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ABSTRACT

"Feature Preserving Decimation of Urban Meshes"

By Vivek Kamra

Commercial buildings as well as residential houses represent core structures of any modern

day urban or semi-urban areas. Consequently, 3D models of urban buildings are of paramount

importance to a majority of digital urban applications such as city planning, 3D mapping and

navigation, video games and movies, among others. However, current studies suggest that

existing 3D modeling approaches often involve high computational cost and large storage vol-

umes for processing the geometric details of the buildings. Therefore, it is essential to generate

concise digital representations of urban buildings from the 3D measurements or images, so that

the acquired information can be efficiently utilized for various urban applications. Such concise

representations, often referred to as “lightweight” models, strive to capture the details of the

physical objects with less computational storage. Furthermore, lightweight models consume

less bandwidth for online applications and facilitate accelerated visualizations. In this thesis,

we provide an assessment study on state-of-the-art data structures for storing lightweight urban

buildings. Then we propose a method to generate lightweight yet highly detailed 3D building

models from LiDAR scans. The lightweight modeling pipeline comprises the following stages:

mesh reconstruction, feature points detection and mesh decimation through gradient structure

tensors. The gradient of each vertex of the reconstructed mesh is obtained by estimating the

vertex confidence through eigen analysis and further encoded into a 3 X 3 structure tensor. We

analyze the eigenvalues of structure tensor representing gradient variations and use it to classify

vertices into various feature classes, e.g., edges, and corners. While decimating the mesh, fea-

ture points are preserved through a mean cost-based edge collapse operation. The experiments

on different building facade models show that our method is effective in generating simplified

models with a trade-off between simplification and accuracy.

Date: September 9, 2022
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CHAPTER 1

Introduction

1.1 Introduction

In recent years, 3D digital objects are widely used in many applications such as architectural

and industrial design, remote sensing, virtual reality, augmented reality, video games, movies

and 3D navigation, among others. While there are different ways to create 3D digital models,

most of them boil down to two basic methods: building a model in 3D modeling software, or

taking an object from the real world and turning it into a digital model using a 3D scanner.

Unlike CAD (Computer-Aided Design), polygonal modeling and digital sculpting that allows

user to design a model completely from scratch, 3D scanning allows user to create a digital copy

of a real world object by capturing its geometry in the form of a point cloud. A point cloud

is a set of discrete measurements acquired by sensors such as LiDAR (Light Detection and

Ranging) scanner or RGB-D (Red, Green, Blue, Depth) camera. Each measurement in the 3D

scan is a point in three dimensional space with x, y and z coordinates representing the spatial

location of the real world object being scanned. Each point can have additional information

such as the RGB color of the scanned object. Due to the recent advancements in 3D scanning,

point clouds have become one of the popular representations of 3D data. However, point clouds

are normally converted to triangular meshes before being used in various applications.

The points can be joined together to form surfaces as polygon meshes, which can then be

used to form a complete 3D model. Geometric modeling is the process of constructing repre-

sentations of the 3D shape from point cloud data where the output representation can be either

parametric or nonparametric, as well as surface-based or volumetric. These polygon meshes

are collection of vertices, edges and faces that defines the shape of a 3D object. The faces con-

sist of triangles, quadrilaterals or any simple convex polygons that can be used for rendering 3D

model shape. Urban scene is a 3D object and hence, one of the representations is polygon mesh

which has been extensively used for urban scene representation comprising a large number of

buildings; however, it is a challenging task from storage, transmission speed and rendering



performance point of view. The ongoing studies related to geometric modeling shows that mil-

Figure 1.1: A large-scale city scene with distinct buildings, Image Courtesy: [(Kuang et al.,
2013)]

(a)

(b)

Figure 1.2: (a) Triangular meshes based model vs (b) Light-weight 3D model, Image Courtesy:
[(Li et al., 2011)]

lions of triangles are required to represent the details of the model. For instance, a city scene

in Figure 1.1 with 5,061 distinct buildings based on meshes represents 671 million triangles
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that require 37GB of storage space. This can lead to burden on storage and performance for a

large-scale urban scene model.

1.2 Light-Weight Modeling

Light-weight modeling refers to 3D representation of a model comprising minimum complexity

such as less polygonal count resulting in less storage space for the model and aids in accelerated

rendering and transmission of the model.

The triangular mesh model in Figure 1.2 (a), an instance of a building, for example, needs

almost 400 MB of storage. Such huge meshes will slow down web-based applications. On

the other hand, a corresponding light-weight model (Figure 1.2 (b)) with less vertices and

faces would require less storage. These problems have been addressed before with different

methods such as mesh simplification and polygonization which offers lightweight meshes with

less complexity and memory requirements. However, such meshes lack the level of details

required in real-world applications such as façade characteristics of a building in a 3D map.

Therefore, this research investigates into generating lightweight 3D models that save memory

size without missing information and retaining essential details.

1.3 Motivation and Challenges

There exist certain challenges at the very basic that needs to be addressed including the com-

plex structures of 3D scans. Due to the irregularities in LiDAR scans, reconstructed meshes

have defects. Some of the challenges in the case of LiDAR scans are the occlusions, noise

and outliers as raw 3D point cloud directly obtained from laser scanners or image-based re-

construction methods are contaminated due to matching ambiguities or image imperfections

such as lens distortion, sensor noise etc. This leads to the disturbing artifacts of reconstructed

surfaces from the point cloud and thus, makes the modeling processes challenging.

With the advances in technology, industries now design models using computer-aided de-

sign (CAD) systems, resulting in complex, high detailed surfaces. 3D models created by sur-

face reconstruction methods can often be very dense meshes and thus, become less suitable for

4



web-based applications. In such cases, it is a tradeoff between the level of detail reconstructed

on the surface and the amount of storage required. To achieve an acceptable level of detail in a

model, we must substitute simpler approximations of the original model. Mesh simplification

is a useful tool for tailoring high detailed models to the needs of individual applications and for

producing more cost-effective surface models by reducing the polygon count of a large mesh

using decimation algorithms. Most decimation algorithms are incremental and apply a topo-

logical operator on a mesh at each decimation step. An error metric computes the local changes

that would appear in the geometry following an operator on a mesh. Therefore, an error value

is associated with every possible operation that further allows to prioritize the operator with the

lowest error value. One such popular mesh decimation algorithm combines the edge collapse

operator with the Quadric Error Metric (QEM) [(Garland and Heckbert, 1997)] where an edge

collapses (Figure 1.3) into a vertex minimizing the point-to-plane distance with regard to its

local neighborhood at each decimation step.

Before After

5,804 faces 994 faces 532 faces 248 faces 64 faces

Figure 1.3: A sequence of approximations generated using edge-collapse with QEM, Image
Courtesy: [(Garland and Heckbert, 1997)]

The approximations in Figure 1.3 show that features such as horns and hooves begin disap-

pearing in low level models. Considering one such example of a 3D building model [(Bouzas

et al., 2020)] shown in Figure 1.4, the original mesh comprises 76636 faces with façade char-

5



acteristics and the simplified model comprises 632 faces that retains the basic structure of the

model but loses all the details on the façades. Simplified models are sufficient for some appli-

cations, e.g. city blueprint, however, for many modern applications based on interactive ren-

dering, for instance, Google Earth, highly detailed models are mandatory. Although, polygonal

meshes based 3D model preserves high level of detail through reconstruction yet they are ex-

pensive from storage and processing aspects, that makes them less suitable for web-based appli-

cations. Table 1.1 lists the number of points and faces along with storage size of different urban

scene (Toronto, Canada and Central Europe) based 3D meshes reconstructed through screened

poisson reconstruction method [(Kazhdan and Hoppe, 2013)] from large-scale point cloud

sources. For instance, L003 from Toronto-3D: A large-scale LiDAR dataset [(Tan et al., 2020)]

(https://github.com/WeikaiTan/Toronto-3D) and birdfountain station1, neugasse station1 and

sg27 station10 from Semantic3D [(Hackel et al., 2017)] (https://www.semantic3d.net/).

(a) Original (76636 faces) (b) Simplified (632 faces)

Figure 1.4: Surface simplification of a building block, Image Courtesy: [(Bouzas et al., 2020)]

Table 1.1: Statistics on storage size (in GBs) of different urban-scene based meshes recon-
structed from [(Tan et al., 2020)] and [(Hackel et al., 2017)]

Data Reconstruction algo File format Points Faces Storage

L003 Screened Poisson PLY 39,721,590 79,443,180 3.16
birdfountain station1 Screened Poisson PLY 42,197,478 84,394,956 2.86

neugasse station1 Screened Poisson PLY 49,890,815 99,781,630 3.24
sg27 station10 Screened Poisson PLY 277,221,015 554,442,030 19.12

Motivated by these challenges associated with the mesh data structures, we investigate into
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a hybrid approach that offers simplification at dominant planar regions of the meshes but retain

essential characteristics of the model for instance, façade elements of a building such as roof,

balconies, windows etc. by preserving triangulations around theses areas in the mesh.

1.4 Contributions

In this thesis, we focus on efficiently decimating 3D meshes while preserving the geometry

as well as other critical features of a model during the simplification process. We observed

that in other simplification methods, major focus has always been given for the preservation

of geometry, local smoothness and sharp contours of urban buildings to generate a compact

representation. However, these models lack in terms of other fine architectural details such as

complex façade element structure and level of detail. Therefore, we consider preserving addi-

tional details in the form of critical feature points obtained from a mesh as a set of vertices and

preserving them in the simplified models (Figure 1.5). The method is not designed at process-

ing with an entire urban scene at once, but to deal with single buildings in the scene one by

one. Our pipeline consists of three major modules, namely mesh reconstruction, feature points

detection through gradient structure tensors and mesh decimation (in accordance with points

obtained in the previous step). The simplification pipeline can produce economic simplified

3D meshes with decent level of details retained in the simplified model for applications such as

large-scale urban scene modeling.

The key contributions of this thesis are:

• Mesh Decimation through Gradient Tensors: After extracting critical feature points

through gradient tensors, we analyze eigenvalue distribution from gradient tensors and

associate it with quadric error metric [(Garland and Heckbert, 1997)] based mesh simpli-

fication method with the help of a custom cost penalty function that prevents decimation

of extracted feature points in final simplified mesh model.

• Empirical Study on Data Structures for light-weight modeling: We analyzed our

results and experiments with the help of empirical study in which we compared and eval-

uated (both qualitatively and quantitatively) our results with other state-of-the-art data

7



Figure 1.5: Simplified mesh of a building produced by our decimation method.

structures/representations of 3D urban scenes such as Polygonal Meshes, Constructive

Solid Geometry, Boundary Representation, Stellar Decomposition and Neural Radiance

Fields.

1.5 Organization

This thesis is organized into the following chapters:

• Introduction: Chapter 1 consists of an overview of light weight modeling and a brief

introduction to the problem set. This chapter covers the problem introduction, challenges

and an overview of topics needed to understand this thesis.

• Data Structures for Light-weight Models: Chapter 2 consists of a literature review

and assessment of state of the art data representations of 3D urban scenes comprising

polygonal (triangular, quadrilateral and hexagonal) meshes; constructive solid geometry;

B-Rep (bezier patches, splines); stellar decomposition; neural radiance fields.

• Light-weight Modeling Algorithms: Chapter 3 covers traditional light-weight model-

ing approaches and their limitations in the context of urban scene. The algorithms include

8



mesh decimation, geometric abstractions, deep learning based methods and level of detail

modeling.

• Mesh Decimation Through Gradient Tensors: Chapter 4 provides in-depth explana-

tion of our 3D mesh decimation pipeline with results. We also discuss the experiments

including qualitative and quantitative evaluations and comparisons with other methods.

