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Abstract

Multimass Modelling of Milky Way Globular Clusters and

Implications on Their Dark Remnant Content and Stellar

Initial Mass Function

by

Nolan Dickson

The distribution of stars and stellar remnants within globular clusters holds clues
about their formation and long-term evolution. In this work, we infer best-fitting
multimass models for a number of Milky Way globular clusters, which are compared
to various datasets. These models allow us to explore in detail the stellar (initial) mass
functions and remnant populations of a large sample of Milky Way GCs. Examination
of the low-mass mass function of the clusters suggests an IMF which is considerably
flatter and depleted in low mass stars than canonical IMFs, while the high-mass
IMF is consistent with a Salpeter IMF. New constraints on the number and mass in
black holes for each cluster are inferred from our models, and comparisons to various
studies predicting the black hole population in GCs are performed, finding generally
good agreement, and in most cases no need for large populations of BHs to explain
the data.
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Chapter 1

Introduction

Globular clusters, among the most massive and dense of all stellar clusters, present

a rich laboratory for the study of numerous astrophysical concepts. However, a large

number of these processes cannot be directly observed or measured, as certain stellar

populations are hidden from view, either by their nature or the extreme density of the

system. They must instead be inferred from accurate dynamical models. In order to

best explore a real cluster these models must fit strictly to its observables and account

for the various astrophysical and dynamical mechanisms present in globular clusters.

In this thesis we will fit dynamical models to a number of Milky Way globular

clusters of various metallicities, in order to explore the relationships between cluster

parameters, their initial distribution of mass and their populations of dark remnants.

1.1 Globular Clusters

In contrast to the looser open clusters, globular clusters (GCs) are considerably more

massive (M ∼ 105M⊙), dense (rh ∼ 5 pc) and bright (MV ∼ −7) (Harris, 1996;
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Baumgardt & Hilker, 2018). Substantial gravitational wells tightly bind their stellar

members into their namesake roughly spherical shapes, which are mostly free of gas

and dust.

This extra gas and dust is thought to have all been converted into stars or expelled

from the system, as globular clusters are among the oldest galactic objects (age ∼

12.5 Gyr) (VandenBerg et al., 2013) and remain relatively isolated from external

material, residing mostly in the halo of their host galaxies.

1.1.1 Stellar Populations

Given that all of their stars are formed during the same star formation event and

from the same cloud of gas, globular clusters exhibit a Single Stellar Population (to

first approximation, save for some light-element abundance spreads; see Bastian &

Lardo 2018). While the exact mechanisms of this initial stellar formation are not

completely understood (Krause et al., 2020), for dynamical purposes a cluster’s initial

stellar population is distributed by mass based on an initial stellar mass function

(IMF). As all stars in the system are of roughly the same age, this mass spread is

the determining factor of stellar evolution, as the stars progress along the cluster’s

Hertzsprung-Russell diagram. The system’s stellar isochrones are defined by its age

and metallicity, and the very well-defined sub-giant branch of a globular cluster allows

for a precise identification of its turnoff point (Binney & Merrifield, 1998).

The clusters, in addition to the main sequence and giant branch stars, are also

home to a considerable population of stellar remnants: white dwarfs, neutron stars

and black holes. Due to the old ages of globular clusters, white dwarfs can make up

a significant portion of a cluster’s mass. The dense nature of globular clusters means

they can also play host to some exotic classes of stars, such as blue stragglers, X-ray
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binaries and millisecond pulsars (Binney & Merrifield, 1998). Many of these objects

are part of the clusters binary population, which although depleted due to dynamical

interactions, play an important part in the dynamical evolution of the system (e.g.

Heggie & Hut, 2003; Ivanova et al., 2005; Cournoyer-Cloutier et al., 2021)

1.1.2 Mass Segregation

The spectrum of stellar masses in a cluster also gives rise over time to important

long-term dynamical effects. Mass segregation is the process wherein stars are strati-

fied radially by mass. This mechanism is driven by the trend towards kinetic energy

equipartition, which induces a decrease in the velocity of massive stars, and a corre-

sponding increase in that of lighter stars, overall. The faster, lighter stars are then

able to rise further from the centre of the cluster’s gravitational potential well. The

result is that by the time a cluster is “relaxed”, i.e. has experienced enough encounters

for stars to have lost all memory of their initial configuration and reached equilibrium,

the most massive stars will tend to have “sunk” towards the core of the cluster, and

the stellar populations will be arranged largely by mass (Spitzer, 1969; Spitzer, 1987).

This process is both driven by, and has a strong effect on, the cluster’s dynamical

evolution. Sinking massive objects can greatly increase the density at the core of the

system, leading to more frequent and stronger interactions. Towards the outer edges,

mass segregation inflates the size of the cluster halo, and leads to increased “evapo-

ration” of light, fast-moving stars over the tidal boundary. Together these effects can

also hasten the core-collapse of the cluster. Mass segregation has a strong effect on

the overall profiles of density, velocity dispersion and mass, and understanding it is

vital to understanding the dynamical evolution of a system (Spitzer, 1987).

As this operation is dependent on mass, it can also be “disrupted” by heavy
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remnants, such as black holes. The massive, invisible objects will be stratified to the

core, and push the larger stars out, towards their lighter counterparts. A cluster core

of remnants is able to suppress the visible mass segregation and increase the velocities

of brighter stars (Mackey et al., 2008; Gill et al., 2008; Alessandrini et al., 2016).

1.2 Initial Mass Functions

The distribution of individual stellar masses present directly after the initial burst of

formation of a population of stars is governed by a probability distribution function;

the initial mass function (IMF).

The IMF is a function of stellar mass, and defines the starting masses of stars in

a single population. In typically isolated, single-population systems such as globular

clusters, this means the IMF plays a very important role in the cluster’s evolution.

The distribution of masses of stars in a cluster controls how mass segregation proceeds

in the cluster; its timescale and degree (Fregeau et al., 2002). The initial mass of a

star also dictates how it will evolve over time. The post-main-sequence evolution of

a star and what type of object it will form at the end of its lifetime, is controlled

primarily by its initial mass. Therefore the IMF controls the shape of the present-day

mass function (PDMF) and the population of a cluster’s stellar remnants (Binney &

Tremaine, 2008).

The IMF is typically inferred from observations of the PDMF and models of stellar

and cluster evolution. The transformation from PDMF to IMF is not always trivial.

As seen in Figure 1.1, more massive stars will have evolved into remnants and not be

present in PDMFs inferred from the simple counting of stars (e.g. Elmegreen & Scalo,

2006), while lower mass stars will have been preferentially lost through evaporation
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Figure 1.1: Example of the evolution of the mass function of a GC from IMF to present day (12.5
Gyr), including remnant formation, dynamical ejections and the preferential escape of low-mass
stars.

over the cluster tidal boundary. PDMFs may also be influenced by the region of the

cluster observed, where certain populations may be deficient, due to mass segregation.

Salpeter (1955) approximated the IMF, based on stars in the solar neighbourhood,

as a single component power law with exponent α = 2.35:

ξ(m) ∝ m−2.35 (1.1)

where ξ(m)∆m is the number of stars with masses within the range m+∆m.

This formulation remains a good estimate of the distribution at higher masses,

but overpredicts the number of stars at the low-mass end.
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More recently, Kroupa (2001) utilized observations of low-mass solar-neighbourhood

and high-mass cluster and OB-association stars to expand the Salpeter power law for

lower mass stars, breaking the expression into three power-law components:

ξ(m) ∝


m−0.3 m ≤ 0.08M⊙,

m−1.3 0.08M⊙ < m ≤ 0.5M⊙,

m−2.3 m > 0.5M⊙,

(1.2)

In similar fashion, Chabrier (2003) extended the low mass regime in the form of a

log-normal distribution, with a mean stellar mass of 0.079 and standard deviation of

0.69:

ξ(m) ∝


exp

[
−(log(m)− log(0.079))2

(2× 0.692)

]
m < 1M⊙,

m−2.3 m > 1M⊙,

(1.3)

Typically one of these “canonical” IMF formulations is assumed to initialize cluster

simulations. Figure 1.2 illustrates the shape of these various canonical IMFs, and how

they behave similarly at high masses.

1.2.1 IMF Variations

The universality of the initial mass function is a debated topic. While the majority

of observational determinations of the IMF seem to demonstrate that the function

is universal among star-forming systems (Bastian et al., 2010), this is counter to

most theories of star formation, which dictate that initial distributions should vary

according to star formation conditions. Namely, at lower metallicities, less efficient

cooling should in theory require a larger Jeans Mass for the collapse of molecular

clouds and thus on average produce more massive stars and a top-heavy IMF (Larson,
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Figure 1.2: The canonical initial mass functions of Salpeter (1955); Kroupa (2001) and Chabrier
(2003).

1998). Various fundamental planes relating the massive portion of a cluster’s IMF

with metallicity and initial cloud density have been postulated (e.g. Marks et al.,

2012).

Possible Evidence of Non-Canonical IMFs

A number of recent observational works have showcased cluster trends which could

be explained by a non-canonical IMF, however these observations are also typically

explainable without the need to invoke a variable IMF.

Strader et al. (2011) demonstrated that dynamical mass measurements of 200

M31 globular clusters showed a decreasing trend in the dynamical mass-to-light ratio,
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as a function of cluster metallicity. This result is opposite to what standard stel-

lar population models would predict, while assuming a canonical IMF. Haghi et al.

(2017) showed that these results could be explained by introducing a non-canonical,

metallicity-dependent IMF, with an increasing level of top-heaviness for low metallic-

ity clusters. The greater amount of massive luminous stars in these clusters would in

turn lower the mass-to-light ratios, as seen in M31. However Baumgardt et al. (2020),

while observing Milky Way globular clusters, also noted that such a discrepancy in the

mass-to-light ratios could be accounted for once the low-mass depleted PDMF of the

metal-rich clusters, caused only by evolution within the galactic tidal field and exac-

erbated in metal-rich clusters which typically reside closer to the galactic centre (van

den Bergh, 2011), was taken into consideration. Metallicity-dependent stellar evolu-

tion models were also able to account for the difference in the metal-poor clusters.

Shanahan & Gieles (2015) also demonstrated that not accounting for mass segrega-

tion introduces a bias in the inferred dynamical mass, dependent on metallicity as

metal-rich clusters exhibit higher turn-off masses and lowered central concentrations

of non-luminous remnants, and showed that there is no need for variations in the IMF

to explain the Strader et al. observations.

De Marchi et al. (2007) examined 20 Milky Way globular clusters and found that

the PDMF of low-density clusters is deficient in low-mass stars. As dynamical inter-

actions would tend to eject lower-mass stars from the cluster, we would expect the

opposite; for low-density clusters to be less bottom-light, if only driven by dynamical

evolution. Another possibility is that these clusters were formed with a bottom-light

IMF. However Ebrahimi et al. (2020) investigated correlations between a number of

cluster parameters and their present-day mass functions, and found that the relation

between PDMF slope and concentration of De Marchi et al. (2007) was not significant.
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Effects of Top-Heavy IMFs in GCs

Varying the IMF would have a drastic effect on almost all characteristics of a glob-

ular cluster. Examined in particular here is the case of the “top-heavy” IMF, which

displays a flatter slope at higher masses (≥ 1M⊙) and necessarily produces a larger

number of massive objects; giant stars, white dwarfs, black holes, neutron stars. Re-

cently, the possibility of top-heavy IMFs in metal-poor GCs has been considered in

the literature, however it has not been conclusively established.

Typically, the slow loss of mass over the lifetime of globular clusters is driven

by stellar winds, until such time as the shrinking gravitational potential well allows

the mass-segregated cluster halo to swell with faster, lighter stars. From here the

mass loss is dominated by tidal evaporation, in which these lighter halo stars are lost

beyond the tidal boundary to the host galaxies potential well.

Weatherford et al. (2021) demonstrated that, in clusters with a top-heavy IMF, the

larger massive object population leads to increased stellar winds, but also, to a much

higher degree, significant mass loss from supernovae and their corresponding natal

kicks during the heightened period of remnant formation. This considerable mass

loss, combined with amplified two-body dynamical interactions between massive and

light objects leads the cluster halo to expand greatly, on much shorter timescales than

in clusters with a canonical IMF. This swelled halo results in similarly increased losses

to tidal evaporation.

Both of these mass loss processes can be nearly catastrophic; remnant formation

may cause the cluster to lose close to half its original mass in the first tens of Myrs.

Haghi et al. (2020) showed that clusters with a top-heavy IMF, due to this enhanced

mass loss, may struggle to survive to late ages. A cluster formed with the most top-

heavy IMF typically considered (α ∼ 1.6) was shown to require an initial cluster mass
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upwards of ∼ 7× 105M⊙ in order to have survived to the present day.

1.3 Dark Remnant Populations

Globular clusters host, alongside their visible stars, significant populations of stellar

remnants, as the stars initially formed from the IMF evolve and die over time, forging

new compact objects; white dwarfs, neutron stars and black holes. Given the age of

the Milky Way GCs, a large portion of the most massive stars will have evolved into

these dark remnants by the present day, and thus they may represent a sizable fraction

of the total cluster mass. These massive objects play a vital role in the dynamical

evolution and present-day structure of the GCs.

1.3.1 Black Holes

Black holes form from the most massive stars in the cluster. However, natal kicks

received from their initial supernova explosion and ejections from highly-energetic

dynamical encounters over the course of the clusters lifetime will expel most of the

formed black holes. It was thought for a long time that any initially retained BHs

would, after segregating rapidly to the core of the host cluster, quickly be ejected

within a few gigayears. It has been shown, however, in recent years that at least a

small number of these BHs must be able to be retained in GCs, as BH candidates

in binaries have been detected in a small number of Milky Way GCs via X-ray and

radio observations (Strader et al., 2012; Miller-Jones et al., 2015) and companion

radial velocity variations (Giesers et al., 2018, 2019). This observational evidence has

also been complemented by more recent dynamical models, which have demonstrated

that realistic clusters can retain thousands of BHs to the present-day, by delaying the
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rapid and total segregation of BHs to the core through three-body interactions (e.g.

Morscher et al., 2015; Rodriguez et al., 2016).

The presence of massive black holes plays a large role in the dynamical evolution

of globular clusters, and shapes their present-day structures, as a population of black

holes will serve to quench mass segregation among the visible stars, increase the

central velocity dispersion, inflate the cluster cores and support against core-collapse

(Gill et al., 2008; Peuten et al., 2016; Heggie et al., 2007; Zocchi et al., 2019; Kremer

et al., 2020b). The formation of BH binaries in the dense cluster cores has also been

proposed as one of the main formation channels for gravitational wave sources (e.g.

Abbott et al., 2016; Rodriguez et al., 2016).

Intermediate Mass Black Holes

The elusive intermediate mass black hole (IMBH) is a class of BHs with masses

significantly larger than typical stellar-mass BHs, but less than a supermassive black

hole (∼ 102−105 M⊙). It has been theorized that IMBHs may form in the dense cores

of GCs, and various claims of IMBHs in Milky Way GCs have been presented, based

on indirect dynamical inferences (e.g. Noyola et al., 2008; McNamara et al., 2012;

Kızıltan et al., 2017; Perera et al., 2017a). However, all of these candidates have been

controversial, and in many cases have been rebutted, either by the introduction of

improved data, or by other, more plausible, physical interpretations of the data (e.g.

van der Marel & Anderson, 2010; Zocchi et al., 2017). This search is complicated

further due to the fact that a partial degeneracy exists between the dynamical effects

of a central IMBH and a central concentration of stellar-mass BHs (e.g. Lützgendorf

et al., 2013).
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1.4 Star Cluster Models

While the evolution of globular clusters is driven by a number of stellar and dynam-

ical processes, the relative simplicity of a collisional (dominated by two-body stellar

encounters, as cluster relaxation time is shorter than their age) gravitational system

of similar, discrete particles allows their present-day properties to be well captured

by relatively straightforward dynamical models (Heggie & Hut, 2003).

Dynamical models which aim to describe the internal kinematics and structures

of clusters are grouped in two main categories: equilibrium and evolutionary mod-

els (e.g. Hénault-Brunet et al., 2019). The first contains static analytical methods

such as distribution function models and Jeans models, whereas the second contains

approaches such as N -body and Monte Carlo models.

1.4.1 Distribution Function Models

The phase-space distribution (positions and velocities) of stars in a cluster can be

described by distribution-function (DF) models.

DF models are equilibrium models built around a distribution function f which

describes the particle density of stars and satisfies the collisionless-Boltzmann equation

(which is derived from the conservation of particles):

∂f

∂t
+ v · ∂f

∂x
− ∂Φ

∂x
· ∂f
∂v

= 0 (1.4)

This distribution function is formulated based on a number of key assumptions

about the structure and dynamics of globular clusters. First it must be assumed that

the discrete impact of objects in the cluster can be ignored in favour of a continuous
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gravitational potential field. Further, in order to allow for simple analytical DFs,

it is often assumed that the potential, the DF and all cluster properties are time-

independent and the system is entirely spherically symmetrical (Spitzer, 1987).

This DF is used to self-consistently solve for the system’s potential ϕ(r) using

Poisson’s equation:

1

r2
d

dr

[
r2
dϕ(r)

dr

]
= 4πGρ (1.5)

where the density is found by integrating the DF over the velocity distribution:

ρ(r) =

∫
f(r,v)d3v (1.6)

A variety of quantities can be derived from the DF which can be used to describe

a globular cluster, including the velocity dispersion (the second velocity moment), the

projected surface density, the total mass, the potential energy and the system entropy,

and observational data can be used to compare and constrain the models (Spitzer,

1987; Gieles & Zocchi, 2015).

Historical Development

Various classes of DF models have been proposed and used extensively to model clus-

ters over the years, with varying levels of complexity added to the logical starting

point of a simple isothermal (constant temperature) sphere, as described by Chan-

drasekhar (1960, 1967), which characterizes the inner core of clusters well, but is

infinite in extent and mass, and thus cannot be used to represent real systems.

Woolley (1954) first addressed the issue of the infinite spatial and mass bounds of

ideal isothermal models by relaxing the assumption of the Maxwell-Boltzmann dis-

tribution of velocities in these models through the introduction of a constant energy-



CHAPTER 1. INTRODUCTION 14

lowering term ϕ(rt):

fWoolley(E) =


A exp

(
−E − ϕ(rt)

s2

)
E < ϕ(rt)

0 E > ϕ(rt)

(1.7)

Reducing the mechanical energy E by the specific potential at the truncation

radius ϕ(rt), with a velocity scaling s, mimics the escaping of stars, which attain a

velocity high enough to exceed the clusters tidal boundary rt, to the host galaxy.

These models are finite in both mass and extent, but introduce a new discontinuity

at E = ϕ(rt), and show a rather abrupt boundary cutoff.

In order to relieve this cutoff, King (1966) introduced a new subtracted constant,

allowing the models to be continuous at the truncation radius and resulting in a

gentler decline in density near the truncation radius, in comparison to the Woolley

models.

fking(E) =


A

[
exp

(
−E − ϕ(rt)

s2

)
− 1

]
E ≤ ϕ(rt)

0 E > ϕ(rt)

(1.8)

Wilson (1975) introduced another subtractive term, in this case linear with respect

to the energy E, which renders both the distribution and its derivative continuous.

Wilson’s model was created for the modelling of elliptical galaxies with rotational

symmetry, but the non-rotating, spherical case applies just as well to globular clusters.

fwilson(E) =


A

[
exp

(
−E − ϕ(rt)

s2

)
− 1 +

E − ϕ(rt)

s2

]
E ≤ ϕ(rt)

0 E > ϕ(rt)

(1.9)
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The problem of radial velocity dispersion anisotropy, that is, an increase in the

radial component of the velocity dispersion over the tangential component, which

can be seen at the outer edges of clusters (Spitzer, 1987) was first approached by

Michie (1963), by proposing a separable DF; the product of the isotropic King (Equa-

tion (1.8)) models and an exponential angular momentum term, which adds a measure

of radial anisotropy.

fmichie(E, J2) =


A exp

(
− J2

2r2as
2

)[
exp

(
−E − ϕ(rt)

s2

)
− 1

]
E ≤ ϕ(rt)

0 E > ϕ(rt)

(1.10)

The resulting model, often referred to as Michie-King models, displays approx-

imate isotropy in the core of globular clusters, where the shorter relaxation time

dominates, and becomes increasingly anisotropic further from the centre. At the edge

of the cluster, the energy truncation term again brings the cluster to isotropy.

