery capacity of over 20 kWh. Hence, 

the offered C-rate of residential charging equipment is normally under 1C which makes the effect 

of the C-rate insignificant in the wear rate in comparison with the DoD of cycles. Battery 

temperature is the other factor that could affect its lifetime and it could be caused by high cycling 

currents or the ambient temperatures. However, low C-rates have minimal impact on the battery 

temperature, leaving the battery temperature mainly affected by the ambient temperature. Authors 

in [82] state that the lifetime of Lithium-Ion batteries is not notably affected by temperature as long 

as these batteries are operated within normal temperatures. Assuming that EV batteries benefit from 



80 
 

TMS and normally do not experience extreme ambient temperatures at residential or commercial 

parking lots, in this work also the impact of temperature on the battery degradation has been omitted 

[120].  

In this regard, to address the impact of DoD (for both charging and discharging actions) on the 

capacity loss in a Li-ion battery we need to have access to the specifications and characteristics of 

the battery which are normally provided by manufacturers. However, battery manufacturing 

companies normally provide limited specifications for every battery as providing different 

electrical or physical parameters for batteries would require extensive, time taking, and costly 

testing procedures. Cycle count vs capacity, discharge capacity vs voltage, storage time vs capacity, 

and charge time vs voltage are some of the common plots provided by manufacturers. Hence, many 

of the important specifications of batteries are normally not provided in the battery’s datasheets. 

On top of that, these relationships have complex correlations that make them very difficult to be 

discovered by the battery makers. For example, not only does the cycle life of a battery depend on 

the DoD of the charging/discharging actions (as represented by the N(D) curve), but also that 

function depends on the other factors such as temperature and C-rate. Thus, in order to lay out a 

battery degradation model, apart from the importance of model accuracy, one needs to consider the 

fact that the inputs of the degradation model should be accessible. 

 One of the major specification plots that are provided by some of the manufacturers is the N(D) of 

the battery (figure 3.1) which is related to the cycle count vs capacity plot. As a matter of fact, the 

cycle count vs capacity curve provides the number of cycles that a battery can complete at one 

specific DoD (normally 100%), C-rate, and temperature, before its capacity drops by 20 or 30% 

[120]. Figure 3.4 illustrates the approximate relationship between cycle count and capacity for a 

Li-ion battery [121]. 
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Figure 3.4: Capacity of a Panasonic Li-ion battery (NCR18650B) as a function of completed cycles [121] 

However, batteries are normally cycled at DoDs other than 100%. Therefore, the cycle life-DoD 

(N(D)) plot is provided by some of the battery makers to show how many cycles a battery can 

complete with different DoD values before its usable capacity falls by 20%. This graph 

accommodates very important information about the battery’s cycle life, and it can be used as a 

useful dataset for building the battery wear model as it relates a health index of the battery (cycle 

life) to the DoD which is controllable by the user. As a matter of fact, the N(D) graph provides the 

number of cycles that the battery can get through before it reaches the end of life. 

 Therefore, in an application where the battery goes through cycles/half “regular cycles” with a 

fixed DoD, we can simply calculate the amount of capacity that is lost per every single half-cycle 

and its corresponding cost as in (3.12) and (3.13). The term ½ in (3.12) is because capacity loss 

caused by every half cycle can be considered half of the that of a full cycle. Based on (3.12), it is 

assumed that under similar circumstances, capacity loss caused by charging a battery from SoCx 

to 100% SoC is equal to that of discharging from 100% SoC to SoCx. 
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∆𝐸𝐷 =
1

2
(

𝐸

𝑁(𝐷)
) 

(3.12) 

𝑌𝐷 = ∆𝐸𝐷(
𝑉𝑖𝑛𝑖 − 𝑉𝑠𝑎𝑙

𝐸𝑖𝑛𝑖(1 − 𝑅)
) 

(3.13) 

Where, 𝐷 denotes the DoD of half-cycle, ∆𝐸𝐷 is the capacity loss of battery caused by a completing 

a half cycle with DoD of 𝐷. 𝐸 is the available capacity of the battery, 𝑉𝑖𝑛𝑖 is the initial value (price) 

and 𝑉𝑠𝑎𝑙  is the salvage value of the battery, 𝐸𝑖𝑛𝑖 is the initial (rated) capacity of the battery and 𝑅 

denotes the remaining SoH at the time of replacement which is a value between 0 and 1. It is worth 

emphasizing that the equations above can be used to calculate the capacity loss in applications in 

which the battery is cycled from and to 100%SoC. This is since the N(D) curve is acquired from 

discharging and charging the battery from and to 100%SoC. However, not every battery is cycled 

under that condition. In fact, a practical battery cycling strategy would schedule batteries for 

charging, discharging, and idle modes in different time frames, leading to various SoC changes 

within the range of 0-100%.  

Thus, a more feasible wear model would be able to address random cycling actions or “irregular 

cycles” in which SoC varies between random levels. On the other hand, when it comes to the effect 

of DoD on the battery degradation, it is vital to remember that the wear induced by the depth of 

discharge varies depending on the SoC values [82]. The DoD-related degradation is influenced by 

the battery voltage or SoC at the beginning and end of any charging/discharging attempt. For 

example, discharging a battery with a fixed DoD of 5% between SoCs of 6% and 1% could lead to 

much larger degradation rates compared to discharging with the same DoD between SoCs of 65% 

and 60%. Regardless of the cycling strategy, every charging or discharging attempt degrades the 

battery’s health relative to the amount of DoD as well as the initial and final SoCs of the cycle/half 

cycle [120]. A method called Rainflow Counting Algorithm (RCA) has been employed by some of 

the literature to address the random variations of DoD to calculate the wear rate [78], [79], [84], 

[122]-[124]. This method estimates the degradation cost according to the count and amplitude of 
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battery cycles. However, this technique suffers from some problems. First, it is difficult to 

incorporate it into analytical models to be solved by a mathematical solver, therefore it may need 

to be used in parallel with optimization problems which could undermine the global optima. 

Moreover, it fails to consider the fact that the initial and final SoCs of a cycle also impact the 

capacity loss associated with it [120]. 

Hence, the objective of this chapter is to provide a mathematical solution to model the degradation 

of a Li-ion battery caused by the DoD of irregular cycles with consideration of the initial and final 

SoCs of cycles. The presented wear model is built upon a wear model proposed in [82] which has 

visualized the relationship between the initial and final SoCs versus the capacity loss of a cycle for 

a Li-ion battery which is shown in figure 3.5. The figure is symmetrical due to the fact that capacity 

loss is considered to be independent of the direction of SoC changes. It means that the capacity loss 

caused by a charging or discharging attempt can be approximated to be equal, provided that they 

are executed between an identical pair of SoCs in identical conditions as long as the charge or 

discharge event does not occur at very large DoD and temperature simultaneously [125]. This graph 

incorporates the capacity loss information for different amounts of DoD. In this regard, if we 

assume a random charging or discharging attempt is done during 𝑁 time intervals, the total DoD-

associated capacity loss of the battery within this duration can be written as the total capacity loss 

caused by every single subinterval within the range 𝑁.  

∆𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ ∆𝐸𝑛

𝑁

𝑛=1

 

(3.14) 

Where, ∆𝐸𝑡𝑜𝑡𝑎𝑙 is the total capacity loss during 𝑁 intervals and ∆𝐸𝑛 is the capacity loss inflicted 

within the subinterval 𝑛. 
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Figure 3.5: Capacity loss of a Li-ion battery as a function of initial and final SoCs of cycle obtained from [82], 

Copyright IEEE 

However, despite the symmetry of the graph, its flat sides do not precisely model the nonlinear 

relationship between the SoC changes and the capacity loss in a Li-ion battery. Hence, a more 

precise version of this graph is required as both sides of it need to evolve to more complex and 

nonlinear forms from the existing linear form. A more complex demonstration of this graph is 

presented in [87] which is provided along with its contour map in figure 3.6, demonstrating a more 

detailed relationship between SoC variations (DoD) and capacity loss of a battery. It shows that at 

a fixed initial SoC, the capacity loss of Li-ion battery changes nonlinearly with respect to the 

amount of DoD. It also demonstrates that completing a half-cycle between a given pair of SoCs 

with a rate of C2 causes more damage to the battery than completing the same half-cycle with 1C. 

However, these figures still do not seem to accurately model the relationship between DoD-

associated capacity loss as a function of initial and final SoCs for all the Li-ion batteries. As can be 

seen from the contour map, the capacity loss caused by cycling the battery with a small DoD (e.g., 

3%) around a very large SoC (e.g., 97%) or very small SoC (e.g., 3%) will inflict a lower capacity 

loss compared to a cycling attempt with the same DoD but around a moderate SoC such as 70%, 

which is against the expectations. This proves the need for further research and more 

comprehensive experimentations in the field of Li-ion batteries as a more precise graph is expected 

to show larger capacity losses around very small and very large SoCs [114].  
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Figure 3.6: (a): Capacity loss of a Li-ion battery as a function of initial and final SoCs of cycles. (b): Contour map of 

the capacity loss graph, both images obtained from [87], Copyright Elsevier 

In order to obtain the capacity loss of battery caused by an “irregular half-cycle”, first the capacity 

loss caused by a “regular half-cycle” must be obtained. According to the wear formulation provided 

in reference [82], the capacity loss caused by a regular full cycle is derived from equation (3.15). 

(a) 

(b) 
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As mentioned before, an irregular half cycle takes place between two random SoCs while a regular 

half cycle takes place between 100%SoC and a lower SoC or vice versa. This equation shows that 

the capacity loss of a battery caused by a cycling process could be expressed as a function of its 

capacity, the cycle’s depth-of-discharge, and a coefficient (𝑊𝐷) that entails the cycle life 

information of the battery. In this context, this coefficient which is called the “wear coefficient” in 

this work, expresses the “capacity loss per transferred energy” based on the cycle life-DoD (N(D)) 

function of the battery. Hence, in a sense, 𝐷 is the key variable of this equation which also 

determines 𝑊𝐷. More precisely, 𝑊𝐷 represents the amount of capacity loss per unit of transferred 

energy if the battery is regularly cycled to the end of life with the DoD of 𝐷. Hence, this factor 

which is associated with “regular cycling” is used for obtaining the degradation of “irregular 

cycling”. Coefficient 2 refers to the fact that each full cycle of battery consists of two half-cycles. 

Therefore, this equation is rearranged as in (3.16) for a regular half-cycle event. From this, we can 

derive (3.17) which expresses the battery capacity after going through n regular half cycles as a 

function of initial capacity, depth-of-discharge, and wear coefficient. We could assume that the 

battery can go through n= N(D) half cycles before its life comes to an end at SoH= 𝑅. 𝑅 is the end-

of-life or remaining capacity of the battery at the time of replacement and it is normally a value 

between 50% and 80% depending on the user’s decision and the application of the battery. Usually, 

for EV batteries 𝑅 is considered 80%, while for ESS we could take a lower value. For instance, 

reference [40] considered the 𝑅 of an ESS equal to 50%. Therefore, we will be able to derive 

equation (3.18) from (3.17) to obtain the wear rate function. On the other hand, the N(D) function 

of the battery can be modeled as in equation (3.19). We know that the N(D) curve is obtained 

through conducting experimental analysis on batteries and it is usually provided by the battery 

manufacturers. These curves normally have an exponential shape and can be modeled by an 

exponential function [126] obtained from applying curve fitting. By substituting (3.19) in (3.18) 

we can directly calculate the wear rate of a regular half-cycle as a function of DoD which is 
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presented in equation (3.20). Moreover, it is known that the battery wear caused by irregular cycling 

between two given SoCs, is equal to the difference of wear for regular cycling from the initial and 

final SoCs [90]. Thus, the capacity loss caused by implementing an irregular half cycle can be 

expressed as in equation (3.21). According to this equation, capacity loss caused by an irregular 

half-cycle depends on the DoD values associated with the SoC levels at the beginning and end of 

the half-cycle. To clarify, if a half-cycle starts at 20%SoC and ends at 60% SoC, its corresponding 

beginning DoD (𝐷𝑏) and end DoD (𝐷𝑒) would be 80% and 40% respectively. Hence, (3.22) and 

(3.23) provide the relationship between the SoCs and DoDs at the beginning and end of the half-

cycle.  

∆𝐸 𝑟𝑒𝑔 𝑐𝑦𝑐𝑙𝑒
𝑛 = 𝐸𝑛 − 𝐸𝑛+1 = 2𝑊𝐷𝐸𝑛𝐷 (3.15) 

 (3.16) 

 (3.17) 

 (3.18) 

 (3.19) 

𝑊𝐷 =
1

𝐷
(1 − 𝑅

1

𝛼𝑒𝛽𝐷) 
(3.20) 

 (3.21) 

𝐷𝑏 = 1 − 𝑆𝑏 (3.22) 

𝐷𝑒 = 1 − 𝑆𝑒 (3.23) 

In equations (3.15) to (3.23), ∆𝐸 𝑟𝑒𝑔 𝑐𝑦𝑐𝑙𝑒
𝑛  is the capacity fade of the battery caused by completing 

the 𝑛𝑡ℎ regular cycle as these are the equations of the continuous wear model. ∆𝐸𝑟𝑒𝑔
𝑛  is the capacity 

loss of battery caused by completing the 𝑛𝑡ℎ regular half cycle. 𝐸𝑛 denotes the battery capacity just 

before starting the 𝑛𝑡ℎ irregular half cycle and subsequently 𝐸𝑛+1 denotes the battery capacity just 

∆𝐸𝑟𝑒𝑔
𝑛 = 𝑊𝐷𝐸𝑛𝐷 

𝐸𝑛 = 𝐸𝑖𝑛𝑖(1 − 𝑊𝐷𝐷)𝑛 

𝑊𝐷 =
1

𝐷
(1 − 𝑅

1
𝑁(𝐷)) 

𝑁(𝐷) = 𝛼𝑒𝛽𝐷  

∆𝐸𝑖𝑟𝑒𝑔
𝑛 = 𝐸𝑛|𝑊𝐷𝑏

𝐷𝑏 − 𝑊𝐷𝑒
𝐷𝑒| 
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before starting the (𝑛 + 1)𝑡ℎ irregular half cycle. 𝐷 represents the depth-of-discharge (DoD) and 

𝑊𝐷 represents the wear coefficient corresponding with the DoD of 𝐷. This coefficient shows how 

much battery capacity is faded due to one-kilowatt-hour energy transfer (either through charging 

or discharging) upon completion of a regular half-cycle which takes place at DoD of 𝐷. Hence, the 

unit of this variable is [kWh/kWh]. 𝐸𝑖𝑛𝑖 denotes the initial energy capacity of the battery, 𝑅 is the 

state-of-health (SoH) of the battery at the end of its lifetime which depends on how much the user 

wants to exploit the battery. SoH is the ratio of available capacity to the rated capacity of the battery 

which is always a value between 0 and 1. 𝑁(𝐷) is the cycle life function which shows how many 

cycles the battery can complete before it reaches the end of life. Therefore, 𝑁(𝐷) in (3.19) must be 

obtained for an end-of-life state of health of 𝑅. For example, if it is decided that the user will replace 

the battery at SoH of 50%, the 𝑁(𝐷) curve and its function must have been obtained for the same 

battery when the end-of-life SoH is 50%. This is because the capacity loss of battery per every 

cycle/half cycle at any DoD can be derived from the 𝑁(𝐷). On the other hand, every curve of 𝑁(𝐷) 

is obtained for a specific state of health at the end of life (𝑅). Hence, using a 𝑁(𝐷) which has been 

produced for a specific 𝑅 and calculating the capacity losses based on that, while attempting to 

change the battery at a different 𝑅 will lead to mismatches and inaccuracies in the wear calculations. 

𝛼  and 𝛽 are the curve fitting parameters that are derived from applying an exponential curve fitting 

to the 𝑁(𝐷). ∆𝐸𝑖𝑟𝑒𝑔
𝑛  denotes the capacity fade caused by completing the 𝑛𝑡ℎ irregular half cycle. 

Subscripts b and e express the beginning and end of a half-cycle, therefore 𝐷𝑏 and 𝐷𝑒 are the DoD 

of the battery corresponding with its charge level at the beginning and end of a half cycle. As a 

result, 𝑊𝐷𝑏
 and 𝑊𝐷𝑒

 represent the wear coefficients corresponding with 𝐷𝑏 and 𝐷𝑒 respectively. 𝑆𝑏 

and 𝑆𝑒 are also the SoCs corresponding with the beginning and end of the irregular half-cycle 

respectively. 

In this context, the SoC of the battery at every time frame is a function of the SoC at the previous 

time frame and the battery power within the previous time frame as shown in equation (3.24). Then, 
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battery power can be a control variable which determines the SoCs as the inputs of the wear 

equations. As a result, equations (3.17) to (3.21) implicitly provide a relationship between the 

battery power which can be controlled, and the capacity loss caused by an irregular cycling action. 

Therefore, they can be used to calculate the capacity loss of a battery during a cycle/half cycle in 

an off-line way or be incorporated into a dynamic battery scheduling model and estimate the 

degradation caused by a series of cycles online. 

𝑆𝑛 = 𝑆𝑛−1 + (
𝜂 × 𝑃𝑛−1,𝑐ℎ × 𝐺

𝐸𝑛
) − (

𝑃𝑛−1,𝑑𝑖𝑠 × 𝐺

𝐸𝑛
) 

(3.24) 

 

Where 𝜂 denotes the efficiency of the charging process, also, 𝑃𝑛−1,𝑐ℎ and 𝑃𝑛−1,𝑑𝑖𝑠 are the charging 

and discharging powers within the previous time frame respectively. 

Different publications and manufacturers have reported various N(D) functions for different Li-ion 

cells, mostly exponential waveforms. The N(D) employed by this work has been produced based 

on the datasets acquired from [127] for 𝑅 of 0.8. Implementing exponential regression on the data 

provided the N(D) as follows which includes the 𝛼  and β coefficients [120]. 

𝑁(𝐷) = 13704𝑒−2.51616486 (3.25) 

Figure 3.7 demonstrates the key parameters of the UC model and how they are defined on the time 

axis. It can provide a more intuitive picture of how the UC model has been built in this work and 

how different variables relate to one another in the context of the time. 

 

Figure 3.7: Distribution of the major parameters of the UC model on the time axis 
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It can be seen that in this battery degradation model, the wear coefficient and subsequently the 

capacity loss is obtained based on the information embedded in the N(D) function. Therefore, it is 

important to obtain this function for every battery which is going to be scheduled based on this 

wear model. The N(D) function depends on the battery chemistry and testing condition including 

C-rate and temperature [128]. However, generally, it could be said that batteries that have the same 

technology have similar N(D) functions under the same conditions. However, it is worth noting that 

not all the N(D) curves are produced in the same conditions. Different manufacturers may provide 

the cycle life curve of their batteries for different C-rates and temperatures. Figure 3.8 illustrates 

the variations of the cycle life curve for a Lithium-ion Phosphate battery cell under different C-

rates. It is seen that larger C-rates mildly lower the cycle life of the battery across the range of 

DoDs.  

Regardless of which C-rate the cycle life curve has been produced for, one should know how to 

employ the best possible N(D) curve for a battery wear model. As mentioned before, to avoid 

complications, the C-rate factor is neglected in the battery wear presented in this work. However, 

it is still important to know how we can accommodate the available N(D) function with our use 

case. For instance, in a case where the battery’s charging/discharging power does not exceed C/5, 

employing an N(D) that has been produced for C2 may lead to suboptimal results. It is suggested 

that a good while conservative N(D) for employing in the wear model is the one that is produced 

for the largest cycling power in the studied battery. For example, in a case where the maximum 

cycling power of a battery is C/2, it could be a relatively good choice to build the wear model based 

on an N(D) generated under C/2.  To provide a general technique for accommodating the available 

N(D) curve with the case under study, we need to know how the cycle-life curve varies with C-rate. 

