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Abstract

Recent advancements in self-supervised learning in the point cloud domain have

demonstrated significant potential. However, these methods often suffer from draw-

backs, including lengthy pre-training time, the necessity of reconstruction in the input

space, or the necessity of additional modalities. In order to address these issues, we

introduce Point-JEPA, a joint embedding predictive architecture designed specifically

for the point cloud domain. We introduce a sequencer that orders point cloud tokens

to efficiently compute and utilize tokens’ proximity based on their indices. This allows

shared computation of proximity for point cloud tokens, allowing the efficient selec-

tion of spatially contiguous context and target blocks. Experimentally, our method

achieves competitive results with state-of-the-art methods while avoiding the recon-

struction in the input space or additional modality. Specifically, it outperforms other

self-supervised learning methods on linear evaluation and few-shot classification on

ModelNet40, showing the robustness of the learned representation. The results show

that Point-JEPA is an alternative efficient pre-training method to pre-existing meth-

ods in the point cloud domain.
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Chapter 1

Introduction

1.1 Introduction

Point cloud representation is employed to capture accurate 3D geometry information.

Because of the increasing availability of the 3D sensors, we have seen an increase in

the available point cloud datasets [1, 2, 3, 4, 5, 6], leading to numerous studies that

directly process this type of data [7, 8, 9, 10]. However, the impressive results of these

studies often rely on a large amount of labeled data, which is not always available to

practitioners working with their custom datasets. To illustrate this problem, semantic

annotation of one object from the ScanNet dataset takes roughly 22 minutes [5].

Self-supervised learning, on the other hand, does not require labeled data. This

enables the learning of strong representations from a vast amount of data, resulting

in prominent performance gains in the image and natural language processing domains

[11, 12, 13, 14, 15, 16, 17]. Inspired by the success in these domains, we have also

seen applications in the point cloud domain [18, 19, 20, 21], achieving state-of-the-art

results.

While the current state-of-the-art methods, such as PointGPT [19] and Point2Vec

[18], can produce promising results on classification and part segmentation tasks, our

initial investigation found that they take a significant amount of time for pre-training.
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1.1. Introduction

Specifically, our initial investigation found that it takes 16.9 hours for PointGPT-S and

12.1 hours for Point2Vec to pre-train on NVIDIA RTX A5500. This enormous time for

pre-training is less than ideal as it becomes harder to scale to a larger dataset, which

hinders the ability to effectively learn a strong representation from a vast number of

unlabeled training data. Motivated by the recent application of the joint-embedding

predictive architecture [22] in the image domain [23] and its efficiency in pre-training

time, we aim to apply the architecture to point cloud objects for self-supervised pre-

training.

Data One Data Two

p1: (1,2) p1: (3,4)

p2: (3,4) p2: (1,2)

p3: (5,1) p3: (3,2)

p4: (3,2) p4: (5,1)

p5: (5,4) p5: (5,4)

x

y

p1

p2

p3

p4

p5

x

y

p2

p1

p4

p3

p5

Figure 1.1: Illustration of the unordered nature of point cloud data. A permutation is applied
to data one to produce data two. As the plot shows, two data represent the same set of points
in two-dimensional space.
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1.2. Challenges

1.2 Challenges

Unlike images, a point cloud is a set of points with no specific order. Regardless

of the permutations applied to the set, the set represents the same object. This

unordered nature is shown in Figure 1.1 where, even after permuting the order of the

points, the overall shape they form remains the same. This implies that the model

consuming N points needs to be invariant to N ! permutations of the order of the

input data [9]. Although our work utilizes a PointNet-like encoder to create a set of

tokens, ensuring the permutation invariance in the local patches of points, the tokens

themselves are not guaranteed to have a particular order. This unorder nature of the

point cloud makes the context and target selection challenging in joint-embedding

predictive architecture, especially if you aim to mask spatially contiguous blocks of

patches similar to I-JEPA[23].

1.3 Contributions

To overcome the issue of lengthy pre-training with previous methods and the chal-

lenge specific to point cloud data, we will introduce Point-JEPA: a joint-embedding

architecture specific to point cloud objects. In this study, our main contributions are

as follows.

• We consider a joint-embedding predictive architecture which operates on point

tokens. Our method efficiently learns a strong representation from point cloud

data without reconstruction in the input space or additional modality.

• We introduce the sequencer that is applied after the tokenization of the point

cloud object. This enables the efficient selection of spatially contiguous tokens

for context and targets.

• We will perform a thorough analysis of the learned representations and the effect

of some of the important hyperparameters of the Point-JEPA work, allowing

possible future development in this direction.
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1.4. Organization

1.4 Organization

This thesis will be organized as follows.

• Introduction: This chapter introduces and defines the problem we aim to

solve.

• Background: This chapter provides the reader with a basic understanding of

self-supervised learning, providing some context for our work.

• Related Work: This chapter reviews some of the studies that have high rele-

vance to our work. Some of the building blocks, ideas, and interpretations may

come from studies in this section.

• Point-JEPA: This chapter covers our work. It mentions the use of a standard

transformer on the point cloud object, the high-level pre-training method of

Point-JEPA, and details the implementation.

• Experimental Results: This chapter contains results of the learned represen-

tation against the standard protocol as well as the ablation study analyzing the

components of Point-JEPA.

• Conclusion: This chapter provides the conclusion of our work as well as a

discussion of possible future studies.
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Chapter 2

Background

In this chapter, we will cover some of the fundamental concepts of self-supervised

learning to reach an audience with a broader background. It is recommended that

those who are familiar with self-supervised learning proceed to Chapter 3.

2.1 Self-Supervised Learning

Self-supervised learning is a branch of deep learning algorithms that do not require

labeled data to train the models. It processes the input data and attempts to create

internal objectives within the algorithm in order to learn underlying features and

relationships between components and views of the data [24]

It is often compared to supervised learning algorithms requiring labeled data to mini-

mize the loss function between the true and the predicted label. Formally the objective

of the supervised learning can be expressed as in Equation 2.1 [25].

argmin
θ

[∑
x∈X

L(f̂(x; θ), f(x))

]
(2.1)

In Equation 2.1, f̂ represents the model being trained, θ denotes the set of parameters

5



2.2. Context-Based Learning

that defines the model, and X denotes the set of input features. The term L is the loss

function measuring the disparity between predicted and true labels. The function f

refers to the true underlying function or the ground truth that the model f̂ attempts

to approximate through optimization, which in the context of supervised learning,

corresponds to the labels.

Although supervised learning has experimentally been shown to perform well in differ-

ent domains of deep learning such as image recognition, natural language processing,

and speech recognition [26, 27, 28], it has a significant drawback: it relies heavily

on a large amount of labeled data. The process of creating labeled data is not only

time-consuming but also expensive. Self-supervised learning addresses this issue by

utilizing a vast amount of available data for deep learning models to be pretrained

and fine-tuned with a smaller amount of data subsequently.

To learn from unlabeled data, self-supervised learning algorithms optimize tasks called

pretext tasks. The goal of a pretext task is to minimize the loss between features ex-

tracted by deep learning models and signals created by the data itself. This signal cre-

ation is called self-supervision; therefore, the learning process is called self-supervised

learning. Below, we will explore some of the most common types of self-supervised

learning methods to give the audience a comprehensive overview.

2.2 Context-Based Learning

Some earlier self-supervised learning approaches can be categorized as context-based

learning, where the model tries to predict the predefined context.