More recently, Gomez-Leyton & Velazquez (2014) generalized the Woolley and

King isotropic models by consolidating the truncation schemes of the exponential

function into a single energy series En:

fGV(E, n) = AEn(x) =


A

[
exp(x)−

n−1∑
k=0

xk

k!

]
x > 0

0 x ≤ 0

(1.11)

where x is the truncated energy term from before x = (E − ϕ(rt))/s
2.

For values of n = 0 and n = 1, this formulation (hereafter referred to as GV mod-

els) retrieves the isotropic Woolley and King DFs, respectively, and can be simplified
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and extended to any non-negative real number g in terms of the gamma functions:

fGV(E, g) = AEg(x) = A exp(x)
γ(g, x)

Γ(g)
(1.12)

LIMEPY Models

Gieles & Zocchi (2015) extended the GV models by allowing for radial anisotropy in

similar fashion to the general Michie-King models, defining a DF as the product of

an exponential angular momentum term with a slightly modified GV energy term:

flimepy(E, J2, g) = A exp

(
− J2

2r2as
2

)
Eg (x) = A exp

(
− J2

2r2as
2

)
exp(x) g = 0

exp(x)
γ(g, x)

Γ(g)
g > 0

(1.13)

where x is as before; x = (E − ϕ(rt))/s
2.

This expression is dictated by a few structural and scaling parameters; the trunca-

tion parameter (g), which controls the smoothness of the model around the truncation

radius, the anisotropy radius (ra), determining the amount of anisotropy in the sys-

tem, as a proxy of the distance from the core where isotropy begins to break down,

and the velocity scale (s), which define the scale of the phase-space density.

This extension of past formulations represents a superset of the other distribution

functions, allowing, in isotropic cases (wherein limepy matches the GV function), the

Woolley, King and Wilson models to be recovered under integer values of g = 0, 1, 2,

respectively, while the more general, anisotropic case of g = 1 recovers the Michie-King

model. There are no models of finite extent above the case of g = 3.5 (Gomez-Leyton

& Velazquez, 2014).

The above DFs, which typically assume a single, uniform stellar mass population,
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Figure 1.3: limepy density behaviour under various truncation parameters (dimensionless model
units).

can also be expanded to include a mass spectrum under the assumption of group-

ing stars into discrete mass classes or bins, which are each described by their own

respective DF (Da Costa & Freeman, 1976).

The DF of limepy multimass models is simply given by the sum of compo-

nent DFs, each in the form of Equation (1.13), with mass-dependent velocity sj

and anisotropy radius r̂a,j scales. It is this separate mass-dependent velocity scal-

ing which allows for capturing the trend towards kinetic energy equipartition among

masses, and thus mass segregation, as shown in Figure 1.4. These models can be

solved self-consistently in much the same way as single-mass models, using a Poisson

equation with the normalized sum of component densities.

Multimass models allow a more accurate description of real globular clusters, which

are made up of a continuous spectrum of stellar masses. Multiple mass components

are necessary in order to describe the distributions of different stellar populations

within the system. This in turn enables the examination of both the process and

effects of mass segregation, which could otherwise bias measures of radius and velocity



CHAPTER 1. INTRODUCTION 18

10 2 10 1 100 101 10210 12

10 10

10 8

10 6

10 4

10 2

100
De

ns
ity

 (
)

= 0.2

Total
0.5 M
1.0 M
3.0 M

10 2 10 1 100 101 102

Distance from Centre (r)

= 0.4

10 2 10 1 100 101 102

= 0.5

Figure 1.4: limepy (multimass, g = 1, dimensionless model units) density behaviour of separate
mass bins, under various mass-dependent velocity scales (sj ∝ m−δ

j ). δ ∼ 0.5 is typically used to
reproduce the degree of mass segregation present in GCs (Sollima et al., 2015).

dispersions, as well as the make-up of specific populations, such as turn-off stars and

stellar remnants (Shanahan & Gieles, 2015; Sollima et al., 2015; Hénault-Brunet et al.,

2019).

1.4.2 Jeans Models

Another group of equilibrium models, similar to DF models in that they revolve

around the solutions to analytical equilibrium equations and provide static instan-

taneous descriptions of the clusters, are Jeans Models (e.g. Hénault-Brunet et al.,

2019).

Jeans models rely on solving the spherical Jeans equation, which follows from the

collisionless Boltzmann equation (Cappellari, 2008), in order to derive the cluster’s

mass profile, based on the velocity and anisotropy profiles of a tracer population (e.g.

Sollima et al., 2016; Watkins et al., 2013):

−GM(r)

r2
=

1

ρj

d(ρjσ
2
r,j)

dr
+ 2

(
1− σt,j

2σr,j

)
σ2
r,j

r
(1.14)
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where ρj and σx,j are the mass density and velocity dispersion (radial and tangential)

of a tracer population j.

This equation, although typically solved for one tracer population, produces a

global gravitational potential which represents all mass components, even within a

mass-segregated system (Sollima et al., 2016). This also means, however, that the

models cannot directly infer the phase-space distribution of different individual mass

components alone.

These models allow significant freedom in the structural profiles of mass and

anisotropy, as they do not depend on a specific functional distribution, as the DF

models, however this lack of constraint may also allow for unphysical results (Hénault-

Brunet et al., 2019).

1.4.3 N-Body Models

The first and most, in principle, straightforward of evolutionary models are the family

of N-body models.

A system of N particles which interact through gravity alone, at the scale of a star

cluster, is driven simply by Newton’s law between each particle, with an additional

component of external potential (Heggie & Hut, 2003):

F⃗i = −
∑
j ̸=i

G
mimj(r⃗i − r⃗j)

|r⃗i − r⃗j|3
− ∇⃗ · ϕext(r⃗i) (1.15)

The kinematic equations derived from this force and their corresponding solutions

require numerical computation for all systems of N ≥ 3. Direct methods, which intro-

duce no physical approximations whatsoever to the solving of the equations of motion

(excepting numerical discreteness), scale on the order of O(N2), per time-step. Given
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the timescale (τ ∼ 12 Gyr) and size (N ∼ 106) of globular clusters, until only recently

it was prohibitively expensive to directly simulate a complete cluster. Over time a

number of optimizations, regularizations and schemes have been developed in order

to improve the speed, accuracy and astrophysical complexity of these direct models

(Aarseth, 1999, 2003), with, in recent years, the notable inclusion of GPU (graphics

processing unit) powered parallelization greatly increasing the size of possible simu-

lations (Wang et al., 2015). These models are still, however, very computationally

expensive, and large grids of diverse full-scale models remain infeasible.

1.4.4 Monte Carlo Models

Monte Carlo cluster models, while still evolutionary by definition, cover more of an in-

termediate ground between equilibrium and N-body models, in an attempt to combine

certain advantages of both.

Monte Carlo models attempt to improve on the performance costs of N-body mod-

els by exploiting the assumptions and peculiarities within large, spherical symmetrical,

relaxed system like globular clusters, while also recognizing that the statistical conclu-

sions of N-body models are much more important than the detailed, per-body results

(Hénon, 1971a).

The simulation is split into two separate scales; a large-scale, smooth, mean

gravitational-field, which represents the overall distribution of stellar subsystems

within the cluster, and smaller-scale fluctuating fields which handle the interactions

and evolution of constituent stars within the orbits of the mean field.

Within the small-scale field, rather than computing every step along each orbital

time-step or the influence of every other star, Monte Carlo random selections of both

are employed, and thus a smaller, random distribution of interactions are accounted
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for, in comparison to N-body methods. This reduction in computations allows for

much faster simulations, reducing the complexity of the complete model up to O(N)

(Hénon, 1971b).

The models also permit the incorporation of various astrophysical processes, simi-

lar to N-body models and at both scales, such as stellar evolution, remnant formation,

escaping objects and tidal truncation (Kremer et al., 2020a; Hypki & Giersz, 2013).

They are also able to demonstrate mass segregation and its effects (Weatherford et al.,

2020).

1.4.5 Model Comparisons

The various types of dynamical models differ in important practical details, and thus

offer various advantages and disadvantages, and are well suited for different types of

analysis.

Model Fitting

In order to make comparisons with and draw conclusions on real globular clus-

ters, models must be fit to the observations of the system; velocity dispersions and

anisotropy, surface density and brightness profiles, stellar mass functions, etc.

Despite their relative simplicity, DF models are often used for the fitting of ob-

served profiles, due to their fast computation and the fact that they do not require

knowledge of any difficult to constrain inputs such as orbits and tidal effects, yet are

still able to capture basic physical ingredients such as two-body relaxation effects and

tidal truncation (Zocchi et al., 2016). The models cost so little to compute that very

fine grids can allow for very precise fits. The models are also easily extensible to
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include, as in the case of limepy, measures of multiple mass bins and anisotropy,

which are important to represent clusters without bias.

Jean’s models share many of the benefits found in the fitting of DF models, and

can similarly be used on cluster observations, however the large amount of flexibility

present in these models can also risk over-fitting the data, and can lead to noisy or

unphysical results (Hénault-Brunet et al., 2019), while the lack of information on the

distribution of individual mass components limits the the possible predictions which

can be made of populations in mass segregated systems.

Equilibrium models are also fast enough to permit the practical application of

various statistical fitting techniques, in order to attain a very precise fit to a number

of datasets (e.g. Hénault-Brunet et al., 2020).

N-body models can be matched to various observables, however the high cost of

computation means the feasible grid of models is relatively sparse, and thus the fit

for any particular cluster may not be available, or match well. As N = 106 models

are just becoming practical, many studies rely on the scaling of model runs of fewer

particles, in order to make comparisons with observations (e.g. Baumgardt, 2017).

Monte Carlo models suffer from similar limitations to N-body models, although

their decreased costs allow for somewhat finer grids and thus more variable initial

conditions and easier matching to observations (e.g. Giersz et al., 2013; Rui et al.,

2021b).

Stellar Populations

Equilibrium models, by definition, deal only with the distribution of instantaneous

mass and velocity profiles. As such, the models themselves cannot account for many

temporal astrophysical processes, such as stellar evolution. In order to account for
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things such as the evolution of different mass populations in multimass models, ad-

ditional outside algorithms are required in order to learn something about the initial

population of stars (e.g. Balbinot & Gieles, 2018; Hénault-Brunet et al., 2019, 2020).

These models, for the same reasons, do not account for individual orbits and in-

teractions. They are unable to provide a view of specific objects and could not follow

the history of the cluster or any star, nor provide information on its interactions.

This means that they cannot reveal direct information on processes such as BH merg-

ers. Multimass DF and Jeans models instead produce continuous profiles of mass,

which allow the models to, for example, infer the amount of dark mass in a cluster,

without directly simulating any individual remnants (Hénault-Brunet et al., 2019).

Jeans models, however, also possess the important caveat that, while allowing for

the inference of the underlying gravitational potential and mass profile, they do not

self-consistently model the effect of mass segregation and the distribution of different

mass components.

Evolutionary models, on the other hand, are able to account for stellar evolution

over the lifetime of their systems, incorporating existing prescriptions such as the

popular “single star evolution” (SSE) and “binary star evolution” (BSE) libraries (e.g.

Kremer et al., 2020a). These algorithms are able to account for remnant formation

through various channels, and directly handle strong encounters such as BH mergers,

and their effects. It is possible to use these models to examine the formation and

evolution of several exotic object populations; millisecond pulsars, blue stragglers,

cataclysmic variables, Type Ia supernovae, and merging compact binaries (Hypki &

Giersz, 2013).
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1.5 This Thesis: Exploring Globular Cluster IMFs

and Dark Remnants

In this thesis we intend to model and study in detail the stellar (initial) mass functions

and remnant populations of a large sample of Milky Way GCs.

In order to explore the stellar mass function in globular clusters, including its

potential variability and relationship with metallicity, we will fit dynamical models

of a number of Milky Way clusters to various observables, including proper motions,

line-of-sight velocities, number densities and present-day mass functions. To ensure

the most accurate fit of all model parameters, including the mass function exponents,

to real globular clusters, multimass limepy DF models are used. Their low compu-

tational cost allows for the application of statistical fitting techniques, ensuring both

that the full range of possible parameter space is explored (rather than the small grid

of values typical in evolutionary model studies), and that the most accurate models

possible (as dictated by current observations) are attained. Utilizing multimass mod-

els allows for the probing of various stellar mass components, necessary for fitting

the PDMF and constraining the IMF, and also for exploring the distribution of black

holes and other dark remnants in the clusters. Inferring the presence and distribution

of black holes within our clusters will allow us to better understand and constrain the

initial massive populations and evolutionary history of Milky Way globular clusters.

1.5.1 Outline of Thesis

The structure of the remainder of this thesis is as follows. The multimass limepy

models and the mass function evolution algorithm is explained in more detail in Chap-

ter 2. Chapter 3 describes the methods and sources used to obtain all observational



CHAPTER 1. INTRODUCTION 25

cluster data used to fit the models, as well as how the cluster sample was chosen. The

model fitting process, including descriptions of all probabilities and Bayesian sampling

techniques, is given in Chapter 4. The novel software library and fitting pipeline which

was created to facilitate this fitting is also presented in this chapter. The results of

the fitting of all clusters in our sample based on these methods are given in Chapter 5,

along with some short analysis of the best-fitting parameter distributions. The (ini-

tial) mass function results for all clusters are presented and explored in more detail

in Chapter 6. Chapter 7 examines the black hole and other remnant populations in

all clusters, and takes a in-depth look at a handful of clusters of interest. Finally, we

conclude in Chapter 8.
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Chapter 2

Models

To model the mass distribution of the globular clusters analyzed in this work, we use

the limepy multimass distribution-function based models (Gieles & Zocchi, 2015),

as described in Section 1.4.1 and characterized by the DF in Equation (1.13). These

models compute the phase-space density and the moments of the velocity distribution

as a function of distance from cluster centre for stars and remnants of different masses.

2.1 Model Parameters

The models are defined by 10 free parameters (listed in Table 2.1) which dictate the

stellar mass evolution and physical solution of the limepy DF.

The overall structure of these models is controlled by the (dimensionless) central

potential parameter ϕ̂0, which is used as a boundary condition for solving Poisson’s

equation and defines how centrally concentrated the model is. The cluster model

is spherical out to the truncation radius of the system, where its energy is reduced,

mimicking the effects of the host galaxy’s tides, which reduce the escape velocity of
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Parameter Description

ϕ̂0 Dimensionless central potential

M Total system mass [106 M⊙]

g Truncation parameter

rh Half-mass radius

log(ra) Anisotropy radius

δ Velocity scale mass dependence

α1 MF exponent (0.1 M⊙ < m ≤ 0.5 M⊙)

α2 MF exponent (0.5 M⊙ < m ≤ 1 M⊙)

α3 MF exponent (1 M⊙ < m ≤ 100 M⊙)

BHret Black hole retention fraction [%]

F Mass function nuisance parameter

s2 Number density nuisance parameter

d Heliocentric distance [kpc]

Table 2.1: List of free parameters and their descriptions. First six are structural limepy parameters
(Section 2.1), next four define the mass function (Section 2.2), and final three aid in comparing models
to observations (Section 4.1).
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stars, making it easier for them to escape. The sharpness of this energy truncation is

defined by the truncation parameter g, as the models behave like polytropes near the

truncation radius, with a polytropic index given by n = g + 7/2 (see Equation (20)

in Gieles & Zocchi 2015). Lower g values result in a more abrupt energy truncation,

increasing up to models with the maximum possible finite extent at g = 3.5, while

finite models with realistic values of ϕ̂0 are limited to g ≲ 2.5 (Gieles & Zocchi, 2015).

The mass and size scales of the model can be expressed in any desired physical

units by adopting corresponding values for the normalization constant A and the

global velocity scale s in the limepy DF (Equation (1.13)). We opt to scale the

models to match observations using the parameters for total cluster mass M and 3D

half-mass radius rh as mass and size scales, which are used internally to compute the

A and s scales.

limepy models allow for velocity anisotropy through an exponential angular mo-

mentum term in the DF. With this term, the system is isotropic in the core, gains a

degree of radial velocity anisotropy at intermediate distances from the centre, and then

becomes isotropic once more near the truncation radius. This parametrization mim-

ics how GCs naturally develop radially-biased velocity anisotropy throughout their

evolution as a result of two-body relaxation and tides (Zocchi et al., 2016; Tiongco

et al., 2016). The two-body relaxation process drives the core of clusters to isotropy,

however scattering (on preferentially radial orbits) of stars outside the core acts to

increase the radial component of the velocity dispersion. Finally, a combination of the

tidal torque from the host galaxy, which induces a transfer of angular momentum near

the Jacobi radius to stellar orbits in the tangential direction (Oh & Lin, 1992), and

the preferential loss of stars on radial orbits (Tiongco et al., 2016), act to increase the

tangentiality of the outer stars, damping the amount of radial anisotropy and leading

to a return to isotropy near the immediate edge of the system. The anisotropy radius
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parameter ra dictates the amount of radial velocity anisotropy present in the models.

The smaller the value of ra, the more anisotropic the system. In the limit ra → ∞,

the models become entirely isotropic. In practice, models with ra greater than the

truncation radius can be considered isotropic.

The exact meaning of both the ϕ̂0 and ra parameters depends on the definition of

the mean mass (Peuten et al., 2017). In this work we adopt the global mean mass,

that is, the mean mass of the entire cluster.

The multimass version of the limepy DF is defined by the sum of similar com-

ponent DFs for each mass bin j, with mass-dependent velocity (sj) and anisotropy

radius (r̂a,j) scales. The mass-dependent velocity scaling captures the trend towards

kinetic energy equipartition among stars of different masses and models the effects

of mass segregation. The velocity scale is defined based on the parameter δ, such

that sj ∝ sm−δ
j , where s is defined above. The mass-dependent anisotropy radius

is defined in a similar fashion, using a parameter η (ra,j ∝ ram
η
j ). For the analysis

presented in this thesis we have chosen to fix η to 0, defining the anisotropy to be

identical among all mass bins, the default assumption in multimass DF-based models.

Our observations do not contain the information that would allow us to constrain the

mass-dependence of the velocity anisotropy (e.g. Peuten et al., 2017), and thus the η

parameter.

Finally, the constituent discrete mass components which approximate the contin-

uous mass spectrum of a GC are represented in the multimass limepy models by the

total (Mj) and mean (mj) masses of each mass bin. These must be defined a priori

by external methods, based on the mass function (α1, α2, α3) and black hole reten-

tion percentage (BHret) parameters. The algorithm, which takes into account stellar

evolution to predict the mean and total mass in stellar remnant bins, is described in
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detail in Section 2.2 below.

External to the limepy models themselves, we also employ a few extra parameters

to aid in the fitting of the models to observations. These parameters are explained in

more detail in Section 4.1.

2.2 Mass Function Evolution

DF-based models, such as limepy, compute the distribution of mass and velocity in a

system in equilibrium. They are instantaneous “snapshot” models, and do not directly

simulate any temporal astrophysical processes during their computation, including

stellar evolution. As such, in order to determine the realistic mass populations for

which the model will determine the phase-space distribution, we must incorporate a

separate prescription for stellar evolution from an initial mass function, over the age

of the cluster, to the present-day stellar and remnant mass functions.