At the time of writing this thesis, it seems that this is an understudied subject, and not enough data 

is available on the dependence of N(D) on the C-rate. It could take comprehensive experimental 

measurements to study this issue in more depth which could be costly and time taking. However, 
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figure 3.8 which has been acquired from a battery manufacturer [129] shows the variations of N(D) 

with three different C-rates. Roughly speaking, this graph suggests that N(D) for C-rates equal to 

C1 and lower rates shifts upwards and downwards as the C-rate decreases and increases 

respectively. A precise model for this relationship might be a nonlinear function that requires exact 

datasets for these graphs which were not available. However, at least for C-rates equal to and less 

than C1, the mentioned “shifting” hypothesis seems to be legit. In this regard, once we have the 

N(D) of a battery for a particular C-rate, we could approximate a more favorable N(D) by applying 

a fixed shift upwards or downwards as shown in (3.26). In this equation, 𝐶𝑥 is the C-rate of the 

desirable N(D), hence 𝑁(𝐷)𝐶𝑥 represents N(D) for the C-rate of 𝐶𝑥, 𝑁(𝐷)𝐶1 denotes N(D) for the 

C-rate of C1. 𝐾𝐶𝑥 could be a positive or negative constant that depends on the 𝐶𝑥. Obtaining 𝐾𝐶𝑥 

requires more comprehensive N(D) datasets for different C-rates and this is out of the scope of this 

work. In this work, it has been assumed that the available N(D) is the best possible option (𝐾𝐶𝑥 =

0). This equation is merely provided to point out that it could be possible to obtain more precise 

N(D) curves for a particular case study.  

𝑁(𝐷)𝐶𝑥 = 𝑁(𝐷)𝐶1 + 𝐾𝐶𝑥 (3.26) 
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Figure 3.8: Impact of the C-rate on the N(D) curve of a Li-ion battery, obtained from [129], Copyright PowerTech 

Advanced Energy Storage Systems 

Furthermore, the N(D) curve also depends on the temperature. Due to the dependence of the battery 

life on the temperature, higher average temperatures lead to more severe capacity losses and 

consequently lower life cycles. This is especially more visible in the low DoDs as illustrated in 

figure 3.9. This figure whose dataset was acquired from [130] shows the variations of the N(D) at 

three different temperatures (25, 35, and 45°C). Applying exponential regression to the data points 

produced the curve lines. This figure suggests that in order to achieve the best precision in 

producing the wear model based on N(D), the temperature at which N(D) has been produced as 

well as the existing battery temperature should be taken into consideration. For example, using an 

N(D) curve that is created for 25°C for building the wear model of a battery that is normally 

operated at higher temperatures (e.g., >35°C) could lead to suboptimal results. Providing the N(D) 

for the room temperature (25°C) might be more prevalent among the battery manufacturers. 

Moreover, in this work, the impact of the temperature on the wear model has also been neglected 

as it has been assumed that employed batteries at residential or commercial buildings are equipped 
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with thermal management systems which prevent the battery temperature from exceeding specific 

ranges. Hence, to avoid complications, in this work, it is assumed that N(D) is provided for 25°C, 

and all the batteries are also operated at the same temperature. 

 

Figure 3.9: Impact of the temperature on the N(D) curve of a Li-ion battery [130] 

After the battery degradation model has been formulated, the next step is to present the degradation 

model in the context of mixed-integer programming so it can be solved for dynamic UC problems. 

In this regard, the discretized MIP constraints associated with the wear model have been presented 

as follows. The MIP wear model aims at calculating the cost of capacity loss in every interval of 

the problem. Incorporating this model into the original UC model provided in chapter 2 provides it 

with the information on battery degradation costs so the model will be solved for the real minimum 

costs including the energy costs and the wear cost. To do this, the SoC of the battery is calculated 

during every optimization cycle as in equation (3.27). Then, the DoD associated with the current 

SoC is calculated as in (3.28). This factor expresses how much the battery needs to be discharged 



94 
 

to reach from 100%SoC to the current SoC. Now, the wear coefficient which is a function of DoD 

is presented in equation (3.29). The function N(D) is directly included in this equation so it can 

estimate the wear coefficient for any arbitrary value of DoD. Next, the capacity loss of the battery 

for an irregular half cycle at interval 𝑛 is expressed in (3.30). It is seen that for the 𝑛𝑡ℎ half-cycle, 

the values of wear coefficient and DoD at the beginning of interval 𝑛 are considered as the initial 

values of those two variables, while at the beginning of interval 𝑛 + 1 they are considered as the 

final values of the variables. Now, finally, as 𝐷𝑒𝑣
𝑛  could be greater or smaller than 𝐷𝑒𝑣

𝑛+1, ∆𝐸𝑒𝑣
𝑛  could 

take a positive or negative value. However, the proposed wear model has been made on the basis 

that the capacity loss inflicted from completing a charging and discharging half-cycle between a 

pair of SoC values is the same. Moreover, it would be considered common sense that battery wear 

is always a positive value. Thus, in (3.31), the absolute value of the capacity loss is generated for 

the MIP model. Although the dimension of L𝑒𝑣
𝑛  is battery capacity (energy), however, this 

parameter can simply be used in other parts of the UC model to generate the cost or emission 

associated with the battery wear. This can be done by multiplying the L𝑒𝑣
𝑛  by the appropriate “cost 

per capacity” or “emission per capacity” factor. 

𝑆𝐶𝑒𝑣
𝑛 =

𝑆𝐸𝑒𝑣
𝑛

𝐸𝑒𝑣
𝑛        ∀𝑛 ∈ [𝑛𝑎, 𝑛𝑑 + 1] 

(3.27) 

𝐷𝑒𝑣
𝑛 = 1 − 𝑆𝐶𝑒𝑣

𝑛      ∀𝑛 ∈ [𝑛𝑎, 𝑛𝑑 + 1] (3.28) 

𝑊𝑒𝑣
𝑛 = 𝑓(𝐷𝑒𝑣

𝑛 ) =
1

𝐷𝑒𝑣
𝑛 (1 − 𝑅𝑒𝑣

1

𝛼𝑒𝛽(𝐷𝑒𝑣
𝑛 ))       ∀𝑛 ∈ [𝑛𝑎, 𝑛𝑑 + 1] 

(3.29) 

∆𝐸𝑒𝑣
𝑛 = 𝐸𝑒𝑣

𝑜𝑝𝑡
× [𝑊𝑒𝑣

𝑛 × 𝐷𝑒𝑣
𝑛 − 𝑊𝑒𝑣

𝑛+1 × 𝐷𝑒𝑣
𝑛+1]       ∀𝑛 ∈ [𝑛𝑎 , 𝑛𝑑] (3.30) 

L𝑒𝑣
𝑛 = |∆𝐸𝑒𝑣

𝑛 |       ∀𝑛 ∈ 𝑁 (3.31) 

As before, the superscript 𝑛 refers to the index of interval in the discrete wear model. In (3.27)-

(3.31), 𝑆𝐶𝑒𝑣
𝑛  denotes the SoC of the EV battery at the beginning of the 𝑛𝑡ℎ interval, 𝐸𝑒𝑣

𝑛  expresses 

the available energy capacity of EV battery at the beginning of the 𝑛𝑡ℎ interval, 𝐷𝑒𝑣
𝑛  represents the 
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DoD associated with 𝑆𝐶𝑒𝑣
𝑛 , 𝑊𝑒𝑣

𝑛  denotes the wear coefficient associated with 𝐷𝑒𝑣
𝑛  and 𝑓 denotes the 

function of the wear coefficient of the EV battery. ∆𝐸𝑒𝑣
𝑛  expresses the capacity fade of EV battery 

caused by the 𝑛𝑡ℎ interval. And, L𝑒𝑣
𝑛  shows the absolute value of ∆𝐸𝑒𝑣

𝑛 .  

The MIP constraints for the wear model of ESS are also laid out similar to the EV as shown in the 

following equations. Therefore, (3.32) to (3.36) enforce the constraints for SoC, DoD, wear 

coefficient, capacity loss, and the absolute value of capacity loss for the energy storage system at 

the 𝑛𝑡ℎ interval, respectively. However, ESS and EV batteries differ in terms of the ranges, as the 

constraint ranges of EV batteries are defined for the times of day that EV is present at the parking 

spot, while constraint ranges of ESS are defined for the entire intervals of the day as ESS should 

be operational 24 hours of the day. 

𝑆𝐶𝑒𝑠
𝑛 =

𝑆𝐸𝑒𝑠
𝑛

𝐸𝑒𝑠
𝑛        ∀𝑛 ∈ {𝑛𝑏 , 𝑛𝑒 + 1} 

(3.32) 

𝐷𝑒𝑠
𝑛 = 1 − 𝑆𝐶𝑒𝑠

𝑛      ∀𝑛 ∈ {𝑛𝑏 , 𝑛𝑒 + 1} (3.33) 

𝑊𝑒𝑠
𝑛 = 𝑔(𝐷𝑒𝑠

𝑛 ) =
1

𝐷𝑒𝑠
𝑛 (1 − 𝑅𝑒𝑠

1

𝛼𝑒𝛽(𝐷𝑒𝑠
𝑛 ))       ∀𝑛 ∈ {𝑛𝑏 , 𝑛𝑒 + 1} 

(3.34) 

∆𝐸𝑒𝑠
𝑛 = 𝐸𝑒𝑠

𝑜𝑝𝑡
× [𝑊𝑒𝑠

𝑛 × 𝐷𝑒𝑠
𝑛 − 𝑊𝑒𝑠

𝑛+1 × 𝐷𝑒𝑠
𝑛+1]       ∀𝑛 ∈ 𝑁 (3.35) 

L𝑒𝑠
𝑛 = |∆𝐸𝑒𝑠

𝑛 |       ∀𝑛 ∈ 𝑁 (3.36) 

In the equations above,  𝑆𝐶𝑒𝑠
𝑛  denotes the SoC of ESS at the beginning of the 𝑛𝑡ℎ interval, 𝐸𝑒𝑠

𝑛  

shows the available energy capacity of ESS at the beginning of the 𝑛𝑡ℎ interval, 𝐷𝑒𝑠
𝑛  represents the 

DoD associated with 𝑆𝐶𝑒𝑠
𝑛 , 𝑊𝑒𝑠

𝑛 is the wear coefficient associated with 𝐷𝑒𝑠
𝑛  and 𝑔 denotes the 

function of the wear coefficient of ESS. ∆𝐸𝑒𝑠
𝑛  expresses the capacity fade of ESS caused by the 𝑛𝑡ℎ 

interval. Finally, L𝑒𝑠
𝑛  shows the absolute value of ∆𝐸𝑒𝑠

𝑛 . 

However, as can be seen in equations (3.29) and (3.34), the wear coefficient (W) is a severely 

nonlinear function with respect to the DoD. Many MIP solvers may not be able to handle this highly 
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nonlinear function as a part of a model constraint. In order to address this problem, it is suggested 

to use a curve-fitted version of the wear coefficient-DoD function instead of the original function. 

In fact, using curve fitting to simplify this function to a simpler function with a lower nonlinearity 

degree could enable the typical MIP solvers to handle the complexity of the curve-fitted curve. 

Depending on the capabilities of the employed solver in supporting different mathematical 

functions and also depending on the shape of the wear coefficient function (which itself depends 

on the shape of N(D)), one may find different functions more suitable for the curve fitting. 

Cotangent, reciprocal and polynomial functions are some of the functions that can be used for curve 

fitting as shown in figure 3.10, although each of them could have its shortcomings in presenting 

the detailed information incorporated into the W curve. Moreover, the polynomial function seems 

to do a better job at showing the increasing wear rate at the higher DoDs.       

 

Figure 3.10: Wear coefficient function of a Li-ion battery 
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However, according to the accuracy of every fitting function and other considerations, one can 

decide on the best fitting function for every case. For example, reference [131] reports that EVs 

normally provide a range of 10-15%SoC to 90%SoC of their batteries for cycling. In this case, the 

data of the W curve for DoD values of under 10% and over 90% will be insignificant because the 

battery is banned from being cycled by less than 10%DoD and more than 90%DoD from an initial 

SoC of 100%. In this case, the user might find it useful to use a fitting function that can model the 

range of 10%DoD-90%DoD in the most accurate way. It is worth mentioning that a low DoD on 

this figure is associated with a high SoC and vice versa. For instance, the SoC of the battery 

associated with DoD of 0.2 is 0.8, which means that by discharging the battery by 20% from the 

initial SoC of 100%, the resulting SoC will be 80%. In this work, a polynomial curve fitting function 

has been employed to mimic the wear coefficient vs DoD curve as shown in figure 3.11. Despite 

its deviations from the original curve, the polynomial curve fitting seems to fairly model the fact 

that wear rate is larger at low and high DoDs. However, depending on the capabilities of the MIP 

solver in taking complex constraints, employing more accurate fitting functions may model the 

wear rate with less error. 

 

Figure 3.11: Original nonlinear wear coefficient function and its polynomial approximation 
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A decent function to fit the curve would approximate the wear function properly and can be 

embedded as a constraint in an available MIP solver simultaneously. That’s why the polynomial 

function was selected in this work as the used solver was able to handle polynomial constraints. 

The batteries that benefit from the same technology have the same wear function and subsequently 

can benefit from the same simplified versions of the wear function. Thus, In this work, 𝑊𝑒𝑣
𝑛  and 

𝑊𝑒𝑠
𝑛 are approximated as in equations (3.37) and (3.38) with an identical curve fitting function, 

where the polynomial coefficients are 𝑎1 = 𝑎2 = 0.0012837373, 𝑏1 = 𝑏2 = −0.0014698375 

and 𝑐1 = 𝑐2 = 0.0004861267. 

𝑊𝑒𝑣
𝑛 = 𝑓(𝐷𝑒𝑣

𝑛 ) =
1

𝐷𝑒𝑣
𝑛 (1 − 𝑅𝑒𝑣

1

𝛼𝑒𝛽(𝐷𝑒𝑣
𝑛 )) ≈ 𝑎1(𝐷𝑒𝑣

𝑛 )2 + 𝑏1(𝐷𝑒𝑣
𝑛 ) + 𝑐1  

 

(3.37) 

𝑊𝑒𝑠
𝑛 = 𝑔(𝐷𝑒𝑠

𝑛 ) =
1

𝐷𝑒𝑠
𝑛 (1 − 𝑅𝑒𝑠

1

𝛼𝑒𝛽(𝐷𝑒𝑠
𝑛 )) ≈ 𝑎2(𝐷𝑒𝑠

𝑛 )2 + 𝑏2(𝐷𝑒𝑠
𝑛 ) + 𝑐2 

(3.38) 

After introducing the constraints of the MIP model, in this part, the objective functions are 

presented. A proper objective function should be able to precisely model the parameter that is to be 

optimized. In this regard, when producing an objective function, it is important to notice who is 

going to benefit from it directly. For instance, when it comes to a home, the objective function 

could be made to benefit the homeowner, the grid operator, and so on by minimizing the cost, 

energy consumption, emission, battery degradation, etc. In this work, the focus is on minimizing 

the real cost of the homeowner (including the cost of battery degradation) as well as the carbon 

footprint of the homeowner. Thus, the “real cost” objective function of the MIP model that 

incorporates the net energy cost and degradation cost of the battery is presented in (3.39).    

𝑀𝑖𝑛 ∑(𝑃𝑖𝑚
𝑛 × 𝐺 × 𝑇𝑛,𝑏𝑢𝑦) + (

L𝑒𝑣
𝑛

𝐿𝑒𝑣,𝑙𝑖𝑓𝑒 × 𝐸𝑒𝑣
𝑖𝑛𝑖

)

𝑁

× (𝑉𝑒𝑣
𝑖𝑛𝑖 − 𝑉𝑒𝑣

𝑠𝑎𝑙)

+ (
L𝑒𝑠

𝑛

𝐿𝑒𝑠,𝑙𝑖𝑓𝑒 × 𝐸𝑒𝑠
𝑖𝑛𝑖

) × (𝑉𝑒𝑠
𝑖𝑛𝑖 − 𝑉𝑒𝑠

𝑠𝑎𝑙) − (𝑃𝑒𝑥
𝑛 × 𝐺 × 𝑇𝑛,𝑠𝑒𝑙𝑙) 

 (3.39) 
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In the objective functions above, 𝐿𝑒𝑣,𝑙𝑖𝑓𝑒 represents the lifetime capacity fade of EV which equals 

(1-𝑅𝑒𝑣),  𝐸𝑒𝑣
𝑖𝑛𝑖 denotes the initial storage of EV battery, 𝑉𝑒𝑣

𝑖𝑛𝑖 expresses the initial cost of the EV 

battery, 𝑉𝑒𝑣
𝑠𝑎𝑙  is the salvage cost of the EV battery, 𝐿𝑒𝑠,𝑙𝑖𝑓𝑒 represents the lifetime capacity fade of 

ESS which equals (1-𝑅𝑒𝑠), 𝐸𝑒𝑠
𝑖𝑛𝑖 expresses the initial storage of ESS, 𝑉𝑒𝑠

𝑖𝑛𝑖 denotes the initial cost of 

ESS and 𝑉𝑒𝑠
𝑠𝑎𝑙 shows the salvage cost of ESS. Regarding the “cost” parameters in this work whose 

dimension is price, it should be mentioned that the unit of these parameters must be in accordance 

with the unit of energy fees. If energy fees are for example expressed in cents per kWh, the battery 

cost and cost functions must be considered in cents. Whereas in case energy fees are provided in 

dollars per kWh, the battery cost and cost functions must be considered in dollars. In the case 

studies of this work, all the battery costs, energy fees, and cost functions are considered in cents. 

After completing an optimization attempt for each day, the available battery capacities for EV and 

ESS need to be recalculated to obtain the updated battery capacities for a new optimization attempt. 

Hence, the available capacity of EV battery and ESS after every optimization iteration can be 

obtained from (3.40) and (3.41). These equations are valid for all the UC models presented in this 

thesis. Needless to mention these equations are not components of the MIP model and are merely 

used offline to find the remaining battery storage for the next optimization attempt.  

𝐸𝑒𝑣
𝑜𝑝𝑡

= 𝐸𝑒𝑣
𝑖𝑛𝑖 − ∑ ∑ L𝑒𝑣

𝑛

𝑁𝑂

 (3.40) 

𝐸𝑒𝑠
𝑜𝑝𝑡

= 𝐸𝑒𝑠
𝑖𝑛𝑖 − ∑ ∑ L𝑒𝑠

𝑛

𝑁𝑂

 (3.41) 

Where 𝐸𝑒𝑣
𝑜𝑝𝑡

 and 𝐸𝑒𝑠
𝑜𝑝𝑡

 represent the available capacity of EV battery and ESS for the next 

optimization, 𝑂 is the set of the total optimization iterations (which must be equal to the number of 

days in a day-ahead UC model) since the first day that batteries were employed by the microgrid.  
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3.4 Carbon emission study 

In the previous sections, the UC problem of a smart home was investigated for the aim of 

minimizing the costs associated with energy consumption and battery degradation. However, the 

carbon footprint of users is another target that has been addressed in this work. This is important 

as residential and commercial buildings consume 32% of the total produced energy globally and 

emit 30% of the total carbon into the environment [69]. Also, reference [51] reports that 48% of 

the people that are interested in procuring an EV want to do so mainly for sustainability reasons, 

which shows carbon footprint could be a major objective function in a smart building as in (3.42). 

This objective function aims at minimizing the energy intake of the building to minimize its 

corresponding emission. Thus, carbon footprint and cost objective functions can be treated 

altogether in the framework of a multi-objective MIP model as most MIP solvers could handle 

multi-objective models. It may be desirable to tune the impact of every objective function in the 

commercial solvers by decreasing or increasing the impact of one objective function in a multi-

objective problem such as this one. For instance, in this work, the “weight” of the emission 

objective can be tuned to figure out how it can impact the costs and emissions. The carbon footprint 

of a user can be considered as the sum of the carbon footprint associated with the battery wear and 

the carbon footprint caused by the energy consumption. Hence, to minimize the battery 

degradation, which is the other major cause of carbon footprint, we could use the objective function 

of (3.43). 

𝑀𝑖𝑛 ∑ 𝑃𝑖𝑚
𝑛

𝑁

 (3.42) 

𝑀𝑖𝑛 ∑(L𝑒𝑣
𝑛 + L𝑒𝑠

𝑛 )

𝑁

 (3.43) 
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The value of the carbon footprint associated with energy consumption relies on the cleanness of 

the home energy providers. Obviously, the electricity is generated from different sources in 

different regions. These sources could be clean and renewable such as solar and wind energy or 

could be polluting such as gas and coal. Hence, in different regions, different amounts of carbon 

are released per generation of a unit of electric energy which should be taken into consideration 

when calculating the carbon footprint of a local energy consumer. In this regard, the CO2 emission 

per kilowatt-hour of generated energy is assumed to be 449 grams which is equal to the average 

rate in the United States in 2018 [132]. Although other pollutant gasses may be released in the 

process of power generation, in this work only CO2 is taken into consideration. Thus, in this thesis, 

it is assumed that per every kilowatt-hour of energy drawn from the grid, 𝐶𝐹𝐻 =449 grams of CO2 

is emitted into the environment. Hence, the total carbon emission caused by the home energy 

consumption is derived from (3.44), where 𝐻𝐸 denotes the amount of home emission. 