One of the widely known approaches from this category is the task of predicting

the rotation angle of an image as a pretext task [29]. In this method, the input

image is subjected to four discrete predefined rotational transformations. The deep

learning model is trained using these modified images, attempting to determine the

rotation of the angle applied to the original image. This approach is based on the

principle that the deep learning model must identify the location and the appearance

of the objects and recognize the relationships between different parts of the image in

6



2.2. Context-Based Learning

order to effectively predict the rotation. Formally, let us define G as the set of K

geometric transformation operators, expressed as G = g(.|y)Ky=1. In this set, g(.|y) is
the operator that applies a geometric transformation to an input image X, with the

transformation, in this case rotation, being defined by y. This process results in a

transformed image, denoted as Xy = g(X|y), where Xy represents the image after

applying the transformation corresponding to y. Then the forward pass of the deep

learning model F (.) along with Xy∗ can be expressed as in Equation 2.2.

F (Xy∗|θ) = F y(Xy∗|θ)Ky=1 (2.2)

Here, F y(Xy∗|θ) represents the model’s predicted probability for the input image Xy∗ ,

which has undergone a geometric transformation labeled as y. The parameter θ refers

to the set of parameters within the model F (.), and the term y∗ indicates the specific

transformation applied to the input image, serving the self-supervision purpose that

is concealed from the model F (.). Then the θ that the model should optimized for

can be expressed as

argmin
θ

[
1

N

N∑
i=i

loss(Xi, θ)

]
(2.3)

where we have training set {Xi}Ni=0. Because this task can be thought of as a classi-

fication task, a cross-entropy loss function can be utilized as in Equation 2.4.

loss(Xi, θ) = −
1

K

K∑
y=1

log(F y(g(Xi|y)|θ)) (2.4)

By providing the model with the essential context of the image, this method success-

fully trains the model to understand both local details and the overall global structure

of the image with no labels.

Other pretext tasks in this category include colourization and solving jigsaw puzzle

[30, 31, 32, 33, 34]. In the colourization pretext task, an image is provided to the

model in single-channel format, represented explicitly by a lightness channel. The

objective of this pretext task is to minimize the difference between the “ab” colour

7



2.3. Contrastive Learning

channels of the input image in CIE Lab colour space and the model’s output. Dividing

the colour space into bins makes this task similar to a classification task, where the

model aims to predict the correct colour bin for each part of an image. On the other

hand, jigsaw pretext task involves a few steps. It first divides the input image into

no-overlapping equally spaced regions. It then shuffles these regions according to the

pre-defined set of permutations. The model processes these permuted image regions

and aims to predict the correct order of them; thus, it is called a jigsaw puzzle. The

model learns the representation by understanding the relationships between different

parts of the image.

The success of self-supervised learning in this area largely depends on the hand-crafted

pretext tasks. While many of these tasks are effective, achieving successful training

requires the use of sophisticated, carefully designed transformations of input data to

guide the learning process.

2.3 Contrastive Learning

Frameworks such as MoCo [16, 35, 36] and SimCLR [11, 37] can be categorized as

contrastive learning. This approach employs the concept of positive and negative

samples. Methods in this category aim to generate embeddings that are close for

positive pairs and apart for negative pairs. Positive pairs are pairs of input data that

are considered similar or related to each other. They are usually created from different

views or augmentations of the same instance. On the other hand, negative pairs are

created from input data that are considered dissimilar or unrelated. They are often

created from instances or categories different from positive instances. The variations

in contrastive self-supervised learning methods mainly come from the differences in

the strategies for selecting these positive and negative pairs.

Momentum Contrast, commonly referred to as MoCo [16] considers self-supervised

learning as a dictionary look-up task. MoCo uses two distinctive encoders: fq for gen-

erating a query q from a given image, and fk for creating a set of keys {k0, k1, k2, ...}.
The objective in this pretext task is to find a key k+ that closely matches the query

8



2.3. Contrastive Learning

q, while distinguishing q from negative keys {k0, k1, k2, ...} − {k+}. More specifically,

the creation of keys and queries are completed with batches of data. Queries and

keys that are encoded from the current batches are considered positive samples and

keys from previous batches are considered negative samples. In order to achieve this

objective, it utilizes the InfoNCE loss function [38] as in Equation 2.5.

− log
exp(q · k+/τ)∑K
i=0 exp(q · ki/τ)

(2.5)

Here, K is the cardinality of the negative set {k0, k1, k2, ...} − {k+}, and τ is a tem-

perature hyper-parameter [39]. In order to utilize instances from the previous batch

as negative examples, MoCo uses a momentum update to update the weights of fk

partially from fq; that is,

θk ← mθk + (1−m)θq (2.6)

where θk represents the parameter of fk and θq represents the parameter of fq, with

m ∈ [0, 1). Here, θq is updated with back-propagation and θk is updated with momen-

tum update. The momentum update makes the update of θk smooth, which reduces

the difference between the keys from the previous batch and the current batch.

A simple framework for contrastive learning [11], or SimCLR for short, creates nega-

tive and positive pairs from the augmentations of the training data. For each training

instance, it creates 2 augmented instances creating 2N data points in total, where N

is the number of instances in a batch. As shown in Figure 2.1, each pair of data points

is fed to the encoder f(.) followed by the projector g(.). The loss for the positive pairs

(i, j) is calculated by Equation 2.7.

ℓi,j = − log
exp(sim (zi, zj))/τ∑2N

k=1 1[k ̸=i] exp(sim (zi, zj) /τ)
(2.7)

where sim(u, v) = u⊤v/∥u∥∥v∥ denotes the cosine similarity between u and v, 1[k ̸=i] ∈
{0, 1} denotes the indicator function which returns 1 if and only if k ̸= i, and τ denotes

the temperature parameter to determine how sharp the loss function is. Unlike MoCo

[16], which employs the instances from the previous batches as negative samples,

9



2.4. Self-distillation Learning

Figure 2.1: SimCLR Architecture. Two different augmentations t and t′ that are selected from a
set of augmentation T and applied to the instance x. Then the encoder f(.) and the projection
head g(.) are applied to two augmented instances individually. The loss is calculated such that
there would be a maximum agreement between the representations of two augmented input
instances. Source: [11]

SimCLR utilizes the instances from the current batch as negative samples.

2.4 Self-distillation Learning

Knowledge distillation, which precedes and forms the basis for self-distillation, was

first introduced as a means to transfer the representation of a larger model “teacher”

to a smaller model “student” [40, 41]. Self-distillation can be thought of as a specific

application of knowledge distillation where the teacher and student are identical and

the parameters are updated in an end-to-end fashion.

One of the works that is attributed to the recent success of self-distillation learning is

Bootstrap Your Own Latent (BYOL) [13]. BYOL utilizes two identical encoders, as

shown in Figure 2.2, one called online encoder and another called target encoder, each

10



2.4. Self-distillation Learning

x

v yθ zθ qθ(zθ)

v′ y′ξ z′ξ sg(z′ξ)

view

input
image

representation projection prediction

t

fθ gθ qθ

t′

fξ gξ sg

loss

online

target

Figure 2.2: Pretraining in BYOL. Here τ and τ ′ the transformation applied to the input image,
f represents the model that we aim to pretrain, and g represents the projector. The predictor qθ
predicts the output of the target encoder given the output of the online encoder. The weights of
the online encoder θ is updated with gradient-based optimization and the weights for the target
encoder ξ is updated with running average of θ. Source: [13]

containing different parameter values. Each encoder receives two different augmented

images, and their objective is to maximize the agreement between two encoders.

Similar to MoCo [16], the online encoder is updated with gradient-based optimization

with regards to the loss, while the target encoder is only updated by the exponential

moving average of the online encoder. As it turns out in the work of Simple Siamese

network (SimSiam) [12], we can throw away many components of BYOL by sacrificing

accuracy slightly. Specifically, SimSiam demonstrates that the important element

preventing BYOL’s architecture from collapsing is the stop-gradient operation. Other

features such as the exponential moving average of the weights in the target encoder,

the use of large batches, and the symmetrization of loss functions are of secondary

importance.

