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Abstract 

 

Advanced Forecasting Algorithms for Renewable Power Systems 

By Meftah Elsaraiti 

Wind and solar power prediction is a challenging but important area of research. The thesis you 

described explores various statistical models and deep learning methods to improve the accuracy 

of wind speed and solar radiation predictions. The use of autoregressive integrated moving average 

(ARIMA) models, long short-term memory (LSTM) based recurrent neural network (RNN) 

models, and multilayer perceptron (MLP) neural networks were studied to predict future wind 

speed values and the performance of a photovoltaic (PV) system. The results showed that the 

proposed models can effectively improve the accuracy of wind speed and solar radiation prediction 

and that the LSTM network outperformed the MLP network in predicting solar radiation and 

energy for different time periods. It is important to note that the performance of the models may 

vary depending on the specific dataset used, the hyperparameters, and the model architecture. 

Therefore, it is essential to carefully tune these parameters to achieve the best possible 

performance. Accurately predicting the performance of a PV system at short time intervals is 

particularly important in the context of renewable energy sources, as it can help optimize the usage 

of these resources and improve overall efficiency. This research can contribute to the development 

of more accurate and reliable prediction models, which can lead to more efficient use of wind and 

solar power, reduce costs, and promote the adoption of renewable energy sources. 

 

                                                                                                                             April 14, 2023 
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CHAPTER 1 

Introduction 

 

1.1 Renewable Energy and Current Statistics 

 

Global primary energy consumption is continuously rising due to factors such as population 

growth, technological advancements, and increasing energy needs. Most power plants rely on non-

renewable resources, contributing to the unsustainable use of these resources. As a result, the 

International Energy Agency projects that global energy consumption will reach 33.4 trillion kWh 

by 2030 and 41.3 trillion kWh by 2050. To meet this demand, the energy sector needs to undergo 

strategic changes, such as decentralizing generation, addressing supply and demand challenges, 

adopting smart grids, and addressing the issue of climate change. This has led to a worldwide effort 

to increase the use of solar and wind energy, which are among the most important types of 

alternative energy sources. Among the advantages that renewable energies have over conventional 

energies is the fact that they are inexhaustible and the operating costs, as well as the production of 

pollutants, particularly CO2 emissions, are very low. However, the main disadvantages of some 

renewable sources like wind and solar energy are their intermittency or volatility and the difficulty 

in predicting exactly how much energy will be produced. These two disadvantages are significant 

because, in order to meet the electrical network's operating codes, there must be a balance between 

the electricity consumed and the electricity generated. For example, if the electrical energy 

produced by wind energy presents variability in the power generated, there is non-dispatchable 

energy, and this can produce alterations in quality or supply. Unless some level of technological 

readiness and innovation receptivity in the economy is achieved, specific policy strategies will not 

be successful. Over the past decade, the depletion of fossil fuels and the growing demand for 

electricity have been high on the international agenda. Modern energy systems are undergoing a 

phase of major change as they move from a centralized nature that relies heavily on limited and 

polluting resources to clean and decentralized energy solutions in line with the 2016 Paris Climate 

Agreement to combat climate change and the depletion of natural resources, in addition to a 

cleaner, fairer, and safer energy future. As the transition to renewable energy becomes necessary 

as an alternative to traditional sources, it has become a priority in the electric power industry [1]. 

By adopting “green” power generation solutions, researchers continue to do their best to develop 
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more advanced and efficient technologies to make green power generation more cost-competitive 

with traditional energy sources, making it a more viable option for wider adoption [2]. The 

International Renewable Energy Agency (IRENA) reported an increase in the share of renewable 

energy in new generation capacity in its 2021 annual statistics. The world added 257 gigawatts of 

renewable energy, with solar and wind accounting for 91% of the total net additions. This indicates 

a growing trend towards renewable energy sources. The trend towards renewable energy sources 

promises to achieve carbon neutrality by 2050. The fastest growing renewable energy source is 

solar, which saw an increase of 133 GW (+19%), and wind power, which saw a growth of 93 GW 

(+13%). Hydroelectric capacity increased by 19 GW (+2%) and bioenergy by 10 GW (+8%), while 

geothermal energy increased by 1.6 GW. The dominance of wind and solar in renewable capacity 

expansion, along with the growth of geothermal, resulted in a significant annual increase in 

renewable energy generating capacity [3]. The renewable share of the annual growth in power 

capacity is shown in Figure 1. 

 

Figure 1. The renewable share of installed capacity, 2001-2021 [3]. 

Canada faces challenges in achieving carbon neutrality, but also has the potential to be a leader in 

the energy transition. The promotion of renewable energy sources and clean technology sectors is 

key to securing a stable energy supply while addressing climate change. Canada is just beginning 

to scratch the surface of its vast and untapped wind and solar resources. At the end of 2022, Canada 

had nearly 15 GW of installed wind capacity and more than 4 GW of primary solar capacity, for a 

total of more than 19 GW of installed renewable capacity across the country. Overall, the wind, 

solar, and energy storage sectors grew by 10.5% in 2022. Canada now has an installed capacity of 
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more than 19 GW of utility-scale wind and solar energy. Canada added more than 1.8 GW of new 

generation capacity in 2022, significantly more than last year’s growth (1 GW in 2021) [4].  

 

1.2 Research Motivations 

The increased concern about preserving the environment and the need to seek new, less polluting 

energy sources have significantly boosted the use of energy sources considered clean, such as 

solar, wind, and tidal, among others [5]. Currently, the world is witnessing a transformation of the 

energy industry towards an increase in the share of renewable energy sources (RES), subject to the 

sustainable development of the economy, energy, and environment in the long term. Although 

researchers continue to improve the capacity of wind turbines [6] and the performance of solar 

panels [7]. Integration of a high percentage of renewable energy sources into electric power 

systems is difficult due to the stochastic and unpredictable nature of the generation of renewable 

energy sources, which increases the level of uncertainty in the processes of changing the 

parameters and conditions for the operation of energy systems, making it difficult to manage them 

[8, 9]. One of the biggest difficulties is its integration into the electrical system. Volatility and 

uncertainty are among the biggest challenges solar and wind power pose to the grid. Their large-

scale integration into the electricity grid can have a negative impact on its stability [10]. Due to 

the importance that electric power generation from renewable energies provides to the electricity 

sector, the use of alternative energy sources has become a relevant topic all over the world. The 

dynamic changes in modern societies have made renewable energy sources a hot topic for an 

increasing number of researchers, driven by the need to reduce the negative impacts of climate 

change, air pollution, and dependence on limited natural resources. When these emerging problems 

are discussed, the proposed solution is to make efforts to shift away from methods of power 

generation that rely on fossil fuels, even if only slightly, and towards the use of environmentally 

friendly renewable energy sources. The most common ones are solar and wind energy as the energy 

source is free, and greenhouse gas emissions are zero [11]. The main issue with renewable energy 

is its inconsistency and difficulty in forecasting. In the case of solar energy, no two days will have 

the same energy production because it depends on irradiation, temperature, angle, and pollution. 

Although it will be possible to express the periodicity of the sun, in the case of wind energy, the 

wind will depend on the atmospheric pressure, the position of the storms, the area, and the height. 

Predicting the power output of renewable energy sources is one of the problems of the power 
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system. The predicted power of wind or solar radiation has forecast errors that depend on the time 

of year, climate, and geographic location [12]. Inaccurate forecasts of renewable energy variables 

are a significant source of error. Variable imprecision affects power system planning, such as 

generator scheduling. Therefore, these errors must be taken into account to improve the quality of 

the power system. Modeling errors in the forecast of renewable energy sources allows for errors 

to be taken into account in various algorithms. Renewable energies and their incorporation into 

the energy system made it possible to limit the exploitation of other, more limited, and polluting 

energies, such as those of fossil and nuclear origin. To facilitate this change, forecasting of 

renewable energy generation has been worked on, and in recent years, the advantages offered by 

artificial intelligence in terms of accuracy have been incorporated. Renewable energy generation 

forecasting is an ever-advancing and growing discipline. Although it has been carried out 

systematically for more than 20 years, greater precision is increasingly demanded, as are diverse 

time horizons (from the closest, in the next few minutes, to the farthest, in the next few months or 

even reaching years). An electrical network supplied mainly by intermittent RE sources requires 

the prediction of these sources in the management of the network in order to ensure its balance 

[13]. In an electrical network, it is essential to balance the supply and demand of electrical power 

[14]. The idea is to determine and implement a prediction method that best fits into the 

management of the microgrid by integrating renewable energy sources. In the literature, we find 

that there are several prediction methods for different prediction horizons, and these different 

methods have very diverse strengths and weaknesses and change according to the contexts or the 

environment of the prediction [15, 16]. This is why it is important to identify a prediction method 

that best fits the project. The prediction horizons are as follows: long-term, medium-term, short-

term, and very short-term predictions. However, in this application, we want to predict renewable 

energy sources (wind and photovoltaic) in the context of decentralized network management. For 

this type of management, it is important to choose the prediction horizon that is essential for the 

management of the network. The time to acquire prediction information is critical for management 

to make appropriate decisions about alternative solutions. In addition, the data that will be 

predicted must be studied, and it is not always predictable, so it is important to determine the level 

of data that can be predicted. For this reason, new technologies and, specifically, artificial 

intelligence, have much to contribute to this field. Time series forecasting is an important tool for 

predicting future trends in renewable energy consumption and production. The correct selection 
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of a forecasting method is crucial to ensure accurate predictions and inform decision-making. As 

renewable energy becomes increasingly important, it is vital to have accurate forecasts to support 

the growth of the industry and help meet the demand for sustainable energy sources. Statistical 

methods are able to make predictions to a certain extent. In deep learning, a neural network is 

trained to extract features from data, such as patterns and relationships, and then use those features 

to make predictions. This allows deep learning to handle complex and non-linear relationships in 

data and make predictions with high accuracy. Moreover, deep learning models are highly flexible 

and can be adapted to different types of data, making them an attractive choice for time-series 

forecasting tasks. However, it is important to note that the success of deep learning models heavily 

depends on the quality and quantity of the data, as well as the proper hyperparameter tuning of the 

model. This has led to the development of deep learning algorithms, such as convolutional neural 

networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM) 

networks, which have shown remarkable results in the field of time-series forecasting, especially 

for areas such as energy consumption, stock prices, and weather forecasting. However, it is 

important to note that the use of deep learning in time-series forecasting is still in its early stages 

and further research and development are needed to fully leverage its potential [17]. However, an 

important feature of all the listed neural networks is their lack of memory about time dependencies 

in the data. They process each packet of input data independently, without saving the state between 

them, while human intelligence tends to perceive new information based on previous information, 

and constantly replenishes its experience as new information arrives. Artificial intelligence 

technology has been attracting attention in recent years. Deep learning technology is based on a 

neural network, but by using multiple layers of this neural network, it is possible to deepen the 

characteristics of the data and make it learn [18]. Recurrent neural networks (RNNs) have achieved 

more robust predictions for processing sequential data. However, this model suffers from long-

term dependencies. Data cannot be properly processed because it is difficult to retain information 

from the past. The further apart the relevant information is from the context in which it is needed, 

the more difficult it is for the RNN to connect them. Recent research has focused heavily on 

learning algorithms for the deep architecture of the recurrent neural network (RNN) and its long 

short-term memory (LSTM), which have shown impressive results for modeling time series data 

in many fields compared to traditional statistical methods [19-21]. RNN has problems; that is, the 

more time series data it gets, the less effective it becomes. More specifically, deep learning 
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continues to learn with an algorithm called backpropagation, but the value of the RNN gets smaller 

and smaller and eventually vanishes. Long-term information is lost due to the vanishing gradient 

problem for simple RNNs [22]. RNN tends to face two issues, known as "explosive gradients" and 

"vanishing gradients." These issues are determined by the size of the gradient, which depends on 

the loss function along the error curve. Gradients are the values used to update the weight 

parameters of neural networks. The problem with a vanishing gradient is that the gradient shrinks 

as it propagates through time. When the gradient is too small, the algorithm no longer learns. 

Explosive gradients take place when the gradient is too large; this causes unstable model 

structuring [23]. This is solved with an LSTM-based RNN to control gradient growth in a type of 

RNN. The use of LSTM-RNN in predicting renewable energy is very little reported in the literature 

[24]. Compared with traditional approaches for analyzing and predicting time series, such as 

ARIMA and its variations, the LSTM approach proves to be much superior [25]. The LSTM has 

already proven to be well suited to perform the classification, processing, and prediction of time 

series with distinct time intervals. The LSTM model manages to obtain relevant characteristics 

from the input data and preserve this information for a period of time that can be long, and during 

the training process, a choice is made between excluding and preserving the data. The information 

is based on weight values. Therefore, the LSTM model has the ability to learn what it should 

preserve or remove from its memory [26, 27]. The impact of the different time intervals used to 

carry out the forecast has received very little study or analysis. In approaches using the LSTM 

model, the different configurations refer to the size of the time window and its time steps that are 

necessary for the model to be able to produce better results and their impact on the forecasting 

mechanism. Another point little mentioned and little explored in the literature is in relation to 

whether or not the use of meteorological data is advantageous as there are few studies that 

effectively compare the performance of the model used with the daring addition of the same [28]. 

The works found in the literature have very different approaches to solving the problem of 

forecasting the amount of energy generation from wind turbines and photovoltaic systems. It was 

possible to verify that in most of the works, there were higher difficulties and errors when dealing 

with days. For instance, the amount of energy produced by wind turbines is proportional to the 

variable speed of the wind. When it comes to solar energy, cloudy or rainy conditions are the same. 

On the other hand, although errors are still high in most methods, the use of LSTM-type recurrent 

neural networks is increasingly being highlighted due to the good results obtained. It was also 
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possible to see that some methods could be improved and had important loopholes worth 

investigating. Modification of the parameters of the LSTM network used and the variables used to 

obtain the prediction have been little explored. Despite the high variability of wind speeds and 

radiation on cloudy and rainy days, the results of studies using LSTM networks enhance the ability 

of this model to learn time-series behavior. 

1.3 Objectives 

The major goal of this work is to apply advanced renewable energy forecasting and scheduling 

technologies. This prior energy forecast is a key component of risk assessment, which includes 

confidence in estimated energy production, CO2 emission countermeasure costs, lower equipment 

prices due to the expansion of solar and wind power, and schemes by energy providers for the 

contribution they make to generation systems. To achieve this, it is necessary to choose the 

appropriate forecasting model, ensure that the data collected is correct, accurate, reliable, 

consistent, and complete to be effective, and determine the forecast horizon to reach an accurate 

forecast with minimal errors. The specific objectives are: 

 

1. To review and compare existing deep learning models for wind speed and solar energy 

prediction and their training strategies, focusing on the problem of vanishing gradients and 

explosions. 

2. To investigate the causes of vanishing gradients and explosions in deep learning models 

for wind speed and solar energy prediction and their impact on prediction accuracy and 

training time. 

3. To propose a deep learning model structure and training strategy that can address the 

problem of vanishing gradients and explosions and achieve high accuracy and fast training 

time for wind speed and solar energy prediction. 

4. To evaluate the performance of the proposed model on different datasets and compare it 

with existing models. 

5. To analyze the trade-off between the prediction accuracy and training time of the proposed 

model. 
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1.4 Methodology 

The methodology used in this work consists of bibliographic research and experimental 

research. In the bibliographic research, a review of modern forecasting methods in time series 

related to wind and solar energy and a review of the literature were conducted in order to 

evaluate the findings of the developments of forecasting methods. The experimental research 

includes data acquisition and preparation, as well as the application of time series forecasting 

methods. The steps are detailed in next sub-sections. 

 

1.4.1 Research Review 

Scientific publications provide a platform for researchers to communicate the details of their 

research activities in the area of energy applications. These publications typically include the 

methods used, the results obtained, and the conclusions drawn from the research. Scientific 

publications are a means of sharing knowledge and contributing to the advancement of the field. 

They also allow for peer review, which is a critical part of the research process, ensuring the 

reliability and validity of the results obtained. The research review seeks to establish the theoretical 

work foundation. The sources researched are books, handouts, articles, printed or electronic 

magazines, websites, online courses, and others. The theoretical foundation is subdivided into two 

topics: 1) Wind and solar energy, and 2) a survey of contemporary time series forecasting 

techniques applied in the field of wind and solar energy and renewable energy systems, the 

following are addressed: Wind resources, mathematical equations, and physical concepts related 

to wind turbines; wind energy forecasting methods; the power curve for a modern wind turbine; 

solar radiation; the electrical efficiency of a photovoltaic system; estimation of the annual solar 

output of a photovoltaic system; units and tools for measuring wind speed and solar radiation (the 

latter is appropriate); define the parameters that will compose the data set used in training, 

validation, and testing of the prediction model. The subject of time series is already dealt with; 

Statistical Models: Concepts, Techniques, and Methods Most Used; Deep Learning: Artificial 

Neural Networks, Types of Neural Networks, especially LSTM-RNN. The literature review 

provides a useful guide for selecting appropriate technologies for research and improving the 

accuracy of wind speed and PV generation predictions. Wind speed prediction and photovoltaic 

(PV) generation are important areas of research in renewable energy. Time series and artificial 

intelligence (AI) techniques have been applied in these areas to improve forecast accuracy and 
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provide insights into renewable energy generation. Through this research, we seek to provide an 

overview of the latest research in these areas. 

1.4.2 Experimental Research 

 

Box-Jenkins methodology was applied, which is a traditional statistical modeling approach that 

involves three steps: identification, estimation, and diagnostic checking. The identification step 

involves selecting an appropriate model that can best explain the observed data. The estimation 

step involves estimating the parameters of the selected model using the available data. The 

diagnostic checking step involves evaluating how well the model fits and ensuring that the model 

assumptions are met. In addition to the Box-Jenkins methodology, the study also used auto-

regression models that use only historical wind speed or solar data to obtain information for 

training the LSTM model. Auto-regressive models are statistical models that use past observations 

to predict future values of a variable. The study used several statistical performance measures, 

including the coefficient of determination (R2), mean absolute error (MAE), mean absolute 

percentage error (MAPE), and root mean square error (RMSE), to evaluate and compare the 

performance of the models.  

1.5 Main Contributions  

The contributions made by this thesis to the fields of wind speed forecasting and solar energy 

forecasting can be summarized as follows: 

1. Development of a deep learning model that can predict wind speed and solar energy with 

high accuracy and fast training time while addressing the problem of vanishing gradients 

and explosions. 

2. Investigation of the causes of vanishing gradients and explosions in deep learning models 

for wind speed and solar energy prediction and their impact on prediction accuracy and 

training time. 

3. Scaling the weights of the layers to have unit norm, which can help to prevent the gradients 

from becoming too small or too large during backpropagation. 

4. Evaluation of the performance of the proposed model on different datasets and comparison 

with existing models. 

5. Demonstration of the potential of the proposed model for real-time wind speed and solar 

energy prediction applications. 
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6. The focus of the PV power forecasting task for the days ahead was done at 30-min intervals 

using data previously collected over one year using LSTM networks, a special model for 

RNN with additional features for saving data sequences. This type of ANN connects past 

data with current data and compares them using a multi-layer neural network (MLP). 

 

1.6 Scope  

The projects make use of time series data on solar radiation and wind energy because these two 

renewable energy sources are the most widely used and the hottest topics in much of the current 

research. The Halifax, Canada, weather database was used as a source for a series of wind speed 

and solar energy to propose a high-accuracy and good forecasting stability wind and solar speed 

prediction system that can realise wind speed and solar energy data only as input data and output 

forecasted data of wind speed and solar energy generated in the short term from power plants in 

the future.  

 

1.7 Organization  

The rest of the thesis is structured as follows: Chapter 2 provides an overview of the basic concepts 

and characteristics of wind and solar energy; Chapter 3 explains the importance and methods of 

forecasting wind and solar energy and related works; Chapter 4 describes time series analysis 

methods and approaches; and Chapter 5 contains the results and discussions. Finally, Chapter 6 

concludes the thesis and recommends some future research directions.  
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CHAPTER 2 

BACKGROUND AND CHARACTERISTICS OF WIND AND SOLAR ENERGY 

 

2.1 Introduction 
 

The expectations indicate continuous growth in global energy consumption in the coming years, 

driven by both population and economic growth. On the other hand, fossil energy is limited, which 

is why it is currently dominant. The increase in its consumption also increases carbon dioxide 

emissions, and it is expected that the supply and demand balance of energy will become tighter on 

a global scale. As a result, according to the International Energy Agency (IEA) forecasts, global 

energy consumption for 2030 will be 33.4 trillion kWh and will increase by about 7.9 trillion kWh 

by 2050. In this sense, to ensure the increase of global demand, the energy sector requires major 

changes, namely a shift from centralized power grids to distributed power systems, network 

development using artificial intelligence, and significantly promoting the introduction of 

renewable energy (solar and wind energy). Only in this scenario will it be possible to radically 

reduce the cost of electricity. However, the main disadvantages of these sources are their 

intermittency or variability and the difficult predictability of the power available to be used. These 

two disadvantages are significant because in order to meet the electrical network's operating codes, 

there must be a balance between the electricity consumed and the electricity generated. In recent 

decades, there has been a great advance in forecasting systems, due to the enormous increase in 

computing power of current computers, which allow storing, analyzing, and relating large numbers 

of variables and their values in a very short time. That is why prediction algorithms are a highly 

developed and used tool today. The importance of predictions lies in the help they provide to plan 

and anticipate future values that will affect a system, help manage the acquisition of the necessary 

resources sufficiently in advance, or serve as a tool to maximize profitability by taking decisions 

that maximize the benefits of an activity. The first efforts to create prediction algorithms in the 

field of electrical systems were dedicated to the forecasting of electrical demand [29].  From the 

point of view of the electricity system operator, demand forecasts have helped to inform decisions 

such as the start-up of electricity production units sufficiently in advance or the maintenance 

schedule of elements of the electricity system. From the point of view of market agents, demand 

forecasting has been a tool used to optimize their energy offers to the electricity market with the 

aim of maximizing profitability. But the great boom that renewable energy sources have had in 
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recent years has forced a new forecasting problem to be considered: that of knowing sufficiently 

in advance the amount of energy that these plants are going to generate. Given that the greatest 

boom in the field of renewable energy has been in wind and solar power, greater efforts have been 

made to create reliable and efficient energy prediction tools that help integrate this form of energy 

into the network [30, 31]. 