𝐻𝐸 = 𝐶𝐹𝐻 × ∑ 𝑃𝑖𝑚
𝑛

𝑁

 
(3.44) 

The other source of carbon footprint is the battery degradation phenomena. The manufacturing and 

recycling process of batteries releases large amounts of harmful emissions into the environment. 

Inefficient employment of batteries could expedite their wear rate which leads to a more frequent 

need for battery replacement. As demonstrated before, neglecting the battery degradation could 

considerably increase the wear rate which leads to a larger carbon footprint for the user even when 

the problem is seemingly optimized for the best energy efficiency. The carbon emission caused by 

the battery manufacturing process depends on several factors such as the manufacturing method 

and material of the battery as well as the energy sources of the battery plant.  

A lifecycle assessment process could assess the carbon footprint of batteries during their 

manufacturing procedure using a top-down or bottom-up approach. The former technique first 
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specifies the total emissions of a plant and then determines the emissions of each procedure, while 

the latter starts with analyzing the impact of each component. Between these two approaches, the 

top-down method normally leads to obtaining larger amounts for the emission [133]. Hence, the 

method of performing the lifecycle assessment could largely impact the results of battery 

environmental studies. Different studies have carried out the lifecycle assessment for the Li-ion 

batteries and reported various values for the carbon emission of the battery production process. Due 

to the different employed assessment methods, different values have been reported for the CO2 

emissions ranging between 56 and 494kg CO2 per kilowatt-hour of manufactured battery cell 

[134]. According to [134], on average, Asian battery manufacturers emit between 150 and 200 

kilograms of CO2 per kilowatt-hour of manufactured battery capacity. In this thesis, the median of 

this range (175 kg/kWh) is assumed as the CO2 emission of the battery manufacturing process. If 

we assume that the battery will have a second life before recycling, it will add a large amount of 

uncertainty to the problem. Hence, in this work, the second life is not taken into consideration 

[120]. To calculate the CO2 footprint caused by losing one kilowatt-hour of the battery capacity, 

equation (3.45) is used in this work. 

𝐶𝐹𝑈 =
𝐶𝐹𝑀

(1 − 𝑅)
 

(3.45) 

In this equation, 𝐶𝐹𝑈 is the CO2 footprint (kg) associated with 1kWh capacity loss, 𝐶𝐹𝑀 is the CO2 

footprint (kg) that is emitted by the battery maker for manufacturing one kilowatt-hour of battery 

capacity which is assumed to be 175 kg/kWh in this work [120]. Therefore, assuming that both EV 

and ESS batteries have been made by the same manufacturer, the CO2 footprint caused by the 

battery degradation is obtained by (3.46). 

𝐵𝐸 = 𝐶𝐹𝑈 × ∑(L𝑒𝑣
𝑛 + L𝑒𝑠

𝑛 )

𝑁

 (3.46) 

Figure 3.12 demonstrates the used algorithm for producing and solving the presented UC model. 
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Figure 3.12: Unit commitment algorithm for a residential microgrid built in the framework of MIP with hourly 

resolution 

3.5 Impact of the degradation model on the optimization results 

 

In order to study the functionality of the proposed battery degradation model, the case study that 

was carried out in chapter 2 is repeated in this chapter, however, this time with the battery 

degradation model incorporated into the MIP model. Regarding the fact that the proposed battery 

degradation model incorporates the battery price into the UC model, the battery’s monetary value 

has a significant impact on how it is scheduled to be cycled by the energy management system. A 

costly battery could shift the outcomes of the UC problem to less frequent and shallower cycles 

while cheaper battery prices could lead to more frequent and deeper cycles. Reference [89] reports 

that considering higher battery costs leads to the flattening of the SoC graph, this is because the 

degradation cost could surpass the potential revenues achieved by the battery when the battery price 

is high.  As a matter of fact, what matters about the battery price is the net price of the battery which 

results from the initial and salvage prices of the battery. These two prices themselves depend on 

several factors. For example, the initial price depends on the technology, market, and manufacturer 
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of the battery. Fortunately, as time goes on, the prices of Li-ion batteries are declining as the 

technology is maturing and the market is expanding continuously. The salvage price is proportional 

to the price of a new battery with similar capabilities with consideration of health, cost of collection, 

refurbishment, and certifying the old battery [135]. The initial and salvage prices of this thesis have 

been acquired from [107] which are 250 $/kWh and 51 $/kWh respectively. The second lifetime of 

the battery and consequently the salvage price (selling price) of a used EV battery heavily depend 

on the DoD at which the battery is used during its second lifetime. However, for a battery with the 

initial price of 250 $/kWh, per DoD of 50% in the second life, its salvage value will be 131 $/kWh, 

while per DoD of 60%, the salvage value will be 51 $/kWh [107]. One beauty of the proposed wear 

model is that it allows the battery capacity to be used in its entirety as it can estimate the capacity 

loss caused by any half cycle. However, as a general practice, the EV and ESS manufacturers 

normally limit the usable capacity of their batteries. For stationary energy storage systems, this 

could be mainly because they generally lack sophisticated battery cycling algorithms and for 

electric vehicles, this could be to prevent their users from using up the entire stored energy of 

battery while driving as it could lead to high wear rates. Hence, regardless of the merit of the battery 

wear model, the available ESS and EV batteries do not provide 100% of capacity for usage. In this 

regard, in this section, the usable SoC range of batteries has been assumed to be between 7.5% and 

95% [136]. This approach will also prevent the inaccuracy of the used (polynomial) curve-fitting 

function to impact the results significantly. One of the factors that are included in the UC model is 

the batteries’ capacity at the end of life. This could differ depending on the application of the battery 

as well as the user’s choice. For example, EV batteries are less capable of being used in low state-

of-health conditions. This is because lower SoH for EV batteries will undermine the vehicle's 

driving capabilities. While stationary batteries (e.g., ESS) could be exploited more in one or more 

lifetimes. In this regard, various articles have stated different values for the state of health of a 

battery at the end of life (R) such as 50%, 65%, and 80%. In this thesis, the R-value of ESSs and 

EVs are assumed to be 50% and 80% respectively. This means it is assumed that by the time EV 
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battery loses 20% of its capacity and ESS loses 50% of its capacity they will be replaced. It should 

be noted that after the battery degradation model is laid out, to use it for a case study it is necessary 

to maintain the battery cycling regime under conditions that do not initiate degradation processes 

that are not predicted in the wear model. In this regard, as a general recommendation, Li-ion 

batteries of EVs should be cycled at the rates under 5C and temperatures within -20°C and +45°C 

[112]. Hence, in this thesis, the C-rate of the cycling events is assumed to be C-rate ≤1, and the 

temperature is assumed to be 25°C. 

To investigate the effectiveness of the battery degradation model in the MIP unit commitment 

model, in this chapter the general MIP model constraints provided in chapter 2 (equations (2.32) to 

(2.58)) will be used along with the additional battery wear constraints and new objective functions 

provided in this chapter (equations (3.27) to (3.39)) using the general input datasets provided in 

chapter 2 and battery datasets provided earlier in this chapter. To compare the results of the basic 

case where apparent cost is the only objective function with more sophisticated degradation-

equipped models, seven different cases have been investigated where the optimization model is 

subject to different single or multi-objective functions. In all these cases, all the constraints are 

similar, however, the objective functions vary from case to case. These cases consider combinations 

of apparent cost, battery degradation, and apparent emission as objective functions. Thus, the 

objective functions are considered as follows: 

• Net energy cost of the building (aka cost) 

• Capacity loss of EV and ESS batteries (aka degradation) 

• Apparent CO2 footprint emission of the building led by the electricity consumption (aka 

emission) 

• Cost & degradation 

• Cost & emission 

• Degradation and emission 
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• Cost & degradation & emission  

These objective functions can show how neglecting or considering battery wear and emission in 

the UC problem could impact the real costs, carbon footprint, and battery capacity loss for a 

homeowner. Similar to the basic case, all these scenarios have been simulated for a month-long 

period. Equations (3.47), (3.48), (3.49), and (3.50) which can be formed from the results of an 

optimization attempt, provide capacity loss of batteries, apparent carbon footprint, real (total) 

carbon footprint of user, and peak power of home, respectively. 

∑(L𝑒𝑣
𝑛

𝑁

+ L𝑒𝑠
𝑛 )  (3.47) 

∑ 𝐶𝐹𝐻 × 𝑃𝑖𝑚
𝑛

𝑁

 (3.48) 

∑(𝐶𝐹𝐻 × 𝑃𝑖𝑚
𝑛 ) + (𝐶𝐹𝑈 × (L𝑒𝑣

𝑛 + L𝑒𝑠
𝑛 ))

𝑁

 (3.49) 

𝑚𝑎𝑥 {𝑃𝑖𝑚
𝑛 } (3.50) 

After an optimization problem has been solved, if it has incorporated the battery degradation model, 

the capacity loss of batteries can be extracted from the outcome of the optimization. However, in 

order to obtain the capacity loss of batteries for those cases that omit the battery wear, the SoC 

profile of batteries is given to the battery wear model (equations (3.20) to (3.23)) in an offline 

fashion to have it calculate the capacity loss caused by the battery activity [120]. 

To investigate the performance of the proposed UC strategies in a residential building, each strategy 

is first simulated for a single sample day and the results are produced. Next, each strategy is 

simulated for a one-month period to provide more comprehensive results. The figures below show 

the variations of the power for all the involved units during 24 hours under different sets of 

objective functions. This graph was presented in chapter 2 for the case where the apparent energy 

cost of the home was the only objective function. However, the following figures show how 
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incorporating the battery wear model and optimizing the problem with more optimal objective 

functions change the unit commitment results. 

In this regard, figure 3.13 demonstrates the power rates when the cost is considered as the objective 

function along with the battery degradation for both EV battery and ESS, therefore the objective 

function consists of (3.39). Clearly, in this case, to avoid the degradation cost caused by inefficient 

battery cycling, ESS and EV battery are discharged less often and only when their discharging 

revenue overcomes the degradation cost associated with discharging. The EV battery provides 

relatively less energy through discharging and in the other time intervals it is charged with low 

amounts of power. Controllable load is also operated early in the morning to keep the costs low.  

 

Figure 3.13: Power profile of the microgrid components-objective functions: energy cost and battery degradation 

For the next scenario, cost and apparent emission are assumed as two different objective functions 

provided in (2.59) and (3.48). In this case, it is desirable to find a solution where both cost and 

apparent emission have their lowest possible level simultaneously, but it does not take battery 

degradation into account. Therefore, this set of objectives will not provide real cost and carbon 

footprint directly. However, regarding the apparent emissions of the home, this case is considerably 

better that the conventional approach where energy cost is the only objective function. Hence, it is 
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seen in figure 3.14 that EV battery and ESS discharge events are performed during the daytime, 

afternoon and nighttime and controllable load is operated early in the morning for a lower cost of 

operation. 

 

Figure 3.14: Power profile of the microgrid components-objective functions: energy cost and apparent emission 

Degradation is another objective function to be investigated which is provided in (3.47) and the 

results are shown in figure 3.15. Even though taking degradation as the only objective would not 

be desirable in practice, it was studied to provide a better understanding of how minimizing the 

degradation as a sole objective compares to the other objectives in terms of cost, degradation, and 

emissions. Although, in a case where the energy price is a static constant rate and there is no 

available feed-in option, minimizing the mere battery degradation may seem a practical approach. 

Obviously, in this case, EV and ESS are discharged minimally. Also, the EV battery is charged 

with low power to keep the wear rate low. Moreover, as the scheduling is performed without 

consideration of the costs, the controllable load is dispatched at a time which is not optimal in terms 

of the energy tariffs. 
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Figure 3.15: Power profile of the microgrid components-objective function: battery degradation 

To study the case where minimizing the apparent emission is the only objective, (3.48) is 

considered as the objective function of the problem. Since apparent emission is correlated with the 

grid-supplied energy, this objective aims at minimizing the energy drawn from the grid. As a result, 

it is seen in figure 3.16 that the grid power is relatively lower as compared to the previous scenarios. 

In this case, the EV’s contribution to the energy provision is minimal, ESS is merely charged from 

the PV generation and controllable load is dispatched in the middle of the day when it is mostly 

supplied by the solar power. 

 

Figure 3.16: Power profile of the microgrid components-objective function: apparent emission 



110 
 

To observe the effect of the minimization of both factors that impact the real carbon footprint of 

the home, this time, both apparent emission and battery degradation of EV and ESS ((3.47) and 

(3.48)) are considered as objectives of the model. In this case, the grid-supplied energy has been 

reduced to lower the emission associated with the grid power, and EV charging is performed with 

relatively smaller power rates. According to the battery wear model, lower cycling powers 

correspond to the lower DoD rates which cause less degradation. Also, the EV battery is not 

discharged in this case to avoid further degradation which is against the model objectives. In this 

case, the ESS charging and discharging activities are only to help lower the grid-supplied energy, 

not contributing to the cost minimization. The controllable load is also activated in the middle of 

the day which is not the most cost-efficient as appeared in figure 3.17.  

 

Figure 3.17: Power profile of the microgrid components-objective functions: apparent emission and battery 

degradation 

Finally, real cost (including the energy and degradation cost) and apparent emission have been 

assumed as the objectives of the model as provided in equations (3.39) and (3.48) as an attempt to 

minimize all the three major factors (energy cost, battery wear (which reflects on cost and emission) 

and apparent emission) at once. In this case, the cycling of both batteries is carried out in a moderate 

way to make sure they are employed efficiently to increase the revenues and limit the grid-supplied 
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energy while avoiding excessive operations which cause a high wear rate. The results show that 

EV discharging is performed only once so that it will help with costs without adversely impacting 

the degradation and emission. Also, the controllable load is dispatched early in the morning to 

consume energy at the cheapest times of the day as seen in figure 3.18.  

 

Figure 3.18: Power profile of the microgrid components-objective functions: real cost (including degradation) and 

apparent emission 

Probably the most tangible outcome of an energy system (e.g., microgrid, home, etc.) for a user is 

the energy price that they need to pay the utility company which in this work is also referred to as 

the “apparent cost”. In a bidirectional market where the energy consumption and generation of 

users are measured by using advanced metering infrastructure (AMI), the (apparent) net energy 

price at every period is the difference between the consumed energy price and the generated energy 

price.  However, it is important to note that in a modern energy system that includes energy storage 

and renewable generation, minimum energy cost is not necessarily equal to the “real minimum 

costs” of the system, as “real cost” could be considered to include other components such as the 

battery degradation cost. Thus, it is worthwhile to study how apparent cost and real costs are 

correlated in a home microgrid. To do this, the net energy cost of the home was studied for the 

sample month (based on the same datasets used in chapter 2), this time under seven sets of 
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objectives, and the results are demonstrated in figure 3.19. Table 3.1 also provides the numeric 

values of the monthly energy fees resulting from the seven scenarios. The results show that the 

minimum energy cost was obtained when the objective was set to specifically minimize the energy 

price. As we incorporate emission or degradation to the cost in the objectives set, the monthly cost 

will rise as “cost” will need to compete with another objective in the optimization problem. 

Degradation specifically has a more detrimental effect as it also confines the battery’s performance. 

As expected, incorporating both emission and degradation on top of the cost will further increase 

the costs as this time cost needs to compete with two other objectives. Removing cost from the 

objectives will increase the energy expenses where “emission” and “emission + degradation” are 

the costlier cases. Also, the largest amount of energy cost occurs when the objective is merely 

minimum degradation. This is because this objective will control the battery’s performance to 

achieve the minimum wear without any consideration of the direct monetary interests of the user. 

 

Figure 3.19: Daily energy cost of home for one month, under seven different sets of objective functions 
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Table 3.1: Energy cost of home for one month 

Objective Set Cost 
Cost & 

Deg 

Cost & 

Emission 

Cost & 

Emission & 

Deg 

Emission Deg 

Emission 

& 

Deg 

Net Monthly 

Cost of Energy 

($) 

6.82 8.88 7.18 9.22 11.49 13.84 11.98 

 

The capacity fade of the EV battery over the 30 sample days is sketched in figure 3.20 and the 

values are provided in table 3.2. As can be seen, the largest capacity fade corresponds to the basic 

objective which leads to around 0.1 kWh capacity fade in the EV battery. This is due to the high 

contribution of the EV battery to the energy transactions in that case. The addition of emission to 

the cost as another objective function lowers the capacity fade as it lowers the battery’s operation 

to some extent. Once emission is considered as the only objective it leads to average capacity fades, 

but if we add degradation, it almost halves the monthly capacity loss. All the cases that include 

degradation as an objective show minimal capacity fade with insignificant differences. This is due 

to the significant impact of “degradation” on the battery wear as compared to the other objectives. 
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Figure 3.20: Daily capacity loss of EV battery for one month, under seven different sets of objective functions 

Table 3.2: Capacity loss of EV battery for one month 

Objective Set Cost 
Cost & 

Deg 

Cost & 

Emission 

Cost & 

Emission 

& Deg 

Emission Deg 

Emission 

& 

Deg 

Monthly 

Capacity Loss of 

EV Battery 

(kWh) 

0.0966 0.0299 0.0779 0.0294 0.0569 0.0294 0.0298 

 

The capacity fade of ESS relatively follows a similar trend to EV battery which can be seen in 

figure 3.21 and table 3.3. Basic objective function again leads to the highest amount of degradation. 

The addition of emission as an objective function will slightly lower the battery wear which is not 

as significant as in the case of EV. In other words, the addition of emission to the cost is not able 

to lower the battery wear as much as it can for an EV battery. This is possibly because ESS is 

merely scheduled to help lower the costs throughout the day, while EV has a priority of being fully 

charged while it is parked at home. Hence, the EV battery is more prone to be prevented from too 
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much cycling compared to the ESS. When emission is the sole objective function, it leads to 

mediocre levels of degradation, and adding degradation to that will naturally further reduce the 

wear rate. However, concerning this case is equipped with “degradation” as an objective function, 

it still leads to more than expected capacity loss compared to the other cases. This is because in this 

case, the ESS has to increase its operation to store the PV energy to lower the energy consumption 

of the building. The other cases that incorporate the degradation objective show minimal wear rates 

with small differences. 

 

Figure 3.21: Daily capacity loss of ESS for one month, under seven different sets of objective functions 
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Table 3.3: Capacity loss of ESS for one month 

Objective Set Cost 
Cost & 

Deg 

Cost & 

Emission 

Cost & 

Emission 

& Deg 

Emission Deg 

Emission 

& 

Deg 

Monthly 

Capacity Loss 

of ESS (kWh) 

0.0705 0.00362 0.0683 0.00368 0.0374 0.00185 0.0286 

 

The total capacity loss of EV battery and ESS during a month is plotted in figure 3.22 with their 

values provided in table 3.4. It shows that among these seven cases, the case that “cost” is the sole 

objective function leads to the highest capacity loss of batteries. This is due to the fact that batteries 

are exploited maximally in that case to minimize the net energy expense of the building. The 

addition of degradation to the objective functions improves the capacity loss due to the more 

optimal operation of batteries in that case. When emission is the sole objective function, it leads to 

a moderate amount of degradation as it lowers the energy input of the building. Also, as the 

degradation objective is added to that it will further lower the battery wear. All the other cases 

(degradation, cost & degradation, cost & degradation & emission) show a minimal capacity loss as 

they incorporate degradation into the objective functions. However, the case of “degradation & 

emission” shows relatively larger battery wear. This could be because of the more frequent activity 

of ESS in that scenario. These results show the significant impact of the inclusion of battery 

degradation in the objectives of a problem as it leads to shifting the average SoC of the battery 

towards the middle of the range and prevents unnecessary cycling of batteries which is not 

financially efficient. 
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Figure 3.22: Total capacity loss of batteries for one month, under seven different sets of objective functions 

Table 3.4: Total capacity loss of batteries for one month 

Objective Set Cost 
Cost & 

Deg 

Cost & 

Emission 

Cost & 

Emission 

& Deg 

Emission Deg 

Emission 

& 

Deg 

Total Monthly 

Capacity Loss of 

EV and ESS 

(kWh) 

0.1672 0.0335 0.1463 0.0331 0.0944 0.0312 0.0584 

 

Once the wear rate or capacity loss of a battery within a period is obtained, the carbon footprint 

associated with that period can also be calculated. Larger battery wear leads to faster deterioration 

of the battery and expedites the need for battery replacement.  Thus, we expect to see a similar trend 

for CO2 footprint as we see for degradation of every battery. The total carbon footprint of a user is 

the sum of apparent emissions caused by energy intake from the grid as well as the carbon footprint 

associated with the degradation of batteries. Figure 3.23 and Table 3.5 illustrate the total carbon 
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footprint of the user over the sample month. It is seen that maximum carbon emission is caused by 

the basic or conventional objective function where cost is the only factor to be minimized. As 

anticipated, with the inclusion of the emission objective, the emission is notably decreased. 

