A microbe-derived treatment to help inhibit White-nose Syndrome in hibernating North American bats

By

Mayara Mejri

A Thesis Submitted to Saint Mary's University, Halifax, Nova Scotia in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science with Honours in Biology

April, 2023, Halifax, Nova Scotia

Copyright Mayara Mejri, 2023

Approved: Dr. Clarissa Sit Supervisor Approved: Dr. David Chiasson Examiner Date: Submitted: April 26, 2023

A microbe-derived treatment to help inhibit White-nose Syndrome in hibernating North American bats

By Mayara Mejri

ABSTRACT

Pseudogymnoascus destructans (P. destructans) is known to be the causative agent of White-Nose Syndrome in hibernating North American bats. To date, this disease has caused large-scale mortality in bat populations present in 25 US states and 5 Canadian provinces. White Nose Syndrome is associated with a decrease in fat reserves and a substantial loss in water and electrolytes. This disturbance in normal metabolism leads to frequent arousal periods during hibernation. While fighting against the disease, exhaustion of compensatory mechanisms leads to mortality.

Probiotics and microbe-derived treatments are the likely solution for managing White Nose Syndrome since introducing foreign antifungals can affect an already sensitive cave environment. This study examines the inhibitory effect of one *Penicillium spp*. isolate on *P. destructans*. Sanger sequencing and NCBI BLAST confirmed the identity of the *Penicillium spp*. The isolate was identified to be *Penicillium herquei*. Using pairwise testing plates, the fungus has been shown to inhibit the growth of *P. destructans* over the course of two weeks. The growth curve of the isolate was tracked by measuring the dry mass and the absorbance of different liquid cultures over 10 days. The inhibition could either be due to resource or interference competition. The cell-free liquid culture was added to fresh media to make up plates that were subsequently inoculated with *P. destructans*. These plates had no to little growth which showed that the presence of the *P. herquei* is not crucial to the inhibition and that there is no resource competition between the two fungi. This indicates that the isolate probably secretes an inhibitory compound. Plates inoculated with the isolate were extracted with solvents of different polarities and then analyzed using a quadrupole time-of-flight mass spectrometer to determine the mass-to-charge ratio and the retention time of the inhibitory compound.

April 26, 2023

ACKNOWLEDGMENTS

I would like to thank my supervisor, Dr. Clarissa Sit, for her constant support and guidance. I was honoured to have the opportunity to be part of the bat research group and work in both microbiology and organic chemistry. This project was a huge learning process for me, and I could not have done it without your encouragement, feedback and support. Thank you!

I would also like to thank my thesis reader, Dr. David Chiasson, who was also my mentor for more than a year and a half. I started in Dr. Chiasson's lab with no prior research experience. I owe everything I know about microbiology and genetics to you, and I am forever grateful for recruiting me as a brand-new first-year student. Thank you for your guidance throughout my university life and for providing valuable feedback throughout my thesis research.

Also, a special thanks to both the Biology and Chemistry department, for all the work opportunities that helped me develop important skill sets that were valuable for my research. Thank you to Mary Jane MacNeil and to the department chairs Dr. Jason Masuda and Dr. David Dansereau for all the technical help and support throughout this year.

A big thank you to all the Biology and Chemistry Department Technicians, especially Patricia Granados and Carmen Cranley for training me on the different equipment, Dr. Najwan Albarghouthi and Dr. Bitu Hurisso . Thank you Patricia for your support and guidance while I was trying to figure out how the QTOF worked and thank you for answering all my questions and for allowing me to reflect on each part of my research. Bitu and Najwan, thank you for your constant support. It's been a pleasure working with both of you.

Thank you to my Honours classmates and to the professors, Dr Anne Dalziel and Dr. Ellie Goud for all your support and all your feedback.

I would like to thank the former and current Sit Research Group members: Lauren Grant, Janine Mombourquette, Julie Dayrit, Cassie Burns, Olivia Roland, Tanisha Ballard, Nicola Augustin, Prashansa Kooshna but especially Logan Cox for training me and being an amazing and supportive lab mate and Jennifer Kolwich (who I never met in person!). Thank you, Jenn, for all your work. Your research and thesis were guidelines for me, and I was so honoured to talk to you and brainstorm ideas for the project with you!

Finally, I would like to thank my parents, my brother, my best friends, my Mima and the rest of my family in Canada. Thank you for all your support when everything seemed dark and blurry. We made it!

Table of Content

1	Introduction	8
	1.1 Chiropterans: Important anatomy and physiology	8
	1.2 Pseudogymnoascus destructans and White-nose Syndrome	9
	1.3 White-nose Syndrome and the emergence of infectious disease in Wildlife hypotheses	. 11
	1.4 Resistance to White-nose Syndrome	. 13
	1.5 Immunobiome and microbe-derived treatments	. 14
	1.6 Objectives	. 16
2	Methods and Materials	. 18
	2.1 Fungi Acquisition	. 18
	2.2 Media Used	. 19
	2.3 Identification of S5: DNA extraction, PCR and DNA sequencing	. 19
	2.4 Quantification of <i>P. destructans</i> : Dry mass vs Absorbance	. 21
	2.5 Quantification of S5: Dry mass vs Absorbance	. 21
	2.6 Pairwise testing of S5 and P. destructans	. 22
	2.7 Spent Media testing of S5	. 22
	2.8 Metabolic extraction from agar plates	. 23
	2.9 Metabolic extract testing	24
	2.10 Thin Film Layer Testing	. 25
	2.11 Extract Analysis	. 25
3	Results	27
	3.1 PCR, DNA sequencing, and Basic Local Alignment Search Tool (BLAST [*])	27
	3.2 Quantification of S5: growth rate and calibration curve	34
	3.3 Pairwise testing of S5 and P. destructans	. 35
	3.4 Spent Media testing	. 37
	3.5 Metabolic extraction testing	. 38
	3.6 Thin film testing	. 39
	3.7 Qualitative analysis of the S5 metabolic extracts	40
4	Discussion	45
	4.1 What is S5?	45
	4.1.1 Isolate (S5) Identification: <i>P. herquei</i> :	45
	4.1.2 Quantification of S5: growth and calibration curve:	46

	4.	2 What is the inhibitory effect of <i>P. herquei</i> (S5) on <i>P. destructans</i> ?	48
	4.	3 How does <i>P. herquei</i> inhibit the growth of <i>P. destructans</i> ?	49
		4.3.1 Inhibition due to resource competition:	49
		4.3.2 Inhibition due to interference competition	50
5		Conclusion	52
6		Future Work	53
7		References	54
8		Appendix	65
	8. e>	1 Appendix 1: Quadrupole time-of-flight mass spectrometer analysis report of the acetonitrile stract from S5 plates	65
•			66
	8.	2 Appendix 2: Quadrupole time-of-flight mass spectrometer analysis report of the chloroform	~ ~
	e	stract from 55 plates	68
•			69
	8. ex	3 Appendix 3: Quadrupole time-of-flight mass spectrometer analysis report of the <i>P. destructans</i>	73
			74
			75
	8. di	4 Appendix 4: Quadrupole time-of-flight mass spectrometer analysis report of the S5 and <i>P.</i>	78
	u		79
•	 8	5 Appendix 5: Quadrupole time-of-flight mass spectrometer analysis report of the S5 extract	, , , 82
	0.		83
•	•••••		84
•			<u> </u>

Table of Figures and Table

Figure 1: Work Flowchart including the objectives and various experiments performed under every objective. This project is trying to answer three main questions: 1) What is S5, 2) What is the inhibitory effect of S5 on <i>P. destructans</i> and 3) How does S5 inhibit the growth of <i>P. destructans</i>
Figure 2: The ITS region of filamentous fungi, including the ITS1, ITS2, ITS3 and ITS4 primers in their approximate positions (Porras-Alfaro et al., 2014)
Figure 3: Layout of the 12-well plates. The pure strains and the pairwise tests were made in separate 12- well plates but were outline in this figure in the same plate
Figure 4: Flow chart for the spent media testing experiment. This experiment was used to test if S5 inhibited <i>P. destructans</i> through resource competition. The experiment involved using S5 cell-free

extract (spent media) to make agar-baased media that was subsequently inoculated with <i>P. destructans</i>
Figure 5: Flow chart for the metabolic extraction experiment from a S5 12-well plate. The plates were extracted using solvents with different polarities. The metabolic extract was used to make agar-based media and for subsequent qualitative analysis
Figure 6: A simplified diagram of a Quadrupole time-of-flight (QTOF) Mass Spectrometery (Cho et al., 2015). It was used to analyse different S5 metabolic extracts
Figure 7: Product of PCR of S5 DNA amplified with ITS1/ITS4 and 16S primers
Figure 8: Product of PCR of S5 DNA amplified with ITS1/ITS4 with an optimized procedure
Figure 9: Product of PCR of S5 DNA amplified with ITS region primers
Figure 10: Product of PCR of S5 DNA amplified with ITS region with an optimized procedure
Table 1: The primers used for the Sanger Sequencing of S5 samples sequenced using different primers ,the length and the sequence of the fragments. Results were obtained through the Genome Quebecportal (Nanuq)
Figure 11: The results of a BLAST [®] (Basic Local Alignment Search Tool) search of the segment from S5 amplified by the ITS1 primer
Figure 12: The results of a BLAST [®] (Basic Local Alignment Search Tool) search of the segment from S5 amplified by the ITS2 primer
Figure 14: The results of a BLAST [®] (Basic Local Alignment Search Tool) search of the segment from S5 amplified by the ITS4 primer
Figure 15: Growth curve to determine the log phase time span for S5
Figure 16: Calibration curve of S5 fungal mass versus absorbance at 630 nm
Figure 17: Growth pattern of S5 on solid Yeast Malt Agar (YMA) media
Figure 18: Growth pattern of P. destructans on solid Yeast Malt Agar (YMA) media
Figure 19: Test for pairwise inhibition between S5
Figure 20: Fresh Yeast Malt Broth (YMB) supplemented with 10% v/v
Figure 21: Fresh Yeast Malt Agar (YMA) supplemented with 10% v/v
Figure 22: Fresh Yeast Malt Agar (YMA) supplemented with 10% v/v S5 metabolic extract
Figure 23: Fresh Yeast Malt Agar (YMA) supplemented with 10% v/v
Figure 24: Two 12-well plates made of Yeast Malt Agar (YMA) media and inoculated with
Figure 25: Two 12-well plates made of Yeast Malt Agar (YMA) media and inoculated with40
Figure 26: Integrated Total Ion Chromatogram (TIC) measured on a Quadrupole Time-of-flight (QTOF) Mass Spectrometer of different spent media samples42
Figure 28: Spectra of different metabolic extracts representing the count versus the mass to charge ratio (m/z)

1. Introduction

1.1 Chiropterans: Important anatomy and physiology

Chiropterans or bats are one of the most diverse mammalian groups after rodents. The order Chiroptera includes 18 families and more than 1116 bat species to date (Heard et al., 2007). It is also one of the most largely spread-out groups that inhabit tropical areas as well as oceanic islands and some of the colder regions in both hemispheres (Heard et al., 2007). Members of the Chiropterans family undergo hibernation. It is a response to seasonal periods that have high energy demand and low energy availability. During hibernation, bats experience a variety of physiological, behavioural, and morphological changes. A regular hibernation season contains different periods of torpor (Carey et al., 2003). For brown bats (*Eptesicus fuscus*), torpor lasts approximately 3.3 days (Halsall et al., 2012). Bats are homeotherms which means that they can control their metabolic rate and body temperature (Zagmajster et al., 2019). During this torpor period, basal metabolic rate is decreased by about 2-4% (Carey et el., 2003). However, necessary physiological functions continue at a lower rate whereas some functions are suspended till the end of the torpor. During this hibernation period, the heart rate is decreased from its normal value of 200-300 beats/min to 3-5 beats/min. Respiration rate also decreases from 100-200 breaths/min to 4-6 breaths/min (Carey et al., 2003). Hibernating bats do not need food ingestion during the torpor periods. Instead, they rely on their fat reserves. In fact, the process of lipid hydrolysis from the white adipose tissue results in fatty acids and glycerol. These products constitute the primary fuel source for bats during torpor (Carey et al., 2003). Torpor can also affect other physiological processes and biological systems including the immune system (Fritze et al., 2019). In fact, the immune response is a very costly process because it includes an increase in metabolic rate.

Consequently, the immune system is generally downregulated during these periods of torpor in bats (Fritze et al., 2019).

The wing structure is a very important anatomical and morphological structure in bats. The wing tissue is composed of two epithelial tissues with a bundle of blood and lymphatic vessels, nerves, and connective tissues in between (Cryan et al., 2010). Wings play a critical role in maintaining water balance within bats. During hibernation, the exposed wing membranes, and the bat's large lungs both contribute to evaporative water loss. This loss accounts for 99% of total water loss in hibernating bats (Cryan et al., 2010).

The body temperature of bats during hibernation can range between 1 to 15° C (Cryan et al., 2010). To conserve energy, bats also choose to cluster around humid areas of the cave to conserve energy and decrease evaporative water loss. In addition to that, the bat's anatomy and morphology make them predisposed to evaporative water loss during hibernation (Cryan et al., 2010). All these reasons combined make hibernating bats a vulnerable target for various infections.

1.2 Pseudogymnoascus destructans and White-nose Syndrome

White-nose syndrome was first documented in North America in 2006 at Howe's Cave, New York City (Frick et al., 2016). In the late winter of 2007, the Department of Environmental Conservation discovered hundreds of dead bats on the floors of various caves. Bats were also seen flying out of the caves in the middle of the winter and into the snowy landscapes (Frick et al., 2016). White-nose syndrome results in white fuzzy hyphae and conidia on the muzzle and the wing membranes of bats (Gargas et al., 2009). By 2014, White-nose Syndrome was found in 25 US states and five Canadian provinces. A confirmed case of White-nose syndrome is determined after histopathological examination (Frick et a., 2016). This disease has affected 47 different bat species in North America (Frank et al., 2016) and 5.7 to 6.7 million North American bats (Moore et al., 2013).

Pseudogymnoascus destructans is the causative agent of White-nose syndrome. In April 2009, the white-nose syndrome fungus was isolated from four different bat species: Little Brown, Northern Long-eared, Big Brown and Tricolored bats (Gargas et al., 2009). The initial species identification was done by sequencing small subunit (SSU) and internal transcribed spacer (ITS) RNA sequences. The results placed the causative fungus within the genus Geomyces (Gargas et al., 2009). However, the fungus was later reclassified to be P. destructans due to its different morphology from Geomyces and based on other sequencing and phylogenetic evidence (Blehert et al., 2009; Minnis and Linder, 2013). For a while, P. destructans was not confirmed to be the causative agent of White-nose Syndrome. In fact, P. destructans is not native to North America and is present in Europe. However, large-scale mortality has never been recorded in European bats (Johnson et al., 2014). P. destructans was finally found to be the cause of White-nose Syndrome in 2011-2012 by inoculating Little Brown Bats (Myotis lucifugus) with P. destructans (Reeder et al., 2012). This inoculation induced White-nose Syndrome and the fungus could be isolated from infected bats which are the necessary criteria for a primary pathogen (Reeder et al., 2012). P. destructans is part of the Ascomycota phylum (Vanderwolf et al., 2016). It is a saprophytic fungus that requires a host to survive. It persists on the walls and in the soil of caves which could explain the continuous infection (Farina and Lankton, 2018).

White-nose Syndrome symptoms are associated with a decrease in fat reserves and a cascade of physiological responses that lead to mortality in bat populations (Verant et al., 2014). Early stages of the disease include the colonization of the wing membrane by the fungus causing apparent lesions on the epidermis. Infected bats undergo a significant increase in energy

consumption, along with respiratory acidosis and hyperkalemia (Verant et al., 2014). Respiratory acidosis results from the accumulation of high CO_2 levels in the blood. This accumulation can be due to the bats trying to further decrease their metabolic rates (Verant et al., 2014). Hyperkalemia is defined by high potassium levels in the blood. It was first though that the increase in electrolyte concentration in the blood (Potassium, Sodium and Chloride) was due to renal failure. However, histological examination found that there was no kidney damage (Warnecke et al., 2013). Hyperkalemia can be explained by ions from the cell leaking through the damaged tissues (Verant et al., 2014). In later stages of the infection, CO₂ levels elevate beyond a tolerable threshold and hyperventilation is stimulated which causes arousal periods. The removal of excess CO_2 from the blood is energetically costly which contributes to the faster depletion of fat reserves (Verant et al., 2014). Increased hyperventilation and an increased body temperature during the arousal periods contribute to a greater evaporative water loss and electrolyte loss through the ulcerations causing dehydration and more frequent arousals (Verant et al., 2014; Warnecke et al., 2013). The worsening of the infection leads to other physiological disturbances such as hypoglycemia and hypocapnia (Verant et al., 2014). Mortality is the result of the exhaustion of all physiological compensatory mechanisms such as cellular buffering and metabolic regulation (Verant et al., 2014).

1.3 White-nose Syndrome and the emergence of infectious disease in Wildlife

hypotheses

The mass death that the bat population across North American underwent raises a very critical question about the origin of the New York outbreak in 2006. There are two major hypotheses that could explain the emergence of infectious disease in wildlife: the endemic pathogen hypothesis and the novel or invasive pathogen hypothesis (Warnecke et al., 2012). The

endemic pathogen hypothesis states that the pathogen has been present in wildlife before, but it recently increased its pathogenicity due to environmental changes or human intervention (Rachowicz et al., 2005). On the other hand, the novel pathogen hypothesis suggests that the pathogen or the newly evolved virulent variant, has spread out to a new geographic area where the hosts are more naïve and susceptible to being infected (Rachowicz et al., 2005). The endemic pathogen hypothesis was rejected when phylogenetic analysis failed to find a closely related species that *Pseudogymnoascus* could have evolved from in North America (Minnis and Linder). Phylogenetic evidence showed that *Pseudogymnoascus* evolved independently from closely related genera like Geomyces (Minnis and Linder, 2013). Accumulated research suggests that Pseudogymnoascus destructans is an exotic species that was introduced to North America (Minnis and Linder, 2013). In fact, P. destructans is widespread in different regions in Europe without an associated mass mortality (Puechmaille et al., 2011). In addition, two different mating types were found in Europe (Palmer et al., 2014). Consequently, it is possible that European bats have evolved to cohabitate with the fungus by incorporating the fungus into their skin's flora (Wibbelt at al., 2010). To confirm that the difference in the degree of pathogenicity between European and North American bats is not the cause of the different mortality rates across continents, North American bats were inoculated with the European isolate of P. destructans. North American bats displayed the same symptoms associated with White-nose Syndrome (Warnecke et al., 2012). Thus, Whitenose Syndrome associated P. destructans probably originated from Eastern Europe and was transferred to North America (Drees et al., 2017; Leopardi et al., 2015). It is important to note that P. destructans can also be found in China and Mongolia with no associated mass mortality (Hoyt et al., 2020). Further phylogenetic analysis and molecular dating have shown that the P.

destructans strains in North America and Europe have diverged from their ancestors and the Asian isolates about 3400 years ago (Drees et al., 2017).

1.4 Resistance to White-nose Syndrome

The differences between how European and North American bats react to P. destructans pose multiple questions about the resistance of bats to White-nose Syndrome. Research on Little Brown Bats (Myotis lucifugus) revealed that infected bats undergo an inflammatory response stimulated by the fungus (Moore et al., 2013). It was shown that anti- P. destructans antibodies play no role in immunity against White-nose Syndrome since studies on European bats demonstrated a low anti- P. destructans antibody level (Lilley et al., 2017). However, it was found that the infection triggers a local inflammatory response at the infection site (Lilley et al., 2017). Transcriptomic studies revealed that the infection induced the expression of an inflammatory cytokine compound that is associated with the immune response. Examination of gene expression of cytokines showed that the inflammatory cytokine is expressed in lymphatic nodes of infected bats as opposed to uninfected bats (Lilley et al., 2017). However, it is very difficult to fight the fungus with just these immune system mechanisms. Consequently, Pseudogymnoascus destructans proliferates and invades more of the cutaneous tissues in bats (Field et al., 2015). In this case, the classic host-immunity systems might not be efficient in fighting against White-nose Syndrome in North American bats. Therefore, microbe-derived treatment might be a better solution against White-nose Syndrome.

1.5 Immunobiome and microbe-derived treatments

Treatment with Probiotics may be an efficient solution for managing disease in wildlife. Unlike manufactured fungicides and chemicals, probiotics have the advantage of being able to potentially co-evolve with the pathogen, reducing the disease from within the natural microbiota of the host (Hoyt et al., 2015). The term immunobiome is defined as the interactions between the immune system of a host and the organisms that can live on or in that host (Horrocks et al., 2011). Immunobiome also includes the possibility of co-evolution between the host and associated microbes, to enhance the host's current immune responses. The ability of the microbes to shape the host's immune defenses is referred to as immubiotic pressure (Horrocks et al., 2011). In the wild, hosts interact with a variety of microbes that can be benign (commensals), beneficial, or harmful (pathogens) and provide the host with diverse immunobiotic pressures (Horrocks et al., 2011).

Microbial protection against pathogens is a result of metabolic secretions of compounds that can either weaken the defense mechanisms of the pathogen, slow its growth, or inhibit it completely. Microbes could also be strong competitors for nutrients, which leaves the pathogen with not enough resources to survive (Cheng et al., 2017; Cornelison et al., 2014a; Cornelison et al., 2014b; Hoyt et al., 2015; Micalizzi et al., 2017). For this reason, microbe-derived treatments may be a therapeutic solution for infectious diseases like White-nose Syndrome.

The first treatment using antifungal volatile compounds against *Pseudogymnoascus destructans* was found in 2013 and was produced by soil bacteria (Cornelison et al., 2014a). This technique was based on isolated volatile compounds from *Pseudomonas* and *Bacillus* spp., and it demonstrated broad antifungal activity (Fernando et al., 2004). Six volatile organic compounds were screened including decanal, 2-ethyl-1-hexanol, nonanal, benzothiazole, benzaldehyde, and

14

N, N-dimethyloctylamine. These compounds reduced conidia growth and mycelial extension (Cornelison et al., 2014a). However, there are ecological issues that can affect both the host and the ecosystem if volatile compounds are introduced to an already fragile ecosystem (Kolwich, 2019).

Efforts were undertaken to isolate microbes from the ecosystem itself, either from the soil or from the microbiota of the bats (Kolwich, 2019). *Trichoderma polysporum* was isolated from a hibernaculum infected with White-nose Syndrome (Zhang at al., 2015). A study conducted by Zhang *et al.* (2015) was the first to isolate a microbe from the soil of the cave and grow it in a laboratory environment. This isolate was able to produce secondary metabolites to inhibit the growth of *P. destructans*, but the compounds were not identified (Zhang at al., 2015).

In 2015, Hoyt *et al.* tried to isolate bacteria from the skin of different bat species in Eastern North America. The research identified another species of *Pseudomonas* that inhibits the growth of *P. destructans*. This group of bacteria can produce mycolysing enzymes that act on mycelia and conidia and inhibit the growth of *P. destructans* (Hoyt et al., 2015).

Further research tested the effectiveness of one isolate *Pseudomonas fluorescens* (designated Pf1 strain) on infected captivate bats (Cheng et al., 2017). Uninfected bats were also exposed to the strain and no harm was observed (Cheng et al., 2017). Five characteristics (called metrics) were measured to identify the severity of the disease. These include the surface area of the wing covered by *P. destructans* and number of tissue lesions. The bats were divided into different groups based on various treatments which included simultaneous application of Pf1 and *P. destructans*, pre-expose to Pf1, *P. destructans* control and Pf1 control. Results showed that the severity of the disease is highly reduced when the bats were inoculated with Pf1and *P. destructans* simultaneously. Bats in the Pf1 pre-exposure and the *P. destructans* control treatments suffered

severe metrics (Cheng et al., 2017). Consequently, at the presence of *P. destructans*, *Pseudomonas fluorescens* reduced the mortality rate of bats infected with White-nose Syndrome. The effect of the isolate on *P. destructans* relies heavily on the treatment mechanism. Simultaneous disease exposure and Pf1 treatment prevented the colonization of the pathogen (Cheng et al., 2017).

In conclusion, microbe-derived treatment has the potential to be effective in fighting infectious-based disease like White-nose Syndrome. Other treatments like relying on the immune system's antibodies and Volatile Organic Compounds may not be very effective (Cornelison et al., 2014a). Consequently, it is very important to explore the immunobiome concept and the microorganisms living with the host in the same ecosystem. This technique is beneficial because it reduces disturbance of the host and its environment, and it helps create a more diversified microbiota (Kolwich, 2019).

1.6 Objectives

The objective of this study is to find a microbe-derived treatment from a cave isolate to help inhibit the growth of *P. destructans*, the cause of White-nose Syndrome in North American bats. This study focuses on three main questions: 1) What is S5 (the isolate)?, 2) What is the inhibitory effect of S5 on *P.* destructans? And 3) How does S5 inhibit the growth of *P.* destructans? The isolate (S5) in an unknown fungus belonging to *Penicillium spp.* that was isolated from a soil sample in Gatineau, Quebec by Dr. Myron Smith's lab at Carleton University (Micalizzi et al., 2017). Through DNA extraction, PCR and sequencing this paper aims to identify to which species S5 belongs to. This research also aims to characterize the growth of S5 by creating a growth and calibration curve. To answer the second question, the inhibition will be visualized through pairwise testing plates where each pure strain (S5 and *P. destructans*) will be put on each side of the well and grown together. For the third question, this study aims to address two main scenarios. The first

scenario is that inhibition is due to resource competition, meaning that S5 is a better competitive resulting in exhausting all the available resources and thus inhibiting the growth of *P. destructans*. The second scenario is that the inhibition is due to interference competition where S5 secretes secondary metabolites to inhibit the growth of *P. destructans*. If this is the case, the paper aims to identify some of the compound's properties using quadrupole time-of-flight (QTOF) Mass Spectrometry (including retention time and mass-to-charge ratio). The complete workflow is included below (Figure 1).

Figure 1: Work Flowchart including the objectives and various experiments performed under every objective. This project is trying to answer three main questions: 1) What is S5, 2) What is the inhibitory effect of S5 on *P. destructans* and 3) How does S5 inhibit the growth of *P. destructans*.