2.2 Wind Energy 
 

The installed capacity of renewable energy based on wind resources has been steadily growing in 

the electricity system in recent years. Wind power has the characteristics of strong randomness, 

obvious intermittent nature, large fluctuation range, irregular fluctuation frequency, and anti-peak 

regulation. These uncertain factors increase the potential risk of grid-stable operation and the 

difficulty of grid peak regulation [32]. Wind energy production is essential to ensuring the security 

of electricity supply in the generation mix and, together with photovoltaic energy, constitutes a 

necessary pillar to ensure the country's energy security. Wind energy is one of the renewable 

sources with the greatest potential in the world. In fact, wind power is the generation technology 

with the most installed power. However, its production is based on a source that is beyond human 

control, so its production shows great uncertainty. Wind energy is based on the use of the wind. 

The kinetic energy generated by the movement of the air mass is converted into mechanical energy, 

which turns the wind turbine blades, and finally into electrical energy [33]. 

2.2.1 Mathematical Equations and Physical Concepts Related to the Wind Turbine 

The law of conservation of mass and momentum serves as the foundation for the basic theory 

guiding wind turbine operation. Albert Betz presented this theory in 1919, and it was published in 

his book “Wind Energy and its Extraction through Wind Mills” in 1926. Both wind turbines with 

horizontal and vertical axes can use the proposed theory [34]. 

Wind energy is the kinetic energy contained in the movement of an air mass. Power is equal to 

work divided by the change in time, given by the equation. 

𝑃 =
𝑊

∆𝑡
 

(2.1) 

 

Kinetic energy is the work done by the air mass to be in motion, which is a form of energy that 

can be harnessed by wind turbines to generate electricity, as shown by Equation (2.2) 
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𝑊 = 𝐸𝑐 =
𝑚𝑣2

2
                            

(2.2) 

The expression 
1

∆𝑡
 represents the time rate of change of the kinetic energy, or the power (P) 

generated by the air mass, as given by the formula: 

 

𝑃 =
𝐸𝑐

∆𝑡
 

 

(2.3) 

Then 

𝑃 =
𝑚𝑣2

2∆𝑡
                                              

(2.4) 

 

The power generated by a wind turbine is presented in equation (2.5): 

 

𝑃 =
𝑚𝑣2

2∆𝑡
=
𝑚

∆𝑡
 
𝑣2

2
 =

�̇� 𝑣2

2
             

(2.5) 

 

Where, ṁ (kg) represents the mass flow of air that passes perpendicularly through section area S. 

This flow is described by:  

�̇� = 𝑄 = 𝜌𝑣𝐴                                         (2.6) 

Where, ρ is the density of air (kg/m3), v is the speed of wind (m/s), and A is the area of the turbine 

rotor perpendicular to the wind direction (m2). 

Figure 2.1 illustrates the wind flow when passing through a turbine and helps us to understand 

how the wind behaves when passing through a rotor. The tube model presented was made by Betz. 

 
Figure 2.1. Diagram of Betz's tube showing air streamlines from the entrance to the exit  

(Reference: en.wikipedia.org) 

 

The generation of electric energy in the generator is directly related to the transformation of the 

kinetic energy contained in the wind; therefore, the maximum power that can be collected from 
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the wind is that at which the rotor output speed is zero. However, if this occurs, there will be an 

accumulation of air at the rotor outlet, which will interrupt the airflow and, consequently, the 

generation of electrical energy. However, Betz physically demonstrated that in order to achieve 

the maximum theoretical power possible, the speed at the rotor's exit must be exactly equal to one-

third the speed at the rotor's entrance, implying that two-thirds (2/3) of the kinetic energy contained 

in the mass of air passing through this rotor would be "captured" and converted into electrical 

energy [35]. 

The mechanical power available from the wind before it interacts with a wind turbine is given by 

the following formula in watts: 

𝑃 =
𝜌𝑣𝐴𝑣2

2
=
𝜌𝑣3𝐴

2
                                      

(2.7)  

 

This power is proportional to the cube of the wind speed (𝑣3), the air density (ρ), and the area (A) 

swept by the wind turbine. The recoverable energy of the wind is associated with the kinetic energy 

as it passes through the turbine rotor. Equation (2.7) shows that the power contained in the wind 

varies with the cube of the wind speed, with the specific mass of the air, and with the area A, swept 

by the turbine blades used for the test, and cut by this mass flow of air (wind). In this way, the 

energy generated by the turbines is very sensitive to the wind speed that passes through the wind 

turbine blades (v³). There is still a high sensitivity with respect to the rotor diameter, as shown in 

Equation (8). 

𝐴 =
𝜋

4
𝐷2                                                    (2.8) 

Where, A is the cross-sectional area cut b y the airflow (m2) proposed by Betz's theory; π is the 

constant; and D is the rotor diameter. The swept area of a Darrieus vertical-axis wind turbine can 

be difficult to calculate exactly due to the complex shape of the blades. However, one possible 

method for approximating the swept area of a Darrieus is to assume that each blade can be 

represented by a parabolic curve; the swept area can be stated as follows: 

 

𝐴 =
2

3
 (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑜𝑡𝑜𝑟 𝑤𝑖𝑑𝑡ℎ 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟)(ℎ𝑒𝑖𝑔𝑡 𝑜𝑓 𝑟𝑜𝑡𝑜𝑟)   

(2.9) 
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Despite having only two or three thin blades with solidities ranging from 5 to 10%, the wind turbine 

effectively captures wind energy flowing across the entire swept area. The ratio of the solid area 

to the swept area of the blades is known as the solidity. The solidity ratio of the contemporary two-

blade turbine is low. Because it uses less blade material to sweep wide areas, it is more cost-

effective [36]. 

Equation (2.10) describes the upthrust force (T) that the wind applies to the blades in the direction 

of the wind: 

 
𝑇 =

1

2
𝜌𝐴𝑣3𝐶𝑇                

(2.10) 

Where, 𝐶𝑇  is the thrust coefficient. 

Another very important parameter in wind turbine analysis is the power coefficient(𝐶𝑝), called the 

efficiency measure for a wind turbine. According to physicist Albert Betz, who is responsible for 

investigating the operation and power of an ideal rotor, based on the amount of axial movement, 

there is a limit to the use of wind turbines. The best theoretical records of wind exploitation reach 

59% (referring to the value of (𝐶𝑝 =0.59) [37]. This value suggests that an ideal rotor is made to 

work in such a way that the wind speed in the rotor is 2/3 of the wind speed, considered in its free 

path, where 8/9 of the kinetic energy contained in this airflow is lost. Among the effects that cause 

a decrease in the power coefficient, one can point out the rotation of the blades downstream of the 

rotor, the number of blades associated with the loss at the tip of the same, and aerodynamic 

resistance forces [38]. Power factor is a measure of the efficiency of a wind turbine in converting 

the kinetic energy of the wind into electrical power. It is defined as the ratio of the actual power 

output of the turbine to the power that would be generated if the turbine were able to capture all of 

the kinetic energy of the wind passing through its swept area. The power coefficient is denoted by 

the symbol C_P and is given by the equation: 

The power coefficient measures the energy that can be produced in a turbine, disregarding any 

loss, in relation to the total energy contained in the wind that passes through it. The aerodynamic 

coefficient 𝐶𝑝 for vertical axis wind turbines is related to the power extracted from the wind by the 

𝑃𝐸  turbine and the power contained in the wind 𝑃𝑉, and is given by the equation: 

 

 
𝐶𝑝 =

𝑃𝑉
𝑃𝐸
                                             

(2.11) 
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The kinetic energy contained in the wind cannot be fully captured by the turbine, since the air 

passing through the turbine rotor must be extravasated. Therefore, 𝐶𝑝 is added to the power 

calculation such as [39] 

 
𝑃𝐸 =

1

2
𝐶𝑝𝜌𝐴𝑣

3                                               
(2.12) 

 

Where, pe is the electrical power delivered by the wind turbine, ρair is the density of the air, S is 

the area it traverses, defined by the diameter of the rotor or the size of the blades, and v is the speed 

of the air current. Cp is the power coefficient, which indicates the degree of use of the energy 

contained in the air current, with a maximum theoretical value of 0.59 according to the Betz limit 

(that is, the conversion efficiency of wind turbines is no more than 59% of the energy provided by 

the wind) [34]. Using the formula for the area of a circle, the swept area of the turbine may be 

determined from the length of the blades such as 

 𝐴 = 𝜋𝑟2                                                       (2.13) 

Where, r is the radius of circle represented by the blade length as shown in Figure 2.2. 

 

 
Figure 2.2. Wind energy swept area [40] 

 

Wind power is proportional to wind area and wind speed cubed. When the wind speed fluctuates, 

the wind power fluctuates according to its cube and has a large fluctuation range. Natural winds 

do not always blow in a constant direction or speed, but they always fluctuate from time to time, 

and this causes them to be unstable. These fluctuations cause great difficulties for wind farm 

operators in scheduling the system and sending energy because of the lack of prior knowledge of 
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the schedule for its availability, and this makes for an accurate and reliable prediction of wind 

speed several hours in advance that has several benefits, including: 

• The generation schedule can timely and effectively deal with wind generation. 

• Mainly providing information to companies that install wind power generation facilities. 

• To intensify competition in the field of renewable energies and provide greater progress in 

sustainable development, making it a wonderful supplier of clean and inexhaustible energy. 

 

2.2.2 Wind Resource Assessment  

Wind energy is a stochastic and spatiotemporal process that depends on several factors, including 

wind speed, direction, and frequency of occurrence. Wind speeds can vary greatly both spatially 

and temporally, depending on a variety of factors, such as local topography, land use, and weather 

patterns. The average wind speed is one of the most important factors that determine the wind 

energy potential at a site. It is typically measured at a height of 10 meters above ground level, 

although the hub height of wind turbines is typically much higher (on the order of  50 to 100 

meters) in order to capture stronger and more consistent winds [41]. The process of converting the 

mechanical energy contained in the wind into electrical energy is subject to mechanical and 

electrical losses. These losses originate in mechanical components due to friction and in electrical 

components such as transformers, generators, cables, and electronic devices due to the Joule effect. 

Thus, the electric power effectively injected into the network is given by 

 
𝑃𝐸 =

1

2
𝐶𝑝(𝜆, 𝛽)𝜌𝐴𝑣

3𝜂                            
(2.14) 

 

Where, 𝜂 is the yield of the conversion process, which includes both electrical and mechanical 

losses due to rotation, and 𝐶𝑝(𝜆, 𝛽) is the performance coefficient, which depends on the angle of 

the inclination blades 𝛽, and the coefficient of the speed of the wind wheel 𝜆. 

2.2.3 Electric Power and Power Curves 

Analytical methods can be used to determine the power curve of a wind turbine for various wind 

speeds, using the coefficient of performance 𝐶𝑝(𝜆, 𝛽). Figure 2.3 shows the power curve for a 

contemporary wind turbine. 
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Figure 2.3. Power curve for a modern wind turbine [42]. 

 

When the wind speed in the first zone is less than a certain minimum known as the 𝑣𝑐𝑢𝑡 𝑖𝑛, the 

power output is zero. For speeds below this value, the generator is not connected to the 

transmission shaft because the energy losses in the system for these wind speed values would be 

greater than the amount of energy generated. The second region, defined by 𝑣𝑐𝑢𝑡 𝑖𝑛 and, 𝑣𝑟𝑎𝑡𝑒𝑑, 

has a rapid increase in power production. The generator operating speed is controlled to maximize 

power generation 𝐶𝑝, for a given blade operating angle. The 𝑣𝑟𝑎𝑡𝑒𝑑 is the speed at which the 

generator operates at rated power. The algorithm responsible for this control performs tracking to 

adjust the Maximum Power Point Tracker (MPPT). Finally, the third turbine-operating region is 

the one between 𝑣𝑟𝑎𝑡𝑒𝑑and, 𝑣𝑐𝑢𝑡 𝑜𝑓𝑓where the generator operates at a constant speed with power 

limitation performed through step angle control. The wind speed that determines an emergency in 

wind turbine operation is the 𝑣𝑐𝑢𝑡 𝑜𝑓𝑓, triggering the stop control. The purpose of this control is to 

prevent excessive mechanical loads from resulting in damage to the turbine structure. Some 

modern turbines reduce the power generated for wind speeds above 𝑣𝑐𝑢𝑡 𝑜𝑓𝑓 so that the turbine can 

return to producing power as soon as the wind speed drops. For comparison, the curve 𝑃𝑤𝑖𝑛𝑑 in 

figure 2.3, the total power available in the wind. 

 

2.3 Solar Energy 

Today, solar energy is one of the most abundant and renewable sources of energy available. It can 

be easily obtained using photovoltaic panels, from small installations on rooftops to individual 

large photovoltaic plants (PVPs). Thanks to improvements in efficiency and affordability, recent 
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years have seen a rapid increase in the number of photovoltaic solar panels installed around the 

world. In addition, due to its environmental friendliness, the governments of many countries 

encourage the use of solar energy by creating the necessary incentives and support. For all these 

reasons, solar energy is expected to play a large role in the global energy supply in the near future. 

According to research data, by 2050, about 30% of the world's electricity will be supplied from 

photovoltaic systems [43]. Despite the fact that solar energy has several benefits over other 

traditional energy sources, the electricity produced by photovoltaic panels is highly variable 

because it depends not only on solar radiation and temperature but also on other meteorological 

parameters, such as wind speed, daylight hours, humidity, cloud cover, and precipitation. Solar 

energy is also an intermittent energy source, as it is only available during the daytime [44, 45]. 

Indeed, the large-scale integration of solar energy into the electricity grid is a challenging job due 

to its variability and discontinuity. Solar energy frequently experiences unforeseen shifts, which 

have a detrimental impact on grid balance and raise operational costs. For the grid operator and 

businesses supplying electricity from a photovoltaic system, a precise forecast of solar electricity 

generation is crucial due to its intermittent and uncontrollable nature. Creating an algorithm to 

ensure the stability of the power supply system is important to provide economic value from the 

solar system. The development of electricity generation forecasting techniques can lead to such 

stability and provide an approximation of future production. This allows utility companies to create 

a control mechanism to switch between the available energy sources present in a given combined 

station. It should be noted that the generation of solar energy has very different patterns. During 

sunny days, the photovoltaic system has a high power output. On cloudy and rainy days, the 

photovoltaic energy output is low and variable, with different generation curves for each of these 

conditions [46]. Figure 2.4 shows the half-hourly power profiles for three days. 
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Figure. 2.4. Solar energy production for three separate days under different climatic conditions: a sunny day (20 

April 2013), a cloudy day (15 April 2013), and a rainy day (13 April 2013) [47]. Copyright © 2016, IEEE 

 

Solar irradiation has a high correlation with the generation of photovoltaic solar energy. Therefore, 

the historical series of photovoltaic production data is needed to have a reliable forecast of the 

energy to be generated and to monitor the performance of the photovoltaic panels. Detecting 

efficiency losses or adequately planning the distribution in smart energy networks can be done by 

comparing the generation estimate and the energy produced in a certain time interval [48]. 

2.3.1 Electric Efficiency of Photovoltaic System  

Since the real electrical efficiency depends on the real operating conditions, it is necessary to 

mathematically evaluate the behavior and relationship of the efficiency with the factors that 

influence it. To carry out such an evaluation, a real electrical efficiency model that correlates the 

determinant variables to the real performance can be used. These models comprise the 

mathematical basis of most renewable energy simulation software. The effect of operating 

temperature on real electrical efficiency is one of the most representative loss factors and 

influences real-time efficiency during operation. Therefore, the operating temperature is one of the 

variables necessary for any electrical efficiency model. The definition of the most commonly used 

electrical efficiency model was established by [49, 50] and recently revisited by [51, 52], 

emphasizing the use of operating temperature models. The operating temperature of a photovoltaic 

cell can be related to the influence on electrical efficiency through current and voltage, which 

represents electrical power according to the equation [53]: 

 𝑃𝑚 = 𝑉𝑚𝑖𝑚 = 𝑉𝑜𝑐𝑖𝑠𝑐𝐹𝐹                                                 (2.15) 
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Where, 𝑃  represents the power,  i the electric current, and 𝑉 the voltage in the cell. The symbol m 

indicates the highest value for the power produced in a module, while the values for oc refer to the 

open circuit, and sc refer to the short circuit, respectively.  

The values of open circuit voltage and short circuit current are properties that characterize the cell 

and vary according to the temperature of the cells and the incident irradiation. Through Equation 

(2.15) we get the definition of the form factor (Fill Factor – FF), which represents a solar cell 

performance parameter, and is defined as the ratio between the maximum power point divided by 

the open circuit voltage, 𝑉𝑜𝑐, and the short circuit current, 𝑖𝑠𝑐. According to Equation (1.15), both 

𝑉𝑜𝑐 and 𝐹𝐹 decrease with temperature due to the superposition of thermal excitation on the 

electrical properties of the semiconductor, while 𝑖𝑠𝑐 increases smoothly [54]. This behavior occurs 

in the same way on the efficiency of the cell or module, which is defined by Equation 2.16 . 

 
𝜂𝑐 =

𝑃

𝐴𝐺
                                                                              

(2.16) 

 

or in the format presented by [51]. 

 
𝜂𝑐 =

𝑉𝑂𝐶𝑖𝑆𝐶𝐹𝐹

𝐺
                                                                                         

(2.17) 

 

Where, 𝐴 represents the cell area, 𝐺 the irradiance and 𝜂𝑐 The efficiency of a photovoltaic solar 

panel refers to how well it is able to convert sunlight into usable electrical energy.  

The efficiency is typically expressed as a percentage and is determined by the ratio of the electrical 

output of the panel to the total energy that is absorbed by the panel from the sun when the solar 

cell is linked to the electrical circuit. Therefore, to produce maximum power, the cell must be 

operated under standard operating conditions (25 °C, spectral air mass, AM, of 1.5) [51]. 

Equations that correlate 𝑉𝑂𝐶 and 𝑖𝑆𝐶 with the cell operating temperature, Tc, are known based on 

several models proposed in the literature [55]. The influence of temperature on electrical efficiency 

is correlated in these models through the test parameters of each technology, 

including 𝐼𝑆𝐶 , 𝑉𝑂𝐶 , 𝐼𝑚, 𝑉𝑚, 𝐹𝐹, 𝑎𝑛𝑑 𝜂𝑐. These parameters become, therefore, important for the 

correct dimensioning and operation of photovoltaic systems [54]. From these current and voltage 

models, the efficiency model proposed by [49] is defined, according to the equation: 

 𝜂𝑐 = 𝜂𝑟𝑒𝑓[1 − 𝛽𝑟𝑒𝑓(𝑇𝑐 − 𝑇𝑟𝑒𝑓) + 𝛾 log10 𝐺]                            (2.18) 
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Where, 𝜂𝑐 is the actual electrical efficiency at operating temperature, 𝑇𝑐, and 𝜂𝑟𝑒𝑓 is the electrical 

efficiency at reference temperature, 𝑇𝑟𝑒𝑓 under the irradiance of 1000 W/m². In this equation arise 

the temperature coefficient, 𝛽𝑟𝑒𝑓, and the solar irradiation coefficient, 𝛾, which are characteristic 

of the material properties and correlate the losses caused by the effect of temperature and incident 

irradiation, respectively. In equation (2.18), the last term can be set to zero, as demonstrated by 

[24], resulting in equation (2.19), which represents the traditional linear expression for the 

electrical efficiency of photovoltaic technology [53]. 

 𝜂𝐶 = 𝜂𝑟𝑒𝑓[1 − 𝛽𝑟𝑒𝑓(𝑇𝐶 − 𝑇𝑟𝑒𝑓)]                                                             (2.19) 

Once the electrical efficiency models are known, there is a need to obtain models for predicting 

the operating temperature of cells and modules. 

2.3.2 Degradation of Photovoltaic System 

The performance of modules can be gradually reduced over time due to several degradation 

factors, notably corrosion, debonding (loss of adhesion and contact), delamination, discoloration, 

fracture of cells or coating materials, as well as the degradation of components and semiconductors 

[56, 57]. Controlling and predicting the effects of module degradation is vital for maximizing the 

durability and performance of a photovoltaic system throughout its lifetime [58]. The causes of 

degradation are typically associated with adverse operating conditions that affect conversion 

efficiency during actual operation. 

2.3.3 Estimation of the Annual Solar Energy Output of Photovoltaic Systems 

Solar energy is without a doubt one of the most reliable and cleanest sources of renewable energy. 

Solar energy is the process of transforming solar radiation into electricity, either directly via the 

use of photovoltaic cells (PV), indirectly using concentrated solar power, or even both. In order to 

focus a vast region of sunlight into a narrow beam, concentrating solar power systems use solar 

tracking devices, lenses, or mirrors. Solar-powered photovoltaic panels work by harnessing 

photons from the sun to excite electrons in silicon cells, which in turn produce energy. Renewable 

energy sources could be supplied by this electricity [59]. PV batteries, or cells, are the smallest 

parts of systems. Cells produced using semiconductors such as silicon and amorphous silicon can 

be square, rectangular, or circular in shape. When the sun's rays hit the surface of the PV cell, 

energy is produced by the movement of electrons that break off. However, since the output 

voltages of the cells are low, modules are formed by connecting the cells in parallel or in series. 

Panels are created by combining these modules, and arrays are created by combining panels. Thus, 
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the output power is increased by the desired amount [60]. Figure 2.5 shows the design of a system 

for supplying usable solar energy via photovoltaic cells. 

 
Figure 2.5. Photovoltaic system [61] 

 

As it is an intermittent electrical energy source with many variables that influence energy 

generation, obtaining mathematical formulations that aim to estimate with good precision the 

energy from photovoltaic units becomes a great challenge for scholars. In the literature, 

methodologies can be found that associate the influence of solar irradiation and the nominal power 

of the photovoltaic units with factors such as the shadow caused by clouds [62, 63], the presence 

of dust in photovoltaic cells [64, 65], losses associated with the cabling of electrical equipment 

[66], the lifespan of solar panels [67], and cell temperature [68], among others. In the equation 

(2.20) that can be found in works done by [69], it can be seen that to determine the energy obtained 

by the solar plates 𝐸𝑠, in kilowatt-hours (𝑘𝑊ℎ), the solar irradiation of the 𝐼𝑠 environment, in 

kilowatt-hours per square meter  (𝑘𝑊ℎ/𝑚2),  was used as variable, as was the installed capacity 

of the 𝑃𝐹𝑉units, in kilowatt (𝑘𝑊), each year, the standard solar irradiance used in efficiency tests 

on 𝐼𝑃 solar panels in the amount of 1𝑘𝑊ℎ/𝑚2, the efficiency of the solar panels 𝜂𝐹𝑉 (75%) , the 

temperature of the 𝑇𝑐  cell, in degrees Celsius  (ºC), and the temperature coefficient of the panels 

𝛾 (considering the use of polycrystalline silicon cells, value of -0.38%/°C). 