However, the incorporation of emission itself is not able to decrease emissions as much as a 

degradation objective does. This shows the large impact of battery degradation on the carbon 

footprint even compared to the emission associated with energy consumption. However, the case 

that considers minimizing the sole degradation leads to mediocre amounts of emission as it omits 

the consumption-led emission. Emission itself as a sole objective leads to relatively low wear rates, 

but when it is stacked with degradation it leads to considerably low emission rates. In conclusion, 

in order to minimize the real carbon footprint of the building, we need to minimize both degradation 

and apparent emission simultaneously. 

 

Figure 3.23: Daily carbon footprint for one month, under seven different sets of objective functions 
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Table 3.5: Carbon footprint of home for one month 

Objective Set Cost 
Cost & 

Deg 

Cost & 

Emission 

Cost & 

Emission & 

Deg 

Emission Deg 

Emission 

& 

Deg 

Total CO2 

Emission of the 

User (g CO2) 

548.4 425.3 488.9 406.3 411.0 439.4 379.6 

 

The peak power of the building is another important factor that was studied for this chapter. Peak 

power is a proper index to measure the amount of stress that a unit causes for the power grid. Larger 

peak power values cause more stress on the grid and particularly transformers and could adversely 

impact the lifetime of the grid infrastructure and increase the costs and carbon footprint on a broader 

scale. Although the impact of the home peak power on the lifetime and carbon footprint of grid 

equipment is out of the scope of this work, the average monthly peak power of the unit has been 

observed as a helpful index for evaluating different objective functions. The results which are 

depicted in figure 3.24 and table 3.6 show that the basic case again led to the highest and worst 

results which could have the most detrimental effect on the grid. If other objectives such as 

emission, degradation, or both are added to the model, however, the average peak power is reduced. 

This stems from lower power intake of batteries and consequently lower power intake of the 

building when apparent energy cost is not the only objective of the model. The “Degradation” 

objective shows the average peak power ranges, and the lowest peak power belongs to the cases 

where “emission” is set to be minimized. Because in these cases, the building is planned to receive 

the minimum amount of energy or power from the grid. Considering the large power of typical 

controllable loads at residential buildings, the timing of their operation is a major factor to impact 

the peak power of a unit. Those objective sets that schedule the controllable loads to operate at peak 

times of the day are naturally more likely to experience significant peak powers. These outcomes 
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demonstrate that the peak power of the home could be lowered by 45% depending on the type of 

objective function. 

 

Figure 3.24: Daily peak power of home for one month, under seven different sets of objective functions 

Table 3.6: Average daily peak power of home for one month 

Objective Set Cost 
Cost & 

Deg 

Cost & 

Emission 

Cost & 

Emission & 

Deg 

Emission Deg 

Emission 

& 

Deg 

Average Daily 

Peak Power of 

Home (kW) 

5.650 5.133 5.021 4.644 3.102 4.062 3.144 

 

A general overview of the discussed results has been provided in the three following charts. Figure 

3.25 illustrates the total monthly costs of energy and battery wear corresponding with each 

objective set. It was demonstrated before that applying cost as the only objective function can 

minimize the apparent energy costs of the home which could seem appealing. However, in this 

work, it is shown that not only is cost (as the only objective function) not able to minimize the real 
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costs associated with an energy system, but also it could largely increase the real costs due to the 

excessive operation of batteries in this case. In fact, in the seven studied cases, cost as the only 

objective led to the maximum real cost of $209 over a month. As demonstrated before, the inclusion 

of other objectives in the MIP model lowers the total price by lowering the wear-associated cost. 

In this regard, the total monthly cost of “cost & emission” is $187 and for “emission” it is $124. 

The next costly scenario was “emission & degradation” at $84.  The other scenarios that incorporate 

battery degradation led to minimal total costs due to minimal battery wear rates. In this regard, 

“degradation”, “cost & emission & degradation” and “cost & degradation” led to $45.91, $44.06 

and $44.09 respectively. 

 

Figure 3.25: Monthly costs of the user, under seven different sets of objective functions 

The overview of the battery degradation under the studied scenarios is presented in figure 3.26. 

This figure clearly shows the impact of the inclusion of battery degradation in lowering the capacity 

loss of batteries. As before, the basic objective function led to the least favorable results in terms 

of battery degradation. Including emission as the second objective lowered the capacity loss by 

13% as it prevents some of the unnecessary operations of batteries. “Emission” alone leads to even 

better results as it does not enforce batteries to contribute to monetary profits. Among the scenarios 

that incorporate battery wear “emission & degradation” led to relatively larger wear rates. This is 



122 
 

because, in that scenario, the ESS has more activity to compensate for the lower energy input from 

the grid. All the other scenarios that include battery wear as an objective function, cause minimal 

capacity losses where all of them cause less than 20% wear rate of the basic case. This figure 

demonstrates that by lowering the unnecessary operation of batteries by employing appropriate 

objective functions, we can lower the capacity loss of batteries to a large extent. 

 

Figure 3.26: Monthly capacity loss of EV and ESS batteries, under seven different sets of objective functions 

Carbon footprint is the last parameter to be reviewed in this section and its bar chart is depicted in 

figure 3.27. Again, mere “cost” showed to be the worst possible objective function as it leads to 

unjustified and unnecessary battery activities to gain the maximum apparent benefits. This case led 

to a staggering amount of emissions (548 kg) in one month. The rest of the scenarios which tried 

to improve this in a way managed to lower the total carbon footprint by lowering the battery 

degradation, apparent emission, or both of them.  In this regard, “cost & emission” led to an 11% 

decrease in carbon footprint as it lowered energy consumption. In general, the incorporation of 

battery wear and emission in objective functions caused a 56% and 14% reduction in total emissions 

respectively. It simply shows the significant impact of battery health on the environmental impact 

of a home. One interesting outcome of this research is that even when battery wear is not taken into 

consideration, only by adding emission to the cost as a second objective function, the emission was 

lowered by around 11% while the real cost was also reduced by 10% and the apparent cost was 
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increased by only 5%. Finally, table 3.7 provides a review of the total monthly values of cost, 

emission, and capacity loss for the studied home. 

 

Figure 3.27: Monthly carbon footprint associated with battery wear and energy consumption, under seven different 

sets of objective functions 

Table 3.7: Total monthly cost, carbon footprint, and capacity loss of batteries 

Objective Set Cost 
Cost & 

Deg 

Cost & 

Emission 

Cost & 

Emission 

& Deg 

Emission Deg 

Emission 

& 

Deg 

Total Monthly 

Cost of the 

Home ($) 

209.17 44.09 187.56 44.06 124.54 45.91 84.67 

Total Carbon 

Footprint of the 

Home(kg) 

548.2 

 

453.17 

 

488.8 

 

434.7 

 

410.9 

 

453.6 

 

379.6 

 

Total Capacity 

Loss of Batteries 

(kWh) 

0.167264 

 

0.033543 

 

0.146325 

 

0.03314 

 

0.094451 

 

0.031303 

 

0.058434 

 

 

One important advantage of incorporating the battery degradation model is the fact that it can 

provide the user with realistic estimations of the UC outcomes. Different users have different 
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priorities concerning running their power systems. Some users may give priority to lowering the 

total cost or even the apparent energy cost while some others may have environmental concerns 

and prefer to shrink their carbon footprint. In a UC problem, cost and emission objectives could 

contradict and compete with each other. Hence, once a sophisticated UC model is implemented for 

a power system, the user should be given enough information and freedom to determine what 

objectives they want to achieve by using the energy management system. Preferably, the users 

should be informed of all the monetary costs and emissions caused by every set of objective 

functions. Moreover, they should be aware of the extent of compromises that they could make in 

terms of costs to lower their carbon footprint. In this case, they will be able to make their desirable 

choices for employing unit commitment objectives. As a matter of fact, depending on different 

factors such as the N(D) curve of batteries, initial and salvage prices of batteries, energy tariffs, and 

battery’s state-of-health (SoH) at the time of replacement, different objectives may seem more 

appealing to the users. In some cases, the user might be able to significantly lower their carbon 

footprint by a very small compromise (increase) in their cost. Lack of this information could avoid 

many users from saving a lot of unnecessary carbon emissions. Hence, in this work, it is studied 

how cost and emission objectives compete in the UC model of a home microgrid. To do this, the 

contribution of emission to the objective set of “Cost & Degradation & Emission” was tuned by 

varying its corresponding weight (denoted with W, where, 0<W<1) parameter with a step of 4% in 

the objective function. The weight tuning capability was offered by the used solver program. Figure 

3.28 shows the results of this practice with their Pareto front showing the best results in terms of 

cost and emission. It is worth noting that in the state of Pareto optimal, none of the objective 

functions can be improved without deteriorating other objectives [21]. This graph shows how the 

model objectives compete, also it helps to find the user’s desirable outcome in terms of cost and 

emission through fine-tuning of W. For example, in the case under study, it is possible to reduce 

the CO2 footprint by 13.5% (1.91 kg) per day with only 18 cents increase in the apparent cost, 

while the total cost shows even no notable changes. If we compare this with the basic case, the 
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results will be more dramatic since the decrease in emissions will be 16.4% (2.4 kg). In a practical 

scenario, such information could help users to cut their emissions at a possibly low extra cost [120]. 

 

Figure 3.28: Pareto front of cost and emission objectives 
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Chapter 4: Impact of the granularity of the MIP model 

on the battery degradation 
 

 

4.1 Modelling the intra-hourly MIP UC problem for residential microgrid 

 

Granularity or model resolution is a considerable factor in UC problems which could impact the 

efficiency of the system. In simple words, the resolution determines the frequency of unit 

commitment in a power system. Most of the time, the model resolution relies on external factors 

and particularly the frequency of energy tariff variations or possibly the smallest resolution among 

the input datasets (tariffs, renewable energy generation, load, etc.). For instance, for day-ahead 

markets with one-hour price resolution, the UC model is normally built with hourly resolution. 

However, when it comes to the unit commitment in the intra-hourly markets where prices change 

on an intra-hourly basis (30 minutes, 15 minutes, etc.), one important question is whether 

dispatching the batteries at pace with the market’s price variations is efficient with regards to the 

battery’s health. It is of notable concern that dispatching the battery with high frequency in an intra-

hourly market to extract the maximum energy yield, could lead to excessive degradation that could 

exceed any potential financial profits. To address this matter and in order to investigate the impact 

of the model granularity on the capacity loss of batteries in the studied microgrid, a dual-stage UC 

algorithm has been proposed in this chapter in the context of mixed-integer programming. To build 

this model, it was assumed that the user has access to the energy tariffs every day in hourly 

resolution from the day before. Also, it was assumed that the load profile and photovoltaic 

generation profile (via solar irradiance prediction) are accessible from the previous day. It is worth 

mentioning that the day-ahead tariffs, solar irradiance, and load profile could be obtained in 

different ways (e.g., using historical data, carrying out a prediction, or receiving from a third party). 

However, the process of data procurement is out of the scope of this work. Thus, in the first stage 

of the UC algorithm, a day-ahead UC problem including the wear model is produced with one-hour 
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granularity and solved similar to what was presented in the previous chapter. Once the day-ahead 

optimization has been solved, it provides the estimated power schedule, SoE and SoC profile of 

EV and ESS batteries for the next day which includes 24 intervals. However, to produce a UC 

model with an intra-hourly resolution we need to consider two facts. First of all, high precision 

intra-hourly data for grid tariffs are usually provided in the hour-ahead market where the energy 

prices of every hour are set around one hour earlier after the operator has received all the bids from 

different producers. Also, regarding the intermittency of solar energy which largely depends on the 

weather condition, relatively precise irradiance predictions with intra-hourly resolution would not 

be available from a day before and it needs to be acquired shortly (e.g., one hour) before any given 

period. In this regard, the optimization process with intra-hourly granularity should be carried out 

in an hour-ahead fashion to have a decent level of precision. Needless the mention that the intent 

of performing optimization with intra-hourly granularity is achieving the maximum possible profits 

and efficiency due to employing the system optimally in the shortest accessible periods. Secondly, 

when it comes to hour-ahead optimization, we should notice that carrying out optimization on an 

hourly basis without considering their results on the daily horizon could lead to suboptimal results. 

For example, the EV battery needs to reach a certain level of SoC by the time of departure and this 

requirement can be addressed in the scheduling algorithm. In this regard, in the second stage of the 

proposed dual-stage UC algorithm, another MIP model is produced; this time with intra-hourly 

resolution. This model needs to be solved for every hour using the high-precision intra-hourly 

energy prices, load, and solar irradiance for the coming hour. This time, the initial and final SoCs 

of batteries are constrained to the hourly SoC values obtained by the day-ahead optimization stage. 

In other words, the hour-ahead optimization needs to be carried out 24 times a day, every time with 

updated intra-hourly input data as well as initial and final SoC values from the first stage. This 

algorithm can guarantee that the SoC of batteries will track the optimal intra-hourly trends within 

every hour and EV SoC will reach the desirable levels by the time EV leaves. As mentioned before, 

the first stage is exactly designed as explained in chapters 2 and 3. However, to build the MIP 
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model for the intra-hourly simulation (second stage) it should be pointed out that although intra-

hourly constraints are mostly similar to the hourly constraints, there are some exceptions as 

explained below. Regarding the ESS constraints, (4.1) needs to be added to the set of ESS 

constraints for the intra-hourly case. This equation enforces the final state of energy of ESS for 

every interval which is obtained from the primary day-ahead optimization. 

In this equation 𝑆𝐸𝑒𝑠
𝑒𝑛𝑑 denotes the expected SoE of the ESS at the end of the optimization horizon. 

 The EV constraints in hour-ahead optimization have different ranges from the day-ahead 

optimization. This is due to the fact that in day-ahead optimization the EV is present at home during 

a portion of the entire optimization horizon. However, in the hour-ahead case, every time 

optimization action is carried out the EV is either considered present during the entire optimization 

horizon or is entirely absent. Moreover, a new constraint as in (4.9) is added to the set of EV 

constraints to limit the final SoE of the EV battery at every hour to the value specified primarily by 

the hour-ahead optimization attempt. In this regard, the EV constraints for those hours that EV is 

parked at home is laid out as follows. 

𝑆𝐸𝑒𝑠
𝑛 = 𝑆𝐸𝑒𝑠

𝑒𝑛𝑑                    𝑓𝑜𝑟 𝑛 = 𝑛𝑒 (4.1) 

𝑃𝑒𝑣
𝑛,𝑐𝑜𝑛 + 𝑃𝑒𝑣

𝑛,𝑒𝑥 = 𝑃𝑒𝑣
𝑛,𝑑𝑖𝑠 × 𝜂𝑒𝑣

𝑑𝑖𝑠         ∀𝑛 ∈ 𝑁 (4.2) 

𝑃𝑒𝑣
𝑛,𝑐ℎ ≤ 𝑈𝑒𝑣

𝑛 × 𝑃𝑒𝑣
𝑐ℎ                       ∀𝑛 ∈ 𝑁 (4.3) 

𝑃𝑒𝑣
𝑛,𝑑𝑖𝑠 ≤ (1 − 𝑈𝑒𝑣

𝑛 ) × 𝑃𝑒𝑣
𝑑𝑖𝑠               ∀𝑛 ∈ 𝑁 (4.4) 

𝑆𝐸𝑒𝑣
𝑛 = 𝑆𝐸𝑒𝑣

𝑛−1 + (𝜂𝑒𝑣
𝑐ℎ × 𝑃𝑒𝑣

𝑛−1,𝑐ℎ × 𝐺) − (𝑃𝑒𝑣
𝑛−1,𝑑𝑖𝑠 × 𝐺)          ∀𝑛 ∈ [𝑛𝑏 + 1, 𝑛𝑒 + 1] (4.5) 

𝑆𝐸𝑒𝑣
𝑛 = 𝑆𝐸𝑒𝑣

𝑖𝑛𝑖                                𝑓𝑜𝑟 𝑛 = 𝑛𝑏 (4.6) 

𝑆𝐸𝑒𝑣
𝑛 ≤ 𝑆𝐸𝑒𝑣

𝑚𝑎𝑥                              ∀𝑚 ∈ [𝑛𝑏 , 𝑛𝑒 + 1] (4.7) 
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Where, 𝑆𝐸𝑒𝑣
𝑒𝑛𝑑 is the expected SoE of the EV battery at the end of the optimization horizon. 

However, for those hours that EV is not parked at home, all of its associated power variables are 

set to zero as in (2.47). Consequently, the wear constraints of EV for the intra-hourly scheduling 

have different ranges as presented below. 

𝑆𝐶𝑒𝑣
𝑛 =

𝑆𝐸𝑒𝑣
𝑛

𝐸𝑒𝑣
𝑛        ∀𝑚 ∈ [𝑛𝑏 , 𝑛𝑒 + 1] 

(4.10) 

𝐷𝑒𝑣
𝑛 = 1 − 𝑆𝐶𝑒𝑣

𝑛      ∀𝑛 ∈ [𝑛𝑏 , 𝑛𝑒 + 1] (4.11) 

𝑊𝑒𝑣
𝑛 = 𝑓(𝐷𝑒𝑣

𝑛 ) =  
1

𝐷𝑒𝑣
𝑛 (1 − 𝑅𝑒𝑣

1

𝛼𝑒𝛽(𝐷𝑒𝑣
𝑛 )) ≈ 𝑎2(𝐷𝑒𝑣

𝑛 )2 + 𝑏2(𝐷𝑒𝑣
𝑛 ) + 𝑐2      ∀𝑚

∈ [𝑛𝑏 , 𝑛𝑒 + 1] 

(4.12) 

∆𝐸𝑒𝑣
𝑛 = 𝐸𝑒𝑣

𝑜𝑝𝑡
× [𝑊𝑒𝑣

𝑛 × 𝐷𝑒𝑣
𝑛 − 𝑊𝑒𝑣

𝑛+1 × 𝐷𝑒𝑣
𝑛+1]       ∀𝑛 ∈ 𝑁 (4.13) 

L𝑒𝑣
𝑛 = |∆𝐸𝑒𝑣

𝑛 |       ∀n ∈ 𝑁 (4.14) 

Now, a case study is carried out to investigate how the hour-ahead intra-hourly battery scheduling 

can impact the capacity loss of batteries in comparison with the conventional day-ahead hourly 

scheduling in 24 hours. To do this, the same setup that was used in chapters 2 and 3 was employed 

for this case study except for controllable load. For this case study, the input data (irradiance, tariffs, 

and load) needed to be available in hourly and intra-hourly resolutions. In this regard, the solar 

irradiance data in hourly and 5-minute resolutions was acquired from [137], and the load profiles 

in hourly and 5-minute resolutions were obtained from [138]. Moreover, the energy tariffs with 

these two resolutions were derived from [101]. The feed-in energy prices were assumed to be 0.8 

of those of buying tariffs in the same hourly or intra-hourly intervals. The EV’s availability at home 

is considered to be between 6 PM and 8 AM. The proposed UC strategies that are laid out in the 

𝑆𝐸𝑒𝑣
𝑛 ≥ 𝑆𝐸𝑒𝑣

𝑚𝑖𝑛                           ∀𝑚 ∈ [𝑛𝑏 , 𝑛𝑒 + 1] (4.8) 

𝑆𝐸𝑒𝑣
𝑛 = 𝑆𝐸𝑒𝑣

𝑒𝑛𝑑                              𝑓𝑜𝑟 𝑛 = 𝑛𝑒  (4.9) 
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context of mixed-integer programming models written in Python and solved by Gurobi are then 

tested for this case study and the results are provided in the following. Figure 4.1 illustrates the 

algorithm of the dual-stage intra-hourly UC model which was explained in this section and Table 

4.1 lists the input parameters of the case study provided in this chapter. 