2. Methods and Materials

The experimental work was performed in a Containment Level 2 Laboratory according to the Canadian Biosafety Standards and Guidelines. Lab work containing living organisms was predominantly executed in an ESCO Class II, Type A2 biological safety cabinet (BSC). All waste was disposed of in a sealed biohazard container for subsequent sterile cycling and disposal. The standard operating procedures for autoclaving, the use of the biological safety cabinet, decontamination and waste disposal are outlined in the Saint Mary's University Biosafety Manual. Media and non-sterile items (glass media bottles, glassware, micropipettes, etc.) as well as any item that was introduced into the BS cabinet environment, were sterilized using a Gentinge SL5000 autoclave. The autoclave cycle was a 30-minute liquid cycle, with a minimum temperature of 121°C and a pressure of 15 psi. Before putting the items in the BSC, all items were surface sterilized with a solution of 70% v/v ethanol.

2.1 Fungi Acquisition

The S5 fungus was originally extracted from soil, specifically from a rock outcropping in Gatineau, Quebec. The unknown S5 microbe was isolated by Dr. Myron Smith's Lab at Carleton University (Ottawa, Ontario) (Micalizzi et al., 2017). *P. destructans* (strain US-15) was originally obtained from Agriculture and Agrifood Culture Collection, Ottawa, Ontario. S5 and *P. destructans* were cultured and sent to us from the Smith research group on BD DifcoTM Potato Dextrose Agar plates. The preliminary work on the different isolates obtained from the Smith group was done by Jennifer Kolwich as part of her Honours Thesis in Chemistry (Kolwich, 2019). The cultures of *P. destructans* were primarily cultivated in a Danby Refrigerator (Model: DCR059WE; 48L capacity) attached to an Inkbird Thermostat Controller (Model: ITC-308). The refrigerator was kept at 14.0 ± 1.0 °C. S5 cultures were grown in the lab cupboard at room

temperature (22-25 °C). The first S5 cultures were inoculated from a 50% glycerol stock stored at a Z-SCI Twincore ultra-low temperature freezer kept at -80 °C.

2.2 Media Used

Yeast Malt Broth and Yeast Malt Agar were used to cultivate S5 and *P. destructans* throughout this project. The Yeast Malt Broth (YMB) was composed of 5.0g peptone, 3.0g yeast extract, 3.0g malt extract and 10.0g dextrose dissolved in 1000mL of deionized water (dH₂O) (pH: 6.2 ± 0.2) All reagents were obtained from VWR International (Radnor, Pennsylvania, USA). The Yeast Malt Agar (YMA) contained the same components as YMB with an addition of 20g EMD Millipore Agar Powder per litre (pH: 6.2 ± 0.2).

2.3 Identification of S5: DNA extraction, PCR and DNA sequencing

The DNA extraction protocol used in this thesis was a modified version of the Promega procedure (Promega, 2021) and the protocol outlined by Micalizzi et al. (2017). S5 was streaked on a YMA plate and grown at room temperature (22 °C). After 4 days of growth, one colony was selected and placed inside a small microcentrifuge tube (0.2 mL) using a micropipette. 25 μ L of 70% ethanol and approximately 25 μ L of 0.5 mm Glass beads from BioSpec (or the tip of a micro spatula) were added into the microcentrifuge. The mixture was then vortexed using a Fisher STD Vortex mixer 120 V (Speed: 9) for 1 to 3 minutes. The 16S region was amplified using the IDT 16S rRNA Forward primer (5' - AGA GTT TGA TCC TGG CTC AG – 3') and the IDT 16S rRNA Reverse primer (5' - ACG GCT ACC TTG TTA CGA CTT – 3'). The Internal Transcribed Spacer (ITS) region characteristic of filamentous fungi was amplified using IDT ITS1 (5' - TCC GTA GGT GAA CCT GCG G – 3'), IDT ITS2 (5' - GCT GCG TTC TTC ATC GAT GC – 3'), IDT ITS3 (5' - GCA TCG ATG AAG AAC GCA GC – 3') and IDT ITS4 (5' - TCC TCC GCT TAT

TGSA TAT GC $- 3^{\circ}$) (Figure 2). The primers were diluted to 20 μ M from a 100 μ M stock solution. Standard PCR reactions were 50 µL and contained 19 µL Nuclease-free Water, 25 µL Promega GoTaq® Green Master Mix (which has Taq DNA polymerase, dNTPs, MgCl₂ and reaction buffers), 2 µL forward primer, 2 µL reverse primer and 2 µL DNA template (from the colony extraction) (Promega, 2021). The negative controls included all components without the DNA template. The positive controls included the DNA template from the S5 colony and the ITS1 and ITS4 primers (Figure 2). Products were amplified using the BIO-RAD C1000 TouchTM Thermocycler with a 5 minutes denaturation at 94 °C followed by: 25 cycles each with denaturation for 30 s at 94 °C, annealing for 30 s at 56 °C and extension for 30 s at 72 °C. The product was preserved at 12 °C (Micalizzi et al., 2017). For the 16S primers the annealing temperature was increased to 60 °C to improve primer specificity (Micalizzi et al., 2017). The bands were visualized on a 1.5% Ethidium Bromide agarose gel made with 0.5x TBE and 5-6 μ L ethidium bromide. The BIO-RAD Gel DocTM XRT Imaging System was used to visualize the bands. When there was no smearing of the bands, the PCR products were sent to Genome Quebec (Montreal, QC) for Sanger sequencing (using an Applied Biosystems 3730xl DNA Analyzer) (https://cesgq.com/en-services#en-sequencing).

Figure 2: The ITS region of filamentous fungi, including the ITS1, ITS2, ITS3 and ITS4 primers in their approximate positions (Porras-Alfaro et al., 2014).

2.4 Quantification of *P. destructans*: Dry mass vs Absorbance

The quantification method used was originally outlined in Jennifer Kolwich's Master's Thesis (Kolwich, 2021). Three liquid stocks were made by mixing 5 mL of a seven-day culture with 45 mL of YMB. The stocks were grown for seven more days. A 35mL dilution series was prepared containing 0, 5, 10, 20, 40, 60, 80, and 100% stocks of fresh YMB. To measure the absorbance of the culture at 630 nm, a BIOCHROM NovaSpec Plus Visible Spectrophotometer and a quartz cuvette (10 mm path length) were used and compared to fresh YMB as a blank. Each sample was measured ten times. To record the dry mass associated with each dilution, a sample of 10 mL was collected on a pre-dried (in a desiccator), pre-weighed filter paper (Whatman No1) by vacuum filtration. The mycelia and the filter paper were rinsed with deionized water and placed to dry in a desiccator for 24 h). The filter paper was subsequently weighed. The mean absorbance data was plotted against the dry mass for each sample.

2.5 Quantification of S5: Dry mass vs Absorbance

Forty 15 mL disposable, sterile tubes were inoculated with 100 μ L of an S5 culture in 10 mL of fresh YMB. Measurements were taken each day for a total of 10 days. Each absorbance sample and three dry mass samples were measured. To measure the absorbance, the 10 mL culture was poured into a tissue grinder (homogenizer) (Granade et al., 1985) and ground for 1 to 2 minutes. The absorbance at 630 nm was then measured in a quartz cuvette (10 mm pathlength) using a BIOCHROM NovaSpec Plus Visible Spectrophotometer. Each sample was quantified 10 times to account for the deviation. S5 fungal mass was calculated by weighing the 15 mL tube before the YMB and culture was added and after the YMB was discarded using a micropipette while the fungal mass was at the bottom. As for *P. destructans* the absorbance data was plotted against dry mass.

2.6 Pairwise testing of S5 and *P. destructans*

A 12-well plate was made using 2-4 mL of fresh YMA in each well. The wells were inoculated with 20 μ L of a *P*. *destructans* culture on one side and 20 μ L of a S5 culture on the other (outlined in figure 3, third row). The plates were incubated in the refrigerator at 14 °C for 14 days. For subsequent analysis and colony comparison, 50 μ L of pure *P. destructans* and pure S5 strains were inoculated in

Figure 3: Layout of the 12-well plates. The pure strains and the pairwise tests were made in separate 12-well plates but were outline in this figure in the same plate.

separate 12-well plates (outlined in figure 3, first and second row) and incubated at 14 °C for 14 days. The number of plates used depended on the experiment. 24-well plates were also used to serve the same purpose.

2.7 Spent Media testing of S5

This assay was made to assess whether the inhibition was cause by interference competition where a microbe (S5) secretes inhibitory metabolites that affect *P. destructans* or by resource competition where the microbe (S5) deprives *P. destructans* from shared resources. 300 μ L of S5 was grown in 300 mL of YMB for three weeks at room temperature (varying between 22 and 25 °C) (Method outlined in figure 4). After, the media was filtered through a 0.22 μ m nylon filter top into a presterilized bottle. The cell-free extract (or the spent media) was preserved in the fridge at 5 °C. 10% and 20% (v/v) spent media YMA was created by mixing 10 mL and 20 mL of spent media with 90% and 80% (v/v) YMA consecutively. This media was used to pour 12-well plates.

10% and 20% spent media YMB media was also made using the same principle. The 12-well plates were inoculated with 50 μ L *P. destructans*. The 100 mL of the liquid media were inoculated with 100 μ L of *P. destructans*. Both plates and liquid media were incubated at 14 °C for three weeks.

Figure 4: Flow chart for the spent media testing experiment. This experiment was used to test if S5 inhibited *P. destructans* through resource competition. The experiment involved using S5 cell-free extract (spent media) to make agar-baased media that was subsequently inoculated with *P. destructans*.

2.8 Metabolic extraction from agar plates

The pairwise test plates described in section 2.6 along with the pure *P. destructans* and S5 12-well plates were extracted using a 2:1:1 ratio of methanol, ethyl acetate and chloroform mixture (Method outlined in figure 5). The discs of the 12-well plates were 2 cm in diameter and contained 2-4 mL of YMA along with either *P. destructans*, S5, or both S5 and *P. destructans* and were removed from the plate and submerged with the 2:1:1 mixture for two hours in an Erlenmeyer sealed with tin foil. This mixture was chosen for a maximal compound extraction. Based on the "like likes like" principle, compounds can be extracted using the solvent that most is similar to them. Methanol is a polar protic solvent while chloroform is non-polar and ethyl acetate is polar aprotic. The most obvious difference between polar protic and polar aprotic solvents is the ability

to form hydrogen bonds (Huffman et al., 2012). After two hours, the mixture was filtered through a filter paper (Whatman No 1) by vacuum filtration. The soaking and filtration procedure was performed two more times. The resultant mixture was poured into a pre-weighed round bottom flask. The solvents were evaporated off by rotary evaporation using the appropriate pressure for each solvent. The extracted solids were weighed and redissolved in methanol at a concentration of 25mg/mL. The extracts were passed through a 0.22 μ m filter and stored in a scintillation vial in the freezer. Blank agar plates were also extracted using the same outlined protocol. This extract was treated as the control (or the background signals) in subsequent analysis.

Figure 5: Flow chart for the metabolic extraction experiment from a S5 12-well plate. The plates were extracted using solvents with different polarities. The metabolic extract was used to make agar-based media and for subsequent qualitative analysis.

2.9 Metabolic extract testing

Similar to the spent media testing, twelve well plates were made from YMA adding with 10% (v/v) S5 extract, S5 and *P. destructans* extract or 20% (v/v) of the S5 and *P. destructans* extract. The plates were incubated at 14 °C for three weeks.

2.10 Thin Film Layer Testing

The metabolic extract protocol outlined in section 2.8 was redone using S5 12-well plates extracted with either Acetonitrile (ACN) or Chloroform (CHCl₃). The metabolic extract was redissolved in its original solvent (either ACN or CHCl₃) to a final concentration of 25 mg/mL. 100 μ L of each extract was placed on each agar well (from a 12-well plate). After all the solvent had evaporated from the 12-well plate, making a thin film, 10 μ L of *P. destructans* was inoculated. The plates were incubated for two weeks at 14 °C. Using the same thin film principle, 100 μ L pure ACN and CHCl₃ was pipetted into each agar well of a 12-well plate (used as a control). After the solvent had evaporated, 10 μ L of *P. destructans* was inoculated on top of the thin film. The plates were also incubated at 14 °C for two weeks. These plates served as positive controls.

2.11 Extract Analysis

A mass spectrometer is an instrument that measures the mass-to-charge ratio of ions (Ferrer and Thurman, 2003). It ionizes the sample and separates the ion using either an electric or a magnetic field. A quadrupole mass spectrometer is a type of mass spectrometer that utilises a quadrupole filter system to separate ions based on their mass-to-charge ratio (Ferrer and Thurman, 2003). An alternating electric potential passes through four rods arranged in a square configuration. Ions that pass through the electric field are filtered based on their mass-to-charge ratio. Only ions with a mass-to-charge ratio that fits within the pre-set range (parameter) can pass through the quadrupole and reach the detector. A time-of-flight (TOF) mass spectrometer is a type of mass spectrometer that measures the time taken by the ion to travel a certain distance (Ferrer and Thurman, 2003). The sample is ionized and then the ions are accelerated to a higher velocity using an electric field. The ions are allowed to travel through a drift region and are detected at the end. The time it takes for the ion to reach the detector is measured and used to calculate the mass-tocharge ratio of the ions. A quadrupole time-of-flight mass spectrometer (QTOF MS) is a hybrid instrument that combines the capabilities of a quadrupole mass spectrometer and a time-of-flight mass spectrometer (Ferrer and Thurman, 2003) (Figure 6). It first filters ions of a pre-set mass-to-charge ratio range using a quadrupole mass filter, and then measures the different times the ions take to travel a certain distance using a time-of-flight detector (Ferrer and Thurman, 2003).

High Resolution mass spectrometry (HRMS) was used to determine the different masses of the compounds present in the metabolic extracts (section 2.8 and the ones used in section 2.10) and the spent media samples (section 2.7) following the protocol outlined in Jennifer Kolwich's Master's in Applied Science thesis (Kolwich, 2021). The fungal extracts were dissolved in HPLC (High-performance Liquid Chromatography) grade methanol (Fisher Scientific International, Hampton, New Hampshire, United States) for the analysis with a concentration of 1mg/mL. Spent Media samples were diluted in HPLC grade water (250 µL of spent media in 750 µL of water). Blank agar plates were used as controls to account for the background noise due to the media. Extracts were analysed using an Agilent 1260 Infinity II HPLC equipped with an Agilent 6530 quadrupole time-of-flight (QTOF) mass spectrometer. Extracts were pipetted into 1.8 mL LC vials. 1.5 µL of each sample was injected through a Poroshell 120EC C18 (3 x 150mm, 2.7 um) column at 30°C. The solvents used for the analysis were labeled A through D. All the solvents used were HPLC grade. Solvent A consisted of water with 0.1% formic acid. Solvent B was 95% acetonitrile in water with 0.1% formic acid. A and B constituted the gradient mobile phase system. Solvents C and D were water and acetonitrile respectively and were used for the cleaning protocol. The sample was eluted through the column at a flow rate of 0.5mL/min following a linear increase from 20% to 35% of solvent B over 5 minutes, an increase from 35% to 75% of solvent B over 20 minutes and an increase from 75% to 100% of solvent B over 2 minutes. Afterwards, solvent B

was administered at 100% for another 10 minutes. The QTOF parameters were set to positive electrospray ionisation (+ESI) mode, Gas Temp: 350 °C, Drying Gas: 12 L/min, Nebuliser 60 psi, VCap: 3000V. The Mass spectrometer parameter were set to 100-1700 m/z (Low mass range), Collision energy: 42 V, Fragmentor: 175 V, Skimmer: 65 V and Oct 1 RF Vpp: 750 V. The data collected was a Total Ion Chromatogram (TIC).

Figure 6: A simplified diagram of a Quadrupole time-of-flight (QTOF) Mass Spectrometery (Cho et al., 2015). It was used to analyse different S5 metabolic extracts.

3. Results

3.1 PCR, DNA sequencing, and Database interrogation using Basic Local Alignment Search Tool (BLAST[®])

Regions of the Internal Transcribed Spacer (ITS) region and 16S ribosomal rRNA (16S) were amplified to allow for species identification of S5. The first PCR run shown in figure 7 (lanes 1-4) was dedicated to the amplification of the 16S region, characteristic of bacteria. Lanes 1 and 3 acted as a negative control to verify that the primers and the PCR mixes are not contaminated. Lanes 2 and 4 contained the DNA extracted from an S5 colony and amplified through the 16S forward and reverse primers. No DNA band was observed in lanes 2 and 4 which suggested that

the 16S region was not present in S5. The second set of PCR samples was amplified using the Internal Transcribed Spacer (ITS) region. The bands in lanes 5 and 7 were at about 500 – 600 bp in length (Figure 7). This observation suggested that the ITS region was present in S5. However, the DNA bands from the ITS1/ITS4 primers were smeared implying that the thermocycler run was not optimal. Figure 8 shows the same PCR set with an optimized thermocycler procedure. The bands were clearer, and the product was between 500 and 600 bps in length. These samples were deemed suitable for Sanger Sequencing. To further identify S5, more PCR amplifications were run. In figure 9, lanes 4 and 7 were the DNA samples amplified with ITS1/ITS2. The bands seemed to fall within the range of 200 to 300 bps in length. Lanes 5 and 8 were the DNA samples amplified with the ITS3/ITS4 primer set. The bands were between 300-400 bps in length. Figure 10 was an optimized version of the samples in figure 9. Lanes 2 through 4 showed the same results obtained in figure 9 (lanes 3,4 and 5). However, the bands were clearer, and the samples were fit to be sent for Sanger Sequencing.

Figure 7: Product of PCR of S5 DNA amplified with ITS1/ITS4 and 16S primers viewed on a 1.5% agarose gel with a 1kb DNA ladder. Lanes 1 and 3 contain negative controls for the 16S forward and reverse primers; lanes 2 and 4 contain 16S forward and reverse primers + DNA; lanes 5 and 7 contain negative controls for the ITS1/ITS4 primers; lanes 6 and 8 contain ITS1/ITS4 primers + DNA.

Figure 8: Product of PCR of S5 DNA amplified with ITS1/ITS4 with an optimized procedure viewed on a 1.5% agarose gel with a 1kb DNA ladder. Lanes 1 and 3 are the negative controls for the 1 the ITS1/ITS4 primers; lanes 2 and 4 contain the ITS1/ITS4 primers + DNA.

Figure 9: Product of PCR of S5 DNA amplified with ITS region primers viewed on a 1.5% agarose gel with a 1kb DNA ladder. Lane 1 contains the negative control for the ITS1/ITS2 primers; lane 2 contains the negative control for the ITS3/ITS4 primers; lanes 3 and 6 contain ITS1/ITS4 primers + DNA; lanes 4 and 7 contain ITS1/ITS2 primers + DNA; lanes 5 and 8 contain ITS3/ITS4 primers + DNA.

Figure 10: Product of PCR of S5 DNA amplified with ITS region with an optimized procedure viewed on a 1.5% agarose gel with a 1kb DNA ladder. Lane 1 contains a positive control with ITS1/ITS4 + DNA; lanes 2 and 3 contain ITS1/ITS2 primers + DNA; lane 4 contains ITS3/ITS4 primers + DNA.

The chromatograms obtained from Genome Quebec outlined the length and sequence of the PCR samples (Table 1). Figures 5 to 8 showed the first 19 to 20 hits of the samples sequenced using ITS1, ITS2, ITS3 and ITS4 as sequencing primers. For the samples sequenced through ITS1, the very first hit was 100% *Penicillium herquei* while the rest was ranging between 98.57% and 99.42% *Penicillium herquei* (Figure 11). The sample sequenced with ITS2 showed a match of a 100% *Penicillium herquei* (Figure 12). The samples sequenced with ITS3, showed a match of 98.57% to *Penicillium herquei* while the rest ranged between 97.91% to 97.45% (Figure 13). Finally, the samples sequenced with ITS4 showed a match of 100% to *Penicillium herquei* (Figure 14).

Table 1: The primers used for the Sanger Sequencing of S5 samples sequenced using different primers, the length and the sequence of the fragments. Results were obtained through the Genome Quebec portal (Nanuq)

Primer	Length	Sequence of the S5 sample
1 milet	Longui	sequence of the bo sumple
ITS1	552	tgcggaggatcattactgagtgagggccctctgggtNN
		Necteceaccegtgtttattgtacettgttgetteggcaggecegeeteacggeeggg
		ggggcttctcgccccgggcccgcgcctgccggagacacctttgaacgctgtctgaagtt
		tgcagtctgagcgattagctaaattagttaaaactttcaacaacggatctcttggttccg
		gcatcgatgaagaacgcagcgaaatgcgataattaatgtgaattgcagaattcagtgaat
		catcgagtctttgaacgcacattgcgccccctggtattccggggggcatgcctgtccgag
		cgtcattgctgccctcaagcccggcttgtgtgtgggcctcgtcccccttccgggggacg
		ggcccgaaaggcagcggcggcaccgtgtccggtcctcgagcgtatggggctttgtcaccc
		gctctgtaggcccggccggcgccttagccgacgacacaactttttttt
		ggatcaggtagggatacccgctgaacttaagcatatcNNNNNNNNgagga
ITS2	187	tNNNNNNtcgctcagactgcaaacttcagaca
		gcgttcaaaggtgtctccggcaggcgcggggccgggggggagaagccc
		cccggcggccgt gaggcgggcctgccgaagcaacaaggtacaataaacacgggtgggaggtt
		ggacccagagggccctcactcagtaatgatccttccgcaggttcacctacgga
ITS3	268	tcNNtNaNNNcgagtctttgaacNNNattgcgccccctg
		gtattccggggggcatgcctgtccgagcgtcattgctgccctcaagcccggcttgtgtgt
		tgggcctcgtccccttccgggggacgggcccgaaaggcagcggcggcaccgtgtccggt
		cctcgagcgtatggggctttgtcacccgctctgtaggcccggccgg
		acacaacttttttttcaggttgacctcggatcaggtagggatacccgctgaacttaagca
		tatcaataagcggagg
ITS4	545	acctgaaaaaagttgtgtcgtcggctaaggcgccgg
		ccgggcctacagagcgggtgacaaagccccatacgctcgaggaccggacacggtgccgcc
		gctgcctttcgggcccgtcccccggaaggggggacgaggcccaacacacagccgggcttg
		agggcagcaatgacgctcggacaggcatgccccccggaataccagggggcgcaatgtgcg
		ttcaaagactcgatgattcactgaattctgcaattcacattaatta
		gttcttcatcgatgccggaaccaagagatccgttgttgaaagttttaactaatttagcta
		atcgctcagactgcaaacttcagacagcgttcaaaggtgtctccggcaggcgcgggcccg
		ggggcgagaagccccccggcggccgtgaggcgggcctgccgaagcaacaaggtacaataa
		acacgggtgggaggttggacccagagggccctcactcagtaatgatccttccgcaggttc
		acctacggaaaccttgttacgacttttacttcctctaNNNgaccaag

	Description	Scientific Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
	Penicilium herquei strain F60b 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S rib	Penicilium herquei	953	953	90%	0.0	100.00%	523	JX045739.1
	Penicilium herquei isolate FMS 97 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and	Penicillium herquei	939	939	90%	0.0	99.42%	532	MH244418.1
	Penicillium sp. 22-M-6 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal	Penicilium sp. 2	989	989	94%	0.0	99.27%	560	EU076946.1
	Fungal sp. AM2013 strain 5 Jm internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and int	fungal sp. AM2013	933	933	90%	0.0	99.23%	538	KC506172.1
	Penicilium sp. isolate XZ4375 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and inter	Penicilium sp.	992	992	95%	0.0	99.09%	566	KX225472.1
	Penicilium sp. isolate XZ4290 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and inter	Penicilium sp.	992	992	95%	0.0	99.09%	566	KX225467.1
	Penicilium sp. isolate P14-3-2 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and inter	Penicilium sp.	981	981	94%	0.0	99.08%	557	MW764462.1
	Penicilium herquei strain V-78 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and inte	Penicilium herquei	928	928	90%	0.0	99.04%	540	MT508791.1
	Fungal sp. AM2013 strain 11 JMbp internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene an	fungal sp. AM2013	928	928	90%	0.0	99.04%	539	KC506178.1
	Penicilium malachiteum CBS 647.95 ITS region; from TYPE material	Penicilium malac	990	990	95%	0.0	98.91%	622	NR 120271.
	Penicilium sp. isolate B17-3-4 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and inter	Penicilium sp.	976	976	94%	0.0	98.90%	557	MW764337.1
	Penicillium herquei isolate 580830 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and	Penicilium herquei	994	994	96%	0.0	98.75%	575	MK387975.1
	Penicilium herquei strain FZN72 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and in	Penicilium herquei	942	942	91%	0.0	98.68%	561	MW453198.1
	Penicilium herquei isolate FR14 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and int	Penicilium herquei	941	941	91%	0.0	98.68%	554	KP689192.1
	Penicilium herquei isolate HNNUZCJ-046 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA ge	Penicilium herquei	941	941	91%	0.0	98.68%	548	OM278352.1
	Penicilium herquei isolate the root of Aconitum carmichaelii internal transcribed spacer 1, partial sequence; 5.8S r	Penicilium herguei	941	941	91%	0.0	98.68%	574	OP458509.1
	Penicilium herquei isolate BN21 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and in	Penicilium herquei	939	939	92%	0.0	98.67%	541	MH484010.1
	Penicilium herquei culture CBS:126805 strain CBS 126805 small subunit ribosomal RNA gene, partial sequence;	Penicillium herquei	990	990	96%	0.0	98.57%	589	MH864239.1
~	Penicilium herquei culture BCC <tha>:84301 small subunit ribosomal RNA gene, partial sequence; internal trans</tha>	Penicilium herquei	990	990	96%	0.0	98.57%	578	MF537648.1
~	Uncultured Penicillium clone C139O5 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5	uncultured Penici	990	990	96%	0.0	98.57%	599	KF718245.1

Figure 11: The results of a BLAST® (Basic Local Alignment Search Tool) search of the segment from S5 amplified by the ITS1 primer. The sequence was outlined in Table 1 and was obtained after Sanger Sequencing from Genome Quebec.