 
𝐸𝑠 = 𝐼𝑠 ∗

𝑃𝐹𝑉
𝐼𝑃

∗ 𝜂𝐹𝑉 ∗ [1 + 𝛾(𝑇𝑐 − 25)]                                        
(2.20) 

The National Renewable Energy Laboratory's (NREL) research has revealed that solar panels 

degrade at a median rate of roughly 0.5% per year, but that rate can be higher in hotter regions and 

rooftop systems. This degradation directly affects energy production over time [70]. 
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 The final equation used to estimate distributed photovoltaic solar generation is presented by 

 

𝐸𝑠 = [𝑃𝐹𝑉   𝑃𝐹𝑉−1…  𝑃𝐹𝑉−𝑛] ∗ [

(1 − 𝐷)0

(1 − 𝐷)1

⋮
(1 − 𝐷)𝑛

] ∗ 𝜂𝐹𝑉 ∗
𝐼𝑠
𝐼𝑃
[1 + 𝛾(𝑇𝑐 − 25)]   

 

(2.20) 

Where, n is the number of years/operation preceding the base year and D is the annual degradation 

factor of photovoltaic modules, which is 0.5% per year. 

2.3.4 Influence of Radiation 

Among the climatic factors that interfere with photovoltaic systems for the production of 

electricity, solar radiation is the main agent, having a direct influence on the voltage effect of 

photovoltaic cells [71]. Solar panels have an energy conversion efficiency that indicates how much 

electricity can be generated from solar energy. The amount of energy generated is steadily 

increasing due to the increase in solar radiation. The higher the level of radiation on the solar panel, 

the greater the open circuit voltage and short circuit current of the solar panel, and the greater the 

maximum output power [72, 73]. Figure 2.6 shows five simulated I-V (current versus voltage) and 

P-V (power versus voltage) curves for different radiation conditions incident on the panel. It is 

possible to observe in Figure 2 (a) that the increase in solar radiation considerably increases the 

short circuit current; however, it has less effect on the open circuit voltage. Figure 2 (b) illustrates 

how the maximum power increases as radiation levels rise.  

Characteristic curves of the panels representing the variation of current by voltage (I x V) and 

power by voltage (P x V) allow evaluation of the behavior of the panels in order to obtain the 

maximum generative power state [75]. Recent research has concluded that the radiation variable 

is directly related to photovoltaic energy generation [76].  
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Figure 2.6: Characteristic curves at different radiance levels: (a) I-V curve (b) P-V curve [74]  

Copyright © 2020, IEEE. 
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CHAPTER 3 

Forecasting Wind and Solar Energy and Related Works 

 
3.1 The Future of Forecasting for Renewable Energy 

Forecasting is one of the most difficult and necessary tasks of data analysis. The complexity of the 

forecasting process is associated with the need to analyze and evaluate large volumes of data, build 

and develop models that will correspond to the observed data, and further use these models to 

obtain future values. The peculiarity of forecasting is the acceptance of the fact that the data cannot 

be available in the future and that it is possible to evaluate them only thanks to the data that is 

already available, that is, the data collected from the events that have already taken place [77]. 

Electricity market forecasting is crucial. Accurate forecasts can help power companies and grid 

operators make informed decisions about power generation capacity and grid management. This 

can lead to a more efficient, cost-effective, and reliable electricity system. In energy policy, there 

are no simple solutions (no single energy source will solve all the problems) that are unlimited, 

cheap, and free of pollution. Due to the fact that most renewable energy sources, like solar and 

wind power, can be impacted by weather conditions and can be unpredictable, it is challenging to 

plan and forecast their generation. However, with advancements in technology and integration into 

the energy grid, renewable energy is becoming more competitive as an alternative to non-

renewable resources and is seen as an important step towards a sustainable energy future [78]. 

Additionally, the energy generated from sources like wind and solar is highly indiscriminate. This 

position requires the application of advanced renewable energy scheduling and forecasting 

techniques [79]. AI and machine learning technologies have been increasingly utilized in weather 

forecasting to improve its accuracy. By working with meteorologists and incorporating large 

amounts of data, such as historical weather patterns and current conditions, machine learning 

algorithms can make more informed predictions about future weather. These technologies can also 

identify patterns and relationships in the data that may not be easily recognizable by humans, 

leading to more accurate forecasting. Machine learning is used for renewable energy forecasting 

by analyzing large amounts of data to detect patterns and make accurate predictions about future 

energy generation. This allows grid operators to better plan for the amount of renewable energy 

that will be needed at any given time. Different prediction models can be developed depending on 

the type of data being used and the time horizon of the forecast (i.e., short-term, medium-term, or 
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long-term). Short-term forecasts, which range from a few minutes to a few days, are important for 

making quick decisions on activating electric power generation units and can be used for daily 

operational purposes. Short-term forecast timeframes are such that changes in weather over a short 

period of time can be analyzed and used to predict what data will be used the next time. Renewable 

energy forecasting and scheduling require up-to-date and recent data as often as possible, and 

short-term forecasting achieves this. In this way, errors would be considerably minimized. 

Forecasting for renewable energy typically involves combining accurate weather predictions with 

the availability of plants and systems. Climate change and weather patterns can greatly impact the 

stability of renewable energy generation, as the amount of energy produced by sources like wind 

turbines and solar panels is directly related to weather factors such as wind speed and sunlight 

intensity. Therefore, accurate forecasting and scheduling of renewable energy is important to 

ensure efficient power generation and to help mitigate the impact of weather-related fluctuations 

[80]. Accurate forecasts can play a critical role in the development and financing of renewable 

energy projects. By providing more accurate estimates of the future performance of a project, 

accurate forecasts can help reduce the uncertainty and risk associated with renewable energy 

investments. The requirement for precise and reliable forecasts is more important than ever in the 

current environment of economic uncertainty and the ongoing energy transition. The success of 

these projects can have a substantial impact on the long-term viability of the energy sector. 

3.2 Wind Energy Forecasting 

Wind power is a non-programmable form of generation since energy is only produced when the 

wind blows, which can be highly variable even in the short term with the possibility of 

intermittence and large changes in short intervals of time. For this reason, it is difficult to know in 

advance and with sufficient precision the amount of wind energy that we can count on at any given 

time. This variability makes its operation especially complex, so its future production has to be 

estimated or forecasted, and this forecast of future power is inevitably affected by a prediction 

error or uncertainty. If the wind decreases, the power generated in the wind farms also decreases, 

and this lack of power must be replaced by other sources of generation with a sufficient reserve in 

magnitude and response speed so that the electricity demand is not affected. On other occasions, 

it may happen that not all the available wind energy production can be integrated into the system 

since wind energy is not generated according to consumer needs and it is necessary to reduce the 

supply of this energy source. For all this, the prediction of wind generation has become a key issue 
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to make the development and implementation of wind energy feasible and make possible its 

integration into the electrical system. From the point of view of wind generation or any other 

source of renewable energy, its forecast is useful both for the system operator and for market agents 

or park owners. Thus, the operator of the electricity system needs to know in advance the amount 

of wind energy that will be injected into the network to manage the power that the conventional 

plants must generate, with the aim of covering the total demand of the system. Meanwhile, market 

agents will be interested in knowing with the greatest possible certainty the power that their wind 

farms will generate in order to follow the most profitable strategies in the electricity market. In 

addition, the owners of wind farms will also be interested in knowing during what periods less 

power is expected to be generated at their facilities due to scheduled maintenance tasks. These 

predictions must have a prediction horizon that helps calculate the power production and improves 

the adjustment to the real demand curves. For the study of wind energy potential, the variables 

considered most important are wind speed and direction. Many experts mention that a 

measurement error of 1% can cause a deviation of around 2% in energy production [81]. 

Furthermore, no mathematical model, whether physical or numerical, provides a perfect and 

definitive solution [82]. Wind energy is a clean and renewable source of energy and has become 

an important alternative for generating electric power. Unlike non-renewable sources, wind energy 

is essentially limitless and produces no harmful emissions or waste [83]. With the increasing 

integration of wind energy into the energy mix, there is a growing need for research to improve 

and optimize its performance. One of the challenges of wind energy is that its output can fluctuate 

greatly due to changes in wind speed, which can be impacted by weather conditions. As a result, 

there is a need for research and development of new technologies and methods that can help better 

predict and manage fluctuations in wind energy production so that wind energy can be integrated 

and provide a reliable and sustainable source of power [84]. 

 3.2.1 Wind Energy Forecasting Methods 

The short-term prediction of wind power output from wind farms is an important and actively 

researched topic, with various prediction techniques available. The three main categories of 

prediction techniques are physical techniques, statistical techniques, and artificial intelligence 

techniques. Predicting wind power output is a complex task that requires the use of various 

techniques, each of which has its own strengths and limitations, and researchers continue to work 

to improve and refine these techniques to provide more accurate and reliable predictions of wind 
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power output. This involves developing new models, improving the quality and availability of 

data, and incorporating new insights and knowledge from the scientific community.  

3.2.1.1 Physical Methods 

Physical techniques use mathematical models to simulate the physical processes that affect wind 

power generation. Numerical weather prediction, as the core model of the physical method, has 

taken into account complex factors such as the topography of the selected area [85]. Some 

researchers proposed to introduce wind speed and direction as reference variables, combined with 

the wind power prediction model of the clustering method. In general, weather forecasts are based 

on observations and mathematical models that describe the dynamic and physical behavior of the 

atmosphere. The models consist of nonlinear partial differential equations that provide numerical 

solutions and are highly dependent on the initial conditions for which they were defined. Small 

errors in the initial data used in atmospheric studies can have a significant impact on the subsequent 

evolution of the atmosphere, and any slight disturbance in the starting conditions can quickly lead 

to large errors. This highlights the importance of having accurate and reliable data when studying 

the atmosphere and making predictions about its behavior to ensure that the results remain accurate 

and relevant over time [86]. Therefore, the two factors that influence the quality of a weather 

forecast are the uncertainty in the initial conditions of the atmosphere and the approximations used 

by the models to represent the physical processes that occur in it [87]. These two factors give rise 

to errors, which are amplified as the forecast time range advances and propagate, in turn, in the 

wind generation forecast models. However, due to complex computational factors and 

environmental constraints, the application of physical methods is greatly limited [88]. A case study 

based on weather data (atmospheric pressure, air temperature, relative humidity, and precipitation) 

to model monthly wind speed values is needed. The study must include analyzing the relationship 

between these variables and wind speed and estimating the relative importance of each variable 

[89]. 

3.2.1.2 Statistical Methods 

Contrary to physical models, statistical models do not need system information but are based on 

statistical analysis of historical data, combined with linear or non-linear mathematical equations 

to make predictions. Autoregressive (AR) models, autoregressive moving average (ARMA) 

models, and autoregressive integrated moving average (ARIMA) models have all been used to 

learn statistical rules for wind power time series [90-92]. These types of models require little 
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computation time, are easy to formulate, and give good results for predictions at short-term 

horizons [93], which are useful for forecasting in certain industrial processes [94], and in the 

context of wind power forecasting, it provides reasonably good results for horizons up to 6 hours. 

At the same time, support vector machines (SVMs) and time series analysis methods are also 

applied to wind power forecasting [95-97]. Statistical methods make competitive predictions when 

the state is stable by making linearizing assumptions. However, the wind power series has random 

and intermittent characteristics, which makes the data very complex. These shallow models cannot 

extract the corresponding nonlinear features well [98], so there is still room for improvement in 

this type of method since it is difficult for traditional methods to extract deep features from wind 

power data [99]. 

 

3.2.1.3 Artificial Intelligence Technology 

Deep learning methods have offered complex algorithms to analyse large amounts of data and 

make predictions based on patterns and relationships in the data, with the continuous development 

of artificial intelligence technology in recent years, in order to fully mine the historical data 

information of wind power [100]. More and more related artificial intelligence algorithms are 

being applied to the field of wind power prediction. These include prediction models combining 

stacked autoencoder (SAE) and backpropagation methods [101], and artificial neural networks 

(ANN) are also used to predict wind power time series [102]. Recurrent neural networks (RNNs), 

due to their recurrent design, are capable of learning highly nonlinear dynamic time information 

from sequences, have outstanding performance in the field of natural processing, and have been 

applied to many other time series tasks [103, 104]. To promote RNNs performance in various 

fields, a large number of studies have been proposed, including one on a very popular RNN variant, 

LSTM [105]. However, if LSTM is directly applied to the wind power prediction task, its ability 

to learn complex temporal and spatial patterns from the entire time series is limited. Along the 

time axis, model learning can easily lose long-term dependencies due to vanishing gradients [106]. 

A short-term wind power prediction model based on an integrated multi-scale LSTM is proposed. 

The prediction models are constructed through time series of different lengths, and the prediction 

results are fused to a certain extent. The problem of LSTM losing information dependence due to 

time series being too long is mitigated to some extent while retaining long-term rich time series 

information in the sequence data and time series information in the short time series that is less 
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disturbed by noise. The deep network constructed by the LSTM unit fully mines the implicit 

dependencies between the data in the time series and obtains a better short-term wind power 

prediction result.  

3.3 Forecast of Photovoltaic Energy Generation 

The increasing global energy crisis, along with concerns about climate change and global warming, 

have led to a growing emphasis on the development of renewable energy systems, including solar 

energy. The growth of the global installed capacity of solar energy has been steady in recent years, 

largely due to the many benefits it offers, such as its ability to be installed in a wide range of 

locations and its abundant and renewable source of energy, the sun. However, solar power 

generation has the characteristics of intermittency and volatility. When more and more solar power 

generation is integrated into the power grid, if the instability cannot be effectively predicted and 

controlled, the safe and stable operation of the power grid will face significant challenges. In this 

way, photovoltaic energy prediction is one of the alternatives to alleviate these adversities and 

allow optimized dispatch [107]. In order to meet the requirements of the automatic decision-

making process, prediction models rely heavily on the spatial and temporal resolution of 

meteorological variability, the selection of input parameters, and training algorithms. Output 

power control is an important aspect of managing a renewable energy system, such as a solar 

photovoltaic system, as it helps balance the supply and demand of electricity. The output power of 

a photovoltaic system can vary greatly depending on various factors, including the amount of solar 

radiation received, temperature, insolation, and the angle of installation. These variations are due 

to the dynamic nature of atmospheric conditions such as weather and temperature, which can 

impact the performance of the photovoltaic system over time. By adjusting the output power, grid 

operators can help ensure that the supply of electricity matches the demand and maintain a stable 

electrical grid. [108]. The literature points out that accurate predictions of photovoltaic (PV) 

generation can bring many benefits to the power grid, including reduced variability, improved 

stability, increased penetration levels, lower maintenance costs, and better management of surplus 

or shortages of solar energy. These benefits help to make the integration of solar PV into the grid 

more efficient and effective, ultimately leading to a more sustainable energy system [109]. 

Forecasting the output power of a solar plant is a significant challenge for electric power 

departments. Improper predictions can result in difficulties with timely dispatch planning, 

decreased flexibility in managing the grid, and higher costs due to the need for increased reserve 
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capacity and the rotation of generation systems [110]. Accurate forecasting of solar energy helps 

system operators and plant management avoid fines that may result from discrepancies between 

projected energy and energy produced by optimizing resource use and making informed decisions 

[111]. Solar energy forecasting has evolved over time, and traditional time series methods such as 

Auto Regressive (AR), Moving Average (MA), and Auto Regressive Moving Average (ARMA) 

models have been commonly used to model linear dynamic structures in photovoltaic energy 

output prediction. However, nonlinear and non-stationary models, such as neural networks, 

support vector machines, and hybrid models, have been found to be more effective at capturing 

the complex patterns in the data, and they are increasingly being used for energy that requires more 

accurate production forecasting. These models can better non-linear relationships, handle non-

stationary data, and provide improved accuracy in forecasting photovoltaic energy output [112, 

113]. Predicting photovoltaic power generation is actually a prediction of non-stationary data flow, 

and its accuracy often depends on the extraction and processing methods of time series features. 

In recent years, scholars have divided the prediction methods of photovoltaic power generation 

into learning methods [114], physical model methods [115], and statistical methods [116, 117]. 

With the continuous development of machine learning and deep learning [118], the use of learning 

methods for photovoltaic power generation power prediction has gradually become popular [119-

121], among which deep learning algorithms are the mainstream. 

3.3.1 Uncertainty in Forecasting  

The models used for short-term electricity production predictions (up to 48 or 72 hours of 

prediction horizon) can use, as inputs to them, the (meteorological) predictions generated by other 

models, the atmospheric models. These are, generally, properties of the national meteorological 

institutes, which provide predictions of the numerical values of the meteorological variables: 

radiation, temperature, atmospheric pressure, cloud cover, wind speed, and direction. From these 

numerical values, the result of the prediction of atmospheric models, and the prediction of the 

electrical power generated in a photovoltaic solar park, is calculated by statistical or physical 

approximations. But the prediction of electricity production carried out by these latest models has 

a major limitation: the prediction models of electricity production, in principle, cannot improve 

the (meteorological) predictions of atmospheric models. The sources of error in atmospheric 

models can be various: from poor modeling of the ground surface to incorrect initial conditions as 

a result of errors in the measurement process or interpretation of the meteorological variables that 
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define the starting state of the atmosphere. The first type of error, the one caused by poor modeling 

of the terrain surface, can be corrected statistically. The second type of error (incorrect initial 

conditions) cannot be corrected in advance and is responsible for important differences between 

the prediction values and the real ones, both in magnitude and in the instant of time in which they 

occur (the so-called “phase error” which refers to the expected variations or changes in the value 

of the meteorological variable that occur earlier or later than expected). In general, forecasting the 

electrical energy generated in the short term by a solar PV collector is a difficult task that is not 

exempt from important errors. But despite its difficulty, it turns out to be essential today, both from 

a technical and economic point of view. 

3.3.2 Models Based on the Box-Jenkins Methodology or ARIMA Models 

Auto-Regressive Integrated Moving Average (ARIMA) models are, without a doubt, the most 

widely used linear method to identify and build prediction models for univariate and stationary 

time series [122]. They have been used in numerous research areas; however, they have only 

recently been used to develop prediction models regarding photovoltaic solar production. 

Generally, the results obtained using these models are better the shorter the prediction horizon, 

although acceptable results are also obtained in the calculation of parameters that are less 

restrictive than the average hourly power produced, such as the average daily or monthly power. 

Several ARIMA models were compared with other more advanced techniques for different 

prediction horizons (5, 15, 30, and 60 min) using the global radiation at the moment before the 

prediction. The results reflect how it can be seen that the variability of meteorological conditions 

and cloud cover causes a non-seasonal behavior that makes its application difficult over longer 

horizons, but that in the very short term, the mastery of the behavior of the 24-hour cycles justifies 

the validity of auto-regressive models. Finally, in most of its tests, the smallest errors are made 

with the ARIMA models, reinforcing their validity for very short-term horizons [123]. A series of 

ARIMA models were developed to determine the average radiation (horizontal and inclined) with 

horizons of 10, 20, 30 minutes, and 1 hour for a given location in the United Kingdom. The results 

show that the efficiency of ARIMA decreases significantly with the lengthening of the prediction 

horizon [124]. 

3.3.3 Numerical Weather Prediction (NWP) 

The advancements in computing power and technology have greatly influenced the relationship 

between meteorological conditions and power grid operation. The construction of large-scale high-
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voltage and ultra-high-voltage power grids has also increased the need for accurate weather 

forecasting to prevent power outages and ensure stable grid operation. Numerical weather 

forecasting (NWP) has become increasingly important due to the close relationship between 

weather and the operation of power grids. NWP uses mathematical models and numerical 

algorithms to predict weather conditions by solving the equations that describe the evolution of 

various atmospheric variables such as radiation, temperature, wind speed and direction, humidity, 

and pressure [125]. The process starts with the analysis of the current state of the atmosphere using 

a very short-term forecast and adding the observations available to it in order to achieve a better 

description of the true current state of the atmosphere. From there, the computer model uses this 

information as the starting point to produce the forecast. The equations used by the computer model 

are based on the fundamental physical laws that govern the atmosphere and which are described 

in non-mathematical terms (advection, conservation of mass, continuity, hydrostatic, 

thermodynamic, state, and water vapor). The accuracy of numerical weather forecasting (NWP) 

depends on the assumptions and approximations used in the mathematical models and the 

numerical algorithms that are used to solve these equations. Different numerical models make 

different assumptions about the atmospheric processes and use different methods for solving the 

equations, leading to variations in the predicted weather conditions [126]. Not all atmospheric 

models work on the same space-time scale. Each atmospheric model tries to follow the evolution 

of the atmosphere at the scale that defines it. For example, for the prediction of radiation on the 

ground surface, the scale of the atmospheric model must be small: small spatially due to the 

influence that orography has on radiation, and small temporally due to the variability of the cloud 

cover (linked to the variability of wind). Numerical weather forecasting is still one of the most 

important projects in solar photovoltaic forecasting work. If the accuracy of numerical weather 

forecasts can be improved, the forecast error of solar photovoltaics will be effectively reduced. 

The variability of renewable energy sources, like solar and wind power, can make it challenging 

to integrate them into the grid in a reliable and consistent manner. This is because their output is 

dependent on weather conditions, which can be unpredictable and subject to sudden changes. To 

mitigate this issue, accurate forecasting methods are essential for effective grid integration [127]. 

There are several forecasting models for predicting future radiation, including those that include 

artificial intelligence technologies. One of the biggest problems that solar energy faces is climate 

variability, but artificial intelligence could obtain more accurate predictions and apply measures 
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so that photovoltaic installations perform to their greatest potential. In the electric power 

generation sector, machine learning techniques have gained great importance in the estimation of 

meteorological attributes from structured, semi-structured, and unstructured data sets. Although 

many of the stations are not taking solar brightness readings, there are some that do measure it, 

along with other climatic variables, in order to gain a better understanding of the environment. It 

was found that most modern researchers use deep learning to estimate solar radiation, as reported 

in preliminary work [128-130]. Depending on the type of input applied to the artificial intelligence 

model, forecasting techniques can be roughly classified as physical or statistical approaches. 