 

Figure 4.1: Dual-stage UC algorithm for a residential microgrid built in the framework of MIP with intra-hourly 

resolution 
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Table 4.1: Input parameters of the case study of chapter 4 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 shows the load power and energy price (buy) graphs for the studied day. These datasets 

are provided in both hourly and intra-hourly (5-minute) resolutions which are needed for their 

respective optimization attempts.  

Input Parameter Value 

𝜼𝒆𝒔
𝒄𝒉/𝜼𝒆𝒗

𝒄𝒉 100%/100% 

𝜼𝒆𝒔
𝒅𝒊𝒔/𝜼𝒆𝒗

𝒅𝒊𝒔 100%/100% 

𝑷𝒆𝒔
𝒄𝒉/𝑷𝒆𝒗

𝒄𝒉 0.75kW/1.75kW 

𝑷𝒆𝒔
𝒅𝒊𝒔/𝑷𝒆𝒗

𝒅𝒊𝒔 0.75kW/1.75kW 

𝑮 1 hour/
1

12
 hour 

𝑺𝑬𝒆𝒔
𝒊𝒏𝒊/𝑺𝑬𝒆𝒗

𝒊𝒏𝒊 1.25kWh/11kWh 

𝑺𝑬𝒆𝒔
𝒎𝒂𝒙/𝑺𝑬𝒆𝒗

𝒎𝒂𝒙 2.375kWh/22kWh 

𝑺𝑬𝒆𝒔
𝒎𝒊𝒏/𝑺𝑬𝒆𝒗

𝒎𝒊𝒏 0.125kWh/1.1kWh 

𝑺𝑬𝒆𝒗
𝒄𝒉 20.9kWh 

𝜼𝒑𝒗 100% 

𝑷𝒊𝒎
𝒎𝒂𝒙 10kW 

𝑷𝒆𝒙
𝒎𝒂𝒙 10kW 

𝑬𝒆𝒔
𝒊𝒏𝒊/𝑬𝒆𝒗

𝒊𝒏𝒊 2.5kWh/22kWh 

𝑽𝒆𝒔
𝒊𝒏𝒊/𝑽𝒆𝒗

𝒊𝒏𝒊 $2005/$5500 

𝑽𝒆𝒔
𝒔𝒂𝒍/𝑽𝒆𝒗

𝒔𝒂𝒍 $125/$1122 

𝑹𝒆𝒔/𝑹𝒆𝒗 0.5/0.8 
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Figure 4.2: Load power and energy price profiles with hourly and 5-minute resolutions for the case study of chapter 4 

 The estimated SoC trend of ESS when it is scheduled by a day-ahead model with an hourly 

granularity and also when it is scheduled by an hour-ahead model with a 5-minute granularity are 

depicted in figure 4.3. These graphs show that ignoring the battery wear in the UC model could 

lead to an intense charging/discharging regime where the battery is cycled with large depth-of-

discharge levels from and to extreme state-of-charge levels. Whereas incorporation of the proposed 

battery wear model caused the SoC of the battery to avoid going towards the extremes to a large 

extent. As a matter of fact, the UC model which is equipped with the wear model is able to recognize 

whether charging or discharging the battery to the extreme SoCs is worth it financially with regards 

to the cost of energy and battery wear. It can also be seen that when battery wear is neglected, the 

hour-ahead SoC tends to follow its day-ahead trend. However, the inclusion of battery wear makes 

the battery power and consequently SoC fluctuate constantly around the day-ahead optimization 

outcomes to achieve the optimal results. The SoC fluctuation domain for the intra-hourly cases 

directly depends on the variance of intra-hourly input data with respect to the hourly data.  
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Figure 4.3: SoC variations of ESS for one day, resulted from hourly and intra-hourly battery scheduling with and 

without consideration of degradation 

The trend and rates of capacity loss associated with the operation of ESS are presented in figure 

4.4 and table 4.2 respectively. According to the employed battery wear model, it was expected that 

the capacity loss of a cycled battery would depend on two factors. The DoD of charging/discharging 

attempt and the initial and final SoCs of every cycle/half cycle. The degradation results for the ESS 

also prove that idea, as small SoC fluctuations which correspond with small DoDs lead to small 

degradation rates, especially if they are located in the mid-range. No SoC variation corresponds 

with no charging or discharging events which lead to no capacity loss. However, larger SoC 

variations (larger DoDs) lead to larger wear rates, especially if they lead to extreme rates of SoCs. 

The results show that for both cases that consider and ignore battery wear, capacity loss caused by 

intra-hourly optimization almost tracks a similar trend as in hourly optimization. It shows that the 

energy storage system lost up to more than half a Watt-hour capacity per hour as a result of ignoring 

the battery wear. While considering the wear in the problem could keep the maximum hourly 

capacity loss under 10% of that. The close similarity of the wear trends in hourly and intra-hourly 
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simulations especially when battery wear is not addressed in the model is because SoC in the intra-

hourly case follows a similar trend as in the hourly case. 

 

Figure 4.4: Capacity loss of ESS for one day, resulted from hourly and intra-hourly battery scheduling with and 

without consideration of degradation 

Table 4.2: Impact of granularity and consideration of battery degradation on the capacity loss of ESS over one day 

Optimization Horizon Optimization Granularity 
Employed 

Degradation Method 

Capacity loss of ESS 

(kWh) 

Day-ahead 1 hour None 0.00622 

Day-ahead 1 hour 
DoD-associated wear 

from irregular cycling 
0.00007 

Hour-ahead 
1 hour / 

5 minutes 
None 0.00728 

Hour-ahead 
1 hour / 

5 minutes 

DoD-associated wear 

from irregular cycling 
0.000218 

 

The SoC trends for the EV battery under the four simulated scenarios have been illustrated in figure 

4.5. In these cases, we can see that a basic objective function that merely aims at minimizing the 

apparent energy cost leads to discharging attempts to SoCs under 20% for both hourly and intra-
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hourly cases with minimal differences between the two. As a matter of fact, in a real-life scenario 

where battery wear is not studied, the differences in SoC trends in day-ahead and hour-ahead 

optimizations solely stem from the deviations of the hour-ahead predictions of solar irradiance, 

load profile, and energy tariffs from their day-ahead predictions. After integrating battery wear into 

the model, the battery avoids what the algorithm considers as “unnecessary discharging” which 

causes unjustified capacity losses. As a result, the state of charge of the battery varies around the 

mid-range almost half of the day. Also, the SoC amounts in the hour-ahead optimization do not 

follow the exact trend of the day-ahead optimization. This is since hour-ahead optimization with 

intra-hourly resolution and updated input data might show that decision of day-ahead optimization 

for cycling the battery within every hour is not necessarily optimal. To conclude, apart from 

lowering the capacity fade of batteries, incorporating the battery degradation into the UC model 

also leads to the maximum employment and involvement of batteries in an optimal fashion. 

Whereas neglecting it leads to sub-optimal employment of battery capacity, especially in models 

with intra-hourly resolution. 
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Figure 4.5: SoC variations of EV battery for one day, resulted from hourly and intra-hourly battery scheduling with 

and without consideration of degradation 

The trends and magnitudes of capacity loss associated with the operation of the EV battery are 

provided in figure 4.6 and table 4.3 respectively. According to these results, the capacity fade of 

EV battery when battery degradation is neglected could surpass 0.9 Wh in an hour due to deep 

discharging events. The maximum wear rate occurs when the battery is being discharged at the 

lowest SoC. Avoiding unnecessary discharging attempts when the energy management algorithm 

addresses the wear rate leads to significantly lower amounts of capacity loss (under 0.1 Wh/hour) 

in the first hours of the EV’s stay. Nevertheless, within the last seven hours that EV is parked at 

home, due to the necessary charging attempts, the capacity loss rises for all the cases.  
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Figure 4.6: Capacity loss of EV battery for one day, resulting from hourly and intra-hourly battery scheduling with and 

without consideration of degradation 

Table 4.3: Impact of granularity and consideration of battery degradation on the capacity loss of EV battery over one 

day 

Optimization Horizon Optimization Granularity 
Employed 

Degradation Method 

Capacity loss of EV 

Battery (kWh) 

Day-ahead 1 hour None 0.00526 

Day-ahead 1 hour 
DoD-associated wear 

from irregular cycling 
0.00097 

Hour-ahead 
1 hour / 

5 minutes 
None 0.00469 

Hour-ahead 
1 hour / 

5 minutes 

DoD-associated wear 

from irregular cycling 
0.00101 

 

Finally, the peak power of the home is provided in figure 4.7 as an index for the home’s impact on 

the grid under the different studied scenarios. In this graph, negative values represent the power 

drawn from the grid and positive values represent the power delivered to the grid. During most of 

the morning time, due to the abundance of solar generation, power is delivered to the grid in all the 

scenarios. However, the daily peak power takes place at the time of load peak around 9 AM. 
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Although studying the peak power for a single day would not be sufficient to make a certain 

conclusion about the impact of the model structure on the peak power and also the differences 

between the peak of the day are small among the cases, however, the two cases that have hourly 

resolution led to the larger peak power compared to the intra-hourly cases. 

 

Figure 4.7: Peak power of home for one day, resulted from hourly and intra-hourly battery scheduling with and 

without consideration of degradation 

Now that the UC model has been solved with hourly and intra-hourly resolutions, it should be 

mentioned that the results of battery degradation especially for the intra-hourly simulation may 

suffer from a lack of high accuracy due to different reasons. First and foremost, as explained in 

chapter 3, the wear model which is incorporated into the MIP UC problem is a simplified version 

of a more complicated model which was represented in equations (3.20) to (3.23). The 

simplification was done to reduce the nonlinearity of wear equations so they can be implemented 

by a typical commercial MIP solver. This simplification comes with a price which is deteriorating 

the precision of the wear model when it is incorporated into the MIP model. Moreover, when 

solving a UC problem equipped with the battery wear model for short terms and using the real data, 

some of the parameters such as wear coefficients and capacity loss in short periods could become 
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so small relative to the size of the battery capacity. This could cause difficulties for a typical 

mathematical solver to solve the model and lead to producing inaccurate results or numerical flaws 

and inconsistencies. In this regard, proper configuration of mathematical solver would be an 

important step in obtaining reliable results. However, solvers may not be able to handle very small 

values (e.g., <10−5) in a MIP problem. In these cases, it could possibly be helpful to scale up the 

entire variables and parameters and scale them down again after the solutions have been produced. 

However, regardless of the inaccuracies of a simplified incorporated degradation model in 

estimating the degradation of batteries throughout cycling procedures, this work has demonstrated 

how effective the proposed wear model could be in reducing the capacity loss and saving cost and 

carbon emission. Nevertheless, after the UC problem has been solved and the charging/discharging 

power of batteries has been produced, the capacity loss of batteries can be calculated with higher 

precision by applying the original wear model to the SoC trend of batteries. In this case, as the 

calculations could be done in an offline fashion separate from the main MIP model, the original 

highly nonlinear wear model could be applied to the SoC variations to find the predicted capacity 

losses with better accuracy. This trend could also be applied in a real-time testing scenario, where 

batteries are first scheduled by a MIP unit commitment model, and then operated in real-time 

according to their produced schedule. Then, during the operation of batteries, the capacity losses 

could be calculated by applying the original wear model which could be implemented and run in 

the same simulation platform.  

4.2 A controller-hardware-in-the-loop approach to investigate the battery 

degradation 

 

In the previous chapters, the simulations were carried out in an offline fashion using a MIP solver, 

where the model is optimized, and it provides different control and state variables including the 

battery power schedule for the next day as well as the battery wear estimations. However, to test 

the presented unit commitment and battery wear models in real-time and under operational 
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conditions, a hardware-in-the-loop simulation setup was developed for this work in the Laboratory 

of Control Systems and Mechatronics of Saint Mary’s University. The developed system is a 

controller-HIL (C-HIL) setup based on a Typhoon-HIL platform [139] and is comprised of 

hardware and software components. The software part includes the “Schematic Editor” and the 

“HIL SCADA” environments which are accessible through the “Typhoon-HIL Control Center” 

package. The hardware part includes the HIL 402 device, control cards, and an interface card used 

to provide signal processing between the control cards and the HIL device. Figure 4.8 shows the 

hardware components of the employed C-HIL testbed. 

 

Figure 4.8: The C-HIL testbed, including the HIL402 device, control cards, and interface boards 

The power stage of the system is developed in the Schematic Editor and the control and monitoring 

stage is developed in the HIL SCADA environment. In this work, EV and ESS are modeled with 

the Li-ion batteries without any additional battery or thermal management systems, and they are 

available from the Schematic Editor library. These battery models mimic the electrical 
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characteristics of real Li-ion batteries such as nominal voltage, capacity, full-charge voltage, 

nominal discharge current, internal resistance as well as the voltage-SoC curve of the battery. 

However, this battery model itself does not include any degradation model. The following figure 

4.9 demonstrates the schematic of the power stage of the C-HIL model built inside the Schematic 

Editor. 

 

Figure 4.9: Schematic of the power stage of the employed C-HIL setup inside Schematic Editor 

With regards to the grid-connected inverters, there are two major types of them used in this platform 

that are different in control and characteristics. These two types of inverters are “Switch Inverters” 

which are composed of the real switch models and “Average Inverters” which model the 

functionality of switch inverters, however without using switches. In order to operate switch 

inverters, their switches need to be triggered in a controlled way by an internal or external source. 

In this work, the two inverters that are used for batteries are of switch type and they can provide a 

bi-directional power flow for charging and discharging batteries. These two inverters are controlled 

externally by using real control cards that function as the “hardware” part of the simulation in the 

context of the “hardware-in-the-loop” simulation. This control card provides the PWM signals for 
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the gates of the six inverter switches. Figure 4.10 shows the schematic of the inverter’s power stage 

as well as the exchanged signals between the battery inverters and their control circuit, and figure 

4.11 shows the schematic of the control stage of the battery inverters. The corresponding power 

reference values are sent to the inverters from EMS by the 𝑃𝑟𝑒𝑓input. 

 

Figure 4.10: Grid-connected battery inverter and its corresponding input and output signals in relation to its local 

controller [139] 

The battery inverters are controlled by a PID-based grid-following control algorithm as shown 

below. The active and reactive power references are sent to the controller by an upper stage control 

level (energy management algorithm). It is worth noting that in this work the reactive power control 

is not taken into consideration and only active power is addressed. As can be seen from this figure 

4.11, after calculating the proper trigger signal, the SVPWM module provides the trigger to the 

switch gates.  
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Figure 4.11: Schematic of the local control of the grid-connected battery inverters [139] 

Regarding the photovoltaic components of the system, the PV array is introduced by the I-V 

characteristic of a desirable PV array. This characteristic can be produced inside the “Waveform 

Generator” of the Typhoon-HIL control Center package. Since in this grid-connected system, the 

PV inverter is supposed to always work at the maximum power point (MPP) and there is no need 

for PV power control and curtailment, the “Average PV Inverter” was used for this application 

which runs the PV array using MPPT algorithm. Opposite to the switch inverters that are controlled 

externally via a control card, the Average PV Inverter is controlled locally by an integrated control 

algorithm which is embedded inside the inverter’s package in the Schematic Editor environment. 

The schematic of the PV inverter is depicted in figure 4.12.  
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Figure 4.12: Schematic of the Average grid-connected PV inverter 

As the studied microgrid is of the AC-bus type, the battery and PV inverters are connected to a 

three-phase AC bus. Also, connected to the AC bus, there is the grid that maintains voltage and 

frequency for the system as well as (typical) loads which can be estimated by load prediction and 

provided as a profile (array) to the model.  

Once the microgrid is operating in the Schematic Editor environment, the control and monitoring 

processes can be done on different levels of the control hierarchy inside the HIL SCADA 

environment. One significant feature of the utilized platform is that users can plan any desirable 

action using Python coding and Python facilitates the employment of all the available resources of 

Typhoon-HIL. Several widgets in HIL SCADA provide the option of coding and implementing 

comprehensive energy management programs. Also, the Analog and digital electric signals of the 

microgrid can be monitored in real-time on this window. Alternatively, these signals can be 

recorded for offline analysis in other tools such as MATLAB. Thus, the developed energy 

management system including its corresponding battery degradation model was implemented 

through Python in the HIL SCADA environment. Starting, managing, and stopping the power units 

are carried out in this window. The nominal and seamless operation of a microgrid demands the 

precise deployment of hardware and software components in the right sequence. Figure 4.13 shows 

the SCADA window of the system. The inputs of the power system such as the grid voltage, solar 

irradiance, and temperature are specified in this environment. These values could be given as a 
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fixed amount or a profile that could be built or imported from outside. 

    

Figure 4.13: SCADA panel of the developed C-HIL setup 

With regards to the hardware components of the utilized C-HIL platform, it is composed of three 

types of components. A Typhoon HIL 402 machine is used for emulating the power stage of 

microgrids which could provide a bi-directional connection between the simulated power system 

and an external controller. Two TMDSCNCD2808 control cards from Texas Instruments (TI) are 

used to control the battery inverters. In order to facilitate the connection of the TI control cards to 

the HIL machine, there is a need for an interface device. Therefore, a uGrid DSP interface 2.1 board 

from Typhoon-HIL is used as an interface for the control cards and HIL machine which also serves 

for downloading the codes into the control cards. The development of the inverter control algorithm 

which is programmed into the control cards can be done through different third-party platforms 

such as MATLAB Simulink. The communication between the HIL SCADA environment which 

generates the reference power signals for the control cards and the control cards is done through a 

serial link which runs from the computer to the interface board. The developed C-HIL system was 

set up for implementation of the proposed UC algorithms and observing the results (e.g., battery 

SoC variations, battery degradation, peak power, etc.) in a realistic experiment. Figure 4.14 shows 

the entire C-HIL simulation testbed including the power and control stages.  
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Figure 4.14: The C-HIL simulation setup 

To sum up, to carry out the experimentation stage, first the MIP model is built and optimized as 

explained in the previous chapters. After the optimal results are produced by the MIP solver and 

the reference (battery power) values for the next optimization horizon are obtained, they can be 
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applied to the batteries in real-time. Hence, in the simulation stage, the obtained reference points 

of batteries are provided to the control cards of their respective inverters during the real-time 

simulation process. The power stage of the microgrid is operated on the HIL device and the entire 

system’s operation is monitored and controlled in the HIL SCADA window. Any desirable signal 

from the system such as batteries’ SoCs or the capacity loss values which are calculated online 

through integrated wear model formulations can be monitored in this environment. The HIL testing 

can demonstrate the accuracy and reliability of the optimization results when they are then 

compared with the offline-calculated results obtained from mathematical models of systems. For 

example, the HIL simulation results determine if batteries can be cycled to the desirable SoCs as 

anticipated from the optimization results. Hence, it can show if developed energy management 

algorithms can be applied in real-life cases. The MIP unit commitment model in this work was 

tested for both hourly and intra-hourly time granularities when they incorporate and omit the battery 

degradation model. For all cases, the system was operated using the irradiance, load, and energy 

tariffs obtained from [137], [138], and [101], respectively. Figure 4.15 shows the microgrid 

waveforms including the grid-supplied current, EV battery current, ESS current, PV inverter 

current and load current.  
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Figure 4.15: Real-time output waveforms of the microgrid components, from top to bottom: grid current, EV inverter 

current, ESS inverter current, PV inverter current and load current 

4.3 Results of the C-HIL simulation 

 

The SoC trends and capacity losses of the ESS and EV battery measured by the HIL setup are now 

presented in this section. Regarding the SoC variations of ESS which are demonstrated in figure 

4.16, expectedly it was seen that lack of consideration of battery wear in the model led to large SoC 

variations (large DoDs) for both hourly and intra-hourly model granularities. However, by 

incorporating the wear model, the SoC trend shifted towards the larger SoCs to avoid causing high-

capacity losses due to deep discharging attempts. Moreover, the domain of the fluctuations shrunk 

which shows lower DoDs in this case. Intra-hourly optimization for the case that takes into account 

the battery degradation leads to much more SoC fluctuations compared to the case that neglects it. 

Comparing the hourly and intra-hourly scenarios shows that in intra-hourly simulation, the SoC 

levels at every hour could deviate from their corresponding values in hourly simulation. This is 

because of the imperfections of the experimental testbed such as latencies and losses. For instance, 

in the experimental real-time simulation, the batteries show nonidealities, while in the numeric 
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simulation they are assumed as ideal components. Power converters and measurement components 

also cause energy losses in the experimentation, while in the numeric simulation they are ignored. 