Effectively, self-distillation learning effectively eliminates the need for negative sam-

ples, while still being able to learn meaningful representations.
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2.5. Generative Learning

2.5 Generative Learning

Generative models including [42, 15, 43, 14] often utilize encoder-decoder architecture

with masking of the input instances. This approach has become prevalent in the

image domain where masked image modeling has shown promising results. In masked

image modeling, the input images processed by the model include masked or corrupted

regions. The model’s objective is to accurately reconstruct these regions. The concept

was initially introduced by BEiT [42], which employs random masking for certain

patches of the image. More specifically, BEiT initially trains “image tokenizer” by

auto-encoder-like reconstruction to obtain fixed-size vocabulary, i.e., discrete tokens

that can represent the image patches. The pretraining is then achieved by utilizing the

learned image tokenizer and its fixed-size vocabulary of image patch representation.

Certain image patches are masked randomly and substituted with a mask embedding.

Following this, vision Transformer [44] processes these patches and aims to predict

the corresponding visual tokens.

Similar to BEiT [42], MAE [15] employs recovering of the missing part of the image

as a pertaining method. MAE, instead of predicting certain tokens of corresponding

patches, simply aims to reconstruct the input image with corrupted masked input

through encoder-decoder architecture. This eliminates the need for training tokenizer

prior to the pertaining and allows end-to-end learning.

Mathematically, the masked image modeling can be abstracted as Equation 2.8 [24].

L (D (E (T1 (I))) , T2 (I)) (2.8)

Here, E(.) is the encoder and D(.) is the decoder. T1(.) represents the transformation

applied to the input image I, which is often a procedure designed to mask certain

regions of the input images. Similarly, T2(.) represents the transformation applied to

the input image I as a target representation in pre-taining. The difference between

mask image modelling methods often comes from the variation of transformation T ,

that is applied to input images.

Generative models are a data-filling approach [24]. This means they can perform

12



2.5. Generative Learning

sufficiently with an extremely small number of training examples. However, this also

means that increasing the size of the training examples does not usually improve

performance in generative self-supervised pretraining.

13



Chapter 3

Related Work

As previously mentioned, self-supervised learning has achieved remarkable results in

domains such as image and natural language processing. This success has inspired

its application in the point cloud domain. Additionally, the use of Transformer [45],

known for its effectiveness in other domains, has performed well on point cloud data.

In this section, we review various studies in the realm of self-supervised learning in the

point cloud domain as well as variants of transformers in the same domain. We will

also investigate the drawback of the current stat-of-the-art self-supervised learning

methods and introduce the concept of joint-embedding predictive architecture.

3.1 Self-Supervised Learning on Point Clouds

3.1.1 Contrastive Learning in Point Cloud Domain

As mentioned in the previous chapter, contrastive learning has been prevalent and

successful in the image domain. Similar to the application in the image domain, the

objective of contrastive learning in the point cloud domain is to generate embeddings

such that they are close for positive pairs and far for negative pairs. This is achieved

via the different methods that create positive and negative pairs tailored towards

point cloud data.
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3.1. Self-Supervised Learning on Point Clouds

Figure 3.1: Illustration of negative and positive pairs from an object. Here, for a given anchor
patch, the positive sample is drawn from similar patches and negative samples are drawn from
dissimilar patches according to the learned representation of the similarity learning step. The
hard negative sample is the patch from dissimilar patches that have similar features to the anchor
patch. source: [46]

One of the ways to create positive and negative pairs is by sampling parts of the point

cloud objects, called patches. In [47], self-supervised learning takes place with two

distinct tasks. The first task involves determining whether two point cloud segments

belong to the same instance of the training data. Here, positive pairs are drawn from

segments of the same instance and the negative pairs are drawn from segments of

different instances. Then the learned representation from this first step is used to

cluster the data points using Kmeans++ [48]. The cluster IDs are used as pseudo-

labels to train another network as a classification task. Because this is a separate task

from the contrastive pretext task, the architecture of the model does not depend on

the model used in the initial step, and therefore it is more flexible.

Similarly, in [46], positive and negative pairs are drawn from different parts of the same

object, except that both negative and positive samples originate from the same object.

In order to separate patches into positive and negative pairs, or similar and dissimilar

groups, the method employs a similarity learning model. For each selected patch,

referred to as the anchor patch, a similar patch is created by rotating the anchor,

while a dissimilar patch is selected from a different part of the object. Through the
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3.1. Self-Supervised Learning on Point Clouds

Figure 3.2: Illustration of pretext task in PointContrast. source: [49]

process of similarity learning, the model is trained to identify which pairs of patches

in an object are similar and which are dissimilar as shown in Figure 3.1. Then,

contrastive learning is applied using these pairs. Additionally, the concept of a hard

negative sample is applied, where the chosen negative sample closely resembles the

positive samples in the representation space. This allows the model to learn more

discriminative features.

Building upon the concept of using contrastive learning on patches of an object, several

studies [49, 50, 51, 52, 53] have extended this approach to larger, room-scale point

cloud datasets. Similar to object-based contrastive learning, these methods generate

multiple views for an instance of training data to form positive and negative pairs

in various ways, along with special architecture better suited for point cloud scene

understanding.

For example, PointContrast [49] utilizes U-Net-based architecture to extract dense

features within scene-level point cloud data. Here, as shown in Figure 3.2, two views

of a training instance are generated. It then considers pairs of points across these

two views that correspond to each other as positive pairs, while points that do not

match are considered negative pairs. To enhance the complexity of the pretext task

and encourage the network to learn an invariant embedding with random geometric

augmentation, a rigid transformation including rotation, translation, and scaling is

applied to both views. Then the objective of the pretext is to reduce the distance

between points that match and to increase the distance between points that do not
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3.1. Self-Supervised Learning on Point Clouds

match.

Although contrastive learning has been shown to provide good performance when fine-

tuned, it generally requires careful choice of negative samples and data augmentation

to learn a transferable representation for downstream tasks.

3.1.2 Generative Learning in Point Cloud Domain

There have been recent developments in self-supervised learning on point cloud fo-

cused on object-level data by employing reconstruction tasks on masked patches along

with Vision Transformer-like [44] models.

Point-Bert [54], inspired by Bert [55] in natural language processing, introduced gen-

erative pretraining in the point cloud domain with the intricate mechanism of token

generation. Initially, the raw point cloud data is transformed into a set of tokens,

which captures the geometric feature of the point cloud. These original tokens are

then processed to create a discrete fixed-sized vocabulary of discrete tokens, called

discrete point tokens, by discrete variational autoencoder. During the training phase,

a subset of original tokens is selected and masked, simulating the missing data within

the point cloud. The Transformer model [45] then processes the visible patches and

attempts to reconstruct the corresponding discrete point tokens of the masked tokens.

The limitation of PointBert, however, is the relatively complicated pretraining steps

that heavily rely on data augmentation and the early leakage of location informa-

tion.