Physical methods model photovoltaics as a function of some independent variables, such as the 

characteristics of the photovoltaic cells, solar radiation, and the temperature of the cells. While 

statistical forecasting techniques base their predictions on historical data from the past, the 

artificial neural network algorithm is one of the most popular artificial intelligence algorithms for 

predicting solar production from meteorological factors since the artificial neural network method 

has an inherent ability to simulate non-linear, dynamic, and complex systems data [131]. A model 

based on networks called large short-term memory (LSTM) was presented for the prediction of 

solar irradiation for the next day using meteorological data. As inputs to the model, temperature, 

humidity, visibility, wind speed, weather type, and dew point are considered. The performance of 

this model was better than other models based on linear least square regression (LLSR) and 

feedforward neural networks (FFNN), with a root mean square error (RMSE) of less than 18.34% 

[132]. 

 

3.4 Related Works 

According to one viewpoint, the development of green innovation necessitates good general 

framework conditions for innovation [133]. The analysis of time series data is fundamental for the 

control and management of electricity generation with renewable energy sources. Currently, 

renewable energy conversion systems are the main drivers for the development of time series 

analysis [134]. A time series is important to make predictions of future data and, with that, to carry 

out planning on how much energy it will be possible to dispatch in a given period and thus make 

more efficient management of the wind or solar power. Auto-Regressive Integrated Moving 

Average (ARIMA), seasonal ARIMA (SARIMA), and long short-term memory (LSTM) were 
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used to predict energy consumption in a daily database, and the results obtained show that the 

model LSTM shows better results [135]. 

 Therefore, time series analysis of wind speed and solar irradiance data is extensively studied in 

order to maximize energy conversion. However, to predict future data, not only is the historical 

value of the objective variable sufficient to carry out a reliable analysis, but other factors with an 

implicit influence on the objective variable must also be considered [136]. In the analysis of time 

series problems, the LSTM method, which has been preferred by researchers in recent years, has 

provided significant improvements in the estimation consistency of complex and nonlinear data. 

The LSTM approach has been preferred in the literature due to the high accuracy of estimation in 

environmental time series problems, such as estimation of air pollution, water quality, and ozone 

gas density [137, 138].  Because wind speed is affected by temperature, solar radiation, humidity, 

and its direction, in addition to topographic conditions, when conducting analysis with many 

variables that are correlated with each other, the accuracy in forecasting objective variables 

improves due to the intrinsic correlation and historical characteristics between them [139].  The 

non-stationary and highly nonlinear characteristics of solar radiation time series make the artificial 

intelligence method better than the traditional statistical analysis method [140, 141]. Deep neural 

networks were used to estimate solar radiation values [142]. Artificial neural networks (ANNs) 

have been applied to obtain accurate short-term load predictions in photovoltaic (PV) systems and 

to investigate different levels of spatial aggregation. The results show that the energy flow 

underscores the benefits of time-series forecasting to support network operation [143]. The initial 

statistical analysis of wind speed appeared in the 1940s. In the last century, a research program 

was carried out in the United States, the purpose of which was to study potential sites for the 

construction of wind energy conversion systems. The first attempts to determine the mean hourly 

wind speed were based on Monte Carlo simulations, in which the expected wind speed distribution 

was given. However, because it did not account for the relationship between successive wind speed 

observations, the resulting prediction was inaccurate. Consequently, large periods of high and low 

wind speeds did not appear often enough. Further studies have attempted to use autocorrelation in 

the wind speed model [144, 145]. However, the approaches used in these studies were based on 

specific statistical assumptions inherent in wind speed data. Some researchers also neglected such 

important features as daily and seasonal fluctuations and the non-Gaussian shape of the wind speed 

distribution. A method has been proposed that included all the main characteristics of hourly 
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average wind speed, but it was applied to the study of only one case. To apply a true autoregressive 

model, it was necessary to use a power transformation. Thus, the non-Gaussian wind speed 

distribution was taken into account [146]. Other types of power transformations have been 

proposed, and data modeling has already been carried out using one of the autoregressive moving 

average models [147- 150]. It should be noted that these papers described short-term forecasts, 

while models with long-term memory were used to obtain reliable forecasts for the next 24-48 

hours [151]. However, the analysis was limited to only four time series. LSTM networks have 

been used not only to make long-term predictions but also for abrupt changes (in less than 15 

minutes) [152]. Modeling energy production is just as important as managing energy properly. As 

a result, deep learning models have been used to forecast power generation [153], as well as 

renewable energy resources such as wind [154], and solar [155, 156]. A statistical forecast analyzes 

relationships between variables based on historical information. One of the statistical methods that 

have been most successful in generating forecasts is that generated from artificial neural networks 

(ANN) [157]. Several ARIMA models are compared with other more advanced techniques to 

predict solar radiation with a short-term prediction horizon [158]. The performance of artificial 

neural networks was compared with ARIMA, and the results concluded that the ARIMA model is 

better for short-term periods (10 minutes, 1 hour, 2 hours, and 4 hours) [159]. Artificial neural 

networks have been compared to the seasonal ARIMA (SARIMA). The result was that the 

SARIMA model is better at predicting wind speeds and has a better response to structural changes 

in the wind regime [160]. An analysis of the energy consumption dataset was developed to generate 

a prediction model using ARIMA [161]. The ARIMA algorithm was used to predict radiation in 

six cities. The results show that there are advantages in the performance of ARIMA over ANN in 

the case of data time-steps greater than 5 minutes; otherwise, in high data resolutions (between 1 

minute and 4 minutes), ANN presents better behavior. This leads to the conclusion that the choice 

of model depends directly on the input dataset. ARIMA better models the daily radiation cycle in 

long-term datasets. This means that a training stage is not necessary due to the linear behavior of 

the data in the database. The computational cost is also evaluated in these works. It is shown that 

ARIMA has a lower computational cost, in part due to the linear approximations with which it 

develops the estimate [162, 163]. Regarding short-term wind energy forecasts using statistical 

methods, the ARMA model was applied to wind speed, and the results showed that the time-series 

data and the model were successful in the 1-hour predictions and a set of wind farm data [164]. A 
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method based on the ARIMA model has been proposed, and the results were compared with 

persistence methods [165]. The ARMA model has been used for short-term wind energy 

forecasting, and successful results have been obtained [166]. In order to forecast wind speed, a 

SARIMA model was developed, and the model was evaluated using three example datasets. The 

results showed that the prediction error one hour before the prediction was less than 16%, which 

is an acceptable result considering the short data collection time [167]. Hourly wind speeds were 

predicted using both the ARMA and ANN models. The result of the comparison between them 

showed that their performance is very close, and both models give results with prediction accuracy 

up to a few hours ahead [168]. A LSTM model has been proposed to predict PV power. When the 

proposed model is compared to two other models, it is found to have the best performance, with 

an RMSE value of less than 21% [169]. The LSTM model combined with a deep neural network 

was used to predict the load and the PV energy generated in a smart network. The performance of 

the model is compared to that of other models, and a satisfactory result is obtained with a MAPE 

value of 7.43% [170]. An ultra-short-term wind power prediction model based on a long short-

term memory (LSTM) network was proposed. Because the LSTM network has short-term memory 

ability, it can reflect the impact of the output value of the past moment on the value of the current 

moment. Compared with ARMA, ANN, SVM, and other models, its prediction accuracy is 

significantly improved [171]. The LSTM method was used to estimate the hourly solar radiation 

values, and the weather forecast values for the same time period were used as input data [172]. 

Wind power forecasting remains challenging due to the variability and unpredictability of weather 

conditions, making it necessary to constantly improve and refine forecasting methods [173]. ANN 

and ARIMA models are commonly used for short-term wind speed forecasting. Both methods 

have shown good results in short-term wind speed forecasting, but their accuracy may decrease 

over longer forecasting horizons [174]. ARIMA is a statistical method used to model and forecast 

time series data; it has proven to be an effective method for short-term wind speed prediction and 

is widely used [175]. In a study on the iterative wavelet transform based ARIMA model for very 

short-term wind speed prediction, the lack of ARIMA and WT-ARIMA models, which are recently 

popular techniques for short-term and very short-term estimation of wind speed [176], was 

investigated. Long- short term memory-based deep learning architectures were applied for wind 

energy prediction [177,178]. Studies have indeed shown that LSTMs often outperform traditional 

deep neural networks in terms of forecasting accuracy for wind energy. However, as with any 
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forecasting method, the results may vary depending on the specific data set and problem at hand, 

and it may be necessary to experiment with different methods to find the best fit [179]. For wind 

energy time series forecasting, LSTM, one of the most popular models among RNNs, has been 

proposed and compared to the ARIMA model [180]. According to the comparisons between the 

performances of ARIMA, ARIMAX, and simple LSTM models for wind energy forecasting, the 

ARIMAX model can perform similarly or even better than simple LSTM models, which are in the 

lead, followed by the ARIMAX model and then the ARIMA model, respectively. Model selection 

is influenced by a number of factors, such as computing complexity, interpretability, and the ability 

to handle non-static and non-linear data [181]. There are several statistical measures used to 

determine the accuracy of the ARIMA model for forecasting wind speed and how well it is able to 

predict future values based on past data [182]. The LSTM-RNN model was applied to forecast 

wind power from 1 to 24 hours ahead, using past wind power measurements as input and 

forecasting future wind power output based on this historical data [183]. Recurrent neural network 

models have been evaluated for the accuracy of wind speed prediction, and compared with ARIMA 

models at the univariate and multivariate levels, RNN achieved better results [184]. Using 

historical wind speed data and auto-regression for a two-year period, the Long-Term Memory 

(LSTM) model can be used to forecast short-term spatiotemporal wind speed for multiple 

locations. The use of a numerical weather prediction (NWP) model to update the forecast every 

six hours can further improve the accuracy of the predictions, especially for horizons as long as 

fifteen days using LSTM for two or three hours [185]. Mathematical modeling has been widely 

used in renewable energy systems, specifically for solar forecasting, and has shown improved 

results compared to traditional statistical methods [186]. In general, LSTMs are powerful models 

for sequential data and can handle noise well [187]. Deep learning algorithms have shown great 

results for classification and regression issues. This is due to supervised learning, in which the 

model is trained on labeled data and the internal parameters are adjusted to minimize the prediction 

error through backpropagation and gradient descent [188]. The application of artificial intelligence 

to various aspects of solar energy systems remains an active area of research and development and 

has recently been used in modeling, simulation, and control processes to improve the efficiency of 

solar panel systems [189]. The LSTM model showed better performance compared to the ARIMA 

model in predicting the use of solar energy. The data included various factors such as energy 

structure, energy intensity, economic activity, and population, which have an impact on changes 
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in solar energy consumption [190]. LSTM is a type of artificial intelligence that has gained 

popularity in recent years as part of the third AI boom. It is commonly used in short-term 

predictions of wind speed due to its ability to store and use previous information to make 

predictions [191, 188]. LSTM networks have been shown to be effective in predicting wind speeds 

in 24-hour wind farms, according to some studies. LSTM results showed more accurate 

performance compared to traditional methods such as MLP (multilayer perceptrons) and other 

neural networks in many sequence prediction tasks [192]. Deep learning based on neural networks 

is being actively introduced for solar radiation applications, and some studies have shown that the 

combination of multilayer perceptron (MLP) and linear regression can result in better performance 

in forecasting solar energy compared to some other methods. According to these studies, the MLP 

model achieved a high coefficient of determination (R2) of 97.7% and a low root mean square error 

(RMSE) of 0.033, which indicates its effectiveness in this application [193]. The LSTM-RNN has 

been proven to be a more effective method for predicting the output power of solar PV systems 

using hourly data sets over the course of a year. Compared to multiple linear regression (MLR), 

bagged regression trees (BRT), and neural networks (NNs) methods, the LSTM networks provide 

lower predictive error [194]. LSTM neural networks are commonly used in the medium to forecast 

time series data, such as solar and wind energy. It recorded lower errors compared to SVM and 

persistence models [195]. When compared to traditional methods, the use of artificial neural 

networks, specifically the multilayer perceptron (MLP) structure, has proven to be an effective 

tool in predicting solar radiation. MLP is a feedforward neural network that is widely used in 

various applications, including regression and classification tasks [196]. 
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CHAPTER 4 

Time Series Analysis Techniques and Methodologies 

4.1 Introduction 

The analysis of time series data is fundamental for the control and management of electricity 

generation with renewable energy sources. Currently, renewable energy conversion systems are 

the main drivers for the development of time series analysis [197]. A time series is important to 

make predictions of future data and, with that, to carry out planning of how much energy it will be 

possible to dispatch in a given period and, thus, make more efficient management of the wind or 

photovoltaic park in question [198]. Therefore, time series analysis of wind speed and solar 

irradiance data is extensively studied in order to maximize energy conversion. However, to predict 

future data, not only is the historical value of the objective variable sufficient to carry out a reliable 

analysis, but other factors with an implicit influence on the objective variable must also be 

considered [199]. Wind speed can be influenced by temperature, solar radiation, humidity, and 

direction, in addition to topographic conditions [199]. When analyzes are performed with several 

variables that are correlated with each other, the accuracy in forecasting the objective variables is 

improved due to the intrinsic correlation and the historical characteristics between them [200]. 

Several works that do time series analyses to forecast future data have been published in recent 

years. Autoregressive Integrated Moving Average (ARIMA), Seasonal ARIMA (SARIMA), and 

Long Short-Term Memory (LSTM) were used to predict energy consumption in a daily database, 

and the results obtained show that the model LSTM shows better results [198]. An analysis of an 

energy consumption dataset was developed to create a forecasting model using ARIMA [201]. 

Artificial Neural Networks (ANNs) have been proposed for accurate short-term load predictions 

in photovoltaic (PV) systems and to investigate different levels of spatial aggregation. The results 

show that power flow confirms the benefits of time-series prediction to support network operation. 

For intelligent control and management of wind turbines, it is important to obtain wind speed 

information in advance to allow stable operation of the power system [202]. 
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4.2 Statistical Analysis of Time Series and Their Components 

A time series is a sequence of observed values of some variable produced at regular intervals of 

time. If we take the length of such an interval as a unit of time (year, quarter, month, day), then it 

can be assumed that consecutive observations 𝑋1, 𝑋2, … , 𝑋𝑛 are made at moments 𝑡 = 1,2, … , 𝑛 

[202]. The introduction of a time scale into a time series significantly distinguishes it from a simple 

(random) sample of statistical data. The key feature of the time series is the binding of values 

(measurements) to the corresponding moments of time. Time series analysis pursues two main 

goals: determining its structure (nature) and forecasting future values of the series based on current 

and past measurements [204]. Both are closely related. Solving the first task is necessary for 

building a mathematical model of the time series, its correct identification, and its formalization. 

The mathematical model will become, in a way, a laboratory for the study of time series and a 

foundation for relatively accurate (with an acceptable margin of error) predictions for the series. 

The time series has four main components: trend, seasonality, cyclicality, and irregular 

components. These characteristics distinguish a time series from ordinary observed data [205]. 

Linear trend estimation is a statistical method that is used to understand the structure of data by 

fitting a straight line to the data points (Figure 4.1. An example of a growing trend). The goal of 

linear trend estimation is to identify any underlying patterns or trends in the data, such as increasing 

or decreasing trends over time, which can then be used to make predictions about future data 

points. This method is widely used in various fields to forecast future trends and make informed 

decisions based on the data. The simplicity and interpretability of linear trend estimation make it 

a popular choice for analyzing and predicting time series data [204].  

 

 
 

Figure 4.1. Actual U.S. Wind Power Monthly Consumption from January 2011 to   

          December 2016 (An example of a growing trend). 
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A good understanding of the data prior to model training is essential for building an appropriate 

model. The amount of labeled data used for training also has a significant impact on determining 

the quality of the model. In general, more labeled data leads to a better model. A time series, 

represented as a simple proportional function, can be plotted on a graph with time on the x-axis 

and the value of the series on the y-axis. This is the easiest way to start the analysis of a time series 

and allows for the discovery of the most important characteristics and components of a series. 

Given a set of time instants t and data values observed for those time instants, the values of a and 

b are chosen such that: 

  ∑ [𝑦𝑡 − (�̂�𝑡 + �̂�)]
2

𝑡                                   (4.1) 

 

In this case, the trend line is located at + b, thus the objective is to minimize the sum of squared 

deviations between the observed data points and the trend line represented by the model, so this 

optimization problem can always be solved in closed form [10]. Time series analysis aims to study 

patterns and trends in data collected over time with the goal of understanding and predicting future 

behavior. Time series analysis considers various factors such as seasonality, trend, and fluctuations 

to identify the underlying structure of the data and make predictions. The technique is widely used 

in several fields. The seasonal component of the additive time series model is calculated as follows: 

 𝑆 = 𝑌 − (𝑇 + 𝐶 + 𝐼)                                                              (4.2) 

Where, S is the seasonal values, Y is the real values of time series data, T is the trend values, C is 

the cyclical values, and I is the irregular values. Figure 4.2 shows the decomposition of additive 

time series. 

 
Figure 4.2. Decomposition of additive time series 
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The cyclical component is reflected in non-seasonal fluctuations in the data. The duration of these 

fluctuations is usually at least two years. The cyclical behavior differs from the seasonal behavior 

in that if the oscillations do not have a definite period, then they are cyclical; if the oscillations do 

not have a fixed period, then they are cyclical; if the period is fixed and related to some aspect of 

the calendar, then the model is seasonal. Irregular time series store timestamps for each element 

rather than storing offsets because the interval between each element can be of different lengths. 

Invalid elements are stored as the next element by default and cannot be null. Modern time series 

analysis has evolved beyond traditional linear methods and now incorporates both statistical and 

dynamic techniques to analyze the complex and nonlinear behavior of systems that were 

previously not possible. The basis of stochastic data processing methods is the series 𝑦𝑛 and the 

noise is a sequence of uncorrelated, equally distributed random variables 𝜉𝑖 with zero mean. After 

that can write: 

 𝑦𝑛 = 𝐹(𝑦𝑛−1, … , 𝑦𝑛−𝑚, 𝜉𝑛, … , 𝜉𝑛−𝑘)                                                                               (4.3) 

 

Where, k and m are some finite numbers. 

4.3 Mathematical Models of Time Series 

4.3.1 Autoregressive Forecasting Models 

Autoregressive is a time series model in which the current value linearly depends on the previous 

values of the same series,  𝑋𝑡, can be explained in terms of p past values 𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋𝑡−𝑝, where 

p determines the number of lags needed to predict a current value. The moving average (MA) and 

autoregressive (AR) models are widely used for time series analysis and prediction. The MA model 

uses the past values of the time series to model the error term and make predictions about the future 

values. Further, the AR model uses the past values of the time series itself as explanatory variables 

to make predictions about the future values. Both models can be used to identify various features 

of the time series, such as trends, seasonality, and irregular behavior. The characteristics of the 

time series and the goals of the analysis determine whether to use the MA or AR models [206]. 

The autoregressive model of order (p) is given by: 

 𝑋𝑡 = 𝑐 + ∅1𝑋𝑡−1 + ∅2𝑋𝑡−2 +⋯+ ∅𝑝𝑋𝑡−𝑝 + 𝜀𝑡                                                             (4.4) 

Expressed in terms of the lag operator 

 (1 − ∅1𝐿 − ∅2𝐿
2 −⋯− ∅𝑝𝐿

𝑝)𝑋𝑡 = 𝜀𝑡                                                                                         (4.5) 
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 ∅𝑝(𝐿)𝑋𝑡 = 𝜀𝑡                                                                                                (4.6) 

Where, 𝜀𝑡 is the white noise process and ∅1, ∅2, … , ∅𝑝 are the model parameters [207]. 

4.3.1.1 Autoregressive Process of Order 1: AR(1) 

In processes, AR(1) the variable 𝑋𝑡 is determined only by the passed value, that is 𝑋𝑡−1. 

 

 𝑋𝑡 = ∅𝑋𝑡−1 + 𝜀𝑡                                                                                                                           (4.7) 

Where, 𝜀𝑡 is a white noise process with mean zero, and constant variance 𝜎2 and ∅ is the parameter. 

Assuming also that the process is unpredictable, that is, the future does not include the past. To 

verify that the model AR(1) is stationary for any value of the parameter, it is necessary to test the 

following conditions. 

a) Stationary in mean 

 𝐸(𝑋𝑡) = 𝐸(𝑋𝑡 = ∅𝑋𝑡−1 + 𝜀𝑡) = ∅𝐸(𝑋𝑡−1)                                                                    (4.8) 

For the process to be stationary the mean must be constant and finite in time, this implies that: 

 𝐸(𝑋𝑡) = ∅𝐸(𝑋𝑡)                                                                                                   (4.9) 

 (1 − ∅)𝐸(𝑋𝑡) = 0                                                                    (4.10) 

 
𝐸(𝑋𝑡) =

0

1 − ∅
= 0   

(4.11) 

Therefore, for the process to be stationary, the parameter ∅ ≠ 1. 

b) Stationary in covariance: 

For a process AR(1)  to be stationary, the variance has to be constant and finite in time: 

 𝛾0 = 𝐸(𝑋𝑡 − 𝐸(𝑋𝑡))
2 = 𝐸(∅𝑋𝑡−1 + 𝜀𝑡 − 0)

2 = ∅2𝑉(𝑋𝑡−1) + 𝜎
2                                   (4.12) 

Given the autocorrelation of the process 

 𝐸(𝑋𝑡−1𝜀𝑡) = 𝐸[(𝑋𝑡−1 − 0)(𝜀𝑡 − 0)] = 𝑐𝑜𝑣(𝑋𝑡−1𝜀𝑡) = 0                                                 (4.13) 

Under the assumption that the process is stationary, 

 𝐸(𝑋𝑡−1)
2 = 𝑉(𝑋𝑡−1) = 𝑉(𝑋𝑡) = 𝛾0                                                                       (4.14) 
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Therefore 𝛾0 = ∅𝛾0 + 𝜎
2, then 𝛾0 =

𝜎2

1−∅2
 

For a process to be stationary, constant variance and finite, it is necessary that |∅| < 1 

The order autocovariance function k is: 

 𝛾𝑘 = 𝐸(𝑋𝑡 − 𝐸(𝑋𝑡))(𝑋𝑡−𝑘 − 𝐸(𝑋𝑡−𝑘)) = 𝐸[(∅𝑋𝑡−1 + 𝜀𝑡)𝑋𝑡−𝑘]                                          (4.15) 

 𝛾𝑘 = ∅𝐸(𝑋𝑡𝑋𝑡−𝑘) + 𝐸(𝜀𝑡𝑋𝑡−𝑘) = ∅𝛾𝑘−1                                                                    (4.16) 

So that: 

 
𝛾1 = ∅𝛾0 

𝛾2 = ∅𝛾1 

𝛾3 = ∅𝛾2 

⋮ 

      

 

It can be concluded, therefore, that the process AR(1) is stationary if and only if  |∅| < 1. The 

autocovariance function of a stationary process AR(1) is: 

 
𝛾𝑘 = {

𝜎2

1−∅2
        𝑘 = 0

∅𝛾𝑘−1         𝑘 > 1
                                                                 

(4.17) 

The autocorrelation coefficients of a stationary process 𝐴𝑅(1) are: 

 𝜌𝑘 =
𝛾𝑘

𝛾0
=

∅𝛾𝑘−1

𝛾0
= ∅𝜌𝑘−1                                                                                      

(4.18) 

The autocorrelation function of a stationary process AR(1)  is: 

 
𝜌𝑘 = {

1        𝑘 = 0
∅𝜌𝑘−1         𝑘 > 1

                                                                                    
(4.19) 

It can be easily shown that the Autocorrelation Function of a model AR(1) is an exponential 

function. 