In practice, mismatches between the day-ahead predictions and real-time levels of solar irradiance 

or load profile can also lead to this anomaly. 

 

Figure 4.16: SoC variations of ESS for one day, resulted from hourly and intra-hourly battery scheduling with and 

without consideration of degradation and obtained from C-HIL simulation 

Figure 4.17 and Table 4.4 show the trend and amount of capacity fade in the energy storage system 

measured in the real-time HIL simulation for four different UC strategies. It shows that large 

fluctuations of ESS SoC when the capacity loss is omitted lead to large capacity fade associated 

with high DoDs. In fact, deep discharging attempts at the lowest levels of SoC lead to the largest 

degradation rates as shown in the graphs. The hourly and intra-hourly scenarios showed similar 

capacity fade trends for all the periods that had similar SoC variations. The incorporation of battery 

wear expectedly reduced the wear rate as battery cycles were carried out with low DoDs at the 

larger half of the SoC spectrum. The intra-hourly scheduling also showed larger capacity losses as 

the battery functions more frequently in that case which is considerable. It shows that more frequent 
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battery dispatching although may seem promising in providing high energy efficiency, may lead to 

more severe battery wear that could possibly exceed its benefits. 

 

Figure 4.17: Capacity loss of ESS for one day, resulted from hourly and intra-hourly battery scheduling with and 

without consideration of degradation and obtained from C-HIL simulation 

Table 4.4: Impact of granularity and consideration of battery degradation on the capacity loss of ESS over one day 

obtained from HIL simulation 

Optimization Horizon Optimization Granularity 
Employed 

Degradation Method 

Capacity loss of ESS 

from HIL Simulation 

(kWh) 

Day-ahead 1 hour None 0.007701 

Day-ahead 1 hour 
DoD-associated wear 

from irregular cycling 

0.001050 

 

Hour-ahead 
1 hour / 

5 minutes 
None 0.006842 

Hour-ahead 
1 hour / 

5 minutes 

DoD-associated wear 

from irregular cycling 
0.003129 

 

The SoC variations of the EV battery obtained from the real-time HIL simulation are provided in 

figure 4.18. As expected, in the two cases that neglect the battery degradation, the battery was 
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discharged during the initial four hours of the EV’s stay. After that, as the battery has become 80% 

empty, it needs to be charged continuously for 10 hours to make sure it will reach the desirable 

final SoC before departure. Similar to the ESS, the SoC caused by the hour-ahead simulation tracks 

the same path as that of the day-ahead simulation. However, the two cases that took into account 

the battery wear refused to discharge the battery considerably in the first hours to avoid unnecessary 

degradation costs. In these cases, the SoC mostly remained around the mid-range with mild 

charging/discharging attempts (more obvious in the intra-hourly case) which were justified in terms 

of profitability. In these cases, as the EV battery is not discharged largely during the first hours of 

stay, it can be charged up in the last 8 hours. 

 

Figure 4.18: SoC variations of EV battery for one day, resulted from hourly and intra-hourly battery scheduling with 

and without consideration of degradation and obtained from C-HIL simulation 

Finally, the trends and values of capacity fade of EV battery derived from the HIL simulation is 

represented in figure 4.19 and table 4.5. Again, not considering the battery wear led to larger 

capacity fade with their maximum (worst) values taking place around the times that the battery is 

discharged at the minimum SoCs. The close similarity of SoC graphs in hourly and intra-hourly 

cases led to the similarity of their corresponding wear rates. The Conservative approach for cycling 
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the EV battery in the first few hours when battery wear is taken into account leads to largely lower 

wear rates during those hours of the day. Smaller model granularity showed that it is capable of 

causing more capacity loss due to the more SoC fluctuations. As an implication of this simulation, 

it could be said that picking the right model resolution for a UC problem requires an initial 

investigation of the potential wear-associated costs as well as the resulting energy costs for every 

possible resolution. It is important to note that the larger wear rate caused by intra-hourly unit 

commitment in this case study does not necessarily show that hourly battery scheduling is superior 

to the intra-hourly type. In fact, battery degradation costs and energy costs themselves depend on 

other factors such as the energy fees, battery costs, system size, renewable energy generation, etc. 

Hence, depending on these factors, a comprehensive case study may identify an hourly or intra-

hourly resolution, as more favorable.  Moreover, it is worth mentioning that the difference in battery 

wear between the cases that consider, and neglect battery wear showed to be much smaller than the 

difference of the same set of parameters generated from the numerical simulation. This shows the 

importance of real-time testing in obtaining results with better accuracy.  

 

Figure 4.19: Capacity loss of EV battery for one day, resulted from hourly and intra-hourly battery scheduling with 

and without consideration of degradation and obtained from C-HIL simulation 



153 
 

Table 4.5: Impact of granularity and consideration of battery degradation on the capacity loss of EV battery over one 

day obtained from HIL simulation 

Optimization Horizon Optimization Granularity 
Employed 

Degradation Method 

Capacity loss of EV 

Battery from HIL 

Simulation (kWh) 

Day-ahead 1 hour None 0.003643 

Day-ahead 1 hour 
DoD-associated wear 

from irregular cycling 

0.001617 

 

Hour-ahead 
1 hour / 

5 minutes 
None 0.003602 

Hour-ahead 
1 hour / 

5 minutes 

DoD-associated wear 

from irregular cycling 
0.002218 
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Chapter 5: MIP unit commitment in microgrids with 

multiple beneficiaries 
 

 

With the development of smart grid technology and the expansion of microgrids and distributed 

generation, generation and management of power are going to be handled increasingly by microgrid 

operators and users. In a generic microgrid, it would be probable to have different users with 

different interests and objectives. For instance, when a microgrid is owned and operated by a group 

of users in a building or neighborhood [23], or when it is employed by an organization (e.g., 

company, university, etc.) in a public place [5] where it benefits the organization or business owner 

itself and the people who may use the microgrid facilities for their personal use. For example, when 

a company employs a microgrid including EV charging facilities at its office building, the 

microgrid will be utilized by the company itself and the staff who charge their electric vehicles at 

the workplace. In the context of optimization, these cases where different parties have different 

interests in a single microgrid can be addressed by applying multi-objective models. However, 

when different parties have different interests that could be contradictory, it will be very important 

to have a concise knowledge of the system operation to have all the parties, benefit fairly. One 

crucial subject to address in these problems is the battery degradation issue as neglecting this issue 

could lead to unpredicted financial losses and environmental pollution which could be even worse 

compared to the cases where microgrid is possessed by a single entity. In fact, in a microgrid with 

multiple beneficiaries, neglecting the battery wear problem could potentially damage all the users. 

Therefore, this could lead to large financial losses and users’ dissatisfaction which could adversely 

undermine the public’s opinion on the joint utilization of microgrids or charging EVs in public 

places. Hence, it is important to address the battery degradation issue in every UC problem that 

aims at serving the interests of different entities. This chapter aims to study the fair and optimal 
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operation of a microgrid in a public place where different people with different interests want to 

benefit from the microgrid.   

5.1 Building MIP model for a commercial building with an EV charging station 

 

When it comes to studying the multi-beneficiary microgrid optimization problems, probably one 

of the most common cases is microgrid-equipped public buildings where different users and 

particularly EV users commute to and benefit from the microgrid in a direct way such as charging 

their EVs or gaining any revenues. Workplaces such as office buildings, university campuses, or 

health clinics with parking lots are highly capable of employing PV/battery-based microgrids and 

providing charging services to the EVs. Charging EVs at workplaces using locally generated PV 

power has several advantages, including: 

1. EV batteries provide a storage capacity for excess PV energy. 

2. As EVs are typically parked for long times, it is a good opportunity for providing V2X 

services including offering energy and ancillary services. 

3. Lower cost of charging from PV compared to the grid as well as zero-carbon emission. 

4. PV and EVs can diminish the adverse impact that they could have on the grid through their 

mutual operation [5]. 

The load demand of public charging facilities can be divided into two types, namely uncoordinated 

and statistical. The former type refers to the EVs that have no specific charging pattern such as the 

taxies, whereas the latter can be modeled statistically depending on several parameters such as 

working hours and day of the week [8]. Although both types of loads have been addressed in the 

literature, however, the second group that has a specific commuting pattern is more likely to receive 

an optimal charging regime because there is no need to consider any uncertainty or randomness in 

their scheduling algorithms. For instance, the employees of workplaces that have specific 

commuting times or even designated parking spots can have their EVs integrated into the local 
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microgrid to have them charged optimally or potentially make revenues from offering V2X 

services. Hence, as this chapter is focused on optimal unit commitment in microgrids with multiple 

beneficiaries, only those EVs have been addressed in this work that has a specific commuting 

routine. Another point to consider is concerned with the charging power. As the proposed battery 

wear in this work does not take into account the C-rate and the temperature, DC (fast) charging 

stations and such places where batteries are exposed to high charging rates and possibly high 

temperatures are not subject to this study.   

Traditionally, there are three types of “non-optimal” strategies for charging EVs in parking lots. 

These strategies are immediate charging in which the EV is charged immediately with the nominal 

power rating of charging equipment once it arrives at the parking spot. This is the simplest and 

fastest charging type and does not require any communication and information about the user and 

EV, however, this method causes the most stress on the grid/microgrid. The other type of charging 

is the average rate, where the EV is charged with the minimum possible power rating during its 

stay time in such a way that it can be fully charged by the time of departure. In this mode, the user’s 

arrival, departure, and required energy are needed for making the charging plan. Employing this 

method helps spread the EVs demand throughout the day and poses less stress on the 

grid/microgrid. The third method would be to start charging the EV with a delay and with the 

nominal rating of the equipment. This method also prevents the accumulation of EV demand around 

a certain time of day [5]. However, a sophisticated “optimal” battery scheduling program should 

be able to determine “when” to charge or discharge “which” EV and with “how much” power. 

However, this level of scheduling precision requires the microgrid controller system to have the 

luxury of accessing detailed information about every EV and their owner preferences, future (e.g., 

next day, next hour) renewable energy generation, future energy tariffs, and future load profile. 

Moreover, there must be sophisticated battery cycling facilities in place that are capable of 

receiving reference signals from a central controller and charging or discharging EVs with 
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continuous amounts of power. In this regard, the optimal UC problem for a workplace building 

facilitated with PV, ESS, and EV chargers has been addressed in this section. The studied microgrid 

of this chapter is depicted in figure 5.1. 

 

Figure 5.1: Workplace AC-bus microgrid 

To study the UC problem and the impact of battery degradation in a commercial building, the 

battery scheduling problem for a workplace is addressed in this section. Similar to the previous 

chapters, a MIP-based UC model is presented and used for a case study. In this regard, a small-

sized commercial building with 10 kW nominal photovoltaic generation, a 40-kWh energy storage 

system, and a parking lot equipped with six EV chargers have been considered for the case study. 

The solar irradiance, load profile of the office, and energy tariffs were derived from [102], [140], 

and [141] respectively. As for the EVs, some of the prevalent vehicles from the major 

manufacturers were selected for this case study, including Smart ED, BMW i3, Nissan Leaf, Opel 

Corsa, Tesla Model 3, and Tesla Model S. The battery capacities of these vehicles range from 16.5 

to 90 kWh. The battery specifications of every EV (size and ratings, N(D), prices) are supposed to 

be provided by their owners to the MG controller. In this case study, apart from N(D), the other 

specifications of the EV batteries have been obtained from their corresponding datasheets. 

However, the N(D) data that was employed in the previous case studies have been used for all the 
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EVs in this case study as well, as they are hypothetically assumed to benefit from Li-ion batteries 

with the same chemistry. Also, the arrival and departure times of every single EV must be provided 

by their owners and incorporated into the model. However, in this work, the arrival time of all 

vehicles is considered to be the beginning of the work hours (9 AM) and their departure time is 

considered to be the end of the work hours (5 PM).  

In this regard, first, the MIP model of the problem is formulated by presenting the MIP constraints 

associated with the system and the constraints associated with the battery degradation [142]. Apart 

from those model constraints that involve EV parameters, the rest of the constraints are similar to 

those of the smart home model which were provided in constraints (2.23)-(2.38), (2.48), (2.57)-

(2.58) of chapter 2 and the wear-associated equations (3.27)-(3.39) of chapter 3. This is because 

regardless of the different scale of load profile, PV generation, and ESS size, the general equations 

that model these components in a smart home and a smart office could be similar. Regarding the 

EVs, just like the smart home problem where the information and specifications of the EV and its 

battery (e.g., initial capacity, initial price, salvage price, charge rating, battery type, arrival, and 

departure times) should be provided by the user for the microgrid control system, for the case of 

office, also this information needs to be provided by the EV owners (office employees) for the 

system controller. That’s why this algorithm is not suitable for charging random EVs as it needs to 

have some information about the technical specifications of every EV. It should also be emphasized 

that the proposed UC model addresses the EVs in an individual fashion rather than considering 

them as a flock of storage components. Therefore, the MIP constraints associated with EVs are laid 

out individually. The advantage of this approach is that every EV can be scheduled in the most 

optimal way which is desirable for the EV owners. Also, every EV can be modeled as a separate 

module in the implementation process of the algorithm which makes it straightforward. However, 

the downside of this approach is that addressing EVs individually could make the MIP model large 

and potentially hard to solve in cases of larger EV numbers. Hence, it will be a more complex and 
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harder model to solve which may necessitate the employment of more powerful computing 

equipment for the system. As an example, the study in [69] reports that finding the result for each 

EV at each stage of optimization in multi-stage algorithms takes between 1 to 10 seconds. One 

common way to reduce the computational time of optimization problems is by sacrificing the 

accuracy of the optimization results by changing the MIP gap [69]. 

As a result, this algorithm is useful for cases where the number of EVs is not large (such as in large 

apartment/office buildings, industrial complexes, shopping malls, etc.) and it is proportional to the 

available computational resources. Hence, a small office building is a good applicable example for 

this algorithm as it does not have numerous EV chargers, the EV owners regularly commute to that 

place so there is a possibility to obtain the EVs’ information from their users. And also, there is 

some sort of mutual benefit for all parties (company and EV owners), therefore, EV owners would 

be willing to come into an agreement to have their EV batteries cycled during the stay times. In this 

regard, all the constraints that differ from the previously provided ones are provided as follows. 

Equation (5.1) enforces the fact that the available discharge power of every EV during its stay time 

is partly consumed locally at the office and partly delivered to the grid. Equations (5.2) and (5.3) 

limit the maximum charging and discharging power of every EV according to its characteristics for 

its stay period. The stored energy in the battery of every electric vehicle at every interval is modeled 

by equation (5.4), the primary state of energy, as well as maximum, minimum and final states of 

energy for every EV, are enforced by (5.5) to (5.8). Equation (5.9) enforces the fact that the 

charging or discharging power for every EV outside its parking period is zero. 

𝑃𝑒𝑣
𝑛,𝑚,𝑐𝑜𝑛 + 𝑃𝑒𝑣

𝑛,𝑚,𝑒𝑥 = 𝑃𝑒𝑣
𝑛,𝑚,𝑑𝑖𝑠 × 𝜂𝑒𝑣

𝑑𝑖𝑠    ∀𝑛 ∈ [𝑛𝑎, 𝑛𝑑], ∀𝑚 ∈ 𝑀 (5.1) 

𝑃𝑒𝑣
𝑛,𝑚,𝑐ℎ ≤ 𝑈𝑒𝑣

𝑛,𝑚 × 𝑃𝑒𝑣
𝑚,𝑐ℎ            ∀𝑛 ∈ [𝑛𝑎, 𝑛𝑑], ∀𝑚 ∈ 𝑀 (5.2) 

𝑃𝑒𝑣
𝑛,𝑚,𝑑𝑖𝑠 ≤ (1 − 𝑈𝑒𝑣

𝑛,𝑚) × 𝑃𝑒𝑣
𝑚,𝑑𝑖𝑠    ∀𝑛 ∈ [𝑛𝑎, 𝑛𝑑], ∀𝑚 ∈ 𝑀 (5.3) 
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𝑆𝐸𝑒𝑣
𝑛,𝑚 = 𝑆𝐸𝑒𝑣

𝑛−1,𝑚 + (𝜂𝑒𝑣
𝑐ℎ × 𝑃𝑒𝑣

𝑛−1,𝑚,𝑐ℎ × 𝐺) − (𝑃𝑒𝑣
𝑛−1,𝑚,𝑑𝑖𝑠 × 𝐺)  ∀𝑛

∈ [𝑛𝑎 + 1, 𝑛𝑑 + 1]  ∀𝑚 ∈ 𝑀 

(5.4) 

𝑆𝐸𝑒𝑣
𝑛,𝑚 = 𝑆𝐸𝑒𝑣

𝑚,𝑖𝑛𝑖              𝑛 = 𝑛𝑎 , ∀𝑚 ∈ 𝑀 (5.5) 

𝑆𝐸𝑒𝑣
𝑛,𝑚 ≤ 𝑆𝐸𝑒𝑣

𝑚,𝑚𝑎𝑥           ∀𝑛 ∈ [𝑛𝑎 , 𝑛𝑑 + 1], ∀𝑚 ∈ 𝑀 (5.6) 

𝑆𝐸𝑒𝑣
𝑛,𝑚 ≥ 𝑆𝐸𝑒𝑣

𝑚,𝑚𝑖𝑛          ∀𝑛 ∈ [𝑛𝑎 , 𝑛𝑑 + 1], ∀𝑚 ∈ 𝑀 (5.7) 

𝑆𝐸𝑒𝑣
𝑛,𝑚 ≥ 𝑆𝐸𝑒𝑣

𝑚,𝑐ℎ     𝑛 ≥ 𝑛𝑐ℎ ∈ [𝑛𝑎, 𝑛𝑑], ∀𝑚 ∈ 𝑀 (5.8) 

𝑃𝑒𝑣
𝑛,𝑚,𝑐𝑜𝑛 = 𝑃𝑒𝑣

𝑛,𝑚,𝑒𝑥 = 𝑃𝑒𝑣
𝑛,𝑚,𝑐ℎ = 𝑃𝑒𝑣

𝑛,𝑚,𝑑𝑖𝑠 = 𝑆𝐸𝑒𝑣
𝑛,𝑚 = 0           ∀𝑛 ∉ [𝑛𝑎, 𝑛𝑑], ∀𝑚 ∈ 𝑀 (5.9) 

 In the office case, 𝑛𝑎 and 𝑛𝑑 correspond to the arrival and departure intervals of EVs and can be 

received from the EV owners. Similar to the previous models, 𝑛 represents the interval. Moreover, 

in this model, 𝑚 denotes the number of EVs in the set of 𝑀 EVs. Hence, 𝑃𝑒𝑣
𝑛,𝑚,𝑐𝑜𝑛

 represents the 

consumed portion of the battery power at the 𝑛𝑡ℎ interval for the 𝑚𝑡ℎ EV. 𝑃𝑒𝑣
𝑛,𝑚,𝑒𝑥

 denotes the 

exported portion of battery power at the 𝑛𝑡ℎ interval for the 𝑚𝑡ℎ EV. 𝑃𝑒𝑣
𝑛,𝑚,𝑑𝑖𝑠

represents the 

discharging battery power at the 𝑛𝑡ℎ interval for the 𝑚𝑡ℎ EV, 𝜂𝑒𝑣
𝑑𝑖𝑠 may be assumed the same for 

all EVs as it represents the discharging efficiency of EV charging equipment. 𝑃𝑒𝑣
𝑛,𝑚,𝑐ℎ

 denotes the 

charging power for charging the 𝑚𝑡ℎ EV at the 𝑛𝑡ℎ interval, 𝑈𝑒𝑣
𝑛,𝑚

 represents the 𝑛𝑡ℎ element of 

the charging array of the 𝑚𝑡ℎ EV which has N binary members. 𝑃𝑒𝑣
𝑚,𝑐ℎ

 denotes the maximum 

charging power of the 𝑚𝑡ℎ EV which depends on its charging equipment. 𝑃𝑒𝑣
𝑚,𝑑𝑖𝑠

 represents the 

maximum discharging power of the 𝑚𝑡ℎ EV, 𝑆𝐸𝑒𝑣
𝑛,𝑚

 denotes the state of energy of the 𝑚𝑡ℎ EV 

battery at the 𝑛𝑡ℎ interval. 𝜂𝑒𝑣
𝑐ℎ also may be assumed the same for all the EVs as it denotes the 

charging efficiency of EVs. 𝑆𝐸𝑒𝑣
𝑚,𝑖𝑛𝑖

 denotes the initial state of energy of the 𝑚𝑡ℎ EV battery at the 

first interval of the model. 𝑆𝐸𝑒𝑣
𝑚,𝑚𝑎𝑥

 and 𝑆𝐸𝑒𝑣
𝑚,𝑚𝑖𝑛

 express the maximum and minimum allowed 

amounts of stored energy in the of the 𝑚𝑡ℎ EV battery respectively and 𝑆𝐸𝑒𝑣
𝑚,𝑐ℎ

 is the desirable SoE 

of the 𝑚𝑡ℎ EV at the time of departure which should be provided by the EV owners. 
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The MIP constraints associated with battery degradation of EVs are also incorporated individually 

for every EV as presented below, where equation (5.10) gives the SoC of every EV at every interval 

that the EV is parked and connected to the microgrid. Equation (5.11) enforces the relationship 

between SoC and DoD of every battery at every interval. Also, equations (5.12) and (5.13) represent 

the wear coefficient function and capacity loss constraint, respectively. 