In keeping with the formulation of canonical IMFs (e.g. Kroupa, 2001), we use a

3-component broken power law:

ξ(m) ∝


m−α1 0.1 M⊙ < m ≤ 0.5 M⊙,

m−α2 0.5 M⊙ < m ≤ 1 M⊙,

m−α3 1 M⊙ < m ≤ 100 M⊙,

(2.1)

where the αi parameters define the exponential ‘slope’ of each component, and are

allowed to vary freely during model fitting, and ξ(m) dm is the number of stars with

masses within the interval [m, m+ dm]. It should be noted here that our choices of

break masses (0.1, 0.5, 1, 100 M⊙) are different than that of Kroupa (2001), to allow

for a more specific study of the high-mass (m > 1M⊙) regime.
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To evolve the population of stars to the present day we follow the algorithm first

described by Balbinot & Gieles (2018) and expanded upon in the ssptools1 library.

This method is summarized below.

To begin, the rate of change of the number of main-sequence stars in each mass

bin over time is given by the equation:

Ṅ(mto) = − dN

dm

∣∣∣∣
mto

∣∣∣∣dmto

dt

∣∣∣∣ (2.2)

where the amount of stars per unit mass (dN/dm) at the turn-off mass (mto) is

given by the IMF, and the rate of change of the turn-off mass can be derived by

approximating the lifetime of main-sequence stars as a function of initial mass:

tms = a0 exp(a1m
a2) (2.3)

where the ai coefficients are interpolated from the Dartmouth Stellar Evolution Pro-

gram models (Dotter et al., 2007, 2008). This equation can then be inverted and

differentiated to find the rate of change:

dmto

dt
=

1

a1a2

1

t

(
log(t/a0)

a1

)1/a2−1

(2.4)

Equation (2.2) dictates the amount of stars which evolve off the main sequence at

an age t. As these stars evolve, the stellar remnants they will form will depend (both

in type and in mass) on their initial mass and metallicity, and a functional initial-final

1https://github.com/SMU-clusters/ssptools

https://github.com/SMU-clusters/ssptools
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mass relation (IFMR):

mr

M⊙
=



10∑
j=0

bjm
j
i mi < mWD,max (WD),

1.4 mWD,max ≤ mi < mBH,min (NS),

1∑
j=0

cjm
j
i mBH,min ≤ mi < mBH,a (BH),

1∑
j=0

djm
j
i mBH,a ≤ mi < mBH,b (BH),

6∑
j=0

ejm
j
i mBH,b ≤ mi (BH),

(2.5)

where mi is the initial mass of the star, mr is final mass of the formed remnant, and

the coefficients (bj, cj, dj, ej) are constants defining the individual polynomials. The

sources of this adopted IFMR are described below.

The maximum initial mass which will form a white dwarf (WD) is interpolated,

based on the metallicity, from the MIST 2018 isochrones (Dotter, 2016; Choi et al.,

2016). The WD IFMR is computed as a 10th order polynomial, with coefficients

similarly extracted from the MIST models. The minimum mass required to form a

black hole (BH) is taken in the same fashion from the stellar evolution library (SSE)

used in the NBODY6 models (Hurley et al., 2000; Aarseth, 2003). The BH IFMR is

approximated by three separate polynomials, within three different mass ranges, and

is also dependent on metallicity. These relations are shown in Figure 2.1. All stars

with initial masses between the WD and BH precursor masses are assumed to form

neutron stars (NS). For simplicity, their final mass is always assumed to be 1.4M⊙,

regardless of the initial mass.

The amount and final mass of these remnants (as dictated by Equation (2.2))
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Figure 2.1: Adopted metallicity-dependent initial-final mass relations for white dwarf and black
hole formation. Lower metallicities generally result in higher final remnant masses.

must then be scaled downwards by an “initial retention fraction” fret, in order to

mimic the loss of newly formed remnants due to natal kicks. For WDs this is always

equal to 1. In this analysis, we assume a NS retention fraction of 10%, as is common

(e.g. Pfahl et al., 2002), however as shown in Hénault-Brunet et al. (2020) our results

are insensitive to this exact value. The mass function evolution algorithm includes

two more specific prescriptions for the loss of black holes, accounting for dynamical

ejections on top of the typical natal kicks.

Firstly the ejection of, primarily low-mass, BHs through natal kicks is simulated.

We begin by assuming that the kick velocity is drawn from a Maxwellian distribution

with a dispersion of 265 km s−1, as has been found for neutron stars (Hobbs et al.,
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2005). This velocity is then scaled down linearly by the “fallback fraction” fb, the

fraction of the precursor stellar envelope which falls back onto the BH after the initial

supernova explosion. This fraction is interpolated from a grid of SSE models based on

the BH precursor’s initial mass and metallicity (Banerjee et al., 2020). The fraction of

black holes retained in each mass bin is then found by integrating the Maxwellian kick

velocity distribution from 0 to the system escape velocity. The initial system escape

velocity of each cluster was estimated by assuming that about half of the initial cluster

mass was lost through stellar evolution, while adiabatically expanding the cluster to a

present-day half-mass radius a factor of two larger than the initial value, resulting in

an initial escape velocity twice as large as the present-day value. A set of preliminary

models were computed for all clusters, and the initial escape velocity was computed

based on the best-fitting central density as vesc = 2
√
2ϕ0.

Black holes are also ejected over time from the core of GCs due to dynamical

interactions with one another (e.g. Breen & Heggie, 2013a,b). This process is simu-

lated through the removal of BHs, beginning with the heaviest mean-mass bins (with

larger gravitational interaction cross-sections) through to the lightest (Morscher et al.,

2015). This is carried out iteratively until the combination of mass lost through both

the natal kicks and these dynamical ejections equals the fraction of BHs specified by

the black hole retention fraction parameter (BHret).

The final avenue for cluster mass loss is through the escape of stars and remnants

driven by two-body relaxation and lost to the host galaxy. Such losses, in a mass

segregated cluster, are dominated by the escape of low-mass objects from the outer

regions of the cluster. Determining the overall losses through this process is a compli-

cated task, dependent on the dynamical history and orbital evolution of the cluster,

which we do not attempt to model here. We thus opt to ignore this preferential

loss of low-mass stars and do not further model the escape of any stars, apart from
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through the processes described above. This means that the low-mass α exponents

determined here may, in most cases, describe most accurately the PDMF rather than

the low-mass IMF of our clusters. This is discussed in more detail in Chapter 6.
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Chapter 3

Cluster Data

In this work we determine best-fitting model parameters for a large number of Milky

Way globular clusters through the comparison of the phase-space distribution of stars

in the limepy models to analogous observations of GC structure and kinematics.

3.1 Cluster Selection

The clusters analyzed in this work were selected from the population of Milky Way

GCs in order to best study the possible relationship of the mass function with metal-

licity. To do so, we choose clusters over a range of metallicities, with most clusters

in our sample being metal-poor ([Fe/H] ≲ −1.0). The greatest discerning factor used

in cluster selection was the quantity and quality of data available. We searched for

clusters with a combination of adequate mass function depth and radial coverage

from HST photometry, and sufficient kinematic data to constrain the models. These

selection criteria lead to the choice of 40 final clusters, listed in Table 3.1.
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Cluster [Fe/H] Mass [106 M⊙] Cluster [Fe/H] Mass [106 M⊙]

NGC104 −0.72 0.85 NGC6218 −1.37 0.11

NGC288 −1.32 0.10 NGC6254 −1.56 0.21

NGC362 −1.26 0.28 NGC6266 −1.18 0.60

NGC1261 −1.27 0.18 NGC6341 −2.31 0.33

NGC1851 −1.18 0.35 NGC6352 −0.64 0.07

NGC2808 −1.14 0.88 NGC6362 −0.99 0.13

NGC3201 −1.59 0.16 NGC6366 −0.59 0.04

NGC4372 −2.17 0.20 NGC6397 −2.02 0.10

NGC4590 −2.23 0.13 NGC6541 −1.81 0.30

NGC4833 −1.85 0.20 NGC6624 −0.44 0.16

NGC5024 −2.10 0.46 NGC6656 −1.70 0.51

NGC5139 −1.53 3.94 NGC6681 −1.62 0.13

NGC5272 −1.50 0.40 NGC6723 −1.10 0.18

NGC5904 −1.29 0.40 NGC6752 −1.54 0.27

NGC5927 −0.49 0.28 NGC6779 −1.98 0.19

NGC5986 −1.59 0.34 NGC6809 −1.94 0.19

NGC6093 −1.75 0.31 NGC6981 −1.42 0.07

NGC6121 −1.16 0.09 NGC7078 −2.37 0.61

NGC6171 −1.02 0.08 NGC7089 −1.65 0.64

NGC6205 −1.53 0.54 NGC7099 −2.27 0.14

Table 3.1: The names (NGC identifications), metallicity (Harris, 1996) and mass (Baumgardt &
Hilker, 2018) of all 40 initially selected clusters.
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3.2 Observations

Models are fit to all chosen GCs through comparison with a variety of observational

datasets, which help directly constrain the phase-space distribution of visible cluster

stars. This, in turn, provides indirect constraints on the amount and distribution of

dark mass (in both faint low-mass stars and dark remnants) as, together with mass

segregation, the possible distribution of cluster mass among different components has

limited flexibility.

We utilize a large number of observables from various sources, while aiming to

provide as much homogeneity between clusters as possible. Where multiple data

sources exist for the same observable, we attempt to bring them into agreement with

one another. Data sources specific to each cluster can be seen in the figures shown in

Appendix A.

3.2.1 Proper Motions

Proper motions (PM), the astrometric measure of an object’s apparent velocity, can

be observed, in the simplest sense, through the repeated measurements of an object’s

changing position at different epochs.

Radial profiles of the dispersion of proper motions of cluster stars are used to

constrain the cluster velocity dispersion profiles, and in turn the total cluster mass

and its distribution. By incorporating the kinematics in both the radial and tangential

directions in the plane of the sky, we are also able to constrain the amount of velocity

anisotropy in the system. We define these components, on the sky, such that the radial

component is positive outwards from the cluster centre, and the tangential component

is positive in the counterclockwise rotational direction on the sky. Given the proper
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motions of a star in a cluster-centred orthographic projection (e.g. equation (2) in

Gaia Collaboration et al. 2018), the radial (µR) and tangential (µT ) components are

defined as:

µR ≡ (xµx + yµy)

R
(3.1)

µT ≡ (yµx − xµy)

R
(3.2)

where x, y, µx and µy are the orthographic positions and proper motions and R =√
x2 + y2 is the projected distance from the cluster centre, which is taken from Baum-

gardt (2017) 1.

We employ proper motion dispersion profiles, from various sources, in the fits of

all clusters analyzed. These sources are described below.

Gaia EDR3

We extract PM dispersion profiles in both components from Gaia Early Data Release

3 (EDR3; Gaia Collaboration et al., 2021) proper motions for all clusters.

The catalogue of cluster stars, along with their membership probabilities, is taken

from Vasiliev & Baumgardt (2021). We then follow similar methodology to Vasiliev

(2019) and Vasiliev & Baumgardt (2021) to construct binned dispersion profiles in

both directional components.

First we select only stars which pass the quality filters discussed in Vasiliev &

Baumgardt (2021) and have 5-parameter astrometric solutions, then we cut all re-

maining stars with a membership probability below 90%. The right-ascension and

declination components of proper motion provided by Gaia are first subtracted from

the cluster mean computed by Vasiliev & Baumgardt (2021) and then transformed

1Cluster centres typically vary between different studies on the order of a few arcsec, and would
have a negligible impact on these profiles.
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Cluster Member Stars Stars per bin Cluster Member Stars Stars per bin

NGC104 39761 3600 NGC6218 6123 595

NGC288 4635 760 NGC6254 7130 1735

NGC362 3839 760 NGC6266 682 165

NGC1261 1160 545 NGC6341 4297 1400

NGC1851 2436 395 NGC6352 1513 550

NGC2808 4638 900 NGC6362 5542 1385

NGC3201 11391 875 NGC6366 1630 265

NGC4372 2487 600 NGC6397 12308 1365

NGC4590 3203 1035 NGC6541 2292 515

NGC4833 2316 365 NGC6624 96 45

NGC5024 3338 1080 NGC6656 4328 430

NGC5139 52854 4030 NGC6681 648 300

NGC5272 8941 1260 NGC6723 2130 950

NGC5904 9141 1820 NGC6752 16155 2015

NGC5927 658 100 NGC6779 1533 500

NGC5986 835 210 NGC6809 7420 1830

NGC6093 1046 290 NGC6981 726 690

NGC6121 5208 345 NGC7078 4467 1110

NGC6171 1625 385 NGC7089 2957 935

NGC6205 9537 1875 NGC7099 2946 715

Table 3.2: The total number of stars in the Gaia EDR3 catalogue which pass our quality and
membership criterion, and the number of stars per radial bin used to construct the Gaia proper
motion dispersion profiles for each cluster.

to a cluster-centred orthographic projection (by equation (2) in Gaia Collaboration

et al. (2018)) and finally to radial and tangential components using Equations (3.1)

and (3.2).

The stars are then binned based on their radial distance from the cluster centre,

with each bin containing an equal number of stars. The number of stars per bin

(listed in Table 3.2) differs for each cluster, and was chosen to maximize the radial

coverage while still providing a sufficient number of stars with which to calculate

reliable dispersions in each bin.

Following the conclusions of Vasiliev & Baumgardt (2021), in order to account

for underestimations in the statistical uncertainty of proper motions of Gaia sources

in dense regions, we scale the PM uncertainties in each bin by a density-dependent
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factor η:

η =

(
1 +

Σ

Σ0

)ζ

(3.3)

where (from Table 1 in Vasiliev & Baumgardt, 2021) Σ0 = 10 stars/arcmin2 and

ζ = 0.04, and Σ is computed, assuming spherical symmetry, by counting the density

of stars within the area of each radial bin.

We then fit a multivariate Gaussian distribution to the proper motions of all stars

in each bin, following the likelihood:

lnL = −1

2

[
ln(det(Σ))− (µ− v)TΣ−1(µ− v)

]
(3.4)

where µ is the mean of the distribution, v is the (flattened) vector of proper motions

for all stars in both radial and tangential directions, and Σ is the corresponding

covariance matrix.

The covariance matrix is constructed of two parts; Σ = Σstat + Σint. Both con-

stituent covariances are block-diagonals matrices containing Nstars two-by-two blocks

along the diagonal:

Σstat ≡



E1 02×2 · · · 02×2

02×2 E2 · · · 02×2

...
...

. . .
...

02×2 02×2 · · · EN


, Ei ≡

 ϵ2i,R ρiϵi,Rϵi,T

ρiϵi,Rϵi,T ϵ2i,T

 (3.5)

Σint ≡



S1 02×2 · · · 02×2

02×2 S2 · · · 02×2

...
...

. . .
...

02×2 02×2 · · · SN


, Si ≡

σ2
R 0

0 σ2
T

 (3.6)
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where ϵi,R, ϵi,T are the PM uncertainties in both components of the i-th star, ρi is the

correlation coefficient between the components, and σR, σT are the PM dispersions,

for both components, of the bin.

Vasiliev (2019) also included a third component in the covariance matrix repre-

senting the systematic error present in the astrometry (related to the Gaia scanning

law), however we find that the magnitude of this component is negligible compared

to the (scaled) uncertainties and dispersions, and thus is neglected here.

This likelihood was then explored using nested sampling (see Section 4.2.1), with

the mean and dispersion in both components allowed to vary freely.

The weighted mean and standard deviation of this dispersion was used, in each

bin, to construct the PM dispersion profiles, with the radial position of each bin taken

as the median of the positions of all constituent stars.

Supplementary Datasets

We supplement the Gaia proper motion datasets of specific clusters, where further

PM studies are available from the Hubble Space Telescope (HST).

Watkins et al. (2015) presented profiles of proper motion dispersions in the central

regions of 22 globular clusters, based on the HST catalogues of Bellini et al. (2014).

The profiles consists only of catalogue stars brighter than 1 mag below the main-

sequence turn off and are trimmed based on data quality and velocity sigma-clipping,

in order to calculate the most accurate and unbiased kinematics possible. These

brightness and quality filters leave between around 1000 to 15000 stars per cluster,

save for NGC 7099 which has the smallest sample size in the study and only ∼ 100

final stars.
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These catalogues are binned radially and fit to a Gaussian likelihood using a

Monte-Carlo technique, resulting in dispersion profiles for both radial and tangential

components for all clusters, with typical uncertainties on the order of∼ 0.001marcsec/yr.

Our analysis overlaps with this sample in 15 clusters (NGC1851, NGC2808, NGC5139,

NGC5904, NGC5927, NGC6266, NGC6341, NGC6362, NGC6397, NGC6624, NGC6656,

NGC6681, NGC6752, NGC7078 and NGC7099), in which case we utilize the pre-

sented total dispersion σ =
√

(σ2
T + σ2

R)/2 and anisotropy ratio σT/σR.

Libralato et al. (2019) provided an in-depth study of the internal kinematics of

NGC6352 as part of the Hubble Space Telescope “UV Legacy Survey of Galactic

Globular Clusters” program. The proper motion profiles, extending out to ∼ 1.5 core

radii (75 arcsec), were extracted in similar fashion to Bellini et al. (2014).

Raso et al. (2020) compiled archival HST imaging of the central region of NGC1261.

Proper motion profiles, extending out to 90 arcsec, were extracted once again based

on Bellini et al. (2014), and restricted by magnitude to only include bright stars near

the turn off mass.

The quality of data and the resulting dispersion uncertainties for both of these

supplementary analyses are similar to those of Watkins et al. (2015).

3.2.2 Line-of-Sight Velocities

The kinematic data is also supplemented by line-of-sight (LOS) velocity dispersion

profiles, providing a 3-dimensional view of the cluster dynamics. The LOS veloci-

ties used to construct the dispersion profiles are determined from spectrography of

each individual star, by comparing absorption lines in the stellar spectra to spectral
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models2.

The majority of the LOS dispersion profiles used come from compilations of dif-

ferent surveys and programs. Baumgardt (2017) gathered, from the literature, 95

publications with large enough (> 20 stars) LOS velocity datasets for 45 GCs (31 in

common with our sample), amounting to ∼ 25 500 stars in total. Baumgardt & Hilker

(2018) expanded on this catalogue by including additional ESO/Keck archival data

of the LOS velocities of ∼ 15 000 stars in 90 GCs. The median uncertainty of the

individual velocities in these two compilations is about 0.5 km s−1. In both cases, the

different datasets were combined by scaling them to the cluster’s mean radial velocity,

and iteratively excluding all stars more than three standard deviations from the mean

as binaries and background stars. The LOS dispersion profiles were then computed

by maximizing a Gaussian likelihood function, resulting in average uncertainties on

the dispersion at a given projected radial distance on the order of ∼ 0.5 km s−1, in the

clusters which are a part of our survey.

Baumgardt et al. (2019a) derived the velocity dispersion profiles of 127 GCs (in-

cluding our entire sample) using the Gaia DR2 radial velocity data. This catalogue

of stars was matched to that of Baumgardt & Hilker (2018), and scaled to a common

mean velocity. Similar outlier removal and maximum-likelihood approaches were then

used to compute the LOS velocity dispersion profiles, out to projected distances from

the centre of around 100-700 arcsec, depending on surrounding field densities.

Dalgleish et al. (2020) followed this work by considering a subset of 1622 stars in

59 GCs from the WAGGS survey, from the WiFeS integral field spectrograph. The

chosen clusters were selected to complement the Baumgardt et al. (2019a) datasets

and increase the sample sizes in the core (∼ 20 arcsec) of the systems.

2All LOS velocity dispersion profiles used were retrieved from the catalogue at https://people.
smp.uq.edu.au/HolgerBaumgardt/globular/.

https://people.smp.uq.edu.au/HolgerBaumgardt/globular/
https://people.smp.uq.edu.au/HolgerBaumgardt/globular/
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These datasets are further complemented in the cores of some clusters by the LOS

dispersion profiles presented by Kamann et al. (2018), who gathered data for some

∼ 200,000 stars within the half-light radius of 22 GCs (14 in common with our sample)

using the MUSE integral-field-unit spectrograph on the VLT. Spectra were extracted

for all stars within the field-of-view of each pointing, before cluster membership and

signal-to-noise quality cuts were applied. LOS velocity dispersion profiles were then

determined by maximizing a similar Gaussian likelihood through a Markov-Chain

Monte-Carlo sampler, resulting in profiles with uncertainties on the same order as the

above profiles (∼ 0.5 km s−1).