 
𝜌1 = ∅𝜌0 = ∅ 
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𝜌2 = ∅𝜌1 = ∅2 

𝜌3 = ∅𝜌2 = ∅
3 

⋮ 

                                                                                    

So that: 

 
𝜌𝑘 = ∅𝑘, 𝑤ℎ𝑒𝑟𝑒 𝑘 = 1,2,3, ….  

(4.19) 

An alternate way of writing the model AR(1) is as follows: 

 𝑋𝑡 = ∅𝑋𝑡−1 + 𝜀𝑡                                                                                                         (4.20) 

 (1 − ∅𝐿)𝑋𝑡 = 𝜀𝑡                                                                                     (4.21) 

The quotient 
1

1− ∅𝐿
 can be expressed as an infinite polynomial, that is: 

 1

1− ∅𝐿
= 1 + ∅𝐿 + ∅2𝐿2 +⋯                                                                          (4.22) 

Substituting we have 

 𝑋𝑡 =
1

1− ∅𝐿
𝜀𝑡 = (1 + ∅𝐿 + ∅2𝐿2 +⋯)𝜀𝑡                                                                      (4.23) 

 𝑋𝑡 = 𝜀𝑡 + ∅𝜀𝑡−1 + ∅
2𝜀𝑡−2 + ∅

2𝜀𝑡−2 + ∅
3𝜀𝑡−3 +⋯                                            (4.24) 

Therefore, model AR(1) is a constrained version of a general moving average model. From the 

results obtained, we can point out the most relevant characteristics of the model AR(1): it is 

stationary only if the autoregressive coefficient ∅ is less than one in absolute value (|∅| < 1). If 

this condition is not met, the model is non-stationary, meaning that its statistical properties change 

over time. Another important feature of the AR(1)model is that the correlogram, which is a plot 

of the autocorrelation function (ACF) against the lag, will decay exponentially towards zero with 

all positive values if ∅ > 0 or it will alternate signs, starting with a negative value, if ∅ < 0. In 

addition, the model is invertible if its ACF has no spikes outside the confidence bounds, which 

means that the model can be expressed as a finite weighted sum of past and current error terms. 

The partial autocorrelation function (PACF) of the AR(1) model is zero for all lags greater than 

one, which coincides with the autoregressive coefficient of the model. This means that the current 
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value of the time series is only related to its immediate past value and not to any other previous 

value. 

4.3.1.2 Autoregressive Process of Order 2: AR(2) 

In processes, 𝐴𝑅(2) the variable 𝑋𝑡 is determined only by the passed value, that is. 

 𝑋𝑡 = ∅1𝑋𝑡−1 + ∅2𝑋𝑡−2 + 𝜀𝑡                                                                     (4.25) 

Where, 𝜀𝑡 is white noise. 

Assuming stationarity, the characteristics of the process are: 

a) Mean 

 𝐸[(1 − ∅1 − ∅2𝐿
2)𝑋𝑡] = 𝐸[𝜀𝑡]                                                                                (4.26) 

 (1 − ∅1𝐿 − ∅2𝐿
2)𝐸[𝑋𝑡] = 0                                                                    (4.27) 

 𝐸[𝑋𝑡] =
0

1−∅1𝐿−∅2𝐿2
= 0                                                                     (4.28) 

b) Autocovariance function: 

 𝛾0 = 𝐸(𝑋𝑡 − 𝐸(𝑋𝑡))
2 = 𝐸(𝑋𝑡)

2 = 𝐸(∅1𝑋𝑡−1 + ∅2𝑋𝑡−2 + 𝜀𝑡)
2                                        (4.29) 

 𝛾0 = ∅1
2𝛾0 + ∅2

2𝛾0 + 𝜎
2 + 2∅1∅2𝛾1                                                      (4.30) 

 (1 − ∅1
2 − ∅2

2)𝛾0 = 𝜎
2 + 2∅1∅2𝛾1                                                  (4.31) 

 (1 − ∅1
2 − ∅2

2)𝛾0 = 𝜎
2 + 2∅1∅2𝛾1                                                  (4.31) 

 𝛾0 =
𝜎2+2∅1∅2𝛾1

1−∅1
2−∅2

2                                                                
(4.32) 

 𝛾1 = 𝐸(𝑋𝑡 − 𝐸(𝑋𝑡))( 𝑋𝑡−1 − 𝐸(𝑋𝑡−1)) = 𝐸(𝑋𝑡𝑋𝑡−1)                                              (4.33) 

 𝛾1 = 𝐸[(∅1𝑋𝑡−1 + ∅2𝑋𝑡−2 + 𝜀𝑡)𝑋𝑡−1]                                                   (4.34) 

 𝛾1 = ∅1𝐸(𝑋𝑡−1)
2 + ∅2𝐸(𝑋𝑡−2𝑋𝑡−1) + 𝐸(𝜀𝑡𝑋𝑡−1)                                                  (4.35) 

 𝛾1 = ∅1𝛾0 + ∅2𝛾1                                                                    (4.36) 

 
𝛾1 =

∅1𝛾0
1 − ∅2

                       
(4.37) 

 

𝛾0 and 𝛾1 give the first two autocovariances as a function of the parameters ∅1 and ∅2, and 𝜎2 the 

variance of the white noise. 
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The autocovariances of order 𝑘, for everything 𝑘 > 1 are: 

 𝛾𝑘 = 𝐸(𝑋𝑡 − 𝐸(𝑋𝑡))( 𝑋𝑡−𝑘 − 𝐸(𝑋𝑡−𝑘)) = 𝐸(𝑋𝑡𝑋𝑡−𝑘)                                                       (4.38) 

 𝛾𝑘 = 𝐸[(∅1𝑋𝑡−1 + ∅2𝑋𝑡−2 + 𝜀𝑡)𝑋𝑡−𝑘]                                                                            (4.39) 

 𝛾𝑘 = ∅1𝛾𝑘−1 + ∅2𝛾𝑘−2                                                                     (4.40) 

The autocovariance function of a model 𝐴𝑅(2) is: 

 

𝜌𝑘 = {

𝛾0,                                                  𝑘 = 0
𝛾1,                                                   𝑘 = 1
∅1𝛾𝑘−1 + ∅2𝛾𝑘−2,                       𝑘 > 1 

                                                  
(4.41) 

c) Autocorrelation coefficient 

 𝜌𝑘 =
𝛾𝑘

𝛾0
=

∅1𝛾𝑘−1+∅2𝛾𝑘−2

𝛾0
= ∅1𝜌𝑘−1 + ∅2𝜌𝑘−2 𝑓𝑜𝑟 𝑘 = 1,2,3, …                                      

(4.42) 

A general way of writing the autocorrelation coefficients is: 

 
𝜌𝑘 = {

1                                                𝑘 = 0
𝜌𝑘 = ∅1𝜌𝑘−1 + ∅2𝜌𝑘−2,       𝑘 > 0 

                                                  
(4.43) 

Stationarity conditions 

Model AR(1): 𝑋𝑡 = ∅𝑋𝑡−1 + 𝜀𝑡, 𝑡ℎ𝑒𝑛 (1 − ∅𝐿)𝑋𝑡 = 𝜀𝑡              

Autoregressive polynomial: ∅1(𝐿) = 1 − ∅𝐿, 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡𝑠 𝑜𝑓 1 − ∅𝐿 = 0 are: 

 𝐿 =
1

∅
                                                                                                (4.44) 

 

The stationarity condition of the model AR(1) is: 

 |𝐿| = |
1

∅
| > 0, then |∅| < 1                                                (4.45) 

Model 𝐴𝑅(2): 𝑋𝑡 = ∅1𝑋𝑡−1 + ∅2𝑋𝑡−2 + 𝜀𝑡, 𝑡ℎ𝑒𝑛 (1 − ∅1𝐿 − ∅2𝐿
2)𝑋𝑡 = 𝜀𝑡              

Autoregressive polynomial: ∅2(𝐿) = 1 − ∅1𝐿 − ∅2𝐿
2, 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡𝑠 𝑜𝑓 1 − ∅1𝐿 − ∅2𝐿

2 = 0 are: 

 
𝐿1, 𝐿2 =

∅1 ∓√∅1
2 + 4∅2

−2∅2
                             

(4.46) 

 

The stationarity condition of the model AR(2) is: 
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|𝐿1| = |
∅1+√∅1

2+4∅2

−2∅2
| > 1, and |𝐿2| = |

∅1−√∅1
2+4∅2

−2∅2
| > 1                                    

(4.47) 

 

If √∅1
2 + 4∅2 > 0 , the roots are real, and are complex when < 0. 

4.3.2 Integrated Process I(d) 

In time series analysis, it is often observed that many real-world time series exhibit non-

stationarity, meaning that their statistical properties change over time. One way to deal with non-

stationarity is to difference the time series, which involves computing the differences between 

consecutive observations. This transformation can stabilize the mean of the series and make it 

stationary. A time series that has been differentiated d times to achieve stationarity is called an 

integrated process of order d, denoted by I(d). The ARMA (p, q) model can be applied to this 

differentiated series to give rise to the ARIMA (p, d, q) model. 

4.3.3 Moving Average Process 𝑴𝑨(𝒒)  

The moving average (MA) model models the link between an observation and the residual errors 

from a moving average model applied to lagged observations. The order, q, stands for the number 

of lagged errors used in the model and is usually estimated using the time series ACF 

(autocorrelation function) plot. The MA(q) method can be expressed in the following way: 

 𝑋𝑡 = 𝜃0 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 −⋯− 𝜃𝑞𝜀𝑡−𝑞 − 𝜀𝑡                                               (4.48) 

 

Expressed in terms of the delay factor polynomial, which is: 

 𝑋𝑡 = (1 − 𝜃1𝐿 − 𝜃2𝐿
2 −⋯− 𝜃𝑞𝐿

𝑞)𝜀𝑡                                                                                       (4.49) 

 𝑋𝑡 = 𝜃𝑞(𝐿)𝜀𝑡                                                                                                                                    (4.50) 

Where, 𝜀𝑡 is a white noise error term, and 𝜃1, 𝜃2, … , 𝜃𝑞 are the model parameters. 

Moving Average Process of order 1: MA(1) 

The moving average models determine the value of 𝑋𝑡 depending on the current innovation and its 

first lag, that is: 

 𝑋𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1                                                                                                                  (4.51) 

It is expressed as a polynomial function of the delay factor, which is: 

 𝑋𝑡 = (1 − 𝜃)𝜀𝑡                                                (4.52) 
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 𝑋𝑡 = 𝜃1(𝐿)𝜀𝑡                                                 (4.53) 

 

Where, 𝜀𝑡 is a white noise process and 𝜃 is the parameter. 

a) Stationary in mean 

 𝐸(𝑋𝑡) = 𝐸(𝜀𝑡 − 𝜃𝜀𝑡−1)                                                                                              (4.54) 

 𝐸(𝑋𝑡) = 𝐸(𝜀𝑡) − 𝜃𝐸(𝜀𝑡−1)                                                (4.55) 

 𝐸(𝑋𝑡) = 0                                                (4.56) 

It is stationary on the mean for all values of the parameter. 

b) Stationary in covariance 

 𝛾0 = 𝐸(𝑋𝑡 − 𝐸(𝑋𝑡))
2 = 𝐸(𝑋𝑡)

2 = 𝐸(𝜀𝑡 − 𝜃𝜀𝑡−1)
2                                            (4.57) 

 𝛾0 = 𝐸(𝜀𝑡)
2 + 𝜃2(𝜀𝑡−1)

2 − 2𝜃𝐸(𝜀𝑡𝜀𝑡−1) = 𝜎
2 + 𝜃2𝜎2 − 0                                              (4.58) 

 𝛾0 = (1 + 𝜃2)𝜎2 < ∞                                                 (4.59) 

The autocovariance for 𝛾1 and 𝛾2 is: 

 𝛾1 = 𝐸(𝑋𝑡 − 𝐸(𝑋𝑡))( 𝑋𝑡−1 − 𝐸(𝑋𝑡−1)) = 𝐸(𝜀𝑡 − 𝜃𝜀𝑡−1) (𝜀𝑡−1 − 𝜃𝜀𝑡−2 )                               (4.60) 

 𝛾1 = 𝐸(𝜀𝑡𝜀𝑡−1) − 𝜃𝐸(𝜀𝑡−1)
2 − 𝜃𝐸(𝜀𝑡𝜀𝑡−2) + 𝜃

2𝐸 (𝜀𝑡−1𝜀𝑡−2) = −𝜃𝜎
2 <  ∞                               (4.61) 

 𝛾2 = 𝐸(𝑋𝑡 − 𝐸(𝑋𝑡))( 𝑋𝑡−2 − 𝐸(𝑋𝑡−2)) = 𝐸(𝜀𝑡 − 𝜃𝜀𝑡−1) (𝜀𝑡−2 − 𝜃𝜀𝑡−3 )                                   (4.62) 

 𝛾2 = 𝐸(𝜀𝑡𝜀𝑡−2) − 𝜃𝐸(𝜀𝑡−1𝜀𝑡−2) − 𝜃𝐸(𝜀𝑡𝜀𝑡−3) + 𝜃
2𝐸 (𝜀𝑡−1𝜀𝑡−3)   = 0                                   (4.63) 

A general form of the autocovariance function is: 

 

 𝜌𝑘 = {

𝛾0 = (1 − 𝜃2)𝜎2                    𝑘 = 0                                            

𝛾1 = −𝜃 𝜎2                               𝑘 = 1                                           
𝛾2 = 0                                       𝑘 > 1                                           

 

                              

 

 

(4.64) 

The autocovariance function is finite and depends only on 𝑘 but not on time, this for any value of 

the parameter 𝜃. This implies that it is not necessary to put constraints on the parameter 𝜃 so that 

the MA(1) be stationary. 

The autocorrelation function of a process MA(1) is: 

 

𝜌𝑘 = {

1                       𝑘 = 0
−𝜃

1 + 𝜃2
               𝑘 = 1

        0                    𝑘 > 1    

             

 

(4.65) 
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Moving Average Process of order 2: MA(2) 

Consider the order 2 moving average model: 

 𝑋𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2                                                                                    (4.66) 

Where, the parameters are 𝜃1 and 𝜃2, also 𝜀𝑡 is a white noise process. This process is stationary 

for any value of 𝜃1 and 𝜃2. 

The most important characteristics are: 

a) Stationary in mean 

 𝐸(𝑋𝑡) = 𝐸(𝜀𝑡 − 𝜃1 𝜀𝑡−1 − 𝜃2 𝜀𝑡−2) = 0                                                                       (4.67) 

 

b) Autocovariance function 𝛾𝑘, 𝑘 = 0,1,2,3, … 

 𝛾0 = 𝐸(𝑋𝑡 − 𝐸(𝑋𝑡))
2 = 𝐸(𝑋𝑡)

2                                                                                  (4.68) 

 𝛾0 = 𝐸(𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2)
2                                                                                         (4.69) 

 𝛾0 = (1 +  𝜃1
2 +  𝜃2

2)𝜎2                                                                                  (4.70) 

 𝛾1 = 𝐸[(𝑋𝑡 − 𝐸(𝑋𝑡))( 𝑋𝑡−1 − 𝐸(𝑋𝑡))] = 𝐸(𝑋𝑡𝑋𝑡−1)                                              (4.71) 

 𝛾1 = 𝐸[(𝜀𝑡 − 𝜃1 𝜀𝑡−1 − 𝜃2 𝜀𝑡−2)(𝜀𝑡−1 − 𝜃1𝜀𝑡−2 − 𝜃2𝜀𝑡−3)]                                        (4.72) 

 𝛾1 = (−𝜃1 + 𝜃1𝜃2)𝜎
2                                              (4.73) 

 𝛾2 = 𝐸[(𝑋𝑡 − 𝐸(𝑋𝑡))( 𝑋𝑡−2 − 𝐸(𝑋𝑡))] = 𝐸(𝑋𝑡𝑋𝑡−2)                                           (4.74) 

 𝛾2 = 𝐸[(𝜀𝑡 − 𝜃1 𝜀𝑡−1 − 𝜃2 𝜀𝑡−2)(𝜀𝑡−2 − 𝜃1𝜀𝑡−3 − 𝜃2𝜀𝑡−4)]                                               (4.75) 

 𝛾2 = −𝜃2𝜎
2                                             (4.76) 

 𝛾3 = 𝐸[(𝑋𝑡 − 𝐸(𝑋𝑡))( 𝑋𝑡−3 − 𝐸(𝑋𝑡))] = 𝐸(𝑋𝑡𝑋𝑡−3)                                               (4.77) 

 𝛾2 = 𝐸[(𝜀𝑡 − 𝜃1 𝜀𝑡−1 − 𝜃2 𝜀𝑡−2)(𝜀𝑡−3 − 𝜃1𝜀𝑡−4 − 𝜃2𝜀𝑡−5)]                                               (4.78) 

 𝛾3 = 0                                                 (4.79) 

    

In summary, the autocovariances of MA(2) are: 

 

𝜌𝑘 =

{
 
 

 
 𝛾0 = (1 + 𝜃1

2 + 𝜃2
2)𝜎2                     𝑘 = 0

𝛾1 = (−𝜃1 + 𝜃1𝜃2)𝜎
2                       𝑘 = 1

𝛾2 = −𝜃2𝜎
2                                        𝑘 = 2

𝛾3 = 0                                                  𝑘 > 2

                                 

                                             

 

(4.80) 
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The autocorrelation functions are given by: 

 

𝜌𝑘 =

{
 
 

 
 𝜌1 =

−𝜃1 + 𝜃1𝜃2

1 + 𝜃1
2 + 𝜃2

2               𝑘 = 1

𝜌2 =
−𝜃2

1 + 𝜃1
2 + 𝜃2

2            𝑘 = 2

𝜌3 = 0                               𝑘 > 2

                                 

                                                

 

 

(4.81) 

4.3.4 Autoregressive Moving Averages Process ARMA(𝒑, 𝒒) 

The Auto-Regressive Moving Average (ARMA) model combines the autoregressive (AR) and 

moving average (MA) models to provide a comprehensive representation of a stationary random 

process. The AR part of the model represents the autoregressive relationship between the current 

and past values of the time series, while the MA part represents the relationship between the current 

value and the past residual errors. The general ARMA model was first proposed by Whittle in his 

1951 dissertation, and it has since become an important tool in time series analysis [208]. The 

ARMA model is used to describe and forecast future values of a time series Yt. The AR part 

represents the relationship between Yt and its past values up to a maximum delay of p, while the 

MA part represents the error term as a linear combination of error terms occurring simultaneously 

and at different periods in the past [206]. The order of the ARMA model is denoted by the ARMA 

(p, q) model, where p denotes the number of moving average and autoregressive components, 

respectively. The AR (p) model and the MA (q) model are two models included in the ARMA (p, 

q) model that work together to produce a thorough description of the time series. The ARMA 

model can be expressed as follows: 

 

 𝑋𝑡 = 𝑐 + ∅1𝑋𝑡−1 +⋯+ ∅𝑝𝑋𝑡−𝑝 + 𝜃1𝜀𝑡−1 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡                                            (4.82) 

Where, 𝜀𝑡 is the error term at time t, and 𝑐, ∅1, … , ∅𝑝, 𝜃1, … , 𝜃𝑞 are the model parameters. The 

stationarity of this process depends entirely on the autoregressive part, and its reversibility depends 

on the moving average part. In this case, the stationarity is the same as in the AR(p) model, and its 

reversibility is the same as in the MA(q) model (AR is always reversible, MA is always a stationary 

process). To obtain an ARMA model, it is necessary to combine the MA process with the linear 

differential equation. If the homogeneous part of the difference equation includes 𝑝 delays and the 

MA part includes 𝑞 delays, the ARMA model is expressed. Here, if 𝑞 = 0, it is the AR(𝑝) process, 
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and if 𝑝 = 0, it is the MA(𝑞) process. In terms of the lag operator, the ARMA model can be 

expressed as follows: 

 (1 − ∅1𝐿 − ∅2𝐿
2 −⋯− ∅𝑝𝐿

𝑝)𝑋𝑡  = (1 − 𝜃1𝐿 − 𝜃2𝐿
2 −⋯− 𝜃𝑞𝐿

𝑞)𝜀𝑡                                  (4.83) 

  ∅𝑝(𝐿)𝑋𝑡 = 𝜃𝑞(𝐿)𝜀𝑡                                                                          (4.84) 

 

Where, ∅𝑝(𝐿) is the autoregressive polynomial, 𝜃𝑞(𝐿) is the moving average polynomial. If the 

process is stationary, its representation is MA(∞). 