𝑆𝐶𝑒𝑣
𝑛,𝑚 =

𝑆𝐸𝑒𝑣
𝑛,𝑚

𝐸𝑒𝑣
𝑚                ∀𝑛 ∈ [𝑛𝑎, 𝑛𝑑 + 1] 

(5.10) 

𝐷𝑒𝑣
𝑛,𝑚 = 1 − 𝑆𝐶𝑒𝑣

𝑛,𝑚         ∀𝑛 ∈ [𝑛𝑎 , 𝑛𝑑 + 1] (5.11) 

𝑊𝑒𝑣
𝑛,𝑚 = 𝑓𝑚(𝐷𝑒𝑣

𝑛,𝑚) ≈ 𝑎𝑚(𝐷𝑒𝑣
𝑛,𝑚)2 + 𝑏𝑚(𝐷𝑒𝑣

𝑛,𝑚) + 𝑐𝑚   ∀𝑛 ∈ [𝑛𝑎 , 𝑛𝑑 + 1] (5.12) 

𝐿𝑒𝑣
𝑛,𝑚 = 𝐸𝑒𝑣

𝑚,𝑜𝑝𝑡
[𝑊𝑒𝑣

𝑛,𝑚𝐷𝑒𝑣
𝑛,𝑚 − 𝑊𝑒𝑣

𝑛+1,𝑚𝐷𝑒𝑣
𝑛+1,𝑚]        ∀𝑛 ∈ [𝑛𝑎, 𝑛𝑑] (5.13) 

where, 𝑆𝐶𝑒𝑣
𝑛,𝑚

denotes the SoC of the 𝑚𝑡ℎ EV at the beginning of the 𝑛𝑡ℎ interval. 𝐸𝑒𝑣
𝑚  is the battery 

capacity of the 𝑚𝑡ℎ EV at the beginning of the current day. 𝐷𝑒𝑣
𝑛,𝑚

 represents the DoD of the 𝑚𝑡ℎ 

EV at the beginning of the 𝑛𝑡ℎ interval. 𝑊𝑒𝑣
𝑛,𝑚

 is the wear coefficient associated with 𝐷𝑒𝑣
𝑛,𝑚

. 𝑓𝑚 is 

the function that relates the wear coefficient of the 𝑚𝑡ℎ EV battery against its depth-of-discharge, 

and it differs from a battery to a battery depending on its chemistry. Once 𝑓𝑚 is curve fitted to a 

polynomial function for more simplicity, 𝑎𝑚, 𝑏𝑚 and 𝑐𝑚 are its polynomial coefficients. 𝐿𝑒𝑣
𝑛,𝑚

 

denotes the capacity loss of the 𝑚𝑡ℎ EV battery caused by the 𝑛𝑡ℎ irregular half cycle and 𝐸𝑒𝑣
𝑜𝑝𝑡,𝑚

 

is the battery capacity of the 𝑚𝑡ℎ EV at the beginning of the optimization process. 

Equation (5.14) enforces the power balance constraint to the model where the charging and 

discharging powers of EVs are addressed collectively. Equation (5.15) also introduces the fact that 

the exported power is the sum of exported components of ESS, PV, and EVs. Finally, after EVs 

depart at the end of a workday, the remaining capacity of the 𝑚𝑡ℎ EV for the next optimization 

attempt can be calculated from (5.16) which is not a model constraint.  
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∑ 𝑃𝑒𝑣
𝑛,𝑚,𝑐𝑜𝑛

𝑚

+ ∑ 𝑃𝑒𝑣
𝑛,𝑚,𝑒𝑥

𝑚

+ 𝑃𝑖𝑚
𝑛 +  𝑃𝑒𝑠

𝑛,𝑐𝑜𝑛 + 𝑃𝑒𝑠
𝑛,𝑒𝑥 + 𝑃𝑝𝑣

𝑛,𝑐𝑜𝑛 + 𝑃𝑝𝑣
𝑛,𝑒𝑥

= ∑ 𝑃𝑒𝑣
𝑛,𝑚,𝑐ℎ

𝑚

+ 𝑃𝑒𝑥
𝑛 + 𝑃𝑒𝑠

𝑛,𝑐ℎ +  𝑃𝑙
𝑛   ∀𝑛 ∈ 𝑁, ∀𝑚 ∈ 𝑀 

(5.14) 

𝑃𝑒𝑥
𝑛 = ∑ 𝑃𝑒𝑣

𝑛,𝑚,𝑒𝑥

𝑚

+ 𝑃𝑒𝑠
𝑛,𝑒𝑥 + 𝑃𝑝𝑣

𝑛,𝑒𝑥     ∀𝑛 ∈ 𝑁, ∀𝑚 ∈ 𝑀 (5.15) 

𝐸𝑒𝑣
𝑚,𝑜𝑝𝑡

= 𝐸𝑒𝑣
𝑚,𝑖𝑛𝑖 − ∑ ∑ L𝑒𝑣

𝑛,𝑚

𝑁𝑂

 (5.16) 

where, 𝐸𝑒𝑣
𝑚,𝑜𝑝𝑡

 is the battery capacity of the 𝑚𝑡ℎ EV at the beginning of the optimization process 

and 𝐸𝑒𝑣
𝑚,𝑖𝑛𝑖

 is the initial battery capacity of the 𝑚𝑡ℎ EV.  

Figure 5.2 demonstrates the algorithm of the studied UC model for a workplace.   

 

Figure 5.2: Unit commitment algorithm for a workplace microgrid built in the framework of MIP with hourly 

resolution 
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5.2 Unit commitment strategies for a microgrid with a charging station 

 

The UC strategies are concerned with the objectives, priorities, and interests of the entities that are 

going to benefit from the UC practice. From the user perspective, in a commercial building, there 

are two ends of beneficiaries, namely the organization or company that owns the building and 

microgrid and the employees of the organization that own electric vehicles and have their EVs 

charged at the workplace on a regular basis. When it comes to the cost of the system, energy 

consumption, and emission, different organizations could have different priorities and goals which 

reflect on the strategies they could implement for unit commitment. Some companies may prefer 

to keep their costs at the lowest possible rates regardless of their carbon footprint, while some 

organizations may decide to lower or possibly minimize their carbon footprint or energy intake 

from the grid. In some regions, there might be specific regulatory measures to limit the power 

drawn from the grid or the emissions of commercial buildings. Furthermore, the policies of 

companies could be different in terms of providing energy to the EVs of their employees. Some 

firms may decide to provide free electric energy to the EVs to encourage the use of EVs among 

their staff. Other companies may charge their staff for charging their EVs based on fixed or dynamic 

tariffs. In case the existing equipment can offer vehicle to building or vehicle to grid services, some 

corporations may offer agreements to their employees based on which their EVs will be charged 

and discharged locally for benefiting EV owners as the company simultaneously. By taking this 

approach, the companies will be able to use the locally available energy and pay their employees 

instead of drawing the energy from the grid and paying the utility companies. Therefore, depending 

on several factors such as the availability of technologies and DR programs as well as companies’ 

preferences about expenses, emissions, and personnel, a wide range of approaches could be taken 

by companies for cycling EVs and ESSs. In this case study, the office and EVs are supposed to 

benefit from bi-directional charging equipment that can charge and discharge EV batteries with 

continuous rates of power. It is assumed that the company can buy and sell energy from and to the 
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grid in a dynamic day-ahead market. In order to investigate the optimal unit commitment from the 

user’s perspective, three different UC strategies have been proposed in form of different sets of 

objective functions. These strategies prioritize the interests of the business owner and EV owners 

to different extents [142].  

5.2.1 Case 1: conventional strategy 

 

Similar to the case of residential buildings, the conventional strategy is to minimize the apparent 

net cost of the building for the business owner. In this strategy neither the cost of battery 

degradation nor the interest of the EV owners is taken into consideration and the interest of the 

business owners is merely considered to be the difference between apparent energy cost and 

revenues obtained from selling energy back to the grid as provided in equation (2.59) [142].  

5.2.2 Case 2: minimal costs for MG operator 

 

An optimal UC model from the perspective of the business owner requires the employment of the 

battery wear model to take into account the cost of ESS degradation. In this strategy, the real cost 

of the office building is minimized by including the net cost as well as the battery degradation cost 

of the local energy storage system [142]. The objective function is provided in (5.17). 

𝑀𝑖𝑛 ∑(𝑃𝑖𝑚
𝑛 × 𝑇𝑛,𝑏𝑢𝑦)

𝑁

+ (
𝐿𝑒𝑠

𝑛

(1 − 𝑅𝑒𝑠)𝐸𝑒𝑠
𝑖𝑛𝑖

) (𝑉𝑒𝑠𝑠
𝑖𝑛𝑖 − 𝑉𝑒𝑠𝑠

𝑠𝑎𝑙)

− (𝑃𝑒𝑥
𝑛 × 𝑇𝑛,𝑠𝑒𝑙𝑙)                                       

(5.17) 

 

5.2.3 Case 3: serving MG operator and EV owners- type 1 

 

In the two previous cases, the UC strategy was only supposed to benefit the business owner. 

However, depending on the values and policies of different organizations they may decide to 

incorporate the interest of EV owners into their energy management strategies. For instance, some 
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EV owners may come to agreements with the business owner to participate in a vehicle-to-building 

service for monetary premiums. However, EV owners would not be willing to participate in a V2X 

service if their vehicle batteries are going to be heavily exploited and worn out due to the V2X 

service. In this regard, not only would EV owners like to know how their vehicle batteries will be 

impacted by a vehicle to building service, but they would also like to have their batteries degraded 

minimally. Therefore, the UC approach provided in this section is a multi-objective strategy 

involving the real cost of the business owner and the battery degradation of every single EV. Due 

to the structure of the proposed degradation model, the objective function that aims at minimizing 

the battery wear of EVs can be implemented individually for every EV. This approach can ensure 

that all EVs are treated equally and in a fair fashion. According to this strategy, EVs will be fully 

charged by the time of departure. However, not only is the real cost of the business owner 

minimized, all the EVs are also cycled such that they experience minimal battery wear. Using this 

approach, the EV owners will be ensured that their vehicle batteries will not be extensively 

deployed which might not be worth the incentives they receive for the V2B service [142]. This 

multi-objective strategy consists of (5.17), and (5.18) for every EV. 

𝑀𝑖𝑛 ∑(𝐿𝑒𝑣
𝑛 )    

𝑁

 ∀𝑚 ∈ 𝑀       (5.18) 

5.2.4 Case 4: serving MG operator and EV owners- type 2 

 

Although addressing the battery degradation for EVs which was suggested in the previous strategy 

can minimize the costs associated with battery wear for EV owners, however, it cannot guarantee 

that EV owners will pay the minimum costs for charging their vehicles or make the maximum profit 

from having their vehicles participate in a V2B service. Therefore, as the next strategy, the 

monetary interest of EV owners is taken into consideration where the net cost of charging for every 

single EV is also incorporated into the objective functions. For the implementation of this strategy, 

it is assumed that the business owner charges and pays the EV owners for charging and discharging 
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their vehicles with the same rates of grid and feed-in tariffs. Obviously, in this case, the EV owners 

are given special consideration. This could be done at a higher cost for the business owner as 

incorporating the monetary interest of EV owners undermines the impact of the objective function 

that minimizes the costs of the business owner. The objective set of this strategy is composed of 

(5.17), (5.18), and (5.19) for every EV. 

𝑀𝑖𝑛 ∑(𝑃𝑒𝑣
𝑛,𝑐ℎ × 𝑇𝑛,𝑏𝑢𝑦 × 𝐺)  − (𝑃𝑒𝑣

𝑛,𝑑𝑖𝑠  × 𝑇𝑛,𝑠𝑒𝑙𝑙 × 𝐺)

𝑁

   ∀𝑚 ∈ 𝑀           (5.19) 

It is worth mentioning that apart from the first case which presented the conventional and inefficient 

way of unit commitment, it is not possible to select any of the other proposed strategies as the 

“best” scenario. This is due to the fact that several factors such as variations of the N(D) curve, 

initial and salvage prices of batteries, energy tariffs, and battery’s state-of-health (SoH) at the time 

of replacement (R) which depends on the user, could change the results in favor of one strategy or 

another. Hence, this research work aims to introduce the “methodology” for investigating the unit 

commitment in the workplace, thoroughly. Once sufficient computing hardware and software are 

available, by using the proposed methodology, the business owners will be able to evaluate all these 

strategies in a relatively short amount of time, discover the effectiveness of each strategy depending 

on their specific conditions and make decisions about the strategy they would like to implement 

[142]. 

5.3  Results and discussion 

 

Similar to the study of unit commitment in a residential building, to observe the performance of the 

proposed UC strategies in a commercial building, each strategy is first simulated for a single sample 

day and the results are generated. Then, each strategy is simulated for a one-month term to provide 

more reliable results. The load power and energy price profile used in this case study are shown in 

figure 5.3, and the input parameters of this case study are listed in Table 5.1. 
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Figure 5.3: Load power and energy price profiles for the case study of chapter 5 
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Table 5.1: Input parameters of the case study of chapter 5 

 

In this regard, the following are the bar charts that demonstrate the power distribution of the 

involved units throughout a day obtained from every one of the optimization strategies. Figure 5.4 

shows the UC chart for the conventional or basic case where power distribution has been done for 

achieving the minimum net price of energy, with consideration of grid tariffs and without 

addressing the efficient operation of stationary or automotive batteries. According to figure 5.5 

which demonstrates the results of case 2, as ESS degradation cost is also taken into account, the 

ESS is also cycled at relatively lower power rates which reflects in lower DoDs and consequently 

lower degradation rates. In this case, the EV batteries are cycled in favor of the office to minimize 

the real costs of the system operator. 

Input Parameter Value 

𝜼𝒆𝒔
𝒄𝒉/𝜼𝒆𝒗

𝒄𝒉 96%/96% 

𝜼𝒆𝒔
𝒅𝒊𝒔/𝜼𝒆𝒗

𝒅𝒊𝒔 96%/96% 

𝑷𝒆𝒔
𝒄𝒉/𝑷𝒆𝒗

𝒎,𝒄𝒉
 20kW/7, 7.4, 6.6, 7.4, 11, 16.5kW 

𝑷𝒆𝒔
𝒅𝒊𝒔/𝑷𝒆𝒗

𝒎,𝒅𝒊𝒔
 20kW/7, 7.4, 6.6, 7.4, 11, 16.5kW 

𝑮 1 hour 

𝑺𝑬𝒆𝒔
𝒊𝒏𝒊/𝑺𝑬𝒆𝒗

𝒎,𝒊𝒏𝒊
 24kWh/8.25, 11, 15, 25, 37.5, 45kWh 

𝑺𝑬𝒆𝒔
𝒎𝒂𝒙/𝑺𝑬𝒆𝒗

𝒎,𝒎𝒂𝒙
 38kWh/15.6, 20.9, 28.5, 47.5, 71.2, 85.5kWh 

𝑺𝑬𝒆𝒔
𝒎𝒊𝒏/𝑺𝑬𝒆𝒗

𝒎,𝒎𝒊𝒏
 3kWh/1.2, 1.6, 2.2, 3.7, 5.6, 6.7kWh 

𝑺𝑬𝒆𝒗
𝒎,𝒄𝒉

 15.6, 20.9, 28.5, 47.5, 71.2, 85.5kWh 

𝜼𝒑𝒗 100% 

𝑷𝒊𝒎
𝒎𝒂𝒙 100kW 

𝑷𝒆𝒙
𝒎𝒂𝒙 100kW 

𝑬𝒆𝒔
𝒊𝒏𝒊/𝑬𝒆𝒗

𝒎,𝒊𝒏𝒊
 40kWh/16.5, 22, 30, 50, 75, 90kWh 

𝑽𝒆𝒔
𝒊𝒏𝒊/𝑽𝒆𝒗

𝒎,𝒊𝒏𝒊
 $10000/$4125, $5500, $7500, $12500, $18750, $22500 

𝑽𝒆𝒔
𝒔𝒂𝒍/𝑽𝒆𝒗

𝒎,𝒔𝒂𝒍
 $2040/$841, $1122, $1530, $2550, $3825, $4590 

𝑹𝒆𝒔/𝑹𝒆𝒗 0.5/0.8 
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Figure 5.4: Power profile of the microgrid components-objective function: energy cost of office 

 

Figure 5.5: Power profile of the microgrid components-objective functions: the real cost of office (including energy 

cost and ESS degradation) 

By taking into account the state of health of the EVs in case 3, which is illustrated in figure 5.6, 

EVs are charged with relatively lower powers and in a more uniform fashion throughout their stay 

time. This way, the SoC changes of EV batteries are smoothened to lower the degradation 

associated with charging attempts. Case 4 adds the charging cost of the EVs to the objective 

functions. This is to make sure that EV owners will not have to pay unreasonably high prices for 
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charging up their vehicles. In this case, which is illustrated in figure 5.7, the EV batteries are 

inclined towards charging with lower powers as time passes during the day. This is because energy 

prices are gradually increased towards the end of the day.  

 

Figure 5.6: Power profile of the microgrid components-objective functions: the real cost of office and EV battery 

degradation 

 

Figure 5.7: Power profile of the microgrid components-objective functions: the real cost of office, EV battery 

degradation, and charging cost of the EVs 

Figure 5.8 shows the SoC variations of the ESS during the sample day. It shows that in the 

conventional case, the ESS is fully discharged to the minimum allowed limit and stays there for 
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four hours which could be highly detrimental to its state of health. However, in the other scenarios, 

as all of them take into account the degradation of ESS, the SoC trends do not show meaningful 

differences and they remain around the higher mid ranges most of the time during the day. 

 

Figure 5.8: SoC variations of ESS for one day, under four different battery scheduling strategies 

Figure 5.9 shows the SoC variations for one of the EV batteries (Smart ED) during the time of the 

workday. It shows that in the conventional case and the case that only takes into account the wear 

rate of ESS, the SoC of the EV battery spends four hours at the lowest level, and then within the 

last two hours it rises at a high speed to reach the desired level which leads to high DoDs during 

those hours. These trends can significantly impact the battery’s lifetime. However, in the case that 

takes into account the battery wear of EVs (green line), the battery is discharged relatively slower 

and spends only one hour around low SoC levels and that is to contribute to the other objective 

which is the company’s revenue. Then, it spends two hours around mid-range SoCs and in the last 

hours gradually reaches the final value. The last case which also takes into account the monetary 

interest of EV owners on top of the previous objectives (blue line) follows almost a similar trend, 

but it rises earlier during the hours when the energy price is cheaper to avoid having to charge 
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during the last hours when prices are higher. This approach helps lower the charging cost of the 

EV. 