	Description	Scientific Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
•	Uncultured fungus isolate iso182 small subunit ribosomal RNA gene, partial sequence; internal transcribed space	uncultured fungus	348	348	94%	2e-91	100.00%	256	MF789535.1
~	Penicilium herquei isolate AM02 small subunit ribosomal RNA gene, partial sequence; internal transcribed space	Penicillium herquei	348	348	94%	2e-91	100.00%	589	MK811098.1
	Penicilium herquei isolate 50SG10 internal transcribed spacer 1, partial sequence	Penicillium herquei	348	348	94%	2e-91	100.00%	559	MH986808.1
•	Penicillium herquei culture CBS:126805 strain CBS 126805 small subunit ribosomal RNA gene, partial seguence;	Penicillium herquei	348	348	94%	2e-91	100.00%	589	MH864239.1
	Penicilium herquei culture BCC <tha>:84304 small subunit ribosomal RNA gene, partial sequence; internal trans</tha>	Penicillium herquei	348	348	94%	2e-91	100.00%	580	MF537650.1
	Penicilium herquei culture BCC <tha>:84301 small subunit ribosomal RNA gene, partial sequence; internal trans</tha>	Penicillium herquei	348	348	94%	2e-91	100.00%	578	MF537648.1
~	Penicilium herquei culture BCC <tha>:84323 small subunit ribosomal RNA gene, partial sequence; internal trans</tha>	Penicillium herquei	348	348	94%	2e-91	100.00%	581	MF537646.1
•	Penicilium herquei isolate 2 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1 a	Penicillium herquei	348	348	94%	2e-91	100.00%	523	MG909554.1
•	Penicilium herquei isolate 1 small subunit ribosomal RNA gene, partial seguence; internal transcribed spacer 1 a	Penicillium herquei	348	348	94%	2e-91	100.00%	523	MG909553.1
•	Penicilium sp. clone 5-4 TSS small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1	Penicillium sp.	348	348	94%	2e-91	100.00%	582	MG675029.1
	Penicillium herquei strain LTL319 small subunit ribosomal RNA gene, partial sequence; internal transcribed spac	Penicillium herquei	348	348	94%	2e-91	100.00%	590	MF663569.1
	Penicillium sp. isolate XZ4375 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and inte	Penicillium sp.	348	348	94%	2e-91	100.00%	566	KX225472.1
	Penicillium sp. isolate XZ4290 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and inte	Penicillium sp.	348	348	94%	2e-91	100.00%	566	KX225467.1
~	Penicilium sp. LW-2016a strain AS3.15506 18S ribosomal RNA gene, partial sequence; internal transcribed spac	Penicillium sp. L	348	348	94%	2e-91	100.00%	569	KT598550.1
	Penicillium herquei isolate TQN2L small subunit ribosomal RNA gene, partial sequence; internal transcribed spac	Penicillium herquei	348	348	94%	2e-91	100.00%	546	MZ497266.1
~	Penicilium herquei isolate HGN12.1C small subunit ribosomal RNA gene, partial sequence; internal transcribed s	Penicillium herquei	348	348	94%	2e-91	100.00%	586	MZ462047.1
•	Uncultured Penicillium clone ecm-2 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8	uncultured Penici	348	348	94%	2e-91	100.00%	582	KM236586.1
~	Penicilium herguei isolate HSW-18 18S ribosomal RNA gene, partial seguence; internal transcribed spacer 1 and	Penicillium herquei	348	348	94%	2e-91	100.00%	585	KJ475818.1
~	Penicilium herquei strain P15R5A2-3 small subunit ribosomal RNA gene, partial sequence; internal transcribed s	Penicillium herquei	348	348	94%	2e-91	100.00%	501	MK036058.1

Figure 12: The results of a BLAST® (Basic Local Alignment Search Tool) search of the segment from S5 amplified by the ITS2 primer. The sequence was outlined in Table 1 and was obtained after Sanger Sequencing from Genome Quebec.

	Description	Scientific Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
	Penicilium herquei strain F60b 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S rib	Penicillium herquei	497	497	92%	4e-136	98.57%	523	JX045739.1
	Penicillium sp. isolate XZ4375 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and inter	Penicillium sp.	475	475	88%	2e-129	98.50%	566	KX225472.1
	Penicillium sp. isolate XZ4290 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and inter	Penicillium sp.	475	475	88%	2e-129	98.50%	566	KX225467.1
	Penicillium malachiteum CBS 647.95 ITS region; from TYPE material	Penicilium malac	507	507	95%	6e-139	98.26%	622	NR 120271.1
	Penicilium sp. isolate P14-3-2 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and inter	Penicilium sp.	507	507	95%	6e-139	98.26%	557	MW764462.1
	Penicillium sp. isolate B17-3-4 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and inter	Penicillium sp.	507	507	95%	6e-139	98.26%	557	MW764337.1
	Penicilium sp. isolate ks20 118 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 2, comple.	. Penicilium sp.	505	505	95%	2e-138	98.25%	354	MW040808.1
	Penicilium herquei isolate 580830 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and i	Penicilium herquei	501	501	95%	3e-137	97.91%	575	MK387975.1
	Penicilium verrucisporum strain CN014D6 small subunit ribosomal RNA gene, partial sequence; internal transcrib	Penicilium verru	501	501	95%	3e-137	97.91%	842	MT949913.1
	Penicilium verrucisporum strain CN014D5 small subunit ribosomal RNA gene, partial sequence; internal transcrib	Penicilium verru	501	501	95%	3e-137	97.91%	842	MT949912.1
	Penicillium verrucisporum strain CN014D4 small subunit ribosomal RNA gene, partial sequence; internal transcrib	Penicillium verru	501	501	95%	3e-137	97.91%	837	MT949911.1
	Penicilium sp. isolate HC29-3-9 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and int	Penicilium sp.	501	501	95%	3e-137	97.91%	560	MW764421.1
	Penicillium sp. 22-M-6 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal	Penicillium sp. 2	501	501	95%	3e-137	97.91%	560	EU076946.1
	Uncultured Penicillium clone Leo1f40 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5,	uncultured Penici	496	496	95%	1e-135	97.57%	624	KF225929.1
	Penicilium malachiteum isolate F8579 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene	Penicilium malac	496	496	95%	1e-135	97.56%	559	ON332166.1
2	Penicilium herquei culture CBS:126805 strain CBS 126805 small subunit ribosomal RNA gene, partial sequence; j	. Penicillium herquei	481	481	92%	4e-131	97.50%	589	MH864239.1
	Penicilium herquei isolate FMS_97 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and	Penicilium herquei	477	477	91%	5e-130	97.48%	532	MH244418.1
	Penicilium herquei culture BCC <tha>:84301 small subunit ribosomal RNA gene, partial sequence; internal trans</tha>	Penicilium herquei	473	473	91%	6e-129	97.46%	578	MF537648.1
2	Penicilium herquei culture BCC <tha>:84304 small subunit ribosomal RNA gene, partial sequence; internal trans</tha>	Penicilium herquei	470	470	90%	8e-128	97.45%	580	MF537650.1
2	uncultured Penicilium genomic DNA sequence contains ITS1	uncultured Penici	460	460	88%	5e-125	97.39%	311	OU497354.1

Figure 13: The results of a BLAST® (Basic Local Alignment Search Tool) search of the segment from S5 amplified by the ITS3 primer. The sequence was outlined in Table 1 and was obtained after Sanger Sequencing from Genome Quebec.

	Description	Scientific Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
~	Penicilium sp. isolate XZ4375 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and inter	Penicilium sp.	965	965	91%	0.0	100.00%	566	KX225472.1
~	Penicilium sp. isolate XZ4290 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and inter	Penicillium sp.	965	965	91%	0.0	100.00%	566	KX225467.1
~	Penicilium herquei strain F41 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribo	Penicillium herquei	918	918	87%	0.0	100.00%	503	JX045737.1
~	Penicilium sp. 22-M-6 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal	Penicilium sp. 2	913	913	86%	0.0	100.00%	560	EU076946.1
~	Penicilium sp. isolate P14-3-2 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and inter	Penicillium sp.	904	904	86%	0.0	99.80%	557	MW764462.1
~	Penicilium herquei isolate 2 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1 an	Penicillium herquei	953	953	91%	0.0	99.62%	523	MG909554.1
~	Penicilium herquei isolate 1 small subunit ribosomal RNA gene, partial seguence; internal transcribed spacer 1 an	Penicillium herquei	953	953	91%	0.0	99.62%	523	MG909553.1
~	Penicilium herquei isolate 580830 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and	Penicilium herquei	931	931	89%	0.0	99.61%	575	MK387975.1
~	Penicilium malachiteum culture CBS:847.95 strain CBS 647.95 internal transcribed spacer 1, partial sequence; 5,	Penicilium malac	917	917	88%	0.0	99.60%	508	MH862546.1
≤	Penicilium malachiteum CBS 647.95 ITS region; from TYPE material	Penicilium malac	915	915	88%	0.0	99.60%	622	NR 120271
~	Penicilium herquei strain P15R5A2-3 small subunit ribosomal RNA gene, partial sequence; internal transcribed sp	Penicilium herguei	913	913	87%	0.0	99.60%	501	MK036058.1
~	Penicilium sp. isolate B17-3-4 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and inter	Penicilium sp.	898	898	86%	0.0	99.59%	557	MW764337.1
≤	Penicilium verrucisporum strain CN014D6 small subunit ribosomal RNA gene, partial sequence; internal transcrib	Penicilium verru	996	996	96%	0.0	99.45%	842	MT949913.1
~	Penicilium verucisporum strain CN014D5 small subunit ribosomal RNA gene, partial sequence; internal transcrib	Penicilium verru	996	996	96%	0.0	99.45%	842	MT949912.1
~	Penicilium verrucisporum strain CN014D4 small subunit ribosomal RNA gene, partial sequence; internal transcrib	Penicillium verru	996	996	96%	0.0	99.45%	837	MT949911.1
~	Penicilium herquei isolate P14910 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1 and	Penicilium herquei	994	994	95%	0.0	99.45%	564	JQ863240.1
~	Penicilium herquei culture CBS: 126805 strain CBS 126805 small subunit ribosomal RNA gene, partial seguence;	Penicilium herquei	968	968	93%	0.0	99.44%	589	MH864239.1
~	Penicilium herquei isolate NTOU 4452 small subunit ribosomal RNA gene, partial sequence; internal transcribed s	Penicilium herquei	966	966	93%	0.0	99.44%	589	MZ423012.1
~	Penicilium herquei culture BCC <tha>:84304 small subunit ribosomal RNA gene, partial sequence; internal trans</tha>	Penicilium herquei	963	963	92%	0.0	99.44%	580	MF537650.1
~	Penicilium sp. clone 5-4 TSS small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1,	Penicilium sp.	963	963	92%	0.0	99.44%	582	MG675029.1

Figure 14: The results of a BLAST® (Basic Local Alignment Search Tool) search of the segment from S5 amplified by the ITS4 primer. The sequence was outlined in Table 1 and was obtained after Sanger Sequencing from Genome Quebec.

3.2 Quantification of S5: growth rate and calibration curve

Absorbance and dry mass measurements were recorded for 10 liquid cultures during 10 consecutive days. The goal of this experiment was to create a growth curve and a calibration curve to monitor the growth phases of S5. Figure 15 shows the growth curve of S5 measured over the span of 10 days. This graph enabled the tracking of the growth behaviour of S5. Between day 0 and 1, the growth was at it's minimal. In day 1 to day 4, the growth rate accelerated slightly. This acceleration w as represented by a slightly steeper curve. Between days 4 and 6, the growth rate was at its maximal, which was represents with a steeper curve. Starting from day 6 to day 7, the growth rate decelerated. Finally, between days 8 and 9, the growth rate plateaued. Figure 16 represents the calibration curve obtained by measuring the absorbance and the dry mass of S5 liquid cultures. The graph represents a positive linear correlation between the absorbance and the dry mass.

Figure 15: Growth curve to determine the log phase time span for S5. The absorbance was measured at 630 nm from liquid cultures during 10 consecutive days. The measurements were done in triplicates and the cultures were grown in tubes in YMB media. The error bars represent the standard deviation and dots represent mean absorbances (taken from triplicates for each day). The log phase for S5 was between days 4 and 6.

Figure 16: Calibration curve of S5 fungal mass versus absorbance at 630 nm. The dry mass was measured in triplicates. The trend was linear with an equation of y = 7.0277x - 0.0649 and $R^2 = 0.8892$. The error bars represent the standard deviation and dots represent the mean values.

3.3 Pairwise testing of S5 and P. destructans

Pairwise testing enabled the visualization of the inhibition of *P. destructans* by S5. Figure 17 showed the regular growth pattern of S5. It grew as a beige lawn on agar plates. Figure 18 shows the different growth patterns of *P. destructans*. It had different growth patterns depending on the environmental and weather changes (humidity for example). A pairwise test plate is set up by placing two pure cultures on each side of an agar well. The plates were grown for two weeks. Figure 19 is an example of a pairwise testing plate. S5, on the right side, did not grow as much as it did in figure 17. However, there was no *P. destructans* growth on the plate which indicated inhibition.

Figure 17: Growth pattern of S5 on solid Yeast Malt Agar (YMA) media made in 12-well plates that were 4mL deep and 2cm in diameter. $100 \,\mu$ L of S5 was inoculated from a 4-day liquid culture.

Figure 18: Growth pattern of P. destructans on solid Yeast Malt Agar (YMA) media made in either 12-well plates (A) or 60 mm x 15 mm Petri Dishes (B). The inoculations were made in different days. 100 μ L of *P. destructans* was inoculated from a 7-day liquid culture for both the 12-well plates and the Petri Dishes.

P. destructans

Figure 19: Test for pairwise inhibition between S5 (inoculated on the right side of the plate) and P. destructans (inoculated on the left side of the plate). Both pure cultures were inoculated on each side of a well in a 12-well plate. The media used was Yeast Malt Agar (YMA) media.

3.4 Spent Media testing

Spent Media testing was a way to address the hypothesis that S5 and *P. destructans* were in resource competition meaning that the inhibition occurs because S5 is a better competitor. Varying volumes (either 10 or 20% v/v) of an S5 cell-free extract was used to make Yeast Malt Broth (Figure 20) and Yeast Malt Agar plates (Figure 21). Subsequently, *P. destructans* was grown in the different media. Yeast Malt Broth in Figure 20 A was the only one not containing *P. destructans* growth. Figures 20 B and 21 (A and B) contained minimal to moderate *P. destructans* growth compared to the positive controls of *P. destructans* grown on regular agar-based and liquid media. This test showed that the presence of S5 is not necessary for the inhibition of *P. destructans* (Figure 20A).

Figure 20: Fresh Yeast Malt Broth (YMB) supplemented with 10% v/v S5 cell-free extract (or spent media, A) or 20% v/v S5 cell-free extract (B) and inoculated with 100 μ L of P. destructans.
Α

Figure 21: Fresh Yeast Malt Agar (YMA) supplemented with 10% v/v S5 cell-free extract (A) or 20% v/v S5 cell-free extract (B) and inoculated with 20 μ L of P. destructans.

3.5 Metabolic extraction testing

Metabolic extraction testing was a way to address the hypothesis that S5 might have been secreting a secondary metabolite to inhibit the growth of *P. destructans*. Metabolic extracts from S5 12-well plates and S5 and *P. destructans* 12-well plates were extracted with a 2:1:1 ratio of methanol, chloroform and ethyl acetate. The extracts were used to make agar-based media which was inoculated with *P. destructans*. Figures 22 and 23 show the different metabolic extracts used in different ratios. *P. destructans* did not grow on any of the plates, suggesting that S5 did not have to be present for the inhibition to occur. S5 might be secreting a secondary metabolite that is contributing to the inhibition.

Figure 22: Fresh Yeast Malt Agar (YMA) supplemented with 10% v/v S5 metabolic extract (using 2:1:1 ratio of methanol, chloroform, and ethyl acetate) and inoculated with 20 μ L of *P. destructans*. No growth was present on the plate.

Figure 23: Fresh Yeast Malt Agar (YMA) supplemented with 10% v/v (A) and 20% v/v (B) S5 and P. destructans metabolic extract using 2:1:1 ratio of methanol, chloroform, and ethyl acetate, inoculated with 20 μ L of *P. destructans*. No growth was present on the plates.

3.6 Thin film testing

Figure 24 shows a thin film test of an S5 extract with chloroform. *P. destructans* did grow on the chloroform thin film indicating (Figure 24 A) that chloroform had no inhibition effect. However, *P. destructans* did not grow when S5 extract from chloroform was applied (Figure 24 B). Figure 25 showed the same pattern. When the acetonitrile thin film was applied on agar, *P.* *destructans* grew. When the S5 metabolic extract using acetonitrile was applied, there was no *p*. *destructans* growth.

Figure 24: Two 12-well plates made of Yeast Malt Agar (YMA) media and inoculated with 10 μ L of P. destructans. Plate A) P. destructans grown on YMA with an evaporated thin film of 100 μ L of pure chloroform (CHCl₃) acting as a control. Plate B) P. destructans grown on evaporated thin film created using 100 μ L S5 plates extracted with chloroform (CHCl₃)

Figure 25: Two 12-well plates made of Yeast Malt Agar (YMA) media and inoculated with 10 μ L of P. destructans. Plate A) P. destructans grown on YMA with an evaporated thin film of 100 μ L of pure acetonitrile (ACN) acting as a control. Plate B) P. destructans grown on evaporated thin film created using 100 μ L S5 plates extracted with acetonitrile (ACN)

3.7 Qualitative analysis of the S5 metabolic extracts

Figure 26 shows the chromatograms of the cell-free extracts (or spent media samples) from S5 alone, S5 and *P. destructans* co-cultures, and *P. destructans* alone. No peak patterns were observed during this experiment. All chromatograms didn't have any peaks in common but had several peaks dispersed throughout the chromatogram. In figures 27 and 28, the background chromatograms were subtracted to display the chromatogram without the background signals.

Figure 27 showed the different chromatograms for the different samples. In the first Total Ion Chromatogram (TIC) for the acetonitrile extract, the highest peak had an average retention time of 12.516 minutes (Figure 27). The peak started at 12.388 min and ended at 12.766 min (Sample Chromatograms, Appendix 1). This peak also corresponded to a base peak of 327.0865 m/z (Figure 28) which was 100% abundant (Sample Spectra, Appendix 1). The second TIC is an analysis of the chloroform extract (Figure 27). In this TIC, the highest peak had an average retention time of 12.570 minutes (Figure 27). The peak started at 12.408 min and ended at 12.969 min (Sample Chromatograms, Appendix 2). In the sample spectra outlined in figure 28, the most abundant base peak (Sample Spectra, Appendix 2) was 327.0867 m/z (Figure 28). Another region on interest had an average retention time of 13.151 min (Figure 27). The peak started at 13.063 min and ended at 13.282 min (Sample Chromatograms, Appendix 2). Based on the spectrum in figure 28, the most abundant base peak (100%) has a mass-to-charge ratio of 327.0865 m/z (Sample Spectra, Appendix 2; Figure 28). The third TIC corresponded to the *P. destructans* sample. One peak of interest was the one with an average retention time of 12.353min, which started at 12.219 min and ended at 12.407 min (Sample Chromatograms, Appendix 3). In this area the most abundant base peak was 420.2445 m/z (Sample Spectra, Appendix 3; Figure 28). The fourth TIC in figure 27 analyzed the S5 + P. destructans extract. One peak of interest had an average retention time of 12.677 min (Figure 27). The peak started at 12.532 min and ended at 12.825 min (Sample Chromatograms, Appendix 4). Based on the spectrum in figure 28, the most abundant base peak (100%) has a mass-to-charge ratio of 327.0872 m/z (Sample Spectra, Appendix 4; Figure 28). The fifth and last TIC was of the S5 sample. One peak of interest had an average retention time of 12.638 min (Figure 27). The peak started at 12.511 min and ended at 12.799 min (Sample

Chromatograms, Appendix 5). Based on the spectrum in figure 28, the most abundant base peak (90.16%) has a mass-to-charge ratio of 327.0863 m/z (Sample Spectra, Appendix 5; Figure 28).

Figure 26: Integrated Total Ion Chromatogram (TIC) measured on a Quadrupole Time-of-flight (QTOF) Mass Spectrometer of different spent media samples: fresh Yeast Malt Broth (YMB) (first black TIC) and 250 μ L cell-free extracts or spent media samples from *P. destructans* (second black TIC), S5 (third, green TIC) and the *P. destructans* + S5 diluted with HPLC grade water to a total volume of 1 mL. Each peak was a representation of a compound. The average retention times were indicated on top of each peak. The chromatogram shows the acquisition time (minutes) versus the intensity or the abundance of the peaks.

Figure 27: Total Ion Chromatogram (TIC) of different metabolic extracts measured on a Quadrupole Time-of-flight (QTOF) Mass Spectrometer and showing the percent count versus the acquisition time in minutes. First (red) TIC: sample of S5 12-well plates extracted with acetonitrile. The used blank was empty agar wells also extracted with acetonitrile. Second (dark blue) TIC: sample of S5 12-well plates extracted with chloroform. The used blank was empty agar wells also extracted with chloroform. For TICs 3, 4, and 5: S5 12-well plates, *P. destructans* plates and pairwise testing plates of S5 and *P. destructans* were extracted with a 2:1:1 ration of methanol, chloroform, and ethyl acetate. The used blank was empty agar plates extracted using the same method. All the extracts were diluted to 1mg/mL using HPLC grade methanol. Third (green) TIC: S5 extract. Peaks represented the different compounds. Average retention times were indicated on top of each peak.

Figure 28: Spectra of different metabolic extracts representing the count versus the mass to charge ratio (m/z). First (dark blue) spectrum: sample of S5 12-well plates extracted with acetonitrile. The used blank was empty agar wells also extracted with acetonitrile. Second (green) spectrum: sample of S5 12-well plates extracted with chloroform. The used blank was empty agar wells also extracted with chloroform. The used blank was empty agar wells also extracted with chloroform. For spectra 3, 4, and 5: S5 12-well plates, *P. destructans* plates and pairwise testing plates of S5 and *P. destructans* were extracted with a 2:1:1 ration of methanol, chloroform, and ethyl acetate. The used blank was empty agar plates extracted using the same method. All the extracts were diluted to 1mg/mL using HPLC grade methanol. Third (brown) spectra: *P. destructans* extract. Fourth (light blue) spectra: S5 and *P. destructans* extract. Fifth (black) spectra: S5 extract. Peaks represented the different compounds. The mass-to-charge ratios were indicated on top of each peak.

4. Discussion

White-nose syndrome is an emerging disease that has affected many bat populations in Eastern USA and Canada (Frank et al., 2016) and is still spreading across the continent (Micalizzi et al., 2017; Warnecke et al., 2012). To fight against this infectious disease, probiotic and microbederived treatments might be an efficient solution since they provide a new source of naturally derived compounds (Kolwich, 2019). This thesis aims to find a microbe-derived inhibitory compound from a soil sample isolate extracted from a cave in Gatineau, Quebec. The main results were the following. The isolate was first named S5 and was after identified, using PCR and sequencing, to be *Penicillium herquei* (*P. herquei*). The growth curve and calibration curve of *P*. *herquei* were also determined by measuring the pellet mass and the absorbance of liquid cultures. Using pairwise testing, it was determined that *P. herquei* inhibits the growth of *P. destructans*. Spent media testing was not conclusive in determining whether the inhibition was due to resource competition or interference competition. However, metabolic extract testing showed that the presence of *P. herquei* was not necessary for the inhibition to occur. Further qualitative analysis of the metabolic extract was done to determine the molecular weight, retention time and mass-tocharge ratio of the inhibitory compound. A certain peak was seen consistently across multiple chromatograms of different S5 metabolic extracts.

4.1 What is S5?

4.1.1 Isolate (S5) Identification: *P. herquei*:

Micalizzi et al. (2017) have isolated a library containing multiple microbes from different cave sites across Canada. S5 was one of the isolates that were sent to our research group from Dr. Myron Smith's lab at Carleton University. The filamentous fungi (including S5) and yeast were amplified using the Internal Transcribed Spacer region (Micalizzi et al., 2017). The paper also amplified the *beta-tubulin* gene which is a region characteristic of *Penicillium spp.* S5 was determined to be part of the *Penicillium spp*. (Micalizzi et al., 2017). Using DNA extraction, PCR amplification and sequencing, S5 was identified to be Penicillium herquei. The NCBI nucleotide BLAST results showed that the first targets, using ITS 1, ITS2 and ITS4 were P. herquei (Figures 11, 12 and 14). However, the BLAST results for the segment sequenced with ITS3 had a lower percent identity match (Figure 13). The ITS 3 region might be a conserved region across multiple *Penicillium spp.* which would explain the lower percent identity match. *P. herquei* is part of the subgenus Aspergilloides. Specifically, it belongs to the section Sclerotiora, which contains about 17 Penicillium spp. (Wang et al., 2017). P. herquei is the only taxa in Sclerotiora that contains conidiophores with two branches (or biverticillate conidiophores). It usually grows on different media at 25 °C and it has been isolated from different substrates including soil, plant material (like rotten fruits), and insects (Wang et al., 2017). The colony characteristics mentioned in the literature confirm the characteristics observed on the solid media in our lab (Enomoto et al., 1995; Visagie et al., 2013; Wang et al., 2017). On Malt Agar media, P. herquei covers 10 to 25 mm after incubation at 25 °C (Figure 17). The colony is velvety, and the reverse side has a yellow to cream colour between day 4 and day 6 (Figure 17). These observations were consistent throughout the different literature papers (Enomoto et al., 1995; Visagie et al., 2013; Wang et al., 2017). Visagie et al., (2013) also showed that P. herquei grew moderately at 30 °C but did not grow at all at a temperature of 37 °C which matches and justifies our 25 °C growth temperature.

4.1.2 Quantification of S5: growth and calibration curve:

This experiment enables the quantification of *P. herquei* growth by measuring the fungal dry mass and the absorbance of liquid cultures over 10 days. The quantification keeps the number

of cells in a liquid culture consistent across all experiments and enables the liquid cultures to be used when the cell growth is at its maximum. Cell growth is defined as a balanced increase in cell content over time (Deacon, 2006). Cell content includes proteins, biomass, cell number, dry weight, nucleic acid content, etc. (Deacon, 2006). The propagation of filamentous fungi occurs in five phases. The lag phase is characterized by little to no growth. The exponential or logarithmic growth phase is when the growth rate is at its maximum which can be visualized by the steep slope on the growth curve. During this phase, cells duplicate rapidly. The growth continues until the available resources can no longer support the growth or when a harmful by-product starts to accumulate. The deceleration phase is when the growth is offset by cell death which causes the curve to plateau (Kolwich, 2021). The last phase is autolysis or cell death (Deacon, 2006). Ensuring that all liquid cultures are in the exponential phase increases the number of cells in the liquid culture, optimizing the subsequent experiments. Based on Figure 15, the exponential phase of *P. herquei* in YMA liquid cultures is between days 4 and 6.