𝑋𝑡 =
𝜃𝑞(𝐿)

∅𝑝(𝐿)
𝜀𝑡, then 𝑋𝑡 = 𝜀𝑡 + 𝜑1𝜀𝑡−1 + 𝜑2𝜀𝑡−2 + 𝜑3𝜀𝑡−3…                          

If the process is invertible, a representation is AR(∞) 

∅𝑝(𝐿)

𝜃𝑞(𝐿)
𝑋𝑡 = 𝜀𝑡 then 𝑋𝑡 = 𝜀𝑡 + 𝜋1𝑌𝑡−1 + 𝜋2𝑌𝑡−2 + 𝜋3𝑌𝑡−3…                          

The weights of representation MA(∞), as in the form AR(∞), are constrained to depend on the 

finite vector of model parameters ARMA(𝑝, 𝑞): ∅1, … , ∅𝑝, 𝜃1, … , 𝜃𝑞 . 

One way to determine if an ARMA process is stationary is by examining the roots of its 

autoregressive polynomial, ∅𝑝(𝐿) where L is the lag operator. If the modulus of all the roots of the 

autoregressive polynomial is less than 1, then the ARMA process is stationary. In other words, if 

all the roots of the autoregressive polynomial are outside the unit circle, then the ARMA process 

is stationary and can be used to model a time series that exhibits a stable mean and variance over 

time. The stationarity conditions, of the ARMA(𝑝, 𝑞) model, are imposed by the autoregressive 

part, since the finite moving average part is always stationary. 

- An autoregressive moving average process ARMA(𝑝, 𝑞)  is invertible if and only if the modulus 

of the roots of the moving average polynomial 𝜃𝑞(𝐿) are outside the unary circle. 

The invertibility conditions, of the ARMA(𝑝, 𝑞) model, are imposed by the moving average part, 

since the autoregressive part is always invertible, because it is always directly written in 

autoregressive form. 

The ARMA(𝑝, 𝑞) models will always share the characteristics of the model AR(𝑝) and MA(𝑞), 

This is because it contains both structures at the same time. The model ARMA(𝑝, 𝑞) has zero mean, 

variance constant and finite and an infinite autocorrelation function. The autocorrelation function 

is infinite, rapidly decreasing toward zero. 

Autoregressive moving average process of order (1,1): ARMA(1,1) 
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Consider the ARMA(1,1) model, where 𝑋𝑡 is determined as a function of its past to first lag, 

contemporary innovation, and past innovation to lag 1. 

 𝑋𝑡 = ∅1𝑋𝑡−1 + 𝜀𝑡 −  𝜃𝜀𝑡−1                                           (4.85) 

Where, 𝜀𝑡 is the error term at time t and ∅, θ are the parameters of the model. 

To check the stationarity of the model, the roots of the autoregressive polynomial are calculated: 

1 − ∅𝐿 = 0, where |𝐿| = |
1

∅
| that is |∅| < 1 

To check the invertibility condition of the model, the roots of the moving average polynomial are 

calculated: 

1 − 𝜃𝐿 = 0, where |𝐿| = |
1

𝜃
| that is |𝜃| < 1 

Characteristics of a stationary 𝐴𝑅𝑀𝐴(1,1) process 

a) Mean 

 𝐸(𝑋𝑡) = 𝐸(∅𝑋𝑡−1 + 𝜀𝑡 − 𝜃𝜀𝑡−1) = ∅𝐸(𝑋𝑡−1)                                                            (4.86) 

 𝐸(𝑋𝑡) = 0                                           (4.87) 

 

b) Autocovariance function 

 𝛾0 = 𝐸(𝑋𝑡 − 𝐸(𝑋𝑡))
2 = 𝐸(𝑋𝑡)

2                                                                                               (4.88) 

 𝛾0 = 𝐸(∅𝑋𝑡−1 + 𝜀𝑡 − 𝜃𝜀𝑡−1)
2                                             (4.89) 

 𝛾0 =
(1+𝜃−2𝜃∅)𝜎2

1−∅2
                                              (4.90) 

 𝛾1 = 𝐸[(𝑋𝑡 − 𝐸(𝑋𝑡))( 𝑋𝑡−1 − 𝐸(𝑋𝑡))] = 𝐸(𝑋𝑡𝑋𝑡−1)                                           (4.91) 

 𝛾1 = 𝐸[(∅1𝑋𝑡−1 + 𝜀𝑡 − 𝜃𝜀𝑡−1)𝑋𝑡−1]                                            (4.92) 

 𝛾1 = ∅1𝛾0 − 𝜃𝜎
2                                             (4.93) 

 𝛾2 = 𝐸[(𝑋𝑡 − 𝐸(𝑋𝑡))( 𝑋𝑡−2 − 𝐸(𝑋𝑡−2))] = 𝐸(𝑋𝑡𝑋𝑡−2)                                              (4.94) 

 𝛾2 = ∅𝛾1                                                                                          (4.95) 

Summarizing the autocovariances of  ARMA(1,1) 

 

𝛾𝑘 = {

𝛾0 =
(1+𝜃−2𝜃∅)𝜎2

1−∅2
                                                       𝑘 = 0

𝛾1 = ∅1𝛾0 + 𝜃𝜎
2                                                        𝑘 = 1   

𝛾𝑘 = ∅𝛾𝑘−1                                                                  𝑘 > 1 

                                 

 

(4.96) 

 

The autocorrelation function of ARMA(1,1)  is 
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𝜌𝑘 = {

𝜌1 = ∅ −
𝜃𝜎2

𝛾0
          𝑘 = 0

𝜌𝑘 = ∅𝜌𝑘−1               𝑘 > 1
                                                                                             

 

(4.97) 

 

4.3.5 Autoregressive Integrated Moving Average Process 𝐀𝐑𝐈𝐌𝐀(𝒑, 𝒅, 𝒒)   

Not all time series are stationary; some show level changes over time or the variance is not 

constant. ARIMA is a statistical model used for analyzing and forecasting time series data that is 

non-stationary. The I component (symbolized by d) is added to make the series stationary by 

differencing. The AR component, often known as p, is created by correlating the most recent values 

of a data series with its prior values. The MA component, q, is created by correlating the most 

recent values of a random error term with its previous values. By combining these components, 

ARIMA can capture both the trend and the seasonality in the data, making it a powerful tool for 

time series analysis and forecasting. ARIMA stands for “AutoRegressive Integrated Moving 

Average,” a time series forecasting model that considers past values, differences between values, 

and residual errors. The ARIMA (p, d, q) model is set by three parameters: p represents the order 

of the autoregressive component, d is the degree of differencing needed to render the time series 

stationary, and q represents the order of the moving average component, where the parameters p, 

d, and (q ≥ 0). The model uses past values, differences, and residual errors to make predictions 

about future values in the time series [122]. The form is stated algebraically as follows: 

 

 𝑋𝑡
𝑑 = 𝑐 + ∅1𝑋𝑡−1

𝑑 +⋯+ ∅𝑝𝑋𝑡−𝑝
𝑑 + 𝜃1𝜀𝑡−1

𝑑 +⋯+ 𝜃𝑞𝜀𝑡−𝑞
𝑑 + 𝜀𝑡

𝑑                                           (4.98) 

 

Expressed in the form of the lag operator polynomial, the ARIMA(𝑝, 𝑑, 𝑞) model is  

 Φ(𝐿)(1 − 𝐿)𝑑𝑋𝑡 = 𝑐 + Θ(𝐿)𝜀𝑡                                                   (4.99) 

 

Where, 𝑋𝑡
𝑑 is the series of order differences 𝑑, 𝜀𝑡

𝑑 is a white noise process, and 

𝑐, ∅1, … , ∅𝑝, 𝜃1, … , 𝜃𝑞 are the model parameters. 

In order to model such processes, first of all, stability must be ensured. The Box-Jenkins 

methodology for the construction of ARIMA(𝑝, 𝑑, 𝑞) models is carried out iteratively through a 

process in which four stages can be distinguished. Figure 4.1 illustrates the Box-Jenkins for 

ARIMA technique schematically. 
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Figure 4.3 Schematic representation of the Box-Jenkins for ARIMA approach. 

 

4.3.6. Seasonal Auto-Regressive Integrated Moving Average 𝐀𝐑𝐈𝐌𝐀(𝒑, 𝒅, 𝒒)(𝑷,𝑫,𝑸)𝑺 

SARIMA is a type of statistical model that analyzes the seasonal patterns that may be present in 

the data. It combines the ARIMA model with a seasonal component, allowing for the modeling of 

seasonal patterns in the data. The model is specified using six parameters: p, d, and q for the 

ARIMA component, and P, D, and Q for the seasonal component where p and P are the orders of 

the AR component, d and D are the orders of differencing, and q and Q are the orders of the MA 

component. The S in SARIMA represents the number of seasons in each cycle. The general 

structure of the model is expressed as follows: 

 𝑋𝑡 = 𝑐 + ∅1𝑋𝑡−1 +⋯+ ∅𝑝𝑋𝑡−𝑝 + 𝜃1𝑋𝑡−𝑠 +⋯+ 𝜃𝑝𝑋𝑡−𝑝𝑠 + 

                 𝜀𝑡 + 𝜑1𝜀𝑡−1 −⋯− 𝜑𝑞𝜀𝑡−𝑞 − 𝜗1𝜀𝑡−𝑠…−  𝜗𝑄𝜀𝑡−𝑄𝑠                              

 

(4.100) 

 

The parameters ∅1, … , ∅𝑝, 𝜃1, … , 𝜃𝑝, 𝜑1, … , 𝜑𝑞 , 𝜗1, … , 𝜗𝑄 𝑎𝑛𝑑 𝜀𝑡~𝑁(0, 𝜎
2), where 𝜎2 is the 

variance. 

4.4 Prediction of Time Series with Neural Networks 

The Box-Jenkins method is a powerful tool for analyzing time series data and can be applied to a 

wide range of situations. However, it does require a strong understanding of statistical methods 

and may not be appropriate for all types of time series data. However, many time series contain 
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nonlinear relationships as well as linear relationships. Different methods are needed to model this 

nonlinear relationship. Artificial neural networks (ANNs), which can model both linear and 

nonlinear relationships depending on the feature of the activation function in their structure, have 

become more popular for solving modeling problems. Neural networks are a type of machine 

learning algorithm that is inspired by the structure and function of the human brain. Artificial 

neural networks are information processing models, inspired by the functioning of the brain. They 

have the ability to learn from experience. Neural networks have shown efficiency in the study of 

different problems for which traditional methods have not produced good results [208]. Artificial 

neural networks are indeed based on simple mathematical models that are inspired by the structure 

and function of the human brain. A neural network can be viewed as a network of neurons 

organized in layers, in which the predictors (or inputs) form the lowest layer and the predictions 

(outputs) form the highest layer. Between both layers, there may be intermediate layers with 

hidden neurons. This hidden intermediate layer is the one that allows a non-linear relationship 

between the inputs and the outputs, allowing the model more degrees of freedom (since non-linear 

activation functions are used) (if only the input and output layers were present, it would be a 

regression linear (simplest model)). An artificial neuron consists of a set of inputs (x), a set of 

synaptic weights, corresponding to each neuron input (w), an aggregation function (Σ), an 

activation function (f), and a set of outputs. 

 
Figure 4.4 Schematic representation of neurons [209]. 

 

In a neural network, each neuron is going to receive a set of inputs weighted by a specific value, 

to which an activation function is applied once the sum of their values has been made in order to 

obtain an output. The inputs correspond to the input data if it is in the first layer, or to the outputs 

of the other neurons if they are in the hidden or final layers. In addition, there is an additional input 

called a threshold, or bias that provides an additional degree of freedom to the model. The weights 

are real values that multiply the inputs. Initially, the weights are initialized randomly, and they are 
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updated by means of training algorithms on the observed data that minimize a cost function, so 

they will represent the knowledge of the network. Networks are series of structures where each 

layer is a function of the layer that precedes it. They can be defined such that: 

 𝑎𝑘 = 𝑊𝑘ℎ𝑘−1 + 𝑏𝑘, 𝑘 > 0,                                               (4.101) 

 ℎ𝑘 = 𝑔𝑘(𝑎𝑘), 𝑘 > 0,                                                                                             (4.102) 

Where, 𝑊𝑘 is the vector of weights for layer k with dimension (𝑛𝑘 × 𝑛𝑘−1) with n being the 

number of neurons in layer k. 𝑏𝑘(𝑛𝑘 × 1) is the vector of biases for layer k, 𝑎𝑘(𝑛𝑘 × 1) is the 

vector resulting from the operation on layer k, and ℎ𝑘(𝑛𝑘 × 1) the vector of activations resulting 

from said layer after applying an activation function on it. Activation functions are nonlinear 

functions that enable the network to learn complex patterns in data. The goal of activation functions 

is to convert the output of a linear transformation, as shown in equation (4.102), into a nonlinear 

transformation that allows complex patterns in the input data to be captured. There are a number 

of characteristics that activation functions must have. The necessary ones are those of continuity 

throughout the defined domain and of being a non-decreasing monotonic class function. There are 

some other desirable characteristics for the formulation of a good activation function: the 

characteristic of being continuously differentiable, as well as the fact that the derivative is 

monotonic in order not to have problems with optimization in the form of a gradient since functions 

where the derivative is nonexistent can cause errors in training progress. Another desirable 

property is the approximation of the identity near the origin, that is, functions that, at the origin, 

have any constant value but a value of the derivative that is different from zero. Taking the theory 

to a more pragmatic level, functions that do not have a high computational cost are needed, since 

neural networks are inherently expensive in terms of training time. This can, for example, be 

optimized by trying to find an expression for the derivative that can be expressed in terms of the 

value of the function without a derivative. Another function is to model the output to be predicted 

in the form of a probability distribution; that is why we usually use a series of different activations 

for the hidden layers and others for the output layer, making these last activations dependent on 

the problem that is being solved. Some of the best-known activation functions are: 

 4.4.1 Linear Activation Function 

The input has a directly proportional relationship with the linear activation function, which means 

it can increase or decrease its output. This allows for the linear activation function to solve the 

issue of zero regression in the binary step function. Additionally, the linear activation function can 
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output any value between negative infinity and positive infinity, making it more flexible than the 

binary step function, which is limited to only two output values (0 or 1). The identifier may take 

the form of: 

 𝐹(𝑧) = 𝑎𝑧                                                              (4.103) 

 

where the user may choose any constant value for variable a. 

 

 
 

Figure 4.5 Linear activation function. 

 

The derivative of the function f(x) in this case is not zero but rather equal to the value of the chosen 

constant. The gradient is not zero but rather a constant value irrespective of the input value x, 

indicating that the weights and biases will be changed throughout the backpropagation phase even 

if the updating factor remains the same. Since the neural network would not reduce the error 

because the gradient would be the same for each iteration, adopting a linear function is not 

particularly advantageous. In addition, the network will not be able to extract complex patterns 

from the data. Therefore, linear functions are suitable for straightforward tasks and situations 

where interpretation is necessary [211]. 

 

4.4.2 Sigmoid Activation Function 

The sigmoid function is a non-linear function that is continuously differentiable, monotonic, and 

has a fixed range between 0 and 1. However, as you mentioned, the sigmoid function can suffer 

from the vanishing gradients problem, which can make it difficult for deep neural networks to 

learn. The sigmoid function is defined as: 

 𝑓 (𝑥) =
1

1+𝑒−𝑥
                                                                                                                              (4.104) 
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Where, x is the input to the function and f(x) is the output of the function. The sigmoid function is 

commonly used as an activation function in the neurons of artificial neural networks, especially in 

the context of binary classification problems. The derivative of the sigmoid function can be 

computed as: 

 𝑓′(𝑥) = 𝑓(𝑥) ∗ (1 − 𝐹(𝑥))                                                                                              (4.105) 

 

 
Figure 4.6 Sigmoid Function. 

 

4.4.3 Tanh Function 

Like the sigmoid function, the hyperbolic tangent function is continuous and differentiable, and its 

outputs are bounded between -1 and 1. The hyperbolic tangent function also has an advantage over 

the sigmoid function in that its derivative is steeper around the origin, which means that the 

gradient does not saturate as quickly as the sigmoid function for inputs with large absolute values. 

However, like the sigmoid function, the hyperbolic tangent function can still saturate at very high 

or low values, which can lead to vanishing gradients in deep architectures. It can be defined as: 

 

 𝑓(𝑥) = 2𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) − 1                                                    (4.106) 

 

 
 

Figure 4.7 Tanh Function. 
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4.4.4 Rectified Linear Activation ReLU Function 

ReLU function is widely used in practice and can be defined by 

 𝑓(𝑥) = max (0, 𝑥)                                                        (4.107) 

 

 
Figure 4.8 ReLU Activation Function. 

 

The activation function in neural networks is computationally efficient and can help address the 

problem of vanishing gradients that can occur with other activation functions. Even so, it has 

problems with activations in regions where the input is negative (x < 0) or where the ReLU 

gradient is 0, because the weights are not updated during the process, which implies that those 

neurons go to a non-activation state. During the training, In addition to the fact that the activation 

can acquire very high values for certain inputs, a normalization prior to the use of architectures 

based on ReLU activations is necessary, as is an initialization of the weights in accordance with 

their characteristics.  

4.4.5 Leaky ReLU Function 

It is an improvement to ReLU function. It can be expressed mathematically as: 

 𝑓(𝑥) = { 𝑥   𝑥>0
𝛼𝑥   𝑥≤0

}                                                                      (4.108) 

 

It is a variant where it is intended to solve the problem of "dead" neurons in ReLU due to zero 

gradients with a zone for negative inputs with a decreasing gradient controlled by a constant of 

magnitude 𝛼. 
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Figure 4.9 Leaky ReLU Function. 

 

4.4.6 Softmax Activation Function 

Softmax is a generalization of the sigmoid function and is used when the categories to be modeled 

are mutually exclusive, that is, each instance belongs to only one class. When modeling non-

exclusive classes, the sigmoid activation can be used, which produces a probability for each class 

that does not have to add up to unity, which is useful in multilabel problems. Also, it can use the 

previous activations to model outputs in certain ranges. This flexibility provided by neural 

networks is one of the reasons why they are widely used in practise and in the field of pattern 

recognition. Softmax has a function that represents a probability distribution: 

 
𝑓(𝑥) =

e
𝑥𝑗

∑ e
𝑥𝑗

𝑗
                                                           

(4.109) 

interpreting the result as probabilities of the type 𝑦𝑗(𝑗) = 𝑝(𝑐𝑙𝑎𝑠𝑠 = 𝑗|𝑥). 

In time series prediction problems, the goal is typically to predict a continuous value at some point 

in the future given a sequence of historical data. In this context, a common approach is to use a 

neural network with a linear output layer, which is appropriate for regression problems where the 

goal is to predict a continuous value and can be viewed as a conditional Gaussian distribution with 

mean and variance given by the output of the network like: 

 𝑝(𝑡|𝑥) = 𝑁(𝑡:𝑊ℎ + 𝑏)                                                               (4.110) 

 

Where, t is the target variable at a future time point, x is the historical data, W is the weight matrix, 

h is the output of the hidden layer of the neural network, b is the bias vector, and N( ) is the 

Gaussian distribution. The mean of the Gaussian distribution is given by the linear combination 

𝑊ℎ + 𝑏, which is the output of the neural network, and the variance is not explicitly specified in 
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this expression. In practice, the variance is often assumed to be constant or modeled as a function 

of the input x or some other parameters. 

 

4.4.7 Choosing the Right Activation Function  

Numerous factors need to be taken into account for better performance and fewer inaccurate 

outcomes, including the number of hidden layers in a network, training techniques, hyperparameter 

tweaking, etc. One of the most important considerations is the activation function. Selecting the 

appropriate activation function for any given activity may be a laborious process that calls for 

extensive study and investigation. The decision of which activation function to use is context-

dependent, or it depends on the task that needs to be completed, rather than being governed by any 

general guidelines. Depending on the sort of system that is being created, several activation 

functions each offer advantages and disadvantages of their own. 

 

4.5 Recurrent Neural Networks (RNN) 

Artificial intelligence has been widely used for predictions of temporal sequence data. RNN was 

used and presented satisfactory results [212]. The idea behind the architecture of recurrent neural 

networks is that each time step shares the same progressive (i.e., current) internal state, and the 

neural network has information not only about the current time step but also about the previous 

one. Such an implementation is achieved, for example, by establishing a joint connection between 

hidden layers and receiving a signal from the previous time step to the hidden layers of the current 

time step, as shown in Figure 4.10.  

 

 
Figure 4.10 RNN Traditional network. [213] 

 

The connection between the listed elements can be formalized as follows: 

 

 ℎ(𝑡) = 𝑓(ℎ(𝑡 − 1), 𝑋(𝑡), 𝜃)                                                      (4.111) 
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Where, f is the direct propagation function, ℎ(𝑡) is the state at time t, 𝑋(𝑡) is a vector of input 

signals, and 𝜃 is a vector of parameters. 

Like most neural networks, recurrent neural networks were described quite a long time ago. The 

vanishing gradient problem refers to the situation in deep neural networks where the gradients of 

the parameters, which are used to update the weights during training, become very small, causing 

the optimization (minimizing the error) process to stall. This can occur because the gradients are 

multiplied many times during backpropagation, leading to an exponential decay of their 

magnitude. As a result, the weights are not updated effectively, leading to slow or ineffective 

learning. The problem of the vanishing gradient arises because, by passing through the layers of 

the neural network and propagating in the network, vectors are subject to multiplication operations 

that significantly increase or decrease their value, especially in recurrent neural networks. Due to 

the fact that the composition of connections between the layers of neural networks is carried out 

using a multiplication operation, the derivatives in these cases are vulnerable to exaggeration of 

the value (the so-called "explosion") or, vice versa, to an excessive decrease in the value and 

disappearance. If it gets into a situation with an excessive increase in the gradient, then such a 

gradient is called "explosive," and in this case, each weight will be too large and the training of 

the neural network will be impossible. The gradients of these weights saturate at the highest end, 

meaning they are considered too powerful. However, "explosive" gradients can be solved 

relatively easily because they can be truncated or dissected. Also, the described neural network 

has a significant drawback: it does not have the ability to get an estimate for events that happened 

a long time ago; that is, speaking in terms of hidden layers, the influence of the hidden layers of 

the recurrent neural network decreases over time, which concludes that this type of neural network 

can be used for forecasting and analysis of time series that do not contain a large amount of data. 