3.2.3 Number Density Profiles

Radial profiles of the projected surface number density of stars in our GCs are vital

in constraining the spatial structure and concentration of the clusters.

The projected number density profiles of most clusters are taken from de Boer

et al. (2019), who utilized counts of member stars from Gaia DR2, binned radially,

for 81 Milky Way clusters. Membership was determined, for stars up to a faint

magnitude limit of G = 20, based on the Gaia proper motions. To aid with the

coverage of the cluster centres, where Gaia is incomplete and struggles with crowding

in all but the least dense GCs, the authors stitched the Gaia profiles together with

profiles from HST photometry (Miocchi et al., 2013) and a collection of ground-based

surface brightness profiles (Trager et al., 1995). These profiles from the literature

were scaled to match the Gaia profiles in the regions where they overlap, with the

final profile being constructed of Gaia counts in all regions with a density lower than

105 stars/deg2 and literature profiles otherwise. de Boer et al. (2019) also computed

a constant background contamination level for each cluster, computed as the average
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stellar density between 1.5 and 2 Jacobi radii, which we subtract from the entire

profile before fitting.

Three of our selected clusters (NGC4372, NGC4833 and NGC5927) are not pre-

sented in the catalogue of de Boer et al. (2019), as they are either not present, or have

insufficient coverage in the Trager et al. (1995) catalogue. NGC5927, in particular,

possesses an atypical central jump in its surface brightness profile, which may be the

result of a few very bright stars. In future work, the number density profiles for these

clusters may be constructed based on other HST sources (e.g. Sarajedini et al., 2007)

and Gaia EDR3, however for this thesis we opt to remove these clusters from our

sample.

3.2.4 Mass Functions

To provide constraints on the global present-day mass function of the clusters, the

degree of mass segregation and the total mass in visible stars, we compare our models

against measurements of the stellar mass function in radial annuli and mass bins

obtained from deep HST photometry.

The mass function data for each cluster was derived from archival HST photometry

by Baumgardt et al. (2022) and includes data from large-scale archival surveys (e.g.

Sarajedini et al., 2007; Simioni et al., 2018). Stellar photometry and completeness

correction of the data was done using DOLPHOT (Dolphin, 2000, 2016). Stellar number

counts were then derived as a function of stellar magnitude and distance from the

cluster centre and were then converted into stellar mass functions through isochrone

fits. The compilation of images is made up of several HST fields for each cluster,

at varying distances from the cluster centres. The observations typically cover stars

within a mass range of ∼ 0.16−0.8M⊙. The large radial and mass ranges covered
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allow us to constrain the varying local stellar mass function as a function of distance

from the cluster centre, and therefore the degree of mass segregation in the cluster.
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Chapter 4

Model Fitting

The models described in Chapter 2 are constrained by the data described in Chapter 3

in order to provide distributions of the best-fitting model parameters that describe

each cluster, which are determined through Bayesian parameter estimation techniques.

4.1 Probability Distributions

Given a model M , the probability associated with a given set of model parameters Θ,

subject to some observed data D is given by the Bayesian posterior:

P (Θ | D,M) =
P (D | Θ,M)P (Θ | M)

P (D | M)
=

L(Θ)π(Θ)

Z
(4.1)

where L is the likelihood, π is the prior and Z is the evidence.



CHAPTER 4. MODEL FITTING 49

4.1.1 Likelihood

In this work, the total log-likelihood function ln(L), for all data D considered for a

certain cluster, is given simply by the summation of all log-likelihood functions for

each individual dataset Di:

ln(L) =
datasets∑

i

ln(P (Di | Θ)) =
∑
i

ln(Li(Θ))) (4.2)

and each observational dataset, as described in Section 3.2, has its own component

likelihood function ln(Li), detailed below.

In order to compare all observed quantities with model predictions, certain quanti-

ties, which involve angular units (radial distances, proper motions, cluster sizes, etc.)

must be converted to the projected, linear model lengths. To do so, we introduce the

heliocentric distance to the GC as a new free parameter d, and use the velocity and

position conversions:

vT = 4.74 d · µ (4.3)

r = 2 d · tan
(
θ

2

)
(4.4)

where vT is the plane-of-the-sky velocity in km s−1, µ is the observed proper motion

in arcsec/yr, r is the projected length in pc, θ is the observed angular separation in

rad.
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Velocity Dispersion Profiles

The likelihood function used for all velocity dispersions (LOS and PM) is a Gaussian,

over a number of dispersion measurements at different projected radial distances:

ln(Li) =
1

2

∑
j

(
(σobs(rj)− σmodel(rj))

2

δσ2
obs(rj)

− ln
(
δσ2

obs(rj)
))

(4.5)

where σ(rj) corresponds to the dispersion at a distance rj from the cluster centre,

with corresponding uncertainties δσ(rj). Dispersions with subscript obs correspond

to the observed dispersions and uncertainties, while subscript model corresponds to

the predicted model dispersions.

Number Density Profiles

The likelihood function used for the number density profile datasets is a modified

Gaussian likelihood.

The translation between the surface brightness measurements and discrete star

counts (both considered for the number density profiles, as discussed in Section 3.2.3),

is difficult to quantify exactly. To compare star counts above a magnitude limit to

the integrated light of a surface- brightness profile would require precise knowledge

of the mass-to-light ratio for each mass bin, which is an uncertain quantity especially

for evolved stars. To account for this in the fitting procedure, the model is actually fit

on the shape of the number density profile, rather than on the absolute star counts.

To accomplish this the number density profile of the model is scaled to have the same

mean value as the observed and combined profiles. As in Hénault-Brunet et al. (2020),
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the constant scaling factor K is chosen to minimize the chi-squared distance:

K =

∑
j

Σobs(rj)Σmodel(rj)/δΣ
2(rj)∑

j

Σ2
model(rj)/δΣ

2(rj)
(4.6)

where Σ(rj)model and Σ(rj)obs is the modelled and observed number density, respec-

tively, at a distance rj from the cluster centre.

We also account for the effects of background and foreground contaminant stars

present near the outskirts of the cluster, which may not have been perfectly accounted

by our background subtraction procedure. We thus introduce an extra “nuisance”

parameter (s2) to the fitting. This parameter is added in quadrature, as a constant

error over the entire profile, to the observational uncertainties to give the overall error

δΣ:

δΣ2(rj) = δΣ2
obs(rj) + s2 (4.7)

The likelihood is then given in similar fashion to the dispersion profiles:

ln(Li) =
1

2

∑
j

(
(Σobs(rj)−KΣmodel(rj))

2

δΣ2(rj)
− ln

(
δΣ2(rj)

))
(4.8)

Mass Functions

To compare the models against the mass function datasets, the local stellar mass

functions are extracted from the models within specific areas in order to match the

observed MF data at different projected radial distances from the cluster centre within

their respective HST fields.

To compute the stellar mass functions, the model surface density in a given mass

bin Σk(r) is integrated, using a Monte Carlo method, over the area Aj, which covers
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a radial slice of the corresponding HST field from the projected distances rj to rj+1.

This gives the count Nmodel,k,j of stars within this footprint j in the mass bin k:

Nmodel,k,j =

∫
Aj

Σk(r)dAj (4.9)

This star count can then be used to compute the Gaussian likelihood:

ln(Li) =
1

2

radial
bins∑
k

mass
bins∑
j

(
(Nobs,k,j −Nmodel,k,j)

2

δN2
k,j

− ln
(
δN2

k,j

))
(4.10)

which is computed separately for each HST program considered.

The error term δNk,j must also account for unknown and unaccounted for sources

of error in the mass function counts, as well as the fact that our assumed parametriza-

tion of the global mass function (equation (2.1)) may not be a perfect representation

of the data. Therefore we include another nuisance parameter (F ) which scales up

the uncertainties:

δNk,j = δNobs,k,j · F (4.11)

This scaling boosts the errors by a constant factor, leading to larger relative errors in

regions with lower counts.

4.1.2 Priors

The prior probability distribution π for our set of model parameters Θ is given by the

product of individual, independent priors for each parameter in Θ:

π(Θ) =

Nparams∏
i

πi(θi) (4.12)
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The priors for individual parameters can take a few possible forms.

Uniform, or flat, priors are used to provide an uninformative prior to most param-

eters. The uniform distribution is defined as constant between two bounds (L, U),

with a total probability normalized to unity:

πi(θi) =


1

U−L
for θi ∈ [L,U ]

0 otherwise

(4.13)

The upper and lower bounds are chosen, for most parameters, to simply bound a

large enough area of parameter space containing all valid parameter values, whereas

for certain parameters the bounds are specifically set to disallow values outside a

certain range.

The truncation parameter g is limited to values between 0 and 3.5 for all clusters,

corresponding to the limit of models of finite extent, as discussed in Section 1.4.1.

The mass-dependant velocity scale δ is also given an upper limit of 0.5, corre-

sponding to the typical value reached by fully mass segregated cluster (Peuten et al.,

2017).

Finally the mass function exponents αi are limited to reasonable regimes. The low

and intermediate mass components α1 and α2 are given bounds between -1 and 2.35,

confining the MF to remain shallower than the canonical high-mass IMF, and allowing

for an increasing mass function with decreasing masses, which may best describe the

most evolved clusters. The high-mass exponent α3 is restricted to values between 1.6

and 4.0. The lower-bound of 1.6 is chosen as it has been shown that clusters this

“top-heavy” are expected to have dissolved by the present day (Weatherford et al.,

2021; Haghi et al., 2020). The upper limit of 4 is chosen as, above this value, lower-
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mass globular clusters will contain very few heavy remnants and no neutron stars or

black holes, in contradiction with observations of stellar remnants within clusters. All

exponents are also required to decrease from the lower to the higher mass regimes,

such that α1 ≤ α2 ≤ α3.

Gaussian priors are used for the parameters which are informed by previous and

independent analyses, and take the form of a Gaussian distribution centred on the

reported value µ with a width of corresponding to the reported uncertainty σ:

πi(θi) =
1

σ
√
2π

e−
1
2(

θi−µ

σ )
2

(4.14)

In particular for this analysis, we adopt a Gaussian prior for the distance parameter

d, with a mean and standard deviation taken from Baumgardt & Vasiliev (2021). This

allows the distance to vary in order to accommodate other observational constraints

used in this work, while still being strongly influenced by the robust value obtained

through the averaging of a variety of distance determinations from different methods

from by Baumgardt & Vasiliev (2021).

4.2 Samplers

The posterior probability distribution P (Θ | D,M) of the parameter set Θ cannot be

solved analytically, but must be estimated through numerical sampling techniques,

which aim to generate a set of samples that can be used to approximate the poste-

rior distribution. Numerous algorithms exist (see, e.g. Chopin & Ridgway, 2017) for

generating this set.

A commonly used approach in astronomy today is Markov chain Monte Carlo

(MCMC) (e.g. Foreman-Mackey et al., 2013). MCMC randomly generates samples
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in a chain such that the final density distribution of the set in parameter space is

proportional to the posterior probability. MCMC can however struggle to explore

posteriors with multiple modes, especially in high-dimensional problems, and relies

on arbitrarily chosen initial chain positions. Thus, in this work, we opt to utilize a

different technique; nested sampling.

4.2.1 Nested Sampling

Nested sampling (Skilling, 2004; Skilling, 2006) is a Monte Carlo integration method,

first proposed for estimating the Bayesian evidence integral Z, which works by it-

eratively integrating the posterior over the shells of prior volume contained within

nested, increasing iso-likelihood contours.

Samples are proposed randomly at each step, subject to a minimum likelihood

constraint corresponding to the current likelihood contour. This sampling proceeds

from the outer (low-likelihood) parameter space inwards, until the estimated remain-

ing proportion of the evidence integral, which can be determined naturally, reaches a

desiredly small percentage. This well-defined stopping criterion is a great advantage

of nested sampling, as in most other sampling methods convergence can be difficult

to ascertain.

The set of samples computed can also be used to directly estimate the posterior,

alongside the evidence integral. This is possible as nested sampling directly incorpo-

rates the notion of the typical set into the estimation. The typical set is the region of

parameter space which jointly maximizes the likelihood probability and the differen-

tial prior volume of a slice of a posterior distribution. This concept emerges naturally

in nested sampling through the integrated shells of prior volume, and can be used to

(importance) weight the samples to be directly proportional to the posterior.
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Nested sampling has the benefit of flexibility, as the independently generated sam-

ples are able to probe complex posterior shapes, with little danger of falling into local

minima, or of missing distant modes. It also does not depend, like many other sam-

pling methods, on a choice of initial sampler positions, and will always cover the entire

prior volume. In cases of well defined priors and smoothly transitioning posteriors, as

is the case in this work, the sampling efficiency can exceed that of the typical MCMC

samplers.

Dynamic nested sampling is an extension of the typical nested algorithm designed

to retune the sampling to more efficiently estimate the posterior (Higson et al., 2019).

This algorithm effectively functions by spending less time probing the “outer” sections

of the prior volume which have little impact on the posterior. The sampler first

samples the entire volume, in the same fashion as the typical, static nested sampling,

but at a much lower “resolution”. The specific areas of greatest “importance” to the

posterior, based on the weights, are then iteratively re-sampled at a higher resolution

until a sufficient measure of the distribution is obtained. This method essentially

allows for a more efficient sampling of the posterior, at the expense of the evidence

accuracy.

In this work, we have chosen to utilize dynamic nested sampling for its speed and

efficiency, and to ensure that no separate, distant modes in the posterior are missed.

4.3 GCfit

All methodology in this work, from data collection to model fitting, is handled by the

novel software library and fitting pipeline GCfit 1 (see Appendix B).

1https://github.com/nmdickson/GCfit

https://github.com/nmdickson/GCfit
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GCfit was created to facilitate the fitting of limepy models to a number of ob-

servables through a parallelized sampling procedure. While GCfit allows for both

MCMC and nested sampling, for the reasons mentioned in Section 4.2.1, we opt to

use only the nested sampling in this work.

Nested sampling is handled by the dynesty software package (Speagle, 2020). The

sampler is run, for all clusters, using the default (multi-ellipsoid bounded, random-

walk) dynamic sampling (see Speagle 2020 for more details). The sampling is contin-

ued until it reaches an effective sample size (ESS; Kish, 1965) of at least 5000:

ESS =
(
∑n

i=1 wi)
2∑n

i=1 w
2
i

(4.15)

where wi is the importance weight of the sample i in the set of generated samples.
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Chapter 5

Results

Presented in this chapter are the results of the fits based on the methodology of Chap-

ter 4. First we will introduce the resulting posterior probability distributions of all

model parameters, and the corresponding fits they give to the relevant data. We will

then briefly discuss the distribution between clusters of some structural parameters

of interest. The stellar mass functions of the clusters are explored in more detail

in Chapter 6, and the distributions of black holes and other remnants are discussed

further in Chapter 7.

5.1 Fitting Results

5.1.1 Parameter Distributions

The set of weighted samples retrieved from the nested sampler, after sampling until the

stopping condition described in Section 4.3, are used to construct posterior probability

distributions for all model parameters.
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Figure 5.1: Marginalized and 2D projections of the posterior probability distributions of all model
parameters for the fit to NGC104. Contours indicate 1σ, 2σ and 3σ levels on the 2D posterior
probability distributions.
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Figure 5.1 shows an example of the resulting posterior distributions for the cluster

NGC104. The best-fitting parameter values for all clusters can be found in Table 5.11.

The vast majority of marginalized posterior distributions for the cluster parame-

ters follow a unimodal and approximately Gaussian shape. The marginalized posterior

probability distribution of some parameters are skewed towards or hitting the bound-

aries of the prior ranges, however, as indicated in Section 4.1.2, this is only allowed

to occur for parameters with physically motivated prior boundaries.

Two parameters (log(ra) and BHret) often have a much broader posterior prob-

ability distribution. The anisotropy radius may be unconstrained above a certain

minimum value, illustrating the fact that all values of the anisotropy radius greater

than the truncation radius effectively lead to an entirely isotropic cluster. The black

hole retention fraction may be completely unconstrained in models with a very small

number of black holes initially formed (e.g. due to a ”top-light” mass function), in

which case the fraction of black holes retained has a negligible effect on the models.

Both of these parameters are examined in more detail below.

A fraction of our clusters are core-collapsed, and should not retain any significant

populations of black holes (Giersz & Heggie, 2009). However, three such clusters

(NGC6266, NGC6624, NGC7078) do possess BHs, and may not be physical. In

these cases, we recompute the models, this time with the amount of retained black

holes at the present day fixed to 0 (by fixing the BHret parameter to 0%). These

models are the ones used in the analysis presented in this chapter and Chapter 6.

This is discussed in more detail in Section 7.1.

1All results, figures and tables from this thesis are also available for all clusters by download from
https://github.com/nmdickson/GCfit-results

https://github.com/nmdickson/GCfit-results
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5.1.2 Best-Fitting Models

Figures 5.2 and 5.3 show an example (also for NGC104) of the observables predicted

by the best-fitting models, overlaid with the observational datasets used to constrain

them. Similar plots for all clusters are shown in Appendix A.
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Figure 5.2: Model radial profiles (in green) of surface number density (Σ), line-of-sight velocity
dispersions (σLOS), total (σPM,tot), radial (σPM,R) and tangential (σPM,T) proper motion velocity
dispersions and proper motion anisotropy ratio (σPM,T/σPM,R), for the fit of NGC104. The dark
and light shaded regions represent the 1σ and 2σ credible intervals of the model fits, respectively.
The observational datasets used to constrain the models are shown alongside their 1σ uncertainties
by the blue points and errorbars. The background value subtracted from the number density profile
is shown by the dashed line.
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The best-fitting models for the majority of clusters match the given data extraor-

dinarily well. There is, however, a small number of clusters, from our original sample

of 40 clusters, where the fits do not reproduce certain datasets adequately. This tends

to occur in systems with small amounts of proper motion and LOS velocity data.

Having few kinematic datapoints, as compared to the mass function and number den-

sity datasets, means that these models are less able to constrain the non-visible mass

and are prone to overfitting the mass functions, at the expense of the kinematics.

As fitting both the visible and dark components well is vital to our analysis of the

high-mass mass function and the remnant populations, we choose to remove these

clusters from our sample going forward. Five such clusters (NGC4590, NGC5986,

NGC6352, NGC6809, NGC6981) were discarded due to their unsatisfactory fits, on

top of the three discarded due to their number density profiles (see Section 3.2.3). The

remaining 32 clusters have best-fitting models that are well matched to all datasets

and will make up the set of clusters used in all further analysis in this thesis.

5.2 Cluster Parameters

Given this set of best-fitting models, we next examine the distribution and relation-

ships of various model parameters to search for any correlations between clusters and

compare with other results from the literature. The best-fitting model and mass func-

tion parameters for all clusters are shown in Table 5.1 and all nuisance parameters

are shown in Table 5.2.

It must be noted here that all uncertainties presented for these parameters, in this

entire analysis, are accounting solely for the statistical uncertainties on the parameter

fits. Our fitting procedure operates under the assumption that our models are a good

representation of the data, and as such may, in reality, be underestimating the true
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errors.