• Conclusions and Future Directions: Finally, we conclude this thesis in the last chapter

(Chapter 5) and list potential future directions of our method in this chapter.
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CHAPTER 2

Data Structures for Light Weight Models

In graphics applications, three dimensional objects are represented using different geometric

structures such as triangular meshes or constructive solid geometry in computer-aided design

(CAD) systems. Geometric data structures processes the fundamental elements of a 3D ob-

ject such as surfaces, space and scene structure. This chapter describes the most common data

structures used to represent 3D objects including: polygonal (triangular/quadrilateral/hexag-

onal) meshes, constructive solid geometry, B-Rep, stellar decomposition and neural radiance

fields. In the following sections, a brief explanation about each of these 3D models is given.

The representation of 3D models consists of topology and the geometry. Geometry of a

3D object includes surfaces, curves, and points. A 3D mesh is a geometric data structure

to represent the surface of a 3D object by a set of polygons. Meshes (see section 2.1) are

popular in computer graphics, to render surfaces, or in modeling, to approximate a continuous

or implicit surface. A mesh is made up of vertices (or vertex), connected by edges making faces

of polygonal shapes. When all faces are triangles, we speak of triangular meshing. Meshes are

a great way to exploit the geometry of a point cloud, and often allows to reduce the number of

points as vertices.

Both Constructive Solid Geometry (CSG) (see section 2.2) and Boundary Representation

(B-rep) (see section 2.3) are solid modeling techniques. CSG allows to create a visually com-

plex surface or object by using Boolean operators to combine primitive solid objects such as

cuboids, cylinders, pyramids, spheres etc. Both the surface and the interior of an object can be

defined using CSG, although implicitly. In 3D computer graphics and CAD (Computer-aided

Design), constructive solid geometry is often used in parametric and/or procedural modeling

(a set of techniques in computer graphics to create 3D models and textures from set of rules).

In solid modeling and CAD, B-rep is the process of representing shapes using the limits and

describes a solid as a collection of connected surface elements by detailing the points, edges

and surfaces of a volume. Unlike CSG, B-rep describes only the oriented surface of a solid as

a data structure. This oriented convention allows us to decide on which side of the surface the

solid’s interior is located [(Hoffmann, 1989)].



Stellar decomposition (see section 2.4) [(Fellegara et al., 2021)] is a model for topological

data structures that comprises a collection of regions indexing complex’s vertices and cells in

order to compactly represent arbitary complexes with a manifold or non-manifold domain. It

offers efficient navigation of the topological connectivity of simplicial complexes such that it

enables users to defer decisions about which topological connectivity relations to encode for

the purpose of generating application-dependent local data structures at runtime.

Neural Radiance Field (NeRF) (see section 2.5) [(Mildenhall et al., 2020)] refers to neural

network based representation to generate input scene based on a fully connected network. This

technique offers optimized results to render geometrically complex scenes with less storage

memory in consumption but takes high rendering time.

In this chapter we will analyze different 3D data structures/representations for its suitability

for light weight modeling.

2.1 Polygonal Meshes

(a) (b) (c)

Figure 2.1: A closeup view of triangular meshes based (a) Lucy model; (b) David model; and
(c) Buddha model

Polygonal meshes are useful representations with a large number of applications in com-

puter graphics, geometric modeling, mechanical engineering, architecture etc. These represen-

tations are based on the concept of cell decomposition where a complex object is represented
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Figure 2.2: Quadrilateral based mesh model of a mechanical piece, Image Courtesy:
www.geometryfactory.com.

with many simple polygonal cells. Although triangles and quadrilaterals are the most common

polygonal types used for surface representation of real-world models, several conceptual archi-

tectural structures desire free-form meshes with planar hexagonal faces.

Most real-world models are composed of triangles with shared vertices, commonly known

as triangle or triangular meshes. These triangular meshes (Figure 2.1) are used to represent

surfaces with the help of a network that connects them through shared vertices and edges to

form a single continuous surface. A triangle mesh M consists of a geometric and a topological

component where the topology can be defined by a set of vertices V = {v1, . . . , vn} and a set

of edges E = {e1, . . . , en} , ei ∈ V × V , and triangular faces F = {f1, . . . , fn} , fi ∈

V ×V ×V connecting them where each edge is defined by a pair of vertices from V and a face

is defined by a triple of vertices from V .

Quad meshes (Figure 2.2) on the other hand are meshes made entirely of quadrilaterals and

are extensively in use in CAD and simulation for many years [(Bommes et al., 2013)]. While

triangle meshes are much more popular in computer graphics and geometric processing, quad

meshes have their own advantages for real-time rendering of objects. For instance, objects de-

signed for video-games, virtual reality and CG animation are represented as polygonal meshes

using interactive modeling systems where line features and deformations of the represented
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shape is designed and processed more conveniently with quad meshes as compared to triangle

meshes.

Figure 2.3: A geodome constructed using a P-Hex mesh in the Eden Peoject in UK (left); P-Hex
meshes based constant mean curvature (CMC) surfaces (right), Image Courtesy:
[(Wang et al., 2008)]

Free-form meshes with planar hexagonal faces, also known as P-Hex meshes (Figure 2.3),

are discrete polyhedral surfaces in 3D that offer important surface representation in discrete

differential geometry such as simplicial complexes1. They are useful in architectural design for

representing surfaces built with planar glass/metal panels [(Wang et al., 2008)] or various spe-

cial surfaces, such as minimal surfaces2 or constant mean curvature surfaces3 [(Bobenko et al.,

2006)] in discrete differential geometry. In architectural construction, glass panels represented

through planar faces are framed by beams joined at junctions (also known as nodes) where all

adjacent faces adjoined with each other. A triangle mesh with vertices of valence 6 meets the

requirement of face planarity, but it offers complexity at junction level. Another disadvantage

of triangle mesh is that it does not have exact definition of offset meshes [(Pottmann et al.,

2007)]. This leads to the requirement of free-form meshes with planar quadrilateral faces (P-

Quad meshes) and mesh surfaces with planar hexagonal faces (P-Hex meshes), as extensions

to plane tiling with squares and hexagons.
1A simplicial complex is a set composed of points, line segments, triangles, and their n-dimensional counter-

parts [(Wikipedia contributors, 2022c)]
2A minimal surface is a surface that locally minimizes its area. This is equivalent to having zero mean curvature

[(Wikipedia contributors, 2022b)]
3Constant-mean-curvature (CMC) surfaces are surfaces with constant mean curvature [(Wikipedia contribu-

tors, 2021)]

13



We refer to [(Kettner, 1999)] for overview and comparison of different mesh data structures.

In general, when choosing a data structure one has to take into account both topological as well

as algorithmic considerations. An important topological description of a surface is whether it

is a manifold or non-manifold. If manifold, whether comprise boundary edges or not.

manifold non-manifold

manifold with boundary edge manifold with no boundary edge
(closed mesh)

Figure 2.4: Manifold vs non-manifold meshes, Image Courtesy: [(Steve Marschner, 2014)]

Topological requirements. What types of meshes need to be represented by the data struc-

ture? Either we required boundaries or we can safely consider closed meshes? Either we need

to represent complex edges or we can depend on a manifold mesh? Do we need to restrict our

needs to pure triangular meshes or we might need to represent arbitrary polygonal meshes?

Algorithmic requirements. What type of algorithms will be operating on the data struc-

tures? Do we only need to render the mesh? Either we need to modify only the geometry of

the mesh, or do we also have to change the topology? Is there any other additional information

that needs to be be associated with vertices, edges and/or faces of the mesh?

The simplest representation for triangle meshes will only store a set of individual triangles.

Consequently, it is not sufficient for most requirements: topological information cannot be

accessed explicitly, and vertices and related data are replicated. The latter can be established

by a shared vertex data structure which stores a table of vertices and encodes triangles as triples

of indices in this table. However, without additional connectivity information it is still not

efficient for major algorithms.

Some of the mesh operations that are frequently used by most algorithms:
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• Access to individual vertices, edges, and faces.

• Oriented traversal of edges of a face that refers to finding out the next edge in a face.

• Access to the faces linked to an edge. Considering the orientation, it is either the left or

right face in the manifold case. This also enables access to neighboring faces or in other

words, traversal of faces.

• Access to starting and/or end vertex of a given edge.

These operations allow local and global traversal of the mesh and are also possible even for

a shared vertex representation; however, the time complexity required will be high for searching

vertices, edges and faces.

Several data structures have been developed that allow better traversal of meshes. Well

known data structures to represent the meshes are indexed lists, winged edge [(Baumgart,

1972)] and half edge [(Mäntylä, 1987)] data structures.

2.1.1 Indexed Mesh Storage

Consideing a simple triangular mesh as shown in Figure 2.5, one way of storing the triangles

would be as independent entities in the form:

T r i a n g l e ( )

v e c t o r 3 v e r t e x P o s i t i o n [ 3 ]

The result is that the vertex b (Figure 2.5) is stored three times and the other vertices are

stored twice. Therefore, nine vertices are stored while many of them are repetitive. The other

way to represent the triangular meshes would be to arrange the common vertices and store only

four vertices as a shared-vertex mesh [(Marschner and Shirley, 2018)]. The data structure has

triangles which refer to vertices containing the vertex data:

T r i a n g l e ( )

V e r t e x v [ 3 ]

V er t e x

f l o a t p o s i t i o n / / o r o t h e r v e r t e x d a t a
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a

b

d

c

0
1
2

(ax, ay, az) (bx, by, bz) (cx, cy, cz)
(ax, ay, az) (bx, by, bz) (cx, cy, cz)
(ax, ay, az) (bx, by, bz) (cx, cy, cz)

# vertex 0 vertex 1 vertex 2

separate triangles: shared vertices:

triangles vertices

#   vertices          #    position

0    (0, 1, 2)
1    (1, 3, 2)
2 (0, 3, 1)

0   (ax, ay, az)
1   (bx, by, bz)
2 (cx,  cy, cz)
3 (dx, dy, dz)

Figure 2.5: A three triangle mesh with four vertices (a,b,c,d), represented with: separate trian-
gles (left) and shared vertices (right).

During implementation, the vertices and triangles are stored in arrays with the triangle-to-

vertex references processed by storing array indices:

IndexedMesh ( )

i n t t I n d [ n t ] [ 3 ] / / v e r t e x i n d i c e s

f l o a t v e r t s [ nv ] [ 3 ]

The index of the kth vertex of the ith triangle is found in tInd[i][k], and the position of that

vertex is stored in the associated row of the verts array. This way of storing a shared vertex is

called as indexed triangle mesh.

2.1.2 Winged-Edge Structure

One of the popular mesh data structures that store connectivity information at the edges instead

of the faces is the winged-edge structure. Due to its edge-centric nature rather than face-centric,

it also works for polygonal meshes. In a winged-edge mesh (Figure 2.6), each edge points to

the two vertices it connects, i.e. head and tail vertices, the two faces it is part of (left and right

faces) and the next and previous edges of its left and right faces in a counterclock-wise traversal

manner. Each vertex and face also point to an edge that connects to it.
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Edge {

Edge lprev, lnext, rprev, rnext;

Vertex head, tail;

Face left, right;

}

Face {

//    . . . per-face data . . . 

Edge e; // any adjacent edge

}

Vertex {

//   . . . per-vertex data . . .