The calibration curve is made by plotting the measurement of absorbance at 630 nm against the dry mass of the filamentous fungi. The relationship between absorbance and dry mass is linear. The dry mass of a liquid culture increases proportionally as its absorbance increases (Langvad, 1999). It enables the determination of the dry mass based on the absorbance of a certain liquid culture using the linear slope equation. This ensures consistency across experiments. The measurements of the dry mass in liquid cultures were not very successful which was represented by the high standard error bars in Figure 16. To measure the absorbance, the liquid culture had to be homogenized using a tissue grinder (Granade et al., 1985). The measurement of the dry mass was problematic. First, the dry mass was measured on filter paper, dried in a desiccator for 24 hours then weighed on an analytical balance based on the procedure made by Jennifer Kolwich and originally adapted from Langvad's (1999) protocol. The dry mass values were not consistent due to the residual water trapped in the filter paper, as well as static electricity buildup on the filter paper and the balance. While weighing the filter paper, static electricity causes the numbers on the balance to fluctuate almost constantly. The experiment was rerun using a modified protocol (outlined in Methods and Materials, section 2.5). The results were then plotted in the graph. The standard error bars were significantly high for the dry mass variable (Figure 16). This indicates that the values between the triplicates were significantly different. The difference can be explained by a balance error, the presence of leftover YMB or differences in growth in each tube that could influence the measurement. Langvad (1999) proposed a more efficient method to calculate the calibration curve of filamentous fungi that could be considered for future attempts to quantify S5 growth. The paper suggests using a 96-well microtiter plate and a microplate reader to measure the absorbance. The dry weight was measured using glass fibre filters which absorb a minimal amount of water. The glass filters were then oven-dried overnight at 105 °C (Langvad, 1999). An oven would dry out the water left in the glass filter which contributes to an accurate reading of the dry mass.

4.2 What is the inhibitory effect of *P. herquei* (S5) on *P. destructans*?

Pairwise testing enables the visualization of the inhibition. After growing *P. destructans* for 7 days and *P. herquei* for 4 to 6 days each pure strain was inoculated on each side of the agar and incubated. The two inoculates did not come in contact with each other and were 15 mm apart. Figure 19 represents a pairwise test in a 12-well plate. In the plate, no *P. destructans* growth was observed and *P. herquei* growth was decreased. The absence of *P. destructans* suggests that *P. herquei* acted as an inhibitor for the growth of *P. destructans*. The mode of inhibition between *P. herquei* acted as an inhibitor for the growth of *P. destructans*.

destructans and *P. herquei* is the focus of the next section. The decrease in the *P. herquei* colony might be due to the decreased number of available resources on the agar well. The two fungi were being grown on the same plate and both grew on the same media and needed the same compounds for survival (including dextrose and peptone) (Alexopoulos et al., 1996). At the start, *P. destructans* was using the resource to establish a colony, and so did *P. herquei*. However, the inhibition hindered *P. destructans* from growing and resulted in *P. herquei* decreasing its growth (colony size) due to the available resources (Pirt, 1967).

It is important to mention that the inhibition was only observed when *P. herquei* and *P. destructans* were inoculated at the same time. If *P. destructans* was given time to establish its colonies *P. herquei* could not kill the already present *P. destructans* colonies.

4.3 How does P. herquei inhibit the growth of P. destructans?

The main result is that *P. herquei* inhibits the growth of *P. destructans*. The next two sections discuss the inhibition modes based on the observed results.

4.3.1 Inhibition due to resource competition:

Resource competition happens when there is a simultaneous demand for the same resources by two different populations. The resources might not be sufficient to meet the demands of both populations (Dighton et al., 1992). Exploitation competition happens when one individual depletes all available resources and leaves the second individual with little to no survival sources. In this case, a population or an individual is a better competitor (Dighton et al., 1992). To assess the inhibition mechanism, a cell-free extract of *P. herquei* was used to make both fresh liquid and agar-based media that were subsequently inoculated with *P. destructans*. Figure 20 A shows the absence of *P. destructans* in the liquid media, while figures 20 B and 21 (A and B) show minimal growth of *P. destructans* compared to the *P. destructans* controls grown in regular liquid and agarbased media. These results suggest that the presence of *P. herquei* is not necessary for the inhibition to occur. Subsequently, the inhibition is not a result of resource competition between the two fungi. Since there was little *P. destructans* growth, and to dive in more on the mode of inhibition, metabolic extract testing was done to address the interference competition hypothesis.

4.3.2 Inhibition due to interference competition

Interference competition happens when one individual influences the access to resources of the other individual through behavioural (like territoriality for animals) or chemical interactions. Interference competition is also known as antagonism (Dighton et al., 1992). *Penicillium* is one of the most common fungi species in the world. This genus is primarily known for secreting different metabolites that are used in various disciplines like food spoilage, biotechnology, plant pathology, and medicine (specifically antimicrobials) (El Hajj Assaf et al., 2020). *Penicillium* is known to secrete different compounds with a wide range of biological activity. The most iconic example is the antibiotic penicillin (El Hajj Assaf et al., 2020). Natural products are usually produced as secondary metabolites through enzymatic pathways (El Hajj Assaf et al., 2020; Luo et al., 2015).

Plates made with extracts from *P. herquei* have inhibited the growth of *P. destructans*. This result suggests that the presence of *P. herquei* is not crucial to the inhibition, which implies that *P. herquei* is secreting an inhibitory compound that affects the growth of *P. destructans*. The qualitative analysis of all the different extracts was done using a QTOF Mass Spectrometer. The *P. herquei* plates were extracted with Acetonitrile (ACN) and chloroform (CHCl₃) separately. The two solvents have different polarities. Figures 22 and 23 show that both metabolic extracts inhibited the growth of *P. destructans*. This suggests that the inhibitory compound is present in both the ACN and the CHCl₃ extracts. Both the ACN and the CHCl₃ extract chromatograms had

one peak in common at approximately 12.5 min retention time (Figure 27). The metabolic extracts of *P. herquei* made using the 2:1:1 ratio mixture (Methods and materials, section 2.8) also had the same peak with approximately the same retention time but with a lower intensity. One specific base peak was consistent along all the spectra of the previously mentioned samples (Figure 28). The peak has a mass-to-charge ratio of a 327.09 m/z which could be informative on the molecular weight of the most stable compound within this sample. Consequently, the inhibitory compound might have an average retention time of approximately 12.5 and a base peak of 327.08 mass-to-charge ratio.

Reviewing the literature, P. herquei produces a variety of secondary metabolites that have a wide range of biological activities. About 40 years ago, herquline A was extracted from a strain of *P. herquei*. It was later shown that herquline A prevents platelet aggregation and has multiple antibiotic properties like inhibiting the replication of the influenza virus (Enomoto et al., 1995; Zhu et al., 2019). P. herquei also produces herquline B (Omura et al., 1979) and its diastereomer herquline C which seems to have the same biological activities as herquline A (Enomoto et al., 1995). It was shown that P. herquei produces two epimer pairs of acetaminophen derivatives called Penicilquei (A, B, C and D) (Wu et al., 2020; Zhou et al., 2019). Peniciliqueis showed broadspectrum antifungal activity against fungi like Colletotrichum capsica and Bipolaris oryzae (Zhou et al., 2019). Stationary P. herquei liquid cultures seemed to produce coloured compounds that turned the media dark red. These compounds were identified to be norherqueinone and herqueinone. The compounds have antimicrobial activity (Narasimhachari and Vining, 1963). As mentioned, P. herquei produces a wide range of antifungal and antimicrobial compounds. However, based on the mass spectrometer data in the papers, none of these compounds have a matching mass-to-charge ratio to the one found in this paper. The closest mass-to-charge ratio was 328.1165 m/z which corresponds to (-) and (+) Scleroamide (Yu et al., 2022) suggesting that our compound of interest might be Scleroamide, a compound that has a molecular formula of $C_{18}H_{18}NO_5$. Further analysis must be done to determine the identity of the inhibitory compound. Since this compound is a secondary metabolite, it would exist in low quantities compared to the primary metabolites (Luo et al., 2015). This would explain why the spent media assay was not very successful: the compound was being produced at low levels. Its concentration decreased even more after mixing the *P. herquei* cell-free extract with fresh YMB media. However, when the 25 mg/mL metabolic extracts were mixed with fresh media, *P. destructans* was inhibited.

5. Conclusion

White-nose Syndrome is an emerging disease in Eastern USA and Canada. It has killed millions of bats from various species and is still dispersing. *P. destructans* is the causative agent of White-nose Syndrome. Chemically synthesized antimicrobials might influence the cave ecosystem. For that reason, microbe-derived treatments can be the next key solution for infections like White-nose Syndrome. The goal of this research project is to find a microbe-derived treatment from a soil sample isolate extracted from a cave in Gatineau, Quebec. The isolate was named S5 but then identified to be *Penicillium herquei*. Using pairwise testing plates, it was shown that *P. herquei* inhibits the growth of *P. destructans*. Two mechanisms of inhibition were considered: inhibition due to resource competition or interference competition. Using cell-free extracts (spent media) from *P. herquei*, it was demonstrated that the presence of *P. herquei* is not important for the inhibition to occur. This result was supported using *P. herquei* metabolic extract testing. Agarbased media was able to inhibit the growth of *P. destructans* suggesting that the physical presence of *P. herquei* does not contribute to the inhibition. This implies that *P. herquei* secretes a secondary inhibitory metabolite to inhibit *P. destructans* growth. All the metabolic extracts were analyzed

using a Quadrupole time-of-flight Mass Spectrometer. All the chromatograms have a peak in common with a retention time of 12.5 minutes. All the spectra had a common base peak with a mass-to-charge ratio m/z of 327.08. The exact molecular formula and configuration of the secondary metabolite were not determined during this research. However, based on the literature review, one candidate might be Scleroamide, a compound usually secreted by *P. herquei* that has a mass-to-charge ratio of 328.1165 and a molecular formula of $C_{18}H_{18}NO_{5}$.

6. Future Work

Future work involves using one dimension of a 2-Dimensional High Performance Liquid Chromatography with photodiode array detection to separate the peak of interest seen on the chromatogram of the Acetonitrile or the Chloroform metabolic extract. Having a separated sample opens the way to using other techniques to identify the compound like IR (Infrared) spectroscopy and NMR (Nuclear Magnetic Resonance) analysis. After identifying the inhibitory compound, it would be necessary to study the minimal and maximal concentrations required for the inhibition.

7. References

- Alexopoulos, C. J., Mims, C. W., & Blackwell, M. (1996). Introductory mycology. *Introductory Mycology.*, *Ed.4*. <u>https://www.cabdirect.org/cabdirect/abstract/19971700582</u>
- Blehert, D. S., Hicks, A. C., Behr, M., Meteyer, C. U., Berlowski-Zier, B. M., Buckles, E. L., Coleman, J. T. H., Darling, S. R., Gargas, A., Niver, R., Okoniewski, J. C., Rudd, R. J., & Stone, W. B. (2009). Bat White-Nose Syndrome: An Emerging Fungal Pathogen? *Science*, 323(5911), 227–227. <u>https://doi.org/10.1126/science.1163874</u>
- Carey, H. V., Andrews, M. T., & Martin, S. L. (2003). Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. *Physiological reviews*. <u>https://doi.org/10.1152/physrev.00008.2003</u>
- Cheng, T. L., Mayberry, H., McGuire, L. P., Hoyt, J. R., Langwig, K. E., Nguyen, H., Parise, K. L., Foster, J. T., Willis, C. K. R., Kilpatrick, A. M., & Frick, W. F. (2017). Efficacy of a probiotic bacterium to treat bats affected by the disease white-nose syndrome. *Journal of Applied Ecology*, 54(3), 701–708. <u>https://doi.org/10.1111/1365-2664.12757</u>
- Cho, Y.-T., Su, H., Wu, W.-J., Wu, D.-C., Hou, M.-F., Kuo, C.-H., & Shiea, J. (2015). Chapter Six—Biomarker Characterization by MALDI–TOF/MS. In G. S. Makowski (Ed.), *Advances in Clinical Chemistry* (Vol. 69, pp. 209–254). Elsevier. <u>https://doi.org/10.1016/bs.acc.2015.01.001</u>
- Cornelison, C. T., Gabriel, K. T., Barlament, C., & Crow, S. A. (2014). Inhibition of *Pseudogymnoascus destructans* Growth from Conidia and Mycelial Extension by Bacterially Produced Volatile Organic Compounds. *Mycopathologia*, 177(1), 1–10. <u>https://doi.org/10.1007/s11046-013-9716-2</u>

- Cornelison, C. T., Keel, M. K., Gabriel, K. T., Barlament, C. K., Tucker, T. A., Pierce, G. E., & Crow, S. A. (2014). A preliminary report on the contact-independent antagonism of *Pseudogymnoascus destructans* by *Rhodococcus rhodochrousstrain* DAP96253. *BMC Microbiology*, 14(1), 246. <u>https://doi.org/10.1186/s12866-014-0246-y</u>
- Cryan, P. M., Meteyer, C. U., Boyles, J. G., & Blehert, D. S. (2010). Wing pathology of whitenose syndrome in bats suggests life-threatening disruption of physiology. *BMC Biology*, 8(1), 135. <u>https://doi.org/10.1186/1741-7007-8-135</u>

Deacon, J. W. (2006). Fungal Biology. 80 – 90. John Wiley & Sons.

- Dighton, J., White, J., & Oudemans, P. (1992). The Fungal Community: Its Organization and Role in the Ecosystem Chapter 7 Community Assembly of Phyllosphere Endophytes: A Closer Look at Fungal Life Cycle Dynamics, Competition, and Phytochemistry in the Shaping of the Fungal Community, *Second Edition*, 95. CRC Press.
- Drees, K. P., Lorch, J. M., Puechmaille, S. J., Parise, K. L., Wibbelt, G., Hoyt, J. R., Sun, K., Jargalsaikhan, A., Dalannast, M., Palmer, J. M., Lindner, D. L., Marm Kilpatrick, A., Pearson, T., Keim, P. S., Blehert, D. S., & Foster, J. T. (2017). Phylogenetics of a Fungal Invasion: Origins and Widespread Dispersal of White-Nose Syndrome. *MBio*, 8(6), e01941-17. https://doi.org/10.1128/mBio.01941-17
- El Hajj Assaf, C., Zetina-Serrano, C., Tahtah, N., Khoury, A. E., Atoui, A., Oswald, I. P., Puel, O., & Lorber, S. (2020). Regulation of Secondary Metabolism in the Penicillium Genus. *International Journal of Molecular Sciences*, 21(24), Article 24. <u>https://doi.org/10.3390/ijms21249462</u>

- Enomoto, Y., Shiomi, K., Hayashi, M., Masuma, R., Kawakubo, T., Tomosawa, K., Iwai, Y., & Omura, S. (1996a). Herquline B, a New Platelet Aggregation Inhibitor Produced by *Penicillium herquei* Fg-372. *The Journal of Antibiotics*, 49(1), 50–53. https://doi.org/10.7164/antibiotics.49.50
- Enomoto, Y., Shiomi, K., Hayashi, M., Masuma, R., Kawakubo, T., Tomosawa, K., Iwai, Y., & Omura, S. (1996b). Herquline B, a New Platelet Aggregation Inhibitor Produced by Penicillium herquei Fg-372. *The Journal of Antibiotics*, 49(1), 50–53. https://doi.org/10.7164/antibiotics.49.50
- Farina, L. L., & Lankton, J. S. (n.d.). Chapter 25—Chiroptera / Elsevier Enhanced Reader. https://doi.org/10.1016/B978-0-12-805306-5.00025-0
- Fernando, W. G. D., Ramarathnam, R., Krishnamoorthy, A. S., & Savchuk, S. C. (2005). Identification and use of potential bacterial organic antifungal volatiles in biocontrol. *Soil Biology and Biochemistry*, 37(5), 955–964. <u>https://doi.org/10.1016/j.soilbio.2004.10.021</u>
- Ferrer, I., & Thurman, E. M. (2003). Liquid chromatography/time-of-flight/mass spectrometry (LC/TOF/MS) for the analysis of emerging contaminants. *TrAC Trends in Analytical Chemistry*, 22(10), 750–756. <u>https://doi.org/10.1016/S0165-9936(03)01013-6</u>
- Field, K. A., Johnson, J. S., Lilley, T. M., Reeder, S. M., Rogers, E. J., Behr, M. J., & Reeder, D. M. (2015). The White-Nose Syndrome Transcriptome: Activation of Anti-fungal Host Responses in Wing Tissue of Hibernating Little Brown Myotis. *PLOS Pathogens*, *11*(10), e1005168. <u>https://doi.org/10.1371/journal.ppat.1005168</u>
- Frank, C. L., Ingala, M. R., Ravenelle, R. E., Dougherty-Howard, K., Wicks, S. O., Herzog, C., &Rudd, R. J. (2016). The Effects of Cutaneous Fatty Acids on the Growth of

Pseudogymnoascus destructans, the Etiological Agent of White-Nose Syndrome (WNS). *PLOS ONE*, *11*(4), e0153535. <u>https://doi.org/10.1371/journal.pone.0153535</u>

- Frick, W. F., Puechmaille, S. J., & Willis, C. K. R. (2016). White-Nose Syndrome in Bats. In C.
 C. Voigt & T. Kingston (Eds.), *Bats in the Anthropocene: Conservation of Bats in a Changing World* (pp. 245–262). Springer International Publishing. <u>https://doi.org/10.1007/978-3-319-25220-9_9</u>
- Fritze, M., Costantini, D., Fickel, J., Wehner, D., Czirják, G. Á., & Voigt, C. C. (2019). Immune response of hibernating European bats to a fungal challenge. *Biology Open*, bio.046078. <u>https://doi.org/10.1242/bio.046078</u>
- Gargas, A., Trest, M. T., Christensen, M., Volk, T. J., & Blehert, D. S. (2009). Geomyces destructans sp. Nov. Associated with bat white-nose syndrome. Mycotaxon, 108(1), 147–154. https://doi.org/10.5248/108.147

GoTaq, A. (2021). 3. General Considerations. Promega Corporation. www.promega.com

- Granade, T. C., Hehmann, M. F., & Artis, W. M. (1985). Monitoring of filamentous fungal growth by in situ microspectrophotometry, fragmented mycelium absorbance density, and 14C incorporation: Alternatives to mycelial dry weight. *Applied and Environmental Microbiology*, 49(1), 101–108. <u>https://doi.org/10.1128/aem.49.1.101-108.1985</u>
- Halsall, A. L., Boyles, J. G., & Whitaker, J. O. (2012). Body temperature patterns of big brown bats during winter in a building hibernaculum. *Journal of Mammalogy*, 93(2), 497–503. <u>https://doi.org/10.1644/11-MAMM-A-262.1</u>

- Horrocks, N. P. C., Matson, K. D., & Tieleman, B. I. (2011). Pathogen Pressure Puts Immune Defense into Perspective. *Integrative and Comparative Biology*, 51(4), 563–576. <u>https://doi.org/10.1093/icb/icr011</u>
- Hoyt, J. R., Cheng, T. L., Langwig, K. E., Hee, M. M., Frick, W. F., & Kilpatrick, A. M. (2015).
 Bacteria Isolated from Bats Inhibit the Growth of Pseudogymnoascus destructans, the Causative Agent of White-Nose Syndrome. *PLOS ONE*, *10*(4), e0121329.
 <u>https://doi.org/10.1371/journal.pone.0121329</u>
- Hoyt, J. R., Langwig, K. E., Sun, K., Parise, K. L., Li, A., Wang, Y., Huang, X., Worledge, L., Miller, H., White, J. P., Kaarakka, H. M., Redell, J. A., Görföl, T., Boldogh, S. A., Fukui, D., Sakuyama, M., Yachimori, S., Sato, A., Dalannast, M., Jargalsaikhan, A., Batbayar, N., Yovel, Y., Amichai, E., Natradze, I., Frick, W. F., Foster, J. T., Feng, J., Kilpatrick, A. M. (2020). Environmental reservoir dynamics predict global infection patterns and population impacts for the fungal disease white-nose syndrome. *Proceedings of the National Academy of Sciences*, *117*(13), 7255–7262. <u>https://doi.org/10.1073/pnas.1914794117</u>
- Huffman, B. A., Poltash, M. L., & Hughey, C. A. (2012). Effect of Polar Protic and Polar Aprotic Solvents on Negative-Ion Electrospray Ionization and Chromatographic Separation of Small Acidic Molecules. *Analytical Chemistry*, 84(22), 9942–9950. https://doi.org/10.1021/ac302397b
- Johnson, J. S., Reeder, D. M., McMichael, J. W., Meierhofer, M. B., Stern, D. W. F., Lumadue, S.S., Sigler, L. E., Winters, H. D., Vodzak, M. E., Kurta, A., Kath, J. A., & Field, K. A. (2014).Host, Pathogen, and Environmental Characteristics Predict White-Nose Syndrome Mortality

in Captive Little Brown Myotis (Myotis lucifugus). *PLoS ONE*, 9(11), e112502. https://doi.org/10.1371/journal.pone.0112502

- Kolwich, J. L. (2019). Discovery of anti-fungal compounds from the immunobiome of North American bat species threatened by fungal infection with Pseudogymnoascus destructans. <u>http://library2.smu.ca/xmlui/handle/01/28589</u>
- Kolwich, J. L. (2021). An in-depth investigation on the inhibitory activity of a native cave fungus against Pseudogymnoascus destructans.
- Langvad, F. (1999). A rapid and efficient method for growth measurement of filamentous fungi. Journal of Microbiological Methods, 37(1), 97–100. <u>https://doi.org/10.1016/S0167-</u> 7012(99)00053-6
- Leopardi, S., Blake, D., & Puechmaille, S. J. (2015). White-Nose Syndrome fungus introduced from Europe to North America. *Current Biology*, 25(6), R217–R219. <u>https://doi.org/10.1016/j.cub.2015.01.047</u>
- Lilley, T. M., Prokkola, J. M., Johnson, J. S., Rogers, E. J., Gronsky, S., Kurta, A., Reeder, D. M., & Field, K. A. (2017). Immune responses in hibernating little brown myotis (*Myotis lucifugus*) with white-nose syndrome. *Proceedings of the Royal Society B: Biological Sciences*, 284(1848), 20162232. <u>https://doi.org/10.1098/rspb.2016.2232</u>
- Luo, Y., Li, B.-Z., Liu, D., Zhang, L., Chen, Y., Jia, B., Zeng, B.-X., Zhao, H., & Yuan, Y.-J. (2015). Engineered biosynthesis of natural products in heterologous hosts. *Chemical Society Reviews*, 44(15), 5265–5290. <u>https://doi.org/10.1039/C5CS00025D</u>

- Meteyer, C. U., Barber, D., & Mandl, J. N. (2012). Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome. *Virulence*, 3(7), 583–588. <u>https://doi.org/10.4161/viru.22330</u>
- Micalizzi, E. W., Mack, J. N., White, G. P., Avis, T. J., & Smith, M. L. (2017). Microbial inhibitors of the fungus *Pseudogymnoascus destructans*, the causal agent of white-nose syndrome in bats. *PLOS ONE*, *12*(6), e0179770. <u>https://doi.org/10.1371/journal.pone.0179770</u>
- Minnis, A. M., & Lindner, D. L. (2013). Phylogenetic evaluation of *Geomyces* and allies reveals no close relatives of *Pseudogymnoascus destructans*, comb. Nov., in bat hibernacula of eastern North America. *Fungal Biology*, *117*(9), 638–649. https://doi.org/10.1016/j.funbio.2013.07.001
- Moore, M. S., Reichard, J. D., Murtha, T. D., Nabhan, M. L., Pian, R. E., Ferreira, J. S., & Kunz, T. H. (2013). Hibernating Little Brown Myotis (*Myotis lucifugus*) Show Variable Immunological Responses to White-Nose Syndrome. *PLOS ONE*, 8(3), e58976. https://doi.org/10.1371/journal.pone.0058976
- Narasimhachari, N., & Vining, L. C. (1963). Studies on the pigments of *Penicillium herquei*. *Canadian Journal of Chemistry*, *41*(3), 641–648. <u>https://doi.org/10.1139/v63-091</u>
- Omura, S., Hirano, A., Iwai, Y., & Masuma, R. (1979). Herquline, a new alkaloid produced by *Penicillium herquei* fermentation, isolation and properties. *The Journal of Antibiotics*, *32*(8), 786–790. https://doi.org/10.7164/antibiotics.32.786
- Palmer, J. M., Kubatova, A., Novakova, A., Minnis, A. M., Kolarik, M., & Lindner, D. L. (2014).Molecular Characterization of a Heterothallic Mating System in *Pseudogymnoascus*

destructans , the Fungus Causing White-Nose Syndrome of Bats. G3 Genes/Genomes/Genetics, 4(9), 1755–1763. https://doi.org/10.1534/g3.114.012641

- Patel, S., & Sharma, S. (2022). Respiratory Acidosis. In *StatPearls*. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK482430/
- Pirt, S. J. (1967). A Kinetic Study of the Mode of Growth of Surface Colonies of Bacteria and Fungi. *Microbiology*, 47(2), 181–197. https://doi.org/10.1099/00221287-47-2-181
- Porras-Alfaro, A., Liu, K.-L., Kuske, C. R., & Xie, G. (2014). From Genus to Phylum: Large-Subunit and Internal Transcribed Spacer rRNA Operon Regions Show Similar Classification Accuracies Influenced by Database Composition. *Applied and Environmental Microbiology*, 80(3), 829–840. https://doi.org/10.1128/AEM.02894-13
- Puechmaille, S. J., Wibbelt, G., Korn, V., Fuller, H., Forget, F., Mühldorfer, K., Kurth, A., Bogdanowicz, W., Borel, C., Bosch, T., Cherezy, T., Drebet, M., Görföl, T., Haarsma, A.-J., Herhaus, F., Hallart, G., Hammer, M., Jungmann, C., Le Bris, Y., Lutsar, L., Masing, M., Mulkens, B., Passior, K., Starrach, M., Wojtaszewski, A., Zöphel, U., Teeling, E. C., Arlettaz, R. (2011). Pan-European Distribution of White-Nose Syndrome Fungus (Geomyces destructans) Not Associated with Mass Mortality. *PLoS ONE*, *6*(4), e19167. https://doi.org/10.1371/journal.pone.0019167
- Rachowicz, L. J., Hero, J.-M., Alford, R. A., Taylor, J. W., Morgan, J. A. T., Vredenburg, V. T.,
 Collins, J. P., & Briggs, C. J. (2005). The Novel and Endemic Pathogen Hypotheses:
 Competing Explanations for the Origin of Emerging Infectious Diseases of Wildlife. *Conservation Biology*, 19(5), 1441–1448. <u>https://doi.org/10.1111/j.1523-1739.2005.00255.x</u>