Inspired by masked autoencoder [15], Point-MAE [20] was introduced in order to

address the aforementioned issues. Point-MAE, similar to PointBert [54], employs

Transformer [45] as backbone architecture. However, Point-MAE differentiates itself

with a high ratio of random token masking and an encoder-decoder architecture to

achieve its objective. Much like many masking strategies for ViT [44], Point-MAE

removes tokens from the encoder input in order to “mask” some tokens and introduces

arbitrary mask tokens created with shared learnable parameters in the decoder’s input

to reconstruct masked patches. This technique improves computational efficiency and

17



3.1. Self-Supervised Learning on Point Clouds

Figure 3.3: (a) The Tokenizer divides the point cloud into a minimum overlapping set of points
(patches) and the center points of them are sorted using geometric ordering, followed by the
embedding process.
(b) Dual masking not only masks out a portion of the patches that precede each target token in
the sequence but also extends to masking out patches that are already visible to the model, fur-
ther complicating the prediction task. The extractor and generator are composed of Transformer
blocks mapping the input to an intermediate representation. Then the relative direction prompts
RDP to provide the direction relative to the subsequent patches to the generator. source: [19]

prevents the early leakage of positional information. A projection head is added to

align decoded patches back to their original dimensions, aiming to minimize the dis-

crepancy between the reconstructed and original points, which simplifies the approach

while retaining the essence of the original MAE concept.

A slightly different approach taken by PointGPT [19] represents a novel direction in

generative learning, following the success of the generative pretraining Transformer

[14] in the natural language processing domain. In short, PointGPT adapts the auto-

regressive pretraining to point cloud objects. For point cloud objects, this is not a

trivial application because of the arbitrary order of point cloud data. To address this

challenge of unordered point cloud data, PointGPT introduces a method of geometric

ordering. What’s more, the point clouds, similar to images, are known to contain re-

dundant data. To learn meaningful representation despite this redundancy, it utilizes
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3.1. Self-Supervised Learning on Point Clouds

a dual masking strategy and an extractor-generator architecture as shown in Figure

3.3. This design allows the Transformer to predict point patches in an auto-regressive

manner without the need for dedicated specifications, eliminating the risk of early

leakage of positional information.

3.1.3 Distillation in Point Cloud

Although much less studied in point cloud compared to the other self-supervised

learning families, distillation has been shown to produce meaningful representation in

a few studies [21, 18].

In the work of DCGLR [21], the idea of knowledge distillation is applied to point cloud

objects inspired by DINO [17]. The architecture contains two identical networks that

have different parameter values. One of the networks, referred to as the teacher

network, receives a set of point clouds called global point cloud set, which is created

from cropping the original point cloud. On the other hand, the other network, referred

to as the student network, receives a cropped point cloud set called local point cloud

set as well as the global point cloud set. Here, the local point cloud set is created from

cropping in the same manner as the global point cloud set, except that the ratio of

the cropping is larger than that of the global point cloud set. Then the cross-entropy

loss is calculated for the output of two networks. More specifically, we have the global

set P i
g and the local point cloud set P j

l generated from a point cloud P ∈ RN×3 such

that

P i
g = crop(P, rand(rg1, rg2)), i = 1 . . . I (3.1)

P j
l = crop(P, rand(rl1, rl2)), j = 1 . . . J (3.2)

where crop(P, a) denotes the cropping of a point cloud P with ratio of a, and rand(min,max)

denotes a random number generator between the values min and max. I and J de-

note the number of point clouds for the global and local point cloud sets. Then, P i
g

and P i
l are processed by student and teacher network as follows.

oitg = projector(ft({P i
g})), i = 1 . . . I (3.3)
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3.1. Self-Supervised Learning on Point Clouds

oisg, o
j
sl = projector(fs({P i′

g , P
j′

l })), i = 1 . . . I, j = 1 . . . J (3.4)

Here, we have oitg, o
i
sg, o

j
sl ∈ RK and the projector projector(.) that projects the output

of student and teacher encoder to K dimensional space. Then balanced centring and

sharpening on teacher output oitg similar to DINO to get ôitg.

Then the cross entropy for each oisg and ojsl are defined as Equation 3.5 and 3.6.

lossg = min
fs

1

I(I − 1)

I∑
i=1

I∑
j=1
j ̸=i

−ôig · log(ojg) (3.5)

lossl = min
fs

1

I · J

I∑
i=1

J∑
j=1

−ôig · log(o
j
l )H(ôig, o

j
l ) (3.6)

and the final loss takes the weighted sum of global and local loss.

loss = wg ∗ lossg + wl ∗ lossl (3.7)

The parameters of the student network are updated with backpropagation while the

ones of teachers are updated using the exponential moving average of the student

network. Because the global point cloud set provides a better representation of the

objects than the local point cloud set, this architecture allows the stable update of

the student’s parameter. At the same time, as the student network is provided with

both local and global point cloud sets, it learns the invariance of the global shape as

well as the relation of the local shape to the global shape.

Similar architecture can be seen in the work of Point2Vec [18]. Inspired by data2vec

[56], it utilizes two identical networks, again called student and teacher. The teacher

network receives all of the available patches and the student receives only part of them.

Here, similar to the work in generative self-supervised learning with Transformer [54,

19, 20], masking is applied to the tokens generated from a group of points. Unlike the

original data2vec work, in which the masked embeddings are replaced with a special

20



3.2. Transformer

learned mask embedding, Point2Vec hides and does not feed the masked embedding to

the student network to avoid leakage of the positional information. Instead, Point2Vec

introduces a shallow Transformer decoder that takes the output of the student and

the mask embedding to predict the target embedding produced by the teacher. With

positional information masked to the student as well as the student learning the

contextualized embedding from the partial-view input, it learns meaningful and robust

representation.

3.2 Transformer

Transformer [45] is a sequence-to-sequence model, which has the ability to learn long-

range dependency, and it has achieved state-of-the-art results in the natural language

processing domain [55, 57, 58, 14]. The successful application of this architecture to

image classification [44] led the interest of researchers in the different variants of the

architecture in the image domain [59, 60, 61, 62, 63, 64, 65].

Transformer [45] is originally an encoder-deconder model, which contains the same

number of blocks. Closely related to our work, ViT [44] specifically only consists of

encoder blocks. Each of them consists of a multi-head attention and MLP module.

Residual connection is added after and layer norm is added before each module [66, 67]

as shown in Figure 3.4.

3.2.1 Attention

Transformer [45] adopts an attention mechanism called “Scaled Dot-Product Atten-

tion” and this module computes the attention as follows (Equation 3.8).

Attention(Q,K, V ) = softmax(
QT T

√
dk

)V (3.8)

given set of queries, keys and values in matrix as Q, K, V . Here dk is the dimension

of each key and query. The scaling factor 1√
dk

is applied to avoid large values for dot

product QT T , preventing vanishing gradient in the softmax function.
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Figure 3.4: ViT: Non-overlapping patches form an image are projected to have a specific di-
mension and they are fed to Transformer along with positional embedding. Each encoder block
contains MSA and MLP along with layer norm and residual connection. Source: [44]

3.2.2 Multi-Head Attention

Instead of simply applying an attention function with keys, queries, and values with

dimension dmodel, Transformer applies “multi-head attention”, which divides keys,

queries, and values into a subset of lower dimensional features and computes attention

function on it [45]. Specifically, key, query and values are linearly projected to dk, dq,

dv dimensions with H learned projections, then attention is calculated as in equation

3.8 for each projected key, query, and value. The resulting outputs are concatenated

to have the original dmodel dimension.

3.2.3 Transformer for Point Cloud Objects

Inspired by the success of other domains, Transformer architecture [45] has been

applied to the point cloud domain. One straightforward application of it is to cal-

culate attention on the entire point cloud object globally [68]. More specifically, the

point cloud coordinates are fed to the encoder, which maps the coordinates from 3-
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3.3. Joint-Embedding Predictive Architecture

dimensional space to higher-dimensional feature space. Then four identical standard

attention modules are applied sequentially and the output of each attention module

is concatenated similarly to DGCNN [69]. Then the max and average pooling of the

concatenated features are calculated to produce a global feature to be used for specific

tasks.