Edge e; // any incident edge

}

Figure 2.6: References from an edge to the neighboring faces, edges and vertices in the winged-
edge structure. Image Courtesy: [(Marschner and Shirley, 2018)]

HEdge {
HEdge pair, next;
Vertex v;
Face f;

}

Face    {
// . . . per-face data . . . 
HEdge h;    // any adjacent h-edge 

}

Vertex    {
//  . . . per-vertex data . . . 
HEdge h; // any incident h-edge

}

Figure 2.7: References from half-edge to the neighboring mesh components. Image Courtesy:
[(Marschner and Shirley, 2018)]

2.1.3 Half-Edge Structure

One of the most convenient and flexible edge-based data structures in geometry processing is

the half-edge data structure. The winged-edge structure also offers polygon mesh processing

due to its edge-centric nature. However, it constantly requires to be checked if the edge is

oriented before moving to the next edge: for instance, if the current edge is from the head or
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the tail. In a half-edge structure (Figure 2.7), we store data for each half-edge rather than storing

data for each edge. Each edge is split into two opposing half-edges such that all half-edges are

consistently oriented in counter-clockwise order around each face and along the boundary.

For each half-edge, a reference gets stored for: the vertex it points to; its adjacent faces (a

zero pointer, in case of boundary half-edge); next half-edge of the face or boundary; its opposite

half-edge; and the previous half-edge in the face. Further, references for each face to one of its

adjacent half-edges and for each vertex to one of its outgoing half-edges get stored as well.

The space requirements for these structures are as follows:

Table 2.1: Space requirements for mesh structures.

Mesh Structure Vertex Position Array Indices Array Repr. Edge Total Storage

Indexed Mesh Storage 12 bytes/vert 24 bytes/vert - 36 bytes/vert
Winged-Edge Structure 12 bytes/vert 96 bytes/vert 4 bytes/vert 112 bytes/vert

Half-Edge Structure 12 bytes/vert 96 bytes/vert 4 bytes/vert 112 bytes/vert

2.2 Constructive Solid Geometry

Constructive solid geometry (CSG) is a modeling technique used in CAD (computer-aided

design) systems to create complex geometry based on combining primitives by parametric fea-

tures and volumetric boolean set operations (such as union, intersection, and difference). The

CAD system usually translates a CSG model into a B-rep (see section 2.3).

The standard CSG primitives comprise cube, cuboid, sphere, cylinder, cone, triangular

prism and torus. These primitives (in normal or generic form) are instantiated by the user

to be used in designing along with transformations such as scaling, rotation and translation to

position manually. Then, two instantiated (and perhaps transformed) primitives can be com-

bined into one with boolean operators such as union, intersection and difference. The CSG

representation is an ordered binary tree where terminal nodes represent primitives and each

internal node defines a boolean set operation applied to the left and right nodes, or children, it

points to. This tree data structure is commonly referred to as CSG tree. Figure 2.8 illustrates

a simple example, given two sets, A and B representing primitives, their union (a) consists of
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all points from either A or B; their intersection (b) consists of all points in both sets; and their

difference written as A - B (c) consists of all points in A but not in B and vice versa (d).

(a) (b) (c) (d)

Figure 2.8: An example of CSG boolean operations. Image Courtesy: [(Dr. C.-K. Shene,
2011)]

Transformations such as scaling, rotation and translation can be applied at any node of the

CSG tree. Applying a transformation or deformation at the head node would result in applying

it to each individual primitive of the tree.

CSG Expressions. Figure 2.9 shows a simple example, to design a complex object by using

boolean operations to combine simpler objects. We start with two instantiations of cylinder

and one instantiation each for a cube and sphere. In one cycle, the two instantiated cylinders

undergo union operators and in the other cycle, cube and sphere undergo intersection operator

to create sampled solid objects. The final model will be obtained by computing the difference

between the solid objects obtained in last step.

The design procedure of the above solid object can be written as an expression:

diff(union(Cylinder, union(Cylinder, Cylinder)), intersection(Cube, Sphere))

where union(A,B), intersection(A,B) and diff(A,B) are the union, intersection and difference

of A and B. The expression can be converted to an expression tree, the CSG expression of

the design. Geometric primitives are special case of constructive solid geometry trees and are

defined as simpler 3D geometric shapes with characteristics such as:
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Figure 2.9: An example of CSG operations with expression. Image Courtesy: [(Commons,
2020)]

• convex structure (except for the torus);

• fixed and limited global intrinsic parameters that only define the global size, orientation

and position of the shape;

• symmetry;

• basic shape that can be combined with other simpler shapes to form more complex

shapes.

In constructive solid geometry, simple primitives are used to build complex shapes by ap-

plying Boolean exoressions. These primitives (Figure 2.10) can be classified into 4 categories

[(Kaiser et al., 2019)] which are as follows:

• plane;

• box and cuboid;

• sphere, cylinder and cone;

• ellipsoids, torus, non-rectangular parallelepipeds.
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Figure 2.10: Common geometric primitives, Image Courtesy: [(Kaiser et al., 2019)]

Plane. A plane is a basic isotropic shape which can be defined by a normal vector n and its

distance d ∈ IR to the origin point of reference frame.

Box and Cuboid. A box and cuboid is defined by center C, orientation vector n with

assembled orthogonal planes and three axis based dimensions. They are represented by their

eight vectors or parameters of the planes forming them.

Sphere, Cylinder and Cone. A sphere is an isotropic shape with center C and a scalar

r ∈ IR+ representing its radius.

A cylinder is parameterized with a point C of its axis, a radius r ∈ IR+ and vector n

representing its orientation.

A cone can be parameterized by its center C, with an orientation vector n and an angle θ

between its axis and surface.

Ellipsoid, Torus, Parallelepipeds. These are geometric shapes of higher complexity.

An ellipsoid is defined by its center C, axis n and three radii x, y, z ∈ IR+, also known as

semi axes.

A torus is defined by its center C, axis n, minor and major axes x and y respectively.

A parallelepiped is defined by its center C, orientation vector n, three axis based dimensions

and their interaxial angles.
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Reconstruction of building roofs and facades from airborne laser scanning (ALS) point

clouds has been an active research among computer graphics and remote sensing domains with

usage of geometric primitives to represent models [(Yan et al., 2014), (Verma et al., 2006)].

The geometric elements of these primitives for instance, edges and vertices are used to recon-

struct compact simpler building models with less complexity. However, for complex building

rooftops these primitives based representations do not fit well. CSG modeling allows to divide

complex modeling tasks into different subtasks and thus comes in handy. After designing rele-

vant sub-building models, they can be adjoined to form a complex building model by applying

Boolean operations using CSG technique [(Wang et al., 2018)].

2.3 Boundary Representation (B-rep)

Boundary representation (often abbreviated as B-REP in CAD solid modeling) is a method for

representing shapes using the limits. Here, a solid is represented as a collection of connected

surface elements and defines the boundary between interior and exterior points [(Wikipedia

contributors, 2022a)]. A boundary representation of a model describes only the geometry (such

as surfaces, curves and points) of a solid as a data structure based on topology (vertices, edges

and faces) [(Hoffmann, 1989)]. The topological and geometrical entities are intertwined in a

way where:

• the face is a bounded portion of a character;

• an edge is an enclosed piece of curve; and

• a vertex lies at a point.

This way, topological entities allow making links between geometrical entities.

B-Rep has its own advantages and disadvantages, which are listed as bellow:

• This method is suitable for constructing solid models of unusual shapes.

• A B-rep model is relatively easy to convert to the wireframe model.
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• B-rep uses only primitive objects and boolean operations to combine them, unlike con-

structive solid geometry (CSG).

• In addition to the boolean operations, B-Rep has additional actions such as extrusion (or

sweeping), chamfer, blending, drafting, shelling, tweaking etc.

• B-rep is not suitable for applications like tool path generation.

• It requires large storage, especially if curved object are approximated with polyhedral

models.

Surface Patch A surface patch is a fundamental building block for surface with curved

bounded collection of points whose coordinates are given by continuous, two-parametric, single

valued mathematical function of the form:

p̄(u,w) = [x(u,w) y(u,w) z(u,w)]T (2.1)

The patch may be termed biparametric, as the two variables u and w vary across the patch.

The parametric variables lie in the range of 0 to 1. Fixing the value of one of the parametric

variables results in a curve on the patch in terms of the other variable (Isoperimetric curve).

Types of Surfaces:

i. Bezier Curve and Surface A Bezier curve [(scratchapixel.com)] is a parametric curve

used in computer graphics to model smooth curves that can be scaled indefinitely and can be

defined by a set of control points P0 through Pn where n is called the order of the curve. For

instance, Figure 2.11 represents a simple bezier curve with 4 control points.

To create this curve, we need to compute it by combining these 4 points weighted by some

coefficients.

Pcurve (t) = P1 ∗ k1 + P2 ∗ k2 + P3 ∗ k3 + P4 ∗ k4 (2.2)

where P1, P2, P3, P4 are the bezier control points and k1, k2, k3, k4 are coefficients weight-

ing the contribution of control points.
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P1

P2

P3

P4

Parametric curve

Figure 2.11: A bezier curve and its 4 control points. Image Courtesy: www.scratchapixel.com

u

v

Figure 2.12: A bezier patch.

In a case of bezier surface, which is a family of bezier curves, we take for instance, 16

points (a grid of 4x4 control points) rather than 4 points to define the surface with parameters:

u and v (Figure 2.12) where u and v belong to the range [0,1] that helps in remapping of the

unit square into a smooth continuous surface. The equation 2.1 can now be defined as a double

sum of control points and coefficients for bezier surface (which is a sum of bezier curves) as:

P (u, v) =
n∑

i=0

m∑
j=0

Bn
i (u)B

m
j (v)Pij (2.3)
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ii. B-spline Curve and Surface Both bezier and b-spline curves are parametric; however,

the bezier representation has two main disadvantages: first, the number of control points is

directly related to degree. Thus, to increase the complexity of the shape of the curve by in-

creasing control points requires increasing the degree of the curve or fulfilling the continuity

conditions between consecutive segments of a composite curve. Second, changing any control

point affects the entire curve or surface which makes the design of specific sections compli-

cated. The concept of B-spline curve came to resolve the disadvantages of bezier curves where

the control points impart local control over the curve-shape rather than the global control in the

case of bezier curve. Due to this, only a specific segment of the curve-shape gets changes by

the changing of the location of the control points.

A b-spline curve is defined as a linear combination of control points pi and B-spline basis

function Ni,k(t) given by

r(t) =
n∑

i=0

piNi,k(t), n ≥ k − 1, t ∈ [tk−1, tn+1] (2.4)

where, pi : i = 0, 1, 2,..., n are the control points, k is the order of the polynomial segments

of the b-spline curve such that curve is made up of piecewise polynomial segments of degree

k - 1, and the Ni,k(t) are the normalized b-spline blending functions of order k and defined on

a knot vector T = (t0, t1, ..., tk−1, tk, tk+1, ..., tn−1, tn, tn+1, ..., tn+k) where there are n + k + 1

elements.

The surface analogue of the b-spline curve is b-spline surface (patch) which is a tensor

product surface defined by a rectangular set of control points pi,j, 0 ≤ i ≤ m, 0 ≤ j ≤ n

and two knot vectors U = (u0, u1, ..., um+k) and V = (v0, v1, ..., vn+l) associated with each

parameter u, v. The corresponding integral B-spline surface is given by:

r(u, v) =
m∑
i=0

n∑
j=0

pijNi,k(u)Nj,l(v) (2.5)
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2.4 Stellar Decomposition

There has been numerous works in the area of topological mesh data structures, optimized

data layouts and distributed mesh data structures. Mesh data structures are usually efficient to

model simple problems on small low dimensional meshes for a broad range of mesh processing

applications in computer graphics. However, in case of much larger meshes and in higher

dimensions, these mesh structures does not perform well. Thus, flexibility is required to deal

with complex meshes including irregularly connected cell types with the help of exploiting

locality within the mesh.