Cluster ϕ̂0 M [106 M⊙] rh [pc] log10 (ra [pc]) g δ α1 α2 α3 BHret d

NGC104 5.95+0.05
−0.05 0.900+0.003

−0.002 6.66+0.04
−0.04 1.71+0.03

−0.03 1.60+0.04
−0.02 0.476+0.007

−0.008 0.38+0.02
−0.02 1.32+0.03

−0.03 2.18+0.02
−0.02 0.08+0.02

−0.05 4.44+0.01
−0.01

NGC288 3.72+0.06
−0.07 0.087+0.002

−0.002 8.68+0.09
−0.09 2+1

−2 0.48+0.07
−0.07 0.487+0.015

−0.008 0.59+0.03
−0.03 0.67+0.04

−0.05 2.31+0.09
−0.09 0.4+0.3

−0.4 8.90+0.09
−0.09

NGC362 5.38+0.04
−0.05 0.263+0.002

−0.002 3.41+0.03
−0.04 1.13+0.03

−0.04 1.46+0.03
−0.04 0.495+0.005

−0.003 0.64+0.02
−0.02 0.65+0.02

−0.02 3.12+0.07
−0.09 4.2+0.4

−0.5 8.65+0.06
−0.05

NGC1261 3.67+0.09
−0.10 0.176+0.002

−0.002 4.81+0.04
−0.04 0.84+0.08

−0.08 1.99+0.08
−0.07 0.489+0.013

−0.008 0.83+0.06
−0.05 0.94+0.05

−0.06 2.54+0.05
−0.06 1.9+0.6

−0.5 15.9+0.1
−0.1

NGC1851 6.00+0.02
−0.07 0.327+0.001

−0.000 3.568+0.004
−0.002 4.11+0.14

−0.04 1.732+0.009
−0.002 0.440+0.012

−0.005 0.694+0.014
−0.003 0.91+0.01

−0.02 3.033+0.017
−0.004 2.0+0.1

−0.2 11.682+0.056
−0.006

NGC2808 5.10+0.03
−0.03 0.928+0.004

−0.005 3.84+0.02
−0.02 1.32+0.05

−0.03 1.72+0.03
−0.03 0.442+0.005

−0.006 0.41+0.02
−0.03 1.46+0.05

−0.04 2.99+0.04
−0.04 13+2

−1 10.14+0.02
−0.03

NGC3201 5.0+0.2
−0.2 0.170+0.004

−0.004 9.5+0.4
−0.4 1.14+0.05

−0.06 1.78+0.08
−0.08 0.45+0.03

−0.03 0.98+0.03
−0.04 1.04+0.04

−0.04 2.36+0.06
−0.06 0.10+0.07

−0.13 4.61+0.03
−0.02

NGC5024 5.0+0.1
−0.1 0.48+0.02

−0.02 10.6+0.3
−0.3 6+3

−3 2.3+0.1
−0.1 0.311+0.008

−0.014 0.96+0.04
−0.04 1.90+0.06

−0.06 2.7+0.2
−0.2 8+5

−7 18.5+0.2
−0.1

NGC5139 2.3+0.2
−0.2 3.25+0.03

−0.05 9.65+0.04
−0.04 6.8+0.8

−0.5 2.56+0.02
−0.02 0.42+0.01

−0.01 0.94+0.01
−0.02 1.06+0.04

−0.02 2.21+0.07
−0.03 20+4

−2 5.38+0.02
−0.03

NGC5272 5.30+0.10
−0.08 0.46+0.01

−0.01 6.68+0.09
−0.11 6+3

−2 2.12+0.06
−0.05 0.313+0.009

−0.016 1.22+0.01
−0.02 1.26+0.02

−0.03 2.5+0.1
−0.1 5+2

−3 10.04+0.09
−0.09

NGC5904 5.5+0.1
−0.1 0.408+0.005

−0.004 6.64+0.05
−0.04 1.2+0.1

−0.2 1.13+0.05
−0.05 0.47+0.02

−0.02 0.46+0.04
−0.04 0.63+0.06

−0.06 2.30+0.05
−0.05 0.3+0.2

−0.2 7.34+0.04
−0.03

NGC6093 5.64+0.09
−0.15 0.308+0.004

−0.004 2.41+0.03
−0.02 5+2

−2 1.41+0.06
−0.05 0.48+0.04

−0.02 −0.01+0.05
−0.05 0.99+0.07

−0.08 2.15+0.06
−0.06 0.54+0.01

−0.13 10.27+0.09
−0.08

NGC6121 6.8+0.4
−0.9 0.090+0.001

−0.001 4.09+0.07
−0.08 7+2

−2 0.7+0.1
−0.1 0.43+0.06

−0.04 −0.3+0.1
−0.1 0.8+0.1

−0.1 1.85+0.09
−0.09 0.16+0.08

−0.10 1.85+0.01
−0.01

NGC6171 5.56+0.05
−0.07 0.063+0.002

−0.002 3.91+0.06
−0.06 5+2

−2 0.31+0.09
−0.09 0.487+0.015

−0.009 −0.05+0.03
−0.03 0.00+0.04

−0.04 2.35+0.08
−0.08 0.3+0.2

−0.4 5.58+0.07
−0.07

NGC6205 4.41+0.05
−0.05 0.465+0.007

−0.009 5.19+0.08
−0.08 4+3

−3 1.54+0.06
−0.06 0.490+0.009

−0.006 0.51+0.03
−0.03 0.55+0.03

−0.03 2.8+0.1
−0.1 0.7+0.5

−0.8 7.15+0.04
−0.05

NGC6218 4.97+0.07
−0.07 0.098+0.001

−0.001 4.08+0.04
−0.05 1.7+0.3

−1.8 0.51+0.06
−0.05 0.497+0.002

−0.001 0.18+0.03
−0.03 0.23+0.04

−0.04 2.53+0.06
−0.06 0.8+0.2

−0.3 5.07+0.04
−0.02

NGC6254 5.5+0.1
−0.2 0.212+0.004

−0.004 5.25+0.08
−0.08 3+1

−1 0.94+0.09
−0.07 0.44+0.03

−0.03 0.47+0.04
−0.04 0.65+0.08

−0.08 2.40+0.07
−0.08 0.4+0.3

−0.5 5.09+0.05
−0.05

NGC6266 5.5+0.1
−0.1 0.71+0.01

−0.01 3.05+0.05
−0.05 1.34+0.06

−0.09 0.91+0.07
−0.07 0.497+0.003

−0.001 0.5+0.1
−0.1 0.73+0.09

−0.10 2.26+0.06
−0.06 — 6.42+0.04

−0.04

NGC6341 5.2+0.2
−0.6 0.315+0.004

−0.004 4.34+0.06
−0.05 7+2

−2 1.66+0.04
−0.04 0.48+0.03

−0.01 0.83+0.03
−0.03 1.27+0.05

−0.05 2.03+0.05
−0.05 0.28+0.11

−0.08 8.47+0.05
−0.04

NGC6362 4.10+0.08
−0.11 0.113+0.003

−0.003 6.84+0.09
−0.10 4+2

−2 0.6+0.2
−0.2 0.47+0.04

−0.02 0.27+0.04
−0.04 0.63+0.08

−0.08 1.78+0.07
−0.08 0.04+0.03

−0.05 7.61+0.07
−0.06

NGC6366 3.9+0.2
−0.1 0.031+0.001

−0.001 4.6+0.1
−0.1 2+1

−2 0.9+0.3
−0.3 0.48+0.02

−0.01 −0.4+0.1
−0.1 −0.1+0.1

−0.1 3.1+0.2
−0.2 6+4

−7 3.39+0.04
−0.04

NGC6397 7.87+0.06
−0.07 0.106+0.001

−0.001 4.8+0.1
−0.1 2.33+0.04

−0.05 1.49+0.07
−0.08 0.498+0.002

−0.001 0.49+0.04
−0.04 0.59+0.06

−0.06 2.48+0.05
−0.04 0.13+0.01

−0.02 2.42+0.01
−0.01

NGC6541 5.96+0.03
−0.11 0.240+0.000

−0.004 4.02+0.02
−0.05 1.234+0.009

−0.045 0.68+0.02
−0.05 0.499+0.001

−0.000 0.38+0.04
−0.03 0.95+0.01

−0.04 2.34+0.05
−0.03 0.34+0.07

−0.03 7.61+0.04
−0.01

NGC6624 11.0+0.1
−0.2 0.101+0.002

−0.002 1.94+0.03
−0.04 5+2

−3 1.19+0.09
−0.09 0.495+0.005

−0.003 −0.47+0.11
−0.07 −0.33+0.04

−0.05 2.29+0.06
−0.05 — 7.99+0.08

−0.07

NGC6656 5.53+0.06
−0.05 0.447+0.007

−0.007 5.11+0.07
−0.06 1.16+0.06

−0.08 1.09+0.08
−0.09 0.35+0.01

−0.01 0.23+0.06
−0.07 0.8+0.1

−0.1 2.59+0.05
−0.06 2.4+0.7

−0.8 3.23+0.02
−0.01

NGC6681 11.32+0.03
−0.09 0.105+0.001

−0.001 2.55+0.02
−0.02 3.13+0.04

−0.03 1.51+0.04
−0.04 0.473+0.004

−0.005 −0.24+0.03
−0.03 −0.19+0.05

−0.04 2.06+0.05
−0.04 0.128+0.006

−0.013 9.23+0.03
−0.04

NGC6723 4.14+0.10
−0.09 0.143+0.005

−0.005 5.14+0.06
−0.05 0.61+0.07

−0.09 1.4+0.1
−0.1 0.48+0.02

−0.01 0.04+0.05
−0.04 0.22+0.06

−0.06 3.2+0.2
−0.2 2+2

−3 8.17+0.07
−0.06

NGC6752 6.44+0.05
−0.05 0.229+0.003

−0.003 4.56+0.09
−0.09 1.49+0.02

−0.02 1.16+0.06
−0.06 0.496+0.004

−0.002 0.46+0.04
−0.04 0.52+0.04

−0.04 2.65+0.05
−0.05 0.52+0.08

−0.06 4.01+0.02
−0.02

NGC6779 5.82+0.07
−0.06 0.158+0.004

−0.004 5.64+0.08
−0.09 4+2

−2 0.66+0.06
−0.06 0.35+0.02

−0.02 0.27+0.03
−0.03 1.19+0.07

−0.07 2.21+0.08
−0.08 1.5+0.5

−0.6 10.4+0.1
−0.1

NGC7078 9.1+0.2
−0.1 0.617+0.008

−0.006 4.95+0.03
−0.04 3.00+0.06

−0.07 1.49+0.05
−0.04 0.437+0.010

−0.009 0.90+0.06
−0.05 1.61+0.09

−0.04 1.79+0.05
−0.05 — 10.58+0.06

−0.04

NGC7089 4.9+0.2
−0.2 0.612+0.005

−0.007 4.69+0.06
−0.05 6+3

−4 1.89+0.06
−0.06 0.35+0.02

−0.02 1.13+0.03
−0.02 1.22+0.04

−0.05 2.48 +0.05
−0.056 5+1

−1 11.56+0.11
−0.09

NGC7099 9.67+0.06
−0.06 0.140+0.001

−0.002 4.20+0.06
−0.05 3.17+0.04

−0.03 1.10+0.06
−0.06 0.496+0.003

−0.002 0.58+0.03
−0.03 0.94+0.06

−0.06 2.32+0.05
−0.04 0.047+0.006

−0.009 8.34+0.07
−0.07

Table 5.1: Median and 1σ uncertainties of all best-fitting model and mass function parameters, for all clusters. Empty dashes in the BHret

column represent the three core-collapsed clusters with a value fixed to 0.
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5.2.1 Comparison with Literature

To begin, we can compare our best-fitting models with other comprehensive studies

of Milky Way GCs in the literature. Namely, we consider in Figure 5.4 the distances

determined by Vasiliev & Baumgardt (2021), and the total masses and half-mass radii

inferred from the N -body model fits of Baumgardt et al. (2019a, 2022), where our

results show good agreement. While the excellent agreement with the heliocentric dis-

tances of Vasiliev & Baumgardt (2021) is largely by design, given our use of a Gaussian

centred on their values as the prior on the distance parameter (see Section 4.1.2), this

does indicate that our models and observations are perfectly compatible with those

distances. The excellent agreements between our models and the previous determi-

nations of total cluster mass and half-mass radius are also reassuring, and any small

deviations present are to be expected, given the large amount of additional freedom

in the remnant mass function of our models.
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Figure 5.4: Comparison of heliocentric distances, total system mass, and half-mass radii of all
cluster fits against the distances computed by Vasiliev & Baumgardt (2021) and the properties
inferred from the N -body model fits of Baumgardt et al. (2019a). NGC5139 is excluded from these
figures due to its very large mass, but is discussed in more detail in Section 7.4.
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Cluster s2 F

NGC104 0.011+0.009
−0.013 3.3+0.1

−0.1

NGC288 0.04+0.04
−0.3 1.47+0.07

−0.07

NGC362 0.00018+0.00008
−0.00007 3.18+0.10

−0.09

NGC1261 0.000005+0.000005
−0.000003 5.2+0.2

−0.2

NGC1851 4.13+0.02
−0.11 3.53+0.02

−0.11

NGC2808 0.000020+0.000007
−0.000005 4.8+0.1

−0.1

NGC3201 18.6+1.3
−1.0 2.7+0.2

−0.2

NGC5024 0.001+0.000
−0.002 3.7+0.2

−0.2

NGC5139 0.00035+0.00010
−0.00006 8.4+0.1

−0.2

NGC5272 3.2+1.1
−1.3 2.5+0.1

−0.1

NGC5904 0.007+0.005
−0.009 6.2+0.3

−0.3

NGC6093 0.008+0.002
−0.002 5.0+0.3

−0.3

NGC6121 0.00002+0.00009
−0.00001 2.3+0.2

−0.2

NGC6171 0.004+0.001
−0.002 1.52+0.09

−0.10

NGC6205 11+3
−3 4.5+0.3

−0.3

NGC6218 0.00007+0.00010
−0.00005 2.5+0.2

−0.2

NGC6254 0.0003+0.0002
−0.0002 3.1+0.2

−0.2

NGC6266 0.24+0.02
−0.03 5.8+0.5

−0.6

NGC6341 0.0002+0.0004
−0.0001 3.1+0.1

−0.2

NGC6362 15+5
−3 1.7+0.1

−0.1

NGC6366 0.001+0.001
−0.001 1.5+0.1

−0.1

NGC6397 9.2+0.9
−0.6 2.40+0.10

−0.11

NGC6541 14.8+0.9
−1.0 2.35+0.09

−0.05

NGC6624 0.3+0.1
−0.1 1.6+0.1

−0.2

NGC6656 0.000003+0.000011
−0.000002 6.6+0.2

−0.2

NGC6681 0.054+0.006
−0.006 3.97+0.08

−0.10

NGC6723 0.005+0.002
−0.004 2.4+0.2

−0.2

NGC6752 23+2
−1 5.2+0.3

−0.3

NGC6779 0.0002+0.0002
−0.0002 2.9+0.2

−0.2

NGC7078 0.00006+0.00007
−0.00003 7.5+0.2

−0.3

NGC7089 0.00008+0.00007
−0.00003 5.3+0.4

−0.4

NGC7099 0.00005+0.00011
−0.00003 3.2+0.1

−0.2

Table 5.2: Median and 1σ uncertainties of all best-fitting nuisance parameters, for all clusters.
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5.2.2 Relationships Between Parameters

Figure 5.5 shows the relationships between the structural parameters of all clusters. As

can be seen here, the central potential ϕ̂0 is anti-correlated somewhat with the (log)

half-mass radius. We also find, as would be expected, a clear correlation between

the (log) truncation radius and the truncation parameter g, as well as between the

truncation and half-mass radii themselves. These correlations match those found by

de Boer et al. (2019) in their fits of single-mass limepy models to Gaia DR2 density

profiles. However, due to the large scatter at low central potentials, our results do

not seem to indicate an anti-correlation between ϕ̂0 and log(rt), as seen in their fits.

Similarly, while there may be a general linearly-decreasing trend between g and ϕ̂0,

the large scatter and outliers prevent us from finding a statistically-significant, clear

correlation between the two, as found in their models.

5.2.3 Anisotropy

Figure 5.6 shows the distribution of the anisotropy radius parameter for all clusters. It

is immediately clear from this plot that there are two populations of anisotropy results

in our fits; distributions with a clear peak, constrained to a narrow range of best-fitting

values, and very broad, flat distributions with no clear peak above a certain minimum

value, extending up to the prior bounds. As described in Section 2.1, clusters where

log(ra) is more clearly peaked favour a certain amount of radial anisotropy, whereas

clusters with broad posterior distributions are effectively isotropic, as all values of

log(ra) above the minima of the broad distributions (corresponding to approximately

at or above the truncation radius) essentially lead to the same isotropic model. Val-

ues above this minimum therefore have a negligible effect on the computed model

likelihoods. An example of both categories is shown in Figure 5.7.
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It should be noted that the constraints we can place on velocity anisotropy come

entirely from the Gaia (and HST, where covered by Watkins et al. (2015)) proper

motion dispersion profiles. These datasets are quite limited in many clusters, and

as such some of the clusters with broad distributions may not actually be entirely

isotropic in reality, but simply cannot be sufficiently constrained by the data currently

available. It is also important to note that our limepy models are unable to reproduce

any amount of tangential anisotropy (Gieles & Zocchi, 2015), and instead, when

tangentially biased anisotropy is present in our data. the models will favour a mostly

isotropic fit as a compromise between the radial and tangential regimes (Peuten et al.,

2017).

It is clear, based on the wide range of log(ra) values, that allowing the anisotropy

radius to vary freely is necessary to best model the GCs. The degree of anisotropy

in a cluster is important for understanding the central dark remnant populations, as

there exists a degeneracy between the observational fingerprints of central dark mass

and velocity anisotropy (e.g. Zocchi et al., 2017).
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Figure 5.5: Relations between a variety of structural parameters; the dimensionless central potential
ϕ̂0, the truncation parameter g, the total cluster mass M , the (log) half-mass radius log(rh) and the
(log) truncation radius log(rh). All but the truncation radius are free model parameters. NGC5139
is excluded from these figures due to its very large mass and low central potential, but is discussed
in more detail in Section 7.4.
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Figure 5.6: Violin plot of the (log) anisotropy radius log(ra) parameter posterior distributions for
all clusters. All clusters, except NGC7089, were fit using a uniform prior with an upper bound at
log(ra) = 10. The median, 1σ and 2σ values are denoted by the horizontal ticks on each distribution.
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Figure 5.7: Model radial profiles (in green) of the proper motion anisotropy ratio (σPM,T/σPM,R),
for an example of both an anisotropic model (NGC7078, left panel) and isotropic model (NGC6341,
right panel). The dark and light shaded regions represent the 1σ and 2σ credible intervals of the
model fits, respectively. The observational data from Watkins et al. (2015) used to constrain the
models are shown alongside their 1σ uncertainties by the blue points and errorbars.
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Chapter 6

Mass Functions

In this chapter, we explore the mass function exponents inferred from our model fits,

in all mass regimes. We will examine the relationships between the MF exponents,

discuss the connection between the global mass function probed by our models and the

initial stellar mass function of GCs, and search for any possible correlations between

the IMF and environment of globular clusters.

To begin, we examine the distribution of the α parameters between all clusters.

Figure 6.1 shows the relationships between all three mass function slopes (α1, α2, α3).

The high-mass α3 is not clearly correlated to either of the other MF exponents, how-

ever a clear relation can be seen between α1 and α2. While it should be noted that,

by design, the priors used here disallow α1 < α2 (as shown by the shaded regions

in Figure 6.1), which may introduce a bias to this trend, it is clear that, in general,

clusters with a more depleted low-mass mass function also have a correspondingly

depleted intermediate-mass mass function, as might be expected due to dynamical

evolution.

The relation between α1 and α2 also showcases another important phenomenon;
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Figure 6.1: Relations between all three mass function exponent parameters. Gray shaded areas
represent the parameter space which is disallowed by the priors on the mass function slopes.

a large number of clusters do not fall on or near the α1 = α2 line, but are instead

steeper in the intermediate-mass regime than the low-mass regime. This suggests that

a two-component power law is necessary to describe the global mass function below

1M⊙, and a single power law attempting to describe the same mass regime would

overestimate both the high and low mass ends of the mass function in this regime,

and underestimate the mass function in the intermediate regime, near the break mass

of 0.5M⊙. That is, a single α power law over the same mass domain would have a

slope greater than α1 and less than α2.
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6.1 Initial Mass Function

The α parameters constrained by the models describe the global stellar mass functions

of the clusters at the present day, and in order to examine the initial mass function

of our clusters we must carefully consider the connection between the IMF and the

PDMF. As discussed in Section 2.2, we have chosen not to model the dynamical loss

of (preferentially low-mass) stars in the mass function evolution algorithm used, due

to its complex dependence on the dynamical evolution and initial conditions of the

cluster. Therefore, in our models, the IMF can most directly be inferred only in the

high-mass (α3,m > 1M⊙) regime, while the lower-mass exponents (α1, α2) are more

representative of the present-day mass function, which may have evolved away from

the IMF significantly.