Alternatively, we can consider feature aggregation in the local region instead of calcu-

lating attention on the entire point cloud object [70, 71, 72]. For example, PointTrans-

former employs hierarchical architecture similar to PointNet++ [10, 73]. Instead of

using a shared MLP module, PointTransformer processes local patches with Trans-

former blocks. Its Transformer blocks operate on progressively down-sampled point

sets with each block processing neighbourhoods of sample points.

PointBert [54] introduces the use of a standard Transformer in a similar manner as

ViT [44]. Many self-supervised learning methods in the point cloud domain follow

the similar or identical use of standard Transformer [20, 19, 18]. As shown in Figure

3.3, the tokenizer encodes an equally subdivided set of points into a high-dimensional

token. Transformer [45] then computes the attention of these produced tokens. This

successfully allows the separation of local and global feature extraction. The details

of the architecture will be discussed in the following chapter.

3.3 Joint-Embedding Predictive Architecture

Joint-Embedding Predictive Architecture (JEPA) [22] is a self-supervised learning

architecture that learns representation from the prediction in the embedding space.

In simpler terms, JEPA learns by predicting one set of encoded signal y based on

another set of encoded signal x, along with an additional conditional variable z that

controls the prediction. This process is performed by a specific component known as

a predictor network. Encoders initially process both the target and context signals

to represent them in embedding space. Conceptually JEPA has a large similarity

to generative models, which are designed to reconstruct masked part of the input.

However, unlike generative models that operate directly on the input space, JEPA
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makes predictions in the embedding space. What this allows is the elimination of the

details of the input that is not necessary for learning meaningful representations. As

a result, the model can abstract and represent the data more efficiently.

Closely related to our work, the specific application of the architecture in the image

domain can be seen in I-JEPA [23]. In this work, the context signal is created by

encoding a block of patches while the target signals are created from sampling blocks

from encoded embedding vectors. Experimentally, it is shown that I-JEPA converges

much faster than methods which rely on pixel-level reconstruction and learn highly

semantic representation. In order to address the limitation mentioned below, we aim

to apply JEPA on point cloud objects.

3.4 Limitations of the Current State-of-the-Art

While the Current state-of-the-art pretraining methods such as PointGTP [19] and

Point2Vec [18] learn a meaningful representation and produce prominent results when

finetuned, it takes a significant amount of time for them to learn meaningful repre-

sentations. For example, it was found that it takes 16.9 hours for PointGPT and

12.1 hours for PointGPT to pretrain on NVIDIA RTX A5500. This time-consuming

nature of pretraining would be amplified when the size of dataset grows, making the

pretraining difficult. In our work, we aim to minimize the pretraining time with joint-

embedding predictive architecture as it has previously been seen in the image domain

that it reduces the pretraining time while producing state-of-the-art results [23].
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Chapter 4

Point-JEPA

We will introduce a joint-embedding predictive architecture for pretraining in the

point cloud domain inspired by I-JEPA [23] to overcome the issue with current state-

of-the-art methods. As shown in Figure 4.1, targets are created from encoded em-

bedding, while the context is created from encoding a limited number of tokens. The

encoded context embedding and target positional embedding are fed to the predictor,

aiming to maximize the agreement between the target and its prediction. This asym-

metric architecture mitigates the concern of representation collapse, that is, constant

representation for outputs regardless of the input, and the sparsity of the target blocks

allows efficient processing.

4.1 Backbone Architecture

Similar to previous work [19, 18, 20, 54], we adopt standard Transformer architecture

[44, 45] in point cloud processing. As shown in Figure 4.1, a given point cloud object

in the dataset is divided into regular point patches by the Farthest Point Sampling [74]

and K-Nearest Neighborhood algorithm [75]. Then point patches are encoded by a

deep-learning model that directly processes the points, and center points are encoded

with MLP to produce positional embedding. Our method selects PointNet-like [9]

architecture for encoding point patches in order to be consistent with previous work
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4.1. Backbone Architecture

and fairly evaluate our retraining method.

We formalize the tokenization of a point cloud object using a matrix-based nota-

tion, similar to Point-MAE [20]. The process of creating patches given a point cloud

object Xi ∈ Rn×3 with n being the number of points representing the object is as

follows.

Ci = FPS(Xi, t) (4.1)

Pi = KNN(Xi, Ci, k) (4.2)

where FPS(·, ·) denotes the farthest point sampling with a selected number of sampled

points, t denotes the number of patches we would like to create, and KNN(·, ·, ·)
denotes the K-Nearest Neighbour algorithm. k denotes the number of neighbours we

would like to select in each patch. Here, we have Ci ∈ Rt×3 and Pi ∈ Rt×k×3. Then, the

patches Pi are normalized by subtracting the centre coordinates of the corresponding

patches Ci. That is for all i ∈ {1, 2, . . . t}, j ∈ {1, 2, . . . k}, and l ∈ {1, 2, 3}

G−
ijl = Gijl − Cil (4.3)

where Gijl denotes the point in lth dimension of jth point in ith patch and Cik

denotes kth dimension of centre point of ith patch. This allows the separation of local

structural information and the positional information for the Transformer encoder.

G− is encoded with PointNet [9] like architecture to produce tokens T ∈ Rt×d and C

is encoded with MLP to produce the positional embedding ∈ Rt×d where d denotes

the dimension of each token.

T = PointNet(G−) (4.4)

Ep = MLP (C) (4.5)

Thanks to the farthest point sampling, we have a fixed number of tokens t. This

enables the processing of tokens T along with positional embedding Ep similar to

ViT [44]. Differently from the ViT, the positional embedding is added before each

transformed block to highlight the special importance of positional information in
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4.2. Target, Context, and Sequencer

Figure 4.1: Illustraion of Point-JEPA Architecture. The tokenization of point cloud patches is
shown on the left side and the joint-embedding architecture is shown on the right side.

point cloud objects [18].

4.2 Target, Context, and Sequencer

Targets in Point-JEPA can be considered patch-level representations of the point

cloud object that the predictor aims to predict. As depicted in Figure 4.1, the target-

encoder fθ initially encodes the tokens conventionally, as mentioned in the previous

section. Then, from the encoded embedding, we randomly select M possibly over-

lapping blocks. Each target block is formed from encoded embedding vectors with

spatially contiguous corresponding center points. Here, we denote the encoded em-

bedding vectors as y = {y1, y2, . . . yn}, where yk is the representation associated with
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the kth centre point. We then define y(i) = {yi}j∈Bi
as the ith target representation

block, where Bi denotes the set of mask indices for the ith block. Here, the masking

is applied to the output of the target encoder instead of the input T . This ensures a

high semantic level for the target representations [23].

Context, on the other hand, is the representation of the point cloud object that gets

passed to the predictor as a clue to predict the representation of targets. To construct

the context representation, we first select a subset of tokens T̂ ⊆ T that are spatially

contiguous. These selected tokens are then fed to the context-encoder fθ to generate

a context block x = {xj}j∈Bx . To prevent trivial learning, we ensure that the indices

of tokens chosen for the context differ from those for the targets.

This pretraining process poses unique challenges when applied to point cloud objects.

The difficulty arises because the point cloud data does not have an ordered represen-

tation like an image. In the case of images, the relative location of a patch within the

image can be determined from its index, making the selection of spatially contiguous

regions straightforward. However, with point cloud data, even if the indices of to-

kens are sequential in the index, they might not be spatially adjacent. Moreover, our

method involves selecting spatially contiguous M blocks of encoded embedding as the

target for training while ensuring that the context block does not include the tokens

corresponding to these elements. This complicates the selection process for context

tokens because the pool of available tokens varies between instances in a batch, which

implies an inconsistent number of tokens available between elements in a batch for

context selection.