The stellar decomposition [(Fellegara et al., 2021)] is a modern day data structure that

supports efficient navigation of the topologial connectivity of simplicial and of certain classes

of cell complexes, for instance, complexes based on quadrilaterals, polygons, pyramids etc.

also known as Canonical Polytope (CP) complexes (see Figure 2.13) with a manifold or non-

manifold domain. A stellar decomposition of a complex is a collection of regions indexing the

complex’s vertices such that each vertex within a region has sufficient information to locally

reconstruct the star of its vertices, i.e. the cells incident in the region’s vertices. It is both

scalable and flexible to support the generation of optimal local data-structures at runtime. A

Stellar tree is an instance of the stellar decomposition model for spatially embeded complexes

where the decomposition of vertices in the stellar tree is based on a hierarchical n-dimensional

quadtree (or kD-tree) with a simple tuning parameter to assist balance in storage and perfor-

mance needs. Stellar trees are designed to provide efficient processing on the regions of the

mesh where users can generate optimized local topological data structures by defering which

topological relations to encode.

A Stellar decomposition is defined as

SD = (Σ,∆,Φ),

where Σ is a CP complex; decomposition ∆ constitute regions that cover the vertices ΣV

of complex Σ such that every vertex v ∈ ΣV belongs to one of the regions r; and map Φ from

regions of ∆ to entities of Σ.

Under mapping Φ, each region r in decomposition ∆ maps to an array of vertices (rV ) and
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(a) A pure complex

(b) A CP complex

(c) A pseudo-manifold

Figure 2.13: A few examples of CP complexes: (a) A pure simplicial 3-complex with 4 tetrahe-
dra; (b) A CP complex with three top edges, three top triangles, two top quads and
a top tetrahedron; (c) A 2-dimensional pseudo-manifold with 11 triangles, Image
Courtesy: [(Fellegara et al., 2021)]

Figure 2.14: Stellar decomposition encoding for triangles within a region r (red square), Image
Courtesy: [(Fellegara et al., 2021)]

top cells (rT ) from the complex Σ. Figure 2.14 refers to the Stellar decomposition encoding

of arrays of vertices and top CP cells that explicitly list the associated elements, vertices and

triangles for each region r.
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2.5 Neural Radiance Fields

Neural radiance field [(Mildenhall et al., 2020)] (Figure 2.15) is a neural based technique to

generate a single input scene. It is a fully connected network which maps 5D input of a scene

i.e. spatial location (x,y,z) and viewing direction (θ, ϕ) to 4D output which is view dependent

RGB color and opacity in terms of volume density. Finally classical volume rendering tech-

nique is used to to differentiably render new 2D image views. As the process is differentiable,

gradient descent can be used for model optimization. This error minimization through gradient

descent results in prediction of a coherent model of the scene using assignment of high volume

densities and accurate colors to the true scene-content locations.

Figure 2.15: An overview of neural radiance field scene representation, Image Courtesy:
[(Mildenhall et al., 2020)].

Although this method uses volumetric representations to represent complex geometry and

appearance, it overcomes the high strorage cost constraint of discretized voxel grids through

hierarchical volume sampling. This technique provides effectively optimized results to render

realistic views of the geometrically complex scenes. Furthermore, it requires lesser storage

memory in comparison to the input image. However rendering time is high, as optimization of

a single scene converges typically in 100 to 300k iterations on a single NVIDIA V100 GPU

which takes around 1 to 2 days and per scene training takes atleast 12 hours.
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2.6 Assessment of Different Representations

In this section, we critically analyze the methods discussed in Sections 2.1 - 2.5 based on

parameters such as accurate representation of the model (comprising model being realistic and

conforms to the geometry) and computational cost (gauged in terms of computer storage space)

for different representation of 3D urban scenes. Based on that, we will identify the data struc-

tures/representations as prime candidates for light-weight urban modeling.
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Surface Models
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Poullis, 2013

Polygonal Mesh

Stellar 
Decomposition

Fellegara et al. 2021

Constructive Solid 
Geometry

Shan et al. 2002 Liang et al. 2010

Boundary 
Representation

Neural Radiance 
Fields

Ming et al. 2016

Mildenhall
et al. 2020

Kuang et al. 
2013

Neural 
Representations

Figure 2.16: Classification of common modeling techniques and a few representation results.

A mesh model constructed from point clouds by a surface reconstruction algorithm [(Kazh-

dan et al., 2006), (Guennebaud and Gross, 2007)] offers decent representation. Although

LiDAR scans are complicatedly sparse with outliers, noise and occlusions that result in less

accurate representations, dense meshes generated from airborne images have shown greater

geometric accuracy and completeness [(Rouhani et al., 2017)]. Some recent advances in shape

scanning and modeling have allowed depth geometric information encoded into mesh with

3D textures resulting model being realistic and complying with the accurate geometry of the

model. However, these meshes typically contain hundreds of millions of faces which create

burden on the visualization, storage and rendering of real-world applications [(Li and Nan,

2021)]. For instance, an European-style city with 40,400 distinct buildings [(Kuang et al.,

2013)] comprises 1.36 billion triangles with a storage consumption of 61GB that makes using

conventional meshes less suitable for web-based interactive applications. Thus, a lot of signifi-

cance has been given in the area of mesh simplification [(Garland and Heckbert, 1997), (Li and
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Nan, 2021)] and polygonization [(Bouzas et al., 2020)] that makes meshes a prominent can-

didate for light-weight urban modeling. However, there are significant challenges with mesh

simplification technique that we will address in Chapter 4.

Stellar tree based topological data structures are modern approaches for efficient traversal

of the regions of arbitary complexes with manifold or non-manifold domain. These structures

have been used in mesh processing based applications such as mesh simplification [(Fellegara

et al., 2020)] to geometrical and topological applications including local curvature estima-

tion and mesh validation. Simplicial complexes that are not limited to triangle or tetrahedral

meshes are complexes that are defined as collections of p-dimensional hyper-tetrahedra, also

called as p-simplices. We refer to the experimental analysis and comparison from [(Fellegara

et al., 2021)], regarding storage comparison among Stellar-tree encodings such as EXPLICIT

and COMPRESSED (most compact encoding). The tuning parameter, bucketing threshold kv

uniquely determines the decomposition for a given complex Σ. A block r in a PR-tree is

considered full when it indexes more than kv vertices. Smaller values of kv yield deeper hier-

archies with corresponding blocks index few vertices and top cells, while larger values of kv

yield shallower hierarchies with corresponding blocks indexing more vertices and top cells. By

adjusting the tuning parameter kv, the EXPLICIT and VERTEX-COMPRESSED trees yield

reduction in memory requirements with upto 20-50 percentage, for instance, NEPTUNE tri-

angular dataset with storage requirement reduced from 32.0 MB to 26.2 MB for EXPLICIT

trees while COMPRESSED trees reduced from 5.76 MB to 1.24 MB. While, Stellar-tree based

data structures and simplicial complexes are widely used to discretize 3D shapes, there is not

enough study on them regarding urban scene based representations. From our understanding,

processing an urban model through stellar trees might not be the best choice as storage reduc-

tion offered in different encodings are not enough. However, the efficient nature of stellar trees

in processing specific regions of mesh by encoding topological relations might come in handy

for light-weight urban modeling. Due to different level of detail required in light-weight mod-

eling, such as geometric primitives based simple compact representation while preservation of

geometric structure, sharp features and facade elements, we believe stellar trees can be used as

local correspondents to define topological relations around feature areas of a mesh. Thus, we

consider stellar trees as a useful representation for light-weight urban modeling.

CAD system based solid modeling techniques such as CSG and B-Rep have vast back-
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ground in modeling complex surfaces/objects as well as buildings [(Shan, 2002), (Ming et al.,

2016)]. [(Shan, 2002)] is based on generation of realistic urban elements such as various build-

ing models with three modeling approaches such as flat roof, triangulated irregular network and

constructive solid geometry. To make the building models realistic, textures of building roofs

and walls acquired through aerial and ground images are mapped to the sample model. This

approach allows modeling complicated buildings and provides sufficient details, however, at a

cost of a time-consuming modeling process as the mapping of textures to the models can be too

slow. [(Ming et al., 2016)] is based on a CSG-BRep (Constructive Solid Geometry-Boundary

Representation) topological model where each topological element belongs to a shape (CSG-

Shape) object and boolean operations can be performed on CSG-BRep model. Arbitrary topol-

ogy object comprises three variables including topological location (CSG-Location), orienta-

tion (CSG-Orientation), and a subset of topological shapes (CSG-Subshape). At last, CSG-

BRep based construction using LiDAR point cloud as data source is explained where improved

RANSAC algorithm is used to fit parameters for simple point cloud while for complex point

cloud, manual segmentation following by parameters fitting is performed to determine CSG

voxel size. Geometry and topology data are fused together and then voxel model is created from

simple element to complex element such as vertex to cylinder, cone, sphere or closed free-form

surfaces. The following CSG-BRep model constructed and explained in the paper offers mem-

ory footprint 336 KB in comparison to an equivalent triangular mesh model (3991 points and

7475 faces) with memory footprint 1986 KB. This model further contains detailed topologi-

cal relations and enables query and analysis of 3D spatial topological information. However, to

represent complex architectural details from real-world examples such as, complex facade level

details in european-style buildings this approach might not be suitable. Considering, generation

of a structure through primitives as a time-consuming process, we believe a CAD system based

solid modeling approach might not be the best choice.

To better assess the representation of a CAD model in comparison to a mesh model, we take

3D CAD models and their equivalent triangular mesh models (see Figure 2.17). These CAD

models have memory footprints 14.4 MB and 2.94 MB in comparison to their equiavalent trian-

gular mesh models 14.8 MB (116166 vertices and 162058 faces) and 3.46 MB (24287 vertices

and 35423 faces). We observe that CAD based representations are useful when model exhibits

dominant planar regions. However, in case of complex architectural details, a triangular mesh

model would be more suitable to better represent the level of detail.
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(a) (b)

Figure 2.17: (a) CAD models of sample buildings (downloaded from open-source 3D modeling
platform Sketchfab - https://sketchfab.com/features/free-3d-models); (b) Equiva-
lent triangular mesh models.

To understand in more detail, Figure 2.18 represents buildings and their simplified version

as triangular meshes and boundary representation. We observe that structural geometry can

be preserved in boundary representation. However, this representation is not satisfactory to

represent complex details such as facade elements in comparison to triangular meshes. Table

2.2 lists the statistics such as number of vertices, number of faces and total storage (in MB)

required for both original as well as simplified 3D models. From the given data, it can be

concluded that B-Rep offers light-weight modeling, however, such simpler representation is

not enough for complex detail. On the other hand, polygonal meshes consume more storage

yet allows representation of precise information due to more number of faces.

From our assessment for different representations, we can conclude that polygonal meshes

and stellar trees are prominent candidates for light-weight modeling algorithms. As, our goal

is to model highly detailed yet light-weight 3D buildings, we will focus more in the area of

meshes based representation and available light-weight modeling techniques (see Chapter 3).

Table 2.3 lists the feature points of data representations for comparison. Polygonal mesh

and stellar decomposition can be classified into surface modeling where geometric element is
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(a) (b) (c) (d)

Figure 2.18: 3D CAD models and their simplified version. (a) Empire State (triangular mesh),
(b) Empire State (B-Rep), (c) Lans (triangular mesh) and (d) Lans (B-Rep).

Table 2.2: Statistics related to different 3D representations.

3d Models Data Structure Models # Vertices # Faces Storage

Empire State
Polygonal Mesh (a)

Original 432,514 861,642 63.9
Simplified 72,695 141,903 19.2

Boundary Representation (b)
Original 2477 1675 27.2

Simplified 1900 1263 21.5
Lans

Polygonal Mesh (c)
Original 25,994 51,426 13.48

Simplified 18,543 31,598 11.48

Boundary Representation (d)
Original 3534 2367 36.4

Simplified 3349 2254 35.1

Table 2.3: Comparison between data structures.