This is because the gradient of the loss function decays exponentially with time [214]. Deepened 

multi-layer neural networks are now called "deep learning." However, the vanishing gradient 

problem remains a challenge for complex models. To use a recurrent network to solve the given 

task of forecasting and time series analysis, it must be modified to be able to receive data from 

hidden layers that have an impact on the current internal state, record and store this data in some 

way, and then operate on or draw conclusions about these data and use the received information 

to build a forecast. Recurrent neural networks that have this modification are called "neural 

networks with long short-term memory" and are denoted as LSTM. 
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4.6 Neural Networks with Long Short-Term Memory 

Long short-term memory networks (LSTM) are a special type of recurrent neural networks (RNN) 

to overcome the vanishing gradient for nonsequential data [215, 216]. The most obvious difference 

between LSTM and RNN is that LSTM addresses the vanishing gradient problem by introducing 

memory cells that allow information to be stored and processed over a long period of time. 

Memory blocks are more complex and intelligent than traditional neurons. The vanishing and 

exploding gradient problems are common in traditional RNNs and can be addressed by using the 

LSTM architecture, which uses memory cells to maintain information over a longer period of time 

and avoid the gradients from either vanishing or exploding during backpropagation through time. 

The vanishing and exploding gradient problems can occur in RNNs when matrix weights are either 

too small or too large, respectively. When the matrix weights are small (less than 1.0), learning 

becomes very slow or stops working because the incident gradient signal is very small, which 

tends to disappear, with the result that it is difficult to learn long-term dependencies in the data. If 

the matrix weights are large (greater than 1.0), the learning will never converge because the 

gradient signal is too large, and this leads to the so-called gradient explosion. To address these 

problems, the LSTM architecture was developed, which uses memory cells to maintain 

information over a longer period of time and avoid the vanishing or exploding gradient problems 

during backpropagation through time. LSTM was introduced in 1995 as an extension of RNN and 

has since become a popular solution for processing sequential data in many applications [217]. 

LSTM has more power to learn from experiences in time series analysis than the recurrent neural 

network [218]. LSTM is realized in Figure 4.11 by replacing the middle layer unit of an RNN with 

a block with memory and three gates [219]. 

 

 
Figure 4.11 Four interconnected layers form the repeating module in an LSTM. 
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The memory cell of the LSTM combines a sigmoid layer and gates with the ability to add and 

erase information from the cell state, consisting of a multiplier (see Figure 4.12).  

 
Figure 4.12 Memory cell 

In the context of Figures, 4.11/4.12 the memory cells are indeed a type of hidden module. In an 

LSTM network, the memory cells serve as an internal memory that allows the network to 

selectively remember or forget information from previous inputs. The number of training 

sequences, or the size of the training dataset, can also influence the optimal number of hidden 

modules in a neural network. A larger training dataset may allow for more complex models with 

a larger number of hidden modules, while a smaller dataset may require a simpler model with 

fewer hidden modules to avoid overfitting. However, the relationship between the number of 

training sequences and the number of hidden modules is not straightforward and may depend on 

other factors such as the complexity of the problem and the specific architecture of the network. 

The gates in an LSTM network play a crucial role in allowing the network to selectively add or 

delete information from its memory. These operations are carefully regulated by internal structures 

called gates. These gates allow information to be added or removed from memory at a given time. 

They are made up of a one-layer neural network (normally with a sigmoid as the activation 

function) together with an arithmetic operation (multiplication or addition), as in Figure 4.13. 

 
Figure 4.13 Gates 

The sigmoid layer describes what information to give to the components by converting the 

information into a number between 0 and 1. If the output is 1, all information is passed; if it is 0, 

no information is allowed to pass. The memory cell in LSTM consists of three different gates. 

These are the forget gate that decides whether to keep the information, the input gate that activates 

the updated information from the last cell, and the output gate that chooses what information to 



- 68 - 

 

output to the next cell. In LSTM, information is allowed to flow along the series while the 

information remains unchanged to maintain integrity for a long time. 

Next, the internal operation and the flow of information in an LSTM will be explained gradually: 

 The LSTM decides what data to remove from memory as its initial step. The door called 

"Forget gate" makes this selection. As can be seen in Figure 4.14, ht−1 and xt are 

concatenated, and the result will be the input to the small network that makes up the forget 

gate. The result of the network is used to decide if the state of the memory will be left as it 

is or if it will be altered by deleting some element. 

 

Figure 4.14 Forget gate 

 𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                                      (4.112) 

 

 The next stage is choosing which new data should be kept in the memory state. This is 

divided into two parts. First, the "input gate layer" of the sigmoid layer provides the values 

that need to be updated. The new candidate values are then created by the tanh layer into a 

vector Ĉt of the new candidate values, which can be added to the state. The next step is to 

combine the two to update the state. 

 

Figure 4.15 Input gate 

 𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡]+ 𝑏𝑖)                                                            (4.113) 

 �̂�𝑡 = tanh(𝑊𝑐. [ℎ𝑡−1, 𝑥𝑡]+ 𝑏𝑐)                                                                                        (4.114) 
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At this point, the memory state can be updated based on the previous memory state Ct − 1 and the 

new input for that time step Ct. The forget gate ft controls the extent to which previous information 

is forgotten or erased from memory, and the input gate 𝑖𝑡 controls the extent to which new 

information is added to memory. These gates are used to compute the new memory state. By 

multiplying the previous state by the ft, and forgetting a certain amount of information as a function 

of the ft. Then i is added to memory, and it is updated with new 𝑖𝑡 ∗ �̂�𝑖 values that may be useful 

in the future. 

 
Figure 4.16 Memory update 

 

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̂�𝑡                                                                                                          (4.115) 

 

Finally, need to decide what the LSTM cell output will be. This will be obtained as the product of 

two elements. The first of them will be the output of the sigmoid network, which will be used to 

decide which elements of the memory will be combined. The second element will be the filtering 

of data from memory by a tanh (to push the values to be between -1 and 1). These two elements 

will multiply, resulting in the new output of the cell. 

 
Figure 4.17 Output 

 

 𝑂𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                                   (4.116) 

 ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)                                                                                                                          (4.117) 
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It makes sense that the learning phase of LSTMs takes longer than that of a traditional neural 

network or RNN due to its complex structure, particularly the existence of three weight matrices 

(forget gate, input gate, and memory calculation weight). However, an LSTM performs far better. 

In reality, due to their ability to manage long-term dependency, LSTMs are now one of the most 

popular recurrent network types, with amazing results. 

 

4.7 Forecast Evaluation Measures 

To evaluate the accuracy level and the performance of the model and network, several popular 

statistical metrics are available. 

4.7.1 Mean Absolute Error (MAE) 

In time series analysis, the mean absolute error (MAE) is a widely used indicator of forecast error. 

It is determined by averaging the total set of data absolute discrepancies between the original and 

anticipated values. A lower MAE value denotes a better forecast because the MAE is a linear 

measure of error and is always positive. The following formula can be used to calculate the MAE: 

 𝑀𝐴𝐸 =
1

𝑁
∑ |𝑜𝑖 − 𝑝𝑖|
𝑁
𝑖=1                                                                                          (4.118) 

Where, N is the number of data points in the data set and Σ represents the sum of the absolute 

differences between the actual and predicted values. 

 

4.7.2 Root Mean Square Error (RMSE) 

The square root of the mean square of all errors refers to the root mean square error (RMSE). In 

both statistics and machine learning, the use of the RMSE in regression is highly popular, and it is 

regarded as a superior all-purpose error metric for numerical predictions. The higher the RMSE, 

the greater the error, while the lower the RMSE, the better the model is at making accurate 

predictions. A characteristic of the RMSE is that the errors are squared before being averaged, 

which results in a much bigger weight being ascribed to larger errors. Therefore, an error of 10 is 

100 times worse than the error of 1. It is determined by: 

 
𝑅𝑀𝑆𝐸 = √

∑ (𝑜𝑖−𝑝𝑖)
2𝑁

𝑖=1

𝑁
                             

(4.119) 

 

RMSE is based on the sample size (N) and the observation scale and displays the magnitude of the 

estimation error [220]. 
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4.7.3 Mean Absolute Percentage Error (MAPE) 

In time series forecasting, MAPE is frequently employed. It is represented as a percentage and 

derived by: 

 𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑜𝑖−𝑝𝑖

𝑜𝑖
|𝑁

𝑖=1                                                                                          (4.120) 

MAPE has been used as a mean of comparison between several algorithms for predictions. It is 

considered highly accurate when the value is less than 10% and a reasonable forecast when the 

value is 11-20% [221].  

 

4.7.4 Coefficient of Determination (R2) 

The coefficient of determination is used to calculate the strength of the linear relationship between 

the actual and predicted values of the models. In terms of the equation, it looks like this: 

 
𝑅2 = 1 −

∑ (𝑜𝑖−𝑝𝑖)
2𝑁

𝑖=1

∑ (𝑜𝑖−�̂�𝑖)
2𝑁

𝑖=1

                                     
(4.121) 

The closer the value is to one, the better the model performs. When the coefficient is equal to 0.80, 

the regression line should contain 80% of the data points. A larger value indicates greater 

observations' quality of fit [221]. 

For all measures, N is the total sample count used to determine the statistical assessment criteria, 

𝑜𝑖 observation value, 𝑝𝑖 is the forecasted and �̂�𝑖 is the average of the actual observation values. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

5.1 Introduction 

This chapter presents the results obtained after applying the models used in this study to the 

collected data. It is divided into four sections relating to different experimental conditions. The 

most objective possible conclusions are drawn in order to highlight the strengths and weaknesses 

of the applied models depending on the situations in which they were used. The first section of 

this chapter covers topics such as time series analysis and forecasting of wind speed data. The 

second section discusses the results of wind speed prediction using long-term memory recurrent 

neural networks. A comparison of the efficiency of ARIMA and LSTM models for wind speed 

prediction and validation is presented in the third section. The final section relates to the use of 

deep learning techniques for solar energy forecasting. The results obtained in each section were 

analyzed and compared in order to identify the most effective models for prediction in different 

conditions. Results were evaluated based on several performance measures. These metrics allow 

a quantitative assessment of the accuracy of models and help determine which models provide the 

most accurate predictions. The results of this study provide valuable insights into the use of 

different models to predict wind speed and solar energy and can help develop more accurate and 

effective models for this application in the future. 

 

5.2 Analysis of Time Series and Forecasting of Wind Speed Data 

The time series under study is composed of 60 data samples and represents the average monthly 

wind speed from January 2015 to December 2019 in Chester, a Canadian village located in a part 

of the Nova Scotia municipality region, as a source of information to allow testing of the model 

used in this analysis. The data was tested in the RStudio statistical data processing program, and 

the program code was written in the R programming language, a free and open source software 

development environment widely used as statistical data analysis software that has become a de 

facto standard for statistical programs. Using R for time series analysis can accomplish two goals: 

the first is to determine the nature of the series, which includes selecting the main components of 

the time series and studying them in depth, and the second is to predict future values of the time 
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series using past values [222]. Figure 5.1 shows the average monthly wind speed behavior used in 

this analysis. 

 

Figure. 5.1.  Time series of the wind speed in Chester 

 

The series of data were modeled through the application of descriptive statistics concepts to 

analyze how they behave; among the applied concepts are the arithmetic average, used to 

calculate the general average of the wind speed in the studied period, and the standard deviation, 

used to compare differences between sets of values. The minimum and maximum values of the 

monthly average wind speed are also recorded, as shown in table 5.1 

Table 5.1: Statistical parameters of the time series. 
Sample Size (N) Mean St. Dev. Min Max 

60 17.754 3.601 11.7 26.3 

In Figure 5.1, seasonal behavior is observed in the time series, but there are no trends. There is a 

regular succession of "peaks and troughs" that usually occur due to fluctuations associated with 

the seasons, which are repeated every year (with greater or lesser intensity). Time series that have 

a trend and/or seasonality are not stationary; hence, it is important to utilize the right methods in 

these cases. It can be checked by decomposing the time series. In the additive model, a function 

built into R that can be used to decompose a time series into its directional, seasonal, and random 

components, seasonal variations are represented by seasonal indices, or seasonal factors, one for 

each period in which the year is divided (if the series is registered monthly, there are 12 indices). 

The seasonal indices modify the trend when they are added, and if all indices are close to or exactly 

equal to zero, then the seasonal components do not seem to have a great effect on the series; if the 
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indices are substantially different from zero, both positive and negative, the trend value will be 

modified by them, indicating the influence of seasonal components in the series. 

 

Figure 5.2. Decomposition of additive time series 

If the graphs in Figure 5.2 are carefully examined, it can be determined whether the data fit all of 

the ARIMA modeling requirements, particularly invariance and seasonality. This leads to choosing 

the Dickey-Fuller test. The test results show that the data is non-stationary since the P value is 

0.057, which is higher than 0.05. Therefore, that leads to transforming the series in Figure 5.1. 

When using the first differences, it turns out that the series still displays the trend, and this leads 

to the use of the second differences to remove the trend component and makes the series stationary 

in mean and variance, as shown in Figure 5.3   

 

Figure 5.3. 2nd difference of time series 

Note the scale of the graph. The values oscillate around zero: if greater than zero, they indicate 

components that increase the trend; if smaller, they decrease it. 

The process of defining the structure of an ARIMA model involves making the time series 

stationary and then analyzing the autocorrelation function (ACF) and partial autocorrelation 

function (PACF) plots of the difference series to determine the number of autoregressive (AR) and 

moving average (MA) terms needed. The highest correlation lag in the ACF plot is used to 
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determine the number of AR terms (p), while the PACF plot is used to determine the number of 

MA terms (q). The three variables, p, d (number of differences), and q, are positive integers that 

indicate the arrangement of the autoregressive, integrated, and moving average terms in the 

ARIMA model. The analysis of the ACF and PACF plots plays a crucial role in choosing the 

appropriate ARIMA model for the data. From the plot of (ACF) and (PACF) of the difference 

series, as shown in Figures 5.4 and 5.5, it is possible to determine the required AR and MA terms 

selected to define the model. 

 

Figure 5.4. Autocorrelation function. 

 

 

 

Figure 5.5. Partial autocorrelation function. 

The amount of AR and MA terms required to define the model can be inferred from the plots of 

the difference series ACF and PACF, as shown in Figures 5.4 and 5.5From the information, we 

conclude that the initial time series was first converted into a second difference series, and then 

the ACF and PACF plots of the second difference series were used to determine the possible AR 

and MA terms of the SARIMA model. The specific SARIMA model is (1,2,1)(2,2,1)12, which 

indicates that the model has an AR (1) term, a seasonal AR (2) term with a period of 12 (i.e. 

monthly seasonal), and MA (1), and seasonal MA (1) with a duration of 12. Table 2 presents the 

candidate models and the corresponding statistical criteria for each model to determine the best 

model for predicting future wind speed. Based on these criteria, SARIMA (1,1,2)(2,1,1)12 was 

found to be the best predictive structure for Chester wind speed. 
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Table 5.2: RMSE, MAE and MAPE for 5 SARIMA model chosen 

Model RMSE MAE MAPE 

(2,2,1)(2,1,1)12 2.156 1.41 8.085 

(1,1,2)(2,1,1)12 1.968 1.295 7.396 

(1,2,1)(2,1,1)12 2.248 1.553 8.99 

(1,1,1)(2,1,1)12 2.175 1.438 8.24 

(1,2,1)(2,2,1)12 2.66 1.546 9.473 

 

Note that the MAPE value is less than 10%, and in this case, it is considered highly accurate. If 

the proposed model is adequate, the residuals must be “close” to the errors and, therefore, must 

have a zero mean, constant variance, and be approximately uncorrelated (white noise), It is a 

random signal (a stochastic process) that is characterized in that its signal values at two different 

instants of time are not statistically correlated. Consequently, its power Spectrum density is 

constant. This means that the signal contains all the frequencies, and they all have the same power. 

The auto-correlation function (FAC) of the residuals is a very helpful tool for confirming the 

presumption that the errors are white noise. Figure 5.6 shows the random distribution of 

standardized residuals and does not follow a particular pattern.  

 

 
Figure 5.6. Standardized Residuals 

 

To rule out structural breaks. The auto correlation function (ACF) for the model showed no signs 

of correlation since the mean of the residuals is close to zero and all of the spikes were within the 

standard error bars as shown in Figure 5.7. 

 
Figure 5.7. ACF of Residuals 

 

Figure 5.8 shows the results of the Ljung-Box test, which tests the hypothesis of whether the 

residuals of a time series model are independently distributed or not. The p-values in the figure 

indicate the likelihood of observing the test statistic under the assumption of independence. If the 

p-value is greater than 0.05, the residuals are most likely independent, and the null hypothesis is 

not rejected. It is clear from the figure that the p-value of the test is above the blue dashed line at 
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0.05. This indicates that the residuals of the time series model are independently distributed, which 

is a common assumption made when structuring the model. 

 

Figure 5.8. P values Ljung-Box statistic 

 

Figure 5.9 shows the histogram of the residuals; it is noted that it is symmetrical and has an almost 

normal distribution form. 

 
Figure 5.9. Histogram of residuals 

 

The wind speed forecast using the ARIMA method is presented in Figure 5.10 for a time series 

that corresponds to the wind speed observations over a period of six years. Five years were used 

in the modeling, and the year ahead was used to confirm the accuracy of the prediction made using 

the method. Shaded areas in the figure represent 95% confidence intervals in the prediction. 

Seasonal ARIMA models proved highly effective in producing modified time series on the 

observed data for the study areas, as they could be managed, for example, to represent the realistic 

characteristics of the local seasonality and their high accuracy, which provided accuracy in 

predictions. 
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Figure 5.10. Forecasts from ARIMA (1, 1, 2) (2, 1, 1)12 

 

A summary of the results of this section is due to the great importance of wind speed when it comes 

to optimizing wind utilization. SARIMA technology was used to calculate wind speed forecasts 

for the Chester region. The results showed that the SARIMA(1,1,2)(2,1,1) structure had the best 

prediction accuracy of the models considered based on time series data from 2015 to 2019. To 

select the best time series model, RMSE, MAE, and MAPE were taken into account. The MAPE 

model score is 7.396%; this is an indication that the model is classified as highly reliable, and 

decision makers can benefit from it in developing plans. In general, this model is adaptable, can 

deal with seasonality, and only needs the latest model from a time series. However, it has 

disadvantages in that it is unlikely to perform well on long-term predictions, requires a lot of 

computational power, and can become subjective, requiring a high level of analysis of basic 

statistics. 

5.3 Application of LSTM-RNN to Forecast Wind Speed 

 

Although wind power has many advantages, the biggest difficulty is that wind speed is not constant 

over time. For this reason, it is very important to forecast the wind speed and, consequently, to 

know the amount of clean energy that can be produced. However, the task of forecasting wind 

speed is not an easy one, especially when you want to forecast a long horizon. Forecast models 

that use artificial intelligence have become popular in the last few decades as serious contenders 

for classical statistical forecasting models. In this section, the focus is on the usage of the LSTM 

algorithm for forecasting wind speed, along with a comparison of the method's prediction 

efficiency and accuracy when applied to various wind speed time series used for training and 

testing. The proposed model was applied to measure wind speed data from a station at Halifax 
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Dockyard in Nova Scotia. Figure 11 displays wind speed data measured at an altitude of 3.80 m 

as the source for two separate seasons, spring (March 2015) and summer (July 2015). For both 

seasons, data were collected at hourly intervals, using 576 read observations at 24 days and 168 

reads at 7 days for the training and test sets, respectively. 

 

 

Figure 5.11. Time series of the wind speed in Halifax, Canada. 

MATLAB software was used for the training process of the LSTM, which is a powerful type of 

recurrent neural network used in machine learning and designed to handle sequence dependencies. 

The LSTM was designed to train the sequence regression network, whose responses are training 

sequences with changing values in a one-time step. That is, using the most recent time steps, the 

LSTM network learns to predict the next time step. This is referred to as the window, and its size 

is an adjustable parameter for each issue. The choice of window size depends on the specific 

characteristics of the data and the modeling objectives and may require some trial and error 

experimentation to find the optimal value. For example, the current time step (t) and two previous 

time steps (t-1 and t-2) are used as input features to predict the value for the next time step (t+1). 

To implement the model, different window sizes ranging from 24 to 168 time steps (corresponding 

to 1 hour to 1 week of data) were chosen. The purpose of this study is to thoroughly and 

methodically evaluate the effectiveness and application of the suggested model, which is intended 

to forecast two series of wind speed data for two distinct seasons with two different meteorological 

characteristics, namely spring (March 2015) and summer (July 2015), respectively. Each data 

series is divided into 1–576 (24 days) observations and 577–744 (7 days), respectively, as the 
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training and test sets. Training data were standardized to have a zero mean and unit variance at 

prediction time to prevent training divergence. The best training parameter to obtain the lowest 

RMSE is found using an initial learning rate of 0.005. Figures 5.12 and 5.13 show the comparison 

of observed values with predicted values of hourly wind speed series collected in the spring (1–31 

March 2015) and summer (1–31 July 2015), respectively, for evaluation of the LSTM, which was 

trained once (the value of the previous prediction) and reused to make a prediction for each time 

step between predictions. This means that no updates are made after the model has successfully 

fitted the training data. For this reason, the model in this instance is referred to as the “fixed 

model.” Options for LSTM network training were chosen for 200 hidden modules. The maximum 

number of iterations is limited to 250, and the initial learning rate is set at 0.005. To stop the 

gradients from exploding, the gradient threshold is set to 1. After 125 epochs, the learning rate is 

reduced by a factor of 0.2 (full passes through the training data). 

 

Figure 5.12. Wind speed prediction using LSTM for Spring (March 2015) data: (a) Comparison of real values and 

forecast values; (b) Error measurements on the RMSE scale. 
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Figure 5.13. Wind speed prediction of existing LSTM for Summer (July 2015) data: (a) Comparison of observed 

values and forecast values; (b) Error measurements on the RMSE scale. 