- Reeder, D. M., Frank, C. L., Turner, G. G., Meteyer, C. U., Kurta, A., Britzke, E. R., Vodzak, M. E., Darling, S. R., Stihler, C. W., Hicks, A. C., Jacob, R., Grieneisen, L. E., Brownlee, S. A., Muller, L. K., & Blehert, D. S. (2012). Frequent Arousal from Hibernation Linked to Severity of Infection and Mortality in Bats with White-Nose Syndrome. *PLOS ONE*, *7*(6), e38920. https://doi.org/10.1371/journal.pone.0038920
- Saint Mary's University. (n.d.). *Work Instructions*. Saint Mary's University. Retrieved January 27, 2023, from <u>https://www.smu.ca/faculty-of-science/science-work-instructions.html</u>
- Vanderwolf, K. J., Malloch, D., & McAlpine, D. F. (2016). Detecting Viable Pseudogymnoascus Destructans (ascomycota: Pseudeurotiaceae) from Walls of Bat Hibernacula: Effect of Culture Media. 158–162. <u>https://doi.org/10.4311/2015MB0138</u>
- Verant, M. L., Meteyer, C. U., Speakman, J. R., Cryan, P. M., Lorch, J. M., & Blehert, D. S. (2014). White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host. *BMC Physiology*, 14(1), 10. <u>https://doi.org/10.1186/s12899-014-0010-</u> <u>4</u>
- Visagie, C. M., Houbraken, J., Rodriques, C., Pereira, C. S., Dijksterhuis, J., Seifert, K. A., Jacobs, K., & Samson, R. A. (2013). Five new *Penicillium* species in section Sclerotiora: A tribute to the Dutch Royal family. *Persoonia Molecular Phylogeny and Evolution of Fungi*, *31*(1), 42–62. <u>https://doi.org/10.3767/003158513X667410</u>
- Wang, X.-C., Chen, K., Zeng, Z.-Q., & Zhuang, W.-Y. (2017). Phylogeny and morphological analyses of *Penicillium* section Sclerotiora (Fungi) lead to the discovery of five new species. *Scientific Reports*, 7(1), Article 1. <u>https://doi.org/10.1038/s41598-017-08697-1</u>

- Warnecke, L., Turner, J. M., Bollinger, T. K., Lorch, J. M., Misra, V., Cryan, P. M., Wibbelt, G., Blehert, D. S., & Willis, C. K. R. (2012). Inoculation of bats with European *Geomyces destructans* supports the novel pathogen hypothesis for the origin of white-nose syndrome. *Proceedings of the National Academy of Sciences*, 109(18), 6999–7003. https://doi.org/10.1073/pnas.1200374109
- Warnecke, L., Turner, J. M., Bollinger, T. K., Misra, V., Cryan, P. M., Blehert, D. S., Wibbelt, G., & Willis, C. K. R. (2013). Pathophysiology of white-nose syndrome in bats: A mechanistic model linking wing damage to mortality. *Biology Letters*, 9(4), 20130177. https://doi.org/10.1098/rsbl.2013.0177
- West, G., Heard, D., & Caulkett, N. (2014). Zoo Animal and Wildlife Immobilization and Anesthesia. John Wiley & Sons.
- Wibbelt, G., Kurth, A., Hellmann, D., Weishaar, M., Barlow, A., Veith, M., Prüger, J., Görföl, T., Grosche, L., Bontadina, F., Zöphel, U., Seidl, H.-P., Cryan, P. M., & Blehert, D. S. (2010).
 White-Nose Syndrome Fungus (*Geomyces destructans*) in Bats, Europe. *Emerging Infectious Diseases*, *16*(8), 1237–1243. <u>https://doi.org/10.3201/eid1608.100002</u>
- Wu, X., Tan, Y., Yi, J., Song, X., Yang, J., Zhou, X., & Chen, G. (2020). Study on Bioactive Secondary Metabolites from *Penicillium herquei* JX4. *Chinese Journal of Organic Chemistry*, 41(3), 1251. <u>https://doi.org/10.6023/cjoc202009038</u>
- Yu, J. S., Jeong, S. Y., Li, C., Oh, T., Kwon, M., Ahn, J. S., Ko, S.-K., Ko, Y.-J., Cao, S., & Kim,
 K. H. (2022). New phenalenone derivatives from the Hawaiian volcanic soil-associated
 fungus *Penicillium herquei* FT729 and their inhibitory effects on indoleamine 2,3-

dioxygenase 1 (IDO1). Archives of Pharmacal Research, 45(2), 105–113. https://doi.org/10.1007/s12272-022-01372-8

- Zagmajster, M. (2019). Chapter 13—Bats. In W. B. White, D. C. Culver, & T. Pipan (Eds.), *Encyclopedia of Caves (Third Edition)* (pp. 94–101). Academic Press. https://doi.org/10.1016/B978-0-12-814124-3.00013-3
- Zhang, T., Chaturvedi, V., & Chaturvedi, S. (2015). Novel Trichoderma polysporum Strain for the Biocontrol of *Pseudogymnoascus destructans*, the Fungal Etiologic Agent of Bat White Nose Syndrome. *PLOS ONE*, *10*(10), e0141316. <u>https://doi.org/10.1371/journal.pone.0141316</u>
- Zhou, X.-M., Zheng, C.-J., Song, X.-M., Tang, M.-M., Yang, J.-Y., Yang, X., Peng, S.-J., Cai, J., & Chen, G.-Y. (2019). Bioactive acetaminophen derivatives from *Penicillum herquei* JX4. *Fitoterapia*, *139*, 104400. <u>https://doi.org/10.1016/j.fitote.2019.104400</u>
- Zhu, X., McAtee, C. C., & Schindler, C. S. (2019). Total Syntheses of Herqulines B and C. *Journal* of the American Chemical Society, 141(8), 3409–3413. <u>https://doi.org/10.1021/jacs.8b13849</u>

8. Appendix

8.1 Appendix 1: Quadrupole time-of-flight mass spectrometer analysis report of the acetonitrile extract from S5 plates.

			A	Agilent Trusted Answers				
Spectrum Peaks			• • • • • • • • • • •		516 (-	
m/z 131.0544	1	. Adund 1273	0.32	m/z (Caic)	Diff (ppm)	Ion Species	Formula	ion Type
149.0582	2	1271	0.32					
174.0666	5	1500	0.37					
187.0399	9	1929	0.48					
197.0590	5	1080	0.38					
201.0545	5	1139	0.28					
202.0633 205.0500	s)	2061 2758	0.51					
211.0707	7	878	0.22					
212.04/3 213.0548	3	2164 3374	0.54					
215.0350) 1	6599	1.64					
216.0407 217.0498	71	. 1172	0.29					
225.0797	7	1088	0.27					
227.0364 227.0642	1	1971 1679	0.49 0.42					
229.0512	2	1692	0.42					
230.0569 231.0605	91 51	9778	2.43					
233.0449	9	3159	0.78					
235.0742	2	1509	0.37					
240.0464	1	902	0.22					
241.0512	2	1076	0.27					
245.0452	2 1	7257	1.80					
246.0503	3 1	1510	0.37					
253.0382	2	990	0.25					
253.0788	3	2495	0.62					
255.0654 256.0712	+ 2	1375	0.34					
257.0593	3	2442	0.61					
258.0523 259.0567	51 71	26481	6.57 1.47					
260.0587	7 1	1002	0.25					
261.0394 262.0434	+ 1 + 1	31235	7.75					
263.0678	3	2594	0.64					
267.0654 268.0653	† 1 3 1	4052	1.01					
271.0582	2	10681	2.65					
272.0654 273.0451	1	4448 3167	1.10					
273.0725	5	5698	1.41					
274.0498 275.0537	31 71	4819	1.20					
281.0800) 1	16488	4.09					
282.0834 283.0616	1 1 5	3206	0.80					
284.0669	9	4391	1.09					
285.0585	5	16037	3.98					
280.0470 287.0522	2 1	15179	3.77					
288.0554	1 1	2549	0.63					
289.0427 291.0505	51	1139	0.28 3.67					
292.0546	5 1	2427	0.60					
295.0645 298.0505	5	1385 1165	0.34 0.29					
298.9812	2	1198	0.30					
299.0757 300.0689	7 1 7 1	19661	13.08 4.88					
301.0704	+ 1	27093	6.72					
302.0735 309.0755	5 1 5 1	4892	1.21 4.60					
310.0806	5 1	6317	1.57					
311.0762 312.0627	21	. 1109 7790	0.28					
313.0707	7 1	66323	16.46					
314.0740) 1	12365	3.07					
316.0884	+ 1	1344	0.33					
323.0911	L D	1951 1177	0.48					
325.1061	í 1	13494	3.35					
326.1008	3 1	3451	0.86					
328.0898	3 1	78958	19.60					
329.0919	9 1	12241	3.04					
330.0945 341.1014	, 1 1	1433	0.36					
342.1096	5	2891	0.72					
357.1317 MassHunter Qualitative Analysis	r 1	4960	1.23	Page 2 (of 3			Generated at 8:55 AM on 2023-03-13

Analysis Report

Spectrum Peaks								
m/z	z	Abund	Abund %	m/z (Calc)	Diff (ppm)	Ion Species	Formula	Ion Type
358.1366	1	1189	0.30					
359.1140		1409	0.35					
364.0916	1	11504	2.86					
365.0948	1	2393	0.59					
368.9705		950	0.24					
379.1153	1	67086	16.65					
380.1184	1	14405	3.58					
381.0994	1	11001	2.73					
382.1001		2303	0.57					
395.0840		1027	0.25					
397.0589		1988	0.49					
403.0771		994	0.25					
755.1621		1012	0.25					

MassHunter Qual 10.0 (End of Report)