To quantify this assertion, we must examine the dynamical evolution of our clus-

ters, as the dynamical loss of stars is not necessarily limited entirely to the lower-mass

regime. In very dynamically evolved clusters, which have lost a substantial amount

of their total initial mass to escaping stars, the characteristic mass of preferentially

escaping stars will increase, potentially depleting even the population of higher-mass

stars and white dwarfs, which had initial masses above 1M⊙, and in such cases the

inferred mass function exponent α3 may also be shallower and less directly representa-

tive of the IMF. To account for this effect, we must determine which clusters have lost

a large amount of their initial mass by the present day. We estimate this remaining

mass fraction by the equation:

Mtoday

Minitial

= 0.55×
(
1− Age

τdiss

)
(6.1)

where the factor 0.55 reflects the typically assumed mass loss from stellar evolution



CHAPTER 6. MASS FUNCTIONS 76

of ∼ 55% of the initial cluster mass in the first Gyr of a cluster’s evolution and

the dissolution time τdiss represents the estimated total lifetime of the cluster. The

estimated lifetimes of our clusters were computed according to the approach described

in Section 3.2 of Baumgardt et al. (2019a), using the updated models of Baumgardt

et al. (2022). This method is based on integrating the orbit of the clusters backwards

in the Milky Way galactic potential (Irrgang et al., 2013), and estimating the resulting

mass loss.

A related quantity is the “dynamical age”, which we define as the ratio of the

cluster’s age over its half-mass relaxation time (τrel).

We have taken both the relaxation and dissolution times from the best-fitting

models of Baumgardt et al. (2022), a companion study which determined the mass

functions of 120 MW, LMC and SMC globular clusters by comparing the same HST

mass function datasets as used in this work with a grid of direct N -body simulations.

While we could technically extract the relaxation times self-consistently from our own

set of models, we utilize the values obtained by Baumgardt et al. (2022) in order to

most easily compare our results. Given the excellent match to the total mass and

half-mass radii of their N -body models, as shown in Figure 5.4, the differences should

be negligible.

These quantities, and their relationships with all mass function exponents, are

shown for all clusters in Figure 6.2. The clusters to the left of these plots are thought

to have lost a large amount of their initial mass and be dynamically very evolved. In

these cases the lower-mass α1 and α2 slopes are shallower (with α1 even becoming

negative in the most dynamically evolved clusters), and the α3 slope may also have

been modified by dynamical evolution. As such, caution is advised when interpreting

the slopes in these clusters as representative of the IMF. These quantities cannot be
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used to define an exact division of where the global mass function parameters reflect

the IMF, but it does provide useful context to our proceeding analysis of the IMF.
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Figure 6.2: Relations between all three mass function exponent parameters and the remaining
mass fraction and dynamical age of all clusters. Clusters with higher remaining mass fractions and
relaxation times greater than their ages provide more reliable probes of the IMF.

We can clearly see that both lower-mass MF exponents (α1, α2) have distinct

correlations with these two quantities, with the increasingly evolved clusters (short

lifetimes / relaxation times compared to their ages) substantially more depleted in

low-mass stars than their less evolved counterparts. No such correlation exists with α3,

which supports our assertion that the high-mass regime is less affected by the cluster’s

dynamical evolution, and thus, overall, most representative of the IMF. However, as

stated before, caution should still be applied when interpreting the α3 of the clusters
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to the left side of this figure. We will examine this parameter in more detail in

Section 6.1.2 below.

6.1.1 Low-Mass IMF

The correlations with the lower-mass exponents (α1, α2) also closely match the be-

haviour of the global mass functions inferred in Baumgardt et al. (2022), as can be

seen in Figure 6.3. In fact, the mass function exponents of both of our models agree

extremely well, as seen in the residual panels of Figure 6.3.

It is important, however, to note that our parametrization of the mass function

is different from Baumgardt et al. (2022). Baumgardt et al. (2022) assume, for the

most part, a single power-law MF, whereas, in the overlapping mass regime, we utilize

a broken two-stage power law characterized by α1 and α2. As shown in Figure 6.1

above, a single power-law MF, while a useful approximation, will not provide an

entirely accurate fit to the observed data in all clusters. In general, a single power-

law will overestimate the amount of low-mass stars, a bias which can indeed be seen

in the residuals of Figure 6.3. This bias is also explored in Section 4.4 of Baumgardt

et al. (2022), for a handful of clusters with the deepest mass functions and longest

relaxation times, and similar conclusions were reached.

If we assume that this correlation of the global mass functions slope with the

remaining mass fractions is, as argued in Baumgardt et al. (2022), due to the internal

evolution of the clusters and not a sign of initial variations, then the clusters to the

far right of Figure 6.3 can be assumed to have PDMFs (in the mass regime of α1 and

α2) that is representative of their IMFs. Examining the clusters with an estimated

lifetime at least twice as long as the current age (i.e. a remaining mass fraction greater

than ∼ 0.275), we find median and 1σ values of α1 = 0.46+0.45
−0.48 and α2 = 0.79+0.54

−0.49.
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Figure 6.3: Relations between the PDMF exponents (α1 and α2) and the remaining mass fraction
and dynamical age of all clusters, in comparison with the single power-law MF values computed by
Baumgardt et al. (2022), shown in red. All clusters examined in Baumgardt et al. (2022) but not in
this work are shown in grey in the background. Shown below each panel are the residuals of the two
datasets, in black. The MF slope values of the canonical Kroupa IMF are shown as dashed lines, with
blue representing the exact values of 1.3 and 2.3 for the low and high-mass regimes respectively, and
red showing the averaged single-exponent power law slope of 1.61 used in Baumgardt et al. (2022).

The canonical Kroupa (2001) mass function has corresponding exponents of 1.3 and

2.3 in these same mass regimes. Our models therefore imply a low-mass mass function

which is considerably flatter and more depleted in low mass stars compared to the

typical Kroupa mass function, a result which is echoed by the single power-law MFs of

Baumgardt et al. (2022). A similarly depleted, bottom-light initial mass function has

also been previously suggested in studies of NGC7078, NGC7099 (Cadelano et al.,

2020) and NGC104 (Hénault-Brunet et al., 2020), all of which we reproduce well here.

Baumgardt et al. (2022) also demonstrated, through comparison of these MF

results againstN -body models evolved in an external potential, that only clusters with

an initial BH retention fraction below 50% could reproduce the observed trend with
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dynamical age, as larger populations of initial BHs would suppress the segregation

between the least massive stars and prevent the observed depletion of low-mass stars.

We will explore the black hole populations of our models more in Chapter 7. Further

studies of the effects of a bottom-light IMF on cluster evolution, through N -body or

Monte Carlo modelling, similar to the work done, for example, by Weatherford et al.

(2021) on top-heavy IMFs, would greatly improve our understanding of the effects of

these results on cluster evolution.

6.1.2 High-Mass IMF

We next examine the high-mass MF exponent, α3, which, as shown in Figure 6.2,

is uncorrelated with the dynamical age of the clusters, and thus more convincingly

representative of the IMF.
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Figure 6.4: Violin plot of the α3 parameter posterior distributions for all clusters. The median,
1σ and 2σ values are denoted by the horizontal ticks on each distribution. Colours represent the
remaining mass fraction. The corresponding values of some canonical high-mass (m > 1M⊙) IMF
formulations (Salpeter, 1955; Kroupa, 2001) are shown by dashed lines.
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Figure 6.4 shows the posterior probability distributions of α3 for all clusters. From

this figure we can see that the distributions are, in the vast majority of cases, compat-

ible within uncertainties with the typically assumed canonical high-mass (m > 1M⊙)

IMF formulations (e.g. Salpeter, 1955; Kroupa, 2001), however with a large spread

of α3 values between ∼ 2−3. The median and 1σ values over all clusters are α3 =

2.37+0.48
−0.25. This matches remarkably well with the canonical IMFs, a striking result

given the large freedom in the mass function of our models. It is even clearer that

our fits do not favour any more extreme IMFs, neither exceedingly top-heavy nor

top-light, especially when ignoring the most dynamically evolved clusters (shown in

Figure 6.4 by the more yellow colours).

This result is counter to some recent suggestions in the literature (see Section 1.2.1)

of top-heavy IMFs in GCs. It has been shown that clusters with top-heavy IMFs are

expected to have lost a very large fraction of their mass early in their lifetimes due

to stellar mass loss and supernova explosions, produce a large amount of black holes

and could contribute significantly to the observed rate of binary BH mergers (Haghi

et al., 2020; Weatherford et al., 2021). Given that our results seem to preclude any

clusters as top-heavy as α3 ∼ 1.6, there is thus no obvious need to consider top-heavy

IMFs in estimates of BBH merger rates in globular clusters.

Due to the very small dissolution times of top-heavy GCs of typical masses (∼

105 M⊙), there remains the possibility that some GCs had formed with a more top-

heavy IMF, and have simply dissolved to such an extent by the present day that they

are undetectable. These clusters could still contribute significantly to the rate of BBH

mergers and gravitational waves. Although, given the large range of GC parameter

space covered by our models, it is unclear what would cause these top-heavy GCs to

form alongside clusters with a more canonical or bottom-light IMF as we see here.
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6.2 Relationship with Metallicity

We next examine possible correlations between the stellar IMF of GCs and metallic-

ity. Variations of the initial mass function with metallicity have been suggested in the

past based on theoretical studies of star and cluster formation, which indicate that

increasing metallicity leads to more efficient cooling and helps limit stellar accretion,

and thus should reduce the characteristic mass of formed stars and produce an in-

creasingly bottom-heavy IMF in more metal-rich clusters (Larson, 1998; De Marchi

et al., 2017; Chon et al., 2021). Marks et al. (2012) proposed a linear relationship

between the high-mass IMF slope and metallicity, which begins with extremely top-

heavy values of α3 at lower metallicities, and reaches the canonical Kroupa value of

2.3 only at metallicities [Fe/H] > 0.5. Given the large amount of freedom available

in our mass function slopes, and the excellent constraints we are able to place on the

dark remnant populations in this mass regime, our model fits, which span nearly the

full range of Milky Way GC metallicities, present an excellent opportunity to examine

this potential relationship.

6.2.1 Relationship with High-Mass MF

Figure 6.5 shows the relationship between α3 and cluster metallicity [Fe/H]. While

a distinct correlation between these parameters is not immediately clear, a possible

trend can be seen, after excluding the GCs with the smallest remaining mass frac-

tions. The most metal-poor clusters have a value of α3 closer to ∼ 2.0, and the slope

increases linearly (i.e. the mass function becomes steeper) with increasing metal-

licity past the canonical Salpeter value and towards ∼ 3.0 in the more metal-rich

clusters. This relation is, however, quite noisy, and prominent outliers exist. In par-

ticular, four clusters (NGC104, NGC6121, NGC6362, NGC6624) with higher metal-
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Figure 6.5: Relation between the high-mass IMF exponent α3 and the cluster metallicity for all
clusters. Colours represent the remaining mass fraction. The corresponding value of the Kroupa
(2001) canonical high-mass (m > 1M⊙) IMF formulation is shown by the red dashed line.

licities ([Fe/H] ≳ −1.2) have α3 exponents flatter than Salpeter, while the metal-poor

NGC5024 ([Fe/H] = −2.1) has a slope of ∼ 2.7 (albeit with large uncertainties).

It should again be emphasized that, as mentioned in Section 5.2, the uncertainties

on these parameters are only the statistical uncertainties on the fits, under the as-

sumption that our models are a good representation of the data, and as such may be

underestimating the true errors.

To investigate this potential trend further, we attempt to directly fit a linear

relation (α3 = m × [Fe/H] + b) to this plot, using a simple MCMC sampler with a

Gaussian likelihood. To account for any biases and underestimated uncertainties in

our inferred α3 values, we also include a nuisance parameter, added in quadrature to

the statistical errors. We also repeat this analysis multiple times, excluding all clusters

below a certain remaining mass fraction threshold, to test the effect of including

or excluding clusters which have lost a significant fraction of their initial mass and
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therefore have a more depleted stellar mass function. Figure 6.6 shows the results

of these fits. All linear fits show a slightly positive slope, indicating a general trend

towards flatter high-mass IMFs at higher metallicities, as discussed. However, this

relation should be regarded as very speculative, as the relative uncertainties on these

fits are quite large, due to the outliers mentioned above. Within 2σ, these fits are

also consistent with a slope of 0, indicating no obvious trend of IMF slope with

metallicity. We can also see the adopted remaining mass fraction threshold slightly

affects this slope. The slope increases very slightly with higher remaining mass fraction

thresholds, until ∼ 0.3, where the amount of discarded clusters becomes quite large

and the results are less significant.

This analysis and conclusions are thus limited by the smaller number of clusters

with a larger remaining mass fraction at both extremes of the metallicity range of

Milky Way GCs, and further extension of this work to more metal-poor and metal-rich

clusters is necessary to be able to say definitively whether a correlation exists between

the metallicity and the stellar IMF of GCs. It is clear though, even with these caveats,

that the very top-heavy IMF-metallicity relationship proposed by Marks et al. (2012)

is not compatible with our results. As discussed in Section 6.1.2, none of our clusters

favour a top-heavy IMF, and even our most metal-poor clusters have a value of α3

much closer to the canonical ∼ 2.3 than suggested by the fundamental plane of Marks

et al. (2012).

6.2.2 Relationship with Low-Mass MF

Baumgardt et al. (2022) also examined the effects of the environment on the global

mass function slope, finding a weak correlation with metallicity when considering

their sample of least dynamically evolved GCs alongside a number of open, LMC and
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SMC clusters and dwarf galaxies. However, this correlation was not present when

only considering the globular clusters.

Figure 6.7 demonstrates the same fitting procedure as done in Figure 6.6, but

repeated this time for the lower-mass exponents, in order to compare with the findings

of Baumgardt et al. (2022). Negative slopes can be seen in the left panels, for both α1

and α2, when fitting on all clusters, suggesting an increasingly flatter, depleted low-

mass MF at higher metallicities. However, this correlation largely disappears when

restricting the analysis to only the least evolved clusters. This may suggest that

any relationship with metallicity in the mass function below 1M⊙ can be explained,

not by initial variations in the IMF, but instead by the dynamical evolution of the

cluster, and could be driven by the underlying correlation between the metallicity and

the galactocentric radii, and thus lifetimes, of the clusters (van den Bergh, 2011), as
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metal-rich GCs tend to occupy orbits nearer the galactic bulge. It should, of course,

be noted again that the uncertainties associated with the linear fits of the unevolved

clusters are quite large, and could be consistent both with a clear decreasing slope, or

no correlation at all. Once again, further extension of this study to the most metal-

rich and metal-poor regimes, for less evolved clusters, would help in firmly establishing

these relationships.
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Chapter 7

Black Hole Populations

In this chapter, we explore the populations of black holes (and other dark remnants)

present in our best-fitting models. We will examine the distribution of the total

mass and amount of black holes in our fits, comparing our results against a number

of other studies, and explore any possible correlations present between the remnant

populations and other cluster properties. We will also discuss in more detail the case

of “core-collapsed” clusters and how we model them. Finally we will dive more deeply

into results from the literature surrounding a few specific clusters of interest.
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Figure 7.1: Violin plots of the posterior probability distribution of total mass (upper panel) and number (lower panel) of black holes in all
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as core-collapsed in Trager et al. (1995) are denoted by an asterisk.
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Figure 7.1 shows the posterior probability distributions of the total mass and

amount of black holes present in the best-fitting models of most clusters in our sample.

NGC5139 (ω Cen) is not included in Figure 7.1, due to the extraordinarily large mass

in black holes (MBH = 1.70+0.05
−0.04 × 105 M⊙) inferred, but it is discussed in more detail

in Section 7.4 below.

A large number of the clusters are consistent, within 2σ, with harbouring little to

no black holes, while the remainder possess, on average, at most a few thousand M⊙ of

stellar-mass black holes, with constituent individual BH masses between ∼ 5−15 M⊙.

Other than ω Cen, it is clear that none of our models favour a very large population

of black holes, with all clusters having a mass fraction in black holes of less than

0.5% at the present day. Our models are thus able to reproduce well the observables

of all clusters without the need for any central intermediate-mass black hole, of any

size. It should of course be noted however that it is currently not possible for us to

self-consistently include an IMBH in our models to compare directly and explore any

partial degeneracy between a central IMBH and a central concentration of stellar-

mass BHs (e.g. Lützgendorf et al., 2013). Outside its sphere of influence, a central

IMBH is expected to have dynamical signatures similar to a population of centrally

concentrated BHs, for example by quenching mass segregation among the visible

stars (Gill et al., 2008; Peuten et al., 2016), inflating cluster cores (Heggie et al.,

2007; Peuten et al., 2017), or increasing the central velocity dispersion (e.g. Zocchi

et al., 2019). In the future, it would also be interesting to expand this work, where

possible, with the inclusion of millisecond pulsar spin-period derivatives, as done by

Smith et al. (2022) for NGC104, in order to provide even better constraints on the

dark remnant populations and the possibility of IMBHs in these clusters.



CHAPTER 7. BLACK HOLE POPULATIONS 90

7.1 Core-Collapsed Clusters

Due to the negative heat capacities of self-gravitating systems such as globular clus-

ters, over time dynamical interactions are expected to inevitably lead to the “collapse”

of the system’s core. Globular clusters currently undergoing core-collapse are typi-

cally defined based on the shape of their central density profiles, with core-collapsed

clusters showing a power-law density profile increasing all the way to their centres,

while non core-collapsed clusters possess larger, isothermal cores with a flat central

density profile (e.g. Djorgovski & King, 1986; Trager et al., 1995). Core-collapsed clus-

ters are expected to contain very few, if any, black holes (Breen & Heggie, 2013a,b;

Kremer et al., 2020b). In GCs with a population of stellar-mass BHs, core-collapse

occurs within the BH sub-population but, due to the efficient heat transfer from BHs

to stars, the visible core will actually remain large (relative to rh). The presence of

BHs in a cluster may thus play a large role in explaining the observed population

of core-collapsed Milky Way GCs, which, given the ages of most clusters, is smaller

than would be expected when considering only stellar binaries as the sole delaying

mechanism. It is not until almost all BHs (and the last BH binary) are ejected that

a cluster core will collapse and exhibit the defining power-law central density profile

(e.g. Chatterjee et al., 2013; Kremer et al., 2020b). Almost all GCs have likely reached

a state of balanced evolution (Hénon, 1961; Gieles et al., 2011) but, due to BHs, only

a minority of GCs appear to be post-collapse.

The nine clusters in our sample defined as core-collapsed in Trager et al. (1995)

(NGC362, NGC6266, NGC6397, NGC6541, NGC6624, NGC6681, NGC6752, NGC

7078, NGC7099) are denoted in Figure 7.1 by an asterisk. Six of these clusters

(NGC362, NGC6397, NGC6541, NGC6681, NGC6752, NGC7099) are consistent,

within 2σ, with having less than 15 total black holes, a largely negligible population
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in our mass models, however the remaining clusters favour a larger amount of total

mass in black holes; around ∼ 500M⊙ for NGC6624 and ∼ 1000M⊙ for NGC6266

and NGC7078.