In order to overcome these challenges, we introduce a sequencer that is applied after

the tokenization of the points. This sequencer orders tokens based on their associated

centre points. The process begins with a chosen centre point and its associated token.

In each subsequent step, the centre point closest to the one previously chosen and

its associated token are selected. This is iterated until the sequencer visits all of the

centre points. The resulting arrangement of tokens is in a sequence where contiguous

elements are also spatially contiguous in most cases.

With the ordered tokens, we can easily select M blocks of targets from embedding
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Figure 4.2: Visualization of targets and context masking strategy for objects from Shapenet55
[76] dataset. We visualize the corresponding grouped points of context and target embedding
vectors. Here, we use (0.15, 0.2) for the target selection ratio and (0.4, 0.75) token selection
ratio for context.

vectors with spatially contiguous corresponding centre points. We can then exclude

the indices of these selected encoded embedding vectors when choosing context to-

kens. This ensures that the number of indices available for selecting context blocks is

consistent across all elements in a batch, greatly simplifying the implementation. Ad-

ditionally, this allows the sharing computation of spatial proximity between context

and target selection, which improves overall computational efficiency. However, it is

worth noting that selecting two adjacent token indices does not guarantee spatial con-

tiguity; there might be a gap between them. While this is true, our experiment shows

that our method is effective enough for learning representation with no labels.

4.3 Predictor

The task of predictor pϕ given targets y and context x is analogous to the task of

supervised prediction. Given a context as input x along with a certain condition,
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it aims to predict the target representations y. Here, the condition involves the

mask tokens, which are created from shared learned parameters, as well as positional

encoding, created from centre points associated with the targets. That is

ŷ(i) = {ŷj}j∈Bi
= pϕ (x, {mj}j∈Bi

) (4.6)

where pϕ (·, ·) denotes the predictor and {mj}j∈Bi
denotes the mask token created from

shared learnable parameter and positional encoding created from centre points.

4.4 Loss Function

Because the predictor’s task is to predict the representation produced by the target

encoder, the loss can be defined to minimize the disagreement between the predictions

and targets as follows.

1

M

M∑
i=1

D(ŷ(i), y(i)) =
1

M

M∑
i=1

∑
j∈Bi

L(ŷj, yj) (4.7)

Similar to Point2Vec [18], we utilize Smooth L1 loss to measure the dissimilarity

between each corresponding element of the target and predicted embedding because

of its ability to be less sensitive to the outliers [56]. That is,

L(ŷj, yj) =

1
2
(ŷj − yj)

2/β if |ŷj − yj| ≤ β

(ŷj − yj)− 1
2
β otherwise

(4.8)

Here, β is a hyper-parameter determining the boundary between L1 and L2 loss.

4.5 Implementation Details

In this section, we discuss the implementation of Point-JEPA in detail.

30



4.5. Implementation Details

4.5.1 Architecture

As previously mentioned, we utilize standard Transformer [45] architecture for context

and target encoder as well as predictor. During pretraining, we set the number of

centre points to 64 and the group size to 32. The point tokenization is applied to the

input point cloud containing 1024 points. We set the depth of the Transformer in

context and target encoder to 12 in context and target encoder with the embedding

width of 384 and 6 heads. For the predictor, we use the narrower dimension of 192

following I-JEPA [23]. The depth of the predictor is set to 6, and the number of heads

is set to 6.

4.5.2 Optimization

We utilize AdamW [77] optimizer with cosine learning decay [78]. Starting from learn-

ing rate of 10−5, we increase it to 10−3 in the first 30 epochs and decay it to 10−6. The

batch size for pretraining is set to 512, and β for Smooth L1 loss is set to 2, similar

to Point2Vec [18]. The target encoder and context encoder initially have identical pa-

rameters. The context encoder’s parameters are updated via backpropagation, while

the target encoders’ parameters are updated using the exponential moving average of

the context encoder parameters, that is θ ←− τθ+(1−τ)θ where τ ∈ [0, 1] denotes the

decay rate. We gradually increase the decay rate of the exponential moving average

from 0.995 to 1.0 during pretraining.

4.5.3 Masking and Ordering

To determine the sequence of tokens, we utilize the iterative ordering of associated

centre points, as previously mentioned. We chose the starting point in this sequence

with the lowest sum of its coordinates. This method allows us to start the sequence

from a point on the outer edge of the object rather than from a point within the

object’s interior. This consistency in selecting the initial point is experimentally

shown to deliver a slightly better learned representation than taking the first available

index.
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For masking, we define a range of ratios with both upper and lower limits similar

to I-JEPA [23]. To start with, we clarify that the term “block” refers to a sequence

of tokens and their corresponding encoded embedding vectors that are contiguous.

Because of the sequencing process applied before the target and context selection,

most contiguous tokens and encoded embedding vectors are also spatially contiguous.

For the target, we randomly select 4 blocks of tokens from within the 0.15 to 0.2

range. We then remove the corresponding tokens of encoded embedding vectors that

have already been chosen as targets for further selection. Following this, we choose a

block of tokens that is within the range of 0.4 to 0.75 out of available tokens that are

not concealed. Because some of the tokens are not available for context selection, we

note that context block usually consists of multiple sets of tokens that are spatially

contiguous. The selection of targets is completed on a per-batch basis, and we track

the indices of these targets to ensure that the corresponding tokens of these selected

encoded embedding vectors are concealed in the context selection. The context is

then selected using the available indices of tokens also on a per-batch basis.
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Chapter 5

Experiment

5.1 Self-Supervised Pretraining

We pretrain our model on the training set of ShapeNet[76] following the previous

studies utilizing the standard transformer architecture such as Point-MAE [20], Point-

M2AE [79], PointGPT [19], and Point2Vec [18]. The dataset consists of 41952 3D

point cloud instances created from synthetic 3D meshes from 55 categories. We pre-

train Point-JEPA for 500 epochs and evaluate the learned representation on classifi-

cation and part segmentation tasks. Specifically for classification tasks, we consider

linear probing, end-to-end fine-tuning, and few-show learning. Our experiments are

conducted on NVIDIA RTX A5500 and NVIDIA A100 SXM4. We note that our

method only takes 7.5 hours on RTX A5500 for pretraining. This is less than half

of what PointGPT [19] requires and about 60% of what Point2Vec [18] requires for

pretraining.

5.2 Results on Downstream Tasks

To assess the learned representation of Point-JEPA, we take the context encoder and

fine-tune it end-to-end with multiple datasets. We will report the mean and standard
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5.2. Results on Downstream Tasks

deviation of 10 runs with different seeds for classification and segmentation tasks to

account for variability between each run. For the few-shot evaluation, we fix the seed

as we have 10 folds that can account for variability. We compare the performance of

our methods to previous work, especially those pretrained with point cloud dataset

formed from ShapeNet [76] without additional modality.

5.2.1 Linear Evaluation

After pretraining on ShapeNet [76], we evaluate the learned representation via linear

probing on ModelNet40 [80]. Specifically, we freeze the learned context encoder and

place the SVM classifier on top. To enforce invariance to geometric transformation,

we utilize max and mean pooling on the output of the Transformer encoder [20, 18].

Here, we utilize 1024 points for both training and test sets. As shown in Table 5.1,

our method achieves state-of-the-art accuracy, providing +0.8% performance gain,

showing the robustness of the learned representation.