MassHunter Qualitative Analysis

Page 3 of 3

8.2 Appendix 2: Quadrupole time-of-flight mass spectrometer analysis report of the

chloroform extract from S5 plates

MassHunter Qualitative Analysis

Page 1 of 5

Spectrum New Data of All and A				Agilent Trusted Answers					
n. 7 i About 5	Spectrum Peaks								
11.55.0 17.6 0.3 11.65.0 109 0.3 11.65.0 109 0.3 11.65.0 109 0.3 11.900.0 133 0.3 11.900.0 133 0.3 11.900.0 133 0.3 11.900.0 133 0.3 11.900.0 133 0.3 11.900.0 133 0.3 11.900.0 133 0.3 11.900.0 133 0.3 11.900.0 133 0.3 11.900.0 143 0.3 11.900.0 143 0.3 11.900.0 149 0.4 11.900.0 149 0.4 11.900.0 149 0.4 11.900.0 149 0.4 11.900.0 149 0.4 11.900.0 149 0.4 11.900.0 149 0.4 11.900.0 1.9 0.4 11.900.0 1.9 0.4 11.900.0 1.9 0.4	m/z	z	Abund	Abund %	m/z (Calc)	Diff (ppm)	Ion Species	Formula	Ion Type
19460 299 60 19460 192 60 19500 193 60 19500 193 60 20500 193	131.0534		1736	0.29					
1)14.60 100 0.5 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 104 0.3 1994.90 104 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 0.3 1994.90 103 1994.90 103 1994.90 103 1994.90 103 <	159.0453		2594	0.43					
10006 100 10006 101 0.0 10006 101 0.0 10006 101 0.0 10006 101 0.0 10006 101 0.0 10006 100 0.0 10006 100 0.0 10006 100 0.0 10006 100 0.0 10006 100 0.0 10006 100 0.0 10006 100 0.0 10006 100 0.0 10006 100 0.0 10006 100 0.0 10006 100 0.0 10006 100 0.0 10006 100 0.0 10006 100 0.0 10006 100 0.0 10006 100 0.0 10006 100 0.0 10006 100 0.0 10006 100 </td <td>174.0640</td> <td></td> <td>1509</td> <td>0.25</td> <td></td> <td></td> <td></td> <td></td> <td></td>	174.0640		1509	0.25					
1990.01 173 0.23 200.020 144 0.60 200.020 149 0.60 200.020 149 0.60 200.020 149 0.60 200.020 149 0.60 200.020 149 0.72 200.020 149 0.72 200.020 149 0.72 200.020 149 0.72 200.020 149 0.72 200.020 149 0.72 200.020 149 0.72 200.021 149 0.72 200.021 149 0.72 200.021 149 0.72 200.021 149 0.72 200.021 149 0.72 200.021 149 0.72 200.021 149 0.72 200.021 149 0.72 200.021 149 0.72 200.021 149 0.72 200.021 149 0.72 200.021 149 0.72	197.0596		1882	0.48					
20.569 101 04 20.569 104 04 20.569 108 0.59 20.569 108 0.59 20.569 108 0.79 20.569 108 0.79 20.569 108 0.79 20.569 108 0.79 20.579 108 0.79 20.579 108 0.79 20.579 108 0.79 20.579 108 0.79 20.579 108 0.79 20.579 108 0.79 20.579 108 0.79 20.579 109 0.79 20.579 109 0.79 20.579 109 0.79 20.579 109 0.79 20.579 109 0.79 20.579 109 0.79 20.579 109 0.79 20.579 109 0.79 20.579 1099 0.79 20.579 1099 0.79 20.579	199.0401		1753	0.29					
2010 410 100 2010 1000 100 21000 1000 000 21000 1000 000 21000 1000 000 21000 1000 000 21000 1000 000 21000 1000 000 21000 1000 000 21000 1000 000 21000 1000 000 21000 1000 000 21000 1000 000 21000 1000 000 21000 1000 000 21000 1000 000 21000 1000 000 21000 1000 000 21000 1000 000 21000 1000 000 21000 1000 000 21000 000 000 21000 000 000 21000 000 000 21000 000 000 21000 000 000 <td>201.0540</td> <td></td> <td>1621</td> <td>0.27</td> <td></td> <td></td> <td></td> <td></td> <td></td>	201.0540		1621	0.27					
1 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 <td>205.0501</td> <td></td> <td>4134</td> <td>0.68</td> <td></td> <td></td> <td></td> <td></td> <td></td>	205.0501		4134	0.68					
111001 1 1002 0.0 111004 1005 0.0 111004 1005 0.0 111004 1005 0.0 111004 1005 0.0 111004 1005 0.0 111004 1005 0.0 111004 1005 0.0 111004 1005 0.0 111004 1005 0.0 111004 1005 0.0 111004 1005 0.0 111004 1005 0.0 111004 1005 0.0 111004 1005 0.0 111004 1005 0.0 111004 1005 0.0 111004 0.0 0.0 111004 0.0 0.0 111004 0.0 0.0 111004 0.0 0.0 111004 0.0 0.0 111004 0.0 0.0 111004 0.0 0.0 111004 0.0 <td0.0< td=""> 111004<</td0.0<>	212.0476		3044	0.50					
11.000 10 0.23 12.000 100 0.23 12.000 100 0.24 12.000	213.0544 215.0343	1	4326 9982	0.72					
127.0400 107 0.38 127.0400 108 0.36 127.0400 2040 0.44 110.041 1 0.47 110.041 1 0.47 110.041 1 0.47 110.041 1 0.47 110.041 10 0.31 110.041 10.35 0.31 110.041 0.32 0.31 110.041 0.32 0.31 110.041 0.32 0.31 110.041 0.32 0.31 110.041 0.32 0.31 110.041 0.32 0.31 110.041 0.32 0.31 110.041 0.32 0.31 110.041 0.32 0.31 110.041 0.32 0.31 110.041 0.32 0.31 110.041 0.32 0.31 110.041 0.32 0.31 110.041 0.32 0.31 110.041 0.32 0.31 110.041 0.32 0.31 </td <td>216.0395</td> <td>1</td> <td>1635</td> <td>0.27</td> <td></td> <td></td> <td></td> <td></td> <td></td>	216.0395	1	1635	0.27					
12733 1.56 0.36 127685 155 0.26 120010 1 949 0.41 121041 242 0.41 120041 1.047 0.42 120041 1.047 0.42 120041 1.01 0.31 120041 1.01 0.31 120041 1.01 0.31 120041 1.01 0.31 140513 1.01 0.31 140514 1.01 0.31 140513 1.01 0.31 140513 1.01 0.31 140514 1.03 0.31 140513 1.03 0.31 140514 1.03 0.31 140514 1.03 0.31 140514 1.03 0.31 140514 1.047 0.41 140514 1.047 0.41 140514 1.047 0.41 140514 1.047 0.41 140514 1.047 0.41 140514 1.047 0.41 <td>217.0490</td> <td></td> <td>1670</td> <td>0.28</td> <td></td> <td></td> <td></td> <td></td> <td></td>	217.0490		1670	0.28					
123668 1356 0.36 23669 326 326 23691 1297 0.30 23694 326 0.31 23694 326 0.31 23694 1297 0.31 23694 138 0.31 23694 1398 0.31 23694 1398 0.31 23694 1398 0.31 23694 1398 0.31 23694 1398 0.31 23694 1401 0.25 23695 1494 0.25 23697 1494 0.25 23697 1494 0.37 23697 1494 0.37 23697 1494 0.37 23697 1494 0.37 23697 1494 0.37 23697 1494 0.37 23697 1494 0.37 23697 1494 0.37 23697 1494 0.37 23697 1494 0.37 23697 <t< td=""><td>225.0820 227.0353</td><td></td><td>2166</td><td>0.26</td><td></td><td></td><td></td><td></td><td></td></t<>	225.0820 227.0353		2166	0.26					
1 250 0.40 120001 1 250 120001 401 0.70 120001 401 0.70 120001 401 0.70 120001 401 0.70 120001 400 0.70 120001 400 0.70 120001 9.70 0.70 120001 9.70 0.70 120001 9.70 0.70 120001 9.70 0.70 120001 9.70 0.70 120001 9.70 0.70 120001 1.70 0.70 120001 1.70 0.70 120001 1.70 0.70 120001 1.70 0.70 120001 1.70 0.70 120001 1.70 0.70 120001 1.70 0.70 120001 1.70 0.70 120001 1.70 0.70 120001 1.70 0.70 120001 1.70 0.70 120001	227.0668		1556	0.26					
1 297 0.4 1220.04 297 0.4 1230.04 401 0.7 1230.04 401 0.7 1240.04 100 0.3 1240.04 100 0.3 1240.04 100 0.3 1240.04 100 0.3 1240.04 100 0.3 1240.04 100 0.3 1240.04 100 0.3 1240.04 100 0.3 1250.04 100 0.3 1250.05 100 0.3 1250.05 100 0.3 1250.05 100 0.3 1250.05 100 0.3 1250.05 100 0.3 1250.05 100 0.3 1250.05 1005 0.3 1260.05 1055 0.3 1270.065 1055 0.3 1270.065 1057 0.3 1270.065 1057 0.3 1270.065 1052 0.3 1270.065 <td>229.0505</td> <td>1</td> <td>2906</td> <td>0.48</td> <td></td> <td></td> <td></td> <td></td> <td></td>	229.0505	1	2906	0.48					
132345 402 0.4 131345 403 0.7 1230461 130 0.3 141.051 138 0.33 141.051 139 0.31 141.051 139 0.31 141.051 140 0.31 141.051 140 0.31 141.051 140 0.31 141.051 140 0.31 141.051 140 0.31 141.051 140 0.31 141.051 140 0.31 141.051 140 0.31 141.051 140 0.31 141.051 140 0.31 141.051 140 0.31 141.051 140 0.31 141.051 140 0.31 141.051 140 0.31 141.051 140 0.31 141.051 140 0.31 141.051 140 0.31 141.051 140 0.31 141.051 140 0.31	231.0614	1	2547	0.42					
1 1 0 2 2 0 2 0 2 <td>232.0384</td> <td></td> <td>2042</td> <td>0.34</td> <td></td> <td></td> <td></td> <td></td> <td></td>	232.0384		2042	0.34					
220.081 110 0.35 240.081 1600 1.77 240.081 102 1.77 240.081 1992 1.31 250.081 1992 1.31 250.081 1992 0.31 250.010 1.31 0.44 250.011 1.32 0.44 250.012 1.32 0.44 250.013 1.32 0.44 250.014 1.32 0.44 250.015 1.4902 0.44 250.015 1.4902 0.44 250.013 1.4912 0.47 260.015 1.4912 0.47 260.015 1.4912 0.47 260.015 1.4912 0.47 270.058 1.912 0.47 270.058 1.915 0.31 270.058 1.914 0.51 270.058 1.914 0.51 280.057 1.925 0.31 280.057 1.926 0.31 280.057 1.926 0.37 280.057 1.926 </td <td>233.0451 235.0745</td> <td></td> <td>4651 2401</td> <td>0.77</td> <td></td> <td></td> <td></td> <td></td> <td></td>	233.0451 235.0745		4651 2401	0.77					
241.058 136 0.23 241.050 000 1.4 246.051 1.023 0.34 240.051 207.001 202 240.051 207.001 207.001 255.053 432 0.44 255.053 1.02 0.27 255.053 1.02 0.27 255.053 1.02 0.27 256.051 1.020 0.51 256.052 1.020 0.51 256.053 1.020 0.51 260.055 1.020 0.51 260.055 1.035 0.23 260.057 1.035 0.23 270.058 1.55 0.23 270.057 1.035 0.23 270.057 1.035 0.23 270.057 1.035 0.23 270.057 1.035 0.23 270.057 1.035 0.24 280.053 1.05 0.24 280.054 0.05 0.24	239.0681		2110	0.35					
1 2003 1.72 246.098 1 2023 1.13 230.046 1070 0.13 1.13 230.046 1070 0.13 1.13 255.053 282.024 0.60 1.13 255.053 1.390 6.60 1.13 256.071 1.302 1.13 1.13 260.071 1.475 1.21 1.13 260.071 1.475 1.21 1.13 260.071 1.407 0.60 1.14 210.085 1.751 1.21 1.14 210.085 1.652 2.74 1.14 210.087 1.407 0.67 1.14 210.087 1.15 1.22 210.097 1.218 0.33 1.13 210.097 1.218 0.55 1.13 210.097 1.2186 0.57 1.13 210.097 1.2186 0.57 1.13 210.097 1.2186 0.57 1.13 210.097 1.2186 0.37 210.097	241.0518		1368	0.23					
246,0490 1 2025 0.34 247,0401 1870 0.31 235,0416 1870 0.31 235,0417 1021 0.27 235,0421 1 19901 6.40 235,0421 1 19901 6.40 245,0435 1 19901 6.40 245,0435 1 19901 6.40 245,0435 1 19901 6.40 245,0435 1 19901 6.40 245,0435 1 19901 6.40 245,0435 1 19901 6.40 245,0435 1 105 1 245,0437 1 105 1 245,0437 1 105 1 273,0447 1 1913 1 273,0447 1 1913 1 242,0438 1 1512 1 242,0437 1 1954 1 242,0439 1 1512 1 242,0459 1 1512 1 <tr< td=""><td>245.0452</td><td>1</td><td>10703</td><td>1.42</td><td></td><td></td><td></td><td></td><td></td></tr<>	245.0452	1	10703	1.42					
23.0480 1970 0.31 23.0480 223.048 25.0538 223.048 25.0538 3082 0.51 25.0538 3082 0.51 25.0538 1 902 25.0538 1.990 6.40 25.0538 1.991 6.40 25.0538 1.991 6.40 26.0537 1.991 6.40 26.0537 1.991 6.40 26.0538 1.992 0.32 27.0508 1.992 0.32 27.0508 1.992 0.32 27.0509 1.932 0.32 27.0509 1.932 0.32 27.0509 1.932 0.32 27.0509 1.932 0.32 27.0509 1.932 0.32 27.0509 1.932 0.32 28.0507 1.945 0.42 28.0507 1.946 0.61 28.0507 1.958 0.32 28.0507 1.958 0.42 28.0507 1.958 0.42	246.0498	1	2025	0.34					
1 255.058 223 0.41 255.058 223 0.41 255.058 302 0.11 255.058 302 0.11 255.058 1.452 7.33 260.055 1.452 7.33 260.055 1.452 0.73 260.055 1.455 0.74 270.058 1.055 0.74 270.058 1.055 0.74 270.058 1.055 0.74 270.058 1.055 0.74 270.058 1.055 0.74 270.058 1.055 0.74 270.058 1.055 0.74 270.058 1.055 0.74 270.058 1.055 0.74 270.058 1.055 0.74 270.058 1.074 0.74 270.058 1.074 0.74 270.058 1.074 0.74 280.0590 2.074 4.02 280.0590 2.074 4.02 280.0590 2.074 4.02 280.0590 2.074 4.02 280.0590 2.076 0.64 280.0591 1.076 0.64 280.0591 1.076 0.64	247.0601 253.0416		7942	1.31					
255.058 323 0.48 256.700 360 0.47 256.701 390 0.47 256.705 1 390 0.47 256.705 1 390 0.47 260.0155 1 4527 7.33 260.0155 1 4527 7.33 260.0157 1 0.67 1.07 272.0568 671 1.07 272.0568 671 1.07 272.0568 671 1.07 272.0568 1.11 1.77 272.057 1.312 1.37 272.057.058 1.795 0.33 281.0572 1.216 0.47 281.0572 1.216 0.47 281.0571 1.216 0.47 281.0572 1.216 0.47 281.0572 1.216 0.47 281.0573 1.216 0.47 281.0574 1.216 0.47 282.0581 1.366 0.61 283.0581 1.37 0.47 283.0581 1.37 0.47 284.0589 0.47 0.47 285.0591 1.18 0.47 286.0581 0.47 0.47	253.0769		4341	0.72					
220/06 100 0.01 250.075 1 9402 1.39 260.075 1 9402 1.39 260.075 1 9502 1.31 260.075 1 9502 1.31 260.075 1 9502 1.31 260.075 1 9502 1.31 270.0568 1.055 2.34 272.0568 6716 1.11 272.0568 6716 1.33 272.0568 6716 1.33 272.0568 1.312 1.33 272.0568 1.312 1.33 272.0568 405 0.71 280.0511 2.357 0.31 280.0521 2.356 0.71 280.0531 1.3502 0.71 280.0531 1.3502 0.71 280.0531 1.3502 0.30 280.0531 1.3502 0.30 280.0531 1.3502 0.38 290.0430 223 0.37 290.0430 1.3502 0.38 290.0431 2.405 0.38 290.0431 2.906 0.38 290.0431 2.906 0.30 290.0431 2.906	255.0638		2923	0.48					
250075 1 9901 6.60 250075 1 4502 7.33 260.005 1 451 0.10 260.005 1 401 0.05 260.005 1 401 0.05 260.005 1 505 0.01 260.005 1 552 0.24 270.0058 6.055 0.31 270.0057 8132 0.17 270.0057 8132 0.17 270.0058 1 7419 1.33 280.0071 1 9194 0.42 280.0071 1 9194 0.42 280.0071 1 9194 0.42 280.0071 1 91942 1.478 280.0071 1 91942 1.478 280.0071 1 91942 1.478 280.0071 1 91942 1.478 280.0071 1 91056 1.4796 280.0071 1 91056 1.4796 280.0073 1 2065 1.52	256.0/10 257.0598		3082	0.27					
230.056 1 8402 1.99 240.055 1 725 1.3 250.056 1 71 1.67 250.056 1 555 0.23 270.055 155 0.23 270.055 155 0.23 270.058 6716 1.11 270.058 1 195 0.33 270.058 1 195 0.33 280.052 1 236 0.51 280.053 1 195 0.33 280.054 405 0.71 280.054 405 0.71 280.057 1 236 280.057 1 366 0.61 280.057 1 366 0.61 280.057 1 236 0.27 290.050 223 0.37 290.051 1.50 0.26 290.053 2767 0.46 290.053 787 0.46 290.053 7870 1.52 290.053 7870 1.6	258.0523	1	39901	6.60					
1 -7315 1.21 233.667 -4771 0.67 237.662 1 6384 1.05 28.6625 1 1355 0.23 27.1685 16552 2.74 27.1685 16552 2.74 27.1685 176 1.11 27.37494 3335 0.57 27.37538 1 1995 0.33 28.1672 2.2367 3.1 28.2084 1 5146 0.85 28.2085 1 395 0.71 28.0674 6817 1.13 28.0674 6817 1.13 28.0675 1 3962 0.4 28.9072 1065 0.27 29.0053 1.2176 3.0 28.9055 1 3962 0.38 29.9055 1.2176 3.0 29.9055 1.2176 0.30 29.9055 1.2176 0.38 29.9055 1.2176 0.28 29.9055 1.2176 0.30 29	259.0576	1	8402	1.39					
233.0671 4071 0.67 237.0652 1<395	262.0435	1	7315	1.21					
20.4065 1 0.94 20.505 1 0.95 27.4058 0.95 27.30697 3312 27.30697 3312 27.30697 3312 27.4058 1 27.30697 3312 27.40507 1 28.01507 1 28.01508 1 28.01507 2.995 28.0150 2.4274 28.0150 2.4274 28.0150 2.4274 28.0150 2.4274 28.0150 2.4274 28.0150 2.4274 28.0150 2.4274 28.0150 2.4274 28.0150 2.4274 28.0150 2.4276 28.0151 3.668 28.0152 1.638 28.0151 1.568 29.0151 1.563 29.0153 1.7774 30.01076 4.028 29.0107 1.021 30.01076 4.028 31.0170 1.021 31.0171 1.021 <td>263.0671</td> <td></td> <td>4071</td> <td>0.67</td> <td></td> <td></td> <td></td> <td></td> <td></td>	263.0671		4071	0.67					
1271.058 16552 2.74 2270.058 6.716 1.11 2273.0484 3325 0.55 2274.0501 7419 1.23 2276.057 8312 1.37 2276.0581 1.995 0.33 281.0792 1 2.862 281.0792 1 2.862 281.0792 1 2.862 281.0792 1 2.962 281.0792 1 2.962 281.0792 1 2.962 281.0792 1 2.962 281.0792 1 2.962 286.0571 1 2.962 286.0581 1 3.666 286.0581 1 3.666 286.0581 1 3.662 290.0430 2.226 0.59 290.0430 2.226 0.59 290.0531 1 3.62 290.0531 1 3.62 290.0531 1 3.62 290.0531 1 3.62 310.0761 40294 6.67 310.0761 40294 6.67 310.0761 1 4.99 311.0782 1 1.99 312.05629	267.0662 268.0652	1	6364 1395	1.05					
272.0658 6716 1.11 273.0697 8312 1.37 274.06571 7419 1.23 275.05381 1.995 0.33 281.07271 282.07 391 282.0834 1.5146 0.85 283.0640 607 1.13 384.0650 607 1.13 384.0650 607 1.13 282.0834 1.9342 1.478 283.0450 607 1.13 284.0577 1.292 1.63 289.0577 2.195 0.27 290.0407 2238 0.37 291.0508 1.2756 3.60 292.05649 2236 0.38 292.05649 2236 0.38 292.05649 2236 0.38 292.05649 2.296 0.38 292.05649 2.296 0.38 292.05649 2.296 0.38 292.05649 2.296 0.38 292.05651 3.026 0.38 292.05649 2.296 0.38 <t< td=""><td>271.0585</td><td>-</td><td>16552</td><td>2.74</td><td></td><td></td><td></td><td></td><td></td></t<>	271.0585	-	16552	2.74					
21.5.0007 31.53 0.35 227.5.033 1 9199 0.23 328.0379 1 23627 3.91 228.0431 1 51.46 0.85 228.0431 1 51.46 0.85 228.0471 1 89.057 1 228.0472 1 89.05 1 3.06 228.0472 1 99.07 1.055 0.27 229.0430 2.276 3.63 0.07 228.0472 1.055 0.27 2.90.430 2.276 229.0430 2.276 3.64 0.61 0.01 229.0430 2.276 0.46 0.02 0.07 29.0430 2.276 0.46 0.02 0.07 29.0451 1.05 0.02 0.00 0.00 0.00 29.0561 1.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <t< td=""><td>272.0658</td><td></td><td>6716</td><td>1.11</td><td></td><td></td><td></td><td></td><td></td></t<>	272.0658		6716	1.11					
274.0501 1 749 1.23 287.0538 1 296.7 3.91 282.0534 1 256.7 3.91 282.0634 1 516 0.85 283.0618 4305 0.71 284.0674 6817 1.13 285.0590 24274 4.02 286.0477 1 9986 287.0527 1 2166 289.0472 1065 0.27 280.0473 3 366 280.0474 3.60 2238 280.0472 1.055 0.27 280.0473 1 356 280.0473 1 356 280.0473 1.056 0.28 280.0473 1.057 0.26 380.0581 1.200 4.80 390.0588 1 200 4.80 310.0611 1 894 1.47 310.0611 8984 1.47 310.0613 1 1.99 0.26 311.0733 1 8984 1.47	273.0484 273.0697		8312	1.37					
225.0338 1 395 0.33 281.072 1 23627 3.91 282.0834 1 5146 0.05 283.0618 4305 0.71 284.0674 6817 1.13 285.0590 24274 4.02 286.0477 1 893.42 287.0527 1 21962 286.0477 1 603 289.0472 1.065 0.27 280.0430 2238 0.37 281.0598 1 2766 282.0511 3562 0.59 285.0499 2296 0.38 287.0851 158 0.26 288.0558 1.674 0.28 288.0558 1.674 0.28 299.0750 1 480 301.076 1 4024 303.0768 1 2804.61 313.0611 894 1.47 313.0629 1113 1.464 313.0629 1113 1.464 313.0641 1 1.62	274.0501	1	7419	1.23					
1 1.546 0.65 232.0634 4057 1.13 245.0574 617 1.13 255.0509 24274 4.02 265.0477 1 89142 1.4.78 285.0581 1 3668 0.61 285.0472 1 8958 0.77 290.0430 2238 0.37 290.0431 2236 0.59 290.0432 2206 3.8 290.0511 1 3562 0.59 290.0543 1 256 0.38 290.0543 1 257 0.46 290.0551 1 78704 1.302 300.0668 1 29010 4.80 310.0705 1 40294 6.67 310.0705 1 8994 1.47 310.0811 8994 1.47 310.0811 8994 1.47 310.0811 8994 1.652 310.0811 1.889 3.07 310.0811 1.8994 1.47 313.083	275.0538	1	1995	0.33					
283.0618 4905 0.71 284.0674 6617 1.13 285.0590 24274 4.02 286.0477 1 89342 14.78 287.0527 1 2166 0.61 287.0557 1 2166 0.61 289.0472 1605 0.27 200.043 290.0430 2238 0.37 290.0431 1366 3.60 295.0649 2296 0.38 297.0651 1 3562 298.0549 2787 0.46 298.0549 2787 0.46 298.0549 2787 0.46 298.0549 2787 0.46 298.0549 2787 0.46 298.0549 2787 0.46 299.0763 1 78704 13.02 300.0768 1 29014 6.67 300.0768 1 29014 6.67 313.078 1 11317 1.47 313.078 1 11317 1.47 313.0791 1.	282.0834	1	5146	0.85					
284.06/4 0817 1.13 285.0570 1 83942 14.78 285.0577 1 21962 3.63 285.0578 1 3668 0.61 289.0578 1 3568 0.61 289.0470 12036 0.27 290.0430 2238 0.37 290.0430 2238 0.37 290.0451 15562 0.59 292.0551 1 3562 297.0851 1583 0.26 298.0459 1674 0.28 298.0459 1674 0.28 300.0588 1 29010 4.80 300.0588 1 29010 4.80 300.058 1 29010 4.80 300.058 1 29010 4.80 300.058 1 29010 4.80 310.011 1 894 1.47 310.0131 1 1549 0.26 311.0782 1 1549 0.26 313.0703 1 9946 16.52 313.071 1 158 3.07 313.072 1 153 3.27 323.053 2947 0.49 </td <td>283.0618</td> <td></td> <td>4305</td> <td>0.71</td> <td></td> <td></td> <td></td> <td></td> <td></td>	283.0618		4305	0.71					
266.047 1 93/42 14.78 286.058 1 266.047 216.65 280.058 1 3668 0.61 280.058 1 3668 0.61 280.058 1 236 0.37 290.0430 2238 0.37 0.36 290.0501 1 2365 0.59 290.0531 1 3562 0.59 297.0851 1838 0.26 0.38 297.0851 1583 0.26 0.38 298.0549 2787 0.46 0.28 299.0763 1 78704 0.38 301.0706 1 40994 6.67 302.0736 1 6935 1.15 309.0758 298061 4.64 310.0705 1 549 0.46 311.0782 1 159 0.33 313.0708 1 9946 16.52 314.0473 1 158 3.07 315.043 1 11317 1.87 323.033	284.0674 285.0590		6817 24274	1.13					
287.0527 1 21962 3.63 288.0558 1 3668 0.61 289.0472 1605 0.27 290.0430 2238 0.37 291.0508 1 21766 3.60 292.0511 1 3562 0.59 295.0649 2296 0.38 2295.061 2296 296.0549 2296 0.38 2295.061 1583 0.26 298.0549 2787 0.46 2390.0268 1 2390.0268 1 2390.0268 1 2390.0268 1 2390.0268 1 2390.026 1 1 300.0688 1 299.029 6.67 300.0758 1 6.67 310.081 1 8894 1.47 1 <td>286.0477</td> <td>1</td> <td>89342</td> <td>14.78</td> <td></td> <td></td> <td></td> <td></td> <td></td>	286.0477	1	89342	14.78					
280.03.0 1 3000 0.01 280.0430 2238 0.37 290.0430 2238 0.37 291.0508 1 2176 3.60 292.051 1 3562 0.59 295.0649 2296 0.38 297.0851 1583 0.26 295.051 1 78704 1.302 299.0763 1 78704 290.0736 1 78704 1.302 300.0786 1 299.0763 1.15 300.0785 1 290.1 480 301.0706 1 40294 6.67 300.0758 1 280.61 4.64 310.076 1 40294 6.67 310.0706 1 49294 6.67 302.073 1 500.027 302.073 1 500.027 311.0782 1 1599 0.26 313.076 1 9946 1.652 314.0743 1 133.7 1.87 324.0971 1.657 0.27 325.0965 1 6.014 1.04 324.0971 1.657 <td>287.0527</td> <td>1</td> <td>21962</td> <td>3.63</td> <td></td> <td></td> <td></td> <td></td> <td></td>	287.0527	1	21962	3.63					
290.0430 2238 0.37 291.0508 1 3562 0.59 292.0551 1 3562 0.59 295.0649 2296 0.38 295.0549 2787 0.46 295.0551 1 7870 0.46 295.0549 2787 0.46 295.0551 1 7870 0.46 295.0563 1 78704 13.02 300.0568 1 40294 6.67 300.0756 1 40294 6.67 310.0705 1 6995 1.15 309.0758 1 28061 4.64 310.081 1 894 1.47 311.0782 1 159 0.26 313.0783 1 9846 1.652 313.0781 1 1937 1.87 313.0781 1 1937 1.87 313.0781 1 1937 3.27 326.0651 1 6134 1.04 327.0857 1 6453 100.00 <td>268.0558 289.0472</td> <td>1</td> <td>1605</td> <td>0.27</td> <td></td> <td></td> <td></td> <td></td> <td></td>	268.0558 289.0472	1	1605	0.27					
491.0508 1 21766 3.60 292.0551 1 3562 0.59 295.0649 2296 0.38 297.0851 1583 0.26 298.0925 1674 0.28 299.0733 78704 13.02 300.0688 1 20010 4.80 301.0706 1 40294 6.67 302.0736 1 6035 1.15 302.0736 1 8994 1.47 310.0081 1 8994 1.47 311.0762 1 1549 0.26 313.0708 1 99946 16.52 313.0708 1 99945 15.52 314.0743 1 1538 3.07 315.0843 1 11317 1.87 323.0913 2947 0.49 324.0971 1657 0.27 325.0164 1 1.04 327.0857 604534 100.00 328.0900 1 117228 19.39 329.0922 1	290.0430		2238	0.37					
225.0449 226 0.38 297.0851 1583 0.26 298.0549 2787 0.46 298.0549 2787 0.46 299.0763 1 78704 13.02 300.0688 1 2900 4.80 301.0706 1 40294 6.67 302.0736 1 28061 4.64 310.081 1 8894 1.47 311.0782 1 159 0.26 312.0629 11139 1.84 313.0708 1 313.0708 1 98946 16.52 314.0743 1 18538 313.0708 1 98946 1.52 323.0913 2.947 0.49 324.0971 1.657 0.27 325.1064 1 1.9751 3.27 326.0955 1 6314 1.04 332.093 329.0922 1.8402 3.04 330.0954 1 2.057 0.34 333.093 1.929 3	291.0508 292.0551	1	21766 3562	3.60					
297.0851 1583 0.26 298.0549 2787 0.46 299.9825 1674 0.28 299.9763 1 78704 13.02 300.0668 1 20910 4.80 301.0706 1 40294 6.67 302.0736 1 6935 1.15 300.0705 1 28094 1.41 310.0705 1 28094 1.47 311.0782 1 1549 0.26 313.0708 1 99046 1.652 313.0708 1 99046 1.652 313.0708 1 99046 1.652 313.0708 1 99046 1.652 313.0708 1 99046 1.652 313.0708 1 9913 0.33 322.0913 2.947 0.49 324.0971 1.657 0.27 325.1064 1 1.9751 3.27 326.0955 1 6314 1.04 327.0867 1 04534 1.04 <td>295.0649</td> <td>1</td> <td>2296</td> <td>0.38</td> <td></td> <td></td> <td></td> <td></td> <td></td>	295.0649	1	2296	0.38					
2:90.949 2:67 0.49 299.9625 1674 0.28 299.0763 1 78704 13.02 300.0688 1 29010 4.80 301.0706 1 40294 6.67 302.0735 1 69335 1.15 309.0758 1 28061 4.64 310.0811 1 8994 1.47 311.0762 1 1549 0.26 312.0629 11139 1.84 1.137 313.0681 1 9946 16.52 313.0683 1 11317 1.87 313.06843 1 11317 1.87 313.06843 1 1137 1.87 312.0691 1 1657 0.27 322.0917 1 1657 0.27 322.0955 1 6314 1.04 322.0965 1 6314 1.04 323.0954 1 2057 0.34 341.017 2681 0.44 323.0954 1 2057<	297.0851		1583	0.26					
299.0763 1 78704 13.02 300.088 1 29010 4.80 301.0706 1 40294 6.67 302.0736 1 6935 1.15 300.0785 1 28061 4.64 310.0705 1 8984 1.47 311.0782 1 1549 0.26 311.0782 1 1549 0.26 313.0708 1 99846 16.52 314.0743 1 18538 3.07 315.0643 1 11317 1.87 313.06081 2013 0.33 323.0913 2947 0.49 322.0913 2947 0.49 324.0971 1657 0.27 325.1064 1 10751 3.27 326.0965 6314 1.04 322.0922 1 18402 3.04 330.0954 1 2057 0.34 341.1017 2681 0.44 342.1093 4051 0.67 357.1315 1 1842 1042 304 330.0954	298.0549 298.9825		2/8/ 1674	0.46					
300.068 1 29010 4.80 300.0706 1 40294 6.67 300.0708 1 6935 1.15 300.0781 28061 4.64 310.0811 8994 1.47 311.0782 1 1549 312.0629 11139 1.84 313.0708 1 99866 315.043 1 18538 316.0881 1 2013 315.043 1 11317 316.0881 1 2013 312.629 1 1657 312.05913 2947 0.49 324.0971 1657 0.27 325.0664 1 19751 322.0867 1 604534 320.0956 1 6314 320.0957 1 604534 330.0954 1 2057 330.0954 1 2057 331.017 2681 0.44 342.1093 4051 0.67 357.1315 1 918 341.1017 2681 0.44 342.1093 4051 0.67 357.1315 1 918 364.1017 918 <t< td=""><td>299.0763</td><td>1</td><td>78704</td><td>13.02</td><td></td><td></td><td></td><td></td><td></td></t<>	299.0763	1	78704	13.02					
300.0736 1 102.51 0.07 300.0736 1 28061 4.64 310.0811 1 8894 1.47 311.0782 1 1549 0.26 312.0629 11139 1.84 313.0708 1 18538 3.07 314.0743 1 18538 3.07 315.0643 1 11317 1.87 316.0881 1 2013 0.33 322.0913 29477 0.49 324.0971 1657 0.27 325.0164 1 19751 3.27 326.0965 1 604534 100.00 328.0900 1 117228 19.39 329.0922 1 18402 3.04 330.0954 1 2057 0.34 341.1017 2681 0.44 342.1093 4051 0.67 357.1315 1 9183 1.52 Concentral # 9.55 Marg	300.0688	1	29010	4.80					
309.0758 1 28061 4.64 310.0811 1 8894 1.47 311.0782 1 1549 0.26 312.0629 11139 1.84 313.0708 1 18538 3.07 314.0743 1 18538 3.07 315.0843 1 11317 1.87 316.0843 1 2013 0.33 322.0913 2947 0.49 322.0913 2947 0.49 322.0957 1 6454 322.0957 1 6454 322.0957 1 6454 330.0954 1 19751 322.0967 1 6454 330.0954 1 2057 330.0954 1 2057 330.0954 1 2057 341.1017 2681 0.44 342.1093 4051 0.67 357.1315 1 9183 1.52	302.0736	1	6935	1.15					
310.0811 1 8994 1.47 311.0782 1 1549 0.26 312.0629 11139 1.84 313.0708 1 99046 16.52 314.0743 1 18538 3.07 315.0843 1 11317 1.87 316.0881 2013 0.33 322.0913 2947 0.49 322.0913 2947 0.49 322.0913 2947 0.49 322.0951 6314 1.04 327.0857 1 604534 320.9090 1 11728 320.9090 1 11728 320.9090 1 11728 330.0854 1 2057 341.1017 2681 0.44 342.1093 4051 0.67 357.1315 1 918 1.52	309.0758	1	28061	4.64					
311.0629 111.39 1.84 313.0708 99846 16.52 314.0743 1 18538 315.0643 1 11317 315.0643 1 11317 315.06431 1 0.33 323.0913 2947 0.49 324.0971 1657 0.27 325.1064 1 10751 322.0965 1 6314 1.04 322.0965 1 6314 1.04 322.0965 1 6314 1.04 328.0900 1 11728 19.39 329.0922 1 18402 3.04 330.0954 1 2057 0.34 341.1017 2681 0.44 342.1093 4051 0.67 357.1315 1 9183 1.52	310.0811	1	8894 1549	1.47 0.26					
313.0708 1 99846 16.52 314.0703 1 18538 3.07 315.0843 1 1317 1.87 316.0881 1 2013 0.33 323.0913 2947 0.49 324.0971 1657 0.27 325.0164 1 19751 3.27 326.0965 1 6014 1.04 327.0867 1 604534 100.00 328.0900 1 117228 19.39 329.0922 1 18402 3.04 330.0954 1 2057 0.34 331.1017 2681 0.44 342.1093 4051 0.67 357.1315 1 918 1.52 Masthutter Chalifiative Analysic Page 2 of 5 Generated # 9.55 Mior 2022.02.12	312.0629	1	11139	1.84					
J.H. V/75 1 10030 5.0/ 315.0843 1 11317 1.87 316.0881 1 2013 0.33 323.0913 2947 0.49 324.0971 1657 0.27 325.0164 1 19751 327.0867 1 604534 320.0902 1 117228 329.0922 1 18402 320.0954 1 2057 330.0954 1 2057 330.0954 1 2057 341.1017 2681 0.44 342.1093 4051 0.67 357.1315 1 918 1.52 MassHunter Qualitative Analysis Concentral # 9:55 Minor 2022.02:12	313.0708	1	99846	16.52					
316.0881 1 2013 0.33 323.0913 2947 0.49 324.0971 1657 0.27 325.0164 1 19751 3.27 326.0965 1 6014 1.04 327.0867 1 604534 100.00 328.0900 1 117228 19.39 320.0922 1 18402 3.04 330.0954 1 2057 0.34 341.1017 2661 0.44 342.1093 4051 0.67 357.1315 1 918 1.52	314.0/43 315.0843	1	18538	3.07					
322.0913 2947 0.49 322.0913 1657 0.27 325.1064 1 19751 3.27 325.0065 1 6314 1.04 327.0067 1 604534 100.00 328.0900 1 117228 19.39 329.0902 1 1402 3.04 330.0954 1 2057 0.34 341.1017 2681 0.44 342.1093 4051 0.67 357.1315 1 9183 1.52	316.0881	1	2013	0.33					
325.1064 1 19751 3.27 326.0965 1 6314 1.04 327.0867 1 60434 100.00 328.0900 1 117228 19.39 329.0922 1 18402 3.04 330.0954 1 2057 0.34 341.1017 2681 0.44 342.1093 4051 0.67 357.1315 1 9183 1.52	323.0913		2947	0.49					
326.0965 1 6314 1.04 327.0867 1 604534 100.00 328.0900 1 117228 19.39 329.0922 1 18402 3.04 330.0954 1 2057 0.34 341.1017 2681 0.44 342.1093 4051 0.67 357.1315 1 9183 MassHunter Qualitative Analysis Page 2 of 5 Generated ± 9:55 Million 2022.02:12	324.0971 325.1064	1	19751	3.27					
327.0867 1 604934 100.00 328.0900 1 117228 19.39 329.0922 1 18402 3.04 330.0954 1 2057 0.34 341.1017 2681 0.44 342.1093 4051 0.67 357.1315 1 9183 1.52 MassHunter Qualitative Analysis Page 2 of 5 Generated ± 9:55 Million 2022.02:12	326.0965	1	6314	1.04					
320.0922 1 18402 3.04 330.0954 1 2057 0.34 341.1017 2681 0.44 342.1093 4051 0.67 357.1315 1 9183 1.52 MassHunter Qualitative Analysis Page 2 of 5 Generated ± 9:55 Million 2022.02:12	327.0867 328.0900	1	604534 117228	100.00 19.39					
330.0954 1 2057 0.34 341.1017 2681 0.44 342.1093 4051 0.67 357.1315 1 9183 1.52	329.0922	1	18402	3.04					
Jack 109 4051 0.67 342.1093 4051 0.67 357.1315 1 9183 1.52 MassHutter Qualitative Analysis Page 2 of 5 Concentral ± 9:55 MM on 2022.02:12	330.0954	1	2057	0.34					
357.1315 1 9183 1.52 MassHunter Qualitative Analysis Pane 2 of 5 Connected at 9:55 MM on 2022-02-12	342.1093		4051	0.67					
PROPERTY AND	357.1315	1	9183	1.52	Dago 2 -	fΓ			Concreted at 9:55 AM on 2022 02 12

			Analysis	Repo	rt			Agilen	t Trusted Answe
Spectrum Peaks			/					-	
m/z	Z Abu	nd Abund %	m/z (Calc)	Diff (ppm)	Ion Species	Formula	Ion	Туре	
358.1357	1 20	0.35							
359.1157	1 22	28 0.37							
364.0919	1 193	3.21							
365.0950	1 43	0.72							
379.1156	1 1152	94 19.07							
380.1187	1 249	4.13							
381.0997	1 167	780 2.78							
382.0996	32	.54 0.54							
395.0828	15	0.25							
397.0586	24	50 0.41							
403.0765	18	817 0.30							
755.1613	18	0.30							
766.1694	14	0.24							
Scan (rt: 13.084-13.240 min)	Sub Peak 14	4 from + TIC Scan	Sub						
+ESI Scan (rt: 13.084-13.240 mir	n, 29 scans) Frag=17	5.0V CID@42.0 CHCl3 f	rac 2.d Subtract						
232.0366 327.	.0865								
0.8									
0.6 290.0422	2								
0.4	395.1107								
0.2 102.0467									
0						1200			

Counts vs. Mass-to-Charge (m/z)