 

Figure 5.9: SoC variations of the battery of Smart ED for one day, under four different battery scheduling strategies 

Now, the four scenarios are evaluated for a one-month sample period. To obtain the monthly test 

conditions, the daily load of the office which was acquired from [140] was varied with a gaussian 

distribution and 10% standard deviation. The PV irradiance, as well as the daily time-of-use energy 

prices, were also obtained from [102] and [141], respectively. Battery degradation, payable and 

total costs of the system operator and EV users will be studied in this section. Figure 5.10 and Table 

5.2 show how large the capacity loss of a local energy storage system could become when its 

degradation is not addressed, as in a basic cycling strategy that merely considers the net energy 

cost. In fact, the capacity loss of ESS in the conventional case was almost 70% more than that of 

the other scenarios. The other three cases show insignificant wear differences as in those cases the 

SoC variations of ESS have high similarities. 
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Figure 5.10: Daily capacity loss of ESS for one month, under four different battery scheduling strategies 

Table 5.2: Capacity loss of office ESS for one month 

Objective Set Cost 
Cost & ESS 

Deg 

Cost & ESS+EV 

Deg 

Cost & ESS+EV Deg & 

Charging Cost of EVs 

Monthly Capacity 

Loss of ESS (kWh) 
0.6295 0.1946 0.2073 0.2114 

 

The payable cost of the system operator (e.g., business owner) is shown in figure 5.11 and table 

5.3. It is seen that the minimum apparent cost is achieved when “cost” is the sole objective function 

of the problem. By incorporating other objective functions such as degradation of ESS and EVs, 

the apparent cost slightly increases. However, it is important to know that a slightly lower payable 

cost is achieved at a significantly larger real price. This graph also shows that as long as the ESS 

degradation is taken into account, incorporation of the EV battery wear does not increase the energy 

cost for the office in a meaningful way. Interestingly, the inclusion of EV battery wear only raised 

the apparent cost of office by 0.13%. This is important as it shows that overlooking the capacity 
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loss of the EV battery could not improve the revenues for the office considerably, however, it could 

significantly increase the costs for the EV users.  

 

Figure 5.11: Daily energy cost of office for one month, under four different battery scheduling strategies 

Table 5.3: Energy cost of office for one month 

Objective Set Cost 
Cost & ESS 

Deg 

Cost & ESS+EV 

Deg 

Cost & ESS+EV Deg & 

Charging Cost of EVs 

Payable Monthly 

Cost of Office ($) 
282.06 287.16 289.99 289.26 

 

The real net energy cost of the office which is demonstrated in figure 5.12 and table 5.4 also shows 

the impact of not including the ESS degradation into account, as the basic case shows the largest 

costs against its original intent. Only by including ESS wear in case 2, the monthly cost decreased 

by 11.7%. Another factor that could be taken into account in the total cost of the office is the 

operation cost of the PV system. To calculate the daily cost associated with the use of the PV system 

that will be added to the real daily cost, we have to calculate the Levelized Cost of Energy (LCOE) 
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for the PV system. This is the ratio of the total cost of the system by the total energy that is expected 

to be produced during the warrantied period as presented in equation (5.20). In this regard, first, we 

have to estimate the cost of the PV system. Assuming that the system has no cost of repair and 

maintenance during its lifetime, we employ the PV price of 2.4 $/W for Ontario, Canada which is 

taken from [143]. Therefore, the price of the 10 kW PV system will be $24000. Now, we have to 

specify how much energy will be produced in the total warrantied lifetime of the system. By using 

the PVWatts simulation tool [144], it was calculated that the annual generation of a regular 10 kW 

PV system is around 13050 kWh. The LCOE is obtained by the equation below assuming the 

warrantied lifetime of the system is 25 years. 

𝐿𝐶𝑂𝐸 =
𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑣𝑒𝑟 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑣𝑒𝑟 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
 

(5.20) 

The calculated LCOE is 0.0735 dollars per kWh. Therefore, we could estimate the cost of the PV 

system per every day by using the equation (5.21). Table 5.4 provides the real cost of the office if 

the cost of the PV system is also considered.  

𝛤𝑃𝑉 = 𝐿𝐶𝑂𝐸 × 𝐸𝑃𝑉,𝑑𝑎𝑦 𝑛 (5.21) 

Where 𝛤𝑃𝑉 represents the cost associated with the operation of the PV system on day n and 

𝐸𝑃𝑉,𝑑𝑎𝑦 𝑛denotes the generated energy of the PV system on day n. 

 

https://www.energyhub.org/cost-solar-power-canada/
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Figure 5.12: Daily real cost of office for one month, under four different battery scheduling strategies 

Table 5.4: Real cost of office for one month 

Objective Set Cost 
Cost & ESS 

Deg 

Cost & ESS+EV 

Deg 

Cost & ESS+EV Deg & 

Charging Cost of EVs 

Real Monthly Cost 

of Office ($) 
341.24 305.46 309.48 309.14 

Real Monthly Cost 

of Office Including 

the Cost of PV ($) 

412.06 376.28 380.30 379.96 

 

Figure 5.13 provides a comparison between the consumed and feed-in energy of the building under 

the four studied scenarios. The largest amount of energy transaction with the grid occurs in the 

basic case as in this case, the energy system merely tends to achieve the minimum apparent energy 

cost by the maximum deployment of the microgrid components. The addition of ESS wear to the 

objective set lowered the total energy transaction by 8%. Also, by incorporating EV battery wear 

in the objectives the total transferred energy is further reduced by another 4% compared to case 2. 

This lower transferred energy is accompanied by less battery operation which leads to lower battery 

degradation and consequently lower cost of operation. 
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Figure 5.13: Monthly transferred energy of microgrid with the grid, under four different battery scheduling strategies 

By taking into account the degradation of every single EV battery in the objective functions, the 

EV owners will benefit from a lower capacity loss of their batteries. Figure 5.14 shows the daily 

degradation chart over a month for one of the EVs (Tesla Model 3). It is seen that cases 1 and 2 

that disregard the health of EV batteries lead to considerably larger wear rates, while cases 3 and 4 

managed to save the battery capacities largely. A general comparison of the capacity losses of ESS 

and EV batteries has been provided in table 5.5. The data shows that by including the degradation 

factor of EVs into the models, the capacity loss of EVs decreased in the range of 13% to 27%. 

However, addressing the wear rate for ESS saved its capacity loss by around 70%. This significant 

impact on the SoH of ESS as compared to EVs can be attributed to the fact that, unlike EVs, the 

ESS does not have any commitment to become fully charged by a certain time. This commitment 

will lower the freedom of EV batteries in cycling events, while ESS can be freely cycled throughout 

the day for the best possible outcomes. Hence, different cycling strategies could impact ESS to a 

larger extent compared to EVs.   
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Figure 5.14: Daily capacity loss of the battery of Tesla Model 3 for one month, under four different battery scheduling 

strategies 

Table 5.5: Capacity loss of ESS and EVs for one month 

Monthly Capacity Loss 

(kWh) 
Case 1 Case 2 Case 3 Case 4 

ESS 0.6295 0.1946 0.2073 0.2114 

Smart-ED 0.2072 0.2076 0.1794 0.1796 

BMW-i3 (60Ah) 0.2808 0.2810 0.2405 0.2443 

Nissan-Leaf 0.3649 0.3643 0.3063 0.3091 

Opel-Corsa e 0.3452 0.3450 0.2564 0.2570 

Tesla-Model 3 0.4927 0.4924 0.3582 0.3583 

Tesla-Model S 0.8296 0.8295 0.6636 0.6641 

 

Figure 5.15 and Table 5.6 illustrate the apparent or payable costs for EV owners under the four UC 

strategies. It shows that the incorporation of battery degradation, in general, will lower the apparent 

costs. This is due to the fact that consideration of battery wear will prevent unnecessary energy 

transactions with the grid which is essentially practiced to achieve the lowest energy expenses. In 

the studied scenarios, lowering the energy transactions through the involvement of EV battery 
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degradation showed to have a much larger impact on the payable cost of EV owners compared to 

the incorporation of “charging cost”. 

 

Figure 5.15: Daily total payable cost of EV owners for one month, under four different battery scheduling strategies 

Table 5.6: Payable cost of EV owners for one month 

Objective Set Cost 
Cost & ESS 

Deg 

Cost & 

ESS+EV Deg 

Cost & ESS+EV Deg & 

Charging Cost of EVs 

Monthly Payable Cost for 

EV owners Combined ($) 
1837 1654 1302 1280 

 

 

Observing the real cost of EV owners as shown in figure 5.16 and table 5.7 again shows that the 

main factor to reduce the real expenses for EV users is addressing the health of their batteries in 

the problem. It is worth noting that depending on several factors such as energy tariffs (both buy 

and sell), battery prices, and the financial agreements between the company and EV owners, the 

real costs for EV owners could change in favor of case 3 or case 4. For example, in a scenario 

where the feed-in energy prices or the company’s payment for V2B/V2G service is considerably 
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high, it may turn out that a more intense discharging regime is in favor of the EV owners even 

though it leads to higher degradation rates. In the investigated scenarios, the energy tariffs, as well 

as the company’s monetary compensation for discharging EVs, were not sufficiently competitive 

in comparison with the battery prices to make it affordable for EV owners to make real financial 

gains from participating in a V2B service. In other words, in this case study, the battery degradation 

showed to be much more capable of impacting the real cost of an EV owner compared to the energy 

cost and revenues. However, different input data such as energy fees and battery prices could 

impact these results. The total costs for every single EV are also provided in figure 5.17. This figure 

shows that after the size of battery which determines how much energy it requires and directly 

impacts the costs, the battery scheduling strategy determines the final costs for EV owners. 

 

Figure 5.16: Daily real cost of EV owners for one month, under four different battery scheduling strategies 
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Table 5.7: Real cost of EV owners for one month 

Objective Set Cost 
Cost & ESS 

Degradation 

Cost & ESS+EV 

Degradation 

Cost & ESS+EV Degradation 

& Charging Cost of EVs 

Monthly Real Cost 

for EV owners 

Combined ($) 

4345 4162 3274 3305 

 

 

Figure 5.17: Total Monthly cost of every EV, under four different battery scheduling strategies 

Grid operators and grid infrastructure are also other entities that could benefit from these UC 

strategies. Different UC approaches undermine the amount of power drawn from the grid during 

different times of the day as shown in figure 5.18. As before, the conventional approach led to the 

worst results in terms of peak power. The average daily peak power was considered as an index for 

evaluating the daily peak power of the building which is given in table 5.8. The basic case showed 

more than 21% larger average compared to the next large case which was case 2. Case 2 also causes 
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13% larger peak powers compared to cases 3 and 4 as it leads to more energy intake from the grid. 

However, the peak power difference in cases 3 and 4 was negligible as they do not have a significant 

difference in the amount of energy consumption from the grid. 

 

Figure 5.18: Daily peak power of office for one month, under four different battery scheduling strategies 

Table 5.8: Average daily peak power of office for one month 

Objective Set Cost 
Cost & ESS 

Deg 

Cost & ESS+EV 

Deg 

Cost & ESS+EV Deg & 

Charging Cost of EVs 

Average Daily 

Peak Power of the 

Office building in a 

Month (kW) 

71.02 58.46 51.44 51.55 

 

When it comes to providing V2B or V2G service by electric vehicles, a common concern of EV 

owners is whether or not participating in these services is beneficial for them. There is always this 

legit concern that participating in a V2B/V2G service may degrade the battery’s lifetime more than 

it could be financially beneficial. However, this concern can be addressed by utilizing the proposed 

UC algorithm. As a matter of fact, the proposed UC model can generate many useful data such as 
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capacity loss, cost of capacity loss, charging cost, discharged energy of batteries, discharging 

revenue of batteries, capacity loss caused by discharging events, payable, and real costs associated 

with cycling the batteries. This information can provide real insight for the users, helping them to 

employ their desirable cycling strategies. In this regard, to evaluate the worthwhileness of providing 

V2B service for EVs in this case study, a merit factor for evaluating the profitability of V2B service 

during any period has been defined as below. 

Ζ𝐸𝑉𝑚
=

Χ𝐸𝑉𝑚

Υ𝐸𝑉𝑚

 
(5.22) 

Where, 𝛧𝐸𝑉𝑚
 represents the discharge profitability factor for the m𝑡ℎ EV, 𝛸𝐸𝑉𝑚

 denotes the 

discharging revenue of the m𝑡ℎ EV and 𝛶𝐸𝑉𝑚
 is the discharge-associated cost of the m𝑡ℎ EV. 

Then, this profitability factor was calculated for the six EVs of the case study and the results are 

provided in table 5.9. Higher compensations paid by the business owner for using the energy of EV 

batteries could lead to larger profitability factors and consequently, make participation in V2B 

service more appealing for EV owners.  

Table 5.9: Profitability of V2B service for electric vehicles 

V2B 𝚭𝑬𝑽𝒎
 Smart ED BMW i3 Nissan Leaf Opel Corsa 

Tesla Model 

3 

Tesla Model 

S 

Case 1 1.41 1.43 1.52 2.46 2.66 1.94 

Case 2 1.29 1.30 1.34 2.16 2.34 1.70 

Case 3 1.28 1.31 1.43 2.29 2.47 1.80 

Case 4 1.26 1.30 1.41 2.28 2.46 1.79 

 

Some other useful data regarding the revenues of office and EV owners are provided in table 5.10. 

Delivered energy to the grid is one of the items listed in this table. We can see that in case 1, the 

revenue from delivering energy to the grid is at the highest level followed by case 2. Case 4 shows 
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slightly higher energy transfer as achieving the best energy cost for EV owners is one of the 

objectives of that case. Regarding the revenue of EV owners from selling energy to the company, 

it is at the maximum level when the basic objective is in effect and the EV batteries are employed 

maximally. Case 1 also leads to the maximum revenue for the office from charging EVs, however, 

in the other cases that consider the battery wear and especially in cases 3 and 4, the office’s revenue 

from charging EVs is at the lowest rate as EVs tend to limit their energy transactions and avoid 

unnecessary cycling attempts [142].  

Table 5.10: Delivered energy to the grid, total V2B revenues, and office revenue from charging EVs for one month 

Revenue ($) Cost Cost & ESS Deg 
Cost & ESS+EV 

Deg 

Cost & ESS+EV Deg & 

Charging Cost of EVs 

Energy delivered to 

the grid 
879 800 758 769 

Combined V2B 

revenue of EV users 
1642 1453 1522 1512 

Office revenue 

from charging EVs 
1837 1654 1280 1302 
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Chapter 6: Conclusion and Future Work 
 

6.1.1 Conclusion 

 

The optimal cycling of electric vehicle batteries and energy storage systems in different behind-

the-meter applications was investigated in this thesis in the framework of mixed-integer 

programming (MIP). In this regard, different MIP models were developed to address the battery 

scheduling problem for household and workplace microgrids where EV and ESS are expected to 

be optimally cycled in cooperation with PV generation aiming at minimizing the costs and 

emissions. In order to minimize these two objectives realistically, battery degradation is a crucial 

factor to be incorporated into the optimization problems. Neglecting the battery degradation which 

has been traditionally practiced in many battery scheduling research works, could increase the 

capacity losses to the extent that any unscheduled or “scheduled” battery operation could end up 

largely detrimental and costly. Therefore, in this work, a battery degradation model was introduced 

to be employed in the MIP-based unit commitment (UC) models. 

Chapter 1 as the introductory chapter was dedicated to the introduction of the research area 

including but not limited to the scope of work and the research contributions. In chapter 2, after 

introducing the concept of mixed-integer programming, a day-ahead mixed-integer-linear 

programming (MILP) battery scheduling model was presented for a residential unit with EV, ESS, 

PV array, controllable and non-controllable loads that form an AC-bus microgrid and work in a 

bidirectional market under dynamic pricing schemes. Then, the model was solved in the traditional 

fashion where the cost of energy was the sole objective function of the problem. The main 

applicable outcomes of this optimization problem were the “seemingly efficient” operation 

schedule of the EV battery, ESS, and controllable loads. The outcomes of this conventional UC 

model were later used for comparison with more sophisticated UC models in the next chapters. 
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Chapter 3 was focused on the battery degradation issue, battery degradation models, and 

incorporation of a wear model into a MIP UC problem. In this regard, first, the factors that can 

damage the Li-ion batteries as well as the main types of wear modeling approaches and the major 

semi-empirical wear models were introduced in this chapter. However, as optimal operation of 

batteries in microgrids normally necessitates consistent charging and discharging attempts between 

random SoCs, typical semi-empirical models cannot be incorporated into MIP-based UC models 

to address the battery degradation issue. Hence, a technology-agnostic semi-empirical battery wear 

model was introduced in this chapter that could address the irregular cycling of batteries. This 

model estimates the capacity loss of battery caused by DoD during an irregular half cycle with 

consideration of the initial and final SoCs of half-cycles and can be directly incorporated into a 

MIP model in its discrete version. The wear model employs the cycle life-DoD (N(D)) chart of 

batteries which is accessible for different battery chemistries.  

Due to the highly nonlinear nature of a wear coefficient factor in the introduced wear model, a 

curve-fitting technique was suggested for simplifying the complex function of the wear coefficient 

to a simpler version so it can be handled by typical MIP solvers. Also, due to the dependence of 

N(D) on the C-rate and temperature of batteries during the measurement process, the impact of 

these two parameters was also discussed in this chapter. Next, the battery wear model was 

incorporated into the MIP model of chapter 2 in the context of new MIP wear constraints and 

objective functions. The carbon footprint of a microgrid was also discussed where energy 

consumption and battery wear were introduced as the two main sources of carbon footprint. As a 

result, seven different UC objective sets were introduced to the model, including minimization of 

apparent cost, battery degradation, emission, and combinations of these objectives. Therefore, the 

modified MIP UC model was then solved with those sets of objective functions for the same home 

example in one-day and one-month terms. Cost, battery degradation, and carbon footprint of the 

building were studied extensively to better understand how incorporating battery degradation 
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directly into the MIP model can affect the results. The carried-out case study demonstrated that by 

considering the battery degradation, the real monthly costs associated with the operation of a 

household microgrid could be decreased by 79%. Also, the monthly carbon footprint and capacity 

loss of batteries were reduced by 31% and 82% respectively. 

Chapter 4 was dedicated to studying how intra-hourly scheduling resolution could impact the 

battery wear compared to the hourly resolution. In this regard, based on the previous MIP model, 

a dual-stage algorithm was proposed that scheduled batteries in a residential microgrid with hourly 

resolution in the first stage and 5-minute resolution in the second stage. Both cases were 

investigated while battery degradation was and was not taken into account in the MIP model. This 

study was carried out first using numerical simulation and then by using a controller-hardware-in-

the-loop (C-HIL) setup, developed based on Typhoon-HIL 402 platform. The C-HIL results 

demonstrated that the capacity loss caused by hourly scheduling of EV battery was 72% of that of 

intra-hourly scheduling while this ratio was 33% for ESS. These results showed that smaller battery 

scheduling resolutions could lead to higher DoD-associated battery degradation. Also, under the 5-

minute resolution, ignoring the battery wear led to a 62% and 118% rise in the capacity loss for EV 

battery and ESS respectively. As a result, the inclusion of the battery wear model demonstrated it 

could mitigate the degradation by preventing the batteries from cycling with large DoDs and going 

around extreme SoCs unless it is totally cost-efficient. 

UC strategies in microgrids with multiple beneficiaries was the subject of chapter 5, where a UC 

model was produced and studied for a workplace with PV, ESS, and multiple EV chargers that 

serve the business and EV owners. Four different UC strategies were investigated and compared 

which benefited the business and EV owners to different extents. These strategies include the 

conventional UC model which only takes into account the apparent energy cost of a business owner, 

a scenario that aims at minimizing the real cost of a business owner, and two other scenarios that 

also take into account the interest of EV owners. The results showed that addressing the battery 
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wear managed to lower the costs of the microgrid operator and EV owners by 10.5% and 24% 

respectively. The capacity fade of electric vehicles decreased by 27% whereas ESS experienced a 

69% decrease in capacity loss. These results could be helpful for microgrid operators in public 

places such as companies, universities, etc., to implement UC strategies in a fair fashion for the 

maximum benefit of themselves and the EV owners.  

In conclusion, the MIP unit commitment models provided in this work could assist the residential 

and commercial microgrid operators to schedule the operation of stationary and automotive 

batteries and achieve minimal cost, carbon footprint, and capacity loss of all the involved batteries 

thanks to the provided battery degradation model. 

6.1.2 Future Work 

 

The relevant future research suggested by this work can be categorized into two areas as mentioned 

in the following. 

▪ With regards to the certainty of the input variables, the BTM unit commitment problem 

can be investigated in the context of stochastic optimization, to address the random nature 

of the inputs such as solar irradiance, load, EV commuting times, and grid tariffs. This 

approach could be more robust towards the impact of input uncertainties as compared to 

the undertaken deterministic approach. 

▪ Regarding the battery degradation model, the impact of the C-rate and temperature on the 

capacity loss could also be taken into account in the UC problem. By addressing these 

factors in the wear model and providing their corresponding MIP components, it may be 

feasible to use the upgraded UC model to schedule the EV batteries in fast-charging 

stations where EV batteries are more prone to be degraded by large charging currents and 

their thermal effects. 
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