Table 5.1: Linear Evaluation on ModelNet40 [80]. We compare Point-JEPA to self-supervised
learning methods pretrained with point cloud data created from ShapeNet [76].
* signifies that the result for linear evaluation is not available in the original paper. We cite the
results from [79, 81].

methods Overall Accuracy

Latent-GAN [82] 85.7

3D-PointCapsNet [83] 88.9

STRL [84] 90.3

Sauder et al. [85] 90.6

Fu et al. [21] 91.4

Transformer-OcCo* [54] 89.6

Point-Bert* [54] 87.4

Point-MAE* [20] 90.02

Point-M2AE [79] 92.9

Point-JEPA (Ours) 93.7± 0.2
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5.2.2 Classification on Synthetic Dataset

We also investigate the performance of the learned representation via end-to-end fine-

tuning. After pretraining, we utilize the context encoder to extract the max and

average pooled outputs. A three-layer MLP then processes these outputs for classi-

fication tasks. This class-specific head, as well as the context encoder, is fine-tuned

end-to-end on ModelNet40 [80]. The dataset contains 12311 synthetic 3D objects

from 40 distinct categories.

Table 5.2: Result of fine-tuning on ModelNet40 [80]. We report the overall accuracy with and
without voting in percentage.

Overall Accuracy

Method +Voting −Voting

Transformer-OcCo [54] 92.1 –

ParAE [86] – 92.9

STRL [84] 93.1 –

Point-BERT [54] 93.2 92.7

PointGLR [87] – 93.0

OcCo [16] 93.0 –

MaskPoint [88] 93.8 –

Point-MAE [20] 93.8 93.2

Point-M2AE [79] 94.0 93.4

Point2Vec [18] 94.8 94.7

PointGPT-S [19] 94.0 –

Point-JEPA (Ours) 94.1± 0.1 93.8± 0.2

As shown in Table 5.2, our method shows competitive results compared to the state-of-

the-art methods, showing the robustness of the learned representation when fine-tuned

on a dataset that has similar characteristics as the pretraining dataset.
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5.2.3 Classification on Real-World Dataset

In order to evaluate the learned representation of Point-JEPA, we fine-tune the

ScanObjectNN [6] dataset. The dataset contains 2902 instances of 15 classes. Point

cloud objects in ScanObjectNN are collected by scanning real-world objects. They

contain background as well as some perturbed points. We utilize 2048 points for

each training instance and 128 centre points for generating tokens. The dataset con-

tains three variants. OBJ-BG includes the objects as well as their background while

OBJ-ONLY only includes the objects. OBJ-T50-RS is the hardest variant of the dataset

that applies perturbation to the point cloud object introducing varying degrees of

background and partiality to the object. As shown in Table 5.3, our method achieves

an improvement of +1% over the best-performing method in the OBJ-BG variant of

the ScanObjNN [6] dataset, which presents a somewhat realistic representation of

a point cloud. This shows the representation learned from the synthetic dataset is

transferable to real-world datasets when using our method.

Table 5.3: Results of fine-tuning on ScanObjectNN.

Overall Accuracy

Method OBJ-BG OBJ-ONLY OBJ-T50-RS

Transformer-OcCo [54] 84.9 85.5 78.8

Point-BERT [54] 87.4 88.1 83.1

MaskPoint [88] 89.3 88.1 84.6

Point-MAE [20] 90.0 88.3 85.2

Point-M2AE [79] 91.2 88.8 86.4

Point2Vec [18] 91.2 90.4 87.5

PointGPT-S [19] 91.6 90.0 86.9

Point-JEPA (Ours) 92.9± 0.4 90.1± 0.2 86.6± 0.3
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5.2.4 Few-Shot Classification

Following the standard evaluation protocol previously employed [20, 19, 18, 79], we

conduct few-shot learning experiments on Modelnet40 [80]. Experiments are done

in m-way, n-shot setting as shown in Table 5.4. Specifically, we randomly sample

n instances of m classes for training. We select 20 instances of m support classes

for evaluation. Under one setting, we run 10 independent runs on 10 different folds

of the dataset, and we report the mean and standard deviation of overall accuracy.

As shown in Table 5.4, our method exceeds the performance of the current state-of-

the-art in all settings. Our method brings +1.1% improvements in the most difficult

10-way 10-shot setting. This shows the robustness of the learned representation of

Point-JEPA, especially in the low-data regime.

Table 5.4: Result of Few-Shot classification on ModelNet40 [80]. 10 independent trials are
completed under one setting. We report mean and standard deviation over 10 trials.

Accuracy (%)

Method 5-way 10-shot 5-way 20-shot 10-way 10-shot 10-way 20-shot

OcCo [89] 91.9± 3.6 93.9± 3.1 86.4± 5.4 91.3± 4.6

Transformer-OcCo [54] 94.0± 3.6 95.9± 2.3 89.4± 5.1 92.4± 4.6

Point-BERT [54] 94.6± 3.1 96.3± 2.7 91.0± 5.4 92.7± 5.1

MaskPoint [18] 95.0± 3.7 97.2± 1.7 91.4± 4.0 93.4± 3.5

Point-MAE [20] 96.3± 2.5 97.8± 1.8 92.6± 4.1 95.0± 3.0

Point-M2AE [79] 96.8± 1.8 98.3± 1.4 92.3± 4.5 95.0± 3.0

Point2Vec [18] 97.0± 2.8 98.7± 1.2 93.9± 4.1 95.8± 3.1

PointGPT-S [19] 96.8± 2.0 98.6± 1.1 92.6± 4.6 95.2± 3.4

Point-JEPA (Ours) 97.4± 2.2 99.2± 0.8 95.0± 3.6 96.4± 2.7
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5.3 Part Segmentation

The learned representation is also tested against the part segmentation task. Here,

we utilize the ShapeNetPart [76] dataset, made of 16881 objects from 16 categories.

We utilize the identical architecture employed in [18] for this task. Specifically, we

take the embeddings from 4th, 8th, and 12th Transformer block and take the average of

them. Then, we apply mean and average pooling to the averaged output. The pooled

embeddings and one-hot encoded class label of an object are used as a global feature

vector for that object. The averaged output is also up-sampled using PontNet++

[90] feature propagation layer to create a feature vector for each point. Then, each

feature vector is concatenated with the global feature, and a shared MLP is utilized

to predict the segmentation label for the given vector. The results are listed in Table

5.5. Although competitive, the performance achieved by our method is slightly worse

than the state-of-the-art methods. This, coupled with the fact that our learned pre-

sentation has shown to be linearly separable, shows that our method is better suited

for classification downstream tasks.

Table 5.5: Result of part segmentation on ShapeNetPart [76]. mIoUC is the mean IoU for all
part categories, and mIoUI is the mean IoU for all instances.

Method mIoUC mIoUI

Transformer-OcCo [54] 83.4 85.1

Point-Bert [54] 84.1 85.6

MaskPoint [88] 84.4 86.0

Point-MAE [20] 84.1 86.1

Point-M2AE [79] 84.9 86.5

Point2Vec [18] 84.6 86.3

PointGPT-S [19] 84.1 86.2

Point-JEPA (Ours) 83.9± 0.1 85.8± 0.1
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5.4 Ablation Study

We conducted thorough ablation studies to understand the effect of moving parts of

Point-JEPA. We run pretraining on the ShapeNet [76] dataset under various settings

and evaluate the learned representation with linear probing on the ModelNet40 [80]

dataset.

5.4.1 Masking Strategy

In this section, we investigate the impact of the masking type on the performance.

We consider single-block masking and multi-block masking. For single-block masking

strategies, we consider random masking and contiguous masking. For random mask-

ing, we randomly select the 60% of indices out of all encoded embedding vectors.