Spectrum Pairs Aused 5 N/C (A) Dif (gen) Ion Species Formula Ion Type 1007.87 1 200 10			Agilent Trusted Answers					
no. i Abuar Abuar No. (Cab) Dif (gen) Ios Specie Formula Ion Type 110.000 130 120	Spectrum Peaks		-					
No. 1 200 150 160 </th <th>m/z</th> <th>Z Abun</th> <th>d Abund %</th> <th>m/z (Calc)</th> <th>Diff (ppm)</th> <th>Ion Species</th> <th>Formula</th> <th>Ion Type</th>	m/z	Z Abun	d Abund %	m/z (Calc)	Diff (ppm)	Ion Species	Formula	Ion Type
100/00 39 3.0 100/00 420 3.0 100/00 421 3.0 100/00 123 3.0 100/00 123 3.0 100/00 123 3.0 100/00 123 3.0 100/00 123 3.0 100/00 123 3.0 100/00 123 3.0 100/00 123 3.0 100/00 123 3.0 100/00 123 3.0 100/00 123 3.0 100/00 123 3.0 100/00 130 3.0 100/00 100 1.0 100/00 100 1.0 100/00 100 1.0 100/00 1.0 1.0 100/00 1.0 1.0 100/00 1.0 1.0 100/00 1.0 1.0 100/00 1.0 1.0 <	100.9214	27	0 3.05					
137.000 22 5.9 141 3.8 150.000 3.8 150.000 3.8 150.000 3.8 180.000 3.9 180.000 3.9 180.000 3.9 180.000 3.9 180.000 3.9 180.000 3.9 180.000 3.9 180.000 3.9 180.000 3.9 190.000 3.9 190.000 3.9 190.000 3.9 190.000 3.9 190.000 3.9 190.000 3.9 190.000 3.9 190.000 3.9 190.000 3.9 190.000 3.9 190.000 3.9 190.000 3.9 190.000 3.9 190.000 3.9 190.000 3.9 190.000 3.9 190.000 3.9	102.0467	33	4 3.77 3 2.17					
1410057 242 242 124022 242 242 124022 242 242 124022 242 244 124022 242 244 124022 242 244 124022 242 244 124022 242 244 124022 244 244 124022 244 244 124022 244 244 124022 244 244 124022 244 244 124022 244 244 124022 244 244 124022 244 244 124022 244 244 124022 244 244 124022 244 244 124022 244 244 124022 244 244 124022 244 244 124022 244 244 124022 244 244 124022 244 244 124022 244 <t< td=""><td>127.0579</td><td>22</td><td>2 2.50</td><td></td><td></td><td></td><td></td><td></td></t<>	127.0579	22	2 2.50					
14402 121 124 15407 124 124 15407 125 124 15407 125 124 15008 126 125 15008 126 126 15008 126 126 15008 127 128 15008 127 126 15008 127 126 15008 127 126 16008 127 126 16008 127 126 121085 127 126 121085 127 126 121085 128 127 121085 128 127 121085 128 128 121085 128 128 121085 128 128 121085 128 128 121085 128 128 121085 128 128 121085 128 128 121085 128 128 121085 128 128	147.0682	24	4 2.76					
17.0073 12.1 1.6 15.0081 12.2 2.4 15.0080 12.3 2.4 15.0080 12.3 2.4 20.0040 12.3 2.4 20.0040 12.3 2.4 20.0040 12.3 2.4 20.0040 12.3 2.4 20.0040 12.3 2.4 20.0040 12.3 2.4 20.0040 12.3 2.4 20.0040 12.3 2.4 21.0040 12.3 2.4 21.0040 12.3 1.4 21.0040 12.3 1.4 21.0040 12.3 1.4 21.0040 12.3 1.4 21.0040 1.4 1.4 21.0040 1.4 1.4 21.0040 1.4 1.4 21.0040 1.4 1.4 21.0040 1.4 1.4 21.0040 1.4 1.4 21.0040 1.4 1.4 21.0040 1.4 1.4 <t< td=""><td>160.0522</td><td>23</td><td>2 3.51 2 2.61</td><td></td><td></td><td></td><td></td><td></td></t<>	160.0522	23	2 3.51 2 2.61					
111.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	176.0473	121	1 13.66					
137,040 173 188 127,040 173 188 120,050 173 189 120,050 174 189 120,050 17 18 120,050 17 18 120,051 1 23 110,051 47 233 110,051 47 234 110,051 47 235 110,051 47 235 110,051 47 236 110,051 47 236 110,051 17 236 110,051 17 236 110,051 17 236 110,051 18 236 110,051 18 236 110,051 18 236 110,051 18 236 110,051 18 236 110,051 18 236 110,051 18 236 110,051 19 336	185.0581	19	6 2.21 5 2.88					
127.047 1.25 200.057 1.24 200.057 1.24 200.057 1.24 200.057 1.24 200.057 1.25 200.057 1.25 200.057 2.25 200.057 2.25 200.057 2.25 200.057 2.25 200.057 2.25 200.058 1.20 200.058 1.20 200.058 1.20 200.058 1.20 200.058 1.20 200.058 1.20 200.058 1.20 200.058 1.20 200.058 1.20 200.058 1.20 200.058 1.20 200.058 2.20 200.058 2.20 200.058 2.20 200.058 2.20 200.058 2.20 200.058 2.20 200.059 1.20 200.059 1.20 200.059 1.20 200.059 1.20 <td>195.0880</td> <td>23</td> <td>1 2.49</td> <td></td> <td></td> <td></td> <td></td> <td></td>	195.0880	23	1 2.49					
10000 1000 1000 20000 1000 1000 20000 1000 1000 20000 1000 1000 111000 1000 1000	197.0604	17	3 1.95					
1000000000000000000000000000000000000	200.04/5 201.0509	22	9 2.58 1 2.26					
204407 1 177 174 111031 27 124 111033 413 448 111031 473 448 111032 64 147 111033 478 149 111034 170 513 111034 1 170 514 111034 1 170 514 111034 1 170 514 111034 1 170 514 111034 1 170 514 111034 1 170 514 111034 1 170 514 111034 1 170 514 111034 1 170 514 111034 1 170 514 111034 1 170 514 111034 1 170 514 111034 1 170 514 111034 1 170 514 111034 1 170 114 111034<	202.0637	17	4 1.96					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	204.0417	1 157	3 17.74					
111.0551 433 48 124.027 41 5.3 122.051 63 2.9 123.050 63 2.9 123.050 70 84 123.050 70 84 123.050 70 84 123.050 70 84 123.050 70 84 123.050 70 84 123.050 70 84 123.050 70 84 123.050 70 84 123.050 70 84 123.050 70 84 123.053 70 84 123.053 70 84 123.053 70 84 123.053 70 14 123.053 70 14 123.053 70 14 123.053 13 14 123.053 14 14 123.053 14 14 123.053 15 14 140.050 14 14	205.0485 211.0526	1 22	5 2.54 7 2.23					
114.003 41 5.17 220.003 827 9.34 220.003 1 873 9.44 230.004 1 730 9.44 230.004 1 730 9.44 230.004 1 730 9.44 230.004 1 730 9.44 230.004 1 730 9.44 230.004 1 730 9.44 240.005 1 730 9.44 240.005 1 730 9.44 240.005 1 8.6 9.6 240.005 1 9.6 6.6 250.005 1 9.6 6.6 250.005 101 1.14 9.6 250.005 101 1.14 9.6 250.005 101 1.14 9.6 250.005 101 1.14 9.6 250.005 101 1.14 9.6 250.005 101 1.14 1.16 250.005 101 1.14 1.16 <td>213.0551</td> <td>43</td> <td>3 4.88</td> <td></td> <td></td> <td></td> <td></td> <td></td>	213.0551	43	3 4.88					
122070 265 269 1220505 877 94 1230509 970 94 1230509 970 94 1230509 970 94 1230509 970 94 1230509 100 970 1230509 100 970 1230509 100 970 1230509 100 970 1230509 100 970 1230509 100 970 1240408 100 970 1240509 100 970 1240509 100 970 1240509 128 130 1250509 128 130 1250509 101 144 1250509 128 130 1240509 128 130 1240509 128 130 1240509 128 130 1240509 128 130 1240509 128 140 1240509 128 140 1240509 <t< td=""><td>214.0297</td><td>47</td><td>1 5.31</td><td></td><td></td><td></td><td></td><td></td></t<>	214.0297	47	1 5.31					
220.050 / 47 5.0 220.050 / 1 170 5.0 220.050 / 1 170 5.0 220.051 / 1 170 5.0 220.052 / 1 170 2.0 230.052 / 1 170 2.0 230.052 / 1 200 2.0 240.052 / 1 200 2.0 240.052 / 1 200 2.0 240.052 / 1 200 2.0 240.052 / 1 200 2.0 240.052 / 1 200 2.0 240.052 / 1 200 2.0 240.052 / 1 200 2.0 240.052 / 1 200 2.0 240.052 / 1 200 2.0 240.050 / 1 2.0 2.0 250.07 / 251 2.0 2.0 250.07 / 250 2.0 2.0 250.07 / 250 2.0 2.0 250.07 / 250 2.0 2.0 260.050 / 1 2.0 2.0 260.050 / 1 2.0 2.0 260.050 / 1 2.0 2.0 260.050 / 1 </td <td>227.0703</td> <td>26</td> <td>5 2.99</td> <td></td> <td></td> <td></td> <td></td> <td></td>	227.0703	26	5 2.99					
200050 478 3.40 201050 109 5.11 200051 109 2.00 200052 109 2.00 200051 109 2.00 200052 109 2.00 200052 109 2.00 200052 109 2.00 200052 109 2.00 200052 109 2.00 200052 109 2.00 200053 109 2.00 200053 109 3.00 200053 109 3.00 200053 101 1.01 200053 101 1.05 200053 101 1.05 200053 2.00 2.00 200053 2.00 2.00 20005 2.00 2.00 20005 2.00 2.00 20005 2.00 2.00 20005 2.00 2.00 20005 2.00 2.00 20005 2.00 2.00 20005	229.0516	82	7 9.34					
1 1720 96.0 235.042 1 130 15.1 236.045 1 00 2.5 245.045 1 00 2.5 245.045 70 0.04 245.045 70 0.04 245.045 70 0.04 245.045 1 86 0.04 245.045 1 86 0.04 245.045 1 86 0.04 245.045 1 86 0.04 245.045 1 86 0.04 245.045 1 86 0.04 245.045 1 86 0.04 245.045 1 86 0.04 245.045 1 10.0 1.04 245.045 1 10.0 1.04 245.045 1 10.0 1.04 245.045 1 10.0 1.04 245.045 1 10.0 1.04 245.045 1 10.0 1.04 245.045 1 1.05 1.04 245.045 1 1.05 1.04 245.045 1 1.04 1.04 245.045 1	230.0569	47	8 5.40					
233028 1 1940 15.11 234028 1983 2.09 245028 285 285 245028 285 285 245028 285 285 245028 285 285 245028 348 385 245028 348 385 245028 348 385 245028 101 347 245028 101 14 255039 101 14 2570397 251 28 245048 101 14 2570497 251 28 260038 101 14 260039 101 157 260039 101 157 260039 101 157 260039 101 158 260039 101 159 260039 101 152 270057 29 20 270057 11 152 270057 11 152 270057 11 152 270057 11 152 270057 11 152 270057 11 152 270057	232.0366	1 873	0 98.49					
234935 1 200 2392356 270 1.04 2423668 761 8.58 241464 241 1.1 241464 1.1 244 241464 1.1 244 241464 1.1 244 241464 1.1 244 2415765 316 5.82 2415765 316 5.82 241771 3.12 3.44 241771 3.12 3.44 241771 3.12 3.44 241771 3.12 3.44 241771 3.12 3.44 241771 3.12 3.44 241771 3.12 3.44 241771 3.12 3.44 241771 3.12 3.44 241771 3.14 3.45 241771 3.14 3.45 241771 3.14 3.45 241771 3.14 3.14 241771 3.14 3.14 241771 3.14 3.14 241771 3.14 3.14 241771 3.14 3.14 241771 3.14 3.14 2417771 3.14 3.14 <td>233.0424</td> <td>1 134</td> <td>0 15.11</td> <td></td> <td></td> <td></td> <td></td> <td></td>	233.0424	1 134	0 15.11					
185 2.00 242.056 270 3.04 243.056 761 6.35 244.018 1 2.44 246.057 6.46 5.2 247.056 5.16 5.2 247.057 3.12 4 247.057 3.12 4 247.057 3.12 4 247.057 3.12 4 247.057 1.13 4.45 247.057 3.12 4 247.057 3.12 4 247.057 3.12 4 247.057 3.13 4.45 247.057 3.14 4.45 247.057 2.39 2.70 247.058 1 1.14 247.058 1 1.21 247.058 1 1.14 247.058 1 1.14 247.058 1 1.14 247.058 1 1.14 247.058 1 1.14 247.058 1 1.14 247.058 1 1	234.0452	1 20	0 2.26					
242.0588 270 3.04 242.0684 741 8.53 243.0685 1 266 243.0685 1 266 243.0685 1 586 243.0685 156 5.82 243.0585 216 5.82 243.0587 256 5.82 253.0697 256 2.43 253.0698 101 1.14 253.0698 101 1.14 253.0698 101 1.14 253.0698 101 1.14 263.0691 1039 2.07 263.0691 1039 2.07 263.0691 1039 2.07 263.0691 1137 2.00 263.0692 2.03 2.56 270.0685 2.04 2.30 270.0685 2.04 2.30 270.0685 2.04 2.30 270.0685 2.04 2.30 270.0685 2.04 2.30 270.0685 3.03 3.55 273.0681 3.03 3	239.0345	18	5 2.09					
1 20 20 240.0001 56 5.82 240.0001 56 5.82 251.078 309 339 250.0001 15 2.00 250.0001 15 2.00 250.0001 101 1.14 250.0001 102 1.35 250.0001 101 1.14 250.0001 102 1.35 250.0001 101 1.14 250.0001 102 1.35 250.0001 102 1.35 250.0001 102 1.35 250.0001 102 1.35 250.0001 103 1.35 250.0001 102 2.30 270.0005 20 2.30 270.0005 20 2.30 270.0001 113 1.25 270.0001 113 1.25 270.0001 1.30 1.30 270.0001 1.31 1.25 270.0001 1.31 1.25 270.0001 1.30 1.30 270.0001 1.30 1.30 270.0001 1.30 1.30 270.0001 1.30 270.0001 1.30	242.0568	27	0 3.04					
1 951 960 240.052 568 6.0 240.052 516 5.22 210.073 349 331 230.073 276 241 250.073 105 243 250.073 105 243 250.073 105 243 250.073 105 243 250.073 105 243 250.073 105 243 260.077 223 1345 260.077 290 270 260.083 194 249 270.085 872 94 270.086 394 343 270.086 872 94 270.087 344 386 270.087 374 386 270.087 374 386 270.087 374 386 270.087 374 386 270.087 374 386 270.087 374 386 270.087 374 386 270.087 374 386 280.081 36 413 280.081 36 413 280.087 108 355 280.077	243.0648 244.0382	1 286	1 8.58 4 32.32					
24:00:34 548 6.18 24:70:05 5.15 5.20 25:50:13 3.99 3.31 25:50:39 21 2.44 25:50:39 21 2.44 25:00:39 125 2.43 25:00:39 12 2.44 25:00:39 12 3.45 26:00:30 1 1.44 25:00:37 239 2.70 26:00:30 1.94 2.19 26:00:30 2.44 3.33 26:00:30 2.44 3.45 27:00:30 2.44 3.45 26:00:30 2.44 3.45 26:00:30 2.44 3.45 26:00:30 3.44 3.45 27:00:30 3.44 3.45 27:00:30 2.44 3.45 27:00:30 2.44 3.45 27:00:30 3.44 3.48 27:00:30 1 1.13 27:00:30 1 1.13 27:00:30 1 1.13 27:00:30 1 1.14 27:00:30 1 1.14 27:00:30 3 3.45 27:00:30 3 3.45 27:00:30 <t< td=""><td>245.0453</td><td>1 85</td><td>1 9.60</td><td></td><td></td><td></td><td></td><td></td></t<>	245.0453	1 85	1 9.60					
1 10 10 10 23.03 215 2.31 25.033 105 2.44 25.033 105 2.00 23.033 105 2.00 23.033 105 2.00 23.033 105 2.00 25.0403 105 1.00 25.0403 10 1.14 25.0403 10 1.14 25.0403 100 1.157 26.0403 2.01 2.01 26.053 2.04 2.01 26.053 2.04 2.01 26.053 2.04 2.01 26.053 2.04 2.01 27.0595 2.04 2.01 27.0595 2.04 2.00 27.0595 2.04 2.00 27.0595 2.04 2.00 27.0595 2.04 2.00 27.0595 3.01 1.05 27.0595 1.11 1.05 27.0595 1.11 1.05 27.0595 1.14 1.05 27.0595 1.14 1.05 28.0597 1.05 1.05 28.0597 1.05 1.05 28.0597 1.05 <td>246.0524</td> <td>54</td> <td>8 6.18</td> <td></td> <td></td> <td></td> <td></td> <td></td>	246.0524	54	8 6.18					
1 253.028 277 3.12 255.059 2.16 2.44 257.047 2.51 2.83 270.033 1.011 1.1.41 280.039 1.011 1.1.41 200.031 1.025 1.1.57 262.0461 6.66 7.68 262.0461 3.04 3.03 280.088 3.04 3.04 280.088 3.04 3.04 270.050 1.07 1.012 270.051 1.05 1.02 270.052 2.94 3.04 280.088 3.04 3.0 270.051 1.05 3.0 270.051 1.05 3.0 270.051 1.05 3.0 270.051 1.05 3.0 270.051 1.05 3.0 280.052 6.66 4.13 280.052 6.66 7.42 280.052 6.66 7.42 280.052 6.66 7.42 280.052 6.65 7.42 280.052 6.	247.0605 251.0718	51	5.82 9 3.93					
255.0639 216 2.44 257.0633 185 2.09 257.0633 185 2.09 250.0336 13089 34.65 260.0336 13089 34.65 262.0451 661 7.68 262.0451 661 7.68 262.0451 661 7.68 267.0530 194 2.19 263.0638 344 3.43 263.0638 344 3.43 272.0441 1171 12.21 273.0687 344 3.88 273.0687 344 3.88 273.0687 344 3.88 274.0470 1113 1.25 275.0546 1 2.32 286.0578 339 3.71 280.0578 339 3.71 280.0578 331 3.53 280.0578 333 3.53 280.0578 333 3.53 280.0578 333 3.53 280.0579 1.025 1.56 280.0579 1.035 1.56 297.0771 2.146 2.41 296.0579 2.08 3.01 297.0771 1.45 2.45 <t< td=""><td>253.0528</td><td>27</td><td>7 3.12</td><td></td><td></td><td></td><td></td><td></td></t<>	253.0528	27	7 3.12					
1 1.14 259.059 128 260.035 1 260.035 1 260.035 1 260.035 1 260.035 2.00 260.035 2.00 270.050 2.00 280.050 2.00 280.050 2.00 280.050 2.00 280.050 2.00 270.055 2.04 270.055 2.04 270.055 2.04 270.055 2.04 270.056 2.04 270.057 1 270.057 2.0 270.057 2.0 270.057 2.0 270.057 2.0 270.057 2.0 270.057 2.0 270.050 3.0 270.050 3.0 280.051 4.0 280.051 4.0 280.051 4.0 280.051 4.0 280.051 4.0 280.051 5.8 290.0	255.0639	21	6 2.44					
258.0539 1011 11.41 259.0539 1028 13.85 260.0356 1 3009 261.0394 1025 11.57 262.0461 681 7.68 267.0507 23 2.70 267.0508 194 2.19 270.0555 204 2.30 270.0555 204 2.30 271.0598 772 9.44 272.0441 1.171 13.21 272.0557 344 3.88 274.0470 1.131 2.125 274.0451 2.30 2.31 274.0452 1.224 2.32 274.0451 1.235 2.33 274.0451 1.235 2.33 274.0451 1.235 2.34 274.0470 1.131 3.53 274.0473 3.33 3.53 274.0473 3.13 3.53 284.0573 3.13 3.53 286.0527 1661 1.874 286.0579 2.08 2.35 295.0579 <	257.0497	25	1 2.83 5 2.09					
259.0599 1228 13.85 260.0350 1 0099 34.85 261.0394 1 1025 11.57 262.0461 631 7.68 34.45 266.087 2.39 2.70 34.45 270.0588 314 1.43 35.6 270.0598 872 9.84 34.45 272.0598 872 9.84 36.97 272.0598 872 9.84 36.97 272.0598 872 9.84 38.8 272.0507 344 3.88 36.72 273.0511 1.86 2.10 36.72 275.0602 1.74 4.29 4.99 276.0612 1.42 4.99 276.0612 1.42 4.99 276.0612 1.96 7.42 280.0728 1.05 3.53 280.0759 5.38 7.20 280.0751 1.05 3.53 290.0422 1.96 2.35 291.06731 1.05 1.56 292.06679 2.08	258.0539	101	1 11.41					
20.039 1 0.05 7.57 20.039 1 7.69 26.037 219 2.19 26.048 304 3.43 20.0655 204 2.30 27.0655 204 2.30 27.0657 204 2.30 27.0657 204 2.30 27.0657 204 2.30 27.0657 344 3.80 27.0677 344 3.80 27.0677 344 3.80 27.0677 344 3.80 27.0678 1 1.32 27.0679 3.29 3.71 28.061 6.20 27.6678 3.29 28.061 6.31 28.061 6.413 28.061 6.8 28.061 6.8 28.061 6.8 28.062 1.4 28.063 2.5 28.064 9.4 29.0679 1.4 29.0679 2.8 29.06679 2.8 <td< td=""><td>259.0599</td><td>1 122</td><td>8 13.85</td><td></td><td></td><td></td><td></td><td></td></td<>	259.0599	1 122	8 13.85					
222.0461 681 7.68 2267.0530 194 2.19 2267.0530 304 3.43 2269.0800 433 5.56 220.0555 204 2.30 271.0598 872 9.44 272.0511 1 185 2.10 273.0511 1 186 2.10 273.0541 1 112 2.24 273.0547 1 1.12 2.24 273.0547 1 1.12 2.24 275.0549 1 1.42 2.49 276.0549 1 1.42 2.49 279.0550 3.29 3.71 280.0561 658 7.42 280.0561 658 7.42 280.0561 658 7.42 280.0579 3.13 3.3 281.0561 1.055 1.156 290.0422 1 496 290.0423 1 1.156 290.0423 1 1.156 290.0425 1.056 2.23 29	261.0394	1 102	5 11.57					
266,0937 2.39 2.70 267,0630 194 2.19 268,0688 304 3.43 269,000 493 5.56 270,0655 204 2.30 271,1598 672 9.64 273,3507 1 18 2.11 273,3507 1 18 2.11 273,0507 1 19 2.55 273,0507 1 142 4.52 276,0512 1 4.24 4.99 276,0562 107 1.91 2.83 280,0728 170 1.91 2.83 280,0728 170 1.91 2.83 280,0728 130 3.53 2.85 280,0728 130 3.53 2.85 280,0728 131 3.33 3.33 280,0758 3.33 3.33 2.85 280,0578 3.13 3.53 291,0473 1 1.05 1.56 293,0269 174 1.66 1.87 293,030 1	262.0461	68	1 7.68					
288.068 394 3.43 288.068 394 2.30 270.0655 294 2.30 270.0657 294 2.30 270.067 11 1.71 270.067 344 3.88 270.067 124 2.72 270.067 124 2.72 270.067 121 2.72 270.067 121 2.72 270.067 121 2.72 270.067 121 2.72 270.067 121 2.72 270.067 121 2.72 270.067 121 2.72 270.067 121 2.72 270.067 309 3.71 280.078 30 3.55 280.078 30 3.55 280.051 68 7.42 280.0527 161 18.74 280.0537 161 18.74 280.0547 105 1.56 291.0471 105 1.56 291.0471 105 1.56 295.059 2.82 2.55 295.059 2.84 2.52 295.059 2.84 2.52 295.059 2.84	266.0937	23	9 2.70 4 7.19					
269.0800 493 5.56 270.0655 204 2.30 271.0598 872 9.84 272.0511 1171 13.21 273.0677 344 3.88 274.0470 1113 12.55 275.0612 442 4.99 275.0612 442 4.99 270.0612 1042 4.99 280.0728 170 1.91 280.0728 170 1.91 280.0728 170 1.91 280.0728 170 1.91 280.0728 170 1.91 280.0728 130 3.95 280.0728 131 3.33 280.0755 638 7.42 280.0576 313 3.33 290.0421 4962 55.98 291.0473 1.05 1.86 293.0679 208 2.35 293.0679 208 2.35 293.0674 1.18 5.77 300.0673 5.11 5.77 300.0675 376	268.0688	30	4 3.43					
270.0655 204 2.30 271.0568 872 9.84 272.0444 1 1171 13.21 273.0687 344 3.88 274.0470 1 113 12.55 275.0546 1 2324 26.22 276.0612 1 424 4.99 279.0690 329 3.71 3.88 280.0728 10 1.91 283.0581 366 283.0581 366 4.13 285.0561 658 7.42 285.0561 658 7.42 285.0561 658 7.42 285.0561 658 7.20 286.0527 1661 18.74 285.0561 658 7.20 286.0527 1661 18.74 285.0561 658 7.20 286.057 286.057 286.057 286.057 290.0422 1 4962 55.98 331 3.53 290.042 10.05 295.057 286.057 286.057 286.057 286.057 286.057 286.057 286.057 286.057 286.057	269.0800	49	3 5.56					
272.0441 1 13.21 273.067 344 388 274.0470 1 113 12.55 275.0561 1 223 62.22 275.0561 1 224 4.99 270.0602 1 442 4.99 270.0603 1.70 1.91 280.0728 1.70 1.91 280.0728 350 3.95 280.0728 350 3.95 280.0527 1.661 18.74 280.0527 1.661 18.74 280.0527 1.661 18.74 280.0527 1.661 18.74 280.0528 3.33 3.53 280.0529 1.34 1.96 290.0421 1 4962 55.88 290.0422 1 496 2.42 290.0473 1 1.95 2.25 290.059 1.73 1.95 2.25 290.059 1 1.85 1.562 290.073 1 1.56 2.55 390.073	270.0655 271.0598	20	4 2.30 2 9.84					
273.051 1 186 2.10 273.051 1 113 12.55 275.0546 1 224 26.22 276.0512 1 442 4.99 279.0660 329 3.71 280.0728 170 1.91 283.0581 366 4.13 280.0728 559 568 7.42 286.0551 568 7.42 286.0572 1.661 18.74 280.0728 313 3.53 280.0728 1.1025 1.156 280.0731 2.062 2.82 291.0473 1 1025 1.156 295.0579 2.08 2.33 295.0579 2.08 2.33 295.0579 2.08 2.33 295.0579 2.08 2.33 295.0579 2.08 2.33 297.071 2.146 24.21 298.0566 954 10.76 299.0730 1 1.385 1.562 303.01.010 779 8.79	272.0444	1 117	1 13.21					
23.0807 344 3.80 27.0807 1 113 12.55 27.0804 1 2324 26.22 27.0809 329 3.71 28.081 366 4.13 28.081 366 4.13 28.0851 658 7.42 28.0852 638 7.20 28.0855 638 7.20 28.0857 638 7.20 28.0858 313 3.53 29.0422 1 4962 55.98 29.0421 296.057 1.156 29.0421 1 1.95 2.82 29.0559 1.74 1.96 29.0560 1.73 1.95 29.0667 2.08 2.35 297.060 1.73 1.95 297.060 1.74 1.96 299.0546 954 10.76 299.0545 3.77 5.27 300.0673 1 5.77 301.0710 1 7.79 300.0675 2.28 2.57	273.0511	1 18	6 2.10					
275.0546 1 2324 26.22 276.0612 1 442 499 279.0500 329 3.71 280.0728 100 191 280.051 366 4.13 281.0561 658 7.42 286.0527 1661 18.74 288.0578 313 3.53 288.0578 313 3.53 290.0422 1 4962 55.98 291.0473 1 1025 1.56 294.0679 208 2.35 295.0629 174 1.96 295.0629 174 1.96 295.0629 174 1.96 295.0629 174 1.96 295.0629 174 1.96 295.0629 1.94 1.97 300.073 1 5.62 300.075 1 5.11 300.076 1 5.11 310.0805 3.78 4.26 300.075 2.28 2.57 310.0805 2.28 2.57 310.0805 2.70 <	273.0687 274.0470	1 111	3 12.55					
276.0612 1 442 4.99 279.0690 329 3.71 280.0728 170 1.91 281.0728 350 3.95 285.0561 658 7.42 286.0527 1.661 18.74 287.0555 638 7.20 288.0578 313 3.53 290.0422 1 4962 291.0473 1 1025 294.0679 2.08 2.35 295.0829 174 1.96 295.0829 174 1.96 295.0829 174 1.95 295.0829 174 1.96 295.0829 174 1.96 295.0829 174 1.96 295.0829 174 1.96 295.0829 173 1.95 297.0060 173 1.95 298.0546 954 10.76 299.0730 1 355 300.0673 1 5.15 300.0673 1 5.77 301.0710 7.79 8.79 302.0734 1 2.26 311.0892 4.27 311.0892 4.27 311.0892 4.27	275.0546	1 232	4 26.22					
253.0000 3.25 5.71 283.0581 366 4.13 284.0678 350 3.95 285.0561 658 7.42 286.0527 1661 18.74 287.0555 638 7.20 288.0578 313 3.53 290.0422 1 4962 291.0473 1 1025 1.56 294.0671 250 2.82 295.0829 174 1.96 296.0679 208 2.35 297.060 173 1.95 297.071 2146 24.21 298.0546 954 10.76 299.0730 1 1385 15.62 300.0673 1 5.77 301.0710 1 779 8.79 302.0734 1 226 2.55 310.0805 228 2.57 311.0892 447 5.04 312.0765 270 3.05 313.0711 1749 19.73 312.0765 270 3.05	276.0612	1 44	2 4.99 9 3.71					
283.0581 366 4.13 284.0678 350 3.95 285.0561 658 7.42 286.0527 1661 18.74 287.0555 638 7.20 288.0578 313 3.53 290.0422 4962 55.98 291.0473 1 1025 11.56 294.0679 2.82 2.82 295.0829 1.74 1.96 295.0829 1.74 1.96 295.0829 1.74 1.96 295.0829 1.74 1.96 297.0071 2.146 2.421 298.0566 954 10.76 299.0730 1 1.385 15.62 300.0673 1 5.162 300.0673 1 5.77 301.0700 1 779 302.0734 1 226 310.0805 2.28 2.57 311.0822 447 5.04 312.0765 270 3.05 313.0711 1 7.99 313.0	280.0728	17	0 1.91					
1 350 359 285.0561 658 7.42 286.0572 1661 18.74 287.0555 638 7.20 288.0578 313 3.53 290.0422 1 4962 55.98 291.0473 1 1025 11.56 295.0829 174 1.96 11.56 295.0829 174 1.96 11.56 295.0829 173 1.95 11.56 297.0771 2146 24.21 11.56 297.0771 1.165 15.62 11.56 300.0673 1 511 5.77 301.0710 1 779 8.79 302.0734 1 226 2.55 303.0673 5.27 5.95 310.0805 2.28 2.57 311.0892 447 5.04 312.0764 1 1.79 313.0711 1 1.149 322.0809 2.22 2.51 325.0878 1 9.14 322.0809	283.0581	36	6 4.13					
Line Line 286.0527 1661 18.74 287.0555 638 7.20 288.0578 313 3.53 290.0422 1 4962 55.98 291.0473 1 1025 11.56 294.0871 250 2.82 295.0679 208 2.35 297.0771 2146 24.21 295.0679 208 2.35 297.0771 2146 24.21 298.0546 954 10.76 299.0546 954 10.76 299.0546 954 10.76 299.0545 300.0673 1 300.0673 1 511 5.62 300.0673 1 300.0673 5 378 4.26 309.0773 527 310.0805 228 2.57 311.092 447 5.04 312.0765 270 3.05 313.0711 1 7.49	284.0678 285.0561	35	u 3.95 8 7.42					
287.0555 638 7.20 288.0578 313 3.53 290.0422 1 4962 55.98 291.0473 1 1025 11.56 294.0871 250 2.82 295.0829 174 1.96 295.06679 208 2.35 297.0060 173 1.95 297.0071 2.146 2.421 298.0546 954 10.76 299.0570 1 1385 15.62 300.0673 1 511 5.77 301.0710 1 779 8.79 303.0734 1 226 2.55 303.0733 527 5.95 310.0805 2.78 4.26 310.0805 2.28 2.57 311.0805 2.20 3.06 313.0711 1 749 313.0711 1 749 31.0712 371 4.19 31.0713 371 4.19 322.0809 2.22 2.51 325.0878	286.0527	166	1 18.74					
1.1.20070 31.2 3.1.3 1.290.0422 1 4962 290.0422 1 4962 290.0423 1 1025 1.290.0423 1 1025 294.0871 250 2.82 295.0829 174 1.96 296.0679 208 2.35 297.0060 173 1.95 298.0546 954 10.76 298.0546 954 10.76 298.0546 954 10.76 298.0546 954 10.76 300.0730 1 1385 310.0710 1 779 8.79 300.0734 226 300.0733 527 5.95 310.0805 228 2.57 311.0675 270 3.05 311.0711 1.749 1.97 313.0711 1.749 1.97 313.0711 1.749 1.97 313.0711 1.749 1.97 312.0765 270 3.05 313.0711 1.749 1.97 312.0769 222 2.51 325.0678 1 10.31	287.0555	63	8 7.20					
291.0473 1 1025 11.56 294.0871 250 2.82 295.0829 174 1.96 295.0829 208 2.35 297.0060 173 1.95 297.071 2146 24.21 298.0829 10.76 299.0730 1 135 15.62 300.0673 1 511 5.77 301.0710 1 779 302.0734 1 226 2.55 305.0655 378 4.26 305.0655 378 4.26 305.0655 277 5.95 310.0805 2.28 2.57 311.0892 447 5.04 312.0755 270 3.05 313.0711 1 1749 322.0809 222 2.51 325.0878 914 10.31	268.05/8 290.0422	1 496	2 55.98					
294.0871 250 2.82 295.0829 174 1.96 295.0829 173 1.95 297.0060 173 1.95 299.0771 2.146 24.21 298.0546 954 10.76 299.0730 1 1.385 300.0673 1 511 5.77 301.0710 1 300.0673 1 511 5.77 301.0710 1 300.0655 378 4.26 3030.0655 378 4.26 3030.0733 527 5.95 310.0805 2.28 2.57 311.0802 447 5.04 312.0755 2.70 3.05 313.0711 1 1749 19.73 314.0729 1 322.0809 2.22 2.51 325.0678 1 914 10.31 10.415	291.0473	1 102	5 11.56					
229.0679 208 2.35 297.071 2146 24.21 298.0679 208 2.35 297.071 2146 24.21 298.0546 954 10.76 299.0730 1 1385 15.02 300.0673 1 301.0710 1 779 8.79 302.0734 1 226 2.55 305.0655 303.0773 527 5.95 311.06902 218 2.57 311.06902 2447 5.04 312.0765 313.0711 1 1 1749 19.73 312.0765 270 313.0711 1 1 1749 322.0609 222 325.0678 914 10.31 Dend of 5	294.0871	25	0 2.82 4 1.96					
297.0000 173 1.95 297.071 216 24.21 298.0546 954 10.76 299.0730 1 1385 1 1511 5.77 301.0710 1 779 302.0734 1 226 255.0773 378 4.26 300.0673 527 5.95 310.0805 228 2.57 311.0892 447 5.04 312.0765 270 3.05 313.0711 1 1749 132.0668 222 2.51 322.0809 222 2.51 325.0678 914 10.31	296.0679	20	8 2.35					
29/.071 2146 24.21 298.0546 954 10.76 298.0546 954 10.76 299.0730 1 1385 1562 300.0673 1 301.0710 1 779 301.0710 1 779 300.0734 1 226 305.0655 378 4.26 300.0733 527 5.95 310.0805 228 2.57 311.0805 228 2.57 311.0805 270 3.06 312.0765 270 3.06 313.0711 1 1749 132.0809 222 2.51 325.0678 1 914 10.31 10.415 2.26	297.0060	17	3 1.95					
Location 1385 15.62 300.0673 1 1385 15.62 300.0673 1 511 5.77 301.0710 1 779 8.79 302.0734 1 226 2.55 3030.0675 378 4.26 3030.073 527 5.95 310.0805 228 2.57 311.0892 447 5.04 312.0765 270 3.05 313.0711 1 1749 19.73 314.0729 1 371 4.19 322.0809 222 2.51 325.0678 1 914 10.31	297.0771 298.0546	214	6 24.21 4 10.76					
300.0673 1 511 5.77 301.0710 1 779 8.79 300.0734 1 226 2.55 300.0655 378 4.26 300.0734 5.27 5.95 310.0805 228 2.57 311.0892 447 5.04 312.0765 270 3.05 313.0711 1 1749 19.73 314.0729 371 4.19 322.0809 222 2.51 325.0678 914 10.31	299.0730	1 138	5 15.62					
301.0710 1 7/9 6.79 302.0734 1 226 2.55 305.0655 378 4.26 309.0773 527 5.95 310.0805 228 2.57 311.0982 447 5.04 312.0765 270 3.05 313.0711 1 1749 19.73 314.0729 371 4.19 322.0809 222 2.51 325.0678 1 914 10.31	300.0673	1 51	1 5.77					
305.0655 378 4.26 309.0773 527 5.95 310.0805 228 2.57 311.0992 447 5.04 312.0765 270 3.05 313.0711 1749 19.73 314.0729 371 4.19 322.0809 222 2.51 325.0678 1 914 10.31	301.0710 302.0734	1 77 1 22	9 8.79 6 2.55					
309.0773 527 5.95 310.0805 228 2.57 311.0892 447 5.04 312.0765 270 3.05 313.0711 1749 19.73 314.0729 371 4.19 322.0809 222 2.51 325.0678 1 914 10.31	305.0655	37	8 4.26					
J10,0005 Z20 Z37 311,0952 447 5,04 312,0765 270 3,05 313,0711 1749 19,73 314,0729 1 371 4,19 322,0609 222 2,51 325,0678 1 914 10,31 MassHunter Oualitative Analysic Pane 4 of 5 Connected ± 0,155 AM on 2022 02,12 12	309.0773	52	7 5.95					
312.0765 270 3.05 313.0715 1749 19.73 314.0729 371 4.19 322.0609 222 2.51 325.0678 1 914 10.31	310.0805 311.0892	22	o 2.5/ 7 5.04					
313.0711 1 1749 19.73 314.0729 1 371 4.19 322.0809 222 2.51 325.0678 1 914 10.31	312.0765	27	0 3.05					
J22.0809 222 2.51 325.0678 1 914 10.31 MassHunter Qualitative Analysis Dane 4 of E Convented =0.055 AM on 2022 0.212	313.0711	1 174	9 19.73					
325.0678 1 914 10.31 MaesHunter Orusilistive Analysis Dans 4 of 5 Converted = 0.05 FM or 2002 02 12	322.0809	- 37	2 2.51					
Valid 4 OF N Loposted at Dicc MM on 3013 03 13	325.0678	1 91	4 10.31	De est d	of E			Converted == 0.55 AM == 2022 02 12