This discrepancy between the theoretical expectations and the inferred BH popu-

lations for some core-collapsed clusters may arise simply due to the limitations of the

limepy models themselves. limepy models, by definition, possess an isothermal core,

characterized by a flat inner density profile, which is incompatible with the central

cusp of core-collapsed clusters (see also Section 3.1.4 of Gieles & Zocchi 2015). As

such, our models may struggle to accurately capture the inner density profiles of these

clusters. Indeed this divergence can be seen in the profiles of the three core-collapsed

clusters with substantial inferred BH populations in our best-fitting models, which

tend to underestimate the amount of stars within a very small distance from the cen-

tre (typically ∼ 0.1 pc in these clusters), and overestimate the profile from there to

∼ 1−2 pc from the centre, as the models attempt to fit a flat inner density profile to

the power-law form suggested by the data.

In order to investigate these systems further, as mentioned in Section 5.1, models

of these clusters were also computed with the amount of retained black holes at

the present day fixed to 0 (by fixing the BHret parameter to 0%). These models

do not show a noticeable difference in the fits of the kinematics or mass functions,

and the best-fitting parameters are not drastically different in most cases, in general

showing a larger central potential and slightly increased anisotropy radius in models

with no BHs. NGC6624 shows the greatest change, increasing the mass segregation

parameter δ from ∼ 0.3 to ∼ 0.5, as is expected (see Section 7.2 and Figure 7.4), and

having a shallower truncation (larger g). The most noticeable change, as is expected,

is in the number density profiles, shown in Figure 7.2. While there is a negligible

change in NGC6266, where the density profile was already fit quite well, the other
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two clusters clearly demonstrate a constantly increasing inner profile, with no clear

isothermal core, as would be expected in a core-collapsed cluster. However, it is

difficult to quantify which fit is best, as the 0 BH models seem to overestimate the

innermost profiles, where before they were underestimated. In the case of NGC6624

and NGC7078, the number density profiles of de Boer et al. (2019) (based on Trager

et al. 1995) may simply not provide sufficient coverage in the core of the clusters. As

shown by Gieles et al. (2018), HST number density profiles, which show much steeper

density profiles in the core, might provide more accurate constraints in this regime

and the 0 BH models may have actually been preferred if this data had been used.

Overall, however, it is clear that caution must be applied when attempting to fit some

core-collapsed clusters using limepy models.

All profiles for both sets of models, for all core-collapsed clusters, can be found in

Appendix A.

The original models (with BHs) are used in the rest of this chapter and in all discus-

sion of black holes, however the results of these three clusters (NGC6266, NGC6624,

NGC7078) should be regarded with caution. As the large inferred BH populations

are most likely not representative of the actual GCs, we elected to use the models

introduced here, fixed to 0 BHs, in the relations in all previous chapters. However,

there was no significant change in any of the correlations presented, when consider-

ing either set of models. NGC6266 and NGC6624 are explored in more detail and

compared to other results from the literature below in Section 7.4.
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7.2 Relationships Between BH Populations and

Other Parameters

We next examine how the population of black holes and other remnants in our cluster

models correlate with various related parameters.

Figure 7.3 shows the relationship between α3 and both the black hole retention

fraction, BHret and the total mass in black holes. This serves as a reminder to demon-

strate the role of the BHret parameter, which is not directly proportional to the num-

ber of BHs. At high values of α3, only a small number of black holes can be formed

initially from the IMF, and a higher retention fraction is required to maintain any

amount of black hole mass at the present day. Depending on the cluster mass, at

steeper IMF slopes this parameter may functionally have minimal impact on the final

amount (or lackthereof) of black holes, which would explain the broad uncertainty

ranges on BHret seen in a large proportion of clusters in this regime. Similarly, the

right panel of Figure 7.3 shows that no clear correlation is present between α3 and

the amount of black hole mass at the present day. However, it is clear the majority of

black hole hosting clusters in our survey are clusters with intermediate values of α3.

This relates to the relationship with BHret; clusters at higher α3 values produce few

black holes initially. This of course does not imply a causal relationship between BH

mass and neither α3 nor BHret, but merely helps to explain the distribution of BHret.

An interesting relationship does appear between the amount of black hole mass

and the δ parameter, a proxy of mass segregation, as shown in Figure 7.4. Clusters

with little to no mass in black holes tend to converge near values of δ ∼ 0.4−0.5,

which is typical of evolved and mass-segregated clusters, whereas the clusters with

more substantial populations of black holes congregate closer to the lower bound of
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∼ 0.3. This is in agreement with the models of Peuten et al. (2017), who find, by

comparing limepy models against N -body models with and without black holes, that

the majority of mass-segregated clusters should converge to a value of ∼ 0.5, but also

show that, in models with a significant population of black holes, only the black holes

may be in energy equipartition, and the degree of mass segregation may be suppressed.

Figure 7.5 shows the relationship between both the total cluster mass in black

holes and the fraction of the cluster mass in remnants (WD, NS and BH), against the

dynamical age of the clusters. While there is no strong correlation between BH mass

and the dynamical age of the cluster, it can be seen that clusters with a substantial

population of black holes tend to be less dynamically evolved and to have lost a smaller

fraction of their initial mass. This is as expected, as black holes segregate and are

kicked from the clusters due to dynamical interactions over time (Kremer et al., 2019),

and therefore more dynamically evolved clusters should have lost a larger fraction of

their initial BH population from these dynamical ejections.

The evolution of the remnant fraction, which includes all types of remnants, shows

a stronger relationship with the dynamical age of the clusters, as might be expected.

As a cluster evolves and loses mass, as mentioned before, the mass lost is preferentially

in the form of lower-mass stars, rather than the heavy remnants, and as such the

fraction of mass in remnants should increase as the cluster’s low-mass MF is depleted.

Interestingly, some of the most dynamically evolved clusters have nearly 75% of their

mass in dark remnants at the present day, which could have important implications

for the mass-to-light ratios and inferred masses of unresolved GCs in distant galaxies.



CHAPTER 7. BLACK HOLE POPULATIONS 95

10 2 10 1 100 101

101

103

NGC6266

Model including BHs Model without BHs de Boer et al. (2019)

10 2 10 1 100

101

102

103

104

NGC6624

10 2 10 1 100 101 102

100

102

104

NGC7078

Nu
m

be
r D

en
sit

y 
 [a

rc
m

in
2 ]

Distance from centre [pc]
Figure 7.2: The number density profiles of the best-fitting models of NGC6266, NGC6624 and
NGC7078, with and without allowing for a population of BHs. The number density data used to
constrain the models is shown by the open circles, and the subtracted background values are shown
by the horizontal dashed lines.
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Figure 7.3: Relation between high-mass mass function exponent (α3) and the black hole retention
fraction parameter (BHret) and the total mass in black holes, for all clusters except for NGC5139,
which has a substantially higher BHret of ∼ 19% and a more typical α3 value of ∼ 2.2. All core-
collapsed clusters, whose inferred black hole populations may not be physical, are highlighted by a
red diamond.
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7.3 Comparison with Literature Results

Figure 7.6 compares the distribution of mass in black holes in our models with that

of Weatherford et al. (2020) and Askar et al. (2018). Weatherford et al. (2020) com-

pared the amount of visible mass segregation in a number of Milky Way GCs to the

anti-correlation found between the degree of mass segregation in a cluster and its BH

population in the Cluster Monte Carlo (CMC) catalogue of models in Weatherford

et al. (2018), in order to estimate the distribution of black holes mass, normalized to

the total cluster mass. In similar fashion to their analysis, we scale their computed

estimates of MBH/Mcluster (based on the median clustercentric mass segregation pa-

rameter ∆r50) by the total cluster mass determined by our models, for comparison.

Askar et al. (2018) predicted, in similar fashion, the amount of BHs in a number of

Milky Way GCs based on the correlations found in Arca Sedda et al. (2018) between

the density of inner BH-subsystems and the average surface brightness of the clus-

ters in the Monte Carlo Cluster Simulator (MOCCA) survey database. A somewhat

analogous analysis may be found in Rui et al. (2021a), who fit the surface brightness

and velocity dispersion profiles of 26 Milky Way GCs to a grid of CMC models and

explored seven in more detail. The number of black holes reported for the three over-

lapping clusters is also noted in Figure 7.6. Further analysis and comparison with

other studies of interesting individual clusters is presented below in Section 7.4
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The majority of our clusters agree well, within 2σ, with the total amount of mass

in black holes estimated in these studies. We do find, however, a larger number

of clusters consistent with little to no black holes, and estimate in these clusters,

on average, fewer black holes than both Weatherford et al. (2020) and Askar et al.

(2018). Despite the slight differences between specific clusters in our samples, we do

agree with the overall conclusion that, in general, very few black holes are retained

in most clusters, with only a handful of clusters retaining more than 100 BHs at the

present day.

Our analysis of the black hole populations of individual clusters may be more

robust than most of these literature results, which rely on general correlations between

models with only a few varied initial parameters, and are fit on only a single observed

property (mass segregation between two stellar populations for Weatherford et al.

(2020) and the average surface luminosity for Askar et al. (2018)), whereas we self-

consistently include the effect of BHs in our fits of numerous cluster observables, and

account for many more varying parameters between clusters. In particular, as noted

in Weatherford et al. (2020), the correlations of Askar et al. (2018) rely on a number

of chained parametric fits, which may bias the final values. We are thus able to, in

most clusters, place tighter constraints on the mass in BHs, although it should be

noted again that our uncertainties account solely for the statistical uncertainties on

the parameter fits and could thus be underestimated.

Another major difference between these results is the (initial) mass function for-

mulation, which was identified by Weatherford et al. (2020) as a potential source of

uncertainty in their analysis. The great freedom in the shape of our (initial) mass

function, on a per-cluster basis, allows us to best explore the population of BHs and

other heavy remnants, as well as their relative abundance compared to lower-mass

stars. The generally bottom-light, depleted in low-mass stars, mass function which
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was found in our fits (see Chapter 6) may affect the mass segregation correlation

found in Weatherford et al. (2018) and thus the amount of mass in BHs found by

Weatherford et al. (2020). However the exact effects of a bottom-light IMF on cluster

evolution remain to be further explored.

7.4 Clusters of Interest

The results presented here comprise a large sample of Milky Way GCs with stringent

constraints on their black hole populations based on accurate fits to a large number of

observables, including their visible mass functions at different clustercentric distances.

This allows us to compare our results with other dynamical studies of BHs in GCs,

based on a number of different methods, in certain particularly interesting clusters.

7.4.1 NGC5139

NGC5139, or ω Cen, is the largest and most massive Milky Way GC, and stands apart

from the population of Milky Way GCs due to its size, orbit and stellar populations

(Harris, 1996). It has been suggested that ω Cen is not a classical globular cluster, but

rather the possible remnant nuclear star cluster of an accreted and disrupted dwarf

galaxy (e.g. Meza et al., 2005). It has also been hypothesized to harbour an elusive

intermediate-mass black hole (Noyola et al., 2008; van der Marel & Anderson, 2010).

The characterization of ω Cen as a common outlier is supported by our results.

While our models are able to fit the large amount of data very well, as shown in

Figures 7.7 and 7.8, it does not appear in certain plots or relations above as some

of its inferred best-fitting parameters are far apart from the rest of the clusters. As

can be seen in Table 5.1, our fit of ω Cen has the lowest ϕ0 of our sample, a cluster
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mass 3 times larger than the next most massive GC, the highest (most extended)

truncation parameter, and a black hole retention fraction far above all other clusters.

It is also among the least evolved of the clusters, with a remaining mass fraction

≳ 0.5. Notably, the inferred global mass function exponents are not outliers, ω Cen

fits remarkably well into all relations discussed in Chapter 6, and its high-mass α3

exponent of 2.21+0.03
−0.07 matches the canonical Kroupa IMF value quite well.
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Figure 7.7: Figure 5.2 repeated for NGC5139
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Figure 7.8: Figure 5.3 repeated for NGC5139
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The largest separation of ω Cen from the other clusters is in the black hole popu-

lation. As shown in Figure 7.9, our fits favour ∼ 170 000M⊙ of mass in BHs, made up

of ∼ 10 000 BHs, with an average individual BH mass of ∼ 17M⊙. From the inferred

cumulative mass profile of different cluster components, shown in Figure 7.10, we can

see that this BH mass is largely concentrated in the very centre of the cluster. This

amount of black holes is substantially higher than any other cluster.

The fraction of mass in black holes to total cluster mass of our best-fitting models

(FBH = 0.054+0.002
−0.002) is exceptionally close to the results of Zocchi et al. (2019), who

explored alternatives to the presence of an IMBH in ω Cen using two-component (one

representing stellar-mass BHs and one capturing all other lower-mass remnants and

visible stars) limepy models. This is interesting given our inclusion of the full mass

spectrum, and our fitting of the visible mass function, and reinforces the assertion

of Zocchi et al. (2019) that a two-component model is a good approximation when

modelling ω Cen, given its large number of black holes and young dynamical age.

Many claims have been made for the presence of an IMBH in the centre of ω Cen.

As in the studies of Zocchi et al. (2019) and Baumgardt et al. (2019b), our models

do not seem to require an IMBH of any size to reproduce any of the data used here,

however we are also limited by the extent of the kinematical data available in the very

centre of the cluster, where we would also be discrepant with the IMBH-containing

models of Noyola et al. (2008); van der Marel & Anderson (2010)and Baumgardt

(2017) (see Figure 5 of Zocchi et al. 2019). As such we cannot say for certain whether

some of the dark mass we find may actually be in the form of a central IMBH,

given the degeneracy between the effects produced by such an IMBH and a central

concentration of smaller BHs.

However there is one caveat to our results; the Gaia proper motion anisotropy
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profiles, presented by Vasiliev & Baumgardt (2021), shows that ω Cen transitions at

about 20 arcmin from the centre from being radially anisotropic to being slightly tan-

gentially anisotropic. As mentioned in Section 5.2.3, our limepy models are unable

to reproduce any amount of tangential anisotropy, and thus cannot match this fea-

ture, instead favouring a mostly isotropic fit as a compromise between the radial and

tangential regimes, as seen in the lower left panel of Figure 7.7. There is a degeneracy

present between the degree of radial anisotropy in a cluster and its mass in black

holes (Zocchi et al., 2017), however the difference in the BH mass fraction between

the isotropic and anisotropic models of Zocchi et al. (2019) is only on the order of

∼ 0.007. Therefore, while further exploration of the effects of tangential anisotropy

on the inferred remnant populations of ω Cen may be interesting, given our excellent

fits of all other datasets, this should have a negligible impact on the results presented

here.
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Figure 7.9: Posterior probability distributions of the total mass and number of black holes in
ω Cen.
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7.4.2 NGC104

NGC104, or 47 Tuc, is one of the nearest and most massive Milky Way GCs, and as

such has been extensively studied in the past. Recent modelling efforts using both

Monte-Carlo cluster models (Weatherford et al., 2020; Ye et al., 2022) and multimass

limepy models (in a very similar fashion to this work; Hénault-Brunet et al. 2020;

Smith et al. 2022), have provided predictions on the amount of black holes in the

cluster. As shown in Figure 7.11, our models tend to favour a lower amount of mass

in BHs than other studies, however we are still consistent within 2σ with all except

Ye et al. (2022).
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Figure 7.11: Posterior probability distributions of the total mass and number of black holes in 47
Tuc. The results (median and 1σ) of various recently inferred values from the literature are shown
in the bottom panels.

It was postulated by Kızıltan et al. (2017) that 47 Tuc may host an IMBH of

around 2300M⊙, based on the analysis of the accelerations of millisecond pulsars in

the cluster and comparisons with N -body simulations. However follow-up studies us-

ing equilibrium models fit to various cluster observables (Hénault-Brunet et al., 2020;
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Figure 7.12: Cumulative mass profile of all components (main-sequence stars, white dwarfs, neutron
stars and black holes) in 47 Tuc.

Mann et al., 2019, although see Mann et al., 2020) and including pulsar period deriva-

tives (Smith et al., 2022) determined that there was no need for an IMBH to explain

the observations, and that a central concentration of less-massive dark remnants may

be preferred by the data. This conclusion is again reinforced by our results, which

favour a small central concentration of stellar mass black holes, alongside a population

of white dwarfs and neutron stars, as can be seen in Figure 7.12.

7.4.3 NGC6624

The metal-rich, core-collapsed, bulge cluster NGC6624 has been the source of IMBH

claims in the past, posited as a potential explanation for the large spin-period deriva-

tives of some of its millisecond pulsars (Peuten et al., 2014; Perera et al., 2017a,b).

However, Gieles et al. (2018) demonstrated through fitting of multimass limepy mod-

els (with no black holes) that an IMBH was not necessary to explain the pulsar timing

solutions, and a central concentration of dark remnants (white dwarfs and neutron
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stars) was more likely, a conclusion supported by the N -body modelling of Baumgardt

et al. (2019b). Given its core-collapsed nature and high degree of mass segregation,

Weatherford et al. (2020) and Rui et al. (2021a) also find evidence of very few BHs

at all in the cluster.

Our best-fitting models of NGC6624, as shown in Figures 7.13 to 7.15, favour

a slightly larger population of stellar-mass BHs (∼ 48 BHs with a total mass of

∼ 475M⊙), however the caveats discussed in Section 7.1 apply here, and our models

containing this significant population of black holes may not be entirely physical. As

mentioned, in the future, utilizing a deeper, HST based number density profile (e.g.

Gieles et al., 2018) may act to substantially drop the amount of BHs preferred. Either

way, however, it is clear that our models do not require a large population of BHs or

an IMBH to reproduce the data of NGC6624. Extending this analysis in the future

to self-consistently include the pulsar accelerations in our fits, as done by Smith et al.

(2022) for NGC104, would be very useful in order to examine the constraints on the

central density and remnants set by these objects.
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Figure 7.13: Figure 5.2 repeated for NGC6624
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Figure 7.14: Figure 5.3 repeated for NGC6624
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Figure 7.15: Cumulative mass profile of all components (main-sequence stars, white dwarfs, neutron
stars and black holes) in the best-ftting models of NGC6624.

7.4.4 NGC6266

NGC6266, or M62, is a relatively metal-rich, core-collapsed Milky Way GC, which

has been the source of a number of searches for IMBHs in the past. McNamara

et al. (2012) explored the possibility of an IMBH through N -body modelling of the

proper motion and surface brightness profiles of M62, and found that they could not

entirely exclude the presence of an IMBH, while Lützgendorf et al. (2013) expanded

on this study, including new limits on the central velocity dispersions of the cluster,

and predicted a central IMBH of ∼ 2000M⊙. This was, however, contested by the

N -body models of Baumgardt (2017), which showed that the inclusion of an IMBH

would fail to reproduce the inner density profile of the core-collapsed cluster. M62

also hosts a number of binary millisecond pulsars close to the core, which Abbate

et al. (2019) used to demonstrate that ∼ 4000M⊙ of dark remnants must lie within

the inner 0.2 pc of the cluster. They could not, however, discern whether this mass
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might be in the form of an IMBH or other lower-mass stellar remnants.

Our best-fitting models, shown in Figures 7.16 to 7.18, favour a distribution of

∼ 1000M⊙ stellar-mass black holes within 0.2 pc of the core. While this is well below

the mass required by Abbate et al. (2019), it is of course much higher than what

would be reasonable for a core-collapsed cluster (see again Section 7.1). However, in

models of M62 both with and without BHs, we find a much higher concentration of

white dwarfs and neutron stars in the core of the cluster than necessary to match the

predictions of Abbate et al. (2019). Again, extending this analysis to self-consistently

include the pulsar accelerations in our fits would be very useful for examining and

possibly alleviating this discrepancy with Abbate et al. (2019).
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Figure 7.16: Figure 5.2 repeated for NGC6266
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Figure 7.17: Figure 5.3 repeated for NGC6266
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Figure 7.18: Cumulative mass profile of all components (main-sequence stars, white dwarfs, neutron
stars and black holes) in the best-ftting models of NGC6266.