Similarly, for contiguous masking, embedding vectors that are spatially contiguous

are selected. In this setting, tokens that do not correspond to the selected indices of

the target blocks are used as context. On the other hand, in the muli-block mask-

ing setting, we sample multiple possibly overlapping spatially contiguous embedding

vectors as targets, and we mask out the corresponding tokens already utilized for

targets. In this setting, we choose context tokens in the ratio between 0.4 and 0.75

out of all available tokens. As shown in Table 5.6, the single-block masking achieves

sub-optimal performance regardless of the spatial contiguity of the target embedding.

It shows that our method learns better representation by utilizing smaller amount of

targets with a larger frequency.

Targets Context

Strategy Ratio Freq. Strategy Ratio Modelnet40 Linear

random (0.6, 0.6) 1 rest – 92.5

contiguous (0.6, 0.6) 1 rest – 92.3

contiguous (0.15, 0.2) 4 contiguous (0.4, 0.75) 93.7

Table 5.6: Different types of target selection strategies and its affect to the learned representa-
tion.
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5.4.2 Ratio of Targets

In this study, we change the ratio of the selected embedding vectors for targets while

keeping the number of targets and the ratio of context tokens fixed. As shown in

Table 5.7, the performance increases when you increase the ratio to a certain ratio.

However, beyond this point, further increasing the ratio results in decreased perfor-

mance. This implies that Point-JEPA does not require a large portion of the encoded

embedding vectors as targets and benefits from sufficient available tokens for context

encoding.

Targets Context

Ratio Freq. Ratio Modelnet40 Linear

(0.1, 0.2) 4 (0.85, 1.0) 93.0

(0.15, 0.2) 4 (0.85, 1.0) 93.3

(0.2, 0.25) 4 (0.85, 1.0) 93.2

(0.25, 0.3) 4 (0.85, 1.0) 92.4

(0.3, 0.35) 4 (0.85, 1.0) 90.5

(0.35, 0.4) 4 (0.85, 1.0) 84.6

Table 5.7: The ratio of encoded embedding vectors selected for each target.

5.4.3 Ratio of Context

In this study, we change the ratio of tokens selected for context encoding while keeping

the number of the targets and the ratio range for targets fixed. As shown in Table 5.8,

having a relatively large difference between the lower and upper bound of the ratio can

improve performance. This implies that Point-JEPA learns a better representation

when the number of selected context tokens varies more between training iterations.

Additionally, when the upper bounds of the ratio are constrained, we see increased

performance.
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Targets Context

Ratio Freq. Ratio Modelnet40 Linear

(0.15, 0.2) 4 (0.85, 1.0) 93.1

(0.15, 0.2) 4 (0.75, 1.0) 92.8

(0.15, 0.2) 4 (0.65, 1.0) 93.4

(0.15, 0.2) 4 (0.45, 1.0) 93.6

(0.15, 0.2) 4 (0.6, 0.75) 93.4

(0.15, 0.2) 4 (0.5, 0.75) 93.1

(0.15, 0.2) 4 (0.4, 0.75) 93.7

Table 5.8: The ratio of tokens selected for context encoding.

5.4.4 Number of Target Block

We will also consider the effect of the number of blocks chosen for targets on the

performance of the learned representation while we keep the ratio for targets and

context fixed. As shown in Table 5.9, the performance increases as we increase the

number of targets. However, the performance decreases as you increase the number of

target blocks after a specific frequency. Similarly to what we observed in Section 5.4.2,

we note that our method benefits from having sufficient amount of tokens available

for context encoding.

5.4.5 Predictor Depth

We also study the effect of the predictor’s depth on the learned representation. To

this end, we vary the predictor depth and observe its effect on the linear evaluation

accuracy. As shown in Table 5.10, Point-JEPA benefits from a deeper predictor.
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5.5. Initial Point for Sequencer

Targets Context

Ratio Freq. Ratio Modelnet40 Linear

(0.15, 0.2) 1 (0.85, 1.0) 93.0

(0.15, 0.2) 2 (0.85, 1.0) 93.5

(0.15, 0.2) 3 (0.4, 0.75) 93.4

(0.15, 0.2) 4 (0.4, 0.75) 93.7

(0.15, 0.2) 5 (0.4, 0.75) 93.4

(0.15, 0.2) 6 (0.4, 0.75) 93.2

Table 5.9: The number of Target blocks.

Predictor Depth Modelnet40 Linear

2 92.5

3 92.8

4 93.2

5 93.4

6 93.7

Table 5.10: Predictor depth and its effect on learned representation.

5.5 Initial Point for Sequencer

In this section, we study the importance of the initial centre point in the sequencer.

We study a sequencer that takes the initial index of the centre point against another

sequencer that takes the minimum sum of the coordinates as the initial point. As

previously mentioned, selecting the first centre point presented in the sequencer does

not guarantee the selection from the edge of the object. On the other hand, selecting

the point with minimum coordinate sum at least guarantees that the starting centre

point in the sequencer lies near the edge of the object. As shown in Table 5.11, taking

the point near the edge of the object helps with learning stronger representation.
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5.6. Visualization of Learned Representation

Sequencer Initial Point Modelnet40 Linear

Minimum index 92.7

Minimum Coordinate Sum 93.7

Table 5.11: The initial selected point in the sequencer and its effect on the learned representation.

5.6 Visualization of Learned Representation

In order to qualitatively analyze the learned representation, we reduce the dimen-

sional of the learned representation by utilizing t-SNE [91]. Specifically, we introduce

max and mean pooling on the output of the context encoder, similar to our linear

evaluation setup, and apply t-SNE on the pooled embedding. We visualize the learned

representation on ModelNet40 [80] with no fine-tuning on the dataset. In other words,

the context encoder has not been trained with this data. Despite this, our context

encoder shows discriminative features as shown in Figure 5.1, which is evidence that

Point-JEPA has learned a meaningful representation.
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5.6. Visualization of Learned Representation

Figure 5.1: Visualization of the learned representation in two dimensions using t-SNE [91]. We
visualize the learned representation of Point-JEPA on ModelNet40 [80] with no fine-tuning.
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Chapter 6

Conclusion and Future Direction

This work introduces Point-JEPA, a joint-embedding predictive architecture applied

to point cloud objects. In order to efficiently select targets and context blocks, we

introduced a sequencer, which orders the centre points and their corresponding to-

kens by iteratively selecting the next closest centre point. This eliminates the ne-

cessity of computing spatial proximity between every pair of tokens or embedding

vectors during the selection of the targets and context. Compared to Point2Vec [18]

and PointGTP [19], our method shows improved performance in classification in a

low data regime, showing the robustness of the learned representation. Additionally,

our method achieves a state-of-the-art result with linear SVM classification on the

ModelNet40 [80] dataset, showing that features produced by the pretrained context

encoder are linearly separable. However, it is worth noting that our method performs

slightly worse in the part segmentation task compared to the previous studies utiliz-

ing Transformer architecture, as shown in Table 5.5. This indicates that the learned

representation of Point-JEPA focuses on the global feature over local features and is

better suited for classification downstream tasks.

In this work, we fixed the size of the Transformer in order to fairly compare our

methods to the previous methods that utilize the standard Transformer architecture.

Because of our method’s efficiency in the pretraining time, it should easily scale to a
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larger Transformer with a larger pretraining dataset similar to PointGPT [19]. Look-

ing into the performance when we scale our method can be one promising future

direction. Additionally, we kept the point cloud tokenizer similar to the previous

methods for a similar reason. We found a lack of diversity in the point cloud tok-

enizer. Because of recent advancements in point cloud processing, it is possible that

there are better local feature extractors for point cloud tokenization. Looking into an

alternative tokenization method can be another future direction.
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