Analysis Report

Spectrum Peak	S								
m/	z	z	Abund	Abund %	m/z (Calc)	Diff (ppm)	Ion Species	Formula	Ion Type
326.074	4	1	225	2.54					
327.086	5	1	8864	100.00					
327.968	1		194	2.19					
328.090	0	1	1805	20.36					
329.091	6	1	278	3.13					
364.091	2		219	2.47					
367.046	0		394	4.44					
379.114	9	1	1223	13.80					
380.117	6	1	352	3.97					
395.110	17	1	2813	31.73					
396.114	0	1	685	7.73					
411.074	7		541	6.10					
413.265	8		271	3.06					

MassHunter Qual 10.0 (End of Report)

8.3 Appendix 3: Quadrupole time-of-flight mass spectrometer analysis report of the

P. destructans extract

MassHunter Qualitative Analysis
			Analysis Report					Agilent Trusted Answers		
Spectrum Peaks				/	!					
m/z	z	Abund	Abund %	m/z (Calc)	Diff (ppm)	Ion Species	Formula	Ion Type		
103.0549		379	2.03							
110.0079		267	1.43							
119.0862		1677	8.98							
121.0890		339 1173	1.82							
131.0801		891	4.78							
132.0834		265	1.42							
133.9815 134.0988		444 453	2.38							
143.0800		476	2.55							
144.0817	1	1834 14747	9.82							
145.0890	1	2022	10.84							
147.1054	1	340	1.82							
148.1133 152 8916		259	1.39							
155.0619		1084	5.81							
158.0973		2028	10.86							
159.1064 160.1129		474	2.54 8.41							
160.9910		624	3.34							
176.9311		336	1.80							
180.0580		967	5.18							
185.1082		1287	6.90							
187.1241	1	3071	16.46							
192.0924	1	560	3.00							
197.1090		690	3.70							
198.1118 204 0823		285	1.53							
206.1048		348	1.87							
207.1095		595	3.19							
218.09/3		1189 2085	6.37							
220.1118		683	3.66							
221.1190		428	2.29							
222.1265 231.1014		373	2.00							
232.1123		1179	6.32							
233.1200	1	2963	15.88							
235.1319	1	976	5.23							
246.1247		603	3.23							
248.1437 257.1100		300	1.61							
258.1223		314	1.68							
259.1287		484 1346	2.59							
261.1351		577	3.09							
270.1107		286	1.53							
2/1.1244 272 1282	1	765 267	4.10							
273.1401	-	759	4.07							
274.1462		468	2.51							
275.1548 276.1595	1	519	2.78							
283.1229		381	2.04							
284.1251		1165 5529	6.24 29.62							
286.1353	1	2620	14.04							
287.1428	1	482	2.58							
295.0962 298.1423		427	2.29							
299.1402		304	1.63							
300.1508	1	4981	26.68							
302.1726	T	757	4.05							
303.1862		764	4.09							
312.1611 313.1669		475	2.55							
314.1668		1503	8.05							
315.1852	1	1855	9.94							
316.1885 317 2021	T	537	2.88							
322.1601	1	1643	8.80							
323.1628	1	485	2.60							
328.1819 337.1849		/14 884	3.83 4.74							
363.1862		303	1.62							
375.1847		299	1.60							
377.1917 378.2048		296	1.59							
380.2136		589	3.16							
388.1934 389 2023		347 2190	1.86							
MassHunter Qualitative Analysis		2170		Page 2 of	5			Generated at 8:55 AM on 2023-03-13		

	Analysis Report											Agilent Trusted Answers			
	Spectrum Peaks														
	m/z	z	Abund	Abund %	m/z (Calc)	Diff (ppm)	Ion Species	Formula		Ion T	уре				
	390.1983	1	5646	30.25											
	391.2034	1	1824	9.77											
	392.2103	1	350	1.88											
	403.2167		341	1.83											
	404.2137	1	11317	60.63											
	405.2172	1	4697	25.16											
	406.2211	1	899	4.81											
	420.2445	1	18665	100.00											
	421.2479	1	6191	33.17											
	422.2511	1	953	5.10											
	448.2510	1	2834	15.19											
	449.2552	1	906	4.85											
	456.0609		303	1.62											
+ Scar	n (rt: 12.669-12.786 min)	Sub	Peak 20 from	+ TIC Scan S	ub										
v10 ⁴	+ESI Scan (rt: 12.669-12.786 mir	n, 8 scans	s) Frag=175.0V CID	@42.0 Pd s2.d Sul	otract										
×10 _	197.1081														
0.0															
0.0	158.0972														
0.6															
0.4	115.0551														
0.2															
0.2	268.1808 3	56.8790	454.8761												
0-															
	100 200 300	40	00 500	600 700	800	900 100	1100	1200	1300	1400	1500	1600	1700		

Counts vs. Mass-to-Charge (m/z)

		ŀ	Anaiysis	керо	rt		Aglient Trusted Answers
Spectrum Peaks				•			:
m/z	Z Abund	Abund %	m/z (Calc)	Diff (ppm)	Ion Species	Formula	Ion Type
102.0430	236	2.54					
103.0551	391	4.21					
105.0699	450	5.91 4.84					
106.0679	633	6.81					
107.0763	174	1.87					
107.9676	733	7.89					
108.0792	320	3.44					
109.0328	920	9.90					
114.9505	159	1.71					
115.0551	1 2860	30.78					
116.0583	1 235	2.53					
117.0698	169	1.82					
117.5258	227	2.44					
119.0621	1746	18.79					
121.0298	176	1.90					
121.0915	441	4.75					
122.0162	399	4.29					
123.0838	304	3.28					
124.9945	202	2.18					
127.0542	1631	17.56					
128.0609	573	6.17					
129.0697	554	5.97					
131.0797	226	2.43					
132.9044	187	2.01					
133.9054	209	2.25					
134.0982	380	4.09					
135.9061	175	1.88					
141.0701	789	8.49					
142.0699	399	4.29					
143.0813	228	2.45					
144.081/	211	2.2/					
147.1125	152	1.64					
148.1069	154	1.66					
152.0596	177	1.90					
153.0655	649	6.99					
154.0662	1 3588	38.62					
155.0720	1 616	6.63					
156.0814	707	7.61					
157.0908	1070	11.52					
158.0972	1 6100	65.66					
159.1031	1 710	7.65					
165.0237	178	1.92					
167.0837	616	6.63					
168.0829	1535	16.52					
169.0885	982	10.57					
170.0965	1909	1.67					
180.0808	1335	14.37					
181.0807	1264	13.61					
182.0868	1 2322	25.00					
183.0268	1 504	5.42					
184.1067	202	2.18					
188.9523	162	1.74					
190.8567	188	2.02					
191.0095	1/4	1.88					
195.0925	1288	13.86					
196.0355	156	1.68					
196.1013	796	8.57					
197.1081	1 9290	100.00					
198.1127	1404	5.93					
200.0631	350	3.77					
201.1398	1 1436	15.45					
202.1426	1 344	3.70					
205.9653	180	1.94					
211.1242 214.9033	203	2.18					
223.1207	203	2.98					
224.1271	422	4.54					
225.1342	251	2.70					
226.1339	269	2.90 2.48					
240.1509	519	5.59					
242.1672	283	3.05					
245.9749	170	1.83					
248.8816 MassHunter Qualitative Analysis	163	1.75	Page 4 of	f 5			Generated at 8:55 AM on 2023-03-13
· · · · · · · · · · · · · · · · · · ·			ruge + 0				Generated at 0155 APT 011 2025-05-15

Analysis Report

Spectrum Peaks							
m/z	Z Abund	Abund %	m/z (Calc)	Diff (ppm)	Ion Species	Formula	Ion Type
254.1652	280	3.01					
256.8859	184	1.98					
258.8659	187	2.02					
268.1808	612	6.59					
276.8808	201	2.16					
284.9101	165	1.78					
293.0709	233	2.51					
295.1954	276	2.97					
298.8628	168	1.81					
356.8790	203	2.19					
366.8769	160	1.72					
396.8759	190	2.05					
454.8761	153	1.64					

MassHunter Qual 10.0 (End of Report)

Page 5 of 5

8.4 Appendix 4: Quadrupole time-of-flight mass spectrometer analysis report of the

S5 and P. destructans extract.

+ Scan (rt: 12.311-12.427 min) Sub Peak 24 from + TIC Scan Sub

Counts vs. Mass-to-Charge (m/z)

MassHunter Qualitative Analysis

Page 4 of 6

		A	naiysis	керо	rt		Aglient Trusted Answers
Spectrum Peaks			-	•			:
m/z	Z Abund	Abund %	m/z (Calc)	Diff (ppm)	Ion Species	Formula	Ion Type
102.0388	357	0.94					
107.9674	693	1.82					
111.0891	205	0.54					
119.0622	532	1.40					
119.0841	527	1.39					
121.0833	611	1.60					
122.0752	212	0.56					
132.9926	2/0	0.71					
135.1144	415	1.09					
136.9203	336	0.88					
147.1150	223	0.59					
162.9193	251	0.66					
174.8789	201	0.53					
183 0893	384	1.01					
184.1047	195	0.51					
189.0566	313	0.82					
192.8910	223	0.59					
193.0519	320	0.84					
194.0002	212	0.51					
200.0628	434	1.14					
204.9165	286	0.75					
207.0968	215	0.56					
211.1236	227	0.60					
212.0523	240	0.63					
213.0303	225	0.59					
217.0897	247	0.65					
225.0146	243	0.64					
230.0603	1 872	2.29					
231.0641	1 241	0.63					
235.0414	200	0.54					
236.8624	266	0.70					
237.0582	198	0.52					
242.0557	230	0.60					
243.0293	302	0.79					
243.0019	202	1.92					
253.0827	394	1.03					
254.0478	639	1.68					
255.0627	447	1.17					
258.0544	1 2697	7.08					
259.0599	1 546	1.43					
262.8584	240	0.63					
262.9219	191	0.50					
263.0696	311	0.82					
267.0689	421	1.11					
271.0604	829	2.18					
272.0055	623	1.64					
274.0512	441	1.16					
281.0810	1 1505	3.95					
282.0861	1 500	1.31					
283.0664	1 454	1.19					
284.064/ 284.8871	428	1.12					
285.0419	401	1.05					
285.0636	1245	3.27					
286.0497	1 5849	15.37					
287.0549	1 1666	4.38					
287.1327	1 220	0.55					
291.0627	226	0.59					
295.1954	530	1.39					
296.0581	372	0.98					
297.0796	223	0.59					
299.05/8	/39	1.94					
299.0780	1697	4 46					
301.0718	1 3000	7.88					
302.0746	1 565	1.48					
303.1860	282	0.74					
305.2020	551	1.45					
309.0777	1718	4.51					
312.0658	746	2.07					
313.0715	1 6785	17.82					
314.0740	1 1247	3.28					
314.8532	197	0.52					
315.0856	874	2.30					
325.1051 327 0872	1 38066	3.59					
MassHunter Qualitative Analysis		100.00	Page 5 of	f 6			Generated at 8:55 AM on 2023-03-13

Analycic Poport

Analysis Report

m/z	z	Abund	Abund %	m/z (Calc)	Diff (ppm)	Ion Species	Formula	Ion Type
328.0911	1	7536	19.80					
329.0922	1	1222	3.21					
330.0969		212	0.56					
342.1339		805	2.12					
352.1194		593	1.56					
357.1231		353	0.93					
366.1320		285	0.75					
379.1193		366	0.96					
392.1165		216	0.57					
392.8797		207	0.54					
416.1421		255	0.67					
431.0996		216	0.57					
457.0642		217	0.57					

MassHunter Qual 10.0 (End of Report)

Page 6 of 6

8.5 Appendix 5: Quadrupole time-of-flight mass spectrometer analysis report of the

S5 extract.

Sample Spectra

+ Scan (rt: 12.171-12.354 min) Sub Peak 28 from + TIC Scan Sub

MassHunter Qualitative Analysis

Page 4 of 6

		A	nalysis	Repo	Agilent Trusted Answers		
Spectrum Peaks			,	•			
m/z	Z Abund	Abund %	m/z (Calc)	Diff (ppm)	Ion Species	Formula	Ion Type
100.9518	1398	6.58					
102.9265	811 816	3.82					
104.9568	1653	7.77					
105.0335	897	4.22					
105.0667	4381	20.60					
115.0539	5724	26.92					
116.0608	1043	4.91					
117.0685	765	3.60					
118.0669	9/5	4.58					
119.0773	5578	26.23					
122.9485	1131	5.32					
123.0441 127.0534	1/44	8.20					
128.0607	2146	10.09					
129.0687	1125	5.29					
130.0652	1543	7.26					
130.9022	1303	6.13					
135.0980	833	3.92					
141.0685	1289	6.06					
142.0691	1040	4.89					
146.0937	764	3.59					
151.0547	2046	9.62					
152.0588	1746	8.21					
155.0659	1 8811	41.44					
155.0714	1 1700	7.99					
156.0798	1454	6.84					
157.0869	1 14287	9.84 67.19					
159.1002	1 1794	8.44					
164.0614	986	4.64					
167.0824	1389	6.53 14.43					
169.0807	2753	12.95					
170.0940	3923	18.45					
171.1000	1048	4.93					
178.9024	/45	3.50					
180.0794	2569	12.08					
181.0800	3137	14.76					
182.0854	1 6852	32.22					
195.0951	2609	12.27					
196.0991	2132	10.03					
197.1065	1 21264	100.00					
198.1102	1 3102	7.02					
201.1369	3035	14.27					
223.1211	844	3.97					
225.8535	1205	5.67					
236.9849	846	3.98					
238.8722	841	3.95					
240.1491	1077	5.06					
245.0430 258.0564	628 1134	5.33					
259.0585	771	3.63					
260.8510	1015	4.78					
260.8884	1 4857	3.48 22.84					
262.0429	1 1034	4.86					
268.1819	1355	6.37					
268.8533	1077	5.07					
272.8230	1236	5.81					
274.8367	752	3.54					
278.8411	747	3.51					
281.0777 284.8644	1142	5.37					
285.0610	987	4.64					
286.0492	1 4444	20.90					
287.0499	1 876	4.12					
207.8362 291.0488	2727	3.65 12.82					
291.8048	1169	5.50					
298.9853	1004	4.72					
299.0728	1 2817 1 1002	13.25					
301.0711	1 1638	7.70					
309.0781	1214	5.71					
313.0708	1 3285	15.45					
MassHunter Qualitative Analysis	. 030	5.24	Page 5 of	6			Generated at 8:55 AM on 2023-03-13

Analysis Report

Spectrum Peaks									
m/z	z	Abund	Abund %	m/z (Calc)	Diff (ppm)	Ion Species	Formula	Ion Type	
314.8491		2797	13.16						
316.8454		973	4.58						
325.1077		1158	5.44						
327.0863	1	19171	90.16						
328.0913	1	3219	15.14						
329.0889	1	784	3.69						
357.1199		836	3.93						
368.7861		1255	5.90						
379.1134		1026	4.82						
408.8051		794	3.73						
418.7643		1057	4.97						
498.7565		974	4.58						
591.6908		778	3.66						

MassHunter Qual 10.0 (End of Report)