Data Structure Topology Geometry Application

Polygonal Mesh vertices, edges and faces surfaces Continuous surfaces
Constructive Solid Geometry geometric primitives surfaces, curves and points CAD models

Boundary Representation vertices, edges and faces surfaces, curves and points CAD models
Stellar Decomposition vertices, edges and faces surfaces Continuous surfaces

surface while CSG and B-Rep can be classified into solid modeling with geometric elements

as surfaces, curves and points. From topological perspective, polygonal mesh, B-Rep and
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stellar decomposition rely on vertices, edges and faces. However, CSG-based representations

do not store such topological relation and thus, only uses collection of geometric primitives to

represent shapes. This implies that CAD based representations (such as CSG and B-Rep) are

useful when model exhibits dominant planar regions. However, in case of complex architectural

details, a triangular mesh model would be more suitable to better represent the level of detail.
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CHAPTER 3

Light-weight Modeling Algorithms

In this chapter, we review various state-of-the-art light-weight modeling techniques including

mesh decimation, geometric abstractions, deep learning based algorithms and level of detail

(LOD) modeling.

3.1 Mesh Decimation

Mesh decimation deals with the reduction in complexity of mesh structures by reducing faces.

In [(Bouzas et al., 2020)], the authors proposed a novel approach for the polygonization of

Multiview Stereo (MVS) meshes of buildings which results in compact and topologically valid

models. For polygonization, the planar components of the input mesh along with their topology

in the 3D space get detected based on region growing technique and then an initial set of candi-

date’s faces to approximate the meshes are generated. Then, an optimization method constructs

the simplified surface models considering sharp features through a building scaffold and faces

through 2D arrangements. In [(González et al., 2009)], a user-assisted mesh simplification

method proposed that converts CAD models to triangle meshes and perform the simplification

of each sub-object independently, at different level of details. For example, the user can desire a

total number of triangles in the simplified model while some parts of the model are maintained

or simplified to a definite percentage of simplification. Different levels of detail for different

subobjects avoid the appearance of holes and preserve the boundaries between the sub-objects.

In [(Li and Nan, 2021)], an efficient mesh simplification method presented to reduce the

complexity and storage size of the urban models while preserving the structure and sharp fea-

ture, for instance, sharp contours of building models. The method comprises filtering and

simplification of 3D building mesh models to preserve piecewise planar structures. In [(Le-

scoat et al., 2020)], authors proposed a method to simplify a mesh using edge collapses while

targeting to preserve the input eigen vectors and eigen values through functional maps (a linear



mapping between function spaces). This method supports the preservation of spectral proper-

ties and offers the similar storage size of simplified methods based on [(Garland and Heckbert,

1997)] but with a higher quality Laplacian. In [(Wang et al., 2021a)], a topology-preserving

mesh simplification method proposed for 3D building models. First, the method classifies

building into different segments representing different components. Then, the vertices of the

model get divided into different categories such as boundary vertices, hole vertices and other

regular vertices. Then, cost related to edges is determined for instance, for a boundary edge, the

angle between the edge and component (E-C angle) is introduced to estimate an error metric to

skip the edge collapses at adjacent areas of building components. An improved quadratic error

metric (QEM) is explained further to address the unexpected error in the case of hole vertices.

3.2 Geometric Abstractions

Due to increasing complexity of geometric information, meaningful and concise abstractions

become helpful for higher level interaction and modeling. More specifically, geometric ab-

straction allows to reconstruct 3D models by using various primitives, resulting model being

low-polygonal and light-weight. RANSAC [(Fischler and Bolles, 1981)] is a popular prepro-

cessing technique for geometric abstraction. The method extracts shapes from point cloud data

by randomly drawing minimal sets (minimum points that define a geometric primitive) and

constructs respective primitive shapes [(Schnabel et al., 2007)]. In [(Monszpart et al., 2015)],

a method proposed to reconstruct man-made scenes by extracting Regular Arrangement of

Planes (RAP) from raw point cloud scans. First, the point set gets oversegmented with the

help of region growing to group nearby points into planar patches. The method produces a set

of candidate primitives with the help of local analysis and inter-primitive relations. Finally, a

regular arrangement of planes gets extracted based on data fitting to point cloud and compact

resulting arrangement. In [(Huang et al., 2017)], a 3DLite framework proposed to reconstruct

3D environments using RGB-D sensors. This method computes a light-weight, low-polygonal

geometric abstraction of the scanned geometry and produces high-resolution, sharp surface tex-

tures of the 3D models. In [(Chen et al., 2021b)], a method presented that reconstructs compact,

watertight, polygonal building 3D models from point clouds with the help of learnable implicit

field using a deep neural network. An implicit field can be used to extract a smooth surface

model of the object by learning directly from the point cloud. Then, a Markov random field
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(MRF) extracts the compact surface of the building through combinatorial optimization.

In [(Xu et al., 2022)], a method presented for building reconstruction based on geometrical

segmentation of point clouds. First, points divided into voxels with the help of a clustering al-

gorithm [(Lin et al., 2018)]. The voxels get further assessed and classified based on quality and

type of shape, for instance, curved shapes such as spheres, cylinders and cones. To separate the

points into corresponding segments, a hybrid voting RANSAC approach is used. To improve

the efficiency and robustness in complex scenes, voxel-based connectivity are analyzed. Fur-

thermore, to deal with bad segmentation and spurious shapes, a graph-cut-based optimization

is incorporated. In [(Xie et al., 2021)], a method presented for efficient reconstruction of build-

ing models from photogrammetric point clouds by combining rule-based and hypothesis-based

methods. Initially, the planar primitives and respective boundaries are extracted from the point

cloud which get regularized to obtain abstracted building counters. Then, a two-stage recon-

struction method generated 3D building models. In the first stage, to recover the topological

relationship between different primitives, the regularity and adjacency of the building counters

are used resulting an initial reconstruction model. In the next stage, an integer linear opti-

mization problem solved to remove and reconstruct topologies related to ambiguous areas. In

[(Zhang et al., 2021)], a method presented for automatic reconstruction of a 3D building facade

model from photogrammetric mesh model. First, the mesh model is divided into components

based on contour line. Local contour trees exploited to find the segmented contour graphs based

on analyzing the topological relationship between the contours. Through an iterative process,

whole model segmented into diverse components from bottom to top. Next, the mesh model

components approximated by minimum circumscribed cuboids in an iterative manner. Finally,

to ensure the accuracy of the reconstructed facade model, the parameters of the cuboid model

adjusted by means of a least square process.

3.3 Deep Learning based Algorithms

In the last decade, the ample accessibility of large training data sets has facilitated the re-

searchers with the possibility of working on data-driven techniques to produce large 3D urban

models using data priors. These learning-based models are capable of handling big datasets of

urban scenes having lots of different objects such as buildings, roads, vegetation, parking area,
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etc. Many methods [(Li et al., 2019; Bosch et al., 2019; Liu and Ji, 2020; Fan et al., 2021;

Kelly et al., 2018; Du et al., 2020)] have addressed the urban reconstruction from multi-view

images or satellite imagery; while point cloud based urban modeling [(Zhang and Zhang, 2017;

Zhang et al., 2018)] has been considered by fewer researchers.

The satellite images provide top view of urban areas but fail to provide scene information

of buildings from other viewpoints. [(Li et al., 2019)] utilizes high resolution satellite images

along with Digital Terrain Model (DTM) and geographic tagged maps to reconstruct 3D model

for complex urban scenes. This method uses two CNNs, first to classify land covers and an-

other for building height estimation. Other scene components such as water area, road nets and

building samples are estimated from the initial modalities provided to the system and then these

are further processed and integrated to build virtual 3D urban scene at very high speed. This

work uses lightweight CNN model with high acceleration rate which makes this approach con-

venient and flexible for urban simulation tools, although it is limited to the flat roof structures.

CNN model discussed in [(Bosch et al., 2019)] examines the utility of lightweight baseline

architectures for scene and appearance changes in satellite images due to various seasons. This

paper studies the necessity of authentic selection of image pair in multi-view 3D reconstruc-

tion. Multi-view reconstruction network RED-Net introduced in [(Liu and Ji, 2020)] achieves

high efficiency and resolution in large scale reconstruction with lesser memory requirements.

Also, a very recent web-based interactive platform [(Fan et al., 2021)] VGI3D, works with

VGI images to generate lightweight 3D building models using CNN. The platform realizes fast

solution with lower time and labour costs. Also, CNN helps in detecting building façades of

different and complex architectural style buildings.

Similar to CNNs, Generative Adversarial Network (GAN) is another deep learning ap-

proach which is becoming famous in image-based 3D reconstruction community. FrankenGAN

[(Kelly et al., 2018)] uses simplified modeling process to obtain realistically detailed mass

models. Also, the memory requirement of GAN architecture is compensated by employing

individual texturing of windows and super resolution GAN. An improvement to FrankenGAN

is proposed in [(Du et al., 2020)], which has replaced BicycleGAN [(Zhu et al., 2017)] with

StarGAN [(Choi et al., 2018)] architecture to generate higher quality textures.

Point clouds carry 3D spatial information for efficient 3D reconstruction of objects or

scenes. In a recent deep learning based framework [(Chen et al., 2021b)], authors presents

38



a method to reconstruct compact, watertight, polygonal building 3D models from point clouds

with the help of learnable implicit field using a deep neural network. An implicit field can be

used to extract a smooth surface model of the object by learning directly from the point cloud.

Then, a Markov random field (MRF) extracts the compact surface of the building through

combinatorial optimization. [(Zhang and Zhang, 2017; Zhang et al., 2018)] uses 2.5D dual

contouring method to produce lightweight 3D models from ALS point clouds of large residen-

tial areas. The deep reinforcement learning framework proposed in [(Zhang and Zhang, 2017)]

and a rectified linear unit neural network proposed in [(Zhang et al., 2018)] do not require

large training data for network parameter learning for point cloud labelling which results in

the significant reduction in the parameter tuning cost. Overall, both approaches are suitable

for 3D modeling of irregular, complex roof components and small structures; however [(Zhang

and Zhang, 2017)] sometimes struggles in learning discriminative features from smaller point

clouds and [(Zhang et al., 2018)] is limited by its high computation time. Authors in [(Bauchet

and Lafarge, 2019)] reconstruct urban environments as compact polyhedral meshes. While

most of the buildings can be reconstructed accurately, the proposed scheme needs improve-

ment in dealing with free-form shapes and small structures of buildings. Furthermore, this

method processes large data volumes in short time and hence this approach is sufficiently fast

and scalable. In [(Lin et al., 2013)], a supervised learning-based building modeling scheme is

proposed for low-rise residential houses. For visual enhancement of reconstructed models, au-

tomatic billboard-tree approach is used which resulted in the rich, clean, and visually pleasing

models of plant.

Another paper [(Xu et al., 2020)] uses point clouds generated from multi-view satellite

imagery for urban model reconstruction where deep learning helps in determining the roof

shape in noisy and complex scenes. For efficient roof primitive segmentation and reconstruc-

tion, hierarchical RANSAC technique is used which shortens the computation time. Another

promising direction to efficient 3D reconstruction is model synthesis which generates large

3D models based on compact example models, automatically. While [(Merrell and Manocha,

2008, 2010)] are classical model synthesis approaches generalized to higher dimension models,

there are a smaller number of learning-based model synthesis techniques developed yet. Au-

thors in [(Despine and Colleu, 2015)] uses adaptive procedural modeling approach to enhance

texture quality for virtual city models. It extracts information from low resolution aerial im-

ages for roof texture reconstruction. The method relies on machine learning for analysing the
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images using pixel-based detection. Few works [(Wang et al., 2021b; Ulyanov et al., 2017)]

have discussed CNN based texture synthesis on general dataset but model/ texture synthesis is

still having lots of opportunity for urban modeling.