7.4.5 NGC6397

NGC6397 is a metal-poor, core-collapsed Milky Way GC at a very short heliocentric

distance (∼ 2.4 pc; Harris, 1996), which has been well studied in the past. Kamann

et al. (2016) first showed that models including an IMBH or very centrally concen-

trated cluster of stellar-mass BHs of ∼ 600M⊙ could best reproduce the central kine-

matics of this cluster. Vitral & Mamon (2021) showed, in turn, that Jeans models with

more robust proper motion fitting disfavoured an IMBH, and instead proposed an in-

ner sub-cluster of unresolved dark remnants measuring ∼ 1000−2000M⊙, which they

suggested is dominated by stellar-mass BHs. However, Rui et al. (2021b,a) demon-

strated, through fits of CMC models, that no black holes were required to explain the

kinematics of NGC6397, in line with its definition as core-collapsed and reinforced

by the mass segregation based estimates of Weatherford et al. (2020), and instead

the central dark sub-cluster could be made up largely of white dwarfs (Kremer et al.,
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2021). A subsequent re-examination of the Jeans modelling of NGC6397 by Vitral

et al. (2022), with updated proper motion datasets, lowered the claimed mass of the

central cluster to ∼ 800M⊙, and concurred with a sub-cluster dominated by white

dwarfs, instead of stellar-mass BHs.

Our best-fitting models of NGC6397, shown in Figures 7.19 to 7.21, despite the

caveats of modelling core-collapsed clusters discussed in Section 7.1, favour a negligible

population of black holes, consistent with the results of Weatherford et al. (2020);

Rui et al. (2021a). Our models also show a clear population of white dwarfs in the

core of the cluster, with ∼ 866M⊙ in WDs within the central 6 arcsec, which would

be consistent with the mass proposed by Vitral et al. (2022), but within a slightly

larger radius than their proposed 3.4 arcsec. This discrepancy could arise due to the

slight difference in the distances used to this very nearby cluster, with our median

best-fitting distance parameter value of 2.435 kpc, slightly lower than the value of

2.48 kpc they used. Even accounting for these slight discrepancies, it is clear that

our models concur with the general consensus that NGC6397 hosts a massive central

concentration of WDs, and little to no BHs, nor an IMBH.
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Figure 7.19: Figure 5.2 repeated for NGC6397
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Figure 7.20: Figure 5.3 repeated for NGC6397
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Figure 7.21: Cumulative mass profile of all components (main-sequence stars, white dwarfs, neutron
stars and black holes) in NGC6397.

7.4.6 NGC3201

NGC3201 is a nearby Milky Way GC which has a notably low and flat core density

profile (i.e. far from core-collapsed), and is the host of three confirmed stellar-mass

black hole candidates in detached binaries (Giesers et al., 2018, 2019).

CMC models of NGC3201 (Kremer et al., 2018, 2019) demonstrated that models

with ∼ 120 stellar mass black holes were best able to recreate the velocity dispersion

and surface brightness profiles, in general agreement with the results of Askar et al.

(2018) and the inner dark sub-cluster found by Vitral et al. (2022). Weatherford et al.

(2020) in turn favoured a slightly lower, but still consistent, ∼ 44 BHs. In contrast, our

best-fitting models of NGC3201, shown in Figures 7.22 to 7.24, favour a remarkably

small amount of BHs, with the distribution peaking at 0 BH (95% probability of

containing less than 7 BHs). This is somewhat surprising, given the literature results
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and the shape of the cluster density profile, but is technically in agreement, within

2σ with the results of Weatherford et al. (2020), and follows the trend in our results

of predicting fewer BHs than other studies in the literature. It should be noted that

the fit of our models to the number density profile is not perfectly satisfying, as it

overestimates the outer parts of the cluster, and underestimates the core profile. This

is likely due to the irregular shape of the inner surface brightness profile published by

Trager et al. (1995), and could have an impact on the amount of BHs recovered in

our models.
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Figure 7.22: Figure 5.2 repeated for NGC3201
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Figure 7.23: Figure 5.3 repeated for NGC3201
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Figure 7.24: Cumulative mass profile of all components (main-sequence stars, white dwarfs, neutron
stars and black holes) in NGC3201.
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Chapter 8

Conclusions

In this thesis we have inferred, through dynamic nested sampling, the best-fitting

model parameter distributions of multimass limepy models for a large sample of

Milky Way globular clusters, subject to a number of observed proper motion, line-

of-sight velocity, number density and stellar mass function datasets. This process

has resulted in well-fit models for 32 Milky Way GCs, with full, well constrained,

posterior distributions for the structural, mass functions, and helicocentric distance

parameters of each cluster. These results show excellent matches with the properties

of the N -body models computed by Baumgardt & Hilker (2018), and demonstrated

many of the same correlations between structural parameters as seen by de Boer et al.

(2019).

These models allow us to explore in detail the stellar (initial) mass functions and

remnant populations of a large sample of Milky Way GCs, and yield a number of

important conclusions:

1. Deviations of the low and intermediate-mass stellar mass function slopes from

the α1 = α2 line demonstrate that a two-component power law is necessary in
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order to describe the (initial) mass function in this mass regime.

2. We show that, while the low and intermediate-mass MF slopes are strongly de-

pendent on the dynamical age of the clusters, the high-mass α3 slope is not,

indicating that the MF in this regime has generally been less affected by dy-

namical losses, and is most representative of the IMF.

3. Examination of the low and intermediate mass MF slopes, in the least evolved

clusters, suggests an IMF in these regimes which is considerably flatter and more

depleted in low mass stars (α1 = 0.46+0.45
−0.48, α2 = 0.79+0.54

−0.49), in comparison to

canonical IMFs (Kroupa, 2001). This finding is in agreement with the results of

Baumgardt et al. (2022). In contrast, the high-mass IMF slope (α3 = 2.37+0.48
−0.25)

is found to be in excellent agreement with the canonical values (Salpeter, 1955;

Kroupa, 2001). This result precludes the need for any more extreme high-mass

IMF formulation for globular clusters, such as a top-heavy IMF.

4. A potential linear relationship is noted between the high-mass stellar IMF and

cluster metallicity, with a general trend towards flatter high-mass IMFs at higher

metallicities. However, this analysis is somewhat limited by the small amount of

very metal-rich or metal-poor GCs, with smaller dynamical ages, in our sample.

A similar (but inverted) relationship also appears in the low and intermediate-

mass MFs, however this largely disappears when focusing only on the least dy-

namically evolved clusters, and likely is simply a manifestation of the correlation

between metallicity and cluster orbits.

5. The models also allow us to infer best-fitting, posterior probability distributions

for the total mass and number of black holes in all our clusters. These results

indicate that a large number of the GCs are consistent with hosting little to
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no BHs, with the largest BH populations reaching masses in BHs up to a few

thousand M⊙ (save for ω Cen). We find good agreement within uncertainties

between our results and those of other BH studies (where the number of BHs

is inferred from comparison with dynamical Monte Carlo models) in the litera-

ture (e.g. Askar et al., 2018; Weatherford et al., 2020). Our inferred masses in

BHs are, generally, slightly smaller than these studies. This difference could be

caused by biases introduced due to the differences between the adopted IMFs,

however further work is required to better understand the possible sources of

the discrepancies.

6. We find a general relationship between the mass in BHs and the δ parameter,

a proxy of mass segregation, with clusters with little mass in BHs congregating

around ∼ 0.5, while mass segregation is increasingly suppressed in clusters with

more substantial BH populations, in agreement with the findings of Peuten et al.

(2017). A relationship is also found between the dynamical age of the clusters

and the total mass in BHs. Clusters with a substantial population of black

holes tend to be less dynamically evolved, as would be expected based on our

understanding of the dynamical interactions and kicks of BHs over time. An

even clearer correlation is seen with the overall remnant mass fraction, which

increases as clusters evolve and lose low-mass stars. Our results show that the

most evolved GCs in our sample may be made up of nearly 75% dark remnants,

by mass, at the present day.

7. Closer inspection of a number of interesting clusters with previous claims of

hosting an IMBH reveal no need for a large population of BHs or an IMBH to

explain the large amount of data used in our model fitting.

In summary, we have determined best-fitting model parameter distributions for a
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large sample of Milky Way GCs, which have indicated a potentially more bottom-light

low-mass IMF than typically assumed, and have precluded the need for any top-heavy

high-mass IMFs. A potential relationship between said high-mass IMF and cluster

metallicity was also noted, however further investigation is required to confirm this

correlation. Our models have also allowed us to infer constraints on the remnant

populations of our clusters, where we find generally small numbers of BHs, and no

need for any IMBH in order to explain the observables used.

8.1 Future Work

The results and conclusions presented in this thesis could, in the future, be enhanced

with the inclusion of additional ingredients and datasets, and the exploration of a

number of the implications of our results.

Firstly, extension of the methods presented here to a larger sample of Milky Way

GCs would greatly increase the confidence on the stellar mass function results. In

particular, the inclusion of more dynamically young GCs in the very metal-rich or

metal-poor regimes would help to further study the potential relationship seen be-

tween the high-mass (initial) mass function and metallicity. This expansion to more

clusters is unfortunately limited mostly by the amount of data available. An increased

amount of and depth in the stellar mass function datasets used here, perhaps with

novel, dedicated HST observations or programs on future space-based observatories

like the Nancy Grace Roman Space Telescope or the Cosmological Advanced Sur-

vey Telescope for Optical and ultraviolet Research (CASTOR), would improve the

constraints that can be placed on the distribution of the stellar populations, while

further improved proper motion and line-of-sight velocity dispersions, especially near

the cluster cores, would help provide better constraints on the cluster mass and its
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distribution. For example, an adaptive optics-assisted survey of the inner regions of

GCs in the Milky Way bulge is being planned with the upcoming Gemini Infrared

Multi-Object Spectrograph (GIRMOS) which would significantly improve the amount

and quality of available kinematic data for many metal-rich clusters in this region of

the Galaxy.

Our models could also be improved further with the inclusion of realistic popu-

lations of binary stars, which may be slightly degenerate with the mass in BHs, and

have important implications in clusters with large suspected binary fractions (Smith,

2022). Further, the constraints on the black hole populations could be improved by

the inclusion of pulsar timing solutions, in selected clusters where significant observed

pulsar populations exist (Smith et al., 2022).

The implications of some of the results presented in this thesis could be explored

more. For example, dynamical N -body or Monte-Carlo models of GCs with a bottom-

light IMF, depleted in low-mass stars, as we infer here, would help illuminate the

evolution of such clusters, and any consequences on cluster properties and phenomena,

such as BH populations and BBH merger rates.

Finally, the methodology applied here to fit the static limepy models to the

present-day properties of globular clusters could be coupled to evolutionary dynamical

models, such as the fast-cluster-evolution models presented by Antonini & Gieles

(2020), allowing for a more detailed study of the evolution of the BH populations of

Milky Way GCs, and in turn providing constraints on, for example, the BBH merger

rate from dynamical formation in dense star clusters in the Universe.
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A.1 All Best-Fitting Models
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Figure A.1: Figure 5.2 repeated for NGC104
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Figure A.3: Figure 5.2 repeated for NGC288
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Figure A.4: Figure 5.3 repeated for NGC288
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Figure A.5: Figure 5.2 repeated for NGC362
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Figure A.6: Figure 5.3 repeated for NGC362
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Figure A.7: Figure 5.2 repeated for NGC1261
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Figure A.8: Figure 5.3 repeated for NGC1261
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Figure A.9: Figure 5.2 repeated for NGC1851
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Figure A.11: Figure 5.2 repeated for NGC2808
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Figure A.12: Figure 5.3 repeated for NGC2808
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Figure A.13: Figure 5.2 repeated for NGC3201
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Figure A.14: Figure 5.3 repeated for NGC3201
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Figure A.15: Figure 5.2 repeated for NGC5024
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Figure A.16: Figure 5.3 repeated for NGC5024
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Figure A.17: Figure 5.2 repeated for NGC5139
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Figure A.18: Figure 5.3 repeated for NGC5139
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Figure A.19: Figure 5.2 repeated for NGC5272
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Figure A.20: Figure 5.3 repeated for NGC5272
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Figure A.21: Figure 5.2 repeated for NGC5904
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Figure A.22: Figure 5.3 repeated for NGC5904
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Figure A.23: Figure 5.2 repeated for NGC6093
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Figure A.24: Figure 5.3 repeated for NGC6093
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Figure A.25: Figure 5.2 repeated for NGC6121
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Figure A.26: Figure 5.3 repeated for NGC6121
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Figure A.27: Figure 5.2 repeated for NGC6171
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Figure A.28: Figure 5.3 repeated for NGC6171
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Figure A.29: Figure 5.2 repeated for NGC6205
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Figure A.30: Figure 5.3 repeated for NGC6205
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Figure A.31: Figure 5.2 repeated for NGC6218
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Figure A.32: Figure 5.3 repeated for NGC6218
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Figure A.33: Figure 5.2 repeated for NGC6254
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Figure A.34: Figure 5.3 repeated for NGC6254
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Figure A.35: Figure 5.2 repeated for NGC6266
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Figure A.36: Figure 5.3 repeated for NGC6266
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Figure A.37: Figure 5.2 repeated for NGC6341
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Figure A.38: Figure 5.3 repeated for NGC6341
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Figure A.39: Figure 5.2 repeated for NGC6362
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Figure A.40: Figure 5.3 repeated for NGC6362
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Figure A.41: Figure 5.2 repeated for NGC6366
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Figure A.42: Figure 5.3 repeated for NGC6366
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Figure A.43: Figure 5.2 repeated for NGC6397
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Figure A.44: Figure 5.3 repeated for NGC6397
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Figure A.45: Figure 5.2 repeated for NGC6541
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Figure A.46: Figure 5.3 repeated for NGC6541
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Figure A.47: Figure 5.2 repeated for NGC6624
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Figure A.48: Figure 5.3 repeated for NGC6624
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Figure A.49: Figure 5.2 repeated for NGC6656
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Figure A.50: Figure 5.3 repeated for NGC6656
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Figure A.51: Figure 5.2 repeated for NGC6681
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Figure A.52: Figure 5.3 repeated for NGC6681
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Figure A.53: Figure 5.2 repeated for NGC6723
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Figure A.54: Figure 5.3 repeated for NGC6723
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Figure A.55: Figure 5.2 repeated for NGC6752
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Figure A.56: Figure 5.3 repeated for NGC6752
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Figure A.57: Figure 5.2 repeated for NGC6779
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Figure A.58: Figure 5.3 repeated for NGC6779
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Figure A.59: Figure 5.2 repeated for NGC7078
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Figure A.60: Figure 5.3 repeated for NGC7078
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Figure A.61: Figure 5.2 repeated for NGC7089
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Figure A.62: Figure 5.3 repeated for NGC7089
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Figure A.63: Figure 5.2 repeated for NGC7099
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Figure A.64: Figure 5.3 repeated for NGC7099
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A.2 Core-Collapsed Models with no Black Holes
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Figure A.65: Figure 5.2 repeated for NGC362, with the amount of black holes retained at the
present day fixed to zero
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Figure A.66: Figure 5.3 repeated for NGC362, with the amount of black holes retained at the present day fixed to zero



APPENDIX A. MODEL FITS 210

100

102

104

 [a
rc

m
in

2 ]

de Boer et al. (2019)
0.0

0.2

0.4

0.6

PM
,t

ot
 [m

as
yr

1 ] Watkins et al. (2015)

0

5

10

15

LO
S [

km
s

1 ]

Kamann et al. (2018)
Baumgardt & Hilker (2018)

0.0

0.1

0.2

0.3

0.4

0.5
PM

,T
 [m

as
yr

1 ] Gaia EDR3

10 2 10 1 100 101

Distance from centre [pc]

0.4

0.6

0.8

1.0

PM
,T

/
PM

,R

Watkins et al. (2015)

10 2 10 1 100 101

Distance from centre [pc]
0.0

0.1

0.2

0.3

0.4

0.5

PM
,R

 [m
as

yr
1 ] Gaia EDR3

Figure A.67: Figure 5.2 repeated for NGC6266, with the amount of black holes retained at the
present day fixed to zero
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Figure A.68: Figure 5.3 repeated for NGC6266, with the amount of black holes retained at the present day fixed to zero
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Figure A.69: Figure 5.2 repeated for NGC6397, with the amount of black holes retained at the
present day fixed to zero
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Figure A.70: Figure 5.3 repeated for NGC6397, with the amount of black holes retained at the present day fixed to zero
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Figure A.71: Figure 5.2 repeated for NGC6541, with the amount of black holes retained at the
present day fixed to zero
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Figure A.72: Figure 5.3 repeated for NGC6541, with the amount of black holes retained at the present day fixed to zero
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Figure A.73: Figure 5.2 repeated for NGC6624, with the amount of black holes retained at the
present day fixed to zero
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Figure A.74: Figure 5.3 repeated for NGC6624, with the amount of black holes retained at the present day fixed to zero
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Figure A.75: Figure 5.2 repeated for NGC6681, with the amount of black holes retained at the
present day fixed to zero
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Figure A.76: Figure 5.3 repeated for NGC6681, with the amount of black holes retained at the present day fixed to zero
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Figure A.77: Figure 5.2 repeated for NGC6752, with the amount of black holes retained at the
present day fixed to zero
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Figure A.78: Figure 5.3 repeated for NGC6752, with the amount of black holes retained at the present day fixed to zero



APPENDIX A. MODEL FITS 222

10 3

100

103

106

 [a
rc

m
in

2 ]

de Boer et al. (2019)

0.00

0.05

0.10

0.15

0.20

0.25

PM
,t

ot
 [m

as
yr

1 ]
Watkins et al. (2015)

0

5

10

15

LO
S [

km
s

1 ]

Baumgardt & Hilker (2018)
Kamann et al. (2018)

0.00

0.05

0.10

0.15

0.20

0.25
PM

,T
 [m

as
yr

1 ] Gaia EDR3

10 2 10 1 100 101 102

Distance from centre [pc]

0.4

0.6

0.8

1.0

1.2

1.4

PM
,T

/
PM

,R

Watkins et al. (2015)

10 2 10 1 100 101 102

Distance from centre [pc]
0.00

0.05

0.10

0.15

0.20

0.25

PM
,R

 [m
as

yr
1 ] Gaia EDR3

Figure A.79: Figure 5.2 repeated for NGC7078, with the amount of black holes retained at the
present day fixed to zero



A
P
P
E
N
D
IX

A
.
M
O
D
E
L
F
IT

S
223

5 0 5
RA [arcmin]

7.5

5.0

2.5

0.0

2.5

5.0

7.5

DE
C

[a
rc

m
in

]

Bellini (15857)
Griffiths (6802)
Groth (5092)
Piotto (11233)

200000
300000 r = 0.00'-0.50'

250000

500000 r = 0.50'-1.00'

200000
400000

r = 1.00'-1.50'

100000
200000 r = 1.50'-2.00'

50000
100000 r = 2.00'-2.67'

0
5000 r = 2.67'-3.33'

0

10000 r = 3.33'-4.17'

0

25000 r = 4.17'-5.50'

0.2 0.4 0.6
0

20000 r = 5.50'-6.67'

Mass [M ]

dN
/d

m

0

10000
r = 6.67'-8.33'

0

100000
r = 1.50'-2.00'

0

50000 r = 2.00'-2.67'

0

25000 r = 2.67'-3.33'

0

20000 r = 3.33'-4.17'

0

20000 r = 4.17'-5.50'

0

5000 r = 7.50'-9.17'

0.2 0.4 0.6
0

5000 r = 7.50'-9.17'

Mass [M ]
Figure A.80: Figure 5.3 repeated for NGC7078, with the amount of black holes retained at the present day fixed to zero
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Figure A.81: Figure 5.2 repeated for NGC7099, with the amount of black holes retained at the
present day fixed to zero
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Figure A.82: Figure 5.3 repeated for NGC7099, with the amount of black holes retained at the present day fixed to zero
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Appendix B

GCfit Package Architecture
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Figure B.1: Schematic representation of the architecture of the GCfit software package, showcasing the various Python modules, classes and
functions and their relationships with one another. Fitting is handled, from the top-left, by the GCfitter script, using the likelihood and prior
functions and data classes, to the right. Analysis and visualization of the results is handled by the analysis module (bottom-left).
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