In both Figures 5.14 and 5.15, the LSTM state is updated with the most recent information for the 

time series prediction by updating the state values with the forecasted values from the test set and 

making them available to the model, so it can forecast on the following time step and update the 

state of the network after each prediction. At each time step, the memory state of the LSTM 

network is updated based on the previous memory state and the new input for that time step. The 

forget gate ft controls the extent to which previous information is forgotten or erased from memory, 

and the input gate it controls the extent to which new information is added to memory. These gates 

are used to compute the new memory state. By incorporating the previous cell state, Ct−1, into the 

input, forget, and output gates, the LSTM can better capture the dependencies and patterns in the 

time series data. This makes it more effective at handling complex sequences and longer-term 

dependencies. By comparing the predicted values with the actual values in the test data set, the 

error score provides a summary of how well the model is able to capture the underlying trends in 

the data. The root mean square error (RMSE) is used because it penalizes large errors and results 

in a score in the same units as the predicted data, which is wind speed per hour. By calculating the 

error score of the modified LSTM, the RMSE value declined in the spring (March 2015) series by 

4.5845 and in the summer (July 2015) series by 4.9392, due to their different characteristics. Based 
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on the results of this study and the results of many previous studies of different prediction models, 

the research is still ongoing to develop a model that gives results with the same accuracy for 

predicting data with different characteristics. 

 

Figure 5.14. Wind speed prediction applied LSTM model for spring (March 2015) data: (a) Comparison of actual 

values and forecast values; (b) Error measurements on the RMSE scale. 
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Figure 5.15. Wind speed prediction of proposed LSTM for summer (July 2015) data: (a) Comparison of acual values 

and forecast values; (b) Error measurements on the RMSE scale. 

Table 5.3 shows the prediction error measurements using the RMSE metric for the two (July 2015) 

and (March 2015) data series when applying the modified LSTM model proposed in this work. 

Table 5.3. Error measurements of LSTM model on the RMSE scale. 

                           Time Series  

RMSE Spring (1‒31 March 2015) Summer (1–31 July 2015). 

 8.5128 4.7796 

 

This work focuses on updated long term memory (LSTM), which has been suggested for predicting 

wind speed. In the case of forecasting wind speed, the observed value updates the network state 

rather than gates, allowing the real value of the time steps between forecasts to be determined. 

This is due to the fact that each time the LSTM runs, the state of the cell changes input, forget, and 

output. A statistical measure known as the root mean square error (RMSE) was used to assess the 

effectiveness of the model. The results of the model showed an increased ability to predict wind 

speed. 
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5.4 Comparison of the ARIMA and LSTM Predictive Models and the Accuracy of Wind 

Speed Prediction 

In this section, wind speed (km/h) data for the Halifax region has been prepared for the period May 

1, 2021, to June 20, 2021 (https://climate.weather.gc.ca/historical_data/search_historic_data_e), in 

order to capture wind speed series characteristics at hourly time scales. Wind speed time series, 

such as those shown in Figure 5.16, are characterized by basic knowledge of statistics such as 

time-varying mean, variance, and normal distribution, which are common properties of non-

stationary time series. The signal cannot easily yield typical patterns, so this form of data requires 

extra attention and understanding. 

 

Figure 5.16. The length of the time history of the time series. 

ARIMA and LSTM models are compared for forecasting hourly wind speed data in Halifax, 

Canada. 

5.4.1 ARIMA Model 

The investigation period to determine the structure of the ARIMA model extends from May 1 to 

June 20, 2021. The total hourly wind speed time series data was 1224 points, divided into the first 

1200 points for building the model and the remaining 24 points for forecasting and evaluating the 

performance of the model. The model parameters p of AR were determined as the autoregressive 

part order, and the q-order of MA represented the moving average part order in Figures 5.17 and 

5.18, respectively, which represented the ACF and PACF graphs of the wind speed data. From 
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Figure 5.18, which represents the PACF plot, we notice that the cut-off is at lag 2, which is the 

order of AR and is acceptable for the actual data. 

 

Figure 5.17. Autocorrelation functions for real wind speed data. 

 

Figure 5.18. Partial autocorrelation functions for real wind speed data. 

The series in Figure 5.16 displays recurrent patterns with easily discernible cycles. The underlying 

processes of interest may exhibit periodic activity, and their identification will depend on the speed 

or frequency of oscillations that define the behaviour of the main series. The series shows two 

main types of oscillations: cyclical oscillations, which are ups and downs in the form of sinusoidal 

waves, and a slower frequency that appears to repeat itself frequently. In general, non-stationary 

data is difficult to model or predict. Results using non-stationary time series are misleading 

because they can indicate a relationship between two variables when neither is present. The 

characteristics of the data are changed from variable variance and a mean that does not remain 
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closed or revert to a long-run average over time to a fixed long-run average with a constant 

variance that is independent of time by this transformation. From the autocorrelation function 

(ACF), it can be concluded that the data series has a nonstationary nature, and the reason for this 

is the tendency of its values to deteriorate slowly, making it necessary to convert it to a stationary 

one. This is done by taking the first difference of the original series data, as shown in Figure 5.19.

 

Figure 5.19. First difference of wind speed time series. 

To build an ARIMA model, the data must become stationary, as was done by taking the first 

difference and determining the extent to which the model needs AR or MA terms to correct any 

autocorrelation that remains in a different series. The values for the parameters p and q obtained 

from partial autocorrelation and autocorrelation analysis are not accurate. However, the value of 

the d parameter was considered to be 1, based on what the studies showed because the values of 

the time series under study must be stationary. The integrated wind speed data are shown in Figures 

5.20 and 5.21 ACF and PACF, respectively. It is possible that some of the ARMA (p, q) models 

with p and q taking values 1 or 2 will generate large PACF values at a 6 hour lag, but it is not 

guaranteed. 
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Figure 5.20. Autocorrelation functions for integrated wind speed data 

 

Figure 5.21. Partial autocorrelation functions for integrated wind speed data. 

The values of the p and q parameters were chosen to obtain the optimal model. For each set of 

parameters, a new model was created. To compare the models to one another, RMSE was used. 

The results are shown in Table 5.4. 
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Table 5.4. RMSE values for various combinations of orders AR (p) and MA (q). 

                              AR(p)   

  0 1 2 3 

 0 6.6490 4.4601 4.4275 4.4101 

MA (q) 1 4.4149 4.4101 4.2975 4.2912 

 2 4.4149 4.4037 4.2904 4.2996 

 

It is clear from table 5.4 that the lowest value was recorded by the RMSE with the model structure 

of the ARIMA (2,1,2), and this indicates that it is the optimal model for prediction. Wind speed 

predictions for the 24 hours ahead were made using the ARIMA (2,1,2) model. Actual wind speed 

data and forecasted values using the ARIMA (2,1,2) model are shown in Figure 5.22. 

 

Figure 5.22. Forecasts from ARIMA (2,1,2). 

5.4.2 LSTM Model 

In this section, the focus was on developing an LSTM regression network to predict wind speed 

using the MATLAB 2019b environment. The training parameters were optimized to achieve the 

best results, including a maximum number of 1000 epochs and an initial learning rate of 0.01, 

which was reduced by 0.2 after 125 epochs. To avoid the problem of gradient explosion, the 

gradient threshold was set to 1. The resulting model was called a static model because no updates 
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were made once it fit the training data set accurately. The optimal learning rate was found by 

testing different initial learning rates on a logarithmic scale, with the best training parameters 

resulting in the lowest RMSE and loss with a learning rate of 0.01. Figure 5.23 shows that the 

initial learning rate affects the training process of the network. If the learning rate is small, the 

training time will increase and may not reach the optimal point, while if it is high, the training 

results may become suboptimal or divergent. The large degree of weight change can cause the loss 

function to worsen. In summary, the results of network training improved, and the accuracy of the 

model increased when using a new initial learning rate of 0.01 in a 24 time-step test. This 

demonstrates the exceptional performance of LSTM in sequencing long time series data, resulting 

in a lower RMSE value. 

 

Figure 5.23. Training process with learning rate 0.01 and time step test as 24. 

LSTM differs from RNN in the hidden layer mechanism. During LSTM-RNN training, the update 

gates determine how much information is retained from the last state and how much information 

is taken from previous layers. The structure of the model is built by all the training data, and after 

validating each prediction, the model is updated. Thus, the model is ready to add two training 

epochs before proceeding with the next predictions. The RMSE is recalculated after canceling the 

prediction using the previously calculated mean and standard deviation. Figure 5.24 presents the 

results of a 24-step forecast of wind speed. It is noted that the forecasted data of the model in all 

training epochs is very similar to the real data, with no fluctuations that were too sharp, referring 

to the RMSE as the best overall test. This indicates that gradient explosion or a vanishing gradient 
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rarely occurs with the LSTM method. In addition, results were forecasted to fall within a 

reasonable range with no observable rise or fall. 

 

Figure 5.24. Prediction result with 24 time steps. 

Figure 5.25 shows the RMSE of all forecasting points of 24-step wind speed. 

 

Figure 5.25. RMSE result with 24 time steps. 

From the results presented in Table 5.5, it is evident that the LSTM model has the best prediction 

accuracy in terms of RMSE and MAE compared to the ARIMA model. 

Table 5.5. Summary of test statistical errors. 

Models RMSE MAE 

ARIMA 3.423 2.772 

LSTM 3.124 2.457 
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In Figure 5.26, the LSTM and ARIMA models are compared to forecast hourly wind speed data 

for Halifax, and it is clear that the LSTM model is more accurate than the ARIMA model in 

tracking the real data. 

 
Figure 5.26. Twenty-four hours ahead measured value and forecasted value of wind speed by ARIMA and LSTM 

models. 

 

After careful study of the results, it can be revealed that the algorithm based on the proposed LSTM 

model has an advantage for obtaining a better quality of time series prediction compared to the 

ARIMA model with the same data set, according to different evaluation scales. In comparison to 

other models, this has become a frequent focus in forecasting operations by researchers. As we 

know, normal RNNs can handle short term dependencies, but it is not possible to learn long term 

sequences. LSTM can be implemented with deep learning to obtain results suitable for such 

sequences. A study of the literature revealed that in previous academic investigations, the ARIMA 

model achieved superior results with a smaller amount of data. However, the abundance of data in 

the models proposed for this study shows that algorithms based on deep learning, such as LSTM, 

have more successful results than traditional methods, such as the ARIMA model. 

5.5 Solar Power Forecasting Using Deep Learning Techniques 

In this work, LSTM-RNN is proposed for its ability to handle features of time series data. It has a 

memory unit in the hidden layer that can remember the unit shape, allowing for long-term storage 

of data and making it suitable for dealing with long-term Photovoltaic (PV) data. The model has 
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been trained on 43,800 measured daylight hours with a 5-minute solar interval for the Halifax 

region, covering the days from January 1, 2017 to December 31, 2017, with training sequences at 

least 5 minutes long. The data is available from the Nova Scotia Community College (NSCC) for 

the Photovoltaic (PV) forecasting task for the days ahead in short time intervals (30 minutes), 

based on data previously recorded over one year. Figure 5.27 displays the PV data, measured from 

8 a.m. to 5 p.m. with an interval of 5 minutes. 

 

Figure 5.27. Shows the original photoelectric data 

 

This study used a long short-term memory (LSTM) algorithm to make predictions of photovoltaic 

data for two days (December 31 and June 30) every 30 minutes for a total of 7,300 values. The 

training data consisted of 7,280 data points, and the last 20 data points were used as a test set to 

evaluate the effectiveness of the proposed method. The LSTM was trained using MATLAB 

R2019b with an initial learning rate of 0.01 and a maximum epoch of 1000. The method to 

determine the optimal number of epochs was based on monitoring the performance of the model 

on the validation set during training and stopping when the validation error starts to increase 

(indicating overfitting). The data used in the case study was collected for one year during daylight 

hours (8 a.m. - 5 p.m.) at 5-minute intervals. This work summarizes the photovoltaic data at 30-

minute intervals to make half-hour predictions for the day ahead. The actual daily power 

generation is compared with the forecast in Figures 5.28 and 5.29, where Figure 5.28 shows the 

results for a day in December and Figure 5.29 shows the results for a day in June. The results 

indicate that the forecast is accurate and closely matches the actual data, particularly during the 
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winter period when the system generated relatively little power. In the summer, the LSTM model 

performed better than the MLP model. 

 
Figure 5.28. Shows one day 30 minutes ahead (December 31). 

 

 
Figure 5.29. Shows one day 30 minutes ahead (June 30). 

 

Based on the information provided in tables 5.6 and 5.7, the LSTM model has outperformed the 

MLP model in all performance criteria on both winter and summer days. 

 
Table 5.6. Performance assessment for the winter day 

 MAE MAPE RMSE R2 

LSTM 236.35 2.17 317.4 0.999 

MLP 600.17 4.158 799.9 0.9381 
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Table 5.7. Performance assessment for the summer day 

 MAE MAPE RMSE R2 

LSTM 676.34 0.275 883.5 0.791 

MLP 1545.5 0.755 1780.1 0.745 

The graph in Figure 5.30 compares the projected values from the LSTM model with the actual 

values of the 30-minute solar forecast for June. In conclusion, the LSTM model shows good 

consistency with actual values and has the ability to capture the trend in solar forecasts with 

minimal fluctuations. According to the results, the model can generalise effectively and avoid 

overfitting, gradient exploding, or a vanishing gradient problem. 

 

Figure 5.30. Prediction result of June (30 minutes interval) 

 

Figures 5.31(a) and (b) show the results based on the June 2017 solar forecast using the deep 

learning network LSTM. The first shows the ratio of mean daily solar energy during daylight hours 

from 8 a.m. to 5 p.m. in June (actual and projected) to time, and the second shows the change in 

prediction error (RMSE) over time, respectively. The figure demonstrates how well the forecast 

of the model results matches reality. However, it varies because of a number of atmospheric 

variables, including water vapour, clouds, and pollutants. 

 
Figure 5.31 (a). Forecast results and actual values in June. 
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Figure 5.31(b). RMSE result in June. 

The results highlight how crucial the time series were in training the models. The quality of the 

data and its presentation in an appropriate format to train the model is one of the factors that has 

an effective role in the efficiency obtained by the prediction model. However, the contribution of 

the different time series to the resulting prediction error has not been analyzed yet. While a 

particular performance of the model may be acceptable with certain time series data, it may be 

poor with other time series whose data has different characteristics. As a result, it is practical to 

take into account a variety of models while searching for reliable predictions. However, a variety 

of time series forecasting methods can be applied based on the methodology outlined in this paper. 

In summary of this section, the task of forecasting PV power for the days ahead at 30-min intervals 

was highlighted. In order to assess and examine the accuracy and performance of the suggested 

LSTM model, they were compared with those of the MLP model, which is often employed in 

literature. According to the comparison results, the proposed LSTM model provided values with 

sufficient accuracy for each category of days for all MAE, MAPE, RMSE, and R2 performance 

measures. Future photovoltaic power plants will be able to operate more effectively thanks to the 

proposed reliability of the model data. It seems that combining the concepts of artificial 

intelligence and energy efficiency promises a bright future, particularly in terms of enhancing 

energy sustainability, significantly reducing carbon dioxide, and digitizing the electricity sector. 
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CHAPTER 6 

Conclusion and Future Work 
 

6.1 Conclusion 

 

Renewable energy sources are becoming increasingly popular, including solar, wind, hydropower, 

and geothermal energy, due to their environmental friendliness and sustainability. Unlike fossil 

fuels, which emit greenhouse gases and contribute to global warming, with the rapid depletion of 

non-renewable energy sources, it is becoming increasingly important to explore new ways to 

harness renewable energy and make use of it in a more efficient and sustainable manner. The 

development of renewable energy forms is crucial for reducing the dependence on finite fossil 

fuels, mitigating the impacts of climate change, and promoting sustainable economic growth. As 

environmentally friendly new energy sources, wind and solar energy have become the clean and 

renewable energy sources with the most potential, the fastest development, and the most mature 

technology among all new energy sources due to their advantages of easy access and low cost. 

However, because wind and solar are extremely unstable energy sources and one of the most 

difficult meteorological elements to forecast, it has become critical to conduct ongoing research to 

improve the accuracy of wind speed and solar energy forecasts. The main aim of this thesis was to 

address the challenges posed by the fluctuating nature of renewable energy sources and improve 

the accuracy of forecasting in these areas. By focusing on wind speed, solar irradiance, and wind 

power ramp forecasting, the thesis aimed to contribute to the development of more effective and 

efficient methods for harnessing renewable energy and integrating it into the power grid. The 

results of the research conducted for this thesis will have important implications for the effective 

and sustainable development of renewable energy sources, and it will help address some of the 

challenges associated with their integration into the power grid. Time series modeling and 

prediction can be broadly categorized into two approaches: traditional methods and deep learning-

based methods. Traditional methods, such as the ARIMA family of models, have been developed 

and widely used for many years and are relatively simple to implement. Deep learning-based 

methods, such as LSTMs, have been shown to outperform traditional methods in terms of time 

series prediction accuracy. Despite this, deep learning models are generally more complex and 

require more computing resources. They also require more specialized knowledge for design and 
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implementation. On the other hand, traditional models are easier to construct and require fewer 

computational resources. The choice between traditional and deep learning methods will depend 

on the specific requirements of the problem at hand and the available resources. The study topic 

was introduced in Chapter 1, which served as the introduction, and previous studies of the issue 

highlighted in this dissertation were examined. In addition, the need for further research is 

substantiated. In particular, section 1.1 describes the growing need for renewable energy sources 

and presents statistics on the use of wind and solar energy worldwide and Canada’s installed wind 

and solar energy capacity. Section 1.2 is devoted to the main problem that arises when wind and 

solar energy are integrated into the electrical system, where volatility and uncertainty are among 

the biggest challenges they pose to the grid and reveal the need for reliable prediction models. 

Section 1.3 determines the main objective of this work, which is a method for forecasting 

renewable energy sources. Section 1.4 outlines the methodology adopted in this work which 

reviews bibliographic research and empirical research. In the bibliographic search, a review of the 

latest time-series forecasting methods in the context of wind and solar energy and a review of the 

literature are undertaken in order to assess the state of the art. Experimental research explains the 

proposed methods, data sources, and processing. Section 1.5 focuses on the contributions of this 

thesis to the latest developments in wind speed and solar forecasting. The second chapter provides 

the background and characteristics of wind and solar energy. In particular, Section 2.2 describes 

the conversion and future of wind energy and its impact on reducing CO2 levels. Section 2.2.1 

discusses mathematical equations and physical concepts related to wind turbines. Sections 2.2.2 

and 2.2.3 explain the electric power and power curves for a modern wind turbine. Section 2.3 is a 

brief explanation of solar energy and the important role it plays in sustainable development on a 

global scale. Section 2.3.1 shows the mathematical average of the effect of the operating 

temperature of a photovoltaic cell on electrical efficiency through current and voltage, which 

represent electrical power. Section 2.3.2 gives a brief definition of the degradation of a 

photovoltaic system. Section 2.3.3, describes mathematical formulas for estimating the annual 

solar energy output from the photovoltaic system. Section 2.3.4 shows a simplified explanation of 

the climatic factors that interfere with the photovoltaic systems to produce electricity and an 

illustration of the characteristic curves of the panels that represent the change of current with 

voltage and power with voltage. The third chapter discusses wind and solar energy forecasting as 

well as related works. Section 3.1 deals with a simplified explanation of the future of renewable 
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energy forecasting. Sections 3.2 and 3.3 are explanations of wind energy forecasting and solar 

energy forecasting respectively, and the methods used for those. Section 3.4 highlights the 

previous work related to the study and the developments reached in the prediction models and their 

shortcomings to provide a basis on which this work is based. Chapter 4 was dedicated to analyzing 

time series analysis methods and approaches. Section 4.1 contains a brief introduction. Section 4.2 

describes the statistical analysis of time series and their components. Sections 4.4, 4.5, and 4.6 are 

focused on using neural networks for time series prediction. Section 4.4 covers the use of neural 

networks for this purpose. Section 4.5 focuses on the use of recurrent neural networks, and section 

4.6 focuses on the use of long short-term memory (LSTM) networks specifically. Section 4.7 

reviews the most important metrics used to assess forecast accuracy. Chapter 5 presents and 

discusses the results of the research in graphs and tables. In conclusion, according to the results 

obtained, it can be concluded that a large amount of data in the models generated in this study 

shows that algorithms based on deep learning, such as LSTM, perform better than the ARIMA 

model for predicting wind speed. The results of the proposed LSTM model for solar forecasting 

show improved performance in all performance parameters, including MAE, MAPE, RMSE, and 

R2, for each category of days. This suggests that the proposed model is a reliable and effective 

tool for predicting solar energy production. The integration of AI and energy efficiency concepts 

has the potential to play a significant role in promoting sustainability, reducing carbon emissions, 

and digitizing the electricity sector. The results of the simulation tests indicate that the proposed 

LSTM model has the potential to make a positive impact and help PV plants operate more 

efficiently in the future. 

6.2 Future Work 

The need for research in the field of renewable energy is expected to grow in the future as the 

demand for sustainable energy sources increases. With the increasing size and complexity of 

renewable energy data, the importance of efficient, effective feature extraction and selection 

methods will become even more critical. As the renewable energy sector continues to expand, it 

will be necessary to develop new and innovative methods for handling the large amounts of data 

generated by renewable energy sources in order to effectively harness and integrate them into the 

power grid. The ongoing development and improvement of feature extraction and selection 

methods will be critical to the continued growth and success of the renewable energy sector. Time 

series exist in all aspects of the objective world, and many data points can be regarded as time 
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series data. With the rapid development of computer technology and statistical methods, the 

methods of analyzing time series are changing with each passing day. The choice of model and 

the quality of the forecasting effect depend on the characteristics of the data itself. Time series 

forecasting research has been given more and more attention by more and more researchers. 

Forecasting is the basis of decision-making, so time series forecasting has always been a research 

field with strong practicability and an important reference value for decision-makers. Decision-

making is the continuation of prediction, and the purpose of prediction, to provide a basis for 

decision-making. The more scientific and reasonable the prediction is the more correct and reliable 

the decision will be. Although many scholars have done a lot of research on the forecasting of time 

series, it is still necessary to continuously improve the model to improve the forecasting 

performance and accuracy, especially with the rapid development of various machine learning 

algorithms. In view of the fact that the prediction effect of time series sometimes cannot meet the 

accuracy requirements of practical applications, this paper proposes a new model combining the 

traditional analysis model and a machine learning model to improve the accuracy of sequence 

prediction. In order to further improve the prediction effect of the time series model, we highly 

recommend doing this study again with a new model that combines a traditional analysis model 

and a machine learning model with more real data to improve sequence prediction accuracy.  
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