3.4 Level of Detail Modeling

3D city models and their level of detail (LOD) describe the fineness and complexity desirable

for compact representation-based computer graphics applications. In [(Verdie et al., 2015)], a

method explained that reconstructs levels of detail (LODs) based on 3D urban scenes. Multi-

view stereo systems based surface meshes are used as input that further proceeds into later

stages of: classification, abstraction and reconstruction. First, the scene gets classified into

four meaningful classes, that is, ground, tree, facade and roof with the help of geometric at-

tributes and a set of semantic rules in association with a Markov random field. Then, in the next

step planar structures on buildings get detected which leads to filter stage and simplifies LOD

generation. The method pipeline feeds this regularized and filtered proxies to reconstruction

submethod that generates watertight models. The next stages global regularization, LOD filter-

ing and simplification generates light-weight polygonal meshes while ensuring the structure.

In [(Chen et al., 2017)], a topologically aware 2.5D building rooftop reconstruction method

explained from airborne laser scanning point clouds based on three steps pipeline: building

rooftop primitive clustering; primitive boundary representation; and 2.5D building model re-

construction at multiple LoDs. In the first stage, rooftop primitives are clustered with the help

of probability density clustering (PDC) technique based on topological consistency between

primitives. In the next stage, subgraph of voronoi is used to extract primitive boundaries which

further are divided into multiple linear segments to generate key points which are helpful in

generating hybrid representation of the boundary. The hybrid key points-based model repre-

sentation offers flexibility and accurate rooftop details to generate light-weight building models.

Finally, the boundaries of primitives are assembled to reconstruct and render building models

at multiple-level details.

In [(Zhu et al., 2018)], a large-scale urban scene modeling framework explained comprising

multi-view stereo (MVS) meshes as input and generates simplified models with different levels

of detail (LODs) based semantics. First, the scene gets segmented into 4 different classes such
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as ground, grass, tree and building with the help of a Markov random field (MRF). Then, 2D

orthograph images from 3D meshes used to further incorporate height and image features in the

initial segmentation step. In the next step, building modeling is implemented by reconstructing

buildings into LOD models. Different 2D line segments based on roof boundaries are detected

and extruded with different faces to assign a roof plane label. Thus, produced models with

different LODs.

In [(Han et al., 2021)], a modeling framework explained for aerial images and textured 3D

models based on large-scale urban scenes that generates compact polygonal models with se-

mantics at different level of details. The framework comprises different stages such as scene

segmentation, roof contour extraction and building modeling. First, by using deep neural net-

work the scene is segmented into 3 classes: ground, vegetation and building. Then, the 2D

line segments based on roof contours are detected that divide the ground into polygon cells. A

roof plane gets assigned to each polygon cell with the help of Markov random field optimiza-

tion technique. In the final stage, by extruding cells to different planes, building models with

different LODs obtained.

3.5 Summary and Remarks

We summarize our review on various lightweight modeling algorithms based on their appli-

cability and advantages and disadvantages in the context of urban scene modeling including

man-made environments.

Geometric abstraction-based methods are reliable for understanding and analyzing urban

scene layouts as well as indoor 3D environments. As major part of an urban scene comprises

buildings with dominant planar regions, primitive based fitting methods appear suitable for ap-

proximating city scenes. Various geometric abstraction-based techniques have been employed

in numerous works such as segmented aerial 3D point clouds differentiating buildings, ground-

objects, and vegetation. Façade parsing and modeling is another application area where geo-

metric abstraction-based techniques appear suitable. Once, simpler approximations are avail-

able, segmented point clouds can be substituted with CAD-based primitives in order to address

lightweight aspect. However, these methods are only limited to simpler approximations with

primitive types (plane, cylinder, cone etc.) and therefore, cannot be applied to complex object-
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s/scenes in real-world examples.

Deep learning-based methods to generate 3D city scenes have been introduced recently

with the availability of large training data sets of different objects such as buildings, roads, veg-

etation etc. Due to unorganized nature of point clouds, training neural network directly from

point clouds is not an easy task. In a recent work [(Chen et al., 2021b)], framework for re-

constructing compact, watertight, polygonal building models from point clouds is presented in

which learnable implicit fields are used to characterize 3D shape and surface extracted through

Markov random field (MRF). Although this method generates valid models with accurate struc-

tural geometry; missing level of detail makes these models unsuitable for an interactive urban

scene application. We believe that neural networks can be optimized to learn faster and better

not only to approximate 3D shapes but also to render complex details from point clouds.

Level of Detail (LoD) modeling-based methods have shown prominent results, generat-

ing lightweight yet detailed representations. These methods have been used in various works

that take aerial images and/or textured 3D models as input and generates compact polygonal

models. To automatically reconstruct city scenes with different LoDs (level of details), method

pipeline including stages such as scene segmentation and feature extraction appears appropriate

at various occasions for efficient representation. Scene segmentation can help in categorizing

objects such as buildings, vegetation and ground while feature exaction can help in obtaining

rooftop contours. Some methods further incorporate mesh simplification to reduce polygons in

order to maintain simplification. However, these methods require user assistance and are not

suited well for reconstructing large scale city scenes.

There are numerous works on mesh decimation for reconstructing urban scenes as polyg-

onal meshes from dense LiDAR-based point clouds offers detailed topological information.

Though, point clouds comprise noise, outliers and other defects, techniques such as mesh fil-

tering and denoising can smooth noisy and uneven density of shapes approximated with trian-

gular meshes. By reducing faces, complexity of mesh structures can be reduced thereby making

meshes as one of the prominent candidates for lightweight modeling. Various models based on

mesh simplification and polygonization offer lightweight representation of the geometry, how-

ever these models lack in the level of detail required due to their compact nature. For instance,

façade level details and complex architectural patterns are often omitted or ignored in various

methods. Various works also talk about detailed simplified mesh models by incorporating var-
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ious schemes such as using local correspondents, custom edge collapse operations with feature

and local geometric error metrics etc. However, in the context of reconstructing detailed urban

scene these techniques are not adequate. We provide our mesh decimation algorithm with ex-

periments and comparative study in the next chapter (see chapter 4). The quality of our method

is evaluated on various building models and the performance is validated by comparisons to

other state-of-the-art techniques.
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CHAPTER 4

Mesh Decimation Through Gradient Tensors

Efficient mesh decimation is an essential part of this light-weight modeling. In this chapter, an

overview of our mesh simplification method is described followed by in depth discussion.

Point Cloud 3D Mesh

Feature PointsSimplified model

mesh reconstruction

feature 
points 
detection

mesh simplification

Figure 4.1: Our mesh decimation pipeline.

4.1 Overview

Urban mesh simplification based methods [(Garland and Heckbert, 1997), (Li and Nan, 2021),

(Bouzas et al., 2020)] showed great potential in last few years addressing the challenges of

visualization, storage and processing of 3D models by reducing the faces to make models less

complicated while preserving the essential geometry and sharp contours to generate compact

representations. Considering, architectural variations in real-world urban scenes such as Man-

hattan and European style buildings with complex facade element structure, these methods do



not perform well in terms of level of detail. Therefore, we consider preserving facade element

details as part of critical features in the final simplified models. In this chapter, we review our

mesh decimation pipeline (Figure 4.1) that takes 3D meshes of buildings reconstructed from

dense point clouds with the help of screened poisson reconstruction technique [(Kazhdan and

Hoppe, 2013)]. We take vertices of these meshes as topological data for feature points detec-

tion method that extracts feature points (such as corner, edge, boundary points) through gradient

structure tensors. Then, our customized mesh simpification method decimates the input mesh

without losing the extracted feature points in the final simplified model. The quality of our

simplified results is evaluated on different building models and the effectiveness is validated by

comparisons to the different state-of-the-art techniques. The key contributions of our proposed

work are as follows:

• Mesh Simplification through Structure Tensor: Extracting feature points from a building

mesh using gradient structure tensor and associate it with GH [(Garland and Heckbert,

1997)] based mesh simplification method with the help of custom cost penalty function.

• Empirical Study with Comparisons: the created simplified meshes keep consistent and

good fidelity to the original meshes (in terms of Hausdorff distance and RMS error (see

Table 4.1 and 4.2)) in comparison to other state-of-the-art techniques.

• Simplicity, Efficiency and Robustness: simple and efficient implementation of simplifi-

cation with architectural variations retained for highly complex models with same fidelity

and efficiency.

4.2 Mesh Reconstruction

Although 3D point clouds are prominent structures to represent geometry for navigation and

interaction applications, direct exploitation of geometry is not an easy task [(Bassier et al.,

2020)]. On the other hand, 3D meshes reconstructed from point clouds offer well defined

topological information and are extensively used as an input for urban scene interpretation.

Implicit function based surface reconstruction is one of the ways for approximating a surface

and one such popular technique is poisson surface reconstruction [(Kazhdan et al., 2006)] that
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creates watertight surfaces from point sets by solving a Poisson equation. An indicator function

of a model is estimated by finding a function χ such that the difference between its gradient

∇χ and vector field V⃗ is minimized, that is, minχ ∥∇χ − V⃗ ∥. The gradient of the indicator

function is a vector field which is equal to the inward surface normal. Therefore, the oriented

point samples can be seen as samples of the gradient of the indicator function. The poisson

surface reconstruction [(Kazhdan et al., 2006)] minimizes the function:

E(χ) =

∫
∥∇χ(p)− V⃗ (p)∥2dp (4.1)

However, in some situations, this method does not consider every points positions result-

ing model divering. Thus, we refer to [(Kazhdan and Hoppe, 2013)] for mesh reconstruc-

tion method in our pipeline that creates surfaces and further incorporates adaptions related to

weighted positions of the points resulting final model faithful to the initial point cloud. Be-

cause, point clouds used for mesh reconstruction are raw, we first estimate the normals by

using normal estimation method from [(Cignoni et al., 2008)] that fits local planes and then

uses them to estimate normals. Once normals are estimated, the underlying surface of geome-

try can be represented with the help of marching cubes algorithm [(Lorensen and Cline, 1987)]

by building an octree data structure [(Wilhelms and Van Gelder, 1992)] and dividing the point

cloud into a voxel grid that creates triangles by analyzing isosurface (reconstructed surface) of

the model. There are different parameters in screened poisson reconstruction method that affect

the reconstruction results:

• Reconstruction Depth : Maximum octree depth D used for surface reconstruction.

• Samples Per Node : Minimum number of sample points that should be contained in an

octree node.

• Point Weight : Interpolation of point samples.

• Scale Factor : Ratio between the diameters of the cube used for reconstruction and the

samples’ bounding cube.

• Normals : Flag to output vertex normals estimated from the gradients of the implicit

function.
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(a) birdfountain_station1.ply : vertices 635k, faces 

1271k, depth 10
(b) domfountain_station1.ply : vertices 558k, faces 1116k, 

depth 12

(c) stgallencathedral_station6.ply : vertices 2028k, faces 

4056k, depth 12
(d) marketplacefeldkirch_station7.ply : vertices 1132k, faces 

2264k, depth 12

Figure 4.2: Reconstructed meshes through screened poisson surface reconstruction.

Parameters reconstruction depth and samples per node have major impact on the mesh

reconstruction. The higher value of the depth results in the production of more detailed meshes

as the voxels get finer due to the deeper hierarchy of octree. Similarly, a smaller value of

samples per node parameter (sampling density) allows to put less points into the octree node

resulting in generating high details. In case of noisy data, smaller depth value and higher

sampling density value could be used to keep the surface reconstruction smooth. However, it

will result in loss of detail. Figure 4.2 represents meshes reconstructed from Semantic3D point

cloud dataset [(Hackel et al., 2017)] which demonstrates buildings.
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4.3 Feature Points Detection

After obtaining reconstructed meshes from point clouds, we take vertices of the meshes as

topological information and obtain critical feature points (corner, edge or boundary points)

related to urban buildings such as building facades by analyzing gradient structure tensors.

We refer to [(Chen et al., 2021a)] method for the detection of critical feature points to be

preserved in mesh decimation stage. First, the confidence of vertex set is calculated to measure

the local quality and to quantify the probability of vertex being a feature point. The confidence

characteristic is then used in the meaningful interpretation of the gradient for each point. The

gradient of vertex set is encoded into a 3 x 3 structure tensor, with eigenvalues indicating the

gradient variations in the local regions. The feature point set representing the building facade,

gets extracted by a dual-threshold method representing critical points by analyzing confidence

and the gradient structure tensor of each point.

Confidence Estimation. To understand the local quality of vertex point set, it is essential

to mesure the confidence of each point by analyzing the eigenvalue of covariance matrix of

vertex vi. Geometric attributes such as fitting quality Cf and sampling uniformity Cs are used

to estimate the confidence where fitting quality represents the condition of the local tangent

plane at vertex vi and calculated by Ci
f = λi

0/ (λ
i
0 + λi

1 + λi
2). Here, λi

0 ≤ λi
1 ≤ λi

2 represents

eigenvalues of the covariance matrix. If the value Ci
f tends to be 0, it means the vertex vi fit

the local tangent plane, however, if the value approaches 1 then the vertex vi could be located

at facade corner, facade edges and facade boundaries. While fitting quality deals with the

quality of tangent plane, sampling uniformity describes the uniform distribution and calculated

by Ci
s = λi

1/λ
i
2. If the value tends to be 0, the vertices are distributed linearly, however, if

the value approaches 1 then the vertices are distributed uniformly. The quality of vertices are

estimated by focusing on small neighborhood sphere centered at individual point. To keep the

values accurate, different scales of neighborhood sphere with radius of 1.0, 1.5 and 2.0 times

of mean point density of vertex set are used. The overall confidence measure Conf i ∈ [0, 1] of

vertex vi is calculated as follows:

Conf i = 1− 1

n

n∑
k=1

(
1− 3Ci

f

)
· Ci

s (4.2)

where, n represents the number of scales. If the value of Conf i comes out to be 0, the corre-
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sponding vertices have high local fitting quality and could be located on wall or inside facade

such as window glass. In case of value 1, the corresponding vertices are likely to be located on

facade boundaries, corners and window frames.

Gradient Definition and Structure Tensor Generation. After calculating the confidence

for each vertex, the gradient G(x, y, z) for the vertex set can be defined as maximized direc-

tional derivative of a differentiable function f(x, y, z) with direction vector u = cos(α)i +

cos(β)j + cos(γ)k in 3D space such that, G(x, y, z) = max(Duf) where angles α, β, and

γ represents the angles between the direction vector u and positive three axes; and Duf =

limt→0
f(x+t cos(α),y+t cos(β),z+t cos(γ))−f(x,y,z)

t
. Considering the directional derivative to be max-

imum when the gradient of function ∇f(x, y, z) and direction vector u are in same direction,

the gradient value G(x, y, z) of vertex v(x, y, z) can be defined as maxj∈N

(
Ci−Cj

dij

)
, where Ci

and Cj represent the estimated confidence of current vertex vi and its neighborhood vertex vj

respectively and dij represents the euclidean distance from vertex vi to vertex vj .

Considering change of gradient G′(∆x,∆y,∆z) of vertex set v(x, y, z) as:

∑
v(x,y,z)

[Gx+∆x,y+∆y,z+∆z −Gx,y,z]
2 (4.3)

using taylor expansion with O (∆x2 +∆y2 +∆z2), equation (4.2) can be interpreted as:

G′(∆x,∆y,∆z) =
∑

v(x,y,z)

[
∆x · gx +∆y · gy +∆z · gz +O

(
∆x2 +∆y2 +∆z2

)]2 (4.4)

which can be written as: (∆x,∆y,∆z)M(∆x,∆y,∆z)T

where M =
∑

v(x,y,z)


g2x gxgy gxgz

gygx g2y gygz

gzgx gzgy g2z

 that is, gradient structure tensor of the local

region of the vertex set where a point from the vertex set could either be a corner point (at the

intersection of three non-parallel surfaces), edge point (belongs to the intersection edges) or

boundary point (outer boundaries or inner holes).

Dual-Threshold Criterion. To detect feature points, i.e., vertices being critical points, a

response function based on the three eigenvalues of smoothed gradient structure tensor M is
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Figure 4.3: Feature points representing critical facade elements of buildings.

defined as:

RM̄
F = f(M̄)− k[g(M̄)]3

s.t.

 f(M̄) = λM̄
0 · λM̄

1 · λM̄
2

g(M̄) = λM̄
0 + λM̄

1 + λM̄
2

The value of RM̄
F indicates the status of point being critical feature point (that is, whether

point being corner, edge or boundary) or general point with the help of dual-threshold criterion

comprising combination of eigenvalues of gradient structure tensor M̄ such that if value of RM̄
F

is greater than or equal to a predefined threshold TM̄ ; and second constraint as G(x, y, z) ≥

TG here TG is a predefined gradient threshold. Hence, for a point to be critical feature point

G(x, y, z) ≥ TG and RM̄
F ≥ TM̄ conditions should be true. Figure 4.3 represents critical feature
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points of meshes obtained in previous step by setting 2.25 and 25 as threshold values for TG

and TM̄ .

4.4 Decimation

After obtaining feature points from vertex set, we associate gradient structure tensor definition

with GH [(Garland and Heckbert, 1997)] mesh decimation method to retain feature points in

simplification stage. Our idea is to utilize the original error quadrics computed for each vertex

through GH method and identify whether the corresponding vertex is a feature point or not,

according to eigenvalue analysis from gradient structure tensor. If the corresponding vertex is a

feature point, we preserve it during the simplification stage by adjusting the error computation.

By not changing the placement of the collapsed vertex, efficiency of quadric error metric for

shifting the collapsed vertices can be utilized.

Quadric Error Metric (QEM). By applying the edge collapse operation iteratively, two

vertices v1 and v2 can be merged to a unique vertex v̂, i.e. v1, v2 → v̂. For an edge e12 based

on vertices v1 and v2, a cost ∆e12 can be defined with an error metric to identify whether the

two vertices should be collapsed or not. For each vertex v of an input mesh, a quadric Qv can

be defined as a 4x4 matrix such that Qv = PP T , where P = [a b c d]T representing plane

associated with vertex v and ∆qem(v) = vTQvv defines the error of the vertex v as sum of

squared distances to its adjacent planes, i.e.
∑(

P⊤v
)2

. The error metric can be written as

follows:
∆qem(v) =

∑
p∈ Planes (v)

(
v⊤p

) (
p⊤v

)

= v⊤

 ∑
p∈ planes (v)

Qv

v

where Qv = PP⊤ =


a2 ab ac ad

ab b2 bc bd

ac bc c2 cd

ad bd cd d2


Hence, the error approximation Q for v̂ becomes Q1 +Q2. For each valid pair (v1, v2), the

estimated error value using QEM defines cost based on which all vertex pairs get placed in a
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priority queue data structure with the lowest cost at top ready for collapsing operation followed

with an update on the costs of other valid pairs.

Algorithm overview. Our proposed method (see Figure 4.1) takes as input: a mesh M

reconstructed from point cloud; a feature vertex set Fv representing extracted critical points

from feature points detection stage; and outputs a simplified mesh M
′′ by analyzing gradient

structure tensor M =


g2x gxgy gxgz

gygx g2y gygz

gzgx gzgy g2z

 of the local region of vertex set. For a feature ver-

tex set Fv that also belongs to vertices V of mesh M , we analyze the corresponding eigenvalue

distribution from gradient structure tensor definition and identify the status of vertex. In order

to be a feature point, i.e., corner, edge or boundary point the corresponding vertex must reflect

larger eigenvalues.

• Corner point: If the current vertex is at the intersection of three non-parallel surfaces

(facades and rooftop planes in this case), all three corresponding eigenvalues will be

large and the vertex could be a corner point.

• Edge point: If the vertex lies at the intersection edges, then two relative eigenvalues will

be large and point will be considered as edge point.

• Boundary point: In case of one large eigenvalue, the vertex could be coming from the

outer or inner boundaries (for instance, window frames) then the point will be considered

as boundary point.

If v(x, y, z) belongs to any of these three categories, we adjust the error computation by

∆qem(v)new = ∆qem(v)old +
1

n

n∑
i=1

∆qem(v)old (4.5)

where 1
n

∑n
i=1 ∆qem(v)old is the mean cost of n vertices of mesh M . Otherwise, the corre-

sponding vertex will be treated with conventional QEM criterion.

We tested our mesh decimation approach on Semantic3D [(Hackel et al., 2017)] dataset, a

popular large-scale point cloud classification benchmark comprising terrestrial laser scans from

Central Europe’s urban and rural scenes. All scenes were captured through a surveying-grade
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Algorithm 1: Structure tensor based mesh decimation
Input: Feature vertex set Fv : (v1, v2, ..., vn) ∈ V , mesh M = (V, F )
Output: Simplified mesh M” = (V , F )

1 function meshDecimation(Vx,y,z)
2 queue = {}
3 forall vertices v in feature vertex set Fv ∈ mesh M, identifying valid vertex pair

based edges (eij) : (vi, vj) is an edge or ∥v1 − v2∥ < t, where t is a threshold
parameter do

4 insert (ei,j) to queue
5 compute optimal collapsed target v̂
6 while queue not empty do
7 if eigenvalues(λM̄

0 , λM̄
1 , λM̄

2 ) → max : TG ≥ 2.25 and TM̄ ≥ 25 then
8 update error with mean cost, i.e. ∆v = vTQvv + 1

n

∑n
i=1∆(v)

9 else
10 compute error with ∆v = vTQvv

11 arrange pairs with cost (e,c) and collapse edge e with minimum cost

12 update costs of other valid pairs with respect to vertex v1

13 return

Figure 4.4: Example point clouds of the Semantic3D dataset [(Hackel et al., 2017)].

laser scanner and describe typical european architecture. Figure 4.4 represents example point

clouds from Semantic3D dataset.

For experimentation, we extracted various building samples from Semantic3D dataset com-
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(a) (b)

Figure 4.5: Mesh decimation preserving feature points through structure tensor. (a) An instance
of birdfountain_station1 model (b) simplified version with faces retained at feature
areas.

prising different architectural variations. Then, we reconstructed 3D meshes from extracted

building point cloud samples through screened poisson reconstruction technique [(Kazhdan

and Hoppe, 2013)]. After obtaining feature points from these reconstructed meshes, we ana-

lyze the eigenvalue distribution from gradient structure tensor and decimates according to the

status of the vertex. If the current vertex belong to critical feature class, we preserve it by

adjusting error approximation cost. However, for non-critical points, we follow general er-

ror approximation cost through GH [(Garland and Heckbert, 1997)] mesh decimation method.

Figure 4.5 represents an instance of a building from birdfountain_station1 dataset from Se-

mantic3D and our corresponding simplified model version. By keeping error approximation

cost high for points that show higher eigenvalues on gradient structure tensors, we prevent the

decimation of critical faces. As can be seen in Figure 4.5 (b), we have retained many feature

points such as corner, edge and boundary points representing facade elements and necessary

geometric structure in simplified version. However, we noticed that not all points were able to

54



retained especially points lying very fine on the window frame. We will discuss some of these

issues in next chapter addressing achievements and limitations.

4.5 Results and Experiments

We applied the proposed method to a variety of building mesh models with different noise

levels and architectural variations for qualitative analysis. To validate the effectiveness, we

quantify our simplified results in terms of compression ratio between final simplified faces to

orignal faces. To measure the accuracy of geometry, we calculate the mean and root mean

square (RMS) value of the hausdorff distances [(Guthe et al., 2005)] between the original and

simplified meshes. We also compare our simplified results with state-of-the-art methods avail-

able such as, GH method [(Garland and Heckbert, 1997)], LT method’s [(Lindstrom and Turk,

1998)] and SLA method [(Salinas et al., 2015)] for better evaluation.

(a) (b)

(c) (d)

Figure 4.6: Efficient mesh simplification of birdfountain model. From (a) to (d), initial point
cloud, reconstructed mesh, feature points extracted, final simplified model retaining
feature points presenting facade elements of model.
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4.5.1 Qualitative Analysis

Figure 4.6 represents our simplification method on birdfountain model. The proposed method

efficiently extracts feature points representing facade elements such as window frames, bound-

ary points and retains them in simplified model in the form of triangulations. While more

triangles are being preserved to represent level of detail in simplified model, less triangles are

kept in planar area such as wall to ensure the simplicity of model. We observed that points

across the boundaries of the model are extracted in feature points stage and retained in simpli-

fied model resulting model being accurate in terms of geometric structure.

(a)

(b)

(c)

(d)

Figure 4.7: Experimental results: (a) domfountain_station1 (2), (b) domfountain_station1 (1),
(c) marketplacefeldkirch_station7 (2) and (d) stgallencathedral_station6.

Figure 4.7 represents our experimental results on various building models comprising archi-

tectural variations. We observed that due to occlusion and noisy nature of initial point clouds,

the reconstructed meshes generated contain inaccurate geometric elements such as blobs that

does not relate to the original approximation. Although some of the faces representing blobs

are retained because their vertices were extracted in feature points stage, our main focus here

is to preserve the facade level definition of buildings such as roof area, windows, complex pat-

terns over wall, soil pipes, doors and stairs in some cases. We also observed that due to free

form simplification in planar areas or areas that do not contain any critical feature points, bad
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faces created however, we noticed that it does not affect the visualization of geometry. For well

topological connectivity between facade elements (such as windows in this case) in final sim-

plified model, we purposely restricted simplification to a certain threshold such that no holes

should emerge in simplified version.

As can be seen in Figure 4.7, the proposed method efficiently extracted critical feature

points and retained them in final simplified model while preserving the general structure of the

buildings. This demonstrates that the proposed method can be applied to a variety of models

with highly complicated architectural details.

4.5.2 Quantitative Analysis

To evaluate the effectiveness of proposed method for efficient mesh simplification, we cal-

culated statistics for level of simplification and geometric accuracy. The simplification was

calculated by compression ratio1 between final simplified faces to the original faces. To evalu-

ate the accuracy, we quantified the deviation based on the mean and root mean square (RMS)

value of the hausdorff distances2 indicating the distance between the vertices of original mesh

to the faces of the simplified model. Table 4.1 lists the calculated statistics.

Table 4.1: Statistics on sizes and errors for the simplification results.

Model Original / Simplified face # Compression ratio Hausdorff distance
Mean RMS

birdfountain_station1 1334898 / 216182 16.19% 0.461 1.250
domfountain_station1 (2) 1694396 / 307719 18.16% 0.002 0.013
domfountain_station1 (1) 1116037 / 389596 34.90% 0.002 0.007

marketplacefeldkirch_station7 2264074 / 395018 17.44% 0.001 0.007
stgallencathedral_station6 4056124 / 608781 15.0% 0.005 0.019

As the compression ratio achieved by our proposed method is larger, we can conclude that due

to preserving critical feature points, a large set of faces retained in final simplified meshes.

1Refers to a percentage or ratio expressing the difference between the size of a file before and after compres-
sion.

2Widely used thorough comparison technique for polygonal models among computer graphics community.
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Complex architectural variations comprising various patterns and facade element details ex-

tracted and retained as feature points in simplified model. From hausdorff distance based error

estimation, we can see how less our models are deviated from original meshes indicating sim-

plified models are accurate and comply with the original structural geometry. Though mesh

decimation based state-of-the-art techniques (see next section 4.5.3) offer good compression

ratio through compact representations that preserve general structures, they do not offer much

level of detail and thus, can not be considered appropriate for interactive applications. With our

quantitative analysis, we have given insights related to the existing tradeoff between simplifi-

cation and accuracy.

4.5.3 Comparison

We compared our simplified results with the GH method’s [(Garland and Heckbert, 1997)],

the LT method’s [(Lindstrom and Turk, 1998)] and the SLA method’s [(Salinas et al., 2015)]

results for better evaluation. Figures 4.8, 4.9 and 4.10 shows the comparison between our

method and other decimation methods. Table 4.2 lists corresponding quantitative statistics. We

observed that the simplified meshes generated by our method were more precise in representing

the structure and facade level definition, considering an acceptable tradeoff, than the other

methods.

Figure 4.8 represents a building instance of birdfountain_model with different simplified

versions including state-of-the-art techniques and our simplified model. As can be seen, that

original model comprises various facade element details including patterned window frame.

Our method decimates meshes efficiently and retain most of the feature points in simplified

version. Figure 4.9 represents a building instance of domfountain_model (1) along with sim-

plified version from our method and other techniques. It is evident from the Figure that our

method is effective in preserving complex architectural details such as pillar, european style

window/balcony architecture etc. Similarly, our simplified version in Figure 4.10 represents

best geometric detail of the facade regions, for instance, window inner boundaries and outside

boundaries (window frame). Our method was able to preserve both of these boundaries as part

of feature set. While our approach works for different models, other state-of-the-art techniques

such as the GH method’s [(Garland and Heckbert, 1997)], the LT method’s [(Lindstrom and

Turk, 1998)] and the SLA method’s [(Salinas et al., 2015)] did not generate acceptable models
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(a)

(b)

(c)

(d)

(e)

Figure 4.8: Comparison on birdfountain_model. (a) Initial mesh model, (b) GH’s method, (c)
LT’s method, (d) SLA’s method and (e) our model.

(a)

(b)

(c)

(d)

(e)

Figure 4.9: Comparison on domfountain_model (1). (a) Initial mesh model, (b) GH’s method,
(c) LT’s method, (d) SLA’s method and (e) our model.

in comparison to our models.
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(a)

(b)

(c)

(d)

(e)

Figure 4.10: Comparison on domfountain_model (2). (a) Initial mesh model, (b) GH’s method,
(c) LT’s method, (d) SLA’s method and (e) our model.

Table 4.2: Comparison with other methods based on simplicity and fidelity statistics.

Model Compression ratio Hausdorff distance Method
Mean RMS

birdfountain_station1

3.08% 0.509 1.224 GH
3.02% 0.503 1.217 LT
3.02% 0.510 1.225 SLA

16.19% 0.461 1.250 Ours

domfountain_station1 (1)

4.08% 0.558 1.530 GH
3.94% 0.558 1.518 LT
4.01% 0.554 1.514 SLA

34.90% 0.002 0.007 Ours

domfountain_station1 (2)

1.25% 0.092 0.218 GH
1.20% 0.092 0.218 LT
1.15% 0.090 0.216 SLA

18.16% 0.002 0.013 Ours

Table 4.2 lists statistics of the models discussed above, in terms of compression ratio and

hausdorff distance (Mean and root mean square (RMS) values). Hausdorff distance explains
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the error deviation of simplified model in comparison to the initial model. Although compres-

sion ratio offered in our approach is not satisfactory in comparison to other methods, due to

preservation of faces. We noticed our simplified models show more fidelity as they are less

deviated from original geometry.
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CHAPTER 5

Conclusion and Future Directions

5.1 Summary

In this thesis, we analyze the latest approaches which apply decimation of 3D urban meshes.

Then we introduce the decimation of 3D meshes using gradient structure tensors following

an eigenvalue analysis from structure tensor, to preserve critical feature areas, i.e., geometric

structure and facade elements. The method first reconstructs 3D meshes from point clouds

representing buildings using screened poisson reconstruction technique [(Kazhdan and Hoppe,

2013)]. After mesh reconstruction, we extract vertices from meshes and provide them to feature

points detection method proposed in [(Chen et al., 2021a)] that extracts feature points, i.e., cor-

ner, edge, boundary points through gradient structure tensors. After feature points detection, an

improved mesh decimation method is proposed to efficiently simplify the meshes while retain-

ing the feature areas. We compute the status of vertex by analyzing the eigenvalue distribution

of a structure tensor patch. If the eigenvalues are large, we consider the point as feature point

and adjust its error approximation cost in order to prevent it from decimation. For all other

general points, we follow conventional quadric error metric decimation scheme. As shown in

experimental results, the proposed method generates decimated meshes without losing feature

points and can be applied to various models with different architectural variations.

During our initial approach with mesh decimation through gradient structure tensor, we ex-

perimented with penalty cost value for extracted feature points. Although feature preserving

metrics and functional maps [(Lescoat et al., 2020)] based techniques allow to preserve de-

scriptors and landmark correspondents. However, associating the functional basis with gradient

structure tensor definition might get challenging and this might lead to unnecessary topology

changes in mesh. Therefore, we restricted our experiments to different values of penalty cost

by trial and error. We analyzed various simplified results generated based on different values

tested, however, none of them gave accurate results. We assume error approximation cost for

feature points were not adjusted enough to be preserved. By taking penalty cost as mean error



value, we observed most of the feature points preserved and our method produce more detailed

models.

The experiments we performed on a variety of building models explain that our method is

effective in generating efficient simplified models in terms of simplicity and fidelity. We also

demonstrated the validity of our experimental results by comparing against the state-of-the-art

methods in urban mesh decimation. An ideal simplified model should be visually consistent to

the initial model and must comprise limited complexities required to display the model without

losing structures. However, for some complex structures such as facade elements across curved

regions, feature points may not be detected, which can lead to vertex point being considered

as non-criticial point, resulting excessive decimation and loosing facade level of detail. Figure

5.1 represents simplification of a model based on our proposed method. We noticed that across

curved regions, our method does not extract feature points well, resulting model over-simplified

in those critical regions. One way to overcome this would be to manually select correspondents

from original mesh and apply remeshing. However, this would deviate us from our original

goal that is, efficient mesh simplification. Hence, to overcome these scenarios in terms of mesh

simplification, we propose future directions of our work to address current limitations.

(a) (b)

Figure 5.1: Simplification of model with curved regions. (a) Original model, (b) Simplified
model
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5.2 Future Directions

Further evaluations of our method by measuring the accuracies of all the methods [(Garland and

Heckbert, 1997; Lindstrom and Turk, 1998; Salinas et al., 2015)] under the same compression

ratio is suggested. From our experiments, it is evident that each mesh representation is differ-

ent and comprises specific elements that should or should not be preserved, subjected to user

requirement in a 3D interactive application. By applying mesh segmentation and associating

with structure graph topology, different mesh regions can be processed with a suitable scheme

corresponding to given geometry. This would also be helpful to choose correspondents across

curved regions and simplify accordingly. We notice that the level of simplification on planar

regions in our results is not satisfactory, comparing with other mesh decimation techniques.

Therefore, we also intend to investigate a better way to extract planar regions to reconstruct

the simplified models by retaining feature points and associating planar primitives in order to

generate compact representations of models.

5.3 Publications based on this Thesis

Kamra et al. "Lightweight Modeling of Urban Buildings: Data Structures, Algorithms and

Future Directions", IEEE JSTARS (under review)
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